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Abstract—Hyperscanning enables simultaneous electroen-
cephalography (EEG) recording from multiple individuals, fa-
cilitating collaborative brain activity to reduce individual biases
and enhance the reliability of decision-making. The decoding of
such collaborative paradigm tasks has traditionally relied solely
on simple fusion methods based on each individual brain activity,
without incorporating cross-brain coupling information. Inspired
by social interaction studies on enhanced inter-brain synchrony
in collaborative tasks using hyperscanning, we propose a joint
learning framework for dual-brain target detection that inte-
grates a shared space construction module and shared feature-
guided module. The shared space construction module incor-
porates brain-to-brain coupling analysis to identify cross-brain
synchrony, and further integrates shared and private features
through a multi-head fusion mechanism for joint representation
learning in shared feature-guided module. Experimental results
show an average 10% improvement in balanced accuracy across
12 participant groups compared to traditional single-brain ap-
proaches, with some groups achieving up to a 5% gain over state-
of-the-art (SOTA) methods. Notably, higher-performing groups
exhibit stronger inter-brain coupling and more synchronized
target-related responses. These findings advance the development
of collaborative brain-computer interface (BCI) systems for more
robust and effective target detection.

Index Terms—EEG-based hyperscanning, cross-brain syn-
chrony, shared space, multi-head attention

I. INTRODUCTION

RAIN-COMPUTER Interface (BCI) systems enable di-

rect communication between computers and the human
brains without relying on peripheral nerves or muscles [1].
Among the neurophysiological signals used for BCI, Elec-
troencephalography (EEG)-based systems have gained sig-
nificant attention due to their noninvasive nature, ease of
operation, and high temporal resolution [2]. One of the key
paradigms in EEG-based BCI is Rapid Serial Visual Presen-
tation (RSVP), which has been widely applied in areas such
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as image retrieval, anti-spoofing, and anomaly detection [3],
[4]. Unlike traditional image retrieval methods that depend
solely on computer vision and often struggle with complex or
camouflaged targets, RSVP-based BCI systems mitigate these
challenges by utilizing EEG-derived neural responses.

In RSVP paradigm, sequential image streams containing
occasional target stimuli elicit specific event related potential
(ERP) components such as P300, N200, and late positive
potential (LPP), which reflect cognitive processes related to
attention and stimulus evaluation [5], [6], [7], [8]. However,
effective ERP extraction is hindered by low signal-to-noise
ratios, physiological artifacts (e.g., eye/muscle activities), and
temporal overlap of stimuli, along with individual variability
in attention and fatigue levels [9], [10]. These limitations
constrain the robustness and scalability of RSVP-BCIs, par-
ticularly in real-world, dynamic environments.

Collaborative BCI decoding: Inter-brain dynamics have
shown potential to augment system reliability and perfor-
mance by leveraging group-level neural correlations through
hyperscanning[11], [12]. To address the limitations of in-
dividual variability and improve the robustness of neural
signal decoding, recent studies have explored collaborative
BCI (cBCI) paradigms using hyperscanning, which allows for
the simultaneous acquisition of EEG data from multiple indi-
viduals engaged in a cooperative task [13], [14]. This paradigm
introduces an additional layer of inter-brain information, en-
abling the investigation of collective cognitive mechanisms
and temporally synchronized neural responses [15]. Despite
these promising directions, most existing decoding frameworks
primarily focus on fusing features or decisions at the individual
level within a group [16], [17], [18], [19], [20]. These methods
often ignore informative cross-brain coupling features, which
are critical for capturing shared representations and neural
synchrony during cooperative tasks. Recent work by Falcon-
Caro et al. [21] highlights the importance of constructing
joint spatial filters across multiple users to capture shared
neural structures while preserving subject-specific character-
istics—underscoring the need for more principled decoding
architectures in multi-brain BCI. In parallel, insights from
social neuroscience have demonstrated that inter-brain syn-
chrony is significantly enhanced during collaborative interac-
tions compared to competitive or isolated conditions [22], [23],
[24], [25]. These findings suggest that collaborative contexts
naturally elicit stronger cross-brain connectivity, which can be
leveraged to improve decoding performance in cBCI systems.

Our work: Building upon the growing recognition of
shared information as a critical component in collaborative



IEEE SIGNAL PROCESSING LETTERS

Modulel: Shared Space Construction
Nen* Ny

Private Feature

?

|
|
|
| xt Extractor
|
I N *N,
I v ch t
oy Shared Feature

|| Compare NSRSV o _
I sshured MA—_~ A~~~

A
|
| Nen* N,
I A ANAMAANN]
|
L

‘h
private;

Head"

Head" private; 1

Fig. 1: Overview of the proposed dual-brain EEG decoding for target detection framework. Module 1 constructs a shared space
via synchronized EEG analysis and extracts shared and private features respectively. Module 2 applies multi-head attention

using shared feature to guide the fusion of private features.

BCI paradigms, this paper presents a novel joint learning
framework for EEG-based hyperscanning target detection. The
proposed approach addresses the limitations of conventional
fusion-based methods by incorporating both shared and private
representations for enhanced decoding. (1) We develop a
joint learning framework that constructs a shared representa-
tional space through coupling analysis along with task-related
features, which complements private decoding by providing
group-level contextual information. (2) A dedicated hyperscan-
ning experiment was conducted to generate a dual-subject EEG
dataset, enabling comprehensive evaluation of the proposed
method. (3) We propose a shared feature-guided learning
strategy that injects shared representations into the private
decoding pathway during training, enhancing subject-specific
feature extraction and improving overall model robustness.

II. METHOD

We propose a hyperscanning-based framework for collab-
orative dual-brain target detection, based on EEG signals
recorded from paired subjects. The method consists of two
main modules. Module 1 captures inter-subject neural syn-
chronization to extract both private and shared representations.
Module 2 enhances decoding by integrating shared features
into a multi-head attention mechanism, enabling more effec-
tive fusion of individual representations for classification. An
overview is shown in Fig. 1.

A. Module 1: Shared Space Construction

EEG data are collected via hyperscanning to capture mutual
cognitive processes between two participants, ensuring tem-
poral synchronization. The pre-processed data are denoted as
XP € RNewxNe (p € {1,2}), where N, is the number of
EEG channels and N; is the number of time points. For each
participant p, the time series from the i-th channel is denoted
as 2¥ = XP[i,:] € RV, where i = 1,..., Nep.

To quantify shared neural information, phase synchroniza-
tion is computed using the phase-locking value (PLV):

Ny
1 . ,
PLV; = ~ § :ey(¢‘[z,t]—¢2[z,t]) 7 (1)

t =1

where ¢! [i, t] and ¢?[i, t] are the instantaneous phases of the i-
th channel for each participant, which are computed using the
Hilbert transform applied to the EEG signals. The resulting
PLV values, which quantify phase alignment, are arranged
into a vector S. High synchronization values are identified by
sorting .S in descending order and selecting the top n indices,
{i1,142,...,1y,}. For each selected channels, the corresponding
time-series data are concatenated to form the shared space
representation:

2 = 2} 2], k=1,2,...,n, )
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This shared space captures synchronized neural activity and
serves as input to a multi-scale convolutional network. The
network processes three inputs: X', X2, and S,pqred, €ach
through an independent feature extractor employing multi-
scale convolutional blocks to extract both temporal and spatial
neural features, as illustrated in the multi-scale feature extrac-
tion block in Fig. 2.
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Fig. 2: The multi-scale convolutional feature extractor lever-
ages temporal and spatial convolutions to capture target de-
tection task-related neural features. Each convolutional block
is followed by batch normalization (BN), exponential linear
activation (ELU), and dropout regularization.

The feature extractor receives inputs from both the shared
and private spaces, and independently extracts feature vectors
from each. This multi-scale convolutional architecture effec-
tively captures both temporal and spatial features. The first
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convolutional block extracts broad temporal patterns, while
the second refines these patterns to capture more granular
details. The tailored depthwise convolution kernel sizes en-
sure compatibility with the input dimensions, and the use
of average pooling minimizes computational overhead while
retaining crucial information, providing a robust foundation for
subsequent tasks such as collaborative decision-making and
target classification.

B. Module 2: Shared Feature-guided Learning

Building upon the comprehensive neural features extracted
in Module 1 using the multi-scale convolutional network, this
module focuses on leveraging the shared feature representation
Fhareq to enhance the private features of each participant, de-
noted as F,iyqte, and Fj,jyate,. The objective is to integrate
relevant shared information into the individual representations,
thereby improving the model’s ability to capture task-relevant
patterns embedded in EEG signals.

To achieve this, a multi-head attention mechanism is em-
ployed. It projects both shared and private feature vectors into
query, key, and value spaces across multiple attention heads,
allowing the model to compute attention scores to quantify
the influence of shared features on each participant’s private
representation. For the h-th attention head, the shared feature
vector is linearly transformed into a query matrix:

h h
shared — Fiparea X qua (D

where th is a learnable weight matrix for query transforma-
tion.

The private feature vectors Fprivate,(p € {1,2}) are
linearly projected into key and value matrices for attention
computation:

I ‘;Vi
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The attention scores are computed using the scaled dot-
product mechanism across multiple heads:

h hT
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where dj, is the dimensionality of the key matrix, used to
normalize the dot product for numerical stability.

The outputs from all heads are concatenated to form the
enhanced private features:

Hh

private, = Softmax
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where h represents the number of attention heads, and
Fprmatep denotes the enhanced version of Fiyate, guided
by the shared features.Finally, the enhanced private features
from both participants are concatenated and passed through a

fully connected layer for target classification.

The proposed multi-head attention mechanism selectively
incorporates shared features to enhance individual represen-
tations without causing interference. This design effectively
balances individual-specific and collaborative neural patterns,
thereby improving the robustness and task relevance of EEG
decoding in dual-brain settings.

III. EXPERIMENTS
A. Experimental Design
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Fig. 3: Illustration of the experimental paradigm and scenario.

The objective of this experimental design is to integrate a
multi-brain framework with a classical RSVP paradigm. For
the multi-brain component, EEG signals from two participants
were simultaneously recorded using a hyperscanning setup. In
the RSVP task, 24 right-handed participants were randomly
assigned into 12 pairs. The experiment consisted of eight ses-
sions. As illustrated in Fig. 3, during each session, participants
were instructed to search for a white yacht within a simulated
panoramic satellite image presented from a top-down aerial
perspective. Each image was displayed for 800 ms.

EEG signals were recorded using two 64-channel Neuroscan
systems following the international 10-20 system. Signals
were referenced to the vertex, grounded at the forehead,
and maintained below 15 k{2 impedance. Data were initially
sampled at 1000 Hz, then band-pass filtered between 0.1
and 40 Hz, and subsequently downsampled to 250 Hz. Bad
channels were interpolated using the MNE library [26] to
minimize data loss and ensure data quality.

B. Comparison of Decoding Performance Between Dual-
Brain and Single-Brain Modes

We compare the decoding performance of the dual-brain
RSVP paradigm with that of the single-brain paradigm. In the
target detection task, the ratio of target to non-target images
is 13:2, resulting in a data imbalance. To address this, we
adopt balanced accuracy (BA) as the evaluation metric. In the
single-brain setting, BA is computed as the arithmetic mean
of the two participants’ individual scores. As shown in Fig. 4,
the dual-brain setup outperformed the single-brain setup by
an average of over 10.00% in BA. Moreover, the dual-brain
paradigm achieved superior performance across all participant
pairs, with the best-performing group showing a 14.17%
higher BA compared to the single-brain mode. These results
highlight the effectiveness of using shared-space information
to guide private-space representation integration.
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TABLE I: Performance Comparison of Different Methods across Groups (BA/%)
Method Subjects Groups Average
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

LMDA-net 80.94 90.79 85.23 7823 77.52 88.14 8241 75.62 7894 77.67 89.51 81.34 82.19
EEGNet 82.89 91.68 8§89.21 81.25 79.29 9140 87.16 80.20 8243 8342 9142 8240 85.23
EEGInception 86.95 9492 92.65 84.87 8251 93,58 89.05 83.37 83.37 86.88 9544 8544 88.25
HyperscanNet 83.45 9198 90.10 8241 80.21 90.65 89.12 82.68 8246 8343 9241 82.15 85.02
PLNet 82.79 92.15 87.74 8245 80.55 92.14 86.24 81.54 81.25 85.12 92.15 81.90 85.51
EEG-Conformer 8691 96.03 88.43 8639 84.13 9542 90.12 7745 8255 8251 88.32 83.31 86.80
Ours 89.26 97.12 9421 8636 8528 96.67 91.69 84.56 8553 9044 9749 87.51 90.51

10 . . oason Removing Module 1 leads to a performance drop of 8.00%
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Fig. 4: BA comparison between single-brain and dual-brain
configurations, demonstrating significant improvements in tar-
get detection with dual-brain collaboration.

TABLE II: Results of Ablation Experiment (%)

Methods F1-score BA

Without Modulel  80.46 4+ 7.24  82.51 4+ 6.92
Without Module2 8491 + 5.36  85.94 + 5.62
Full (Ours) 88.14 + 3.68 90.51 + 4.48

C. Comparison with State-of-the-Art Methods

We compared the proposed EEG decoding method with
several state-of-the-art (SOTA) approaches, including methods
such as LMDA-Net [27], EEGNet [28], EEGInception [29],
HyperscanNet [30], PLNet [31], and EEG-Conformer [32].

Table 1 presents the dual-brain RSVP decoding results
across 12 subject pairs. EEGNet, HyperscanNet, and PLNet
achieved balanced accuracies (BA) of 85.23%, 85.02%, and
85.51%, respectively, while EEGInception reached 88.25%,
and EEG-Conformer 86.80%. In contrast, our method achieved
the highest average BA of 90.51%, with notable gains of
approximately 5% over PLNet and HyperscanNet.

The advantage is clear in Groups 1, 2, 3, and 11, where our
method consistently outperforms all baselines, demonstrating
the effectiveness of shared neural representation integration in
hyperscanning EEG decoding.

D. Ablation Experiment

This section evaluates the contribution of each module
through ablation experiments by selectively removing sub-
components. As shown in Table II, the full model outperforms
all variants, confirming the effectiveness of joint learning from
shared and private spaces.

3.23% decrease, respectively. These results demonstrate that
both modules substantially enhance classification performance.

E. The synchronization measurement analysis

To validate the relationship between decoding performance
and event-related potentials (ERPs), we conducted an ERP
analysis to assess inter-subject task synchronization. As shown
in Fig. 5, the high-performance group (Group 2) exhibited
stronger cross-brain synchronization in the P300 component
during target detection compared to the low-performance
group (Group 5). As a supplementary analysis to support our
main results, these findings not only confirm that the dual-
brain EEG data contain task-relevant ERP responses, but also,
for the first time, provide empirical evidence that cross-brain
neural synchronization is aligned with decoding performance
in a collaborative BCI setting.
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Fig. 5: Comparison of task-related ERP responses between
two typical groups: (a) Group 5, (b) Group 2.

IV. CONCLUSION

This paper presents an EEG-based hyperscanning dual-
brain target detection framework that integrates shared and
private space learning for joint decision-making. Experimental
results confirm the superiority of the dual-brain paradigm over
the single-brain mode, emphasizing the role of shared-space
feature-guided private representation learning in enhancing
RSVP classification performance.

The core concepts of our framework can be extended
to multi-subject (more than 2) scenarios. In particular, the
shared space construction can be expanded by incorporating
phase synchronization analyses across multiple brains, while
the multi-head attention mechanism could be modified to
accommodate additional subjects by enhancing the fusion of
features from multiple participants.
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