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Abstract—Domain adaptation has proven effective for sup-
pressing the inter-subject variability problem in cross-subject
EEG classification tasks in which labeled data is available for
source subjects while only unlabeled data is provided for target
subjects. Existing domain adaptation methods typically reduced
the distribution discrepancy between source and target domains
by directly utilizing source domain samples or features. To
safeguard the privacy of source domain data, we propose to
construct a Proxy Domain by simultaneously considering the
prediction Consistency and Confidence (PDCC) of locally trained
source models on target EEG samples, serving as the substitute
to the source domain. The framework commences with the aug-
mentation and alignment of the source domain data to enhance
feature generalizability, after which source models are trained
independently on each source subject’s data in a decentralized
manner. Knowledge transfer from source to target domains is
achieved exclusively through accessing to the source domain
model, enabling the PDCC-based proxy domain construction that
encapsulates the source knowledge. Finally, domain adaptation
is performed using the proxy domain and target domain. As
a result, PDCC eliminates the need to access source domain
data while effectively leveraging source knowledge. Experimental
results on four benchmark EEG datasets demonstrate that
PDCC consistently outperforms eleven existing methods, includ-
ing several advanced transfer learning and source-free methods.
Especially, the effectiveness of the proxy domain is extensively
investigated. The source code for reproducing the experimental
results is available from https://github.com/SunseaIU/PDCC.

Index Terms—Brain computer interfaces, EEG, prediction
consistency and confidence, privacy preserving, proxy domain.
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BRAIN-computer interfaces (BCIs) give their users com-
munication and control channels that do not depend on

the brain’s normal output channels of peripheral nerves and
muscles [1]. Among the widely used neuroimaging techniques
such as functional Magnetic Tomography, functional Near
Infra-Red Spectroscopy and Magnetoencephalography, EEG
is the most popular one due to its desirable properties such
as objective, non-invasive, cost-efficient, and high temporal
resolution. By detecting and recording electrical potential
changes produced by neural activities inside the brain through
electrodes placed on the scalp, EEG has occupied the largest
proportion in representative BCI paradigms such as motor
imagery, P300, steady-state visually evoked potentials and
affective BCI [2]. Our main emphasis in this research is the
EEG-based intention decoding of BCI users.

Decoding user intentions from collected EEG data using
machine learning models constitutes a core component of
many BCI systems. This process generally involves several key
stages, including data preprocessing, feature extraction, model
training, and prediction of mental intentions. Commonly ex-
tracted features include the temporal domain ones such as
event related potential and some statistical metrics, frequency
domain features such as power spectral density and differential
entropy, and spatial domain features such as common spatial
patterns and brain connectivity (functional) network. In con-
trast, deep learning models often circumvent the hand-crafted
feature engineering stage, as they are capable of automatically
learning feature representations from raw EEG data during the
model training process though the interpretability of obtained
results is limited [3].

Due to the non-stationary property and high inter-subject
variability of EEG signals, transferring knowledge learned
from source to target subjects is a critical challenge that
needs to be addressed. Transfer learning, which leverages
data or models from one or more source domains to enhance
the learning in target domain, offers a promising approach
to tackling these problems in cross-subject EEG decoding
[4], [5]. Generally, two primary solutions were employed by
transfer learning models for EEG classification; to be specific,
one is learning domain-invariant EEG features shared by both
source and target subjects from the feature perspective such
as domain adaptation [6], and the other is first learning a pre-
trained model on source data and then fine-tuning it by target
data from the model perspective [7]. Then, the learned model
can be effectively adapted to the target subject to shorten the
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model calibration time in BCI systems.
It is evident the majority of existing transfer learning

models are instance-based and feature-based ones, meaning
that we need to access the EEG data or features of the
source subjects during the transfer process. However, EEG
signals contain physiological information about the subjects
such as the health status, sleep states, emotions, cognitive
conditions, and even pathological information. Due to the
laws of various countries and the high regard for privacy,
EEG data from source subjects cannot be directly accessed
or used publicly. To ensure data privacy during the transfer
learning process, a two-stage paradigm is commonly adopted.
In this framework, the model training phase—utilizing data
from source subjects—is performed locally, and during the
transfer learning stage, only the predictions generated by
the source models on target subject samples are shared for
knowledge transfer. This approach not only prevents privacy
leakage of source data but also significantly reduces both time
and transmission costs.

To enhance the generalization capability of transfer learning
model in cross-subject EEG classification while ensuring pri-
vacy preserving, we propose to construct a Proxy Domain to
serve as a substitute of the source domain, which is composed
of the target samples with high Consistency and Confidence
predicted by the locally learned source models (PDCC). The
proposed approach begins with data augmentation and align-
ment in the source domain, followed by training source do-
main models locally. Knowledge transfer is facilitated through
exclusive access to the source domain models rather than
source domain EEG data, enabling the construction of a
proxy domain that encapsulates the knowledge from the source
domain. Finally, domain adaptation is conducted based on the
proxy domain and target domain data. Compared to traditional
EEG classification methods and deep learning approaches,
PDCC effectively leverages source domain knowledge without
requiring access to raw source domain data, ensuring both
privacy preserving and better classification performance.

The contributions of this paper are summarized as follows.
• A three-stage source-free domain adaptation framework

is proposed for cross-subject EEG classification by pri-
marily constructing a proxy domain as a substitute to the
source domain, based on which data privacy is preserved
and knowledge transfer is achieved. Besides such core
stage, source models are trained locally on augmented and
preliminarily aligned EEG data in the first stage, and joint
domain invariant feature learning and label estimation is
completed in the last stage.

• A comprehensive score is built for selecting samples from
target domain to form the proxy domain, which takes
both the target domain sample prediction consistency and
confidence obtained by the locally trained source models
into consideration. Then, the selected samples are not
only representative for source domain samples but also
accurate enough for modeling the class prototypes.

• Comprehensive experiments are conducted on four pub-
licly available EEG datasets, and the results depict the
superior performance of the proposed PDCC model to
several state-of-the-art non-source free and source-free

models. Besides, some intermediate processes including
the effectiveness of data augmentation and proxy domain
are evaluated in detail.

The remainder of this paper is organized as follows. Section
II introduces some background knowledge. Section III presents
the PDCC model from four aspects, i.e., data augmentation
and alignment, local source model training, proxy domain
construction and domain adaptation. Section IV conducts
experiments to evaluate the effectiveness of PDCC in cross-
subject EEG classification. Section V concludes the paper.

II. BACKGROUND

A. Data Augmentation and Alignment

Data augmentation refers to the method of constructing
iterative optimization or sampling algorithms by introducing
unobserved data or latent variables [8]. This technology is
particularly beneficial in machine learning and deep learning,
when the given dataset is in moderate size. Its main goal is to
increase the volume, quality and diversity of training data [9].
Then, the parameter space of learning models can be more
sufficiently fitted; or equivalently, the learning models can
more accurately and comprehensively capture the underlying
data properties to enhance their generalization ability.

Data alignment refers to minimize the distribution diver-
gence between different-sourced data, i.e., different sessions
and (or) subjects. In [10], He et al. proposed to align EEG
trials from different subjects in the Euclidean space to make
them more similar, and hence improve the classification per-
formance for a new subject. When considering more practical
settings that source and target domains have different label
spaces, a label alignment method was proposed to indepen-
dently move the per-class covariance of each source subject,
to re-center them at the corresponding class center of the target
subject [11]. As a preprocessing step to the following domain
adaptation process, Zhang et al. proposed to align the centroids
of the covariance matrices of source and target domain data
to reduce the marginal distribution shifts [12]. In [6], [13],
domain invariant feature learning was tightly unified together
with the estimation of target domain label indicator matrix for
cross-subject EEG classification.

B. Privacy-preserving Learning

The extensive data collection required for machine learning
and deep learning models raises significant privacy concerns,
which have been gaining increasing attention within many
communities. Many data collectors, such as those aiming to
leverage the analysis of clinical records in medical institutions,
face challenges in sharing and utilizing sensitive data due to
privacy restrictions, often encountering risks of data leakage
during the process. Therefore, a common dilemma is that
abundant data is maintained locally instead of centralized
sharing for model training. In BCI research, input data such
as EEG contains rich privacy information and the developed
machine learning model is usually proprietary. Therefore, data
and model transmission among different parties may incur
significant privacy threats [14], especially when performing
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EEG decoding in cross-subject task by transferring auxiliary
knowledge from source to target subjects. Therefore, it is
of great necessity to develop advanced learning models with
guaranteed privacy preserving ability.

C. Source-Free Domain Adaptation

Source-Free Domain Adaptation (SFDA) is an emerging
technique that aims to address the limitations of conventional
domain adaptation methods. Unlike traditional approaches,
which often assume predefined label relationships between
the source and target domains—such as closed-set or open-set
conditions—and require simultaneous access to both source
and target data during training, SFDA operates without direct
access to the source domain data [15]. However, these assump-
tions are often impractical in real-world scenarios, particularly
when protecting the privacy of source domain data is a critical
concern. SFDA addresses these challenges by eliminating the
need for direct access to source domain data, making it a
more feasible and privacy-preserving alternative for domain
adaptation tasks.

In recent years, researchers have developed various methods
to tackle the challenges of data privacy preserving and domain
adaptation in cross-domain tasks across diverse scenarios [16].
Among different SFDA models, SHOT (Source HypOthesis
Transfer) is a fundamental framework that freezes the classifier
module (hypothesis) of the source model and learns the target-
specific feature extraction module [17]. In the fine-tuning stage
of SHOT, both information maximization and self-supervised
pseudo-labeling are exploited to implicitly align data repre-
sentations from the target domain to the source hypothesis.
Based on this framework, Zhang et al. proposed a multi-
source decentralized transfer (MSDT) method by leveraging
source model parameters in gray-box setting or prediction
results in black-box setting to achieve effective knowledge
transfer from multi-source models to the target domain [18].
To achieve more accurate label estimation of target samples,
Gaussian mixture model was introduced to complete the self-
supervised pseudo-labeling [19]. In [20], some labeled samples
in target domain are available to adaptively refine the different
contributions of source models. In the case that EEG samples
in target domain arrive sequentially, Wu et al. proposed an
online privacy-preserving transfer learning model based on
the passive aggressive algorithm, which exhibited satisfactory
performance in cross-subject motor imagery classification [7].

Different from the common paradigm of ‘pre-training on
source data locally and then fine-tuning on target data’, Zhang
et al. constructed a virtual intermediate domain to serve as
the institute of source domain, which facilitates knowledge
transfer and safeguards the privacy of source data [21]. This
work inspires us a lot to construct a more representative
and effective proxy domain to achieve privacy-preserving
knowledge transfer for cross-subject EEG classification.

III. METHODOLOGY

A. Problem Definitions and Model Overview

Suppose we have K source subjects and the k-th subject
contains ns,k labeled EEG trials (samples). The source data

for each subject is represented as Ds = {Xs,i, ys,i}ns,k

i=1
where Xs,i ∈ Rch×l denotes the EEG data matrix of the i-
th trial, and ys,i ∈ {1, . . . , C} represents the corresponding
class label. Here, ch and l respectively denote the number of
EEG channels and time-domain sampling points, and C is the
number of classes. Similarly, the target domain contains nt

unlabeled trials (samples), represented as Dt = {Xt,i}nt

i=1 ,
where Xt,i ∈ Rch×l is the EEG data matrix of the i-th trial in
the target domain. The unlabeled target domain data is used
for domain adaptation and to evaluate the model performance.
The source data are only accessible during the stages of data
alignment, data augmentation, and source model training. The
goal is to aggregate data from all K source subjects to train
M source models and obtain a robust source domain model.
All the symbols used in this paper are defined in Table I.

TABLE I
NOTATIONS AND DESCRIPTIONS USED IN THIS PAPER.

Notation Description Notation Description

Ds source domain X EEG trials
Dt target domain X feature matrix
Dv proxy domain x feature vector
Y label matrix y label vector of x
Ft prediction matrix δ, β, γ model parameters
M # source models ns/v/t # samples
K # source subjects W projection matrix
Lnoise noise injection ratio Pv/t coupled projections
Q covariance matrix M reference matrix
Fshift frequency shift ratio PM confidence metric
Lmult scaling parameter SD consistency metric
rand random seed CS comprehensive score
std() standard deviation t threshold

The proposed PDCC framework is shown in Figure 1,
which includes the following four steps. To be specific, they
are 1) data alignment and augmentation, which focuses on
minimizing discrepancies in source data while enhancing
the model’s generalization capability through data alignment
and augmentation techniques; 2) local source model training,
which trains source models locally to reduce both compu-
tational time and data transmission costs; 3) proxy domain
construction, which involves creating an intermediate domain
to facilitate knowledge transfer from the source domain to
the target domain while ensuring data privacy; and 4) domain
adaptation, which aims to bridge the gap between the proxy
domain and the target domain, thereby enhancing the model
performance in cross-subject EEG classification. As shown in
this figure, the first two steps are combined to form the first
stage, making PDCC a three-stage framework.

B. Data Augmentation and Alignment

Data augmentation in each subject aims to improve both
the size and diversity of EEG data, and then the source
models can be sufficiently fitted to capture the underlying
semantics. Following the study in [18], four data augmentation
strategies including the noise injection, data flipping, data
scaling, and frequency shift are used. Noise injection involves
adding Gaussian noise to the data, which helps the model
generalize better by making it less sensitive to small variations
in the input data. Data flipping directly reverses the amplitude
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Fig. 1. The general framework of our proposed PDCC model for cross-subject EEG classification.

of the temporal represented EEG data, which is beneficial for
learning the temporal patterns that are invariant to the direction
of time. Data scaling is implemented by multiplying the data
with a random scalar, in order to generalize the model to
different amplitudes of EEG signals. Frequency shift involves
shifting the frequency components of the EEG signals, which
aims to improve the model robustness to slight variations in the
frequency domain. By applying a combination of these four
data augmentation strategies, we aim to create a more diverse
and robust dataset, which in turn helps the model to generalize
better and be more resilient to variations in the input data. The
four strategies are summarized in Table II.

TABLE II
DATA AUGMENTATION STRATEGIES USED IN THIS WORK.

Augmentation Strategy Mathematical formula

Noise Injection Xs,i + rand ∗ std(Xs,i)/Lnoise.
Data Flipping max(Xs,i)− Xs,i.
Data Scaling Xs,i ∗ (1± Lmult).

Frequency Shift Fshift(Xs,i ± Lfreq).

The raw EEG data consists of three dimensions, i.e., trials,
channels, and sampling points. To transform this data into a
suitable format for decoding model training, feature extraction
techniques including centroid alignment (CA) and tangent
space mapping (TSM) are employed. CA aims to align trial
data to a common reference point (i.e., centroid) in order
to achieve spatial consistency. This alignment reduces inter-
trial variability and enhances the stability and accuracy of
subsequent classification tasks. In CA, the covariance matrix is
used as the feature representation of EEG data. By computing

the covariance matrix for each trial and aligning these matrices
to a centroid, we usually choose either the Euclidean centroid
or the Riemannian centroid. The resultant aligned covariance
matrices form a consistent feature space, facilitating more
reliable analysis and classification. For each trial Xi ∈ Rm×l,
the key step in CA is to compute the mean covariance
matrix for all trials using a chosen centering method. We can
choose Euclidean mean, Riemannian mean, etc. The aligned
covariance matrix Q′

i of the i-th trial is computed as

Q′
i = MrefQiM

T
ref , (1)

where Q′
i is the aligned covariance matrix, M is the mean

covariance matrix, Mref = M− 1
2 is the reference matrix.

This process maps each trial’s data to a common reference
frame, thereby reducing inter-trial variability. After CA, we
map each covariance matrix into tangent space by

xi = upper(log(Q′
i)), (2)

where xi is the projection of the i-th aligned covariance
matrix, upper(·) is an operator to extract the upper triangular
part of the matrix. There are K source subjects in total. There-
fore, we apply the transformation in (2) to all EEG samples
from each source subject to obtain the corresponding feature
vectors, which are then combined to form the corresponding
source domain feature matrix. Finally, we merge all the source
domain feature matrices into a single domain.

C. Local Source Model Training

In this step, we utilize ensemble learning methods to con-
struct source models, which has proven an effective strategy
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to enhance model performance and generalization capabilities.
For simplicity, we selected three classic models, i.e., support
vector machine (SVM), logistic regression (LR), and linear
discriminant analysis (LDA), and trained them on source
domain data {Xs,Ys}. This allows us not only to evaluate
the performance of different algorithms but also to exploit
their individual strengths, thereby achieving more stable and
effective results in subsequent transfer learning tasks. Once
each model is trained, it is saved locally, ensuring ease of
retrieval and tuning in future steps, while also protecting the
privacy of the source subjects.

To avoid the prediction bias of a single classification model
in making decision, we adopted an ensemble learning strategy
to combine the predictions of multiple source domain models
using a soft voting mechanism. The underlying principle of
this approach is that combining predictions from multiple
models can effectively mitigate both bias and variance caused
by individual models, thereby enhancing the robustness and
accuracy of the overall prediction.

D. Proxy Domain Construction

The process of constructing a proxy domain to serve as
the substitute of the source domain is a core step in ensuring
privacy preserving and to facilitate the subsequent knowledge
transfer. The underlying rationality to construct such proxy
domain is that if certain target samples can be consistently
and confidently predicted by the trained source models, they
share similar properties with those in the source domain and
should be selected to form the proxy domain. Accordingly,
two complementary metrics, i.e., prediction consistency and
prediction confidence, are introduced as described below.

For the prediction consistency, we propose to use the stan-
dard deviation (SD) to quantitatively measure the divergence
across all the learned source domain models on a certain
target sample. Specifically, for xt,i|nt

i=1 ∈ Dt, if its prediction
probability belonging to the c|Cc=1-th class by the m|Mm=1-th
source model is y

(i)
m,c, then SDi is defined as

SDi =

√√√√ 1

C

1

M

C∑
c=1

M∑
m=1

(
y
(i)
m,c −

1

M

M∑
m′=1

y
(i)
m′,c

)2

. (3)

It is evident that even if all source models have fairly
consistent predictions for a target domain EEG sample but
these predictions are pretty fuzzy, then such sample is still
not suitable to be selected in the proxy domain. Equivalently,
such sample is not general enough to represent the properties
of a certain class. Therefore, we need to additionally take
the prediction confidence into consideration. To this end, we
propose to use the power mean (PM) metric to measure the
prediction confidence of source models made on a certain
target sample xt,i; that is,

PMi =
1

C

C∑
c=1

(
1

M

M∑
m=1

(y(i)m,c)
p

) 1
p

, (4)

where p is a free parameter and we set it to three in the
following experiments.

As a result, we obtain the comprehensive score (CS) for
each sample by weighting the standard deviation and power
mean metrics. Assuming that α is a hyper-parameter to control
the weights of both metrics, the formula for calculating the
comprehensive score is

CSi = α · PMi + (1− α) · (1− SDi). (5)

By adjusting their relative importance, the PDCC model can
find a balance between prediction consistency and confidence.
To determine the number of proxy domain samples, we use
such combined metric by comparing each CSi|nt

i=1 with a
predefined threshold (i.e., t). Target domain samples with
comprehensive score values higher than the threshold are
selected as the proxy domain samples. This approach ensures
that the selected samples are both consistently and confidently
predicted across different source models. Then, the constructed
proxy domain (i.e., Dv ≜ {Xv,Yv}) is high-fidelity to
the source domain, which on one hand satisfies the privacy-
preserving requirement and on the other hand facilitates the
subsequent domain adaptation task. It is worth mentioning that
the pseudo-label indicator matrix Yv of proxy domain samples
is formed by the soft voting among different source models.

E. Domain Adaptation

In this stage, we utilize the joint EEG feature transfer and
semi-supervised cross-subject recognition (JTSR) model to
achieve knowledge transfer due to its promising performance
[13]. In JTSR, the domain-invariant feature representation
subspaces and target labels are jointly optimized to achieve
the optimum, which has exhibited excellent performance in
enhancing the transferability of EEG features across subjects.
JTSR assumes that there exists a latent common subspace
shared by both proxy and target EEG data by two coupled
projections Pv/Pt ∈ Rd×p, where p is the subspace di-
mensionality (p ≪ d). Then, JTSR completes the domain
invariant feature learning by considering both the marginal and
conditional distributions of proxy and target domains; that is

D(Pv,Pt,Ft) =
∥∥PT

v XvYvNv −PT
t XtFtNt

∥∥2
2

+ δ ∥Pv −Pt∥22 ,
(6)

where the second term ensures that there is no significant de-
viation between the two projection matrices. Yv = [1nv

,Yv],
Ft = [1nt ,Ft], and Nv/t = diag( 1

nv/t
,Nv/t). Ft ∈ Rnt×C is

an unknown label indicator matrix of target samples, in which
each row is enforced to satisfy the probabilistic constraints.
nv (nt) is the number of EEG samples in the proxy (target)
domain. Due to the absence of labels on the target samples, the
exact sample size per class cannot be precisely obtained. In-
stead, we estimate the the c-th class size by nc

t =
∑nt

j=1 f
(c,j)
t .

Nv (Nt) is a diagonal matrix whose c-th diagonal element is
1
nc
v

( 1
nc
t
).

By connecting the data in subspace representation with label
information by a projection matrix W ∈ Rp×C , we have

L(Pv/t,W,b,Ft) =β

∥∥∥∥[XT
v Pv

XT
t Pt

]
W + 1bT −

[
Yv

Ft

]∥∥∥∥2
2

+ λ ∥W∥22 , s.t. Ft ≥ 0,Ft1 = 1.

(7)
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As a whole, the objective function of JTSR is formulated
by combining (6) and (7) together as

O = D(Pv,Pt,Ft) + L(Pv,Pt,W,Ft). (8)

By directly calculating the partial derivatives w.r.t. variables
W and b and setting them to zero, the updating rules to them
are respectively obtained as

b =
1

n

(
YT1−WTPTX1

)
, (9)

and
W =

(
PTXHXTP+ γI

)
PTXHY, (10)

where H is a data centering matrix and P = [Pv;Pt]. By
rewriting D(Pv,Pt,Ft) as

Tr
(
PTTP

)
+ αTr

(
PTGP

)
, (11)

where

T =

[
XvȲvN̄vN̄vȲ

T
v X

T
v −XvȲvN̄vN̄tF̄

T
t X

T
t

−XtF̄tN̄tN̄vȲ
T
v X

T
v XtF̄tN̄tN̄tF̄

T
t X

T
t

]
,

and G = [Id,−Id;−Id, Id]; therefore, with respect to P, the
objective function can be specified as

min
P

Tr
(
PT (T+ αG)P

)
+ β∥HXTPW −HY∥22. (12)

Taking the derivative of (12) w.r.t. P and setting it to zero,
we have

(T+ δG)P+ βXHXTPWWT = βXTHYWT , (13)

which has the form AP + PB = C and this is a standard
Sylvester equation. Since both equality and inequality con-
straints are defined on Ft, based on the Lagrangian multiplier
method with KKT conditions, we get its updating rule as

Ft =
[Zl]

+ + [Zv]
− + β[Q]+ + ηFt111

T

[Zl]− + [Zv]+ + β[Q]− + η11T
◦ Ft, (14)

where 
Q = HtFt −HtX

T
t PtW,

Zt = XT
t Pt

(
PT

t XtFtNt

)
Nt,

Zv = XT
t Pt

(
PT

v XvYvNv

)
Nt.

(15)

The pseudo-code of our proposed PDCC model is shown in
Algorithm 1.

IV. EXPERIMENTS

A. Data Preparation

Four motor imagery EEG datasets were used in the fol-
lowing experiments as described in Table III. The first two
datasets are from the BCI Competition IV [22]. The signals
were sampled with 250 Hz and bandpass-filtered between 0.5
Hz and 100 Hz. BNCI2014002 was measured with a biosignal
amplifier and active Ag/AgCl electrodes at a sampling rate
of 512 Hz [23]. For BNCI2015001, the system sampling
rate is also 512 Hz, with a bandpass filter between 0.5 and
100 Hz and a notch filter at 50 Hz [24]. The tasks in the
BNCI2014001-2 dataset include the motor imagery of left
hand, right hand while they are the left hand, right hand, feet
and tongue in BNCI2014001-4; for the other two datasets,

Algorithm 1: Procedure of the proposed PDCC model.

Input: K labeled source subjects S = {Ds,k}Kk=1;
unlabeled target domain Dt; balance parameter
α; threshold t for proxy domain sample
selection; domain adaptation model parameters
δ, β, γ; number of iterations N ; number of
source models M

; Output: Ft, estimated target domain labels.
/* Data Augmentation */
Using noise injection, data flipping, data scaling and

frequency shift to augment source data.
/* Data Alignment */
Using (1) and (2) to align source data and unlabeled

target data.
/* Local Source Model Training */
Combine all feature matrix Xk

s as well as label matrix
Yk

s from S to get one source domain (Xs,Ys), and
generate M source models {θm = fm(Xs,Ys)}Mm=1.
/* Proxy Domain Construction */
Compute Consistency Score for each target sample by

(5) and Select those target samples whose
comprehensive scores exceed the threshold t to
construct domain Dv = {Xv,Yv} (The detailed
processes are shown in Algorithm 2).
/* Domain Adaptation */
Initialize Ft =

1
C11T ∈ Rnt×C .

while not converged do
update b by rule (9);
update W by solving (10);
update Pv/t by rule (13);
update Ft by rule (14);

Algorithm 2: Proxy domain construction
Input: M source models trained on source domain

data, target domain Dt = {xt,i|nt
i=1}, number of

classes C, power parameter p = 3, weight
parameter α, selection threshold t;

Output: Proxy domain Dv = {Xv,Yv};
Initialize Dv.Xv = ∅ and Dv.Yv = ∅;
for each target sample xt,i in Dt do

Calculate predictions based on the source models;
Calculate prediction consistency SDi by (3);
Calculate prediction confidence PMi by (4);
Calculate comprehensive score CSi by (5);
if CSi > t then

Obtain the pseudo-label ŷt,i of xt,i by soft
voting among the M source models;

Add (xt,i, ŷt,i) to proxy domain Dv;
else

Skip xt,i;

return Dv;

the imagined movements are right hand and feet. The basic
experimental procedure is as follows. At the beginning of each
trial, a fixed intersection point is displayed on the screen. After
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two seconds, an arrow prompt (left, right, down, up) appears
to indicate the motor imagery task that the subject needs to
perform. The subject then continues the motor imagery task
until the fixed intersection point disappears at the sixth second.

TABLE III
DESCRIPTIONS ON THE MAIN PROPERTIES OF USED DATASETS

.

Dataset # subject # channel # trial # class

BNCI2014001-2 9 22 144 2
BNCI2014001-4 9 22 288 4
BNCI2014002 14 15 120 2
BNCI2015001 12 13 400 2

In Table III, the first dataset can be downloaded from the
BCI competition1. For the rest ones, we use the moabb library2

to download and process the raw EEG data using the motor
imagery paradigm, which helps extract relevant data from each
subject’s dataset.

B. Baseline Models and Experimental Settings

We conducted cross-subject motor imagery classification
experiments by comparing the proposed PDCC model with
some classic, deep learning, and source free domain adaptation
models. Below are brief introductions to each of them.

• Classic models (Type-I). 1) CSP-LDA (Common Spatial
Pattern-Linear Discriminant Analysis). CSP completes
feature extraction by identifying spatial filters that best
distinguish between different classes [25]. LDA is a
supervised linear classifier to classify the extracted EEG
features. 2) EA-CSP-LDA (Euclidean Alignment-CSP-
LDA). This method aligns EEG data from different
subjects in Euclidean space to reduce the inter-subject
differences [10]. 3) CA-TSM-LDA (Centroid Alignment-
Tangent Space Mapping-LDA). It combines centroid
alignment [12] and tangent space mapping [26] to reduce
the distribution differences of EEG data across subjects.

• Deep learning models (Type-II). 1) Deep Convolutional
Network (DCN). It leverages convolutional neural net-
works to automatically extract spatio-temporal EEG fea-
tures [27]. 2) Deep Adversarial Network (DAN). In DAN,
a generator and a discriminator interact with each other
and train each other through an adversarial process [28].
3) Domain Adversarial Neural Network (DANN). Similar
to DAN, DANN reduces the distribution differences be-
tween source and target domains by introducing domain
discriminators [29].

• Source-free knowledge transfer models (Type-III). 1)
EEG-DG. It is a multi-source domain generalization
framework for motor imagery EEG classification that
learns domain-invariant features with strong representa-
tion by optimizing both the marginal distribution and
the conditional distribution to minimize the discrepancy
across a variety of source domains, without accessing
the target domain during training [30]. 2) FedBS. It is
a privacy-preserving federated learning framework for

1https://www.bbci.de/competition/iv/#dataset1
2https://github.com/NeuroTechX/moabb

EEG-based motor imagery classification that handles
data heterogeneity across subjects through local batch-
specific normalization and enhances the generalization
ability via sharpness-aware optimization [31]. 3) SHOT.
It is a source-free domain adaptation model that freezes
the classifier module of a pretrained source model and
adapts the target-specific feature extractor using infor-
mation maximization and self-supervised pseudo-labeling
to align target representations with the source hypothe-
sis [17]. 4) Augmentation-based Source-Free Adaptation
(ASFA). ASFA employs the data augmentation tech-
niques in the source model training stage and considers
both the uncertainty reduction for domain adaptation
and consistency regularization for robustness in target
model training [32]. 5) Lightweight Source-Free Transfer
(LSFT). In this work, an intermediate virtual domain was
constructed based on the prediction consistency of some
trained source models on target domain samples to serve
as the substitute of the source domain, achieving privacy
preserving while performing knowledge transfer [21].

We employ the commonly used leave-one-subject-out cross-
validation paradigm, where one subject is designated as the
target while the remaining subjects within the same dataset
serve as the source. This experiment focuses exclusively on
unsupervised transfer learning, meaning that all EEG samples
from the target subject are unlabeled. To safeguard the privacy
of source subjects, data augmentation and alignment, source
model training are conducted locally. Model performance is
evaluated by using classification accuracy as the metric.

The DCN model comprises three main blocks, with each
block consisting of a convolutional layer, a batch normaliza-
tion layer, an activation layer, a pooling layer, and a dropout
layer. DAN consists of a feature extractor and a domain dis-
criminator, employing the MK-MMD (multi-kernel maximum
mean discrepancy) loss to reduce the distribution discrepancy
between the source and target domains. DANN integrates a
feature alignment layer, a domain discriminator, and a gradient
reversal layer to achieve domain adaptation. For these neural
networks, the batch sizes are 32, 128, and 128 respectively.
The learning rates for the source model training are set to
0.002, 0.01, and 0.01. The bottleneck layer dimensions are
configured as 288, 50, and 50 respectively. EEG-DG em-
ploys a multi-branch convolutional architecture with domain-
invariant feature learning and feature weighting for EEG
domain generalization. This model consists of four parallel
temporal convolution branches, each producing four feature
maps, followed by a depthwise convolution block. A domain
classifier and a feature weighting module enable domain-
invariant representation learning. FedBS utilizes a compact
convolutional architecture for EEG signal processing, featuring
a temporal convolution block, a depthwise spatial convolution
block, and a separable convolution block. This model uses a
dropout rate of 0.25. This architecture progressively reduces
feature dimensions through temporal filtering, spatial filtering
across EEG channels, and separable convolutions, achieving
efficient EEG feature extraction. For ASFA and LSFT, all
the settings align with those described in their respective
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papers. To be specific, in ASFA, the batch size is 128, and the
bottleneck layer dimension is 50. The training epochs for the
source and target domain models are 20 and 300, respectively,
while the discriminator is trained for 100 epochs. The learning
rate for all models is 0.01. Primary parameters include a weak-
ening probability of p=0.1, weakening bound λ=0.5, Tsallis
entropy parameter a=2, and trade-off parameter β=0.1. Only
one auxiliary classifier is used throughout the training process.
In LSFT, during the virtual intermediate domain construction
and feature adaptation, a maximum inconsistency threshold 0.1
and µ=0.1 are applied in all experiments. Feature adaptation
in LSFT uses a subspace dimensionality of p=20 and T=10
iterations. In PDCC, pseudo labels for target domain samples
are generated through a soft voting mechanism among source
model predictions. The parameter α is set to 0.7 to ensure the
balance between prediction consistency and confidence. The
thresholds (i.e., CSs) for the four datasets were set to 0.79,
0.60, 0.68, and 0.65 respectively.

C. Cross-subject Classification Results

The cross-subject EEG classification accuracies for the four
datasets are presented in Tables IV-VII, which include the
classification accuracy for each target subject and also the
average accuracy and standard deviation across all the target
subjects. The best performance in each task is marked in bold
and the second-best is underlined. On average, our proposed
PDCC model achieved the best average performance on all
the datasets.

The experimental results show the proposed PDCC model
outperforms all classic methods. Compared to deep learning-
based baseline models, PDCC achieves much higher accuracy
than DCN, DAN, and DANN. While these models benefit
from feature extraction and domain adaptation capabilities,
they are less effective in unsupervised domain adaptation
settings. PDCC demonstrates significant improvements over
the compared source-free domain adaptation methods. The
six source-free knowledge transfer models achieve privacy-
preserving from four different perspectives. EEG-DG is a
domain generalization model, while FedBS works under the
federated learning framework. ASFA is an improved model
from SHOT; therefore, both employ the pre-training and fine-
tuning paradigm. PDCC and LSFT achieve source data privacy
preserving by constructing a proxy domain to serve as the
substitute of the source domain. Notably, our proposed method
achieves consistent improvements across most of the subjects;
for example, the challenging cases such as the second and
the fifth subjects in BNCI2014001-2, where the accuracies
are significantly higher. Overall, PDCC achieves the highest
overall average accuracy on all the four datasets. Moreover,
we find that PDCC usually has a smaller standard deviation,
indicating the stability of the model’s performance.

To rigorously assess the significance of performance im-
provements, especially for comparisons with marginal gains,
we conducted pair-wised students t-test between PDCC and
each of the other compared methods, by pooling the re-
sults across all the four datasets together (aggregated 44
participants). The statistical test results in Table VIII confirm

that PDCC’s improvements over all the baseline models are
statistically significant (p < 0.05 for every comparison). These
results validate the effectiveness of our proposed PDCC model,
equivalently, the effectiveness of its building blocks, i.e., the
proxy domain construction, the domain adaptation and the data
augmentation methods.

D. Impact of Data Augmentation

To intuitively depict the effectiveness of data augmentation,
Figure 2 takes the BNCI2014001-2 dataset as an example
and shows the two-dimensional visualization of the EEG
samples before and after data augmentation by t-SNE [33].
The augmented dataset strengthens the model’s robustness by
incorporating greater diversity into existing EEG samples. This
augmentation allows the model to better deal with various dis-
turbances when encountering unknown data patterns, thereby
mitigating the risk of overfitting and improving its gener-
alization capacity. As the diversity of the dataset increases,
the model is able to more effectively capture the distinct
features of different samples during training, leading to an
improvement in prediction accuracy.

Fig. 2. Visualization of EEG samples before and after augmentation in
BNCI2014001-2.

Generally, different data augmentation methods may have
different impacts on the EEG classification performance. By
taking the subject 4 from the BNCI2014001-2 dataset as an
example, the experimental results in Figure 3 demonstrate
that PDCC with data augmentation always obtained better
performance than that without data augmentation. It is worth
noting that the strategy of combining multiple data augmen-
tation methods achieved the best results, corresponding to the
highest average classification accuracy. This indicates that the
combination enhancement method further improves the model
generalization ability by capturing multiple feature variations.
Similar results were also found on some other subjects.

E. Impact of the Proxy Domain Construction

According to the comprehensive score defined in (5) for the
proxy domain construction, the selected samples from target
domain are enforced to be similar to source domain samples to
guarantee high prediction consistency as well as close to class
prototypes to ensure high prediction confidence, which are also
expected to be representative enough to capture the primary
characteristics of target domain samples. Only in this way, the
subsequent domain adaptation stage will accordingly achieve
desirable performance. As shown in Figure 4, it corresponds
to the two-dimensional visualization of EEG samples from
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TABLE IV
CROSS-SUBJECT EEG CLASSIFICATION ACCURACIES (%) ON THE BNCI2014001-2 DATASET.

Algorithm
ID_subject

Avg.±std
1 2 3 4 5 6 7 8 9

Type-I
CSP-LDA 66.67 54.86 90.97 65.28 44.44 54.17 61.81 89.58 75.00 66.98±15.81
EA-CSP 86.11 53.47 91.67 70.14 55.56 67.36 63.89 90.97 77.92 73.01±14.47
CA-TSM 72.22 51.39 77.78 75.69 56.94 67.36 56.94 89.58 73.61 69.06±12.15

Type-II
DCN 76.39 56.94 87.50 71.53 56.94 68.75 54.86 91.67 71.53 70.68±13.18
DAN 65.28 55.56 86.81 65.28 52.08 65.97 52.78 78.47 70.14 65.82±11.64

DANN 77.78 48.61 84.03 74.31 56.94 66.67 63.19 87.50 71.53 70.06±12.60

Type-III

EEG-DG 75.02 51.58 88.28 72.12 61.34 67.50 64.78 89.26 73.61 71.50±12.12
FedBS 82.51 59.32 92.36 71.53 65.28 71.53 65.28 84.03 77.78 74.40±10.62
SHOT 79.17 52.78 96.53 70.14 52.08 70.14 64.58 92.36 72.22 72.22±15.39
ASFA 76.22 56.25 74.31 69.21 70.33 69.40 69.10 90.51 74.13 72.16±08.97
LSFT 87.50 49.31 94.44 72.92 55.56 68.75 65.28 96.53 86.11 75.16±16.94
PDCC 84.03 65.28 89.58 74.31 69.28 75.01 68.75 86.81 79.17 76.91±08.55

TABLE V
CROSS-SUBJECT EEG CLASSIFICATION ACCURACIES (%) ON THE BNCI2014001-4 DATASET.

Algorithm
ID_subject

Avg.±std
1 2 3 4 5 6 7 8 9

Type-I
CSP-LDA 54.17 24.31 56.94 36.11 28.12 24.65 34.38 69.79 50.35 42.09±16.25
EA-CSP 68.40 24.65 73.61 45.14 33.33 39.24 60.42 72.57 55.56 52.55±17.84
CA-TSM 70.14 32.29 77.78 45.49 36.11 38.19 48.96 70.14 63.54 53.63±17.01

Type-II
DCN 65.90 32.64 74.34 41.94 25.00 30.73 40.90 67.64 59.13 48.69±18.27
DAN 57.64 32.29 62.50 40.28 35.07 41.32 39.93 60.42 51.74 46.80±11.41

DANN 62.50 29.17 68.75 44.10 31.25 39.93 50.00 65.97 59.03 50.08±14.86

Type-III

EEG-DG 67.22 24.13 70.97 45.00 35.19 36.74 58.12 61.77 62.12 51.25±16.44
FedBS 71.32 27.16 78.25 45.78 38.91 47.58 49.76 75.12 64.05 55.33±17.66
SHOT 71.53 27.08 81.25 46.18 33.68 35.76 64.58 77.78 60.42 55.36±20.26
ASFA 72.99 28.19 86.25 42.95 36.01 41.60 69.51 78.78 59.90 57.35±20.78
LSFT 77.08 26.74 85.76 45.49 36.46 38.54 63.89 80.21 67.71 57.99±21.60
PDCC 60.71 50.00 81.25 46.53 47.92 52.08 45.49 83.33 60.00 58.59±14.49

TABLE VI
CROSS-SUBJECT EEG CLASSIFICATION ACCURACIES (%) ON THE BNCI2014002 DATASET.

Alg.
ID_subject

Avg.±std
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Type-I
CSP-LDA 55.63 60.00 91.88 81.25 56.88 57.50 83.12 56.88 91.25 65.00 50.63 57.50 50.00 48.13 64.69±15.38
EA-CSP 56.25 61.88 93.13 82.50 57.50 66.25 69.38 61.88 90.00 61.88 50.00 56.25 50.00 49.38 64.73±14.34
CA-TSM 50.00 60.00 95.63 50.00 53.75 58.75 71.25 56.25 80.00 64.38 58.75 58.75 50.63 50.00 61.30±13.12

Type-II
DCN 53.13 78.75 85.00 50.00 60.63 50.00 50.00 54.38 50.00 63.13 50.00 62.50 50.00 50.00 57.68±11.42
DAN 60.63 81.25 88.75 73.75 71.25 74.38 79.38 66.88 77.50 59.38 63.75 65.00 56.25 47.50 68.98±11.14

DANN 61.88 81.88 86.88 78.13 66.25 65.00 78.13 60.63 80.63 58.13 66.25 67.50 61.25 48.13 68.62±10.93

Type-III

EEG-DG 60.00 81.42 89.85 79.41 70.68 68.39 80.83 65.62 85.31 61.56 56.44 69.38 57.38 49.63 69.71±12.14
FedBS 66.25 80.00 88.00 78.13 74.90 72.10 81.30 72.20 93.00 61.25 74.38 75.62 59.50 61.88 74.18±09.82
SHOT 67.50 83.75 99.38 85.00 65.00 61.25 86.88 50.63 93.75 60.00 51.88 61.88 50.63 50.00 69.11±17.25
ASFA 65.20 67.80 70.90 57.90 51.80 49.20 80.70 99.00 69.90 74.90 57.20 65.00 84.90 93.10 70.54±14.83
LSFT 60.62 83.75 100.0 83.13 72.50 71.88 91.25 65.00 94.37 66.25 62.50 80.00 54.37 52.50 74.15±14.96
PDCC 70.00 84.38 97.50 80.63 78.75 75.62 80.00 74.38 93.13 66.25 71.88 81.25 65.00 66.87 77.55±09.69

the subject 1 in the BNCI2014001-2 dataset, from which we
observe that the samples in the constructed proxy domain
are more dispersed compared to the overall data distribution,
corresponding to higher representativeness.

The proxy domain serves as the substitute to the source
domain knowledge. Therefore, domain adaptation is performed
between proxy domain and target domain. In Figure 5, we

show the EEG samples before and after domain adaptation,
from which it is observed that both the marginal and con-
ditional distributions of EEG samples in proxy and target
domains are well aligned, indicating the effectiveness of the
JTSR method in domain invariant feature learning.

To explicitly show the superiority of the comprehensive
score to the prediction consistency in proxy domain con-
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TABLE VII
CROSS-SUBJECT EEG CLASSIFICATION ACCURACIES (%) ON THE BNCI2015001 DATASET.

Algorithm
ID_subject

Avg.±std
1 2 3 4 5 6 7 8 9 10 11 12

Type-I
CSP-LDA 55.63 60.00 91.88 81.25 56.88 57.50 83.12 56.88 91.25 65.00 50.63 57.50 67.29±15.09
EA-CSP 56.25 61.88 93.13 82.50 57.50 66.25 69.38 61.88 90.00 61.88 50.00 56.25 67.24±13.97
CA-TSM 50.00 60.00 95.63 50.00 53.75 58.75 71.25 56.25 80.00 64.38 58.75 58.75 63.13±13.33

Type-II
DCN 97.50 95.00 61.50 56.25 60.25 62.25 60.75 50.33 51.33 55.33 49.83 51.75 62.67±16.32
DAN 86.75 92.25 81.75 80.25 72.50 63.00 63.50 59.17 66.67 63.00 49.67 69.63 70.68±12.44

DANN 84.25 88.00 80.50 77.75 77.75 59.50 67.75 59.83 71.33 58.33 48.67 54.00 68.97±12.84

Type-III

EEG-DG 87.50 90.50 85.00 88.25 85.50 65.25 64.25 70.75 58.50 54.13 52.50 54.75 71.41±15.02
FedBS 94.10 94.60 88.00 82.50 85.80 66.67 69.50 64.50 67.00 64.25 60.60 57.90 74.62±13.41
SHOT 98.25 95.75 91.75 90.00 78.00 50.00 63.50 50.00 64.83 51.13 50.17 50.50 69.49±19.99
ASFA 98.50 96.00 90.75 77.75 50.25 61.50 49.16 71.67 51.13 50.17 49.00 98.75 70.39±21.09
LSFT 98.75 96.00 91.00 84.75 87.25 55.75 55.25 52.75 63.50 55.50 54.75 55.50 70.90±18.74
PDCC 95.25 88.75 87.25 85.75 81.75 69.75 78.00 64.75 68.75 67.00 69.50 61.00 76.46±11.10

TABLE VIII
STATISTICAL TESTS BETWEEN PDCC AND BASELINE MODELS

t-test t-statistic p-value Significance level

PDCC vs CSP-LDA 6.7616 << 0.001 ***
PDCC vs EA-CSP 4.9595 << 0.001 ***
PDCC vs CA-TSM 6.3351 << 0.001 ***
PDCC vs DCN 8.4064 << 0.001 ***
PDCC vs DAN 9.2096 << 0.001 ***
PDCC vs DANN 8.5142 << 0.001 ***
PDCC vs EEG-DG 5.5718 << 0.001 ***
PDCC vs FedBS 3.5446 0.001 ***
PDCC vs SHOT 4.0248 0.0002 ***
PDCC vs ASFA 2.1115 0.0406 *
PDCC vs LSFT 2.1277 0.0391 *

Fig. 3. EEG decoding accuracies corresponding to different data augmentation
methods on subject 4 from the BNCI2014001-2 dataset.

struction, we visualize the sample selection results respec-
tively obtained by these two metrics in Figure 6. Due to
the additional incorporation of prediction confidence into the
comprehensive score metric, the inter-class distance of selected
samples are significantly larger than that obtained by consid-
ering the prediction consistency only, corresponding to better
discriminative property. Further, such improved discriminative
ability is beneficial for the conditional distribution modeling
in the following domain adaptation stage.

Fig. 4. Visualization of the proxy and target domain EEG samples from the
subject 1 in the BNCI2014001-2 dataset.

Fig. 5. Visualization of the proxy and target samples from the subject 1 in
the BNCI2014001-2 dataset before and after domain adaptation.

In Figure 7, the bar chart shows that the prediction ac-
curacy achieved by our proposed method, which utilizes the
comprehensive score-based proxy domain, surpasses that of
the prediction consistency-based one on the majority of the
subjects in the BNCI2014001-2 dataset.

Figure 8 illustrates that the sample size determined by our
method demonstrates greater robustness. In contrast, relying
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Fig. 6. Visualization of the selected EEG samples respectively obtained by
the comprehensive score (in blue color) and the prediction consistency metric
(in red color) for subject 1 in the BNCI2014001-2 dataset.
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Fig. 7. Performance comparison between the comprehensive score-based
proxy domain and the prediction consistency-based proxy domain on the
BNCI2014001-2 dataset.

solely on prediction consistency often results in significant
variations in the number of selected samples across different
subjects. By comparison, our approach achieves a more stable
and consistent selection of samples.

F. Ablation Analysis

We present the results of ablation studies to evaluate the
individual and combined contributions of three key strategies,
i.e., Ensemble Learning (EL), Proxy Domain (PD), and Trans-
fer Learning (TL). The results are summarized in Table IX.

The baseline model does not employ any of the three
strategies, instead using only an LDA classifier trained on
source domain data to predict target domain data. Under this
setting, the model achieves an average performance of 66.75%
across the four datasets. Introducing TL alone increases the av-
erage performance to 68.91%, demonstrating its effectiveness
in leveraging the auxiliary pre-trained knowledge. Similarly,
using PD alone results in moderate improvement, with an
average performance of 68.28%. Combining PD and TL
further enhances performance to 69.27%, highlighting the

Fig. 8. Number of samples selected by traditional and proposed methods on
the BNCI2014001-2 dataset.

TABLE IX
THE RESULTS OF ABLATION STUDY(%).

Strategy Dataset Average
EL PD TL D1 D2 D3 D4

✗ ✗ ✗ 68.71 51.88 73.97 72.42 66.75
✗ ✗ ✓ 71.27 55.03 75.05 74.28 68.91
✗ ✓ ✗ 70.14 54.86 74.99 73.13 68.28
✗ ✓ ✓ 72.78 56.21 72.84 75.23 69.27
✓ ✗ ✗ 71.71 54.22 74.11 72.23 68.07
✓ ✗ ✓ 73.16 56.34 75.27 76.31 70.27
✓ ✓ ✗ 74.60 55.36 76.03 72.85 69.71
✓ ✓ ✓ 76.91 58.59 77.55 76.46 72.38

D1, D2, D3, and D4 respectively denote the four datasets of
BNCI2014001-2, BNCI2014001-4, BNCI2014002 and BNCI2015001.

complementary nature of these strategies. When all the three
strategies (EL, PD, and TL) are applied simultaneously, the
model achieves its best performance that the average accuracy
is 72.38%, which is a substantial improvement over the
baseline. This underscores the synergistic effect of integrating
these strategies into our proposed method.

In summary, the ablation study demonstrates that each
individual strategy positively impacts the model performance,
and their combination yields the most significant enhancement.
These results validate the effectiveness and robustness of the
proposed PDCC model.

G. Parameters Sensitivity Analysis

In this subsection, we validated the performance of our pro-
posed PDCC model in terms of the two important parameters,
i.e., the threshold t and harmonic parameter α, which are
involved in calculating the comprehensive score and further
determining the proxy domain construction.

In Figure 9, we show the variation of the classification
performance in terms of threshold t on the BNCI2014001-
2 dataset. It is evident that parameter t has different im-
pacts on different subjects. As t varies, the classification
accuracy for most subjects demonstrates a general upward
trend, with certain subjects exhibiting notable improvement
at specific parameter values. For instance, subjects 1, 3, and
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6 achieved relatively high classification accuracy, maintain-
ing a stable performance as t increased. This indicates that
PDCC demonstrates greater robustness for these subjects. In
contrast, subjects 2 and 9 exhibited substantial fluctuations in
accuracy across different t values, suggesting that the model
is more sensitive to the choice of t when handling individual
differences among these subjects. Therefore, it is reasonable
by setting the parameter t within the range of [0.66, 0.70] to
yield optimal results.

Fig. 9. Sensitivity for the threshold t on the BNCI2014001-2 dataset.

Generally, if the threshold is too low, excessive samples
would be selected which are not representative for both source
and target domains and may adversely impact the domain
adaptation stage. Conversely, an excessively high threshold
reduced the number of selected samples, omitting valuable
proxy domain samples that effectively represent the source
domain. This led to the insufficient capture of source domain
knowledge, ultimately diminishing the subsequent domain
adaptation performance. In Table X, we present the number of
samples selected for constructing proxy domains under varying
threshold values. As observed, the number decreases progres-
sively as the threshold increases. For instance, when the thresh-
old is 0.60, 32 samples were selected from BNCI2014001-
4; however, no sample was selected when the threshold was
enlarged to 0.75. In contrast, 346 samples were retained even
at a higher threshold of 0.75 for the BNCI2015001 dataset.
This disparity is attributed to the higher average prediction
accuracy of this dataset, indicating a closer alignment between
the source and target domains. Conversely, the significant
distribution differences corresponding to the more involved
classes in the BNCI2014001-4 dataset between the source and
target domains resulted in fewer samples meeting the stricter
criteria. These findings highlight the robustness and reliability
of our proposed comprehensive score metric-based proxy
domain construction method in reflecting domain alignment
and ensuring sample quality.

TABLE X
THE NUMBERS OF SELECTED SAMPLES FOR THE PROXY DOMAIN
CONSTRUCTION IN TERMS OF DIFFERENT THRESHOLD VALUES.

threshold (t) 2014001-2 2014001-4 2014002 2015001

0.60 144 32 160 400
0.65 127 25 137 394
0.70 102 16 78 374
0.75 70 0 34 346

In Figure 10, the sensitivity for the balance parameter α on
the BNCI2014001-2 dataset is provided. It is observed that
performance of PDCC is generally stable by setting α within
[0.60, 0.70], indicating the importance of simultaneously tak-
ing prediction consistency and confidence into consideration
in constructing the proxy domain.

Fig. 10. Sensitivity for parameter α on the BNCI2014001-2 dataset.

V. CONCLUSION

In cross-subject EEG classification where labeled samples
from multiple source subjects are available while the target
subject’s samples remain unlabeled, inter-subject data distri-
bution divergences are often aligned by domain adaptation. In
this paper, we have proposed a source-free framework to en-
sure the EEG data privacy of source subjects while leveraging
its utility for cross-subject knowledge transfer. Our method
began with augmenting the source subjects’ data volume and
aligning them to train multiple local source models. Next,
a Proxy Domain was constructed by comprehensively con-
sidering the prediction Consistency and Confidence (PDCC)
of source models on target EEG samples, which not only
encapsulated the knowledge from the source domain but also
characterized the data properties of target domain. Finally,
domain adaptation was applied between the proxy domain
and target domain. Experimental results on four benchmark
EEG datasets demonstrated that our proposed PDCC method
outperformed eleven existing approaches, including both some
state-of-the-art non-source free and source-free knowledge
transfer methods. Generally, PDCC is belonging to the feature
representation-based transfer learning paradigm. As our future
work, we will explicitly consider the differences among the
source subjects to develop the multi-source extension of the
PDCC model.
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