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Abstract 
 

This thesis comprises three interconnected topics within the area of finance, contributing to our 

understanding of volatility by applying novel techniques to forecast and model volatility within the 

non ferrous metals commodity market, providing valuable insight into their potential usage by 

industrial users, financial institutions and policy makers for hedging strategies, portfolio 

diversification, and risk management purposes. 

 

Chapter 2 compares the forecasting performance of univariate GARCH models, the GARCH-MIDAS 

model of Engle, Ghysels and Sohn (2013) with trading volume as a long run component of volatility 

and the Generalised Autoregressive Score (GAS) model of Creal et al. (2013). We find the standard 

GARCH model following students-t distribution produces the most accurate forecasts, with trading 

volume as a predictor variable not able to improve forecasting accuracy. Further VaR analysis 

corroborates our findings from the MCS test that the standard GARCH model is the most favourable 

model. 

 

In the third chapter, we use various multivariate GARCH models to assess conditional correlations of 

non ferrous metals with gold, brent crude and the S&P500 index, with likelihood ratio test conducted 

to select best fitting model to assess hedging effectiveness. Findings highlight that all metals show 

spikes in conditional correlation for all models in crisis periods, with strong reversals following a 

crisis period. Results from further wavelet analysis showcase evidence of low comovements between 

metals at the low frequency horizon. 

 

In chapter 4, we explore the effects of geopolitical risk and UK policy uncertainty on non ferrous 

metals using VAR, SVAR and the TVP-VAR-SV model of Nakajima (2011). Impulse responses at 

different time horizons produced by selected VAR models exhibit properties of higher non ferrous 

metal volatility in response to GPR and UK policy uncertainty shocks at short time horizons and 

during major geopolitical events, although these effects diminish at longer horizons.  
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Chapter 1: Introduction 
 

Volatility modelling and forecasting of financial assets, especially energy commodities such as crude 

oil, natural gas and various other types of commodities, has become an important widely researched 

area within finance. The volatility of commodities is of great importance to both industry professionals 

and academics, due to its wide ranging uses and consequences. Typically, forecasts are used in risk 

management, derivatives pricing and hedging, market making, market timing, portfolio selection and 

many other financial activities (Engle and Patton, 2007). Commodity and options traders will want to 

know the volatility of assets to correctly hedge their position to account for the future volatility of their 

asset. Additionally, fund and portfolio managers will want to know when to sell an asset within their 

portfolio before it becomes too volatile, so they can sell or buy an asset to maintain beta neutral 

portfolios to minimize exposure to risk. It is also important for bulk buyers and industrial users of 

commodities, who will want to know the future volatility of a commodity to be able to buy their 

commodity at the best possible price. 

 

Non ferrous metals are an important class of commodity not only due to their increasing usage in 

portfolio selection and risk management purposes, but also due to their wide usage in industrial 

applications. Non ferrous metals, which are metals that are not iron based alloys, are typically more 

expensive than ferrous metals and have widespread usage in residential, commercial and industrial 

applications due to their superior properties, such as high electrical conductivity (copper), lightweight 

and malleability (aluminium), corrosion resistance (tin and nickel), and high melting point (zinc) etc. 

(Shu et al. 2023). As important raw materials for the production of clean energy, increasing prices of 

non ferrous metals will push up the production costs of clean energy, and the increasing demand for the 

production of clean energy enterprises and their usage in the aviation industry prompts the increasing 

demand for non ferrous metals which may result in huge swings in external markets (Gustafsson et al. 

2021). In addition to their usage for industrial and consumer applications, non ferrous metals are widely 
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traded financial instruments with various properties that make them unique for hedging and portfolio 

diversification purposes. According to the futures industry association (FIA), non ferrous metals such 

as copper and aluminium are some of the most widely traded commodities, with purchase costs of non 

ferrous metals accounting for almost 60% of total costs in production and processing enterprises 

(Sharma et al, 2015) thus the price stability of non ferrous metals is essential to the maintenance of 

stable growth in industries and economy (Zhu et al. 2017; Qu et al. 2019; Ciner et al. 2020; Zhu et al. 

2021). Moreover, metals have proven their ability to be used as alternative investment instruments 

because of their weak integration within and among financial markets, with metals such as gold serving 

as an effective diversifier, hedge and safe haven asset for financial markets (Baur and Lucey, 2010; 

Sumner et al. 2010; Mensi et al. 2021). However, despite their importance for industrial, economic and 

academic purposes, scarce literature exists regarding non ferrous metals (Mensi et al. 2021), with only 

45 such studies being produced during the period 1980-2002 (Todorova et al. 2014), with copper and 

zinc receiving limited attention in the literature, although together with aluminium, they represent more 

than 85% of annual global non ferrous metal production (Boulamanti and Moya, 2016; ECORYS, 

2011). 

 

This thesis aims to contribute to the literature of volatility modelling by using novel techniques to 

investigate areas such as volatility forecasting, conditional correlations and the effects of uncertainty 

shocks and policy shocks, within the non ferrous metals market. Chapter 2 explores the forecasting 

performance of various univariate generalized autoregressive conditional heteroskedasticity (GARCH) 

type models and the Generalized Autoregressive Score (GAS) model with regards to non ferrous metals. 

This chapter adds to the scarce literature regarding volatility forecasting of non ferrous metals by 

incorporating the GAS model of Creal et al. (2013), of which little literature exists regarding its 

forecasting performance in commodity markets. We also follow the approach of Liu et al. (2022), 

whereby trading volume is used as a macroeconomic predictor variable for the GARCH-MIDAS model 

of Engle, Ghysels and Sohn (2013) to explore whether trading volume can be used to improve volatility 

forecasts. In our findings, following evaluation of various functions and the MCS procedure of Hansen 

(2011) to assess forecasting performance, the standard GARCH model following a students-t 
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distribution performs best when forecasting non ferrous metal returns. To validate the results of the 

MCS procedure, we conduct further value at risk (VaR) backtesting using the Kupiec (1995) and 

Christoffersen (1998) procedures, which confirm our findings that the standard GARCH model 

produced better forecasting accuracy than competing models. 

 

Chapter 3 has a focus on conditional correlations and dynamic linkages between non ferrous metals and 

other widely traded financial commodities and instruments, namely gold, Brent crude oil and the 

S&P500 index. When diversifying a financial portfolio or hedging a position, investors look to different 

commodities or financial instruments with differing correlations, to offset potential downturns in 

commodity prices. We incorporate the use of multivariate GARCH and DCC-MIDAS model to model 

conditional correlations and potential volatility spillover effects between non ferrous metals and gold, 

brent crude and the S&P500 index representing two widely traded commodities and one of the most 

influential stock indexes globally. In our results, we strong correlations between gold and copper for all 

models in periods of low correlation with brent crude and the S&P500, with similar properties for 

aluminium, with slightly less variance in conditional correlations, with stronger correlations for nickel. 

Results from likelihood ratio test indicate that DCC-MIDAS model is the best performing model, with 

BEKK-GARCH producing the lowest goodness of fit, which is likely due to overparameterization of 

the model. As the best performing model, we compute dynamic optimal hedge ratio to showcase how 

non ferrous metals can be used in a hedging strategy in conjunction with different commodities. This 

chapter aims to contribute to the literature of non ferrous metals by using various multivariate GARCH 

models and the DCC-MIDAS model to showcase conditional correlations between non ferrous metals 

and various widely traded commodities, and how they can potentially be implemented in hedging 

strategies. Furthermore, the use of wavelet analysis in this chapter allows for conditional correlations 

to be showcased in both the time and frequency horizon, the results of which exhibit weak correlations 

for all metals with gold, brent crude and the S&P500 index and the low frequency horizon, indicating 

weak correlation in the short term.  
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Finally, in chapter 4, we explore whether geopolitical risk (GPR) and policy uncertainty plays any role 

in non ferrous metal returns. Non ferrous metals are a widely used naturally occurring industrial 

resource, meaning they are vulnerable to geopolitical uncertainty. Caldara and Iacoviello (2022) define 

geopolitical risk as “the risks associated with wars, terrorist acts, and tensions between states that affect 

the normal and peaceful course of international relations”. The 21st century has seen major geopolitical 

events such as the September 11th attacks in 2001, the 2008 financial crisis, the 2020 COVID pandemic 

and the escalation of the Russia-Ukraine conflict in 2022 etc. have profound impacts on stock and 

commodity markets globally. Political uncertainty additionally contributes to supply and cost of 

commodities, with the 2016 Brexit referendum in the United Kingdom to exit from the European union 

having immediate adverse effects on the liquidity of non US stocks, particularly from the UK and EU 

(Kim, Mazumder and Su, 2024) and the recent announcement of US trade tariffs imposed on Canadian, 

Mexican and Chinese imports following the reelection and inauguration of Donald Trump as US 

president in 2025 increasing importing costs in order to encourage domestic growth resulting in 

European futures declining by as much as 3.4%1. To assess the impacts of geopolitical risks and policy 

uncertainty on non ferrous metals markets, we use a vector autoregressive model (VAR), structural 

vector autoregressive model (SVAR) and the time varying parameter vector autoregressive model with 

stochastic volatility (TVP-VAR-SV) approach of Nakajima (2011). Following impulse response 

analysis of VAR and SVAR models, GPR shocks and UK policy shocks have significant positive and 

negative effects on non ferrous metal returns in the short run, with these effects diminishing over longer 

time horizons. The TVP-VAR-SV model showcases impulse responses at different time horizons, in 

which non ferrous metals are sensitive to major geopolitical shocks and policy shocks in the short run, 

although in our findings, these effects are not persistent in longer period horizons, indicating that effects 

of shocks dissipate at longer time horizons. To our knowledge, little literature exists regarding the 

sensitivity of non ferrous metals to geopolitical uncertainty and policy shocks at the daily frequency, in 

chapter 4 aims to address. 

  

 
1 https://www.theguardian.com/business/2025/feb/03/asian-sharemarkets-tumble-in-response-to-
trump-tariffs 
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Chapter 2. Volatility Forecasting and VaR Estimation of 

non-ferrous Metals. A GARCH and GAS approach 
 

 

Abstract 
 

We use a combination of Generalised Autoregressive Conditional Heteroskedasticity (GARCH) and 

Generalised Autoregressive Score (GAS) models to produce volatility forecasts and Value at Risk (VaR) 

forecasts for 5 different non-ferrous metals traded on the London Metal Exchange (LME) using daily 

spot price data. Out of sample forecasting performance is evaluated using five different loss function 

and the MCS procedure ranking models based on their forecasting performance. Additional VaR 

evaluation is conducted using the Kupier (1995) and Christoffersen (1998) tests of unconditional and 

conditional coverage. Our results show that, on average, the standard GARCH model is not 

outperformed by other types of GARCH and GAS models when forecasting metal returns, with the 

EGARCH, GJR-GARCH and GAS models following a students-t distribution also providing 

satisfactory forecasting performance and outperforming corresponding models following a normal 

distribution and the GARCH-MIDAS model. We find the addition of trading volume as an explanatory 

variable does not improve forecasting accuracy when sampled at the monthly frequency. 

 

  



 11 

 

2.1 Introduction 
 

The estimation and forecasting of volatility, particularly for financial assets, has become a vast area of 

research in many different areas such as risk and portfolio management, derivatives pricing and 

investment analysis, with Poon and Granger (2003) suggesting that volatility forecasts are a ‘barometer 

for the vulnerability of financial markets and the economy’. Modelling and forecasting of volatility 

plays an important role in econometric models and portfolio selections, however, the exploration of 

volatility modelling in the non-ferrous metals market is a rather understudied area within the topic of 

finance, with only 45 such studies being produced during the period 1980-2002 (Todorova et al. 2014).  

 

Non-ferrous metals are metals that do not contain a significant amount of iron in their chemical 

composition. Important nonferrous metals produced in large quantities include aluminium, copper, zinc, 

lead, nickel and tin and their alloys – these are widely used in the industries of construction, batteries, 

electronics, mobility and in other advanced specification and high technology goods.2 Due to their wide 

industrial applications and demand in emerging economies, non-ferrous metal futures have become an 

essential component in futures markets, with investment firms, banks, speculators and other market 

participants showing an increased interest in these commodities in recent years. In contrast to other 

commodities and financial derivatives, non-ferrous metals prices are influenced by a wide range of 

factors, such as exchange rate fluctuations, import and export policies and funds’ short term and long-

term trading strategies, which makes them more volatile than other classes of assets (Wang et al. 2020). 

Value at Risk (VaR) is a popular measure to evaluate the market risk of a portfolio, identifying whether 

the loss that is likely to be exceeded by a specified probability that ranges between 0.95 and 0.99 over 

a defined period (Jiang, Hu and Yu, 2022).  

 

 
2 https://www.sciencedirect.com/topics/engineering/non-ferrous-metal 



 12 

Many previous empirical works regarding volatility forecasting are conducted using stock market data 

or commodities such as crude oil (Lv, 2018; Zhang et al. 2019 Li et al. 2022) and other agricultural 

futures (Luo et al. 2022; Degiannakis et al. 2022) and despite the important role non-ferrous metals play 

in both industry and academia, limited research has been done on the forecasting of non-ferrous metals. 

The Covid-19 pandemic has also resulted in unprecedented economic upheaval and disruption in all 

areas of the economy, with the very large downturn and subsequent rebound of financial markets 

resulting in periods of high volatility.  

 

In this first chapter, we discuss the in-sample estimation results and compare the out of sample volatility 

forecasting performance of GARCH and GAS type models using copper, aluminium, zinc, tin and lead 

returns data, providing comprehensive coverage of non-ferrous metals traded on the London Metal 

Exchange. Model forecasting performance is examined using relevant loss functions, with the Model 

Confidence Set (MCS) test of Hansen et al. (2011) used to rank models based on out of sample volatility 

forecasting performance. Value-at-Risk evaluation is conducted using the Kupiec (1995) test of 

unconditional coverage and the Christoffersen (1998) test of conditional coverage to assess the 

suitability of each model in a risk management setting. This first chapter departs from previous studies 

in that we include the use of spot returns data to model non-ferrous metal returns. Previous works 

studying the volatility of non-ferrous metals have used futures returns data to model non-ferrous metals 

and, to our knowledge, no such attempt has been made to model and forecast non-ferrous metals using 

LME spot price data, despite the important role that spot prices play in options and futures pricing. 

Additionally, little existing literature on modelling Value-at-Risk in non-ferrous metals markets using 

GARCH-MIDAS and Generalized Autoregressive Score models. This first chapter aims to add to the 

scarce literature surrounding non-ferrous metals and contribute to the new wave of research brought 

about by the challenges and constraints caused by the Covid-19 pandemic, necessitating a need for new 

research.  
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2.2 Literature Review 

2.2.1 Measures of Volatility: 

Measuring and forecasting volatility has many important applications in many areas of finance 

including asset allocation, option pricing and risk management (Brownlees and Gallo, 2010). Of the 

various different methods used to measure volatility, the most straightforward method is historical 

volatility calculation, which is well known as the standard deviation of a data series. However, it is only 

real use is in foundational financial issues because of its fixed indicators and unpredictable nature. As 

volatility changes over time, historical volatility calculation is not the optimal method to accurately 

forecast volatility. A paper by Martens and Zein (2002) indicated that historical, high-frequency data 

used by a GARCH model has superior forecasting ability than the implied volatility index.  

 

Alternatively, implied volatility is also broadly applied in research and the Volatility Index (VIX) is 

commonly used to measure expectations of volatility. Well known as a “fear index” (Whaley, 2000) for 

asset markets, it reflects both stock market uncertainty (the “physical” expected volatility), and a 

variance risk premium, which is also the expected risk premium from selling stock market variance in 

a swap contract (Bekaert and Hoerova, 2014). Although the VIX is a good indicator of expected 

volatility, previous literature has shown that this accuracy of implied volatility can be outperformed by 

empirical models. Martens and Zein (2002) showed that high frequency data, used with a GARCH 

model was able to produce better forecasts of volatility than implied volatilities. When compared with 

implied volatility, GARCH models are better at producing accurate predictive forecasts. This is 

illustrated by Agnolucci (2009), who states that this might be due to volatility persistence. 

 

Realised volatility is another measure of volatility that is broadly used in the prediction of volatility. 

Since Andersen and Bollerslev (1998) showcased a strong improvement in volatility forecasting 

performance of daily GARCH models by using 5 min data as a volatility measure, several studies have 
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found evidence that implied volatility is a biased an inefficient predictor of realised volatility (Becker 

et al. 2006, Neely 2005). Similar findings were also reported by Szakmary et al. (2003), who looks at 

evidence from 35 futures markets for the information content of implied volatility. Overall, they note 

that implied volatility holds no significant information, with realised volatility providing a benchmark 

for comparing the performance of historical and implied volatility. Similarly, Koopman et al. (2005) 

used historical, realised and implied volatility measurements to forecast variability of the S&P 100 stock 

index. Their results show that the realised volatility model produced vastly more accurate forecasts 

compared to models based on daily returns, with the ARFIMA-RV model producing the most accurate 

forecasts of all models employed. Corsi (2009) proposes a Heterogeneous Autoregressive model of 

realised volatility (HAR-RV), which is able to model long-memory properties and fat tails in a very 

parsimonious way and argued that it outperformed short-memory models at daily, weekly and bi-weekly 

time horizons when forecasting the volatilities of the S&P 500, USD/CHF exchange rate and T-bond. 
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2.2.2 Previous Research on GARCH-type models and Alternative Volatility 

Models: 

 

The family of GARCH type models have been widely used in the literature to estimate the volatility 

and performance of financial assets. It is important to start with the autoregressive moving average 

model (ARMA), which holds the stationary property, which can be defined such as the variances are 

constant and uncorrelated with time (Diebold, Killian and Nerlove, 2010). These models perform well 

when modelling stationary time series with constant volatility, however, issues arise when using time 

series processes such as financial time series whereby the variances for this kind of data are time 

varying, so the stationary property of the ARMA model is no longer valid. The seminal paper of Engle 

(1982) would break new ground in regards to volatility modelling, who explored the variance of United 

Kingdom inflation. Engle (1982) captured the changing variance of UK inflation by introducing the 

autoregressive conditional heteroskedasticity model (ARCH), allowing for conditional variance to 

change over time as a function of past errors. Since this seminal paper, many other adaptations of the 

ARCH process have been developed and proposed. Bollerslev (1986) would develop upon the ARCH 

process by introducing a model that also allows for past variances as well as past error terms, coining 

it as a generalised ARCH model (GARCH).  

 

Following Bollerslev (1986), a large number of extending models based on linear GARCH models have 

been proposed, such as non-linear GARCH models and non-parametric GARCH models. The non-

linear EGARCH model by Nelson (1991) and the GJR-GARCH model proposed by Glosten, 

Jagannathan and Runkle (1993) captures volatility clustering like the GARCH model, but also includes 

the leverage effect, which refers to the impact or the type or nature of news on stock prices. Previous 

literature has documented that bad or negative news results in greater levels of volatility than good or 

positive news (Mandelbrot 1963). Leverage effect can also be defined as an increase in debt-to-equity 

ratio because of a fall in stock prices due to the effect of negative news, resulting in increased volatility 
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(Fisher 1976). The CGARCH model proposed by Engle and Lee (1999) considers short and long run 

volatility effects in a very similar manner to the decomposition of conditional mean models for 

economic time series introduced by Beveridge and Nelson (1981). Alternatively, the long memory 

nature of the FIGARCH model of Baillie et al. (1996) allows for greater flexibility in modelling the 

conditional variance, which allows it to be better suited to modelling volatility for stock returns, 

exchange rates and inflation rates. GARCH in mean adds a heteroskedasticity term into the equation. 

Selcuk (2005) found that change in volatility is much more significant after a fall in stock prices 

compared to an increase in stock prices due to shocks.  

 

Previous empirical studies comparing the performance of linear and non-linear GARCH models in stock 

markets have provided contrasting results towards standard GARCH. Despite the success of the linear 

GARCH model, it cannot capture asymmetry and skewness of the stock market returns series (Gokcan 

2000). Franses and Van Dijk (1996) compare the performance of the GARCH model and two of its non-

linear counterparts, namely QGARCH and GJR-GARCH, to forecast weekly stock market volatility in 

Germany, Netherlands, Spain, Italy and Sweden. They found that QGARCH model can significantly 

improve on the linear GARCH model in cases where the forecasting models are calibrated on data 

which includes extreme events such as the 1987 stock market crash, although they cannot recommend 

the GJR-GARCH model. Chong et al. (1999) found that nonlinear EGARCH models outperformed the 

linear GARCH (1,1) model when observing 5 daily stock indices from the Kuala Lumpur stock 

exchange, with the integrated GARCH model performing the worst out of all models used. Similarly, 

Gokcan (2000) extends the works of Franses and Van Dijk (1996) compares the forecasting ability of 

linear and non-linear GARCH models in seven emerging markets, instead comparing the EGARCH 

model with the linear GARCH model. In contrast to the findings of Franses and Van Dijk (1996), he 

notes that even if returns series are significantly skewed, linear GARCH models were very helpful in 

explaining the volatility of the time series, with the linear model also produced better estimates than the 

non linear GARCH model for all countries in the sample. This was also the case for out of sample 

monthly volatility estimates. Alternatively, Ederington and Guan (2005) couldn’t state choose between 

the GARCH or EGARCH model when modelling the S&P 500 index, JPY/USD exchange rate, three 
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month Eurodollar rate, 10 year treasury bond rate and five equities from the Dow Jones industrial index. 

Lin (2018) examined the performance of four classes of GARCH models in modelling volatility of the 

SSE Composite Index. She found that the EGARCH model performed best in comparison to the linear 

GARCH model and the TARCH 1,1 model of Zakoian (1990) and Glosten et al. (1993). However, 

findings from Sharma et al. (2020) provide alternative findings to those of Lin (2018), concluding that 

the GARCH 1,1 model was superior to alternative non-linear GARCH models in modelling volatility 

in 5 major emerging economies, including China. They believe this is due to the leverage effect being 

insignificant.   

 

More recent literature has also explored the performance of non-linear GARCH models in futures 

markets. Moshiri and Foroutan (2006) forecast nonlinear crude oil futures prices dating from 1983 to 

2002 using ARIMA and GARCH models. Their results support previous findings that crude oil futures 

reported in NYMEX follow a nonlinear dynamic process. Kang et al. (2009) investigate the efficacy of 

four classes of GARCH model in modelling the volatility for three crude oil markets: Brent, West Texas 

Intermediate (WTI) and Dubai. All models used were found to fit the crude oil data well, however, for 

out of sample estimates, the FIGARCH model was superior to the other models for all three-time 

horizons from 1 day to 1 month, stating that CGARCH and FIGARCH models provide the best choice 

when providing forecasts, at least for crude oil. A similar such study was also conducted by Wei et al. 

(2010), who compare the performance of linear and non-linear models to capture the volatility of two 

crude oil markets, Brent and WTI. Unlike the findings from Kang et al. (2009), they find that no model 

can outperform all of the models for either Brent or the WTI market, although also go on to state that 

the nonlinear models do perform better than the linear ones in long-run volatility forecasting of crude 

oil prices. Further extending previous studies on oil futures, Arouri et al. (2012) investigate the 

relevance of structural breaks and long memory modelling and forecasting conditional volatility of spot 

and futures prices using a variety of GARCH class models, using WTI crude oil, gasoline and heating 

oil spot and futures prices covering the period January 2nd 1986 to march 15th 2011 . Referring to their 

empirical results, the standard GARCH 1,1 model successfully captured time-varying patterns of 

conditional volatility when conducting in-sample analysis. Long memory tests showed all series 
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exhibited strong evidence of long-memory pattern as the null hypothesis of no persistence was rejected 

at the 1% level, and taking into account structural breaks, the FIGARCH model provided the most 

accurate forecasts. These findings contrast those of Sadorsky (2006)’s findings that standard linear 

GARCH models are superior than more complex bivariate GARCH models. Applying nonlinear models 

to a different market, Lv and Shan (2013) investigate the use of linear and nonlinear models in the 

natural gas market. They point out three differing conclusions: firstly, when forecasting price volatilities 

of 1 month spot and futures contracts, their evidence shows that in this regard, neither of the models 

could outperform others across different criteria of loss functions. Secondly, they note that during 

periods of contango, linear GARCH class models seemed to outperform nonlinear models, whereas 

nonlinear models are the better choice during periods of backwardation. Thirdly, simple linear GARCH 

class models overwhelmingly outperformed nonlinear models in forecasting spot price accuracy, 

however, nonlinear models are superior to linear models under some loss criteria in forecasting futures 

price volatility. Efimova and Serletis (2014) Aim to contribute to literature by filling gaps in univariate 

GARCH modelling of energy commodity volatility, noting lack of studies since 2005, and use of both 

univariate and multivariate models over same data set to compare performance of models. Using daily 

US data for crude oil, natural gas and electricity wholesale prices between January 2nd 2001 to April 26 

2013, both models were found to produce similar estimates, although univariate models produced more 

accurate forecasts, suggesting future studies on electricity volatility using variables such as wind speed 

data in key producing regions. In a novel approach, Lin et al. (2020) propose a model combining long-

memory GARCH-M models with wavelet analysis to evaluate crude oil returns, with the proposed 

hybrid forecasting model achieving robust and significant forecasts during periods of extreme volatility. 

Multivariate GARCH models incorporating long memory were found to outperform short memory 

models in forecasting conditional covariance matrix and associated risk magnitudes in crude oil and 

refined oil products (Marchese et al. 2020). Modifying GARCH innovations with polynomially adjusted 

distributions was found to improve the precision of out of sample forecasts when modelling the returns 

of four different types of financial assets (Vacca et al. 2022). 
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Naturally, questions have arisen as to what models provide the best volatility forecasts. As an alternative 

to conditional volatility, time-varying volatility can also be estimated by using a stochastic volatility 

model (Taylor 1982, 1986), who proposes to model the logarithm of volatility as an AR(1) process. 

Stochastic volatility models treat variance as an unobserved component that follows a particular 

stochastic process (Sadorsky, 2005). Stochastic volatility models are also attractive as they are close to 

the models that are often used in financial theory to represent the behaviour of financial prices (Broto 

and Ruiz 2004). The stochastic volatility model can be estimated by using Markov Chain Monte Carlo 

(MCMC) methods in the context of Bayesian inference. A stochastic volatility model was used by 

Melino and Turnbull (1990) in pricing foreign currency options and add that the model showed optimal 

forecasting ability. Likewise, Benzoni (2002) used two stochastic volatility diffusion models to evaluate 

the properties of S&P 500 returns and found that it greatly improves the performance of the option 

pricing model by reducing option pricing errors. More recently, Ozturk and Richard (2015) applied a 

stochastic volatility model with leverage effects to analyse the return properties 24 companies from 6 

different industries listed on the S&P 500. It points out that although financial and energy industrial 

performed differently from other industries, it still demonstrates that there are connections between 

markets. Stochastic volatility models have also been applied in conjunction with GARCH models to 

estimate S&P 500 daily returns and USD/CAD exchange rates, although the GARCH model was 

indicated to be the better model (Gerlach and Tuyl, 2006). In an earlier such study using data from the 

FTSE 100 stock index suggests that the performance of the GARCH 1,1 and EGARCH 1,1 performed 

better than the SV model in out-of-sample comparisons, although the performance of the SV model 

could be dramatically improved by using more sophisticated estimation algorithms, although this would 

make it even more computationally demanding compared to the simpler GARCH models (Pederzoli, 

2006). A direct comparison between GARCH and stochastic volatility was made by Chan and Grant 

(2016), in a Bayesian model comparison exercise, using nine series of oil, petroleum product and natural 

gas. Using marginal likelihood to assess the models, they find stochastic volatility models dominated 

their GARCH counterparts, providing an alternative to more conventional linear GARCH models. A 

review of 93 studies that conduct volatility forecasting methods by Poon and Granger (2005) could not 

determine a clear winner between historical volatility and ARCH type models, although then go on to 
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they are both better than SV models, finding no clear evidence that they provide superior forecasts, 

despite the added flexibility and complexity of SV models. A weakness of GARCH type models is that 

they typically use only daily opening and closing prices which unavoidably leads to loss of intraday 

information Tan et al. (2019) 

 

Additionally, there has also been research relating to volatility models that incorporate more variables 

to improve forecasting accuracy, namely the GARCH-MIDAS model of Engle, Ghysels and Sohn 

(2013), which enables the link of macroeconomic variables to the long-term volatility component. 

Conrad et al. (2018) apply the GARCH-MIDAS model to extract short and long term volatility 

components of cryptocurrenies, finding that S&P500 realized volatility has a detrimental and highly 

significant effect on long term cryptocurrency volatility. effect Wang et al. (2020) use the MIDAS 

approach to evaluate the effects of asymmetry and extreme volatility on stock returns from the S&P500 

index, finding that asymmetry has a far greater negative impact than the extreme volatility effect. 

GARCH-MIDAS model with monthly trading volume as a macroeconomic variable was evaluated by 

Liu, Lee and Choo (2021), and compared the forecasting ability of the model to the traditional GARCH 

and intraday GARCH in forecasting the China stock market. In their results, GARCH-MIDAS is not 

able to compete with traditional GARCH model when estimated by the same predictors but do note a 

positive correlation between trading volume and volatility. Khaskheli et al. (2022) explore whether 

news relating to precious metals is likely to affect their volatilities using a GARCH-MIDAS model. 

Assessing the effect of Google Trends on precious metals price volatility, they note that google trends 

positively impacts precious metals volatility, before and during the COVID-19 period, with the 

exception of palladium. eli Raza et al. (2023) use GARCH-MIDAS to forecast the volatility of precious 

metals prices in the COVID-19 period, with global economic policy uncertainty as a predictor. Wu, 

Zhao and Cheng (2023) propose a real time GARCH-MIDAS model to estimate and forecast volatility 

in the China stock markets. Their results show the real time GARCH-MIDAS model outperforms the 

standard GARCH and MIDAS model and the real time GARCH model in both in sample return fitting 

and out of sample volatility forecasting.  
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Literature has also explored the Generalized Autoregressive Score (GAS) approach introduced by Creal 

et al. (2013) which encompasses other well-known models such as GARCH, autoregressive conditional 

duration and other observation driven models. The effectiveness of the GAS model for out of sample 

hedging is explored by Xu and Lien (2019), who compare the hedging performance of the GAS model 

with time-varying GARCH models in terms of volatility reduction and Value at Risk reduction for crude 

oil and natural gas futures. They concur from their results that the GAS framework outperforms 

tGARCH model in terms of risk reduction and improving dollar values of hedged portfolios, indicating 

the potential of a GAS model in a hedging strategy. Tafakori et al. (2018) evaluate the accuracy of Value 

at Risk forecasts of asymmetric exponential GAS model in Australian electricity markets and find in 

their results that AR-GAS model outperforms EGARCH and GJR-GARCH models. Troster et al. (2019) 

use the GAS model in conjunction with GARCH models to forecast volatility and VaR of Bitcoin returns 

finding that GAS models with heavy tail distribution outperformed traditional GARCH models, 

providing the best conditional and unconditional coverage for 1% VaR forecasts. Similar findings are 

obtained by Ivanovski and Hailermariam (2021) who employ a GAS(1,1) model and DCC-GARCH 

multivariate model forecast dynamic relationship between WTI crude oil prices and S&P 500 stock 

prices from 1871 to 2020. The forecasting ability and dynamic correlations of the GAS(1,1) model is 

preferred to those of the DCC-GARCH, however, forecasting performance is found to be similar among 

longer forecasting horizons of 20 or more.  

 

2.2.3 Forecasting Volatility Using Daily and High-Frequency Data: 

 

One aspect of the literature on volatility forecasting studies the benefits and drawbacks of using daily 

or high-frequency data and comparing the two different frequencies of data to identify which frequency 

is best suited for volatility forecasting. Getting the ball rolling for research into the use of high frequency 

data, Nelson (1991) state that ARCH models do a good job at estimating conditional variances when 

using high frequency data. Andersen and Bollerslev (1998) measure and forecast volatility in the 24-hr 

foreign exchange market using intraday returns. A paper by Beltratti & Morana (1999) examined 
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volatility using high frequency data for the deutsche mark-US dollar exchange rate and compared the 

results to volatility models estimated using daily data. The high frequency data selected covers 1st 

January 1996 to 31st December 1996, excluding bank holidays and weekends, resulting in 12576 

observations, while the daily data used starts December 31st 1972 to January 31st 1997, resulting in 6545 

observations. They categorized the data into three categories: raw returns, deterministically filtered 

returns and stochastically filtered returns, following which they apply MA(1)-GARCH(1,1), MA(1)-

GARCH(2,1) and MA(1)-FIGARCH(1,d,1) models to the three kinds of returns. They show that at the 

high (half-hour) frequency the coefficients of the GARCH volatility model are not very different from 

those estimated on the basis of an IGARCH model. Martens (2001) explores volatility forecasts of 

foreign exchange using half-hour high frequency data of two exchange rates: spot rates between 

Japanese Yen and US Dollar (JPY/USD) and between German Deutsche mark and US dollar 

(DEM/USD) for the period covering 1996, excluding weekends, leaving 261 days each with 48 half-

hour returns. GARCH models are used to produce forecasts of volatility. The empirical results for the 

DEM/USD and JPY/USD exchange rates show the same pattern, the higher the frequency used, the 

better the out-of-sample daily volatility forecasts.  

 

Another paper by Martens (2002) forecasts S&P 500 index futures using high frequency data and 

compares the performance of three forecasting models. He employs high-frequency data for S&P 500 

index futures, using this data instead of index data for two reasons: the S&P 500 index is calculated 

based on the last transaction price of each of the 500 stocks comprising the index, not every stock trades 

each minute, resulting in an infrequent trading problem, whereby the index lags actual developments, 

especially at the opening of trading since it takes some time before each of the 500 stocks begin trading. 

They show that the daily GARCH model is inferior to the daily GARCH model extended with intraday 

information, however, for weekly and monthly horizons, intraday returns are not as important, but still 

improve forecasting power. The results obtained show that modelling the volatility of intraday returns 

leads to optimal forecasting performance. Martens and Zein (2004) found that the use of high frequency 

data improves both measurement accuracy and forecasting performance, while also noting that long 

memory models improve forecasting performance. Furthermore, Pong et al. (2004) compare exchange 
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rate volatility forecasts from an option implied volatility model, a short memory ARMA model, a long 

memory ARFIMA model and a GARCH model. They show that volatility forecasts using high 

frequency returns were more accurate than forecasts generated using a long memory specification. 

Malik (2005) uses hourly data of the British Pound and the Euro in relation to the US dollar in his study 

of the foreign exchange market. The data used in his sample starts from December 2001 and ends in 

March 2002, and applies four classes of GARCH model and SV models to forecast the two currencies. 

They find that the Euro was considerably more volatile than the Pound at both the hourly and daily 

frequencies. Adding to the literature regarding the use of high frequency data in the foreign exchange 

market, Chortareas, Jiang and Nankervis (2011) assess the performances of traditional time series 

volatility models and realised volatility models. They find that using a long-memory specification in 

high frequency data can significantly improve forecasting power and accuracy, echoing the statements 

from Martens and Zein (2004) and Corsi (2009), which is also on the contrary to the argument of Pong 

et al. (2004), who suggests the improvement in forecasting performance is solely from the high 

frequency of the data. An Increase in time frequencies does not necessarily improve the forecasting 

performance of the GARCH 1,1 model (Khalifa, Miao, Ramchander 2010).  

 

Noh and Kim (2006) use high frequency returns when comparing the ability of historical volatility and 

implied volatility to forecast S&P 500 and FTSE 100 futures. Their results were rather inconclusive, as 

they show that both implied and historical volatility could outperform each other in forecasting 

volatility, as implied volatility was found to hold more incremental forecasting information for S&P 

500 futures whereas historical volatility has more incremental forecasting information for the FTSE 

100 futures. Wei and Wang (2010) also used high frequency data when forecasting volatility of the 

Shanghai Stock Exchange Composite Index (SSEC) using multifractal volatility measures and other 

historical measures of volatility. Volatility models based on high frequency data produced better 

forecasts than those based on daily data. An additional paper by Wei (2012) also used high frequency 

data in conjunction with GARCH type models, SV models and realised volatility model to forecast 

volatility of oil futures traded in China. The realised volatility AFIRMA model based on intraday data 

produced much better volatility forecasting accuracy than the historical models based on daily returns, 
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particularly the GARCH type models. They further advise that models based on intraday data should 

be the first-choice economists, practitioners and policymaker, with the SV model being more suitable 

if intraday information is not obtainable. Using high-frequency data for non-ferrous metals traded on 

the Shanghai Futures Exchange, Zhu et al. (2016) look into leverage effects and time varying volatility 

of copper and aluminium futures. Employing a range of HAR models, their findings note that copper 

and aluminium futures volatility exhibits strong heterogeneity, and there exists significant mid-term 

leverage effects in realised volatility, reflecting that bad news increases volatility mid-term. Chen et al 

(2020) forecast oil price volatility using high frequency intraday data as it contains richer information 

than daily and low frequency data. High frequency data was found to slightly improve forecasting 

accuracy over one-to-five day horizons, although accuracy tends to diminish and become 

indistinguishable over longer time horizons, partly due to volatility having long memory characteristics 

and therefore only changes gradually on a day by day basis (Lyocsa et al. 2021).   

 

2.2.4 Predictability in Stock and Commodity Markets:  

 

Different types of financial assets and commodities are sensitive to economic cycles and are thus 

challenging to model and predict (Fernandes et al. 2022), with non-ferrous metals in particular 

showcasing highly irregular and nonlinear price fluctuations that make them challenging to predict 

accurately and robustly (Liu et al, 2022), nonetheless, the predictability of these commodities is of great 

interest to academics and practitioners. The efficient market hypothesis (EMH) implies that when 

information is limited to historical information, then the market is weak form efficient, and prices can’t 

be accurately predicted using only past price data. Additionally, if prices reflect all available public 

information, then the market is said to be semi-strong form efficient and strong form efficient when 

prices reflect all public and private information. The efficient market hypothesis swayed the general 

consensus into believing that stock prices reflect all available information and, therefore, no market 

participants are able to beat the market to make abnormal profits (Fama 1970). It is of the belief that 

the market is weak form efficient, however, critics of the EMH argue that investor behaviour such as 

overreaction and overconfidence can be predictable (See DeBondt and Thaler, 1985; Barber and Odean, 
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2001), and the presence of a momentum effect in stock returns (Jegadeesh and Titman, 1993). Being 

able to predict the prices of commodities is of importance to academics and practitioners with 

knowledge of volatility being important for risk management for producers and consumers, and because 

their correlations with stocks are typically low, commodities are a useful tool to help achieve portfolio 

diversification, also providing a good hedge against inflation (Sadorsky, 2002; Symeonidis et al. 2012).  

 

Empirical research into the predictability of stock and commodity markets has resulted in a wide range 

of evidence and interpretations. Zunino et al. (2011) consider a novel approach to predictability analysis 

derived from information theory. Lutzenberger (2014) rejects the null hypothesis that commodity 

returns are unpredictable, both in sample and out of sample, rather they are dependent on factors such 

as price level and movements, economic conditions and investor sentiment. Gargano and Timmermann 

(2014) use commodity spot indices to examine the predictive ability of various commodities over a 

longer sample period than previous literature. They note that at the quarterly time horizon, industrials 

and metals were the most predictable, with predictability being closely linked to economic cycle, with 

commodity prices being most predictable in recessions due to higher slope coefficients in return 

regressions. Park and Lim (2018) explored the market efficiency of six base metals traded on the 

London Metal Exchange from 2000 to 2016. With the exception of Zinc, they reject the null hypothesis 

that 3-month futures prices are unbiased estimators of spot prices in the LME. In in-sample and out of 

sample forecasts, commodity prices were found to be good predictors of stock returns in G7 countries, 

with structural breaks further improving the forecasting accuracy (Salisu et al. 2019). Tharann (2019) 

uses monthly price data for four precious metals and copper to evaluate returns predictability. The 

author finds that there is a substantial degree of return predictability for all commodities both in sample 

and out of sample, with gold returns being the most predictable. Hollstein et al. (2021) use more than 

140 years of data to explore predictability in a wide range of commodity markets, in order to assess the 

introduction of derivatives trading on return predictability. The introduction of futures options was 

found to have a mixed impact on volatilities, observing an increase in volatilities among agricultural 

and energy commodities but also note that volatilities decreased for all metals after the introduction of 

futures options. Contrary to findings from Gargano and Timmermann (2014), commodity returns and, 
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in particular, volatilities are more predictable in periods of economic expansions than they are in 

recessions. Data for 25 different commodities spanning four centuries was able to successfully predict 

stock returns in three different markets in sample and out of sample with agricultural, energy and 

livestock markets in particular providing the most accurate predictions of stock returns (Iyke and Ho 

2021).  

 

The recent COVID-19 pandemic has presented many challenges and problems across global industries 

and markets, which has inspired a new wave of literature focussing on the impact of the pandemic on 

the economy and financial markets in general. Umar, Gubareva and Teplova (2021) analyse the impact 

of the COVID-19 pandemic on volatility in various commodity markets, including precious and non-

precious metals, with the authors conducting their analysis based on wavelet coherence and wavelet 

phase difference techniques, which allow the authors to show their results in the form of time-frequency 

heat maps and providing insights on the joint behaviour of indices in different time scales. The authors 

find that precious metals could serve as potential safe havens even during global catastrophe, while 

non-precious metals exhibit superior diversification benefits during periods of recovery. Ji, Ji, Zhang 

and Zhao (2020) study the search of safe haven assets during the COVID-19 pandemic, discussing the 

effectiveness of safe-haven assets typically explored in the literature. Following the introduction of a 

sequential monitoring procedure to detect changes in the left quantiles of asset returns, they conclude 

that gold and soybean commodity futures can be used as safe-haven assets during the COVID-19 

outbreak, further confirming that gold has an irreplaceable role in preserving the value of an investment. 

Tanin et al. (2021) address the question of whether volatility indices of different asset classes reduce 

the safe-haven appeal of gold throughout the COVID-19 pandemic using the NARDL approach used 

by Shin et al. (2014), which is a dynamic and asymmetric model that is able to differentiate between 

long term and short term effects, which doesn’t suffer from the same convergence issues of nonlinear 

vector error correction models. Their findings are in line with previous findings during the COVID-19 

period, showcasing no evidence of short memory and that gold market is efficient.  

 



 27 

2.2.5 Empirical Studies on non-ferrous metals: 

 

While the volatility of various different asset classes and commodities is well defined in the literature, 

there only exists and small number of empirical works exploring the volatility of non-ferrous metals, 

with only 45 such articles published between 1980-2002 (Todorova et al. 2014). One of the earliest such 

papers was Bresnahan and Suslow (1985), who examined the state of the copper market, and note that 

demand for copper is volatile over time, due to its use as an important war material and broad industrial 

applications. Price falls of copper could be predicted, but only when the spot price was quite high. 

Chowdury (1991) uses cointegration to examine whether the efficient market hypothesis holds for 

metals traded on the LME. The copper market would again be visited by Bracker and Smith (1999), 

hoping to add to the scare literature of volatility modelling in the copper futures market using the 

iterated cumulative sum of squares (ICSS) algorithm developed by Inclan and Tiao (1994) and 

comparing the predictive power of four different GARCH models. Copper returns were found to be 

negatively skewed over the 1974-1996 period, whilst the GARCH and EGARCH models were found 

to be superior to the GJR-GARCH model, AGARCH model and a random walk model, which allowed 

large negative shocks to have a greater effect on the conditional variance.  

 

Slade (1991) was one of the earliest papers to give a broader overview of the wider spectrum of non-

ferrous metals. She sought to explain the relationship between the organisation of markets and the 

behaviour of prices in the metals market. She points out that, using data for six metals traded on the 

LME covering the 1970-1986 period, volatility tended to increase over time, arguing that producer 

pricing regimes generated prices that were less volatile than prices set on organised markets. This was 

especially prevalent in the 1980s. However, building upon this, findings by Brunetti and Gilbert (1995) 

firmly reject the findings of Slade (1991). Using a similar dataset with the length of the sample extended 

to 1995, they find that metals price volatility is stationary, with little to no change in the mean of the 

volatility process over the same period, despite period of high volatility possibly due to speculative 

movements. Ferretti and Gilbert (2001) revisit the claims of Slade (1991) that the increase in metals 

price volatility in the 1980s is associated with a move from producer pricing to exchange pricing. 
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Although they do find a link between producer pricing and lower price variability in the initial sample 

period from 1970-86, their findings only partially support the findings from Slade (1991) as the removal 

of Silver from the sample weakened these claims. Extending the sample shows no significant 

divergence between producer and exchange price variability. They also refute the second claim that the 

volatility of non-ferrous metals increases over time, as the Hunt manipulation of the silver market in 

March 1980 may have unduly manipulated the sample.  

 

Expanding upon the findings by Brunetti and Gilbert (1995), McMillan and Speight (2001) use the 

same dataset and Brunetti and Gilbert (1995) and further extended the length of the sample period to 

2000. Unlike previous literature, they employ a variant of the GARCH model to estimate their results, 

as they found this was better able to capture long memory properties of volatility. Their findings were 

largely consistent with the earlier findings of Brunetti and Gilbert (1995), but also note that long run 

price volatility is stationary and mean reverting. Watkins and McAleer (2002) employ a similar 

methodology to McMillan and Speight (2001), using a AR(1)-GARCH(1,1) model to forecast the 

volatility of Aluminium and Copper 3-month futures traded on the LME from 1982-2001. They found 

evidence of periods exhibiting high volatility between October 1987 and May 1990, which coincided 

with the largest negative return entering the estimation window, followed by numerous periods of large 

and positive returns. They would retouch upon pricing of non-ferrous metals in 2008, this time updating 

their sample period to include up to 2006. Despite substantial movements in both the price of copper 

and aluminium in 2004, the increased presence of speculator and investment funds throughout the 2000s 

did not bring about any periods of increased volatility relative to previous periods.  

 

A study by Heany (2001) sought to explain whether knowledge of the cost of carry model could help 

improve forecasting in futures markets, using lead contracts from the LME as a case study. He finds 

that the ability of futures prices to predict subsequent cash prices over long periods favours models that 

include carrying costs, with cash prices remaining quite volatile from quarter to quarter with 

considerable variation left unexplained by the vector error correction models and Brennan and Kroner 

models employed. Heany (2002) would further expand upon the findings by Heany (2001), using 



 29 

quarterly spot and futures data for three metals traded on the LME between 1975 to 2000, whereby 

underlying asset price volatility and futures contract price volatility were used as variables in 

convenience yield approximation. Watkins and McAleer (2006) sought to test the long run relationship 

of 7 metals traded on the LME using Engle-Granger (1987) and Johansen (1991) cointegration. At least 

one statistically significant long run relationship between futures price, spot price, stock level and 

interest rate were found in most samples for the seven metals markets. Watkins and McAleer (2008) 

explore whether the increased presence of new market players (speculators and investment funds) has 

brought about increases in volatility. Employing a rolling GARCH(1,1) model, they find that both short 

and long run volatility persistence vary over a wide range as the model changes. Despite substantial 

movement in copper and aluminium prices post 2004, they find few extreme outliers during this period 

relative to previous periods of large price movements. 

 

The area of non-ferrous metals has been the focus of much more attention from academics and scholars 

in recent years, with a wave of new literature covering the area over the last decade. Hoping to answer 

a question of whether global commodity markets exhibit the same information transmission 

mechanisms as equity markets, Lien & Yang (2009) examine the short run dynamic relations of returns 

and volatility across three copper futures markets: London, New York and Shanghai. Using a BEC-

DCC-GARCH model proposed by Engle (2002), allowing to capture time-varying volatility correlation 

between returns in two markets, they find that LME and NYME are strongly integrated in the sense that 

bi-directional spillovers of both mean and volatility are strong and significant. There was also a bi-

directional spillover effect between LME and SHFE, however only volatility spillover from SHFE to 

NYME in detected, suggesting Chinese markets are more closely integrated to the LME market. 

Cochran et al. (2012) examine the long memory properties and return volatilities of four metals: copper, 

gold, platinum and silver. They also seek to identify whether implied volatility, as measured by the 

Cboe volatility index (VIX), plays a significant role in determining metal returns. The FIGARCH model 

proposed by Baillie et al. (1996) is employed as conditional variance follows a hyperbolic rate of decay 

and this specification reveals the true extent of long memory in the conditional variance of metal returns. 

In their results, gold was found to be the least responsive to movements in the world equity index, 
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whereas copper was found to be the most responsive. The weak returns of gold and strong returns of 

copper were consistent with earlier findings from Roache (2008), and similarly share a sentiment from 

Ciner (2001), who states that gold possesses significant portfolio reduction properties. Todorova et al. 

(2014) add to the literature by investigating volatility spillover effects between five metals traded on 

the London Metal Exchange (LME) between June 2006 to December 2012: aluminium, copper, lead, 

nickel and zinc.  

 

Using a multivariate HAR model, which reveals the role of volatility components over time, their results 

imply the presence of spillovers in non-ferrous futures market, especially in the long run. Citing the 

importance of modelling and forecasting of volatility in financial markets for financial applications 

such as asset management and government regulation, Lyocsa et al. (2017) compare the forecasting 

ability of HAR multivariate models and GARCH models using data of five non-ferrous metals traded 

on the LME (copper, zinc, nickel, lead and aluminium) over an 8.5 year sample period. The high 

frequency HAR models employed were found to outperform GARCH models based on daily data, 

although forecasting does not improve when the modelling of covariances is included in forecasting 

models. Gong and Lin (2018) use high frequency data for copper futures traded on the Shanghai futures 

exchange to look for structural breaks and volatility predictability in the copper market, motivated by 

the limited studies of volatility prediction using high frequency data for non-ferrous metals. Commonly 

employed GARCH type models and SV models are selected, alongside four HAR type models, in order 

to test whether HAR type models are suitable for high frequency data. In their results, they find evidence 

of structural breaks in the volatility of copper returns, particularly in the period surrounding the 2008-

10 financial crisis. Further contributing to the literature, Mayer et al. (2017) look at whether futures 

trading has an influence on spot prices and volatility. To test this, they use data for four major metal 

commodities over a timeframe from January 1993 to December 2013. Their results show less evidence 

of trading positions substantially driving commodity prices and volatility, conversely finding that spot 

prices cause greater changes in traders’ positions. Realised volatility was also found to be informative 

in explaining the convenience yield of four major metals traded on the LME between January 2010 and 

November 2015 (Omura et al. 2018).  
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Researchers have also focused on the investigation of spillover effects between different metals and 

other commodity markets. Existence of volatility spillover implies that one large shock implies that one 

large shock increases the volatilities not only in its own asset or market but also in other assets or 

markets as well (Hong, 2001). GARCH models were used to examine the behaviour of three strategic 

metals: gold, silver and copper, in the presence of crude oil and interest rate shocks. In this regard, 

GARCH and EGARCH model were sufficient in modelling the volatility of the metals against crude oil 

shocks, as oil volatility seemed to negatively influence some metals volatilities, but also add that metals 

have different degrees of volatility because they are not only driven by macroeconomic factors, but also 

by their own special factors, such as strong demand for copper in China. Dutta (2018) also points out 

that metal manufacturing industries appear to be highly energy intensive, consequently, any fluctuations 

in global energy markets can result in significant fluctuations and variations is metals pricing. An 

accurate and robust non-ferrous metals pricing forecast is a difficult and challenging problem due to 

fluctuations and irregular cycles in the metal price evolution (Liu et al. 2020).  

 

Ciner et al. (2020) analysed the interrelationships in the global base metals markets over the years from 

1994-2016 using a variety of different econometric methods including wavelet analysis. Strong 

evidence of co-movements between all non-ferrous metals is found, however, this is dependent on time 

and frequency bands. Han, Liu and Wang (2022) consider an alternative approach to model and forecast 

volatility, using R-vine copula analysis to study dependence between non-ferrous metal futures. 

Consistent with the findings of Ciner et al. (2020), Copper and Zinc were found to be the main stress 

transmitters between non-ferrous metals, and provide further evidence of an increase in the level of 

connectedness between non-ferrous metals between Q3 2007-Q4 2013 and a decrease in connectedness 

between Q1 2014-Q4 2016, by reporting structural breaks in August 2008 and January 2014.  

Furthermore, Jia and Kang (2022) analyse futures return predictability in the LME industrial metals 

markets, documenting that financial and macroeconomic variable predict metal spot and futures prices 

in a procyclical manner with favourable out of sample 𝑅2, Clark and West (2007) test and Giacomini 
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and White (2006) test results. They encourage further research into metals traded on the LME, with 

gold and steel being important metals in the global economy that should be studied when sufficient 

historical data is available. Umar, Gubareva and Teplova (2021) analyse the impact of the COVID-19 

pandemic on volatility in various commodity markets. Among the energy and non-energy commodities 

analysed in the study, non-precious metals were found to be the most attractive investment in the 

recovery period, being capable of providing strong hedging attributes, making them strongly suitable 

for investors wishing to diversify assets in a portfolio and therefore play the role of a main causality 

driver in periods of recovery from recessions and global financial crises.  

  

2.2.6 Empirical Studies of Precious Metals: 

 

Precious metals such as gold, silver and platinum have a broad range of applications in risk and portfolio 

management, and as such, are of great interest to researchers and practitioners. The diversification 

benefits of gold are widely documented in the literature. Reboredo (2013) finds that gold is a hedge 

against devaluation of the US dollar. Similarly, gold serves as a hedge and a small safe haven for the 

US stock market based on data between 1995 and 2010 (Hood and Malik 2013). Looking at spillover 

effects between precious metals and regional stock markets of the US, Europe, Asia and Japan, Mensi 

et al. (2013) find that precious metals were net receivers of spillovers during the global financial crisis. 

Additionally, precious metals allowed for higher diversification, thereby adding gains to investor 

portfolios. Pierdzioch, Risse and Rohloff (2016) use Bayesian additive regression trees to examine 

whether precious metals can be used to hedge against foreign exchange rate depreciation. Gold and 

silver were found to be strong hedges against several major exchange rates, with platinum and palladium 

are strong hedges with respect to movements against the Canadian and Australian dollar. Peng (2020) 

examines the safe haven properties of precious metals on China’s stock, bond, commodity and foreign 

exchange markets over 12-year period from October 2006 to October 2018, employing a DCC-GARCH 

model to measure dynamic conditional correlation between markets. The author’s findings indicate that 

precious metals are generally a safe haven against financial risk in the event of market turmoil, however, 

the effects vary across financial markets due to investor reaction. Platinum was also found to outperform 
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gold and silver in the Chinese bond market, although gold was the best safe haven in financial crises. 

Using a wavelet coherence approach, Al-Yahyaee et al. (2020) analyse co-movements and spillovers 

between precious and non-ferrous metals, and the impacts on portfolio selection using a wavelet based 

approach. The authors show that aluminium is the highest contributor to risk among all metals, while 

copper and lead were the lowest transmitters. Gold was also found to offer superior diversification 

benefits to all non-ferrous metals under 2-4 days, although these diversification benefits decrease as the 

scale of time period increases. Using a similar approach, Bhatia, Das and Kumar (2020) examine the 

hedging effectiveness of precious metals across stock markets of G7 developed nations. In contrast to 

the existing literature, silver was found to offer better hedging capabilities than other precious metals 

for both short and long run time horizons. Alqaralleh and Canepa (2022) use a wavelet approach to 

investigate the dependence structure between precious metals and the stock market. In their findings, 

the authors attempt to compute optimal portfolio weights and hedge effectiveness of precious metals 

and select stock indexes. They observe that precious metals can be successfully used to balance 

portfolios even in period of market distress, with gold in particular being able to act as a safe haven for 

medium to long run investment horizons, noting that for a $1 portfolio, nearly 60 cents should be 

invested in gold and 40 cents in the index across short investing horizons, reducing weighting the longer 

the investment horizon. This may be explained by the fact that economic drivers for gold and silver are 

different from the other base metals. Abuzayed et al (2022) examine the impact of Brexit on stock 

portfolios with gold and oil. Estimations from using a DCC multivariate GARCH model indicate 

dynamic co-movements across the UK stock market, and gold was found to have significant 

implications for hedging strategies and portfolio diversification for investors in the UK market. 

Additionally, investors should hold more gold than oil to minimize stock portfolio risk without reducing 

expected returns. 

 

Price behaviour and characteristics of precious metals are also of interest to researchers. One such study 

by Ciner (2001) found no evidence of cointegration relationship between gold and silver futures traded 

on the Tokyo commodity exchange between 1992 and 1998. Strong evidence of long run dependence 

in daily conditional returns and volatility processes were found for gold, silver, platinum and palladium 



 34 

futures from January 1999 to March 2011 when employing multiple parametric and semi parametric 

models (Arouri et al. 2012). Sensoy (2013) estimates the dynamic correlation between four major 

precious metals using DCC-GARCH and DECO-GARCH models The author finds that they are 

initially uncorrelated at the start of 1995, but become strongly correlated by 2013, reducing 

diversification benefits. The turbulent year of the 2008 crisis is also shown to have no significant effects 

on volatility for Gold and Silver. Bentes (2015) employ GARCH, IGARCH and FIGARCH frameworks 

to identify which specification is best suited to forecasting volatility in gold returns. Long memory 

volatility processes were best described by a FIGARCH (1,d,1) model, with the standard GARCH (1,1) 

model was the worst model to capture linear dependence. Mensi et al. (2021) analyse volatility spillover 

characteristics of four major precious metals and seven major currencies at three different time horizons. 

Employing the DY and BK approach, spillovers vary between 50% and 70% in the short term but drop 

to less than 30% in the medium and long term. They conclude that adding precious metals to currency 

portfolios provides diversification and hedging benefits over all time horizons. Lahiani et al. (2021) 

investigate long run and short run asymmetric properties between precious metals and the S&P 500 

index, and their safe haven properties. They found in their sample of December 2019 to June 2021 to 

represent the COVID pandemic period, asymmetric effects on S&P 500 were shown for copper, 

palladium, aluminium and gold and play the role of safe haven assets against the S&P 500 in the short 

term, with only gold a safe haven asset in the long run. Alfeus and Nikitopoulos (2022) provide evidence 

that FIGARCH models are successful in capturing long memory characteristics of commodity markets, 

including gold, silver, platinum and copper.  
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2.2.7 Value-at-Risk Evaluation  

 

In volatility forecasting and risk management, Value-at-Risk has been an important tool used to evaluate 

the market risk of a portfolio, identifying whether the loss that is likely to be exceeded by a specified 

probability that ranges between 0.95 and 0.99 over a defined period (Jiang, Hu and Yu, 2022). While 

VaR is still the widely used and important measure of market risk and exposure, Expected Shortfall 

(ES) is additionally slowly becoming a primary risk measure for market risk, as proposed by the Basel 

III Accords with a proposed confidence level of 97.5%. Expected Shortfall considers losses that are 

beyond the VaR level and it is shown to be sub-additive in order to combat the issues apparent in the 

VaR approach. Expected Shortfall and Value at Risk evaluation has been conducted on a wide variety 

of financial assets, including precious metals. Ardia et al. (2018) use single-regime and markov-

switching GARCH models to produce Expected Shortfall, VaR and left tail distribution forecasts for 

daily, weekly and ten-day equity log returns of 426 stocks. In their results, markov-switching models 

are found to outperform single-regime models for producing VaR forecasts, although note it is difficult 

to discriminate between the estimation methods, based on VaR forecast accuracy. Similarly, Muhammad 

et al. (2019) model volatility of precious metals using regime switching GARCH models, additionally, 

VaR forecasts are produced and models ranked according to best performance. Their findings conclude 

that out of sample analysis showed that regime switching models outperform their singe regime 

counterparts when producing VaR forecasts for gold and platinum, but otherwise find mixed results for 

palladium. Lazar and Xue utilize intraday information in the GAS model of Patton et al. (2019) to 

forecast Expected Shortfall and Value at Risk in 4 different international stock market indices, namely 

NIKKEI 225, S&P 500, FTSE 100 and the Dow Jones Industrial Average. Results from GAS-FZ models 

outperformed ES and VaR forecasts based on GARCH models or historical simulations. Le (2020) apply 

the MIDAS framework to backtest forecasts for Expected Shortfall and Value at Risk using daily data 

of 42 international indices and the MSCI world index from January 1996 to December 2017. Le (2020) 

reports that MIDAS models significantly outperform GARCH and alternative semiparametric models, 

which rely on single period quantile regression. Additionally, models that incorporate asymmetry in the 

quantile dynamics and the AL density to jointly estimate ES and VaR produced the most accurate 
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forecasts. Taylor (2020) uses individual forecasts from univariate models and additionally consider a 

quantile forecast combination approach to estimate ES and VaR, using scoring functions to assess model 

performance. Following a simulation study based on data generated by three data-generating processes 

to check robustness of results, individual methods were found to be outperformed by the combing 

methods Junior et al. (2022) employ 38 different VaR model specifications, namely 32 GARCH and 6 

GAS models assuming normal and non-gaussian distributions to model VaR forecasts of precious 

metals including gold, silver, platinum and palladium. In their results, GARCH models are typically 

found to outperform GAS models for both 1% and 5% VaR forecasts for each of the metals analysed. 
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2.3 Data and Methodology Framework 

2.3.1 Data Collection 

 

The original data we obtain are daily data for spot price data for 5 non-ferrous metal contracts offered 

by the London Metal Exchange3. The London Metal Exchange is the world’s largest market in 

standardised futures contracts, forward contracts and options for non-ferrous metals, with 145 million 

lots traded on the LME in 2021, equating to $15.6 trillion and 3.3 billion tonnes of notional trades4. The 

selection of 5 non-ferrous metals: Copper, Aluminium, Tin, Zinc and Lead provides wide coverage of 

the metals predominantly used for financial risk management purposes and industrial applications, and 

as such, are frequently used in the literature. Although there is debate surrounding the advantages and 

drawbacks of high-frequency data in financial modelling, daily price data has been found to be sufficient 

in forecasting volatility in the absence of high frequency data when using GARCH and GAS type 

models. At longer forecasting horizons, the differences in forecasting accuracy tend to diminish and 

become statistically indistinguishable and because high frequency data are seldomly available, low 

frequency data might be sufficient (Lyocsa et al. 2021). Therefore. The units of future price for metals 

are dollars per metric tonne for non-ferrous metals (US/mt.). The daily historical price data for all non-

ferrous metals is available on the Bloomberg Terminal database, with the data being used in this chapter 

spans the period 2nd January 2010 to 31st December 2021, covering 3033 trading days. Additionally, 

monthly trading volume for each non-ferrous metal is also employed in the GARCH-MIDAS regression 

as a predictor variable at mixed frequency, in an effort to see whether the addition of a predictor variable 

can improve volatility forecasts. 

 

 

 
 
4 https://www.lme.com/Company/About 

https://www.lme.com/Company/About
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Daily squared returns are used as the proxy for model estimation which can be calculated by first the 

daily return, The return series is stationary, so it can be used to model without any transformation. The 

equation below represents the formula to calculate the daily return, which also is as known as the rate 

of increase in price (Bentes, 2015). In volatility modelling, returns are the input variable. Once this is 

calculated, we can calculate the daily squared return. As previously defined, volatility can be understood 

as the uncertainty of price changes over time. E(µ) is the expectation value of the mean, which is 

constant. Volatility is used to measure the uncertainty (E(εt)). The asset returns normally is a mean-

reverting process, which implies that it is changing over time but around the same average value-µ 

(Dokuchaev, 2007).  

 

𝑟𝑡 = ln⁡(𝑝𝑡) − ln⁡(𝑝𝑡−1) 

 

Figures 2.1 to 2.5, which can be found in the appendix section, shows a comparison of the daily prices 

of Copper, Aluminium, zinc, tin and lead spot returns for the period 2nd January 2010 to 31st December 

2021. We can observe notable trends between the five price series’, with a notable downward trend for 

all metals until 2016. Oversupply of natural resources and weakening demand for non-ferrous due to 

economic slowdown in emerging economies such as China and Brazil would cause prices of non-ferrous 

metals to hit their lowest point in our sample period. A bullish market as a result of an increase in global 

demand for industrial metals shows a rebound for all non-ferrous metals in the period 2017-18. 

Economic sanctions and measures in top consumer China as the spread of Covid-19 created fears about 

global economic growth and demand for industrial metals. This would see copper drop to a low of 

$4,371 per tonne, its lowest price since January 2016 and LME Tin slump to a decade low. A large rally 

in commodity prices in 2021 would see non-ferrous metals hike to record prices caused by supply 

toughness, logistical and mining disruptions such as the blockage of the Suez Canal in March 2021 and 

increased spending of western economies. Copper prices reached a high of $10,417 per tonne in May 

2021, the highest since February 2011, Tin reaching a record high of $39,159 in November 2021 and 

Aluminium prices hiking up 62% year on from October 2020. The Russian invasion of Ukraine, which 

commenced on 24th February 2022, and subsequent economic sanctions have resulted in further 



 39 

economic upheaval affecting many areas of the economy. Russia is one of the world’s largest exporters 

of many base and precious metals including platinum, palladium, gold and aluminium, while Ukraine 

is additionally a large exporter of copper to the eastern European region.5 The war had pushed the price 

of aluminium to near unprecedented levels, with LME aluminium spot trading at a high of $3,984 per 

tonne on 7th March 2022. Market prices for LME aluminium would decline over the coming months as 

price hikes would discourage demand, but it would not be until September 2022 until the price of LME 

aluminium would return to pre-war levels. 

 

 

Volatility clustering results in volatility persistence and this is common among financial assets. 

Specifically, volatility clustering refers to the fact that large changes in observations tend to be followed 

by large changes, of either sign, and small changes tend to be followed by small changes (Mandelbrot, 

1963). We can observe the high levels of volatility persistence in each of the series. We can observe that 

all price series observed tend to be sensitive to market fluctuations, with lead being the most volatility 

persistent and tin the least persistent.  

 

Table 2.1 shows the table of descriptive statistics. There are a total of 3130 observations for each return 

series. The means of daily returns are very close to zero mean, and the standard deviations (%) are large, 

which is a common trend among return series. The absolute maximum and minimum return values for 

all return series are also relatively similar. A standard normal distribution has a skewness of 0 and a 

kurtosis of 3. Interestingly, only aluminium returns exhibit positive skewness (skewed to the right), 

while each of the return series for copper, lead and tin returns exhibit negative skewness (skewed to the 

left). Negative skewness means that the lower tail of the distribution is fatter than the upper tail (Cashin 

and McDermott, 2002). Under this assumption, the mean and median of copper, lead and tin returns are 

smaller than the mode, with the mean and median for aluminium returns being greater than the mode. 

 
5 https://www.eiu.com/n/russian-and-ukrainian-commodities-review-base-metals/ 
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The kurtosis of tin returns is greater than 3 (standard normal distribution), thus are leptokurtic, with the 

corresponding series for copper, aluminium and lead exhibiting platykurtic distribution.  

 

Figure 2.11 indicates the autocorrelation function of the return series for each non-ferrous metal. We 

can observe that, for the squared returns, the lags do not have significant effect. The only value is the 

spike at lag 0, indicating that the values are independent of each other and therefore past returns do not 

explain future returns. 

 

Table 2.2 shows the results of the preliminary tests for each of the metal returns data.  The Jarque-Bera 

tests (normal distribution test) at the 1% level strictly reject normality. The ljung-box test q-statistic 

rejects the hypothesis of no serial autocorrelation at 1% significance level up to the 20th order for all 

series, except for zinc and lead returns. Furthermore, the ljung-box test on squared standardized 

residuals for each return series only indicates significance at 1% level for lead. The Augmented Dickey-

Fuller (ADF) and Phillips-perron (P-P) tests both conclude rejections of a unit root at the 1% 

significance level for all return series, thus, all series are stationary and can be directly employed into 

estimations with no transformations necessary.  

 

2.3.2 Methodology Framework 

 

The Autoregressive Moving Average (ARMA) model is one of the most widely used general 

frameworks to capture returns series characteristics. The classis assumption of this conventional model 

is homoskedasticity, in which each variable has the same finite variance. The plot of the return figures 

demonstrates however, that the economic time series’ exhibit periods of excess volatility which are 

followed by periods of relative calm and stability, therefore going against the assumption of 

homoskedasticity. In this instance, the ARCH model proposed by Engle (1982) and the GARCH model 

originated by Bollerslev (1986) would be more suitable, as they assume volatility with time varying 

characteristics. Simply put, ARCH and GARCH models treat heteroskedasticity as a variance to be 

modelled and results do not suffer from the stationary constraint (Engle, 2001). 
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The ARCH model was introduced by Engle (1982) to estimate the variance in United Kingdom 

inflation. The standard ARCH(1) model is given as the following: 

𝜎𝑡
2 = 𝑣𝑎𝑟 (

𝑢𝑡
𝑢𝑡−1

) 

𝜎𝑡
2 = 𝑐𝜎 + 𝑎𝑢𝑡−1

2  

Where 𝜎𝑡
2 denotes the variance of 𝑢𝑡 conditional on the value of 𝑢𝑡−1, meaning that the variances of 

the current period are determinant on the error term of the previous period. The variance of the current 

period (𝜎𝑡
2) cannot be known until the variance of the previous period (𝜎𝑡−1

2 ) is known.  

 

Based on the work of Engle (1982), the GARCH model introduced by Bollerslev (1986) is one of the 

most popular methods of modelling volatility. Previous literature has demonstrated that the standard 

GARCH(1,1) model was a good fit for modelling volatility among numerous types of assets (Sadorsky, 

2006; Efimova & Serletis, 2014). In the empirical literature, one order is the most popular choice for 

the ARCH effect term, GARCH effect term and the leverage effect term. The standard GARCH(1,1) 

model for daily returns is given as the following: 

𝑟𝑡 = 𝜇𝑡 + 𝜀𝑡 = 𝜇𝑡 + 𝜎𝑡𝑧𝑡, 𝑧𝑡~𝑁𝐼𝐷(0,1), 

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2  

 

Where 𝜇𝑡 is the conditional mean and 𝜎𝑡
2 is the conditional variance with the parameter restrictions 

𝜔 > 0, 𝛼 > 0, 𝛽 > 0 and 𝛼 + 𝛽 < 1. GARCH models allow for both heteroskedastic and moving 

average components in the heteroskedastic variance. In comparison to the regular ARCH model, the 

GARCH model provides more accurate estimation of the conditional variances. This is because the 

variance in the last period increases the additional explanation ability for volatility modelling, as the 

variance that comes out is always dependent on the result of the last period. In this sense, GARCH type 

models are also expected to produce more accurate one step ahead forecasts than the standard ARCH 

model.  
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To take into account the stylized facts and unpredictability of financial markets, additional classes of 

GARCH model have been developed to better capture short memory and long memory volatility effects 

and leverage effects. Because of the non-linear setting of these more recently developed models, they 

are more widely known as nonlinear GARCH class models in the literature. The GJR-GARCH model 

introduced by Glosten, Jagannathan and Runkle (1993) was proposed to help fill in the gap of being 

able to explain the leverage effect in time series data, which cannot be adequately be explained by the 

standard GARCH(1,1) model. It allows bad news (negative shocks) and good news (positive shocks) 

to have different effects on volatility. Although it is easier to understand the advantages of the GJR 

model in a stock example, the advantages of the GJR model can still be well understood using a 

commodity example. The GJR model setup is given as follows: 

 

𝜎𝑡
2 = 𝜔 + [𝛼 + 𝛾𝐼(𝜀𝑡−1 < 0)]𝜀𝑡−1

2 +𝛽𝜎𝑡−1
2 , 

 

Where 𝜎𝑡
2 again is the conditional variance, 𝐼(. ) is an indicator function i.e. if the 𝜀𝑡−1 is negative then  

𝐼(. ) = 1, and is otherwise zero if it is not met.  𝛾 is the asymmetric leverage coefficient which captures 

asymmetric leverage effects of the volatility.   

 

The EGARCH model of Nelson and Cao (1991) is another extension of the GARCH model which 

captures the volatility leverage effect. This was developed to allow for asymmetric effects between the 

positive and negative shocks on the conditional variance of future observations. Nelson and Cao (1991) 

further point out that another advantage of the EGARCH model is that there are no constraints on the 

𝛼 and 𝛽 parameters. We can give the EGARCH model as: 

 

𝑙𝑜𝑔(𝜎𝑡
2) = 𝜔 + 𝛼𝑧𝑡−1 + 𝛾(|𝑧𝑡−1| − 𝐸|𝑍𝑡−1|) + 𝛽log⁡(𝜎𝑡−1

2 ) 

Where 𝛾 is again the asymmetric leverage coefficient to describe volatility leverage effect. 
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GARCH models previously mentioned above better capture short-term volatility features while there 

are arguments that the fractionally integrated GARCH model (Baillie et al. 1996, 2004, Andersen and 

Bollerslev, 1997) better captures the long memory properties of volatility. Better long memory 

properties are a result of the FIGARCH model assuming the finite persistence of volatility shocks (no 

such persistence exists in the standard GARCH framework) i.e. long-memory behaviour characteristics 

and a slow rate of decay after volatility shocks. In comparison, an IGARCH model instead implies the 

complete persistence of a shock, and apparently quickly fell out of favour.  

 

The GARCH-MIDAS approach proposed by Engle, Ghysels and Sohn (2013) has a notable advantage 

over the traditional GARCH-class model, in that it composes the conditional variance into two 

components: short-term volatility and long-term volatility. In this chapter, the long run component is 

determined by monthly trading volume. The GARCH-MIDAS approach can be surmised as: 

𝑟𝑖,𝑡 = 𝑢 +√𝜏𝑡𝑔𝑖,𝑡𝜀𝑖,𝑡, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ∀𝑖 = 1,… ,𝑁 

𝜀𝑖,𝑡|Φ𝑖−1,𝑡~𝑁(0,1), 

Where 𝑟𝑖,𝑡 is the return on day i in month t, 𝑢 is the conditional mean and 𝜀𝑖,𝑡 is the error term with a 

normal distribution. The short run component can be expressed as: 

𝑔𝑖,𝑡 = (1 − 𝛼 − 𝛽) + 𝛼
(𝑟𝑖−1,𝑡 − 𝑢)

2

𝜏𝑡
+ 𝛽𝑔𝑖−1,𝑡 

And the long run component can be expressed as: 

 

𝜏𝑡 = 𝑚 + 𝜃∑ 𝜑𝑘(𝜔1, 𝜔2)𝑋𝑡−𝑘
𝑘

𝑘=1
 

 

Where 𝑋𝑡−𝑘 is the low frequency predictor, k is the number of lags, and 𝜑𝑘(𝜔1, 𝜔2) is the weighting 

function. The conditional variance can then be expressed as: 

 

𝜎𝑖,𝑡
2 = 𝜏𝑡𝑔𝑖,𝑡 
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Although generally the lag length in previous literature is between 12 and 36 months, a lag length of 3 

months is chosen due to the relatively small out of sample period of 508 days, indicating that the long 

run component volatility is obtained by taking the weighted average of the past three-month values.  

 

The newer class of Generalized Autoregressive Score models (GAS) introduced by Creal et al. (2013) 

offer an alternative to the traditional GARCH family of models to model the conditional variance of 

financial returns.  

Let the 𝑁 × 1 vector y denote the dependent variable, 𝑓𝑡 the time varying parameter vector, 𝑥𝑡 a vector 

of exogenous variables, all at time t and  𝜃 a vector of static parameters. They capture the dynamics of 

time varying parameters using autoregressive term and lagged scores, which can be defined as the 

gradient of the log-likelihood function. The time varying parameter follows the recursion: 

 

𝑓𝑡 = 𝜔 +∑𝛽𝑖𝑥𝑡𝑖 +∑𝑎𝑗𝑆(𝑓𝑡−𝑗)∇(𝑦𝑡−𝑗, 𝑓𝑡−𝑗) +∑𝜑𝑘𝑓𝑡−𝑘

𝑄

𝑘=1

,

𝑝

𝑗=1

𝑀

𝑖=1

 

 

Where 𝜔 is a column vector of constants, 𝛽𝑖 are exogenous regressors, 𝑎𝑗 are score parameters, 𝜑𝑘 are 

autoregressive parameters, 𝑥𝑡𝑖 are exogenous variables 𝑆(𝑓𝑡−𝑗) is the score scaling function and 

∇(𝑦𝑡−𝑗, 𝑓𝑡−𝑗) is the score, which is given by: 

∇(𝑦𝑡−𝑗, 𝑓𝑡−𝑗) =
𝜕𝑙𝑛𝑝(𝑦𝑡|𝑓𝑡)

𝜕𝑓𝑡
 

 

The GAS class of models incorporated many well-known econometric models, such as the GARCH 

model of Bollerslev (1986) and the Autoregressive Conditional Duration model of Engle and Russel 

(1998).  

 

In summary, the standard GARCH, EGARCH, GJR-GARCH and Generalized Autoregressive Score 

models at different distributions, and the GARCH-MIDAS model are used to describe and forecast the 

volatility of five different metal commodities traded on the London Metal Exchange, using daily return 
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series for each type of metal respectively. Additional Value-at-Risk evaluation is then performed to 

analyse the suitability of each forecasting model to non-ferrous metal returns. 
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2.3.3 Forecasting Methodology 

 

In this paper, the rolling window method is used to obtain the out of sample volatility forecasts, 

following the previous works Verma (2021), Liu et al. (2020), Lv (2018), Wei et al. (2012) and Kang et 

al. (2009). In addition, VaR evaluation is also carried out in order to assess the suitability of each model 

for forecasting non-ferrous metals. The out of sample forecasting performance is evaluated using the 

Diebold and Mariano (1995) test and average losses and models are then ranked on performance.  The 

observations for each time series are from 4th January 2010 to 31st December 2021 and we divide the 

whole sample into two subgroups: the first subgroup for in-sample data and the second subgroup for 

out-of-sample data. The in-sample data, used for volatility modelling covers the period 2nd January 2010 

to 31st December 2019, and the out-of-sample data, which will be used for forecasting and VaR 

evaluation, covers the period 1st January 2020 to 31st December 2021 covering 523 trading days i.e., the 

last two years of the total data sample.  

 

In accordance with Verma (2021), Lv (2018), Wei et al. (2012) and Kang et al. (2009), we assess the 

daily actual volatility (variance) using daily squared returns (𝑟𝑡
2), which we will denote 𝜎𝑡

2 from here 

onwards. The volatility forecasts obtained using the GARCH class model is denoted by 𝜎̂𝑡
2. Various 

loss functions can be considered to assess the predictive accuracy of a volatility model. Instead of 

limiting ourselves to using one loss function to assess the predictive accuracy of the models, we will 

use 6 different loss functions to measure forecasting ability. Koopman, Jungbacker and Hol (2005) 

apply MSE and MAE to measure the forecasting of GARCH family models. We will use the following 

loss functions: 

 

Mean Square Error Function: 

𝑀𝑆𝐸 =
1

𝑁
∑(

𝑁

1

𝜎𝑡
2 − 𝜎̂𝑡

2)2 
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Mean Absolute Deviation Function: 

𝑀𝐴𝐷 =
1

𝑁
∑|(𝜎𝑡

2 − 𝜎̂𝑡
2)|

𝑁

1

 

 

Mean Square Error adjusted for Heteroskedasticity Function: 

𝐻𝑀𝑆𝐸 =
1

𝑁
∑(

𝑁

1

1 −
𝜎𝑡
2

𝜎̂𝑡
2)
2 

Gaussian Quasi-Likelihood Estimator: 

𝑄𝐿𝐼𝐾𝐸 =
1

𝑁
∑(𝐿𝑁(

𝑁

1

𝜎̃𝑡
2) +

𝜎𝑡
2

𝜎̃𝑡
2) 

𝑅2𝐿𝑂𝐺: 

𝑅2𝐿𝑂𝐺 = 𝑛−1∑[ln⁡(𝜎𝑡
2

𝑛

𝑡=1

/𝜎̂𝑡
2)]2 

Where N is the number of forecasting data. The mean square error (MSE) is the average squared 

difference between the actual variances and the predicted variances of the model and the mean absolute 

deviation (MAD) is the absolute value of the differences. The proxy used in this study is daily squared 

returns. Wang et al. (2020) used MSE and MAE as loss functions for evaluating the forecasting accuracy 

of GARCH class models. Generally, other extensional models are all based on these two loss functions. 

HMSE is a heteroskedasticity adjusted versions of the MSE loss function, which is a non-linear loss 

measurement. In addition, QLIKE corresponds to the estimated loss implied by a gaussian likelihood. 

The Gaussian quasi-maximum likelihood estimator was suggested by Bollerslev, Engle and Nelson 

(1994) to employ in evaluating the performance of GARCH models. GMLE holding a lower value 

indicates that the model has better estimating ability (Huang et al. 2008) 

 

Although the above loss functions and statistics of forecast errors are useful for the comparison of the 

estimated models, they do not provide any statistical tests on the difference of the models. it is crucial 

to attempt to determine whether any reductions in the forecasting errors are statistically significant. It 

should be noted that we cannot conclusively decide whether a single model provided superior predictive 
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performance than another by using a particular loss function. Previous literature has explored testing 

frameworks to determine whether a particular model outperforms another model (Diebold and Mariano, 

1995; White, 2000; Hansen, 2005). Therefore, we will use the Model Confidence Set test of Hansen, 

Lunde and Nason (2011) to evaluate the performance of the forecasts. 

 

The MCS test has been shown to have good power properties and provides a more robust approach than 

other approaches. In comparison to alternative approaches, the MCS approach allows us to compare the 

performance of multiple forecasting models at a given time, and ranks each model with a given level of 

confidence. In addition, the MCS is free from determining the benchmark model in advance, which is 

necessary for most other evaluation methods such as the DM test proposed by Diebold and Mariano 

(1995). The MCS test aims to find a superior model in which all models have equal predictive ability, 

which is the null hypothesis of the MCS test (Liu et al. 2020). Following similar works from Liu et al. 

(2020) we set the confidence level at 95% and carry out 5000 bootstrap replications to obtain the MCS 

test statistic and Tmax statistic. For a complete description of the MCS procedure, one may refer to 

Hansen et al. (2011) and Hansen and Lunde (2005). 

 

The most popular methods of backtesting for Value-at-Risk. The Kupiec (1995) test of unconditional 

coverage is concerned as to whether the reported VaR is more (or less) than 𝛼⁡ × 100% of the time. 

Kupiec (1995) proposed a proposition of failures that examines how many times VaR is violated over 

a select period. If the number of VaR violations exceeds a certain threshold, the accuracy of the model 

is to be considered. The Kupiec (1995) test statistic takes the form: 

𝑃𝑂𝐹 = 2𝑙𝑜𝑔 ((
1 − 𝛼̂

1 − 𝛼
)
𝑇−1(𝛼)

(
𝛼̂

𝛼
)
𝐼(𝛼)

) 

 

𝛼 =
1

𝑇
𝐼(𝛼) 

 

𝐼(𝛼) =∑𝐼𝑡(𝛼)

𝑇

𝑡=1
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Inspection of the test reveals if the proportion of VaR violations, 𝛼̂ ⁡× 100%, is exactly equal to 

𝛼⁡ × 100% then the POF (proportion of failures) test takes a value of zero, indicating there is no 

evidence of inadequacy in the VaR model. Kupiec’s POF test of unconditional coverage is one of the 

most well known and widely implemented examples of VaR backtesting, however suffers from low 

power in small samples. The test is based on the frequency of tail losses and potentially neglects 

important information such as the size of tail losses and temporal dependence.  

 

An alternative approach to VaR backtesting developed by Christoffersen (1998) estimates a confidence 

interval to the number of exceptions based on the sample and verify whether the number of VaR 

exemptions is consistent with forecasts.  Unlike the Kupiec test, Christoffersen’s test only measures the 

dependency between consecutive days. The t-stat for the Christoffersen approach can be expressed as: 

 

𝐿𝑅𝐶𝐶𝐼 = −2𝑙𝑜𝑔 (
(1 − 𝜋)𝑛00+𝑛10𝜋𝑛01+𝑛11

(1 − 𝜋)𝑛00𝜋0
𝑛01(1 − 𝜋1)

𝑛10𝜋1
𝑛11) 

 

whereby 𝑛00 is the number of periods with no failures followed by a period with no failures, 𝑛10 is a 

period with failures followed by a period with no failures, 𝑛01 is a period with no failures followed by 

a period with failures, and 𝑛11 is a period of failures followed by a period with failures. Additionally, 

𝜋 is the probability of having a failure in period t, and under the null hypothesis, the t-statistic is 

distributed like a chi-square with two degrees of freedom. Although Christoffersen (2003) criticizes 

first order markovian process as a limited approach in comparison to other forms of clustering, the 

Christoffersen (1998) approach is easy to implement and has the advantage of evaluating the dynamic 

behaviour of exceptions sequence. This allows to verify in the case of a rejection of the model if it is 

due to incorrect estimate of failures frequency or the dependence of them. 
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2.4 Empirical Results  
 

 

In this section, I discuss the results of the in-sample estimation of the corresponding GARCH and GAS 

models and compare the out of sample forecasting abilities of the models. Returns for LME copper, 

aluminium, zinc, tin and lead spot returns are used, with returns data covering the period 4th January 

2010 to 31st December 2019 used for in-sample model estimation and the data covering the period 1st 

January 2020 to 31st December 2021 used to evaluate out of sample forecasting performance. During 

the 2020-2021 period, the COVID-19 crisis greatly affected the economies of various countries and 

industries, so is therefore a good period to evaluate the performance of the different volatility models. 

 

 The parameter estimation results for each returns series is presented within table 2.3 to 2.7, located 

within the appendix section. For brevity, the estimation results for all metal series are presented within 

the appendix section and can be found therein. Tables 2.3 to 2.7 present the in-sample estimation results 

for the presented models and the estimated parameters for each model. For all series, estimated GARCH 

terms () are larger than 0.9 and are close to 1, which strongly shows series autocorrelation in 

conditional variances, indicating a high persistence of volatility in the data, and therefore, a significant 

and high level of volatility persistence in each market. This effect appears to be slightly stronger for 

zinc returns and slight weaker for aluminium and tin returns. Results for the asymmetric leverage 

coefficient (𝛾) for EGARCH and GJR-GARCH models are mixed. The estimation results report that 

the 𝛾 coefficient are positive for aluminium returns when estimating the EGARCH model and positive 

for copper, zinc and lead returns when estimating the GJR model. Negative leverage effect indicates 

that high negative returns are followed by higher volatility growths than positive leverage effect. The 

GARCH MIDAS model estimates also display a great amount of volatility persistence across each metal 

series, as specified by a high coefficient of  and mean reverting properties, with 𝛼 + 𝛽 < 1. Likewise, 

parameter estimates for GAS models indicate the presence of properties typically found in financial 

econometric literature.  
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Swanson et al. (2006) argues that we should choose a model based on its forecasting performance rather 

than in sample model estimation. Therefore, following the in-sample estimation of the models, out of 

sample forecasting is conducted to evaluate the performance of the models.  
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2.4.1 Forecasting Results 

 

Tables 2.8 to 2.12 present the out of sample average losses for the out of sample and goodness of fit 

tests for the corresponding metals traded on the LME. The out of sample period is from 1st January 2020 

to 30th December 2021 and covers a total of 508 trading days. The MSE, MAD, HMSE, R2LOG and 

QLIKE rank the forecasting performance of each model, with the smallest recorded value for each loss 

function indicating the best fitting forecasting model. Upon further inspection of the relevant loss 

functions, the GARCH model following a students-t distribution is the dominant model for all metal 

series, with the exception of the GJR-GARCH model with students-t distribution for the copper series. 

Although the EGARCH, and GARCH-MIDAS models incorporate more information than the standard 

GARCH model, the EGARCH model following a normal distribution and the MIDAS model are found 

to produce the highest MSE value for two forecasts each, indicating these models may be unpreferable 

for forecasting non-ferrous metals volatility. When adjusted for heteroskedasticity, the HMSE loss 

function, the standard GARCH model was found to be the favourable model for forecasting metal 

returns, being the dominant model for aluminium, zinc and lead volatility forecasts. Much higher MSE 

estimates for each model when forecasting tin returns data could be due to the higher Jarque-Bera 

results, which indicates a lower goodness of fit. Across the board, R2 and QLIKE estimates are broadly 

similar for each forecasted model for every metal return series. It is also important to note that models 

following a student’s-t distribution tend to produce more accurate forecasts that counterparts following 

a normal distribution. Results from evaluating the relevant loss functions indicate that the standard 

GARCH following the students-t distribution is best suited for one-day ahead volatility forecasts, 

however, we cannot deduce which model produces the best forecasts just from cross-evaluating the 

different loss functions. In order to check the reliability and the robustness of the forecasts, we will 

conduct MCS tests on MSE and MAE loss functions and refer to the results of the MCS test for more 

information. 
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In order to confirm the forecasting results are statistically significant and to check the reliability and the 

robustness of the volatility forecasts, we will refer to the MCS test for more information. Table 2.13 to 

2.17 contain results from the Model Confidence Set procedure of Hansen et al. (2011) to test the 

robustness of the forecasts. The MCS algorithm constructs an optimal set of models on the assumption 

of equal predictive ability at a given confidence level. Results from the MCS tests confirm prior 

examination of the loss functions, with the GARCH model following the students-t distribution to be 

the dominant model, with the MCS test ranking it to be the best performing model for 3 of the 5 

forecasts, with GJR-GARCH with t-distribution the best performing model for tin volatility forecasts 

and EGARCH with t-distribution the outstanding performer for lead forecasts, although the MCS test 

has difficulty distinguishing which model is dominant for lead forecasts. In continuation with the loss 

function evaluation, models following the students-t distribution performed better than their 

counterparts following a normal distribution for each series.  

 

2.4.2 Value-at-risk backtesting results 

 

To validate results obtained from MCS test with regards to forecasting accuracy and robustness, we 

conduct further VaR backtesting, using the Kupiec (1995) and Christoffersen (1998) tests of 

unconditional and conditional coverage. Results from the backtesting of VaR models using the Kupiec 

(1995) approach can be seen in table 2.18 within the appendix section, testing the null hypothesis of 

whether proportion of failures exceeds the number of expected VaR violations. In order to test the ability 

of the models to capture the true VaR, we will backtest the forecasts using 5% and 1% confidence levels. 

A good model should fail to reject the null hypothesis, that is, correctly identifying the number of VaR 

violations. Considering a 5% significance level and 95% confidence level, we reject the null hypothesis 

if the likelihood ratio of the test exceeds the critical value of 3.841 in each case, with 25 expected VaR 

violations at the 5% confidence level and 5 for the 1% confidence level for a rolling window length of 

508. A good model should fail to reject the null hypothesis. Given the backtesting length of 508, The 

results presented show that each of the models pass the unconditional coverage test at the 5% 

significance level, indicating that the number of VaR violations are not understated or overstated by the 
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model. At the 1% confidence level, we note that the only rejection of the null hypothesis, namely the 

EGARCH model with normal distribution for tin series. This would be in line with the volatility 

forecasts and evaluation of the loss functions and MCS test, which rank the EGARCH model with 

normal distribution as the worst model for tin returns. In all other cases, the Kupiec t-statistic is below 

the 3.841 critical values, with corresponding p-values greater than the 0.01 threshold, indicating no 

evidence to reject the null hypothesis. Based on the proximity of the actual violation ratio to the 

expected violations, forecasts based on the GARCH-STD and EGARCH-STD models produce accurate 

out of sample proportion of violations the highest number of times, with the highest corresponding p-

values at the 5% level, with the 1% confidence level demonstrating the superiority of the GARCH-STD 

model. 

 

Upon inspection from the results of the Christoffersen conditional coverage test, which can be observed 

in table 2.19, we observe exceedance of the 5.99 critical value for the EGARCH with normal 

distribution, Univariate GAS and Multivariate GAS model for tin returns at the 5% level of significance 

level. In these instances, we reject the null hypothesis of correct exceedances and independence of 

failures, meaning that the model cannot correctly identify the number of VaR failures and the 

independence of failures, with corresponding p-values below 0.05 indicating statistical significance. At 

the 5% level, the standard GARCH and EGARCH model following students-t distribution yields the 

highest success rate, with the highest p-values that are statistically significant in most cases. A similar 

observation can be noted at the 1% confidence level, with the GARCH-STD, EGARCH-STD and GJR-

STD models producing the highest hit rate, with no exceedances of the 9.21 critical value for any VaR 

forecasts, thus we fail to reject the null hypothesis for these models in each metal series. Our results 

differ to those of the study of Patton et al. (2019) and those of Tafakori et al. (2018) and Ivanovski and 

Hailermariam (2021), whereby GAS models were found to produce better forecasting accuracy than 

GARCH type models but are more consistent with those of Junior et al. (2022) in which GARCH 

models outperformed GAS models. 
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2.5 Concluding Remarks 
  

In this chapter, I investigate the performance of volatility modelling and forecasting in non-ferrous 

metals markets. In particular, I compare the performance of standard GARCH, EGARCH model and 

GJR model at normal and students-t distributions, the GARCH-MIDAS model of Engle, Ghysels and 

Sohn (2013) using lagged monthly trading volume as a long run component of volatility and the 

Generalized Autoregressive Score model of Creal et al. (2013) at normal and students-t distributions 

concerning the estimation and volatility forecasting ability of selected models in non-ferrous metals 

markets. Value at Risk forecast evaluation is also conducted using the Kupiec (1995) and Christoffersen 

(1998) tests of unconditional and conditional coverage in order assess model suitability in a risk 

management setting. 

 

According to the findings presented in this paper, we present evidence from evaluation of relevant loss 

functions and MCS test indicating that the standard GARCH model following the students-t distribution 

to be the model to produce the most accurate forecasts of volatility and VaR, outperforming the GAS 

model at both normal and t-distribution and GARCH-MIDAS model for each metal series. Additionally, 

models following a students-t distribution are found to outperform corresponding model forecasts using 

a normal distribution. In order to evaluate forecasting performance, various loss functions are employed 

to assess performance, with the MCS test of Hansen et al (2011) being used to validate the robustness 

and statistical significance of our results, and results from the MCS test confirmed our findings. The 

data we use in this paper covers the period of 2010-2021, a period including the COVID-19 crisis, 

which is more up-to-date than the data covered in the small but expanding literature regarding non-

ferrous metals and similar methodologies are employed.  

 

There are several aspects and areas to improve for future research. It has been shown that univariate 

GARCH-type models and Generalized Autoregressive Score models provide sufficient predictive 
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ability, so it would additionally be valuable to employ and compare the performance of multivariate 

GARCH and GAS type models in fitting non-ferrous metals prices, along with the study of stochastic 

volatility models. Secondly, while this study has used a wide range of LME metals and uses spot price 

data not previously used in the existing literature, it would be worthwhile to further explore other 

commonly traded metals such as nickel and iron, which are not covered in this chapter, and precious 

metals such as gold, silver and platinum, which are also widely used in portfolio allocation. Finally, 

forecasting evaluation could be further improved by employing the use of high-frequency intraday data. 

 

On a final note, arbitrarily choosing a volatility model to forecast returns based on the existing literature 

is not wise. Findings presented in this chapter provide evidence on how to select a model for volatility 

forecasting for financial practitioners, economists and policymakers, however, choice of data sample 

length and loss functions make evaluating the forecasting performance of different models vary. The 

future directions where I intend to take my research is to further investigate volatility within the non-

ferrous metals market, where the forecasting used from this chapter can be applied in conjunction with 

high-frequency intraday data to explore volatility spillovers and comovements between LME non-

ferrous metals markets, benchmark stock indices and exchange traded funds and whether transmissions 

and shocks occur between these markets. This will be followed by showcasing how non-ferrous metals 

can be best implemented and used to create minimum variance portfolios to highlight their potential 

use in hedging strategies and asset allocation. 
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Appendix 
Table 2.1 Descriptive Statistic for LME Spot returns 

  Copper Aluminium Zinc Tin Lead 

Summary Statistics           

Mean -0.785 1.899 2.869 6.802 -0.505 

Std Dev 22.01 20.136 25.686 24.854 26.664 

Skewness 0.167 -0.058 -0.083 -0.127 -0.13 

Kurtosis 5.765 5.253 4.86 10.924 4.998 

VaR-0.01 -3.638 -3.071 -4.13 -4.49 -4.446 

VaR-0.025 -2.84 -2.39 -3.237 -3.296 -3.329 

VaR-0.05 -2.234 -1.892 -2.552 -2.359 -2.594 

VaR-0.1 -1.567 -1.481 -1.945 -1.63 -1.978 

ES-0.01 -4.902 -4.264 -5.322 -6.355 -5.888 

ES-0.025 -3.838 -3.277 -4.259 -4.785 -4.595 

ES-0.05 -3.19 -2.701 -3.566 -3.804 -3.744 

ES-0.1 -2.533 -2.189 -2.902 -2.887 -3.009 

Skew-t density           

DoF 6.657 9.917 14.089 4.807 9.862 

Skewness        -0.003          0.052        -0.033        -0.079 -0.04 

 

 

      

      

Table 2.2 Preliminary tests for metals return series. 

  Jarque-Bera Q(20) 𝑄2(20) ADF P-P 

Copper 839.18** 36.346** 14.455 -52.798** -52.722** 

Aluminium 764.52** 38.762** 12.928 -57.163** -57.165** 

Zinc 583.72** 30.662 23.58 -55.184** -55.188** 

Tin  7926.15** 39.136** 12.979 -55.862** -55.923** 

Lead 266.12** 17.526 55.62** -57.774** -56.314** 

** indicates rejection at the 1% significance level 
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Table 2.3 Parameter estimates for copper return series. 

 
 

 

Table 2.4 Parameter estimates for aluminium return series. 

 
 

 

Table 2.5 Parameter estimates for zinc return series. 

 
 

  

GARCH GARCH(T) EGARCH EGARCH(T) GJR GJR(T) MIDAS GAS GAS(T)

ω 0.027 0.004 0.015 0.04 0.06 0.05

α 0.048 0.04 0.017 0.091 0.0419 0.018 0.074 0.077 0.113

β 0.941 0.951 0.983 0.989 0.9581 0.962 0.839 0.986 0.988

g 0.004 0.04 0.05 0.05

μ -0.044

q 0.092

w 4.987

m 0.403

-0.007 -0.012

0.006 0.002

-2.63

Copper

GARCH GARCH(T) EGARCH EGARCH(T) GJR GJR(T) MIDAS GAS GAS(T)

ω 0.046 0.047 0.018 0.0112 0.048 0.049

α 0.053 0.052 0.148 0.133 0.057 0.06 0.072 0.089 0.145

β 0.916 0.918 0.961 0.965 0.913 0.912 0.928 0.973 0.964

g 0.007 0.012 -0.002 -0.01

μ 0.006

q 0.098

w 1

m 0.022

-0.013 -0.025

0.011 0.006

-1.674

Aluminium

GARCH GARCH(T) EGARCH EGARCH(T) GJR GJR(T) MIDAS GAS GAS(T)

ω 0.016 0.013 0.009 0.007 0.018 0.014

α 0.038 0.034 0.095 0.088 0.02 0.015 0.073 0.062 0.075

β 0.954 0.96 0.99 0.991 0.958 0.964 0.928 0.994 0.994

g -0.02 -0.02 0.027 0.027

μ 0.034

q 0.098

w 1.01

m 0.027

0.002 -0.006

0.005 0.009

-1.36

Zinc
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Table 2.6 Parameter estimates for tin return series. 

 
 

 

Table 2.7 Parameter estimates for lead return series. 

 

GARCH GARCH(T) EGARCH EGARCH(T) GJR GJR(T) MIDAS GAS GAS(T)

ω 0.011 0.015 0.009 0.004 0.006 0.012

α 0.044 0.06 0.095 0.12 0.013 0.032 0.074 0.061 0.161

β 0.95 0.936 0.99 0.988 0.965 0.945 0.095 0.993 0.99

g -0.03 0.033 0.034

μ -0.024

q 0.091

w 4.97

m 0.011

-0.036 -0.004

0.004 0.002

-4.021

Tin

GARCH GARCH(T) EGARCH EGARCH(T) GJR GJR(T) MIDAS GAS GAS(T)

ω 0.014 0.015 0.007 0.005 0.015 0.017

α 0.031 0.035 0.047 0.027 0.026 0.026 0.082 0.006 0.095

β 0.963 0.959 0.954 0.973 0.955 0.959 0.913 0.994 0.995

g -0.01 -0.013 0.017 0.015

μ 0.006

q 0.101

w 1.39

m 0.711

-0.013 -0.004

0.006 0.005

-1.77

Lead
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Table 2.8 Loss functions for copper volatility forecasts 

Copper 

  MSE MAD HMSE R2LOG QLIKE 

GARCH (T) 2.725 0.141 0.058 0.006 1.774 

GARCH (G) 4.755 0.152 0.031 0.028 1.730 

EGARCH (T) 0.424 0.273 0.025 0.026 1.698 

EGARCH (G) 5.278 0.017 0.047 0.034 1.705 

GJR (T) 0.224 0.138 0.007 0.009 1.679 

GJR (G) 3.292 0.164 0.029 0.016 1.677 

GARCH-MIDAS 5.675 0.424 0.020 0.018 1.780 

GAS 3.155 0.241 0.032 0.018 1.780 

GAS (T) 3.061 0.225 0.032 0.018 1.780 

* values in bold indicate best performing model  

 

Table 2.9 Loss functions for aluminium volatility forecasts 

Aluminium 

  MSE MAD HMSE R2LOG QLIKE 

GARCH (T) 3.406 0.169 0.018 0.017 1.384 

GARCH (G) 4.915 0.189 0.019 0.014 1.420 

EGARCH (T) 4.935 0.171 0.024 0.205 1.407 

EGARCH (G) 5.861 0.193 0.022 0.017 1.430 

GJR (T) 3.706 0.161 0.019 0.018 1.390 

GJR (G) 5.194 0.174 0.022 0.016 1.420 

GARCH-MIDAS 4.591 0.197 0.073 0.008 1.400 

GAS 4.102 0.190 0.073 0.015 1.410 

GAS (T) 3.929 0.185 0.075 0.015 1.410 

* values in bold indicate best performing model  
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Table 2.10 Loss functions for zinc volatility forecasts 

Zinc 

  MSE MAD HMSE R2LOG QLIKE 

GARCH (T) 0.113 0.105 0.004 0.006 1.786 

GARCH (G) 0.582 0.092 0.006 0.006 1.771 

EGARCH (T) 1.160 0.130 0.008 0.007 1.749 

EGARCH (G) 3.741 0.369 0.012 0.013 1.812 

GJR (T) 0.365 0.128 0.005 0.006 1.747 

GJR (G) 0.847 0.155 0.057 0.006 1.750 

GARCH-MIDAS 2.171 0.134 0.006 0.007 1.787 

GAS 1.528 0.291 0.007 0.006 1.810 

GAS (T) 1.426 0.227 0.007 0.006 1.810 

* values in bold indicate best performing model  

 

 

Table 2.11 Loss functions for tin volatility forecasts 

Tin 

  MSE MAD HMSE R2LOG QLIKE 

GARCH (T) 0.724 0.420 0.158 0.031 1.998 

GARCH (G) 1.742 0.522 0.027 0.043 1.977 

EGARCH (T) 3.180 0.424 0.045 0.067 2.010 

EGARCH (G) 7.192 0.626 0.116 0.048 1.914 

GJR (T) 2.150 4.770 0.036 0.039 1.916 

GJR (G) 3.371 0.528 0.025 0.046 2.000 

GARCH-MIDAS 5.399 0.581 0.038 0.049 1.953 

GAS 5.563 0.599 0.038 0.050 1.980 

GAS (T) 5.563 0.599 0.380 0.050 1.980 

* values in bold indicate best performing model  
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Table 2.12 Loss functions for lead volatility forecasts 

Lead 

  MSE MAD HMSE R2LOG QLIKE 

GARCH (T) 0.113 0.106 0.004 0.005 1.776 

GARCH (G) 0.115 0.119 0.006 0.005 1.814 

EGARCH (T) 0.113 0.135 0.005 0.006 1.780 

EGARCH (G) 0.135 0.142 0.007 0.006 1.817 

GJR (T) 0.199 0.128 0.006 0.007 1.810 

GJR (G) 0.383 0.114 0.004 0.005 1.771 

GARCH-MIDAS 0.425 0.202 0.008 0.006 1.790 

GAS 0.401 0.138 0.008 0.006 1.780 

GAS (T) 0.399 0.138 0.008 0.006 1.780 

* values in bold indicate best performing model  
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Table 2.13 Results of MCS Tmax stat and model ranking for copper forecasts 

Copper 

  MSE Rank MAE Rank 

GARCH-N 1.000 3 0.929 3 

GARCH-STD 1.000 1 1.000 1 

EGARCH-N 0.588 5 0.629 4 

EGARCH-STD 1.000 2 0.989 2 

GJR-N 0.321 8 0.555 6 

GJR-STD 0.989 4 0.423 5 

GARCH-MIDAS 0.300 9 0.303 9 

GAS-UNI 0.509 7 0.533 7 

GAS-STD 0.549 6 0.531 8 

 

 

Table 2.14 Results of MCS Tmax stat and model ranking for aluminium forecasts 

Aluminium 

  MSE Rank MAE Rank 

GARCH-N 1.000 3 0.994 2 

GARCH-STD 1.000 1 1.000 1 

EGARCH-N 0.826 8 0.922 4 

EGARCH-STD 0.943 5 0.837 5 

GJR-N 1.000 4 0.929 3 

GJR-STD 1.000 2 0.779 6 

GARCH-MIDAS 0.799 9 0.725 8 

GAS-UNI 0.835 7 0.772 7 

GAS-STD 0.855 6 0.681 9 

 

 

Table 2.15 Results of MCS Tmax stat and model ranking for zinc forecasts 

Zinc 

  MSE Rank MAE Rank 

GARCH-N 0.999 3 0.990 2 

GARCH-STD 1.000 1 1.000 1 

EGARCH-N 0.990 5 0.934 3 

EGARCH-STD 1.000 2 0.933 4 

GJR-N 0.994 4 0.900 5 

GJR-STD 0.305 8 0.478 6 

GARCH-MIDAS 0.282 9 0.414 9 

GAS-UNI 0.759 7 0.443 7 

GAS-STD 0.761 6 0.428 8 
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Table 2.16 Results of MCS Tmax stat and model ranking for tin forecasts 

Tin 

  MSE Rank MAE Rank 

GARCH-N 0.765 8 0.118 7 

GARCH-STD 0.999 3 0.090 8 

EGARCH-N 0.839 7 0.896 4 

EGARCH-STD 1 2 1.000 2 

GJR-N 0.995 5 0.953 3 

GJR-STD 1.000 1 1.000 1 

GARCH-MIDAS 0.737 9 0.039 9 

GAS-NORM 0.995 6 0.803 5 

GAS-STD 0.996 4 0.855 6 

 

 

Table 2.17 Results of MCS Tmax stat and model ranking for lead forecasts 

Lead 

  MSE Rank MAE Rank 

GARCH-N 0.918 4 0.982 4 

GARCH-STD 1.000 2 0.996 2 

EGARCH-N 1.000 3 0.986 3 

EGARCH-STD 1.000 1 1.000 1 

GJR-N 0.899 8 0.858 6 

GJR-STD 0.968 5 0.893 5 

GARCH-MIDAS 0.878 9 0.828 9 

GAS-UNI 0.909 7 0.858 7 

GAS-STD 0.909 6 0.828 8 
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Table 2.18 Results of Kupiec (1995) unconditional coverage test for VaR forecasts 

 

 
 

* values in bold indicate rejection of null hypothesis at corresponding confidence 

level. 

  

COPPER ALUMINIUM ZINC TIN LEAD

GARCH-N 1.21 3.29 2.87 .246 2.51

uc: p-value .269 .07 .095 .63 .113

GARCH-STD 1.21 2.51 3.42 .104 2.51

uc: p-value .27 .113 .06 .747 .113

EGARCH-N 0.057 2.51 2.19 2.19 2.51

uc: p-value .47 .113 .138 .138 .113

EGARCH-STD 1.21 1.85 2.19 .015 2.51

uc: p-value .269 .173 .138 .903 .113

GJR-N 1.67 3.29 1.67 .015 2.51

uc: p-value .19 .07 .196 .903 .113

GJR-STD 2.78 2.51 3.42 1.21 1.85

uc: p-value .095 .113 .06 .27 .173

GARCH-MIDAS 2.78 3.29 3.42 1.82 3.25

uc: p-value .095 .07 .06 .176 .07

GAS-N 0.85 3.25 1.25 1.82 3.25

uc: p-value .35 .08 .265 .176 .07

GAS-STD .053 3.25 2.19 1.70 3.25

uc: p-value .46 .08 .138 1.91 .07

GARCH-N 5.22 1.44 1.67 3.75 0.16

uc: p-value .022 .23 .21 .053 .69

GARCH-STD 2.48 0.65 0.656 .656 0.16

uc: p-value .115 .418 .418 .418 .69

EGARCH-N 5.22 1.44 5.22 6.88 0.16

uc: p-value 0.02 .23 .022 .009 .69

EGARCH-STD 3.75 1.44 1.44 2.48 0.16

uc: p-value .053 .23 .23 .115 .69

GJR-N 5.22 2.48 2.48 3.75 0.16

uc: p-value .022 .115 .115 .053 .69

GJR-STD 3.75 1.44 0.16 .656 0.16

uc: p-value .053 .23 .69 .418 .69

GARCH-MIDAS 3.77 1.44 1.44 5.22 0.16

uc: p-value .05 .23 .23 .022 .69

GAS-N 3.77 0.162 0.66 2.51 0.16

uc: p-value .05 .686 .415 .113 .69

GAS-STD 3.77 0.255 0.66 2.51 0.16

uc: p-value .05 .589 .415 .113 .69

Kupiec Unconditional Coverage Test

5% Level of Significance, Critical Value = 3.841

1% Level of Significance, Critical Value = 6.635
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Table 2.19 Results of Christoffersen (1998) conditional coverage test for VaR forecasts 

 

 
* values in bold indicate rejection of null hypothesis at corresponding confidence 

level. 

 

  

COPPER ALUMINIUM ZINC TIN LEAD

GARCH-N 1.851 4.47 3.52 5.93 3.84

cc: p-value .39 .106 .173 .051 .15

GARCH-STD 1.851 3.434 2.82 3.71 3.84

cc: p-value .39 .146 .221 .156 .15

EGARCH-N .589 2.21 2.19 7.07 3.841

cc: p-value .745 .331 .332 .003 .147

EGARCH-STD 3.024 1.96 2.19 5.05 3.552

cc: p-value .22 .373 .332 .06 .165

GJR-N 1.67 4.47 1.67 4.08 3.84

cc: p-value .34 .106 .34 .13 .15

GJR-STD 3.02 3.84 1.85 3.71 3.55

cc: p-value .22 .147 .399 .156 .17

GARCH-MIDAS 2.15 4.47 1.85 4.80 4.471

cc: p-value .31 .106 .399 .009 .106

GAS-N 1.65 4.471 1.81 6.47 4.47

cc: p-value .437 .106 .403 .04 .108

GAS-STD 0.60 5.19 2.18 7.93 4.673

cc: p-value .74 .07 .403 .01 .101

GARCH-N 10.83 1.7 1.70 10.13 0.30

cc: p-value .004 .428 0.428 .006 .86

GARCH-STD 2.81 .852 .852 3.77 0.30

cc: p-value .245 .653 .653 .152 .86

EGARCH-N 5.715 1.7 5.71 11.79 0.30

cc: p-value .057 .428 .057 .003 .86

EGARCH-STD 2.81 1.7 1.7 4.63 0.30

cc: p-value .245 0.428 .428 .99 .86

GJR-N 5.715 2.81 2.8 10.13 0.46

cc: p-value .057 .245 .245 .001 .78

GJR-STD 5.715 1.7 .303 3.77 0.30

cc: p-value .057 .428 .86 .152 .86

GARCH-MIDAS 5.72 1.70 1.70 10.13 0.46

cc: p-value 0.057 .428 .43 0.006 .78

GAS-N 4.17 .307 .85 9.75 0.31

cc: p-value .123 .858 .652 .007 .85

GAS-STD 2.81 .307 .85 10.13 0.31

cc: p-value .245 .858 .652 .006 .85

Christoffersen Conditional Coverage Test

1% Level of Significance, Critical Value = 9.21

5% Level of Significance, Critical Value = 5.991
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Figure 2.1 Price trend of Copper LME Spot returns 

 
Figure 2.2 Price trend of Aluminium LME Spot returns 

 
Figure 2.3 Price trend of Zinc LME Spot returns 
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Figure 2.4 Price trend of Tin LME Spot returns 
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Figure 2.6 Time path of LME Spot returns 

 
Figure 2.7 Time path of LME Aluminium returns 

 
 

 

Figure 2.8 Time path of LME Zinc returns 
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Figure 2.9 Time path of LME Tin returns 

 
 

Figure 2.10 Time path of LME Lead returns 
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Figure 2.11 Autocorrelation function for daily squared returns series 
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Chapter 3. Investigating conditional correlations of 

industrial metals and gold, oil and S&P500: A 

multivariate GARCH analysis 
 

Abstract 
 

This chapter examines conditional correlations of five non-ferrous metals (copper, aluminium, zinc, tin, 

nickel) with three different types of widely traded commodity, namely LBMA gold, ICE Brent Crude. 

Futures and the S&P 500 index using six types of multivariate GARCH model (CCC, DCC, BEKK, 

OGARCH, GOGARCH and DCC-MIDAS), with additional wavelet coherence analysis to further 

showcase conditional correlation at the time and frequency horizon. Copper, aluminium and metals are 

found to have strong correlations with gold in periods of low correlation with brent crude and the S&P 

500, with biggest gaps in correlations in periods of crisis. Results from Likelihood ratio tests highlight 

the DCC-MIDAS model as the model with best goodness of fit relative to benchmark CCC model, with 

the BEKK model performing the worst, likely due to overparameterization. We further use the DCC-

MIDAS results to compute conditional hedge ratio to showcase how non ferrous metals can be 

implemented in a trading strategy. 
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3.1 Introduction 
 

The relationship between stock and commodity markets has been a subject of interest and debate among 

academics and practitioners alike in recent years. It is important to analyse the relationship between 

differing classes of stocks and commodities, with differing types of commodities reacting differently to 

economic conditions, with behavioural characteristics that are largely independent of stock and bond 

returns, thereby allowing for greater portfolio diversification and lowering the risk exposure of an 

overall portfolio.6 With a wide range of practical applications, the main bulk of previous studies has 

been exploring the behavioural characteristics of stock markets and their associated risks. Economic 

and global crises in previous decades such as the dot-com bubble of the late 1990’s and early 2000’s, 

the 2008 financial crisis and the economic downturn following the 2020 COVID pandemic has 

prompted industry professionals to diversify investment portfolios with alternative types of financial 

instruments such as non-ferrous metals and as such, the comovement of commodity prices has become 

a widespread matter of interest.  

How different classes of financial instruments interact and influence the market dynamics of each class 

of instrument plays an important role in determining investment strategies and portfolio allocation. In 

a risk management setting, portfolio managers seek to diversify portfolios by looking for different types 

of asset classes and financial instruments with differing correlations so negative movements are 

counteracted by positive movements with negative correlations. Most rational choices of portfolio 

models suggest that investors should hold diversified portfolios in order to reduce or eliminate non-

compensated risk, with virtually all asset pricing models positing that financial instruments and 

securities are priced by. A diversified, marginal investor who demands little or no compensation for 

holding idiosyncratic risk (Goetzmann and Kumar, 2008). Dynamic correlations between stock markets, 

crude oil markets and non-ferrous metals can have an impact on investor decision-making and 

 
6 https://europe.pimco.com/en-eu/resources/education/understanding-
commodities#:~:text=Commodities%20are%20a%20distinct%20asset,overall%20portfolio%20and%20
boosting%20returns. 
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behaviour.  Non-ferrous metals are metals that do not contain iron, and have widespread industrial usage 

thanks to their desirable properties, including their light weight, high conductivity, non magnetic 

properties or resistance to corrosion,7 and additionally play an important part in economies, with their 

prices having impacts on extraction, processing and manufacturing facilities (Watkins and McAleer, 

2004). Furthermore, with Russia the largest exporter of non-ferrous metals, representing 9.71% of non-

ferrous metal exports totalling $8.36 billion in 20188, the 2022 Russian invasion of Ukraine has had 

global repercussions for the trading and exporting of non-ferrous metals, with the global economy still 

suffering aftereffects of the global COVID-19 pandemic from 2020 to 2021. This chapter seeks to shed 

light on whether non-ferrous metals present an opportunity to be used in hedging strategies or used for 

diversification benefits in portfolio management, by using multivariate GARCH models and DCC-

MIDAS model to examine dynamic conditional correlations and volatility spillover of non-ferrous 

metals, with precious metals and crude oils which represent two commodities widely used in trading 

and hedging strategies, and the S&P500 indexe, which represents one of the foremost stock market 

indices globally. While many studies have previously explored the effects of conditional correlation and 

volatility spillover effects, no such studies exist exploring linkages between European and Western non-

ferrous markets with precious metals, crude oil, and stock markets, and whether these non-ferrous 

metals present potential hedging and diversification opportunities for investors and industrial 

professionals.  

  

 
7 https://www.twi-global.com/technical-knowledge/faqs/what-metals-are-non-ferrous 
8 https://oec.world/en/profile/sitc/non-ferrous-metals-5768 
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3.2 Literature Review 

3.2.1 Conditional Correlation in Commodity Markets 

 

The subject of dynamic conditional correlation and volatility spillovers has been addressed in previous 

studies, however, the conditional correlation between non-ferrous metals and other types of investment 

vehicles has not been previously well studied and as such is not currently well defined, which this study 

aims to address, with a body of previous literature exploring conditional correlation covering crude oil 

markets. Among the previous literature to address conditional correlation and volatility spillovers in 

crude oil markets, Chang et al. (2013) explores conditional correlations and volatility spillovers between 

WTI and Brent crude oil markets and the FTSE 100, Dow Jones Industrial Average and the S&P 500 

stock markets between 1998 and 2009, using various multivariate models such as the CCC model of 

Bollerslev (1990), VARMA-GARCH model of Ling and McAleer (2003) and VARMA-AGARCH 

model of McAleer, Hoti and Chan (2009). Based on the CCC model, estimated conditional correlations 

were not statistically significant, meaning conditional shocks were correlated only in the same market 

and not across markets, with VARMA-GARCH and VARMA-AGARCH models additionally providing 

little evidence of dependence between the crude oil and financial markets. Block et al. (2015) 

additionally explore dynamic conditional correlation of crude oil but instead explore the potential link 

between fuels, gasoline, diesel and other fuels having a strong influence over prices, using Copula-

DCC-GARCH. The presence of cointegration between West Texas Intermediate (WTI) and all fuels 

with the exception of natural gas is found, indicating long-term dependence. Through a similar 

approach, Pal and Mitra (2019) investigate conditional correlations between WTI crude oil and four 

major agricultural commodities, namely, corn, soybeans, oats and wheat, in the period from January 3rd 

2000 to January 4th 2018. In their results, dynamic conditional correlations between WTI crude oil and 

corn were positive for DCC-GARCH, ADCC-GARCH and GO-GARCH models, with soybean 

conditional correlation also in a similar vein. Correlations between WTI and oats oscillate between 

negative and positive, indicating gains from diversification. Sarwar et al. (2019) assess hedging 

capabilities and volatility spillovers between three Asian stock markets, namely, NIKKEI 225, Shanghai 

stock exchange and Bombay stock exchange, and crude oil returns in the top three Asian importing 
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countries using four different multivariate GARCH estimating techniques including DCC-GARCH, 

corrected DCC-GARCH of Aielli (2013) and GO-GARCH model of Van der Weide (2002) and BEKK-

GARCH. In their findings, shocks in Indian markets have a more significant effect on current volatility 

of stock markets, however, in general, stock markets of developing Asian countries are not overly 

sensitive to oil price shocks and fluctuations. In a similar vein, Liu et al. (2020) analyse implied 

volatility and risk transmission effects between WTI crude oil market and U.S. stock markets using the 

same methods used by Sarwar et al. (2019) with the addition of using Vector Autoregressive Model to 

analyse mean spillover. With regard to their results, the authors comment that conditional correlation 

between OVX and VIX indices appears to be highly time-varying, implying a highly interdependent 

relationship between OVX and VIX markets. They also note economic and geopolitical events cause 

changes in the dynamic conditional correlation, in particular, correlation between oil and stock markets 

showed a significant increase during the period of the global financial crisis of 2008-2011, with policy 

changes having the opposite effect. Yildirim et al. (2022) utilize the DCC-GARCH model of Engle and 

Sheppard (2001) to analyse the impact of COVID-19 on return and volatility transmissions between 

crude oil and precious metals over the period of January 2019 to April 2021. Precious metals and oil 

prices are found exhibit heterogeneous behaviour throughout the sample period, with negative 

correlation is noted between gold and silver throughout most of the period, exhibiting safe haven 

properties in periods of oil price fluctuation. Additionally, a positive correlation is found between oil 

price returns, platinum and palladium, which may be explained by platinum and palladium having 

industrial uses within the economy. Upon examination of causality tests, the COVID-19 pandemic is 

found to have strengthened the transfer of volatility from oil to precious metals. Chen et al. (2022) 

investigate the relationship between crude oil and agricultural commodities in a similar vein to Pal and 

Mitra (2019), expanding their sample to Brent crude oil and seven agricultural commodities in China 

from a period of January 1999 to August 2021. Applying cDDC-GARCH and DECO-GARCH models, 

correlations between crude oil and soybean oil futures is stronger than the relationship between crude 

oil and other agricultural futures, additionally noting co-movements between crude oil and global 

agricultural commodities is greater than that of China’s agricultural commodities.  
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Previous literature exploring conditional correlation has also covered various precious metals. In an 

earlier such example, Sensoy (2013) detect for volatility shifts and connectedness for four major 

precious metals (gold, silver, platinum, palladium) from 1999 to 2013, using an approach introduced 

by Lavielle (2005) to detect mean shifts in dynamic correlation and volatility shifts. The 2008 financial 

crisis is not found to influence volatility levels of gold and silver but has significant effects on platinum 

and palladium volatility, but additionally state that based on increased correlation levels among them, 

they should be classified as a single asset class in the future. Gold is also found to have a volatility shift 

effect on other precious metals, additionally noting silver has a similar effect on platinum and palladium. 

Rehman and Vo (2020) investigate the relationship between cryptocurrency and precious metal returns 

from March 2017 to August 2019. Using a quantile-cross spectral approach, they note that in the short 

run, silver offers greater diversification benefits than any other metal analysed due to its strong negative 

correlation values, with Palladium and Nickel exhibit strong positive correlation with all 

cryptocurrencies. Long run precious metal returns are also found to exhibit negative correlation with 

cryptocurrency returns, highlighting their potential for diversification benefits. Dynamics and 

correlations of Platinum group metal spot prices are explored by Bao (2020) using EGARCH and Vector 

Error Correction Model (VECM). Over the period July 1st 1992 to August 15th 2019, all platinum group 

metals have similar features and strong correlations with high volatility clustering yielding significant 

leverage effects. Using a hybrid wavelet based DCC approach, Bhatia, Das and Kumar (2020) assess 

the hedging effectiveness of precious metals by conducting correlation analysis. Their results indicate 

a presence of dynamic correlation between precious metals (gold, silver, platinum, and palladium) and 

different stock markets, further suggesting an opportunity for portfolio diversification. Using a wavelet-

based approach combined with DCC-GARCH, Nekhili et al. (2021) analyse comovements among 

precious metals and their implications in a portfolio allocation setting. They find that comovements 

between all precious metal pairs are more pronounced in the medium and long term than in the short 

term, however, gold and silver pair shows strong comovements between different frequencies. 

Correlations between all precious metals jumped to higher values after the COVID-19 pandemic, 

although this is only wavelet coherence reports such attitude. Dinh et al. (2022) investigate time-varying 

dynamics of volatility and correlation in precious metal markets, using GARCH-MIDAS and DCC-
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MIDAS approach to capture short and long components of volatility. Monthly realized volatility used 

as a driver of long-term volatility outperforms other variables used. Chinese economic drivers have less 

impact on correlations than US counterparts, notably, long-term volatility of gold and long term 

correlations of gold-silver and platinum-palladium commodity pairs are reported to be most affected by 

economic variables, backing the findings of Klein (2017) that this behaviour can be explained by the 

different uses of each metal, with gold and silver used as investment assets and platinum and palladium 

mainly used as industrial metals. Additionally, all four precious metals react negatively and significantly 

to US stock market returns, while only long-term volatility of spot precious metals returns has a 

significant positive response to stock returns in China and EPU growth of G7 countries has a significant 

positive effect on precious metal volatility, concluding economic cause a stronger effect on volatility 

rather than correlation. Jain et al. (2022) examine frequency based linkages between two prominent 

stock indices, namely S&P500 and STOXX50 indices, and precious metals. In a similar vein to Rehman 

and Vo (2020), Abrar et al. (2024) investigate whether precious metals provide diversification avenues 

from cryptocurrencies and whether cryptocurrencies are net transmitters of volatility spillovers into 

precious metal returns. Following their results using GJR-GARCH and quantile VAR, they report higher 

volatilities between cryptocurrencies and precious metals at extreme left and right tails, likewise 

corroborating the findings of Rehman and Vo (2020) that precious metals may provide avenues for 

portfolio diversification. 

 

3.2.2 Multivariate GARCH Models and Conditional Correlation 

 

Since the development of multivariate generalized autoregressive conditional heteroskedasticity 

models, a large body of literature has been centered on exploring the usage of various multivariate 

GARCH models to estimate the dynamic conditional correlations between classes of financial 

instruments and the hedging effectiveness of commodity and equity portfolios. The DCC-GARCH 

model of Engle (2002) is employed in the literature of conditional correlation and connectedness 

because it can explain time varying volatility spillover between classes of financial instruments and 
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additionally provides information about the volatility of assets. Celik (2012) uses DCC-GARCH to 

explore connectedness and contagion effects between the US and 19 developed and emerging markets 

during the US subprime crisis. In their findings, DCC-GARCH was found to report unconditional 

correlation increased in crisis periods, especially for developing economies due to their instability, 

exaggerating the effects of shocks. Hemche et al. (2016) study contagion effects for ten developed and 

emerging stock markets, with respect to the US subprime mortgage crisis of 2006-2008 using a DCC-

MGARCH approach. They observe the presence of positive dynamic cross market correlations between 

the US market and major developed and emerging stock markets under, which vary significantly over 

time and on a country-by-country basis, appearing higher for developed countries but are more volatile 

for emerging countries. DCC-GARCH was additionally employed by Park et al. (2017) to examine 

conditional relationships between stock market returns and implied volatility. In the case of the Korean 

KOPSI200 and VKOSPI, exchange rate returns have significant impact on conditional correlations 

between the KOPSI200 returns and the VKOSPI. The leverage effect of the asymmetric DCC-GARCH 

model also effectively reduced the sign bias in the model. Chen and Xu (2019) use a multivariate 

Generalized Autoregressive Score (GAS) model and DCC-GARCH model to forecast volatility and 

examine correlations between the oil and gold market. In relation to the crude oil-gold market, the 

multivariate GAS model is found to have better forecasting performance than the DCC-MIDAS model, 

with the DCC model additionally overestimating gold and crude oil volatilities, especially in crisis 

periods. Volatility impulse responses and transmission mechanisms between currencies are explored by 

Gabauer (2020) using a DCC-GARCH model. Using this approach, volatility spillovers are found to be 

highly persistent across all series, with persistency across European currencies higher with respect to 

the JPY, possibly indicating regional currency contagion. The Swiss franc is also found to be the biggest 

net transmitter of shocks, with the British Pound and Japanese Yen being the biggest net receivers. 

Zhang, He and Hamori (2022) used DCC-GARCH t-copula approach to assess dynamic connectedness 

in ESG stock indes and renewable energy stocks. The DCC-GARCH approach was able to adequately 

explain dynamic connectedness of volatility between markets.   

The BEKK-GARCH model is also widely employed in the literature surrounding conditional 

correlations and volatility spillover, as The BEKK model allows permits the interaction of conditional 
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variances and covariances of several time series, thereby making it suitable to examine volatility 

transmission effects (Katsiampa, Corbet and Lucey, 2019). Chang, McAleer and Tansuchat (2011) 

evaluate the performance of various multivariate models, including the CCC, DCC and BEKK-GARCH 

approaches for two major international crude oil markets. In their results, models that assume constant 

conditional correlation have differing optimal portfolio weights than dynamic conditional correlation 

models, namely DCC and BEKK GARCH models. The diagonal BEKK model was found to produce 

the best optimal hedge ratio calculation in terms of variance of portfolio reduction, while the standard 

BEKK-GARCH model produced the worst results. Caporin and McAleer (2012) compare the BEKK 

and DCC models, citing issues surrounding the BEKK model, namely its ‘curse of dimensionality’ issue 

that the DCC model does not have, as motivation for their research. In their concluding remarks, they 

demonstrate that the optimal model for estimating conditional covariances (and thereby conditional 

correlations) was the scalar BEKK model, regardless of whether targeting was used. Liu et al. (2017) 

investigate the evolution of mean and volatility spillover effects between the S&P 500, MICEX index 

and WTI crude oil markets between January 2003 and December 2014 using a wavelet based BEKK-

GARCH model. Results from the wavelet based BEKK-GARCH model showcase that mean and 

volatility spillovers are time varying, with significant spillover effects between the US crude oil market 

and the S&P 500 index, although the model found no linkages at long tern scales. Katsiampa (2019) 

analyse volatility and comovement between two cryptocurrencies, namely Bitcoin and Ether, using 

bivariate BEKK-GARCH model. Supporting previous findings, the BEKK model showcased that both 

cryptocurrencies are significantly affected by cross products of previous shocks, supporting 

interconnectedness. Xie et al. (2021) explore dynamic linkages between the international crude oil 

markets and the Chinese stock market using a BEKK-GARCH approach. In their results, linkages are 

found between the international crude markets and the Chinese stock market, noting that the Chinese 

stock market plays the role of risk sender, due to high sensitivity to volatile changes in international oil 

price. 

Limited literature has also explored the use of MIDAS models to explain conditional correlations and 

volatility spillover. Colacito, Engle and Ghysels (2011) propose a DCC-MIDAS model to extend the 

idea of component models for volatility, with MIDAS specification allowing for the extraction of a 
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short run and long run correlation component via mixed data sampling. Applying the DCC-MIDAS 

model to portfolios of energy stocks, hi-tech stocks and 10-year bonds over a 35 year period, the DCC-

MIDAS correlation outperformed the DCC estimator in a large majority of cases, potentially 

highlighting the efficiency gains of the addition of a long run estimator, even in the context of short-

horizon assets. Likewise, Asgharian et al. (2016) use a DCC-MIDAS specification to investigate long 

run correlations between 10-year government bond returns and the S&P500 stock index from the first 

quarter of 1986 through to the second quarter of 2013. Their results show that long-run stock bond 

correlation has a positive relationship with the state of the economy and a negative relationship with 

uncertainty factor. Zheng et al. (2020) employed the DCC-MIDAS model to analyse comovements 

between the Chinese business cycle and financial volatility throughout 1994 to 2017. Liu and Lee 

(2022) used the DCC-MIDAS approach to investigate whether gold is a long run hedge, diversifier, or 

safe haven for crude oil market futures. Results from DCC-MIDAS estimation indicate persistency of 

gold-oil correlation, with past shocks exerting a small impact on the movement of gold-oil correlations, 

with long run correlations being significant and persistent. Yaya et al. (2022) conduct analysis of time 

variation between metal commodities and oil with the impact of oil shocks, using GARCH-MIDAS and 

DCC-MIDAS models. In their analysis, four precious metals (gold, silver, platinum, palladium) are 

employed, as well as WTI crude oil data from March 2014 to October 2021 with monthly oil shock data 

covering the same period. In their results, following DCC-MIDAS estimation, there was found to be 

varying levels of convergence between precious metals and WTI crude oil, only finding statistically 

significant short term effects for gold and silver, with the latter exhibiting higher persistence. They 

conclude that they find evidence of dynamic correlations between the precious metals market and crude 

oil market, with silver markets being used as a substitute to gold markets and thus serving similar 

functions, explaining for the long run equilibrium relationship as a result. 

 

3.2.3 Wavelet Coherence and Conditional Correlations 

 

Wavelet methods have been used in various waves of literature to measure the correlation between two 

different signals, enabling their usage in the literature to measure the correlation between financial 
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assets. Wavelet analysis is a model free approach, with this property making it a very powerful tool in 

comparison to other methods and models which rely on parameters as well as the estimation method 

(Vacha and Barunik, 2012). Davidson et al. (1998) was one of the first studies to propose wavelet 

methods to analyse commodity data. Aloui and Hkiri (2014) explore comovements of GCC emerging 

stock markets during the period of 2005-2010, using wavelet squared coherence to analyse 

comovements, noting its ability to assess comovements in time and frequency domains, with VaR 

analysis for portfolio management purposes. They note that co-movements depend on both time and 

frequency and is strongly affected by the 2008 financial crisis. The wavelet approach was additionally 

able to uncover changes in comovements to relatively higher frequency overlaps with the inception of 

the financial crisis. Huang et al. (2016) use wavelets to analyse time-frequency featured comovement 

between stock prices of the Shanghai Composite Index, brent crude and London gold prices from 

January 1991 to September 2014. Results from wavelet coherence and multiple wavelet coherence in 

the time frequency domain showcased strong correlations in the low frequency bands (256-512) days 

but weak correlations in high frequency bands of 1-16 days, indicating weak short term correlations. In 

a similar study, Reboredo et al. (2017) conduct wavelet based testing for comovements and causality 

WTI crude oil and 6 different types of energy indices covering the period from January 2006 to March 

2015. In their results, renewable energy indices dynamically changed throughout time frequencies, with 

strong dependence at low frequencies and weak dependence a at high frequencies up to mid-2013, 

turning into weak dependence at both the short and long run horizons up to the end of the sample. Mixed 

evidence of causality from oil to renewable energy prices is also noted. Volatility spillovers and dynamic 

correlations from crude oil are also explored by Boubaker and Raza (2017), aalysing spillovers between 

oil and BRICS stock markets using multivariate GARCH models and wavelet analysis. Comovements 

and dynamic correlations of financial and energy markets between January 2012 and March 2017 are 

explored by Ghosh, Sanyal and Jana (2019) using wavelet analysis and DCC-GARCH model. Empirical 

results from bivariate GARCH-cDDC and wavelet based multiresolution analysis demonstrate the 

continuous wavelet transform method was able to effectively showcase periods of strong long run 

correlations between energy, crude oil, natural gas, Dow Jones Industrial Average stock index and 

NIFTY index. Pal and Mitra (2019) explore comovements between oil price and four major automobile 
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stock market indices in the time frequency domain between August 1996 and June 2017 using wavelet 

coherence analysis. Likewise in Redorebo et al. (2017), they find that the strength of comovement 

between crude oil and automobile stock returns are frequency dependent, indicating that comovement 

between oil and automobile stock returns are more prominent in longer scale frequencies of 264 days 

and above and is far weaker in short term frequencies of 16 days or less, finally stating crude oil no 

longer continues to be a safe haven against bearish automobile stock markets. Cross currency behaviour 

and comovements are analysed by Firouzi and Wang (2019). Results from their continuous wavelet 

transform yield a clear view of comovement between two sets of currency time series and improves 

forecasting ability. Furthermore, wavelet coherence clearly showed highly negative correlation in both 

low and high frequency periods. Goodell and Goutte (2021) apply wavelet methods to data of COVID-

19 related fatalities and daily bitcoin price data to analyse correlations between the impacts of the 

coronavirus pandemic and bitcoin prices. Results from wavelet coherence analysis indicated that levels 

of COVID-19 caused a rise in bitcoin prices. Khan et al. (2023) investigate the presence of dynamic 

linkages between Islamic stock indices and gold prices, oil prices and news based uncertainty. From 

January 1996 to December 2018, wavelet based granger causality tests indicate that in the short run and 

scale, Islamic stocks, oil prices and global policy uncertainty reveal significant bi-directional granger 

causality at different significance levels. They additionally note that wavelet transforms illustrate higher 

variance in the short and medium runs, with an increase in long run average variance in the crisis period 

from 2007 to 2009.  

 

Wavelet based analysis has also been widely used to investigate bilateral relationships between different 

foreign exchange markets and stock markets. Yang et al. (2016) used wavelet methods to study 

interdependence of three foreign exchange markets (GBP/USD, EUR/USD and JPY/USD), finding that 

Afshan et al. (2018) used wavelet analysis to causality and linkages between exchange rates and stock 

prices in Pakistan using weekly observations from 1997 through 2016. Using wavelet analysis, they 

showcase evidence of long run bidirectional causality and comovement between exchange rates and 

stock returns in Pakistan. In an extension of the research of Afshan et al. (2018), He et al. (2023) 

investigate the causal relationship and correlations between exchange rate returns and stock market 
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returns in the emerging markets, namely Turkey, over the period April 2000 to March 2019. Wavelet 

coherence analysis showcased evidence of strong correlation with USD/TRY currency pairing relative 

to EUR/TRY, with deeper analysis of wavelet coherence plots implying that in the short term and 

medium term, there is negative correlation between foreign exchanges markets and Turkish stock 

market returns, supporting the view that the depreciation of the Turkish lira against the US Dollar or 

the Euro reduces Turkish stock market returns. 

 

3.2.4 Hedging Effectiveness of Commodities 

 

Numerous studies have explored the hedging effectiveness of various types of commodities, including 

precious metals, stock indices and crude oil futures, using multivariate GARCH models, most notably 

the DCC model. Hedging effectiveness can be evaluated using various methods, with the optimal hedge 

ratio one of the most widely used methods to evaluate the hedging effectiveness of commodities and 

models. Classical methods to estimate optimal hedge ratios, such as using ordinary least squares (OLS) 

estimation for the slope parameter in the linear regression of spot and futures returns, have been used 

in previous studies, however, if the joint distribution of spot and futures prices is changing over time, 

then classical hedge ratio might not be appropriate, and time varying hedge ratios are better suited (Park 

and Jei, 2010). Choudhury (2003) showcase the superiority of time varying optimal hedge ratios using 

bivariate GARCH models in the context six cash and futures markets of Australia, Germany, Hong 

Kong, Japan, South Africa and the United Kingdom. Lai, Chen and Gerlach (2009) investigate the 

hedging performance of five Asian spot and futures stock markets using two threshold GARCH models 

to construct a bivariate copula GARCH model. In their results, with OLS and DCC ratios used as 

benchmarks, copula hedge strategies were found to be superior to traditional ones such as OLS, with 

copula strategies have higher mean returns and lower portfolio variance. Park and Jei (2010) estimate 

and evaluate the hedging effectiveness of bivariate GARCH models using the optimal conditional hedge 

ratio based on two BGARCH models. In the case of corn and soybean futures over the period covering 

January 1st 1997 to January 23rd 2001, they note that some BGARCH models have modest hedging 
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improvements over traditional OLS strategies, however, the improvements are not big enough to 

guarantee that a bivariate GARCH hedging strategy is superior to a OLS hedging strategy. Chang et al. 

(2011) use BEKK, CCC, DCC and VARMA GARCH models to review the hedging performance in the 

context of Brent and WTI crude oil spot and futures prices. Optimal portfolio weights for all 

multivariate models for Brent suggest larger holdings in futures than spot. In addition, results from 

hedging effectiveness calculations indicate that the diagonal BEKK model produced the best results for 

hedging. Sadorsky (2014) looks into modelling volatility and conditional correlations between socially 

responsible investments, gold and oil using multivariate GARCH models, motivated by a lack of 

research in the area of socially responsible investing. Weekly data for the Dow Jones Sustainability 

Index (DJSI), the S&P 500 index, COMEX gold and WTI crude oil is used covering the period 

December 31st 1999 to May 31st 2012. For gold and oil, hedge ratios for DJSI are on average very 

similar to hedge ratios for the S&P 500, with an average hedge ratio of 0.05 for DJSI and oil comparable 

to an average hedge ratio of 0.07 for SP500 and oil. Basher and Sadorsky (2016) conduct research into 

the use of DCC, ADCC and GO-GARCH models to model volatilities and conditional correlations 

between emerging market stock prices, oil prices, VIX, gold prices and bond prices, additionally 

constructing forecasts of dynamic correlations and optimal hedge ratios. Hedging effectiveness was 

found to be highest for EM/oil hedge, indicating that WTI crude oil may be a more desirable hedge for 

emerging market stocks than VIX, gold or bonds, which were the second, third and fourth most effective 

hedging options respectively. In an extension on the previous work of Sadorsky (2014), Ahmad, 

Sadorsky and Sharma (2018) look at the hedging potential of clean energy stocks, to see how crude oil, 

US bonds, VIX, OVX and European carbon prices can be used to hedge against clean energy equities. 

Three variants of multivariate GARCH model (DCC, ADCC and GO-GARCH) are applied to daily 

data covering March 3rd 2008 to October 31st 2017, with dynamic correlations between DCC and ADCC 

models being very similar, with GO-GARCH differ, suggesting hedge ratios of GO-GARCH models 

will be different. Over their sample period, hedge ratios vary considerably, suggesting that they should 

be updated regularly, with VIX appearing to be the most attractive hedging asset for clean energy 

equities, showcasing the highest hedging effectiveness in all scenarios. Junttila, Pesonen and 

Raatikainen (2018) explore hedging against stock market risk in times of financial crisis, using crude 
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oil and gold futures to analyse comovements between commodity futures and stock markets in periods 

of financial turmoil. In their results from computing risk minimizing optimal hedge ratios, WTI crude 

oil is found to have higher hedge ratios with S&P500 index, with peaks in optimal hedge ratio after the 

Dotcom bubble and the outbreak of the global financial crisis. Gold meanwhile has a negative optimal 

hedge ratio in the financial crisis, indicating that holding a long position in gold futures minimizes the 

risk of long position in S&P 500 total return index at the time. McAleer (2019) uses the DCC model to 

present the caveats of the model with regards to hedging purposes.  Jalkh et al. (2021) examine which 

of the implied volatilities of US stocks and crude oil markets are more suitable for hedging the downside 

risk of US travel and leisure stocks, using the corrected dynamic conditional correlation process 

(cDDC). The risk-minimizing hedge ratio of the volatility index (VIX) against T&L stock index varies 

over time, with a notably sharp increase during the 2008 financial crisis, which is explained by the 

stronger correlation between assets during the crisis period, which is not the case for the OVX, with its 

correlation against T&L stock index remaining low. With a mostly positive hedge ratio, a short position 

in the VIX index can be used to minimize the risk of a long position in the T&L stock index. Dutta et 

a. (2021) investigate dynamic correlations of climate bonds, stock indices, gold and oil markets during 

the COVID-19 outbreak, additionally exploring the hedging effectiveness of using dynamic optimal 

hedge ratios, as used by Juntilla et al. (2018) and Jalkh et al. (2021). Using data for LO funds global 

climate bonds, as well as LBMA gold, WTI crude oil and S&P500 sport prices covering the period 

March 1 2017 to June 30 2020, they find that the average optimal hedge ratio is negative for climate 

bonds and US equities, suggesting that a $1 long position in US equities (crude oil) can be hedged for 

$1.931 with a long position in climate bonds. However, they note a positive optimal hedge ratio for 

climate bonds and gold, implying that a $1 long position in climate bonds can be hedged for $1.6792 

with a short position in gold, in line with similar results earlier obtained by Junttila et al. (2018). Batten 

et al. (2021) study the feasibility of hedging stocks with oil using a DCC GARCH model to construct 

time varying hedge ratios and hedging effectiveness. Likewise with Ahmad et al. (2018), optimal hedge 

ratios are time varying, and significantly increase after the global financial crisis. The VIX is also found 

to be the most significant driver of hedge portfolio returns, which are negatively affected by this 

variable. MSCI Far east is also found to be an effective hedge against ICE brent futures contracts 
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between January and August 1990, 1993 and between 1995 and 2004. Alshammari and Obeid (2023) 

analyse commodity futures and stock market indices, using two types of asymmetric DCC, namely 

range based and returns based DCC processes to evaluate the effectiveness of the strategies for short 

and long hedgers. In their results, ranged based DCC models tend to outperform returns based DCC 

models, with DCC-CARR model the most effective model with regards to hedging strategies. Ming et 

al. (2023) use a bivariate regime switching model to study whether gold is a safe haven asset, examining 

the properties of gold in 24 countries over the period covering 40 years ending December 31st 2020. In 

their analysis, gold was a strong hedge in Brazil, India, Indonesia, Italy, Mexico, Russia, South Korea, 

Thailand and Turkey, and a safe haven in Brazil, France, India, Indonesia, Italy, Mexico, Russia, South 

Korea and Turkey, showcasing the hedging properties of gold. 

  

The use of metals, chiefly precious metals, in hedging strategies and their performance has been 

previously explored in the literature. Baur and McDermott (2010) use a GARCH model to look into the 

role of gold in the global financial system, and find that gold is an effective safe haven study for G7 

countries, BRIC economies and Australia and Switzerland over the period 1979-2009. Hammoudeh et 

al. (2010) study the correlation dependency of four precious metals, and how they can be implemented 

into portfolio designs and hedging strategies. The most effective hedging strategy is to take a long 

position in gold and going short in palladium. Gold additionally commands the highest weight in 

optimal portfolio weights because it is considered the safest haven against fluctuations in the US dollar, 

with platinum also showcasing strong hedging properties. Liu et al. (2014) incorporate three stochastic 

volatility models to generate hedge ratios for China’s copper and aluminium spot and futures markets. 

In sample hedge ratios are comparable across the three stochastic volatility models, but suggest that SV 

hedge ratios may not perform well when industrial metal spot and futures prices exhibit non-linear 

returns and price volatility jumps that are non contemporaneous. They additionally note that regardless 

of model the SHFE contracts showcase poor hedging performance. Umar, Shahzad and Kenourgios 

(2019) examine conditional correlations and the resulting optimal hedge ratios of US metal and mining 

credit default swaps and the prices of copper, gold, silver and platinum from December 14th 2007 to 

August 18th 2018 using multivariate GARCH models. In their results, copper is found to be the most 
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effective hedge against credit default swaps, with the DCC, ADCC and GO-GARCH models all 

producing similar hedging effectiveness results, with gold found to be the least effective metal for 

hedging. Hernandez et al. (2019) analyse whether agricultural and precious metal futures can be used 

to diversify and hedge extreme downside risk and upside oil market risk in the oil market.  
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3.3 Data and Methodology 

3.3.1 Data 

 

In this chapter, we analyse the conditional correlation and spillover effects using five non ferrous metals 

traded on the London Metal Exchange (Copper, Aluminium, Zinc, Tin and Nickel), LMBA Gold, Brent 

Crude oil and the S&P 500 stock index, which represents two of the most commonly used commodities 

used in portfolio management and investment purposes, and one of the largest and most commonly 

traded stock indices. The non ferrous metals selected represent widespread coverage of some of the 

most commonly used and traded non ferrous metals and have numerous industrial uses but are also 

widely used in risk management for the purpose of portfolio diversification. For this chapter, we obtain 

daily price data for all assets used from Datastream for a sample period spanning from January 1, 1990, 

to December 29, 2023, whereby all daily historical price data is available for all non ferrous metals 

series, LBMA gold, brent crude oil and the S&P 500 index. This time frame has been chosen to allow 

for the coverage of major geopolitical and economic events, namely, the dot-com bubble of 2000-01, 

the 2008 financial crisis, the COVID-19 pandemic and the 2022 Russian invasion of Ukraine, which 

have each had major long lasting effects and repercussions on the global economy. We have chosen 

daily data, as news from markets can quickly spread to other markets, and aggregation of data may 

cause information to be hidden or removed (Chen et al. 2021). 

 

3.3.2 Methodology 

 

Univariate GARCH models are used to estimate conditional variances and volatility of a time series, 

however, the weakness of univariate GARCH is that it only allows for the estimation of a singular asset. 

Multivariate GARCH builds on this and allows us to capture dynamic conditional correlations between 

multiple variables at a single time. Daily returns are used as the proxy for model estimation, which can 

be expressed below as: 

𝑟𝑖,𝑡 = (𝑙𝑛𝑝𝑖,𝑡 − 𝑙𝑛𝑝𝑖,𝑡−1) × 100 
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Where 𝑝𝑖,𝑡 denotes the price of the commodity 𝑖 at time 𝑡. Following Chen et al. (2021), an 

Autoregressive model is used to eliminate memory characteristics of returns, which can be denoted: 

𝑟𝑖,𝑡 = 𝑐𝑖 + 𝜙𝑖𝑟𝑖,𝑡−1 + 𝜀𝑖,𝑡 

Where 𝑟𝑖,𝑡 = [𝑟1,𝑡, …… , 𝑟𝑛,𝑡]′ is a returns vector of n type of commodities, 𝑐𝑖 is the constant term, 𝜙𝑖 is 

the coefficient matrix that corresponds to the autoregressive term, and  𝜀𝑡 = [𝜀1,𝑡 , …… , 𝜀𝑛,𝑡]′ is a vector 

of residuals.  

3.3.3 The BEKK-GARCH model 

 

 

The BEKK class of multivariate GARCH model was first introduced in Engle and Kroner (1995) as a 

multivariate extension of the standard univariate GARCH model of Engle and Bollerslev (1986). The 

BEKK-GARCH model allows for the estimation and interaction of several time series in order to obtain 

conditional variances and conditional correlations, allowing us to identify conditional correlations and 

volatility transmission effects. We can express the conditional covariance matrix of the BEKK-GARCH 

model as: 

𝐻𝑡 = 𝑊
′𝑊+𝐴⁡′𝜀𝑡−1𝜀𝑡−1

′ 𝐴 + 𝐵′𝐻𝑡−1𝐵 

Whereby W, A and B are matrices of parameters with appropriate dimensions, with W being an upper 

triangular matrix, and diagonal elements of the three parameter matrices being restricted to positive. 

Diagonal elements of  𝐻𝑡, ℎ𝑖𝑖,𝑡 denote conditional variance terms, with off diagonal elements of  𝐻𝑡, 

ℎ𝑖𝑗,𝑡 is a representation of conditional covariances where  𝑖 ≠ 𝑗. Additionally, the diagonal elements of 

matrix A captures the assets past shocks, and matrix B captures the assets past volatility. Off diagonal 

elements of matrices A and B, 𝛼𝑖𝑗 and 𝛽𝑖𝑗, capture the cross market effects of shocks and volatility 

where 𝑖 ≠ 𝑗 (Li and Majerowska, 2008). The cross market events identified by the model allow for the 

examination of correlation effects and volatility spillover effects. The unrestricted form of the BEKK-

GARCH model in bivariate form can be expressed as the following:  

(
ℎ11,𝑡 ℎ12,𝑡
ℎ21,𝑡 ℎ22,1

) = 𝑊′𝑊 + (
𝑎11 𝑎12
𝑎21 𝑎22

)(
𝜀1,𝑡−1
2 𝜀1,𝑡−1𝜀2,𝑡−1

𝜀1,𝑡−1𝜀2,𝑡−1 𝜀2,𝑡−1
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While the equation by equation model is given as the following: 

ℎ11,𝑡 = 𝑤11
2 +𝑤11

2 𝜀1,𝑡−1
2 + 2𝑎11𝛼21𝜀1,𝑡−1𝜀2,𝑡−1 + 𝑎21

2 𝜀2,𝑡−1
2 + 𝑏11

2 ℎ1,𝑡−12𝑏11𝑏21ℎ1,2,𝑡−1 + 𝑏21
2 ℎ2,𝑡−1 

ℎ22,𝑡 = 𝑤12
2 +𝑤22

2 𝜀1,𝑡−1
2 + 𝑎12

2 𝜀1,𝑡−1
2 + 2𝑎12𝛼22𝜀1,𝑡−1𝜀2,𝑡−1 + 𝑎22
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2 + 𝑏12
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2 ℎ22,𝑡−1 

ℎ12,𝑡 = ℎ21,𝑡 = 𝑤12𝑤11 + 𝑎11𝑎12𝜀1,𝑡−1
2 + (𝑎12𝑎21 + 𝑎11𝑎22)𝜀1,𝑡−1𝜀2,𝑡−1 + 𝑎21𝑎22𝜀2,𝑡−1

2

+ 𝑏11𝑏12ℎ11,𝑡−1 + (𝑏12𝑏21 + 𝑏11𝑏22)ℎ12,𝑡−1 + 𝑏21𝑏22ℎ22,𝑡−1 

After estimation of the model parameters, conditional correlation between two financial instruments is 

then estimated by the following equation: 

𝑟12,𝑡 =
ℎ12,𝑡

√ℎ11,𝑡…√ℎ22,𝑡
 

Whereby ℎ2,𝑡 and ℎ2,𝑡 represent the two financial instruments’ conditional variances, while ℎ12,𝑡 

represents the final conditional covariance. 

3.3.4 The CCC-GARCH model 

 

The second class of multivariate GARCH model employed is based upon the decomposition of 

conditional covariance matrix into conditional standard deviations and correlations. The CCC-GARCH 

model of Bollerslev (1990) holds the key assumption that conditional correlations between elements of 

𝑦𝑡 are time invariant. 

𝐻𝑡 = 𝐷𝑡
1/2
𝑅𝐷𝑡

1/2
 

𝐷𝑡 = 𝑑𝑖𝑎𝑔(ℎ11,𝑡, … , ℎ𝑛𝑚,𝑡) 

Where Dt is a diagonal matrix with positive diagonal entries that are the conditional variances specified 

by a univariate GARCH model, and R is a positive defined correlation matrix, i.e. 

𝑅 = (
1 𝜌12 𝜌1𝑛
𝜌21 1 𝜌2𝑛
𝜌𝑛1 𝜌𝑛2 1

) 

In the definition of the earlier equation, 𝐻𝑡 is required to be positive definite. In the CCC-GARCH 

model, this condition is guaranteed by the requirement R and Dt are positive definite, particularly 

meaning that all of the conditional variances must be positive values, so that the constraints for positive 
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conditional variance should be satisfied for each univariate GARCH model. The equation is then 

transformed to the following: 

ℎ𝑖𝑗,𝑡 = 𝜌𝑖𝑗 . √ℎ𝑖𝑖,𝑡ℎ𝑖𝑗,𝑡, ⁡⁡⁡⁡⁡𝑖 ≠ 𝑗 

When R equals the identity matrix I so that 𝜌𝑖𝑗 = 0 when 𝑖 ≠ 𝑗, we get the case where all modelled 

assets are independent. For the purposes of this chapter, we will use the CCC-GARCH model as the 

benchmark for model evaluation,  

 

3.3.5 The DCC-GARCH model 

 

In addition to the BEKK model, the DCC-GARCH model of Engle and Sheppard (2001) and Engle 

(2002) is also employed. As an alternative extension of the CCC-GARCH model, one advantage of the 

DCC model is the detection of of possible changes in conditional correlations over time, which allows 

for the detection of dynamic responses to market shocks and innovations (Celik, 2012). In comparison 

to alternative multivariate GARCH models, such as the BEKK model, the DCC-GARCH model is 

relatively straightforward since the number of parameters to be estimated is relatively small (Park et al. 

2017). Since volatility is adjusted by the procedure, time varying correlation does not have any bias 

from volatility, and the DCC-GARCH model continuously adjusts correlation for time varying 

volatility, hence providing a superior measure of conditional correlation.  

The first step to estimating a DCC-GARCH model comprises two steps: firstly, estimating a univariate 

GARCH model, followed with the estimation of the conditional correlations. The two step DCC-

GARCH model can be expressed as follows: 

𝑦𝑡 = 𝜇𝑡 + 𝜖𝑡 ⁡⁡⁡𝜖𝑡|𝐹𝑡−1~𝑁(0,𝐻𝑡),⁡ 

𝜀 = 𝐻𝑡

1
2𝑢𝑡⁡⁡⁡𝑢𝑡~𝑁(0, 𝐼), 

𝐻𝑡 = 𝐷𝑡𝑅𝑡𝐷𝑡, 

Where 𝐹𝑡−1 stands for the information available up to time t – 1. 𝑦𝑡 , 𝜇𝑡,⁡𝜖𝑡 and 𝑢𝑡 are N x 1 dimensional 

vectors that represent the analysed time series, conditional mean term, error term and the standardized 

error terms respectively. In addition, 𝑅𝑡 , 𝐻𝑡 and 𝐷𝑡 = 𝑑𝑖𝑎𝑔(ℎ11𝑡

1

2 , … , ℎ𝑁𝑁𝑡

1

2 ) are N x N dimensional 
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matrices, illustrating dynamic conditional correlations, time varying conditional variance-covariance 

matrices and time varying conditional variances. 

For the first step, to obtain 𝐷𝑡, a univariate GARCH model of Bollerslev (1986) is estimated for each 

series. Based on the study of Hansen and Lunde (2005), one shock and one persistency parameter are 

assumed: 

ℎ𝑖𝑖,𝑡 = 𝜔 + 𝛼𝜖𝑖,𝑡−1
2 + 𝛽ℎ𝑖𝑖,𝑡−1. 

At the second stage, the dynamic conditional correlations are computed as follows: 

𝑅𝑡 = 𝑑𝑖𝑎𝑔(𝑞𝑖𝑖𝑡
−
1
2, … , 𝑞𝑁𝑁𝑡

−
1
2 )𝑄𝑡𝑑𝑖𝑎𝑔(𝑞𝑖𝑖𝑡

−
1
2, … , 𝑞𝑁𝑁𝑡

−
1
2 ) 

𝑄𝑡 = (1 − 𝑎 − 𝑏)𝑄̅ + 𝑎𝑢𝑡−1𝑢𝑡−1
′ + 𝑏𝑄𝑡−1 

 

Where 𝑄𝑡 and 𝑄̅ are N x N dimensional positive definite matrices which represent the conditional and 

unconditional standardized residuals’ variance-covariance matrices respectively, and 𝑎(𝛼) and 𝑏(𝛽) 

non-negative shock and persistency parameters, which satisfy 𝑎 + 𝑏 < 1⁡(𝛼 + 𝛽 ≤ 1). As long as 𝑎 +

𝑏 < 1 criteria is fulfilled, 𝑄𝑡 and hence 𝑅𝑡 are varying over time, otherwise the model will converge to 

a CCC-GARCH model, where 𝑅𝑡 parameter is constant over time. 

 

3.3.6 The OGARCH model 

 

Another class of multivariate GARCH model is the orthogonal GARCH (OGARCH) introduced by 

Ding (1994), which is based on a univariate GARCH model and principal component analysis. A 

popularly used to model conditional covariance of economic time series, the OGARCH model is 

additionally less computationally demanding than other competing multivariate GARCH models (Luo 

et al. 2015).  

 

In the OGARCH model, observed time series are linearly transformed to a set of uncorrelated time 

series using principal component analysis. The OGARCH model can be described as follows: 
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Let 𝑌𝑡 be a multivariate time series of zero mean daily returns with k assets with length T and columns 

𝑦1, … , 𝑦𝑘. The T x K matrix 𝑋𝑡 whose columns 𝑥1, … , 𝑥𝑘 are given by the following equation: 

𝑥𝑡 =
𝑦𝑡

√𝑣𝑖
 

Where 𝑉 = 𝑑𝑖𝑎𝑔(𝑣1, … , 𝑣𝑚) with 𝑣1 being the sample variance of the ith column of 𝑦𝑡. Let L denote a 

matrix of eigenvectors of the population correlation 𝑥𝑡 and by 𝑙𝑚 = (𝑙1,𝑚, … , 𝑙𝑘,𝑚) its mth column. 𝑙𝑚 

is a k x 1 eigenvector corresponding to the eigenvalue 𝜆𝑚. The column label of L is chosen so that 𝜆1 >

𝜆2 > ⋯ > 𝜆𝑘. Let D be the diagonal matrix of eigenvalues and 𝑊𝑚 = 𝑙𝑚√𝐷. The mth principal 

component of the model is then defined as:  

𝑝𝑚 = 𝑥1𝑙1,𝑚 + 𝑥2𝑙2,𝑚 +⋯+ 𝑥𝑘𝑙𝑘,𝑚 

If each vector of components 𝑝𝑚 is placed as the columns of a T x k of matrix P, then: 𝑃 = 𝑋𝐿. The 

principal component columns are modelled by GARCH(1,1):  

 

 

3.3.7 The GOGARCH model 

 

The GO-GARCH model of Van Der Weide (2002) can be seen as a generalization of the OGARCH 

model, while being nested within the more general BEKK-GARCH model. Based on the GO-GARCH 

model, the returns 𝑟𝑡 are the sum of the conditional mean 𝑚𝑡 which can include an autoregressive term 

of order one (AR(1) term) and an error term 𝑒𝑡. 

𝑟𝑡 = 𝑚𝑡 + 𝑒𝑡 

The difference between the returns and the conditional mean is mapped onto a set of unobservable 

independent factors denoted 𝑓𝑡. 

𝑒𝑡 = 𝐴𝑓𝑡 

Where A is a mixing matrix which is decomposed into two different matrices, with the first being an 

unconditional covariance matrix denoted ∑ and the second an orthogonal rotational matrix denoted as 

U. 

𝐴 = ∑1/2𝑈 
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The rows of the matrix correspond to the assets, with the columns corresponding to the factors. Each of 

the factors can be expressed as: 

𝑓𝑡 = 𝐻𝑡
1/2
𝑧𝑡 

Where 𝑧𝑡 is a random variable which is zero mean (𝐸(𝑧𝑖𝑡) = 0) and a variance of one (𝐸(𝑧𝑖𝑡
2 ) = 1). 

In this specification, a GARCH process can be adopted to model the factor conditional variances ℎ𝑖𝑡. 

Unconditional distribution of factors must satisfy these two conditions: 𝐸(𝑓𝑡) = 0 and 𝐸(𝑓𝑡𝑓′𝑡) = 𝐼. 

When these equations are combined together, 𝑟𝑡 can then be specified as: 

𝑟𝑡 = 𝑚𝑡 + 𝐴𝐻𝑡
1/2
𝑧𝑡 

And the conditional covariance matrix of (𝑟𝑡 −𝑚𝑡) is expressed as: 

∑𝑡 = 𝐴𝐻𝑡𝐴′ 

In the GO-GARCH model, Van der Weide (2002) assumes that the mixing matrix A is a time invariant 

and 𝐻𝑡 is a diagonal matrix, with the condition that matrix A must be orthogonal.  

 

 

3.3.8 The DCC-MIDAS model 

 

The DCC-MIDAS model of Colacito, Engle and Ghysels (2011) allows for the conditional correlation 

between two different assets to be split into both long run and short run components. Likewise with the 

estimation of the DCC-GARCH model, we follow the two-step procedure of Engle (2002) by estimating 

the parameters of the univariate conditional volatility models, followed by estimating the DCC-MIDAS 

parameters with the standardized residuals. The first step to estimating DCC-MIDAS according to 

Colacito et al. (2011) is to estimate a GARCH-MIDAS model to obtain the standardized residuals which 

are dynamic correlations in constructed form. The GARCH-MIDAS approach can be surmised as: 

𝑟𝑖,𝑡 = 𝑢 +√𝜏𝑡𝑔𝑖,𝑡𝜀𝑖,𝑡, ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ∀𝑖 = 1,… ,𝑁 

𝜀𝑖,𝑡|Φ𝑖−1,𝑡~𝑁(0,1), 
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Where 𝑟𝑖,𝑡 is the return on day i in month t, 𝑢 is the conditional mean and 𝜀𝑖,𝑡 is the error term with a 

normal distribution. The short run component can be expressed as: 

𝑔𝑖,𝑡 = (1 − 𝛼 − 𝛽) + 𝛼
(𝑟𝑖−1,𝑡 − 𝑢)

2

𝜏𝑡
+ 𝛽𝑔𝑖−1,𝑡 

And the long run component can be expressed as: 

𝜏𝑡 = 𝑚 + 𝜃∑ 𝜑𝑘(𝜔1, 𝜔2)𝑋𝑡−𝑘
𝑘

𝑘=1
 

Where 𝑋𝑡−𝑘 is the low frequency predictor, k is the number of lags, and 𝜑𝑘(𝜔1, 𝜔2) is the weighting 

function. In the second step to estimating a DCC-MIDAS model, the dynamic correlation between 

assets given by measuring the dependence of the standardized residuals is given by the following 

equation: 

𝑅𝑡 = 𝑑𝑖𝑎𝑔 (
1

√𝑄𝑡
)𝑄𝑡𝑑𝑖𝑎𝑔 (

1

√𝑄𝑡
), 

Where 𝑄𝑡 is the short run correlation matrix with elements 𝑞𝑖𝑗,𝑡⁡specified as follows: 

𝑞𝑖𝑗,𝑡 = 𝜌̅𝑖𝑗,𝑡(1 − 𝑎 − 𝑏) + 𝑎𝜉𝑖,𝑡−1𝜉𝑗,𝑡−1 + 𝑏𝑞𝑖𝑗,𝑡−1 

Where 𝜉𝑖,𝑡−1 and 𝜉𝑗,𝑡−1 are the standardized residuals obtained by the univariate GARCH-MIDAS 

estimation, a and b are estimated parameters, 𝑎 > 0, 𝑏 > 0, and 𝑎 + 𝑏 < 1, and 𝜌̅𝑖𝑗,𝑡 is the long run 

correlation, which is given by the following equation: 

𝜌̅𝑖𝑗,𝑡 =∑𝜑𝑘(𝜔𝑟
𝑖𝑗

𝑘𝑐
𝑖𝑗

𝑘=1

)𝑐𝑖𝑗,𝑡−1 

Where 𝜑𝑘(𝜔𝑟
𝑖𝑗
) is the weighting function, 𝑐𝑖𝑗 is the weighting function of assets i and j as given by: 

𝑐𝑖𝑗 =
∑ 𝜉𝑖,𝑘𝜉𝑗,𝑘
𝑡

𝑘=𝑡−𝑁𝑐
𝑖𝑗

√∑ 𝜉𝑖,𝑘
2𝑡

𝑘=𝑡−𝑁𝑐
𝑖𝑗 √∑ 𝜉𝑗,𝑘

2𝑡

𝑘=𝑡−𝑁𝑐
𝑖𝑗

 

Where 𝑁𝑐
𝑖𝑗

 is the lag length in computing the realized correlation, 𝐾𝑐
𝑖𝑗

 is the span length of historical 

correlation. It is important to note that if 𝜌̅𝑖𝑗,𝑡 remains constant, the DCC-MIDAS model turns into a 

regular DCC-GARCH model. 
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3.3.9 Wavelet Coherence Analysis 

 

As previously implemented by Kang, McIver and Hernandez (2019), wavelet coherence is also 

employed to analyse comovements between non-ferrous metals and other classes of financial asset. In 

contrast to other multivariate GARCH based approaches to modelling conditional correlation, the 

bivariate wavelet coherence approach allows for the capture of comovements and correlations between 

two different financial instruments in two different domains, namely time and frequency, by 

implementing a framework based on continuous wavelet transform, which allows for various scaled 

forms of localisation (Rua & Nunes, 2009), thus allowing it to shed more light on comovements between 

selected non ferrous metals and other financial return series.  

 

In accordance with the approach used by Kang, McIver and Hernandez (2020), to characterize the 

comovements in differing time and frequency domains between non ferrous metals and selected 

financial assets, we estimate wavelet coherence by using cross wavelet transform and cross wavelet 

method. We define the cross wavelet transform for time series x(t) and y(t) with continuous wavelet 

transforms (CWT) 𝑊𝑛
𝑋(𝑢, 𝑠) and 𝑊𝑛

𝑋𝑦
(𝑢, 𝑠) as the following: 

𝑊𝑛
𝑋𝑦(𝑢, 𝑠) = 𝑊𝑛

𝑥(𝑢, 𝑠)𝑊𝑛
𝑦∗
(𝑢, 𝑠) 

Where u refers to the location. s is the scale and * denotes the complex conjugate. CWT reveals areas 

in the time frequency domain where evaluated time series show high power, which represents degrees 

of local covariance correlation between the two time series at each scale and frequency. The wavelet 

coherence method can detect comovements between two series in the time and frequency domains. 

Following Kang, McIver and Hernandez (2020) and Torrence and Webster (1999), the wavelet 

coherence of two time series can be defined as: 

𝑅2(𝑢, 𝑠) =
|𝑆(𝑠−1𝑊𝑥𝑦(𝑢, 𝑠))|2

𝑆(𝑠−1|𝑊𝑥(𝑢, 𝑠)|2)𝑆(𝑠−1|𝑊𝑦(𝑢, 𝑠)|2)
 

Where S is considered as a smoothing operator over time as well as scale, with 0 ≤ 𝑅2(𝑢, 𝑠) ≤ 1. The 

value of the wavelet squared coherence, denoted 𝑅2(𝑢, 𝑠), gives a value between 0 and 1, with a lower 

value corresponding to period of low comovement and a high value denoting strong comovement. 
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Unlike standard correlation coefficient models such as DCC-GARCH, wavelet squared coherence is 

only represented as positive values. The graphical representation of wavelet coherence enables the 

identification of areas of comovement of assets in the time and frequency space.  

3.3.10 Likelihood Ratio Test 

 

The likelihood ratio test is used to measure the goodness of fit between two or more competing models 

in order to determine which of the models produces the best goodness of fit based on their log 

likelihood. The idea is simply that the less general model 𝑚0, 𝑚 which represents the null hypothesis, 

can be obtained by constraining some of the parameters of the more complex model 𝑚𝑎. A lower p-

value indicates a better goodness of fit. Rejection of the null indicates that we reject the restricted model 

𝑚0, in favour of the alternative, unrestricted model 𝑚𝑎. In its simplest form, the likelihood ratio test 

can be expressed as: 

𝐿𝑅𝑇 = −2𝑙𝑜𝑔𝑒 (
𝑚𝑜(𝜃)

𝑚𝑎(𝜃)
) 

 

3.3.11 Hedging Effectiveness 

 

Following the studies of Mensi et al. (2017) and Dutta et al. (2021) we compute the dynamic optimal 

hedge ratio in order to assess hedging effectiveness of non-ferrous metals again gold, brent and S&P500 

futures respectively. The dynamic optimal hedge ratio used by Mensi et al. (2017), Jalkh et al. (2021) 

and Dutta et al. (2021) is based on the equation proposed by Kroner and Ng (1998), which can be 

calculated by the following: 

𝑤𝑡
𝑐 =

ℎ𝑡
𝑠 − ℎ𝑡

𝑐𝑠

ℎ𝑡
𝑠 − 2ℎ𝑡

𝑐𝑠 + ℎ𝑡
𝑠 

Where ℎ𝑡
𝑐, ℎ𝑡

𝑠 and ℎ𝑡
𝑐𝑠 are the conditional volatility of the commodity markets, conditional volatility of 

gold, brent or SP500 and the conditional covariance between the metal and instrument at time t. The 

conditional variances and covariances to calculate the hedge ratio are based on the best performing 

multivariate GARCH model in relation to the benchmark model, as outlined in the results of the 

likelihood ratio test. As a dynamic model, the optimal hedge ratio changes over time, in contrast to the 
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standard optimal hedge ratio computed using OLS, which is stationary. This allows to visualise changes 

to the optimal hedge ratio throughout different periods, for instance throughout events such as the 2008 

financial crisis and the COVID pandemic. 
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3.4 Results & Comments 
 

3.4.1 Descriptive Statistics 
 

In this section, we present the results of our findings along with the discussion and implications of our 

results. Table 3.1, which can be found in the appendix section, reports the descriptive statistics for the 

logged price return series of the five non-ferrous metals, four precious metals, two crude oil and two 

stock indices used in this chapter. There are a total of 8869 observation for each return series, covering 

a total of 33 years from January 1st 1990 to December 31st 2023. The average price returns are positive 

for each of the crude oils, the S&P500 index and the copper, tin and nickel non ferrous metals. 

Interestingly, all four precious metals analysed have negative average price returns, although all series 

analysed are close to zero mean. Moreover, Brent crude oil is the volatile commodity, as measured by 

a standard deviation of 2.548%, while gold represents the least volatile series, with a standard deviation 

of 0.963%. All price series with the exception of nickel showcase slight negative skewness, indicating 

that small positive returns with few large negative returns and a longer left tail. In contrast, nickel 

returns are positively skewed, indicating that large positive returns are more common than large 

negative returns, and the returns exhibit a longer right tail. In can be noted that all returns series have a 

kurtosis greater than 3, with Brent crude. Exhibiting the highest excess kurtosis, inferring that all return 

series are leptokurtic, and returns are clustered around the mean. 

Table 3.2 showcases results of the unit root tests for the returns series using two tests, the Augmented 

Dickey-Fuller (ADF) test (Dickey & Fuller, 1979) and the Phillips-Perron test (PP) proposed by. 

Phillips and Perron (1988). All the results for the ADF and PP tests present large negative values, 

rejecting the null hypothesis of a unit root at the 1% significance level. The consistency of the results 

for the two unit root tests indicate that all return series are stationary. 
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3.4.2 Conditional Correlations 
  

As the CCC-GARCH model makes the assumption of constant conditional correlation, the conditional 

correlation plots for each model estimated are estimated as stationary figures. In our results, in the cases 

of aluminium, zinc and nickel,  we noted conditional correlations appear to be highest with gold, with 

copper and tin having highest correlations with brent crude, with all non ferrous metals having lowest 

correlations with the S&P 500 index.  

Figures 3.1.1 to 3.1.5 and 3.1.11 to 3.1.15, which can be located in the appendix section, showcase 

conditional correlation graphs for symmetric and asymmetric DCC-GARCH for LME copper, 

aluminium, zinc, tin and nickel with gold, brent crude and the S&P 500 stock index respectively over 

the time period of 2nd January 1990 and 28th December 2023. The asymmetric DCC-GARCH model 

incorporates the leverage effect of the GJR-GARCH model in an effort Upon examining the figures 

presented, we can observe differing spiking of conditional correlation, with copper exhibiting the 

greatest degree of variance. Examining the relationships between non-ferrous metals and gold, brent 

crude and the S&P500, we observe notable spiking in periods of crisis, most notably, the dot-com 

bubble of 2001, the financial crisis around 2008-09 and the COVID-19 pandemic beginning January 

2020. An additional spike in conditional correlation can also be observed at the beginning of 2022, in 

conjunction with the Russian invasion of Ukraine. For all non-ferrous metals, the prominent spiking 

observed follow a similar trend and occurs in and around the periods of crisis. It is important to note 

for copper, aluminium and zinc a strong positive correlation with gold in periods with weak positive 

correlation with Brent crude and the S&P 500, and vice versa, suggesting that these metals could 

potentially as safe haven assets in these periods, however, it is important to note negative correlation 

between copper and gold at the beginning of the COVID crisis, indicating that conditional correlations 

between copper and gold may be time dependent. Nickel exhibits a negative correlation with the 

S&P500 in early 2020. Upon first inspection of the symmetric and asymmetric DCC-GARCH model, 

we can note an observable upward trend in conditional correlation over the sample period, although 
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strong positive correlations with gold appear to be in periods with weak positive correlations with brent 

crude and the S&P500 index and vice versa.  

 

Figures 3.1.6 to 3.1.10 and 3.1.16 to 3.1.20 display conditional correlation graphs for symmetric and 

asymmetric BEKK-GARCH for LME copper, aluminium, zinc, tin and nickel with LBMA gold, Brent 

crude and S&P500 stock index. In a similar case with the DCC model, symmetric and asymmetric 

BEKK model produces very similar results to each other, however, in contrast to DCC-GARCH, we 

observe far greater spikes in volatility, with more periods of negative correlation for all metals. In is 

interesting to note in the case of nickel, there are cases of negative correlation with the S&P500 index 

and brent crude oil which can be observed after the beginning of the COVID-19 pandemic, with a small 

positive correlation with gold in this period. Applying the categorization of Baur and Lucey (2010), in 

this case, we can note that nickel can be considered a hedge against brent and the S&P500. However, it 

is important to note that we can observe no clear trend with the BEKK-GARCH model, with more 

prominent spikes in positive and negative correlation in comparison to the DCC-GARCH model, where 

we can observe a general positive correlation. With the correlations of the BEKK model producing no 

discernible upward or downwards trend, with correlations converging to near mean zero, this could be 

due to overparameterization of the BEKK model, as the BEKK-GARCH incorporates additional 

information in model estimation. Upon inspection of the symmetric and asymmetric DCC and BEKK 

models, similar correlations are observable between the symmetric and asymmetric counterparts. 

 

Estimations of OGARCH and GOGARCH models can be seen in figures 3.1.21 to 3.1.25 and 3.1.26 to 

3.1.30 respectively. In contrast to results from the DCC and BEKK models, OGARCH model showcases 

strong negative correlation with Brent crude oil and positive correlations with gold in the cases of 

copper, aluminium and tin, with this trend reversing in periods of crisis, most notably the 2008 financial 

crisis in the case of gold and around the 2013-15 period in the case of brent crude. Interestingly, 

correlations with gold seem to further increase around the period of 2020, in conjunction with the 

outbreak of the COVID pandemic. In these cases, the results suggest that copper, aluminium and tin 

can be used in conjunction with gold for diversification and hedging purposes. We observe that nickel 
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exhibits more typical behavioural properties, showcasing no or little positive correlation with brent and 

the S&P500, with spikes in correlation noted around periods of crisis. Additionally, nickel typically 

exhibits strong negative correlation with gold throughout the sample period, although, we can again 

observe large spikes in positive correlation with gold around the periods of the dot com bubble in early 

2000 and the COVID outbreak in 2020. It is interesting to note that the results from OGARCH 

estimation appear to be in stark contrast to results from symmetric and asymmetric BEKK and DCC 

model estimations, with brent crude and S&P 500 correlations appearing to directly oppose conditional 

correlations with gold. With regard to results from OGARCH estimations, it would appear that non 

ferrous metals can be used with gold as an alternative to diversify portfolios.  

Results for the DCC-MIDAS plots, which decomposes conditional correlation into short run and long 

run components, can be seen in figures 3.1.31 to 3.1.40, which depictions for short run and long run 

correlations respectively. The first 1500 observations are set aside to initialize the model, so they are 

eliminated from the plots. As expected, short run correlations have much greater volatility persistence, 

with long run correlations being largely mostly positive for each non ferrous metal, as prices for 

financial assets tend to converge over the long term. For each series, with the exception of nickel, 

correlations with gold appear to be strongest in periods where correlations with brent crude are weakest, 

most notably in periods in the financial crisis in 2008 and the COVID outbreak in 2020, where strong 

positive correlations with gold and negative correlations with brent are consistent across each non 

ferrous metal series, with nickel having largely even correlations with gold, brent and the S&P 500 

index across the entire sample period. The long run correlation plots for each series are positive, as price 

trends tend to converge over time, with periods of stronger correlations with gold and weaker 

correlations with brent crude consistent with results from the OGARCH model.  

3.4.3 Likelihood Ratio Test 

 

The likelihood ratio test is used to compare the goodness of fit for two competing models. We use the 

CCC GARCH model as the benchmark model for symmetric and asymmetric DCC and BEKK models, 

OGARCH, GOGARCH and DCC-MIDAS models, to give a total of 7 competing models. Lower p-

value indicates a better goodness of fit, with a p-value close to zero suggesting that there is strong 
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evidence for rejection of the null. The results of the likelihood ratio test for the 7 selected models can 

be located in table 3.2.1 within the appendix section of this chapter. Values highlighted in bold indicate 

that the null, restricted model should be rejected in favour of the alternative unrestricted model. The 

results of the likelihood ratio test are presented in figure 7 located within the appendix section. At the 

5% significance level, the DCC-MIDAS model is the best performing model for all non ferrous metals 

when compared to the benchmark CCC model, indicating strong evidence that the DCC-MIDAS model 

produces the best goodness of fit with the data. The OGARCH produces the second lowest p-value, 

however, there is no rejection of the null that the benchmark model should be rejected in favour of the 

unrestricted model, indicating that there is not strong enough evidence to reject the CCC model in 

favour of the OGARCH model at the 5% confidence level. Results from likelihood ratio tests indicate 

that the BEKK model is the worst performing model of all models in the sample, producing the highest 

p-value at the 5% significance level. Additionally, asymmetric DCC-GARCH and BEKK-GARCH 

were found to produce higher p-values, and therefore, lower goodness of fit, than symmetric DCC and 

BEKK counterparts. This could be explained by overparameterization of the BEKK model. 

3.4.4 Wavelet Coherence analysis 

 

The wavelet coherence approach enables the analysis of conditional correlations between two time 

series in the time and frequency space. The main advantage of the wavelet approach is its ability to 

decompose time varying comovements into different investment horizons, namely in the time and 

frequency horizons. Figures 3.2.1 to 3.2.15 located within the appendix of this chapter display the 

results of wavelet coherence tests between corresponding non ferrous metals with LBMA gold, Brent 

crude and the S&P 500 index respectively. The colours in the wavelet heatmaps refer to the strength 

and scale of the covariance between the series, with warmer colours such red and orange denoting a 

higher degree of dependence between the pair of instruments, more neutral colours such as yellow 

showcasing moderate dependence and cold, darker colours indicating weak covariance and black 

showing no correlation in the respective time and frequency space. The x-axis of the sample represents 

the time range of the sample in years, while the y-axis highlights the frequency of the period 

representing trading days with 4 representing a 4 day trading cycle, increasing up to a 256 day cycle 
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approximating one year. Another advantage of the wavelet approach is that it allows us to see whether 

two series are in phase or out of phase, and which series in the main transmitter of volatility, with phase 

difference and volatility transmission indicated by the arrows in the heatmaps. Arrows pointing to the 

right indicate that the two markets are in phase, and arrows pointing to the left likewise indicate the two 

markets are out of phase. If the two markets are in-phase, this suggests that the two markets have a 

cyclical effect on each and an out of phase situation denotes that the two variables have an anti-cyclical 

effect on each other. Additionally, arrows pointing more upwards indicate that the nonferrous metal is 

leading the returns of either gold, brent crude or the S&P500, with arrows pointing downwards 

suggesting that gold, brent or the S&P500 are volatility transmitters to the selected non ferrous metal. 

Inspection results of wavelet coherence between copper and corresponding series, we observe weak 

short-term correlations across for all results at high frequency scale, indicating low comovements 

between the selected non-ferrous metals and gold, brent and the S&P500 index at short term time 

horizons. In the instances of high comovement, namely around the periods of the 2008 financial crisis 

and the 2020 COVID outbreak, we observe that non ferrous metals appear to be in sequence with gold, 

brent crude and S&P500 returns, as indicated by the rightward arrows in the wavelet heatmaps. This is 

most prevalent at the high frequency (long run) period, where there is persistent presence of strong 

covariance correlation around the time of the 2008 financial crisis for all series, however we notice 

significant long run correlation between copper and the S&P 500 index, beginning around the period of 

2003 up until the end of the sample, implying copper prices may be strong influenced by fluctuations 

in the S&P 500 index. This appears to be the case for all non-ferrous metals evaluated in our sample, 

with aluminium also showcasing significant long run correlations with the S&P 500 index from the 

financial crisis until the end of the sample period, with further presence of medium and long run 

correlation around the period of the outbreak of the COVID-19 pandemic. Although long run 

correlations between Zinc and Nickel and the S&P 500 index are also present, these appear to be limited 

to the 2008 financial crisis. Interestingly, we can observe some instances in heatmaps for aluminium, 

tin and copper with gold and tin with the S&P500 of strong comovements where left downward 

relationships can be observed in the heatmaps, notably around the period of the early 1990s, and 
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additionally the dot com bubble in the case of tin and SP500, indicating the phase difference between 

the sets of analysed variables.  

 

3.4.5 Hedging Effectiveness 
 

To showcase the potential use of non ferrous metals can be used in a potential hedging strategy, we 

calculate the dynamic optimal hedge ratio of non ferrous metals against gold, brent crude and the 

S&P500. As the most optimal model in accordance with the likelihood ratio test, we will use the DCC-

MIDAS model to extract the conditional covariance matrixes. We can extract the conditional 

covariances of each metal and asset and the conditional variances to compute the dynamic optimal 

hedge ratio, which is advantageous over the standard optimal hedge ratio estimated using OLS which 

is stationary over time. An optimal hedge ratio closer to 1 indicates a position can be fully hedged, 

however, as the dynamic optimal hedge ratio changes over time, it is desirable for the dynamic optimal 

hedge ratio to remain as close to 1 as possible.  

 

Figures 3.3.1 to 3.3.15 present the plots of dynamic optimal hedge ratio of each non ferrous with LBMA 

gold, ICE brent crude and the S&P 500 can be located within the appendix section of this chapter. Each 

non ferrous metal can be seen as a strong potential hedge to the S&P500 index in the period of 2010 to 

2015 with optimal hedge ratio fluctuating between 0.10 and 1.4 in this period, with an optimal hedge 

ratio of 1 suggesting a perfect hedge, while an optimal hedge ratio over 1 suggests overhedging in non 

ferrous metal futures to protect against changes in the S&P500 index. In contrast to the S&P500 index, 

none of the non ferrous metals in our sample prove to be an effective hedge against ICE brent crude 

futures, with typical hedge ratio fluctuating between -0.1 and 0.2 throughout the sample period, 

however, we do note a period in which non ferrous metals hedging effectiveness is increased throughout 

the time period of 2010 to 2015, noting no negative hedge ratios in this period with a high of 0.5 in this 

period, suggesting non ferrous metals could potentially be effectively used as a hedge against Brent 

crude in this period. Following the Deepwater Horizon oil spill in 2010, this period is notable for a 

boom in Crude oil prices succeeded by a plunge throughout which oil prices rose throughout the early 
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2010 to a high of $112 per barrel in 2014, following which prices plunged to a low of $31 in January 

2016 (Prest, 2018). Dynamic optimal hedge ratios revert to lower levels following 2016, suggesting 

non ferrous metals may be an effective hedge against Brent crude oil in periods of high volatility of 

crude oil. Optimal hedge ratios for non ferrous metals against gold exhibit more variance, with hedge 

ratios varying greatly between -1 and 2, with more periods where hedge ratios vary between 0.5 and 1. 

Gold and non ferrous metals potentially serve as an effective hedge against each other, however, sudden 

significant changes in the dynamic optimal hedge ratio over suggests that its feasibility appears to be 

over short time horizons. 
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3.5 Concluding remarks 
 

In this chapter, the use of non-ferrous metals with relation to widely used commodities and financial 

instruments in portfolio optimization is analysed, using a wide range of multivariate GARCH, namely 

CCC GARCH, symmetric and asymmetric DCC and BEKK GARCH models, Orthogonal GARCH, 

GO-GARCH and the DCC-MIDAS model to model conditional correlation and volatility 

transmissions of five non ferrous metal (copper, aluminium, zinc, tin and nickel) with LBMA gold, 

ICE Brent crude oil and the S&P 500 stock index over the period covering January 1st 1990 to 

December 31st 2023, a period containing numerous major economic events including the dotcom 

bubble, the 2008 global financial crisis, the crude oil price plunge of 2014-16 and the coronavirus 

pandemic, which started in 2020 and with lasting effects still being felt today. Additional wavelet 

analysis is used to produce heatmaps of correlation between selected non ferrous metals and 

commodities to showcase conditional correlations in the time and frequency horizon. Log likelihood 

ratio test is then conducted to showcase the model which produces the best goodness of fit against the 

benchmark model (CC-GARCH). Conditional variances and correlation matrices of the best 

performing model are then extracted to compute dynamic optimal hedge ratios to assess the potential 

for non ferrous metals to be used as potential hedges against LBMA gold, Brent crude and the S&P 

500 index.   

 

Results from conditional correlation analysis highlight spikes in conditional correlations for all 

models in periods of crisis, followed by sharp downturns. Copper for all models generally appears to 

have strong correlations with gold in periods with lower correlations with brent crude and the 

S&P500 and vice versa, which are most prevalent around the 2008 financial crisis and the 2020 covid 

pandemic. Similar properties are also observed for aluminium although we note less overall variance 

in conditional correlations. Conditional correlations between tin and gold, brent and S&P500 are 

found to be the most volatile, with frequent spikes in conditional correlation. Both symmetric and 

asymmetric BEKK models are found to be overparameterized, with very noisy plots due to the 

incorporation of more variables in comparison to the DCC model. OGARCH model showcases all 
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metals with the exception of nickel as potential hedges, with strong correlations with gold at times of 

weak correlation with brent and the SP500 index and vice versa. DCC-MIDAS model decomposes 

conditional correlation into short run and long run components, with short run correlations exhibiting 

much greater volatility persistence, and long run volatility being mostly positive, although this is to be 

expected, as prices tend to converge over the long run. Consistent with other models, correlations are 

strongest with gold when weakest with Brent crude and the S&P500 index and vice versa, with the 

DCC-MIDAS model. Results from likelihood ratio tests to analyse goodness of fit highlight the DCC-

MIDAS model to be the best performing model, when compared to the benchmark CCC model, 

producing the lowest p-value at the 5% significance level. BEKK-GARCH is found to be the worst 

performing model, which may be explained by overparameterization. Symmetric DCC and BEKK 

models produce slightly better goodness of fit compared to asymmetric counterparts. Results from 

wavelet coherence analysis showcase that non ferrous metals largely showcase weak correlations with 

gold, brent crude and the S&P500 at short time horizons, although medium run positive correlations 

are more prevalent around the period of the 2008 financial crisis. Long run correlations are present for 

all metals with LBMA Gold, Brent crude and the S&P500 although this is to be expected as prices 

converge due to information being reflected in commodity prices. Estimation of dynamic optimal 

hedge ratios exhibits potential for non ferrous metals to serve as a potential hedge against the S&P 

500 with persistent positive hedge ratios throughout the 2010s in our sample period for all non ferrous 

metals, although their ability to serve as a potential hedge for Brent crude futures is far more limited. 

These findings are of relevancy and importance to fund managers and market makers, by presenting 

evidence how non ferrous metals can be potentially implemented in a hedging strategy, furthermore, 

how their comovements with widely traded financial instruments can help drive financial decisions.  
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Figure 3.1.1 Symmetric DCC-GARCH LME Copper Conditional correlation with LBMA Gold, 

Brent Crude and S&P 500 Stock Index 

 
Figure 3.1.2 Symmetric DCC-GARCH LME Aluminium Conditional correlation with LBMA Gold, 

Brent Crude and S&P 500 Stock Index 
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Figure 3.1.3 Symmetric DCC-GARCH LME Zinc Conditional correlation with LBMA Gold, Brent 

Crude and S&P 500 Stock Index 

 
Figure 3.1.4 Symmetric DCC-GARCH LME Tin Conditional correlation with LBMA Gold, Brent 

Crude and S&P 500 Stock Index 
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Figure 3.1.5 Symmetric DCC-GARCH LME Nickel Conditional correlation with LBMA Gold, Brent 

Crude and S&P 500 Stock Index 
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Figure 3.1.6 Symmetric BEKK-GARCH LME Copper Conditional correlation with LBMA Gold, 

Brent Crude and S&P 500 Stock Index 

 
Figure 3.1.7 Symmetric BEKK-GARCH LME Aluminium Conditional correlation with LBMA Gold, 

Brent Crude and S&P 500 Stock Index 
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Figure 3.1.8 Symmetric BEKK-GARCH LME Zinc Conditional correlation with LBMA Gold, Brent 

Crude and S&P 500 Stock Index 

 
Figure 3.1.9 Symmetric BEKK-GARCH LME Tin Conditional correlation with LBMA Gold, Brent 

Crude and S&P 500 Stock Index 
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Figure 3.1.10 Symmetric BEKK-GARCH LME Nickel Conditional correlation with LBMA Gold, 

Brent Crude and S&P 500 Stock Index 
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Figure 3.1.11 Asymmetric DCC-GARCH LME Copper Conditional correlation with LBMA Gold, 

Brent Crude and S&P 500 Stock Index 

 
Figure 3.1.12 Asymmetric DCC-GARCH LME Aluminium Conditional correlation with LBMA 

Gold, Brent Crude and S&P 500 Stock Index 
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Figure 3.1.13 Asymmetric DCC-GARCH LME Zinc Conditional correlation with LBMA Gold, Brent 

Crude and S&P 500 Stock Index 

 
Figure 3.1.14 Asymmetric DCC-GARCH LME Tin Conditional correlation with LBMA Gold, Brent 

Crude and S&P 500 Stock Index 
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Figure 3.1.15 Asymmetric DCC-GARCH LME Nickel Conditional correlation with LBMA Gold, 

Brent Crude and S&P 500 Stock Index 
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Figure 3.1.16 Asymmetric BEKK-GARCH LME Copper Conditional correlation with LBMA Gold, 

Brent Crude and S&P 500 Stock Index 

 
Figure 3.1.17 Asymmetric BEKK-GARCH LME Aluminium Conditional correlation with LBMA 

Gold, Brent Crude and S&P 500 Stock Index 
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Figure 3.1.18 Asymmetric BEKK-GARCH LME Zinc Conditional correlation with LBMA Gold, 

Brent Crude and S&P 500 Stock Index 

 
Figure 3.1.19 Asymmetric BEKK-GARCH LME Tin Conditional correlation with LBMA Gold, 

Brent Crude and S&P 500 Stock Index 
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Figure 3.1.20 Asymmetric BEKK-GARCH LME Nickel Conditional correlation with LBMA Gold, 

Brent Crude and S&P 500 Stock Index 
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Figure 3.1.21 OGARCH copper conditional correlation with LBMA Gold, Brent crude and S&P 500 

Index  

 

 
Figure 3.1.22 OGARCH aluminium conditional correlation with LBMA Gold, Brent crude and S&P 

500 Index 
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Figure 3.1.23 OGARCH zinc conditional correlation with LBMA Gold, Brent crude and S&P 500 

Index 

 

 
Figure 3.1.24 OGARCH Tin conditional correlation with LBMA Gold, Brent crude and S&P 500 

Index 
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Figure 3.1.25 OGARCH Nickel conditional correlation with LBMA Gold, Brent crude and S&P 500 

Index 

 
Figure 3.1.26 GOGARCH Copper conditional correlation with LBMA Gold, Brent crude and S&P 

500 Index 
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Figure 3.1.27 GOGARCH Aluminium conditional correlation with LBMA Gold, Brent crude and 

S&P 500 Index 

 

 
 

Figure 3.1.28 GOGARCH Zinc conditional correlation with LBMA Gold, Brent crude and S&P 500 
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Figure 3.1.29 GOGARCH Tin conditional correlation with LBMA Gold, Brent crude and S&P 500  

 
 

Figure 3.1.30 GOGARCH Nickel conditional correlation with LBMA Gold, Brent crude and S&P 

500  
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Figure 3.1.31 DCC-MIDAS Copper short run correlation with LBMA Gold, Brent crude and S&P 

500 Index 

 
Figure 3.1.32 DCC-MIDAS Aluminium short run correlation with LBMA Gold, Brent crude and S&P 

500 Index 
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Figure 3.1.33 DCC-MIDAS Zinc short run correlation with LBMA Gold, Brent crude and S&P 500 

Index 

 
 

Figure 3.1.34 DCC-MIDAS Tin short run correlation with LBMA Gold, Brent crude and S&P 500 
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Figure 3.1.35 DCC-MIDAS Nickel short run correlation with LBMA Gold, Brent crude and S&P 500 

Index 

 
 

 

Figure 3.1.36 DCC-MIDAS copper long run correlation with LBMA Gold, Brent crude and S&P 500 

Index 
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Figure 3.1.37 DCC-MIDAS aluminium long run correlation with LBMA Gold, Brent crude and S&P 

500 Index 

 
 

Figure 3.1.38 DCC-MIDAS zinc long run correlation with LBMA Gold, Brent crude and S&P 500 

Index 
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Figure 3.1.39 DCC-MIDAS tin long run correlation with LBMA Gold, Brent crude and S&P 500 

Index 

 
 

Figure 3.1.40 DCC-MIDAS Nickel long run correlation with LBMA Gold, Brent crude and S&P 500 

Index 
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Figure 3.2.1 Results from Wavelet coherence analysis for LME Copper and LBMA Gold 

 
 

 

 

 

 

Figure 3.2.2 Results from Wavelet coherence analysis for LME Copper and ICE Brent Crude 
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Figure 3.2.3 Results from Wavelet coherence analysis for LME Copper and S&P 500 

 

 

 

 

 

 

Figure 3.2.4 Results from Wavelet coherence analysis for LME Aluminium and LBMA Gold 
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Figure 3.2.5 Results from Wavelet coherence analysis for LME Aluminium and ICE Brent Crude 

 
 

 

 

 

Figure 3.2.6 Results from Wavelet coherence analysis for LME Aluminium and S&P 500 
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Figure 3.2.7 Results from Wavelet coherence analysis for LME Zinc and LBMA Gold 

 
 

 

 

 

Figure 3.2.8 Results from Wavelet coherence analysis for LME Zinc and ICE Brent Crude 
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Figure 3.2.9 Results from Wavelet coherence analysis for LME Zinc and S&P500 

 
 

 

 

Figure 3.2.10 Results from Wavelet coherence analysis for LME Tin and LBMA Gold 
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Figure 3.2.11 Results from Wavelet coherence analysis for LME Tin and ICE Brent Crude 

 
 

 

 

 

Figure 3.2.12 Results from Wavelet coherence analysis for LME Tin and S&P 500 
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Figure 3.2.13 Results from Wavelet coherence analysis for LME Nickel and LBMA Gold 

 
 

 

 

 

 

Figure 3.2.14 Results from Wavelet coherence analysis for LME Nickel and ICE Brent Crude 
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Figure 3.2.15 Results from Wavelet coherence analysis for LME Nickel and S&P 500 

 



 159 

Figure 3.3.1 Dynamic Optimal Hedge Ratio of LME Gold and LBMA Copper 

 
 

Figure 3.3.2 Dynamic Optimal Hedge Ratio of LME Gold and ICE Brent Crude 
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Figure 3.3.3 Dynamic Optimal Hedge Ratio of LME Copper and S&P 500 Index 

 
 

Figure 3.3.4 Dynamic Optimal Hedge Ratio of LME Aluminium and LBMA Gold 
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Figure 3.3.5 Dynamic Optimal Hedge Ratio of LME Aluminium and ICE Brent Crude 

 
 

Figure 3.3.6 Dynamic Optimal Hedge Ratio of LME Aluminium and S&P 500 Index 
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Figure 3.3.7 Dynamic Optimal Hedge Ratio of LME Zinc and LBMA Gold 

 

 
 

 

Figure 3.3.8 Dynamic Optimal Hedge Ratio of LME Zinc and ICE Brent Crude 
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Figure 3.3.9 Dynamic Optimal Hedge Ratio of LME Zinc and S&P500 Index 

 

 
 

Figure 3.3.10 Dynamic Optimal Hedge Ratio of LME Tin and LBMA Gold 
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Figure 3.3.11 Dynamic Optimal Hedge Ratio of LME Tin and ICE Brent Crude 

  
 

Figure 3.3.12 Dynamic Optimal Hedge Ratio of LME Tin and S&P500 Index 

 
  



 165 

Figure 3.3.13 Dynamic Optimal Hedge Ratio of LME Nickel and LBMA Gold 

 
Figure 3.3.14 Dynamic Optimal Hedge Ratio of LME Nickel and ICE Brent Crude 
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Figure 3.3.15 Dynamic Optimal Hedge Ratio of LME Nickel and S&P500 Index 
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Chapter 4. The effects of Economic Policy Uncertainty 

and UK Policy Uncertainty on Non-Ferrous Metals: 

Evidence Using a TVP-VAR approach 

 

Abstract 
 

We investigate the potential time varying effects of geopolitical risks (GPR) and UK policy 

uncertainty on non ferrous metal commodity prices by using a vector autoregressive (VAR) 

model, structural vector autoregressive (SVAR) model, and a time varying parameter vector 

autoregressive model with stochastic volatility (TVP-VAR-SV). Following estimation of VAR 

and SVAR models, geopolitical risks and UK policy shocks are found to have significant and 

different reactions to GPR and UK policy shocks. Analysis of impulse responses at different 

time horizons following estimation of TVP-VAR-SV model showcase evidence of both GPR 

and UK policy shocks having significant positive and negative responses to shocks after major 

geopolitical events at the one period ahead horizon, with these effects diminishing at longer 

time horizons, indicating that while GPR and UK policy shocks have dramatic effects on the 

volatility of non ferrous metals in the short term, these effects are not long lasting. 
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4.1 Introduction 
 

With the increasing usage of non ferrous metals as an important strategic resource and a widely used 

industrial resource, they play a significant role in the development of national economies and the 

operation of various industries, but geopolitical disruptions such as conflicts between nations, rising 

tensions and policy uncertainty at the national level have caused disruptions to the pattern of global 

economic stability, with rising costs and bouts of persistent volatility. As world economies still feel the 

effects of the US subprime mortgage crisis which caused the events of the 2008 financial crisis one and 

a half decades later, events throughout the 2010s and 2020s such as the 2016 UK Brexit referendum, 

the COVID crisis and the recent 2024 US Presidential election have additionally thrown stock and 

commodity markets into periods of upheaval. Geopolitical tensions such as the Russia and Ukraine 

crisis and the Israel conflict with Palestinian militant groups continue to develop and evolve, and their 

impacts are hugely felt in various commodity markets, with Brent crude oil prices increasing from $97 

per barrel in February 2022 to $117 per barrel in April (Zhao, 2023) being one such example, but both 

Russia and Ukraine’s major roles as importers and exporters of non ferrous metals have additionally 

played a huge role in extreme price fluctuations for these metals, with LME Nickel futures increasing 

from  $24,558 per tonne in February 2022 to a high of $48,002 in mid March 2022, a record high never 

previously seen, with a similar story for zinc, with a price of $3582 per tonne  reaching a high of $4563 

in mid April.  

 

Natural resources such as non ferrous metals and various other types of commodities are heavily driven 

by geopolitical risk factors and political uncertainty and instability, which have a big influence on 

available supply and demand of certain commodities, thereby resulting in periods of high volatility and 

price fluctuations when unforeseen geopolitical events occur. Geopolitical risk is defined by Caldara 

and Iacoviello (2022) as “the risks associated with wars, terrorist acts, and tensions between states that 

affect the normal and peaceful course of international relations”. Unpredictable and sudden events are 

likely to trigger panic among individuals, resulting in large sell offs in volatile assets in the search for 

safer bets until their previous investments settle at a more stable level (Apergis and Apergis, 2016). 
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With natural resource production closely linked with geopolitics, changes in the geopolitical landscape 

may bring about uncertainties in the supply of certain commodities in the international market. 

However, not all shocks from geopolitical events and economic policy events cause negative reactions 

in stock and commodity markets. Natural gas prices in Asia, Europe and North America have climbed 

by as much as 50% in 2024, with prices forecasted to continue rising into 2025 with forecasts for cold 

weather and high consumer consumption9. 

 

Geopolitical risks such as conflicts, natural disasters and terrorism play are a notable risk factor in the 

pricing and supply availability of commodities. The second such risk factor is internal factors such as 

the policies and decision making of national governments. The role of governmental decision making 

and policy implementation can have significant effects on global stock and commodity markets. In 

modern times, natural resources have been inextricably linked with economic competition and these 

conditions have a profound influence on the supply and availability of these resources (Zhao, 2023), 

additionally, trade tariffs such as those imposed in the United Kingdom are imposed to restrict the flow 

of imports and encourage the growth of the economies of their respective nations, with Donald Trump 

proposing to impose tariffs on imports from foreign nations following his inauguration as United States 

President in January 2025, with the S&P 500 index climbing 0.88% in response10. In this chapter, we 

use the Vector Autoregressive (VAR) model, structural VAR model and a time varying parameter VAR 

model with stochastic volatility (TVP-VAR-SV) to explore the effects of geopolitical risks and UK 

economic policy on non ferrous metal commodity returns. A literature review is conducted, analyzing 

previous literature in the area of uncertainty shocks, with in depth description of the data and model 

selection additionally following the literature. The results showcasing impulse responses following 

VAR and SVAR model estimation are presented, along with impulse responses at different time 

horizons, which is conducted with the use of the TVP-VAR-SV model.   

 
9 https://www.reuters.com/business/energy/key-global-natural-gas-prices-set-keep-rising-into-2025-
maguire-2024-12-03/ 
10 https://www.reuters.com/markets/us/markets-optimistic-trump-returns-white-house-2025-01-20/ 
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4.2 Literature Review 
 

4.2.1 Major Geopolitical events and stock markets 

While the linkages between non-ferrous metal markets and major geopolitical events, and their potential 

long-lasting effects has not been commonly addressed in the literature, there exists numerous such 

studies have explored the effects of geopolitical events on stock market indices and other types of 

financial instruments. Geopolitics contains all space-specific components such as geography, energy 

sources, trade routes, raw materials and food (Lee 2019). Caldara and Iacoviello (2022) define GPR as 

‘the risks associated with wars, acts of terrorism, and tensions between states that affect the normal and 

peaceful course of international relations’. Additionally, geopolitical events such as war, foreign policy 

and terrorism equally play a big role in influencing pricing and decision marking. Among the body of 

previous literature to address linkages between geopolitical events and stock market indices, Balcilar et 

al. (2018) seeks to identify a link between geopolitical risks and stock market dynamics of the BRIC 

economies from January 1985 to April 2016, with data obtained by the work of Caldara and Iacoviello 

(2022), who construct various GPR indices by counting the occurrence of words related to geopolitical 

tensions in 11 leading national and international newspapers, additionally using monthly returns data 

for the BRIC economies. Following nonparametric causality-in-quantile tests, all markets analysed 

experienced positive mean returns, despite the inclusion of the 2007/08 financial crisis, with Russia 

having the highest mean returns, along with the highest volatility, while India was the most resilient 

economy. Their findings across the five markets of Brazil, Russia, India, China and South Africa 

respectively observe that the effect of GPRs is heterogeneous, suggesting that news regarding 

geopolitical tensions do not affect return dynamics in these markets in a uniform manner, having a more 

consistent effect on volatility measures rather than returns, implying possible volatility spillover into 

these markets as a result of their exposure to geopolitical tension. Bouras et al. (2019) used a more 

conventional panel GARCH model to examine geopolitical risks, returns and volatility of 18 emerging 

markets using monthly data over the period spanning November 1998 to June 2017. They find that 
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while country specific geopolitical risks have a positive but statistically weak effect on volatility and 

no effect on returns, the impact on volatility of global GPRs is both economically and statistically 

stronger than country specific GPRs, showcasing that global events have broader longer lasting impacts 

than regional events. Lee (2019) investigates the joint probabilistic behaviours of stock market 

performances and geopolitical risks over the period from June 1997 to December 2017, attempting to 

deviate from previous studies by attempting to reveal the joint probability of geopolitics and economy. 

Results from bivariate copula analysis showcased more discordant relationships with geopolitical acts, 

with geopolitical uncertainty playing a role with stock market performances in 37 different stock market 

indices. In a pioneering study, Das et al. (2019) sought to analyse whether geopolitical risk has an 

impact on precious metal prices, using quantile regression analysis on a sample period from January 

1985 to December 1987. In their results, they noted a positive relationship between geopolitical risk 

within the sample period, with gold returns increasing by 0.0029% when geopolitical risk increases, 

and higher gold returns were also noted when registering Caldara and Iacoviello’s (2018) geopolitical 

risk index. They furthermore found that negative relationships were noted with other precious metals 

analysed, namely silver, platinum and palladium, suggesting that these metals were more vulnerable to 

geopolitical risk. In a similar approach, Baur and Smales (2020) analysed whether precious metals can 

be used as safe haven assets or act as a hedging mechanism against geopolitical risk. Extending upon 

the work of Das et al. (2019) they additionally use gold, silver, platinum and palladium precious metals, 

citing their distinctive supply and demand characteristics, and start their sample period in January 1985 

but extend their sample period to October 2018. Corroborating the findings of Das et al. (2019) they 

noted that the returns of precious metals are closely linked to geopolitical risk, with a stronger 

relationship found when considering geopolitical threats, however only gold and silver seem to possess 

the property to consistently hedge in both normal and extreme geopolitical events. They additionally 

note that commodities appear more closely linked to geopolitical risks rather than geopolitical acts. 

Cunado et al. (2020) look at the dynamic effects of geopolitical risk on oil prices, finding that GPR has 

a major effect on crude oil prices, noting that this may be due to decreased demand for oil in periods of 

global crisis. This research is further examined by Chowdhury et al. (2021) who additionally explore 

linkages between crude oil and geopolitical risk. Using a quantile regression method, their results find 
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that GPR has a unidirectional effect on crude oil prices. Agnello et al. (2020) investigate the ability of 

global risk factors such as uncertainty risk, weather conditions and energy prices in explaining the 

length of commodity price cycles using a continuous time Weibull model. They notice a correlation 

between commodity price booms with inflation and temperature increases, most notably with 

agricultural commodities as high temperatures and droughts affect production. Additionally, commodity 

price busts are shorter global growth, interest rates and violence are higher, but busts are longer in 

periods of high inflation and rainfall. Increases in oil prices also make commodity booms longer and 

busts shorter. Abdel-Latif and El-Gamal (2020) study the global relationship of oil prices, financial 

liquidity, and geopolitical risk with the economic performance of oil export dependent economies using 

a global vector autoregression model allowing for lag structures for differing variables in countries. 

They find that oil prices are likely to drop in response to negative shocks in global financial liquidity, 

however, these effects are. short lived. Heightening of geopolitical risk is also likely to bring periods of 

higher oil prices. Wang et al. (2022) evaluate the transmission of returns and volatility of oil, agricultural 

and metal commodity markets in the period leading up to the Ukraine crisis. In relation to the 

geopolitical risk index of Caldara and Iacoviello (2022), they find that spillovers of returns and volatility 

are shaped by geopolitical risk, in line with previous research conducted by Gong and Xu (2022). Zhang 

et al. (2023) explores GPR and stock market volatility using panel data from 32 different countries and 

regions. Regression results from OLS, fixed effects model (FE) and bias corrected least squares dummy 

variable (LSDV) estimator show regression coefficients of ∆GPR are positive and statistically 

significant at the 1% level, indicating that GPR significantly increases stock market volatility from a 

global perspective. They additionally note that has a greater impact on stock market volatility in 

countries at peacetime, crude oil exporters and emerging economies. Cheung, Liao and Pan (2023) 

investigate geopolitical risk premium in the commodity futures market, by estimating the exposure of 

cross-sectional commodity future excess returns on a historical geopolitical risk index. Upon 

construction of univariate portfolios and estimating exposure of cross sectional commodity future 

excess returns, they identify that excess returns of a commodity portfolio decreases as its exposure to 

GPRH increases, adding that low risk betas generate 9.05% higher annual risk adjusted returns than 

those with high risk betas, insinuating that low geopolitical risk related commodities require more 



 173 

compensation by risk averse investors. Based on their findings, they suggest that it is difficult to justify 

the geopolitical risk premium based only on the fundamentals of commodity futures contracts. 

Eichengreen (2024) explores linkages between trade and capital flows and geopolitical events relating 

to tensions between the United States and China. They note that the two economies, despite political 

tensions, remain deeply interdependent on each other.  

 

The effects of weather and climate risk factors on commodity volatility and pricing have also been 

explored in the literature. Flori et al. (2021) investigate commodity price movements in relation to 

climate related variables from 1980 to 2017. Comovements among commodity prices and global 

climate risk factors are noted. Bonato et al (2023) assess whether climate risk factors can be used to 

predict future realized volatility of commodity currency exchange rates. Using a HAR model with 

intraday data for 8 major commodity exporting countries, they show that climate risk factors have 

incremental predictive power for forecasting exchange rate volatility. Faccini et al. (2023) aim to 

provide evidence on whether physical or transitional climate risks are prices in US stocks. In addition 

to daily data for all common stocks traded on the NYSE, NASDAQ and AMEX from January 2000 to 

December 2018, they construct four different measures of environmental risk metrics from mentions of 

specific key words in 13 million articles published by Reuters, namely international climate change 

summits, climate policy, global warming and natural disasters. Their findings indicate that government 

intervention is the main drivers behind US stock pricing rather that physical environmental risk factors, 

contrary to previous findings from Bonato et al. (2023) that climate risks can be used as a useful tool 

for forecasting commodity volatility. Climate policy uncertainty and potential links to oil pricing and 

agricultural commodities are also explored by Wang et al. (2023), using quantile connectedness. Ma, 

Zhou and Li (2024) explore potential pricing implications for agricultural commodities as a result of 

extreme climate events such as climate change. The four specific climate risk metrics constructed by 

Faccini et al. (2023) are used, with monthly data on the agri-commodity price index also used. Both in 

sample and out of sample show that PCA climate risk index exhibits strong predictability for agricultural 

commodity returns, citing previous literature from Kotz et al. (2023) noting the adverse effects of 

climate on agricultural output, and investor attention also playing a potential role.  



 174 

 

4.2.2 Macroeconomic and uncertainty shocks 

 

Uncertainty shocks and their effects on asset pricing in different markets have been explored in the 

literature and have been a subject of considerable empirical research, using varying classes of 

econometric models. Linkages between macroeconomy and commodity prices movements have 

previously been documented in Gorton and Rouwenhorst (2006), who showcase evidence that 

commodity future returns are negatively correlated with equity and bond returns is due in significant 

part to different behaviour over the business cycle, additionally noting that commodity returns are 

positively correlated with inflation over long-term horizons. Batten et al. (2010) evaluate the 

macroeconomic determinants of volatility in precious metal markets, using data covering January 1986 

to May 2006. For precious metals, they find only limited evidence that macroeconomic factors jointly 

influence volatility processes of the precious metals examined. Research from Elder and Serletis (2010) 

found that uncertainty in crude oil prices causes a decrease in several different measures of investment, 

durables consumption and output, however, this view is disputed by Jo (2014), who suggests that oil 

price uncertainty has little effect on output and consumption, based on results obtained using a Vector 

autoregressive (VAR) model with stochastic volatility in the mean. Common macro uncertainty shocks 

have effects on par with monetary policy shocks, with macro uncertainty also being strongly 

countercyclical, with total uncertainty more present in periods of recession than in non-recessions 

(Jurado, Ludvigson and Ng, 2015). Basak and Pavlova (2016) analyze the financialization of 

commodities and how investors entering the market affects commodity prices. Utilising comprehensive 

samples of US and Chinese macroeconomic news announcements, Smales (2017) investigates 

commodity market volatility in the presence of US and Chinese macroeconomic news. Baseline results 

showed that in both cases, macroeconomic variables have a well defined relationship with commodity 

markets, highlighting when investor fear and short term rates are higher, the yield curve is steeper and 

credit spreads are wider, and volatility increases, although Chinese GDP plays no role in explaining 

commodity price volatility. Bakas and Triantafyllou (2018) observe the impact of uncertainty shocks 
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on the volatility of agricultural, energy and metal commodity prices over a span of 31 years covering 

January 1985 to December 2016 using a 6-factor VAR model. Their results show that macroeconomic 

uncertainty increases volatility in commodity markets, adding that macroeconomic uncertainty is 

significantly lower after the occurrence of volatility episodes in commodity markets, reaffirming 

previous research that the impact of potential uncertainty shocks on commodity prices was significant. 

Prokopczuk, Stancu and Symeonidis (2019) seek to identify the economic drivers of commodity market 

volatility, using daily data of 25 commodity futures covering 1970 to 2015. Results from comovements 

analysis showcased evidence that documented pairwise comovements are strongest in periods of 

recession as compared to economic expansions. Additionally, variables related to credit risk, funding 

illiquidity, and equity and bond market stress are significant predictors of commodity market volatility, 

indicating shocks in the real economy affect commodity market volatility. Bakas and Triantafyllou 

(2020) further explore the effects of macroeconomic uncertainty on commodities, investigating how 

pandemics have an affect on the sub-indices of crude oil and gold. Using a five factor VAR model, 

including data for the world pandemic uncertainty index based on Ahir et al. (2019), the world industrial 

production index on the work of Baumeister and Hamilton (2019) and the GPR index, they find that the 

broad measure of commodity volatility and volatility in oil markets are reduced when uncertainty about 

pandemics arises, with contrasting effects for gold but are less significant. Furthermore, they note that 

pandemic uncertainty shocks reduce commodity price volatility namely through disruptions in global 

commodity demand in pandemic times. Prokopczuk et al. (2019) analyse relationships between 

macroeconomic uncertainty and commodity market volatility, using data for 25 commodity futures 

traded in the US from January 1st 1970 to December 29th 2015. In their analysis, they find a strong 

relationship between economic uncertainty and volatility in commodity markets. Kassouri and Altintas 

(2022) look at causal linkages for stock returns of clean and dirty stocks on oil demand and supply 

shocks. Following a quantile ARDL model approach, they observe a potential decline in the stock price 

of clean energy companies following demand driven oil shocks in the short run, potentially driven by 

the prospects of economic growth in China and economic contraction in Europe. Demand oriented oil 

shocks are therefore found to be positively and significantly correlated with clean energy returns across 

different market conditions. Chang et al. (2022) study the effects of exchange rate response to economic 
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policy responses in the G7 countries using a nonlinear ARDL model with granger causality and find 

that positive shocks in economic policy uncertainty has significant effects on exchange rate volatility 

while negative shocks have no such effect, indicating asymmetric effects. Fernandez et al. (2023) 

contribute to the literature by exploring the global copper returns and the impact of operational 

disruptions. Analysing the impact of 109 mining strikes taking place in Chile between 1910 and 2010, 

regression analysis incorporating dummy variables, they find that the announcement of strikes impact 

the price of copper before the strike has taken place, suggesting that agents use the information to act 

in anticipation of the strikes. Additionally, Guo et al. (2023) assess whether climate shocks are 

connected to agricultural commodity markets. Extreme weather events and climates had the greatest 

spillover effects, followed by droughts and extreme temperatures, suggesting that these four climate 

risk factors play a significant role in information transmission between agricultural commodity markets. 

They additionally suggest future research investigating the impact of climate risk perception on the 

prices of other climate sensitive resources, such as industrial and mineral resources. In an alternative 

approach, Triantafyllou et al. (2023) instead examine the impact of price uncertainty in agricultural, 

precious metal and energy commodity markets on US economic activity using a 8 factor VAR model. 

Their results show that uncertainty shocks in agricultural and metal markets have potential long lasting 

effects on economic activity in the US. Obstfeld and Zhou (2023) investigate for potential linkages 

between the US dollars nominal effective exchange rate on emerging markets and developing 

economies. They comment that there are alternative factors, namely US monetary policy, US financial 

conditions and dollar funding stress all contribute to the appreciation or depreciation of the US dollar, 

which in turn may predict downturns in emerging markets. Glebocki and Saha (2024) assess the 

response of bilateral exchange rates, exchange rate volatility, market pressure, and nominal and 

effective interest rates and their effects in emerging and advanced economies, employing monthly data 

for 28 countries and the euro zone from January 1996 to December 2022. Results obtained using the 

global vector autoregressive estimation approach show that uncertainty shocks result in depreciation 

(appreciation) in emerging (advanced) economies in response to policy uncertainty spikes. Additionally, 

they support the findings of Obstfeld and Zhou (2023) of the impact of dollar cycles on emerging and 

advanced economies. Bermpei et al. (2024) look to document whether there are linkages between 
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commodity prices and exchange rates of commodity exporting countries. Using a structural vector 

autoregressive model (SVAR), they show that rising uncertainty in global commodity markets has a 

negative short run effect on commodity currencies, however, they additionally note that these effects 

tend to apply to specific commodities, with other benchmark currencies like the euro display neutral 

effects, while the US dollar appears to be a safe haven, by appreciating in periods of global uncertainty 

shocks. 

 

4.2.3 Vector Autoregressive Models and alternative models 

The literature regarding uncertainty shocks and commodity markets suggests several different 

approaches to evaluating and analysing the effects of geopolitical risks on markets. Among the relevant 

literature, Vector Autoregressive models (VAR) and extensions and derivatives of the model are among 

the most common models used to assess the impact of uncertainty shocks and macroeconomic events 

and their potential relationships with volatility in commodity markets. Bloom (2009) used a VAR model 

to assess the impact of uncertainty shocks on prices, showcasing evidence that an uncertainty shock 

leads to a short run drop and a rebound of interest rates of up to 1.1% points and 0.5% for commodity 

prices, identifying 17 periods of uncertainty and strong countercyclical between relationship between 

real activity and uncertainty. An extension of the VAR model, the Structural Vector autoregressive 

models (SVAR) model, is also employed in the literature to look into linkages between macroeconomic 

variables and commodity prices and other tradeable financial derivatives. Sousa and Zaghini (2007) 

uses a SVAR model to explore the effects of global monetary policy shocks in the G5 economies. In 

their findings, responses of G5 economies to monetary policy shocks are found to be strongly correlated. 

Furthermore, global price levels rise permanently while real global output temporarily in response to a 

positive shock to global liquidity. Redl (2015) measure the impact of noisy news on exchange rates 

using a SVAR model, over a period from 1986 to 2013. Their results show that noisy news is an 

important driver of variances in exchange rate prices, explaining approximately a fifth of variation. 

Chen et al. (2016) analyse the impacts of OPEC political risk on the price fluctuation of international 

crude oil prices including brent crude based on several SVAR models, by using the international country 
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risk guide as a proxy to measure the countries political situation to analyse whether political risk from 

these countries transmits into brent crude prices from January 1998 to September 2014. In their results, 

oil demand shocks have significant positive impacts on brent crude prices in the specified period, while 

supply shocks do not, consistent with previous findings from Kilian (2009). Rant et al. (2024) 

investigate the impacts of macroeconomic impacts and fiscal policy in the euro area in periods of 

uncertainty and shifting policy using a SVAR approach, citing the wide use of VAR models and 

extensions including the SVAR model in the literature is because of their simplicity.  

 

Looking into macroeconomic uncertainty in relation to oil commodity markets, Van Robays (2016) 

showcase that periods of higher macroeconomic uncertainty have an influence on oil price dynamics, 

and the elasticity of oil supply and demand using a threshold autoregressive model (TVAR). Among the 

advantages of the TVAR approach in relation to alternative types of econometric approaches, they note 

that the TVAR approach is simple in its implementation in comparison to Bayesian VAR models, 

allowing for the identification of different uncertainty regimes within the model framework. Joëts, 

Mignon and Razafindrabe (2016) additionally used a TVAR model to tackle the issue of macroeconomic 

uncertainty affecting the prices of 19 different commodity markets. They note that the sensitivity of 

uncertainty is dependent on the type of shocks, with not all crude oil shocks following the same pattern. 

Additionally, the role of macroeconomic uncertainty is countercyclical, with the effects of 

macroeconomic shocks roughly doubling in importance during periods of recession. Agricultural 

commodity shocks are also a by product of unexpected increases in demand according to their results. 

Basu and Bundick (2017) employ a TVAR model to explore uncertainty shocks and monetary policy 

impacts on stock returns. Increases in uncertainty in the 2008 financial crisis, combined with zero lower 

bound on nominal interest rates may be a largely important factor in explaining the large decline in 

economic output. Tan and Ma (2017) analyse the impact of macroeconomic uncertainty on global 

commodity prices, using a TVAR model to study the impact on 19 different commodity markets. For 

almost all commodities, after positive two standard deviation macroeconomic uncertainty shock, 

commodity prices respond negatively, implying positive uncertainty shocks negatively impact 

commodity prices.  Replicating the autoregressive investigation by Bloom (2009), Caggiano, 
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Castelnuovo and Nodari (2020) use the same VAR approach to study uncertainty and monetary policy 

using S&P 500 stock market data and an uncertainty dummy variable based on the volatility index 

(VIX). In their replication, they find that an uncertainty shock triggers a temporary fall in prices, 

although statistically significant in recessions only. Generally, their results are largely line with findings 

from Bloom (2009), also finding uncertainty and macroeconomic shocks are largely countercyclical. 

Shaheen (2021) use a TVAR approach to examine energy market dynamics and the impact of fiscal 

policy in oil-exporting countries. Using GDP growth rate and inflation as macroeconomic response 

variables, they find evidence that GDP and economic growth rates have a positive relationship with oil 

output in heavily exporting countries like Saudi Arabia.  

 

The time varying parameter vector autoregressive model (TVP-VAR) augmented by Nakajima (2011) 

with a stochastic volatility model has additionally been used in the literature to explore the effects of 

macroeconomic variables on commodity prices. Jebabli, Arouri and Teulon (2014) utilize the TVP-VAR 

model with stochastic volatility to examine the potential transmission of shocks between food, crude 

oil and financial markets, noting that the TVP-VAR approach has the advantage over the constant 

parameter VAR model . Nam (2021) use a time varying factor VAR model with stochastic volatility to 

investigate the effects of climate uncertainty on global commodity markets. When analysing the effects 

of the El Nino global climate phenomenon, they find differing levels of shock among the data, with 

increased impulse responses for agricultural, coal and crude oil futures as a result of decreased power 

generation and growth of agricultural commodities, with market uncertainty shock causing energy 

prices to decrease by 0.2% in oil crisis period due to delay in investment decisions. Lyu et al. (2021) 

analyse impacts of economic policy uncertainty shocks and Chinas commodity future returns market 

using a TVP-VAR model. Their findings are largely in line with previous literature on developed 

economies, they find that negative effects on Chinas commodity market, additionally noting that these 

effects are time varying and are largely countercyclical. Gong and Xu (2022) use a time varying 

parameter VAR with stochastic volatility (TVP-VAR-SV) approach derived from the approach of 

Diebold and Yilmaz (2014) to study links between geopolitical risk and dynamic connectedness 

between commodity markets. In their results, energy precious metal and industrial metal markets were 
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the transmitters of volatility in five different commodity markets in periods of heightened volatility due 

to geopolitical risk. Wang et al. (2022) evaluate the effects of the war in Ukraine, citing soaring 

geopolitical risk as a key motivation. Additionally using the TVP-VAR approach, they find that copper, 

silver, natural gas and gasoline are major net spillover transmitters, whereas lead, sugar and oats are 

spillover receivers. Additional quantile regression results show that spillovers of returns and volatility 

are shaped by GPR, in line with the findings of Gong and Xu (2022). Yang, Niu and Gao (2022) employ 

the TVP-VAR-SV approach to focus on the time varying effects of trade policy uncertainty and 

geopolitical shocks on commodity market prices, using monthly data from February 2000 to October 

2021. They find that TPR and GPU both have significant time varying shocks on the aggregate and 

commodity markets, with the form being a short term effect before 2006 and a long term effect 

thereafter. In a similar vein to the research of Lyu et al. (2021), Hu et al. (2023) explore geopolitical 

uncertainty shocks arising from events such as global conflicts and economic shocks, and their effects 

on the Chinese commodity market, using a TVP-VAR-SV approach. Their findings are consistent with 

those of Lyu et al. (2021), stating that Chinas commodity market can be collectively impacted by 

economic policy uncertainty and geopolitical risk shocks. They further note that the response of the 

Chinese commodity prices to EPU is more intense than that of GPRC after 2019, with the impact of 

GPRC on commodity prices is characterized by strong positive response in the 2008 financial crisis, 

while responses are more pronounced against EPU around the 2022 Russia-Ukraine crisis. Foglia et al. 

(2023) likewise use a TVPVAR model using a Bayesian framework to disentangle geopolitical risk and 

its effect on commodities in G8 countries. In their findings, geopolitical risk is more pronounced among 

countries sharing geographical borders. Additionally, geopolitical risk transmission between G8 

countries and commodity markets tend to be uneven. Yin, Chang and Wang (2023) analyze the dynamic 

impacts of economic uncertainty on commodity and stock prices and any potential linkages combining 

a stochastic volatility model with a classical vector autoregressive model, which extends the VAR model 

by employing innovative stochastic walk technique to account for time varying disturbances covariance 

matrix and coefficient matrix. 
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Other types of models, such as regime and markov switching models have also been used in the 

literature to analyse the effects of GPRs with their ability to capture potential nonlinearity in changes 

to data shocks a primary reason. Bianchi (2016) explains that a key advantage of using Markov 

switching processes to model parameter instability it that numerical intervention is not required to 

obtain results. Ahmed and Sarkodie (2021) employ a markov regime switching dynamic model to 

investigate the effect of COVID-19 and economic policy uncertainty on the prices of eight widely traded 

commodities. In high volatility regimes, the correlation between corn and soybean returns with COVID 

19 cases and economic policy uncertainty is high with a similar such relationship for silver and gold. 

Alternatively, they note an insignificant such relationship for corn due to the low sensitivity to shocks, 

with a similar such relationship for gold due to its safe haven potential. One such study from Tiwari et 

al. (2020) uses a markov switching time varying copula model to examine structural dependence and 

price dynamics between gold and oil prices and the role of geopolitical risk. They provide evidence of 

time varying Markov tail dependence and dynamics between gold and oil over the period spanning 

1985-2017. Qian, Zeng and Li (2022) use a autoregressive Markov-switching model to explore 

predictability of GPR on oil market volatility. In their findings, geopolitical risk has a significant impact 

on oil price volatility over the period January 1986 to May 2018. Abid et al. (2023) used a Markov 

switching model to analyse the dynamic effects of geopolitical risk shock on five types of commodities 

(energy, precious metal, industrial metal, agriculture and livestock). The Markov switching model was 

able to adequately suggest that GPR shocks have a significant impact on commodity returns, also being 

able to identify different states in relation to GPR, low returns/high volatility and high returns/low 

volatility. Tang et al. (2024) conduct empirical analysis on the interplay between climate policy 

uncertainty and commodity future returns in the US using a Markov regime switching approach. When 

precious and industrial metals returns are low in volatility, they have a positive and significant impact 

on climate policy uncertainty, for fuel and crude oils, climate policy uncertainty has a significant 

positive impact in low volatility regimes. They add that the impact of climate policy uncertainty is more 

pronounced during periods of relatively calm, low volatility market conditions. Dinh et al. (2022) use 

mixed data sampling to investigate time-varying dynamics of precious metal markets, finding that stock 

market returns of G7 countries and BRIC economies play an important role in determining both 
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volatility and correlations of precious metals. GARCH-MIDAS analysis also shows GPR has a 

significant effect on dynamic connectedness between markets (Segnon et al. 2024).  
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4.3. Data and Methodology 
 

4.3.1 Data  

For this chapter, we explore for potential linkages between macroeconomic uncertainty and major 

geopolitical events, and non-ferrous metals traded on the London Metals Exchange (LME), which is 

one of the world's largest markets for the exchange of forward and futures contracts for industrial and 

precious metals. The metals selected in this chapter are namely copper, aluminium, zinc, tin and nickel, 

which represent some of the most widely traded commodities on the London Metals Exchange and have 

broad and important uses in industrial applications and are also becoming widely used in portfolio 

diversification strategies and risk management applications. For the data regarding geopolitical risk and 

macroeconomic uncertainty, we have a few different measures. Firstly, we select the global Geopolitical 

Risk Index (GPR) constructed by Caldara and Iacoviello (2022) as a measure of geopolitical events and 

associated risks. The index uses automated text search results and keyword mentions in the electronic 

archivers of 10 major global newspapers, with searches organized into eight categories, and is widely 

used in the literature as a measure of uncertainty and geopolitical risk. Daily UK economic policy 

uncertainty data is also collected, which is constructed by searching for articles that contain relevant 

policy terms from over 600 UK newspapers, with relevant terms including ‘policy’, ’tax’, ‘spending’, 

‘Bank of England’, ‘budget’ etc. to measure policy related economic uncertainty within the UK. For 

this chapter, the timespan of the data is from 1st January 2000 to 29th December 2023 due to constraints 

on the maximum timespan of readily available UK Policy data, but additionally coincides with and 

allows for the inclusion of major geopolitical tensions and terrorist acts such as the 9/11 terrorist attacks 

and the 2022 Russian invasion of Ukraine, economic events such as the 2000 dot com bubble, the 2008 

financial crisis, the Brexit referendum and the COVID-19 pandemic of 2020-21, political events such 

as the 2008 and 2016 presidential elections and environmental events such Hurricane Katrina in 2005, 

the Deepwater Horizon oil spill in 2011 and the 2019-20 Amazon wildfires. The daily data for all the 

non ferrous metals used in this chapter can be downloaded from Datastream and Bloomberg terminal, 

while data for the geopolitical risk index and the UK policy uncertainty can be downloaded from 

https://www.matteoiacoviello.com/gpr.htm and https://www.policyuncertainty.com/index.html 

https://www.matteoiacoviello.com/gpr.htm
https://www.policyuncertainty.com/index.html


 184 

respectively. The rationale for selecting daily data in our analysis is so as to ensure each of the respected 

non ferrous metals, and risk and policy indices capture effectively capture accurate price movements 

within the sample period.  

 

4.3.2 Vector Autoregresison Model 

Vector autoregression (VAR) models have been widely employed in the literature to capture the changes 

in relationships between multiple variables over time. The seminal work of Sims (1980) was the first to 

introduce the VAR model as a new approach to granger causality. The VAR model, in essence, illustrates 

the dynamic relationship between set variables, whereby each variable accounts for its lags and the lags 

of other variables nested within the model (Jangir et al. 2022). The response of macroeconomic 

variables to monetary and uncertainty policy can be easily measured using a standard VAR model 

(Bernanke, Boivin and Eliasz, 2005). Lubik and Matthes (2015) state more specifically, a VAR 

describes the evolution of a vector of 𝑛 economic variables at time 𝑡 as a linear function of its own lags 

up to order 𝐿 and a vector of 𝑒𝑡 of unforecastable disturbances: 

𝑦𝑡 = 𝑐𝑡 +∑𝐴𝑗𝑦𝑡−𝑗 + 𝑒𝑡 .⁡⁡⁡

𝐿

𝑗=1

⁡ 

The simplest form of VAR model that can be estimated is a bivariate VAR model, where only two 

variables, 𝛾1𝑡 and 𝛾2𝑡, each of whose values depend on combinations of previous k values of both 

variables and error terms, which can be expressed by Brooks (2014) as: 

𝛾1𝑡 = 𝛽10 + 𝛽11𝛾1𝑡−1 +⋯+ 𝛽1𝑘𝛾1𝑡−𝑘 + 𝛼11𝛾2𝑡−1 +⋯+ 𝛼2𝑘𝛾1𝑡−𝑘 + 𝑢1𝑡 

𝛾2𝑡 = 𝛽20 + 𝛽21𝛾2𝑡−1 +⋯+ 𝛽2𝑘𝛾2𝑡−𝑘 + 𝛼21𝛾2𝑡−1 +⋯+ 𝛼2𝑘𝛾2𝑡−𝑘 + 𝑢2𝑡 

Where 𝑢𝑖𝑡 represents a white noise disturbance term with 𝐸(𝑢𝐼𝑡) = 0, (𝑖 = 1,2), 𝐸(𝑢1𝑡𝑢2𝑡) = 0. An 

important feature of the VAR model is its flexibility and ease of generalization. Instead of only 

containing two variables, the model can be expanded to include 𝛾1𝑡, 𝛾2𝑡 , 𝛾3𝑡, … , 𝛾𝑖𝑡 variables, becoming 

a multivariate VAR model, with each variable having its own equation. Another useful feature of the 

VAR model is the compactness of which notations can be expressed. In the case above, where k = 1, so 

that each variable depends upon the immediate previous value of 𝛾1𝑡 and 𝛾2𝑡 and an error term could 

alternatively be expressed as: 
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(
𝛾1𝑡
𝛾2𝑡
) = (

𝛽10
𝛽20
) + (

𝛽11 𝛼11
𝛼21 𝛽21

) + (
𝛾1𝑡−1
𝛾2𝑡−1

) + (
𝑢1𝑡
𝑢2𝑡
) 

F-tests and examination of causality in a VAR model can suggest which of the examined 

macroeconomic variables have statistically significant impacts on the other variables in the model, 

however, F-tests are not, by construction, able to explain the sign of these relationships and how long 

these effects take place, or whether a change in the variable has a positive or a negative effect on the 

alternative variable. We can look for these effects by examining the VAR models impulse responses and 

variance decompositions. Impulse responses trace the responsiveness of the dependent variables in the 

VAR equation to shocks to each of the other variables in the equation (Brooks, 2014). In each variable 

in a VAR equation, a unit shock is applied to the error, and the effects upon the VAR model over time 

are noted. If there are g variables in a model, a total of 𝑔2 impulse responses can be generated. To 

illustrate how a VAR model generates impulse responses, lets consider a bivariate VAR(1) model: 

𝛾𝑡 = 𝐴1𝛾𝑡−1 + 𝑢𝑡 

𝐴1 = [
0.5 0.3
0.0 0.2

] 

Considering the effects at time 𝑡 = 0,1…, of a unit shock to 𝛾1𝑡 at time 𝑡 = 0 

𝛾0 = [
𝑢10
𝑢20
] = [

0
1
] 

𝛾1 = 𝐴1𝛾0 = [
0.5 0.3
0.0 0.2

] [
0
1
] = [

0.3
0.2
] 

𝛾2 = 𝐴1𝛾1 = [
0.5 0.3
0.0 0.2

] [
0.3
0.2
] = [

0.21
0.04

] 

And so on. The same principles can be applied to VAR equations containing multiple variables or lags. 

Despite their widespread usage in modelling macroeconomic shocks, VARs can have some issues. One 

such issue is that they maintain the rather strong assumption that the parameters are constant over time, 

which may be too restrictive in macroeconomic applications (Koopman and Korobilis, 2009).  

 

4.3.3 Structural Vector Autoregression Model 

 

The structural vector approach to VAR estimation (SVAR) is also widely employed in the literature to 

explore linkages between macroeconomic shocks and commodity returns. The advantage of the SVAR 
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approach over other forms of vector autoregressive models is because it gives enough restrictions on 

the contemporaneous structural parameters and allows non-recursive restrictions based on the economic 

theory (Kim and Roubini, 2000). In the SVAR model, Shokr, Karim and Zaidi (2018) note that the 

dynamic relationship between the selected variables is given by: 

𝐵𝑌𝑡 = (𝑇1𝐿 + 𝑇2𝐿
2 +⋯+ 𝑇𝑘𝐿

𝑘)𝑌𝑡 + 𝜀𝑡 

Where B is a matrix (n x n) which summarizes the relationship between the selected variables, 𝑌𝑡 is a 

vector (n x 1) of the selected variables, T L is the kth order matrix polynomial in the lag operator (L). 

𝜀𝑡 is a vector (n x 1) of structural innovations, where its mean equals zero 𝐸(𝜀𝑡) = 0.⁡If we multiply the 

equation with (𝐵−1), the reduced form of the VAR equation is expressed by: 

𝑌𝑡 = 𝐵
−1(𝑇1𝐿 + 𝑇2𝐿

2 +⋯+ 𝑇𝑘𝐿
𝑘)𝑌𝑡 + 𝜀𝑡 

The estimated residuals 𝜖 and the structural innovations (𝜀) are related by: 𝑒𝑡 = 𝐵
−1. If Σ𝑒 is the 

variance-covariance matrix of the structural innovations and Σ𝑒 is the variance covariance matrix of the 

estimated residuals, the relationship between the two can be expressed as: 

∑ = 𝐵∑ 𝐵
𝑒𝜀

 

Maximum likelihood estimation of the variance covariance matrix of the estimated residuals Σ𝑒 and the 

contemporaneous matrix (B) can be obtained through the sample estimation of the variance covariance 

matrix of the structural innovations. As Σ𝑒 matrix contains 𝑛⁡ × (𝑛 + 1)/2 parameters, at least 

𝑛⁡ × (𝑛 + 1)/2 restrictions are needed. However, the contemporaneous matrix (B) needs 𝑛⁡ × (𝑛 −

1)/2 restrictions to achieve identical conditions. In the SVAR model, the contemporaneous matrix can 

be any structure or form (non-recursive), as long as it has enough restrictions (Kim and Roubini, 2000). 

We use AIC and BIC information criteria is used to determine the optimal number of lags to be used in 

the VAR model and its extensions. Information criteria do not require such normality assumptions 

concerning the distribution of errors. 

 

4.3.4 Time Varying Parameter Vector Autoregression Model with Stochastic 

Volatility 

 



 187 

While VAR and SVAR models are widely employed in the literature in modelling macroeconomic 

shocks and uncertainty, time varying changes in economic structure make in undesirable to assume 

constant coefficients and require the incorporation of multivariate stochastic volatility (Koop and 

Korobilis, 2009). To account for time varying features accurately, we additionally use the time varying 

parameter vector autoregressive model (TVP-VAR) of Nakajima et al. (2011) is additionally employed 

alongside the VAR and SVAR models. The TVP-VAR approach allows us to capture the potential time 

varying nature of the underlying structure in the uncertainty series’ in a flexible and robust manner. All 

of the parameters in the TVP-VAR specification are assumed to follow the first order random walk 

process, thus allowing both a temporary and permanent shift in the parameters (Nakajima, 2011). The 

TVP-VAR model preserves the basic structure of the VAR model, that is, it explains the joint evolution 

of economic variables through its own lags, but in addition, models the coefficients as stochastic 

processes (Lubik and Matthes, 2015).  

 

Following the procedure of Nakajima (2011), the TVP-VAR-SV model can be introduced with a basic 

structural VAR model defined as: 

𝐴𝑦𝑡 = 𝐹1𝑦𝑡−1 +⋯+ 𝐹𝑠𝑦𝑠−1 + 𝑢𝑡,⁡⁡⁡⁡𝑡 = 𝑠 + 1,… , 𝑛, 

Where 𝑦𝑡 is a k x 1 vector of observed variables, and 𝐴, 𝐹1…𝐹𝑆 and 𝑘⁡ × 𝑘 matrices of coefficients. 

The disturbance term 𝑢𝑡 is a 𝑘⁡ × 1 structural shock and we assume that  𝑢𝑡~𝑁(0, ΣΣ), where: 

Σ = [
σ1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎𝑘

] 

We specify the simultaneous relations of structural shocks by recursive identification, assuming that A 

is lower triangular,  

A = (

1 0 … 0
α21 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
α𝑘1 … α𝑘,𝑘−1 1

) 

The model can then be rewritten as the following reduced form VAR model: 

y𝑡 = B1y𝑡 +⋯+ B𝑠y𝑡−𝑠 + 𝐴
−1Σ𝜀𝑡, 𝜀𝑡~𝑁(0, I𝑘) 
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Where 𝐵𝑖 = 𝐴
−1𝐹𝑖, for 𝑖 = 1,… , 𝑠. Stacking the elements of the rows of the 𝐵𝑖’s to form 

𝛽(𝑘2𝑠⁡𝑥⁡1⁡vector) and defining 𝑋𝑡 = 𝐼𝑘⁡⨂(𝑦𝑡−1
′ , … , 𝑦𝑡−𝑠

′ ),⁡where ⨂ denotes a Kronecker product. The 

model can thus be rewritten as: 

y𝑡 = 𝑋𝑡𝛽𝑡 + 𝐴𝑡
−1Σ𝑡𝜀𝑡 

All the parameters in the equation are time invariant. This can be extended to the TVP-VAR model by 

allowing for the parameters to change over time. Consider the TVP-VAR model stochastic volatility 

which is specified by: 

y𝑡 = 𝑋𝑡𝛽𝑡 + 𝐴𝑡
−1Σ𝑡𝜀𝑡 ,⁡⁡⁡𝑡 = 𝑠 + 1,… , 𝑛 

Where the coefficients 𝛽𝑡 and the parameters 𝐴𝑡 and Σ𝑡 are all time varying. The procedure of Nakajima 

(2011) follows that of Primiceri (2005), whereby α𝑡 = (α21, α31, α32, α41, … , α𝑘,𝑘−1)
′⁡⁡is a stacked 

vector of lower triangular elements in 𝐴𝑡 and ℎ𝑡 = (ℎ1𝑡 , … , ℎ𝑘𝑡)
′, with ℎ𝑗𝑡 = 𝑙𝑜𝑔𝜎𝑗𝑡

2 , for 𝑗 =

1,… , 𝑘, 𝑡 = 𝑠 + 1,… , 𝑛.⁡The parameters in the above equation follow a random walk process, which 

can be expressed as follows: 

 

𝛽𝑡+1 = 𝛽𝑡 + 𝑢𝛽𝑡 , 𝑎𝑡+1 = 𝑎𝑡 + 𝑢𝑎𝑡 ,⁡⁡⁡ℎ𝑡+1 = ℎ𝑡 + 𝑢ℎ𝑡, 

(

𝜀𝑡
𝑢𝛽𝑡
𝑢𝑎𝑡
𝑢ℎ𝑡

)~𝑁

(

 
 
⁡0, (

𝐼 𝑂 𝑂 𝑂
𝑂 Σ𝛽 𝑂 𝑂

𝑂 𝑂 Σ𝑎 𝑂
𝑂 𝑂 𝑂 Σℎ

)

)

 
 
, 

For 𝑡 = 𝑠 + 1,… , 𝑛, with 𝑒𝑡 = 𝐴𝑡
−1Σ𝑡𝜀𝑡, where Σ𝑎 and Σℎ are diagonal, 𝛽𝑠+1~𝑁(𝑢𝛽0 , Σ𝛽𝑡),  

𝑎𝑠+1~𝑁(𝑢𝑎0 , Σ𝑎0), and ℎ𝑠+1~𝑁(𝑢ℎ0 , Σℎ0). See Nakajima (2011) for more details. Several remarks are 

required for the TVP-VAR model. Firstly, the assumption of a lower-triangular matrix for 𝐴𝑡 is recursive 

identification for the TVP-VAR model. Second, the parameters of the TVP-VAR model are not assumed 

to follow a stationary process such as a AR(1) model, but follow a random walk process. As previously 

mentioned, because the TVP-VAR model has a number of parameters to estimate, the number of 

parameters is decreased by assuming the random walk process for the innovation of parameters. 

Additionally, the variance and covariance structure for the innovations of the time-varying parameters 

are governed by the parameters Σ𝛽 , Σ𝑎 , and Σℎ. It is mostly assumed that Σ𝑎 is a diagonal matrix, 
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however Nakajima (2011) further assumes that Σℎ is a diagonal matrix for simplicity. The state variables 

of the TVP-VAR model are flexible and can capture both gradual and sudden changes in underlying 

economic structure. Since the TVP-VAR model forms a nonlinear, maximum likelihood estimation 

requires heavy computational burden to evaluate the likelihood function of each group of parameters, 

until we reach the maximum value. Thus, we adopt the approach of Nakajima (2011), which adopts 

Bayesian approach using MCMC algorithm to effectively estimate a TVP-VAR-SV model.  

  



 190 

4.4 Empirical Results  
 

This section presents the results of the estimation of the TVP-VAR-SV model parameters for each set 

(GPR, UKP, NFM), (GPR, USP, NFM) along with corresponding impulse responses of the VAR and 

SVAR models, which showcase how non ferrous metals respond to shocks from the GPR index and UK 

policy uncertainty. Impulse responses at different time horizons from the estimated TVP-VAR-SV 

model are also presented in this section, which allow us to interpret how non ferrous metals react to 

changes in GRP, UK policy and US policy uncertainty shocks at different points in time.  

 

4.4.1 Estimation of model parameters 

 

Lag selection the estimation of VAR, SVAR and TVP-VAR models is based in accordance with AIC 

selection criteria, which penalises the model for the number of parameters and selects the appropriate 

lag length based on minimises the AIC value. Based on results from AIC procedure, we find that for 

each of the metals and models, the optimal lag length chosen is 3 periods. Results are obtained by 

generating 10,000 draws of the posterior, with the first initial 1000 samples discarded for initialization. 

The parameter estimations for the TVP-VAR-SV model for each non ferrous metal with GPR, UKP and 

USP can be found within table 4.1 located in the appendix section of this chapter. The findings suggest 

that the estimated posterior means are included within the 95% confidence interval and that the standard 

deviations are small. The geweke statistic is less than 1.96 at the 5% confidence level for all estimated 

models, observing that the Markov chain is considered to have converged and parameters converges to 

posterior distribution. Inefficiency factors are relatively low, although we note slightly higher 

inefficiency factors for copper and zinc estimations. 

 

4.4.2 Impulse responses of effects of non ferrous metals on geopolitical risk index 

and UK policy uncertainty from VAR and SVAR models 

 

Impulse responses are widely used in conjunction with VAR models, with their main purpose being to 

describe the effects and evolution of a models variables in response to endogenous shocks in one or 
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more variables. Results obtained from VAR impulse responses of select non ferrous metals to GPR 

shocks can be shown from figure 4.1.1 to figure 4.1.5 within the appendix section, with impulse 

responses of non ferrous metal to UK policy shocks found in figures 4.1.6 through to figure 4.1.10. In 

the case of non ferrous metal responses to geopolitical risk index shocks, each metal with the exception 

of zinc highlight the biggest impact of shocks occurring between the 4th and 6th periods. Additionally, 

copper, nickel and zinc tend to respond negatively to shocks in the second period, while all metals with 

the exception of zinc respond positively to shocks in the third period after a GPR shock. Interestingly, 

all metals respond similarly to UK policy shocks, responding negatively to UK policy shocks after 2 

periods, and negatively to shocks after 3 periods, highlighting that the effects of shocks are reflected 

quickly in metals prices after the shocks occur, rather than persisting for a long period after the shock, 

as further reflected in the impulse responses, which show no significant positive or negative effects 7 

periods after a UK policy shock. It can be noted that in all cases analysed from the VAR model, the 

most prominent shocks in response to GPR shocks or UK policy shocks occur within 2 to 6 periods of 

the GPR or UK policy shock, with prices tending to converge fully to the shocks by the 7th period. 

 

Structural Vector Autoregressive models (SVAR) are also used in the literature to assess the impact of 

macroeconomic shocks on commodity returns. Figure 4.2.1to 4.2.5 showcases the results of impulse 

responses from SVAR model for select non ferrous metals in response to GPR shocks. Positive impulse 

responses for copper returns in response to GPR shocks can be noted the 2 and 5 period ahead horizon, 

with 4 periods ahead showcasing negative response to GPR shocks. Negative shocks for aluminium can 

also be observed for the 4 and 5 period ahead horizons, which precede positive responses at the 3 period 

horizon, suggesting that initial positive responses to GPR shocks are subsequently negative once 

information from the shocks is filtered through to the returns. This trend continues with tin and nickel 

impulse responses, with a positive response in the second horizon followed by a negative response at 

the 4 period horizon before levelling out. We note an inverse relationship with zinc, with negative 

responses to shocks at the 3 and 4 period horizon subsequently followed by positive responses at the 5 

and 6 period horizon. Similarly to the standard VAR model, for all metals analysed, no notable positive 

or negative responses are observed from the 6 period horizon to the 10 period horizon, suggesting that 
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information from shocks are fully reflected in returns by this period. Figures 4.2.6 to 4.2.10 present the 

results of impulse responses from the SVAR model in response to UK policy shocks. In the case of 

copper, large positive responses can be noted at the 2 and 5 period horizon, showcasing that responses 

to UK policy shocks are largely positive. Two negative responses are observable for aluminium after 

positive responses in the 2 and 5 period horizon respectively, potentially indicating aluminium returns 

are sensitive to changes in UK policy shocks. Likewise with the case for GPR shocks, most shocks for 

all metals occur within 5 periods of the initial UK policy shock and return to a baseline after 6 periods, 

highlighting that while non ferrous metals may exhibit volatility shortly after UK policy shocks, 

volatility returns to within a normal level after 5 periods. While non ferrous metals may be sensitive to 

GPR and UK policy shocks, these effects are not persistent and long lasting. 

 

4.4.3 Time-varying effects of economic policy uncertainty and geopolitical risk 

index on aggregate non-ferrous metal commodity price  

 

To study the effects of geopolitical risk and economic policy uncertainty on non-ferrous metal 

commodity markets, this chapter employs the standard VAR model, SVAR and TVP-VAR with 

stochastic volatility to produce time varying impulse responses to analyse the impact of GPR and UK 

policy shocks on non ferrous metal commodity returns. To compare the impulse responses over time, 

the value of shocks was set as the mean of random fluctuations of the sample period. For the TVP-VAR-

SV model, we set the impulse responses at 1 period, 5 period and 10 periods ahead which, in the case 

of daily data used in this chapter, corresponds to 1 day, 5 days and 10 day trading periods respectively 

Impulse response analysis of equal intervals can simulate impulse responses more effectively and reveal 

the differences among different terms (Zhou et al, 2020). Figures 4.3.1 to 4.3.10 showcase the results 

of impulses responses estimated using the TVP-VAR-SV model with the impact of geopolitical risk 

index (GPR) shocks on the respective non ferrous metal markets throughout different time periods. In 

the 1 period ahead horizon, which is denoted by the bashed green line within the impulse response plots, 

GPR shocks have significant positive and negative effects on the returns of non ferrous metals. In the 

cases of copper, these effects are largely negative responses, with downturns in periods such as the 2008 
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financial crisis and the September 11th attacks, suggesting that copper, zinc and tin returns had large 

adverse responses to these major geopolitical events. However, these are followed by sharp positive 

upturns impulse responses, suggesting for these three metals that after an initial shock to a significant 

geopolitical event, they are likely to rebound. Negative impulses response can also be noted in 2014, 

potentially coinciding with the annexation of Crimea in February and March 2014, and furthermore in 

early 2022 with a large prominent negative response in response to the Russian invasion of Ukraine in 

February 2022. Large positive responses are additionally noted for the three metals from the end of 

2022 up the end of the sample period at the end of 2023, which may be due to less volatility in the 

Russia/Ukraine conflict resulting in a positive upturn. Aluminium and tin 1 period impulse responses 

showcase far more volatility than other non ferrous metals, with a large negative reaction to GPR shocks 

in 2014. This may be in turn due to Chile, one of the worlds largest exporters of non-ferrous metals, 

was struck by a magnitude 8.2 earthquake on April 1st 2014.  At the 5 period horizon, showcased by the 

dashed blue line in the time varying impulse response plots, copper impulse responses are largely the 

inverse of responses at the 1 period horizon, showcasing properties that after the initial shock the 

information from the GPR is more accurately reflected in the copper futures. These responses, with 

notable exceptions coinciding with the aforementioned September 11th attacks and 2008 financial crisis, 

are largely positive up until 2014. Similar observable patters can be seen in the cases for aluminium and 

zinc, although in the case of nickel, 5 period response plots follow a similar path to 1 period responses, 

Additionally, at the 10 period ahead horizon, as denoted by the red line within the impulse response 

plots, the impacts of GPR shocks on non ferrous metal are close to zero with little amplitude, suggesting 

that after 10 periods, shocks from GPR have little positive or negative shock on non ferrous metal 

returns after 5 periods, with their effects on non ferrous metal returns further diminishing at the 10 

period ahead horizon. This pattern is observed with all non ferrous metals at the 5 and 10 period ahead 

horizon 

Figures 2.2 showcases the impulse response plots of the impact of UK policy uncertainty on 

corresponding non ferrous metals at differing time periods. At the 1 period interval, represented by the 

dashed green line in the impulse response plots, UK policy shocks appear to have positive and negative 

impacts on non ferrous metal returns at different time periods although not to the same extent as 
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geopolitical risk index shocks for some metals. In the case of copper, large negative responses to UK 

policy shocks can be observed in 2005, with the re-election of the Labour government in the UK general 

election in May 2005 and the London Bombings in July 2005 affecting UK markets. Conversely, the 

2010 UK general election resulting in the election of David Cameron’s conservative government saw 

positive impulse responses in the copper market at the 1 period ahead horizon. Notable UK policies in 

the 2010s include the 2016 UK referendum to leave the European Union and the 2017 UK trade bill 

created in response to the UK referendum to enable the creation of an independent UK trade policy, 

with Giammetti (2020) noting their design to reduce UK imports and encourage their subsidization by 

domestic purchases. Copper impulse responses to these policy shocks are initially negative but are 

positive shortly thereafter and are largely positive for zinc at the 1 period horizon but no identifiable 

trend can be observed for aluminium and nickel, although negative responses to the aforementioned 

events are present. At the 5 period and 10 period ahead horizons, denoted by blue and red lines 

respectively, nickel returns are still particularly sensitive to UK policy shocks throughout the entire 

sample period, suggesting that the effects of UK policy shocks may have a longer lasting effect on 

Nickel. Tin returns are similarly sensitive at the 5 period ahead horizon in response to UK policy shocks, 

although copper, aluminium and zinc showcase less sensitivity to UK policy shocks at the 5 period 

ahead horizon. Notably, in the case for all metals, at the 10 period ahead horizon, denoted by the red 

line in the impulse response plots, impulse responses so no significant positive or negative reactions to 

UK policy shocks. This is consistent with results from impulse responses from the VAR and SVAR 

model that while non ferrous metals do have significant positive and negative reactions to UK policy 

shocks, these effects diminish over longer horizons.  
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4.5 Concluding remarks 
 

In this paper, we study the effects of geopolitical risk and United Kingdom policy uncertainty on returns 

in the non ferrous metals commodity market, using daily data for non ferrous metals that are widely 

used for both industrial and portfolio optimization purposes, namely copper, aluminium, zinc, tin and 

nickel. Daily data from the geopolitical risk index constructed by Caldara and Iacoviello (2022) and the 

UK policy uncertainty index, covering a span from January 2000 through to December 2023, a period 

covering numerous geological events and conflicts such as the September 11th attacks in 2001, the 2008 

global financial crisis, the ongoing 2022 Russian invasion of Ukraine and the 2023 Israeli conflict with 

Palestinian back militant groups, along with major UK political events such as the 2005 and 2010 

general elections, the 2016 Brexit referendum to leave the European union and the 2017 UK industrial 

strategy to bolster the UK economy in preparation for its withdrawal from the EU.  

 

We use a vector autoregressive model (VAR), structural vector autoregressive model (SVAR) and a time 

varying parameter VAR model with stochastic volatility (TVP-VAR-SV) developed by Nakajima 

(2011) to produce impulse responses to analyse how GPR and UK policy shocks affect non ferrous 

metal returns. Results from impulse response analysis from VAR and SVAR models showcase evidence 

of significant and differing reactions to GPR and UK policy shocks, which persist until the 5 period 

horizon, showcasing that while these effects may be significant, they are not persistent and long lasting. 

Subsequent impulse response analysis at different time intervals after TVP-VAR-SV estimation shows 

significant positive and negative responses to major geopolitical events and UK policy events at the 1 

period and 5 period ahead response intervals but no significant responses at the 10 period interval, 

corroborating findings from VAR and SVAR analysis that responses to shocks are more significant at 

shorter intervals and diminish at longer time horizons. We also note that there is a degree of 

heterogeneity among the metals analysed, with copper the most resilient to UK policy shocks but 

amongst the most sensitive to GPR shocks. This adds to the knowledge of how commodity markets 

respond to shocks and the impact of geopolitical risks on metal markets. 
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From a decision making viewpoint, the findings in this chapter have implications from a policy 

perspective, with risk aversion playing an important role among investment decisions and policy 

makers. Investors can use the findings in this paper to adjust and mitigate their exposure to risk, with 

geopolitical events and decisions at the UK policy level having significant positive and negative impacts 

on non ferrous metal commodity returns. Industrial purchasers may also use the findings of this chapter 

to time bulk purchases of non ferrous metals to save money. With non ferrous metals being natural 

resources, they are heavily influenced by economic and geopolitical disruptions, and as such are at risk 

of sudden sharp increases in price and volatility in periods of short supply.  While this study has 

showcased the impacts of geopolitical risk shocks and UK policy shocks on non ferrous metal 

commodity markets using daily data, there is still work to be done in exploring this area further. Limited 

by the availability of daily policy uncertainty data regarding individual nations, we encourage the 

addition of further nations once the daily data for additional economies becomes readily available. 

Furthermore, with commodities being firmly interlinked with global environments, we encourage the 

potential future study of the effects of natural disasters, climate policy uncertainty and environmental 

uncertainty on commodity returns.  
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Appendix 
Table 4.1 TVP-VAR-SV Estimation for GPR Index, UK Policy Shocks and non ferrous metals 

 

 

Parameter Mean StDev 95%U 95%L Geweke Inef. 

Estimates for the set (GPR, UKP, Copper) 

sb1 0.0733 0.1601 0.0018 0.4460 0.001 253.12 

sb2 0.0159 0.0351 0.0017 0.0957 0.000 251.27 

sa1 0.0529 0.0058 0.0395 0.0633 0.000 308.96 

sh1 0.1251 0.0153 0.0848 0.1582 0.014 204.30 

sh2 0.0207 0.0078 0.0119 0.0412 0.001 315.31 

Estimates for the set (GPR, UKP, Aluminium) 

sb1 0.0023 0.0005 0.0018 0.0031 0.115 174.14 

sb2 0.0020 0.0002 0.0017 0.0029 0.167 87.69 

sa1 0.0080 0.0091 0.0033 0.0361 0.006 262.29 

sh1 0.1278 0.0094 0.1101 0.1490 0.635 98.82 

sh2 0.1706 0.0127 0.1459 0.1954 0.016 99.38 

Estimates for the set (GPR, UKP, Zinc) 

sb1 0.0151 0.0578 0.0020 0.2143 0.056 157.15 

sb2 0.0057 0.0163 0.0018 0.0830 0.066 286.45 

sa1 0.0716 0.0097 0.0569 0.8990 0.000 339.41 

sh1 0.1319 0.0239 0.1099 0.2278 0.028 270.22 

sh2 0.0144 0.0127 0.0054 0.4460 0.000 301.13 

Estimates for the set (GPR, UKP, Tin) 

sb1 0.0025 0.0010 0.0019 0.0044 0.229 191.33 

sb2 0.0021 0.0002 0.0017 0.0026 0.015 197.77 

sa1 0.0126 0.0246 0.0035 0.0853 0.002 254.17 

sh1 0.1273 0.0094 0.1106 0.1465 0.191 99.49 

sh2 0.1765 0.0163 0.1497 0.2090 0.135 118.24 

Estimates for the set (GPR, UKP, Nickel) 

sb1 0.0023 0.0002 0.0020 0.0028 0.051 163.32 

sb2 0.0021 0.0002 0.0019 0.0026 0.154 101.32 

sa1 0.0071 0.0087 0.0035 0.0397 0.004 273.49 

sh1 0.1274 0.0091 0.1104 0.1444 0.179 85.04 

sh2 0.1730 0.0130 0.1498 0.2003 0.211 110.14 
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Figure 4.1.1 VAR Impulse responses of Copper to GPR shocks 

 

 
 

Figure 4.1.2 VAR Impulse responses of Aluminium to GPR shocks 

 
 

 

Figure 4.1.3 VAR Impulse responses of Zinc to GPR shocks 
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Figure 4.1.4 VAR Impulse responses of Tin to GPR shocks 

 

 
 

Figure 4.1.5 VAR Impulse responses of Nickel to GPR shocks 
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Figure 4.1.6 VAR Impulse responses of LME Copper to UK Policy Shocks 

 
 

Figure 4.1.7 VAR Impulse responses of LME Aluminium to UK Policy Shocks 

 
 

Figure 4.1.8 VAR Impulse responses of LME Zinc to UK Policy Shocks 
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Figure 4.1.9 VAR Impulse responses of LME Tin to UK Policy Shocks 

 
 

Figure 4.1.10 VAR Impulse responses of LME Nickel to UK Policy Shocks 
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Figure 4.2.1 SVAR impulse responses of LME Copper to GPR shocks 

 
 

Figure 4.2.2 SVAR impulse responses of LME Aluminium to GPR shocks 

 
 

Figure 4.2.3 SVAR impulse responses of LME Zinc to GPR shocks 
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Figure 4.2.4 SVAR impulse responses of LME Tin to GPR shocks 

 
 

 

Figure 4.2.5 SVAR impulse responses of LME Nickel to GPR shocks 
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Figure 4.2.6 SVAR impulse responses of LME Copper to UK Policy shocks 

 
 

Figure 4.2.7 SVAR impulse responses of LME Copper to UK Policy shocks 

 
Figure 4.2.8 SVAR impulse responses of LME Copper to UK Policy shocks 
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Figure 4.2.9 SVAR impulse responses of LME Tin to UK Policy shocks 

 
 

Figure 4.2.10 SVAR impulse responses of LME Nickel to UK Policy shocks 
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Figure 4.3.1 TVP-VAR Impulse responses of LME Copper to GPR shocks at different time periods 

 
Figure 4.3.2 TVP-VAR Impulse responses of LME Aluminium to GPR shocks at different time 

periods 
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Figure 4.3.3 TVP-VAR Impulse responses of LME Zinc to GPR shocks at different time periods

 
 

 

Figure 4.3.4 TVP-VAR Impulse responses of LME Tin to GPR shocks at different time periods 
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Figure 4.3.5 TVP-VAR Impulse responses of LME Nickel to GPR shocks at different time periods 

 
Figure 4.3.6 TVP-VAR Impulse responses of LME Copper to UK Policy Shocks at different time 

periods 
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Figure 4.3.7 TVP-VAR Impulse responses of LME Copper to UK Policy Shocks at different time 

periods 

 
 

 

 

Figure 4.3.8 TVP-VAR Impulse responses of LME Zinc to UK Policy Shocks at different time 

periods 
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Figure 4.3.9 TVP-VAR Impulse responses of LME Tin to UK Policy Shocks at different time periods 

 
 

Figure 4.3.10 TVP-VAR Impulse responses of LME Nickel to UK Policy Shocks at different time 

periods 
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5.0 Concluding Remarks 
 

This thesis focuses on an array of areas within the finance literature regarding the estimation of 

volatility, namely volatility forecasting, conditional correlations and uncertainty shocks, within the 

contexts of the non ferrous metals market, estimated using various types of volatility models to obtain 

our findings.  

 

In chapter 2, we explore the forecasting ability of various models using the daily data of five non ferrous 

metals traded on the London Metals Exchange (LME). Several GARCH family models are employed, 

namely: GARCH, EGARCH and GJR-GARCH using gaussian and students-t distributions, the 

GARCH-MIDAS model and the GAS model using gaussian and students-t distributions. We 

additionally incorporate trading volume as a macroeconomic predictor variable into the GARCH-

MIDAS model in an attempt to improve forecasting performance. Forecasting performance is assessed 

using various loss functions and MCS test of Hansen (2011) to determine the best fitting models. To 

backtest the models, we conduct VaR analysis using the procedures of Kupiec (1995) and Christoffersen 

(1998). The out of sample forecasting comparison presents the standard GARCH model following the 

students-t distribution to produce the most accurate forecasts in most scenarios, beating out the GAS 

model and GARCH-MIDAS models. Additionally, trading volume is not found to improve forecasting 

performance for the GARCH-MIDAS model. The results of Kupiec (1995) and Christoffersen (1998) 

VaR tests confirm the robustness of our findings.  

 

Chapter 3 shifts the focus to the conditional correlation framework, with a further emphasis on the 

hedging effectiveness of non ferrous metals. This chapter uses various multivariate GARCH models, 

notably, symmetric and asymmetric DCC and BEKK GARCH models, OGARCH, GOGARCH and the 

DCC-MIDAS model, with CCC-GARCH used as a benchmark, to investigate conditional correlations 

between non ferrous metals and LBMA gold, ICE Brent crude oil and the S&P 500 index, representing 

3 of the most widely traded financial instruments. In our results, we present evidence of all metals 

exhibiting positive and negative spikes in conditional correlation in periods of economic instability, 
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such as the 2008 financial crisis, with copper having strong correlations with gold in periods with low 

correlations with brent crude and the S&P500 and vice versa. Likelihood ratio test results determine the 

DCC-MIDAS model to be the model with the highest goodness of fit of the models chosen. Extracting 

the conditional variances and conditional covariance matrices of the DCC-MIDAS model to compute 

dynamic optimal hedge ratios, we find that non ferrous metals have a mixed ability to serve as a optimal 

hedge, being a potential hedge to the S&P500, but having limited ability to hedge against brent crude 

oil.  

 

Chapter 4 focuses on the impacts of uncertainty shocks on the non ferrous metals market utilizing daily 

data of the geopolitical risk index of Caldara and Iacoviello (2022) and UK policy uncertainty in 

conjunction with the standard vector autoregressive (VAR) model, structural VAR and the TVP-VAR-

SV approach. Following impulse response analysis, our results show that GPR and UK policy shocks 

have significant positive and negative impacts on non ferrous metal returns up to a 5 period ahead 

horizon with diminishing effects up to the 10 period ahead horizon. Evidence from impulse response 

analysis at different time periods shows non ferrous metals react positively and negatively to GPR 

shocks and UK policy shocks at significant geopolitical events, such as the September 11th attacks, the 

2008 financial crisis and the 2016 UK Brexit referendum, at the 1 period ahead horizon, although the 

effects of shocks diminish at longer time horizons, indicating effects of shocks on non ferrous metal 

returns are not persistent. 

 

This thesis makes a few notable contributions to the literature. Firstly, it adds to the literature regarding 

non ferrous metals, of which few such empirical studies exist (Todorova et al. 2014). As previously 

mentioned throughout this thesis, non ferrous metals play an important role in economic development, 

as widely traded commodities and important industrial resources and, as such, it is important for fund 

managers and industrial consumers to know the price dynamics of non ferrous metals and their 

volatilities. Chapter 2 helps in this regard by informing practitioners not to arbitrarily select a 

forecasting model based on empirical findings, rather how to select their own models to evaluate 

forecasting performance. Accurate volatility forecasting enables effect risk management, portfolio 
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selection and policy implementation, providing them with an insight into accurate volatility forecasting, 

while additionally contributing to the literature surrounding the debate of whether trading volume 

improves forecasting accuracy. Chapter 3 showcases how non ferrous metals can be potentially 

implemented in a hedging strategy, with conditional correlations and wavelet coherence analysis 

identifying the short and long run behavioural characteristics of non ferrous metals and their linkages 

to popularly traded financial instruments. It is important for fund managers to diversify financial 

portfolios to optimize returns and minimize exposure to risk by selecting a basket of assets with 

opposing correlations to create beta neutral portfolios. It is also important for buyers and consumers, 

who will want to ensure the best possible price and hedge against negative market movements. Chapter 

4 finally contributes by applying the TVP-VAR-SV approach to the non ferrous metals literature using 

a daily data approach, displaying evidence of how geopolitical risks and policy uncertainty at the 

national level impact non ferrous metal returns in the short run. 


