University of Essex

Research Repository

LUFT-CAN: A lightweight unsupervised learning based
intrusion detection system with frequency-time analysis for

vehicular CAN bus

Accepted for publication in the Journal of Systems Architecture.

Research Repository link: https://repository.essex.ac.uk/41572/

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers
may not be reflected in this version. For the definitive version of this publication, please refer to the
published source. You are advised to consult the published version if you wish to cite this paper.
https://doi.org/10.1016/j.sysarc.2025.103567

www.essex.ac.uk

University of Essex

LUFT-CAN: A Lightweight Unsupervised Learning
Based Intrusion Detection System with Frequency-Time
Analysis for Vehicular CAN Bus

Yu Xin*P, Xiaohang Wang®"¢, Li Lu®", Shuguo Zhuo*?, Yingtao Jiang®,
Amit Kumar Singh?, Kui Ren®", Mei Yang®, Kaiwei Wu®P

@State Key Laboratory of Blockchain and Data Security, Zhejiang University,
Hangzhou High-Tech Zone (Binjiang), Institute of Blockchain and Data Security
¢ University of Nevada Las Vegas,

4 University of Esse,
¢ Corresponding author,

Abstract

The Controller Area Network (CAN) bus is critical for data transmission
among electronic control units (ECUs) in modern vehicles, necessitating ro-
bust intrusion detection systems (IDS) for security. However, existing IDS
approaches have several limitations. For example, rule based IDS methods
depend on proprietary protocol knowledge, while most machine learning ap-
proaches rely on supervised training using outdated or limited datasets, hin-
dering their ability to detect emerging threats. Furthermore, deep learning-
based IDS models often have high computational complexity, making them
unsuitable for resource-constrained vehicular environments. To overcome
these challenges, we propose LUFT-CAN, a novel, lightweight, unsupervised
IDS that integrates frequency and time domain analysis of CAN traffic. By
leveraging spectral characteristics of CAN ID sequences, LUFT-CAN effec-
tively distinguishes between normal and anomalous traffic patterns. A tai-
lored neural network architecture extracts these features, and the system
is optimized via quantization-aware training for real-time inference on em-
bedded systems. Experiments performed on datasets collected from modern
vehicles, Tesla Model 3 2022 and LeapMotor C10 2024 as well as a public
benchmark dataset demonstrate that LUFT-CAN achieves promising F1-
scores of 97.1% and 96.7%, significantly outperforming previous approaches.
We implemented the proposed IDS on a 2024 LeapMotor C10 test vehicle
equipped with a Qualcomm 8295 MCU. The model’s inference time is 14.27
seconds per 100,000 frames, demonstrating its effectiveness and efficiency for
in-vehicle deployment.

Keywords: Unsupervised Learning Based IDS, Intrusion Detection

Preprint submitted to Journal of Systems Architecture July 26, 2025

Systems, Controller Area Network

1. Introduction

The components and modules of connected and automated vehicles (CAVs)
have become increasingly complex. The controller area network (CAN) bus,
as the most widely utilized protocol, plays a vital role in serving as the stan-
dard interface for connecting a multitude of electronic control units (ECUs).
CAN bus is crucial for the reliable and efficient communication within the
vehicle’s network. It serves as the communication backbone, facilitating the
seamless exchange of data between various ECUs. CAN ensures reliable
and efficient transmission of critical information, which is essential for the
operation of Advanced Driver Assistance Systems (ADAS), telematics, and
autonomous functionalities.

Despite several advantages of the CAN bus, the broadcast nature of CAN
frames and the absence of security mechanisms, such as encryption and au-
thentication, introduce significant security vulnerabilities. A potential ad-
versary can exploit vulnerabilities through wireless networks to hijack an
on-vehicle ECU and sniff CAN traffic. By reversing engineering the data,
the attacker can decipher the semantic information of the CAN bus, gaining
remote control over vehicle functions. This could lead to severe consequences,
including the loss of valuables [1]. More seriously, a thief or attacker may
physically access the vehicle and connect to the CAN bus, enabling direct
control over doors, windows, or other components, thereby resulting in the
risk of accident or vehicle theft [2]. In the mobile remote control of vehicles,
attackers can utilize a femtocell device, functioning as a mini-cell tower in
low-signal areas, to set up unauthenticated Telnet or https services on the
femtocells, enabling remote access to the connected devices and the capability
to send arbitrary CAN packets to the CAN bus of the vehicles [3].

To protect in-vehicle networks against cyber attacks, many CAN intru-
sion detection systems (IDS) have been proposed to monitor CAN traffic to
detect malicious data frames, mitigating potential security risks. These meth-
ods fall into four categories: rule based IDS methods, traditional machine
learning (ML) based IDS methods, supervised deep learning (DL) based IDS
methods, and unsupervised deep learning based methods. The rule based
IDS methods, e.g. in [4], [5] and [6], utilized clock skew, offset ratio, and
bit values respectively, as the primary target to detect the anomalies. The
traditional ML based IDS methods in [7], [8] and [9] employed OC-SVM,
entropy analysis, and hybrid ML model etc., to classify messages as normal
or anomalous. The methods in [10], [11] and [12] utilized supervised DL
methods, such as convolutional neural network (CNN) or long short-term
memory (LSTM) network, achieving a high detection accuracy. The meth-
ods in [13], [14] and [15] designed unsupervised autoencoders to detect unseen

Table 1: Comparison of the Car-Hacking dataset [17] and dataset extracted from Tesla
Model 3 2022.

Feature Car-Hacking (2020) | Tesla Model 3 (2022)
Identifier (ID) v v

ID Categories 37 270

Data Length(DLC) v v

Data Field Size 8 bytes 8 bytes
Control Field Basic Enhanced
Extended Identifier X v

Precise Timestamp X v

Driving Data Minimal Detailed (GPS, etc.)
ADAS Control Data X v

attacks. Unfortunately, these above methods have the following limitations
and challenges:

e Rule based IDS methods depend on database of CAN (DBC) files with
the design of the CAN bus protocol, which are often unavailable to
third-party IDS vendors. Additionally, rule based IDS methods also
have high false positive rate, as they cannot detect previously unseen
attacks.

e Most of the ML or DL based IDS methods use supervised methods,
which cannot detect unseen anomalies because of limited training dataset.
On the other hand, most existing unsupervised methods generally per-
form well on open-source datasets extracted from old cars before 2020,
which tend to be simpler with typically only one or two features, as
depicted in Table 1. The old cars have CAN messages with minimal
driving data and no ADAS control data. In contrast, modern vehi-
cles including Tesla Model 3 2022 and LeapMotor C10 2024 have more
driving functions and specific ADAS, thus have more complicated CAN
messages. Therefore, existing methods, such as [10], [14], face chal-
lenges in adapting to the evolving CAN traffic in modern automotive
systems. When dealing with datasets with a greater number of features
from modern vehicles, their performance significantly declines, indicat-
ing their unsuitability with modern vehicles, as illustrated in Fig. 1.

e An IDS must be highly computationally efficient in a vehicle, where the
System-on-Chip (SoC) has limited computation capability and a very
low CPU utilization is required for IDS. However, most of the existing

3

[ITesla |
[l Car-hacking

0.95

o
©
:

Gap

o
I3
o

Accuracy

Gap

o
©

o

Y

a
T

o
3
:

o

)

13
T

.

[10] [14]

o
o

Figure 1: Accuracy gap of existing methods [10] and [14] when applied to the Tesla Model
3 2022 dataset and the Car-Hacking dataset [17].

ML or DL based IDS algorithms use highly complicated models with
huge number of parameters and thus they are not suitable to run in a
vehicle with limited computation resource.

To address the above limitations of existing approaches and challenges
that datasets from modern vehicles have more complex functions than the
old ones, in this paper, a lightweight unsupervised learning based IDS with
frequency-time domain analysis (LUFT-CAN) is proposed. LUFT-CAN is
developed with the following key observation.

In this work, we use frequency domain analysis for CAN bus traffic and
demonstrate that the frequency domain features of normal and anomalous
sequences differ significantly. Our proposed a model integrates FFT and
CNN to capture and process CAN ID components across different frequencies,
thereby enabling accurate anomaly detection.

For Tesla Model 3 2022, Fig. 2 shows the spectrum diagrams of nor-
mal and abnormal CAN sequences. In Fig. 2(a), normal CAN frames se-
quences exhibit periodic patterns corresponding to the three most significant
frequency components at 5 ms, 10 ms, and 20 ms, reflecting the regular com-
munication behavior of the CAN bus. In contrast, in Fig. 2(b), the DoS
attack introduces an abnormal direct current (DC) component in the low-
frequency domain, due to the flooding of noise frames, disrupting the normal
periodicity of the sequences. On the other hand, in Fig. 2(c), the frequency
spectrum of the fuzzy attack shows a highly irregular pattern, further di-
verging from the normal sequences. With fuzzy attack, multiple frames are
injected to reverse engineer the content of the data frames.

o o o
5 > ® -
T 1

o

‘“% :
|

Relative Intensity

°
@
g

100 150 200 250 300 350 400 450 500
Frequency
(a) Normal CAN sequence.

Abnormal
DC component

°

Relative Intensity

°

o
° %

0 250 a3
Frequency

(b) Under DoS or Spoofing attacks.

=

02

: "

Relative Intensity

M “‘|* HVV\ m'u m ‘l “ u

50 200 250 300 350 0 500
Frequency

(c¢) Under Fuzzy attack.

Figure 2: The spectrum diagrams of normal and abnormal CAN sequences. The traffics
under DoS/Spoofing/Fuzzy attacks are drastically different from normal traffics.

Another metric to analyze normal and abnormal sequences is cosine sim-
ilarity that provides a sense of similarity between two sequences. Table 2
shows cosine similarity of ID feature between two sequences of various types
with 10K CAN frames. The cosine similarity between two normal sequences
are 0.821, but this metric between normal sequences and those under DoS,
Spoof, and Fuzzy attacks is 0.207, 0.381, and 0.174 respectively, showing a
salient difference between normal CAN sequences and attacks.

Inspired by the above observation, in LUFT-CAN, a Fast Fourier Trans-
form (FFT) [16] module is used to analyze periodicity, global trends, and
noise suppression by highlighting low-frequency components and filtering out
high-frequency noise in the frequency domain. In the time domain, convolu-

Table 2: Cosine similarity between normal and abnormal sequences on the Tesla dataset.

Categories | Normal | DoS | Spoofing | Fuzzy
Normal 0.821 | 0.207 0.381 0.416

tional layers are used to capture the short-term features, including the order
of sequences and time interval of CAN sequences. To integrate time-domain
and frequency-domain analyses, the time series data of CAN bus are seg-
mented and reconstructed according to temporal periods computed through
FFT analysis. Data is segmented according to the periodicals and reorga-
nized as 2D tensors where convolution layers can capture both frequency-time
domain features. To reduce computation overhead, LUFT-CAN is further
compressed to fit the resource constrained vehicular SoCs.
The contributions of this paper are as follows:

e For the first time, we use frequency domain analysis on CAN bus data
and found the drastic difference of normal and abnormal sequences.
Inspired by this observation, a novel lightweight, unsupervised learning
based IDS model, LUFT-CAN, is proposed which can capture both
the frequency and temporal features of long time-series CAN frames
sequence. This model is the first one to our best knowledge using
frequency-time domain unsupervised autoencoder to address the limi-
tations of supervised learning based IDS. Additionally, LUFT-CAN is
optimized through weight quantization to enhance its efficiency, par-
ticularly in terms of execution time.

e To evaluate the performance of our method, we conducted a series of
experiments on two modern car datasets, i.e., from Tesla Model 3 2022
and LeapMotor C10 2024, as well as a public dataset [17]. The pro-
posed model achieves an F1-Score of 97.1% and 96.7% on the Tesla and
LeapMotor datasets, respectively, which are much higher than state-
of-the-art approaches.

e Our proposed method was ported to a LeapMotor C10 2024 test car
with a Qualcomm 8295 MCU, and the inference time of LUFT-CAN
is 14.27s per 100K frames, which is lightweight enough for real time
intrusion detection in real vehicles.

The remainder of this paper is organized as follows. Section 2 reviews the
related work. Section 3 presents the proposed method. Section 4 evaluates
the experimental results. Section V concludes the paper.

2. Related Work

This section provides an overview of existing works on vehicular network
security, including various IDS methods. The CAN IDS methods can be
categorized into four types: rule based IDS, ML based IDS, supervised DL
based IDS,; unsupervised DL based IDS. The characteristics, advantages, and
disadvantages of different types of works are summarized in Table 3, detailed
as follows:

2.1. Rule Based IDS

Rule based IDS methods rely on predefined rules or signatures to detect
anomalies or attacks within a system. The method in [4] improves CAN
security by generating unique fingerprints for ECUs based on their clock skew
fingerprints, resulting in identification of the responsible compromised ECU.
The method in [5] analyzes the offset ratio and temporal differences between
request and response messages by broadcasting remote frames on the CAN
bus and collecting responses from the sender nodes, thereby identifying the
compromised nodes with lower computation power. The method in [6] can
examine the bit values in the frame payloads by checking a whitelist quickly,
and trigger an alert when the binary sequence’s behavior deviates from the
whitelist.

While most rule-based IDS approaches rely on DBC files by comparing
observed CAN ID frequencies against predefined specifications, there also
exist data-driven methods that do not require DBC files. These include ap-
proaches that analyze features such as bandwidth utilization [5] or clock pe-
riods [4], which are particularly effective in detecting DoS attacks. However,
these methods generally fall short in identifying Spoofing or Fuzzy attacks,
which do not cause obvious changes in traffic patterns.

Furthermore, some researchers have designed IDS that utilize multiple
rules for detection. The method in [18] utilizes information entropy theory
to employ a multi-objective optimization algorithm with dual evolutionary
selection to enhance the IDS model and effectively balance these conflicting
goals.

Rule based IDS methods compare incoming data against known attack
patterns or behavior rules, triggering alerts when matches are detected.
While this approach is straightforward and effective, one method can only
detect one predefined type of attack. Further, it places high demands on
data traffic and is challenging to update to address the latest or previously
unseen attacks.

Table 3: Comparison of proposed methods and existing methods.

TO[, [T [12], T [3].[14][15],
Methods | APL6L | [TLIOLIOL | oo osl' o) | [28].[29].[30]. L
[18 2010211 | (25) [26] [27]. | [31][32][33].
Categories | Rule Based Tracli\;[tional Sup]csrzlsed UnsupDeEwsed Unsu%eﬁ"wsed
OC-SVM, CNN CNN+MLP, Frequency&
Models - Entropy, ; LSTM, Time
Mixed LSTM, GRU Transformer Analysis
Unseen
Attacks X X X v v
Detection
In]f)e;g}‘,ce low low high high low

2.2. Traditional Machine Learning Based IDS

Traditional machine learning based IDS methods rely on manually se-
lected features and supervised algorithms like decision trees or support vec-
tor machine (SVM) to classify traffic as normal or malicious. The method in
[19] proposed a lightweight IDS based on time-interval conditional entropy,
which measures the conditional entropy of CAN message sequences using
inter-message intervals. The methods in [7] and [20] select the data by ana-
lyzing the high-dimension entropy extracted from CAN frames and the CAN
data frequency based on ML methods. The method in [9] uses SVM to an-
alyze the data features. The method in [21] utilizes two distinctive features,
inter-frame space and counter information, and designs IDS model based on
random forest and XGBoost algorithms.

These statistical analysis methods and ML models employ fixed feature
extraction patterns. However, they fail to capture the characteristics of com-
plex attacks. Additionally, their accuracy is low, and the range of detectable

attack types is limited, making them unsuitable for the demands of modern
CAN IDS.

2.3. Supervised Deep Learning Based IDS

The method in [10] transforms the CAN ID into 2-dimensional binary
matrix and uses a model based on the CNN to extract the spatial features
of the CAN frames. The method in [22] utilizes the image network to an-
alyze the 2D feature maps extracted from CAN sequences. The method in
23] develops a supervised constructive ResNet model for classifying multi-
ple CAN bus attacks, addressing the multi-class classification problem by
distinguishing normal traffic from various types of attacks. The method in
[11] converts a CAN frame into a vector and uses a hybrid method with
1-D CNN and LSTM model to extract the spatial and temporal features of
consecutive CAN frames. The method in [24] combines autoencoder and gen-
erative adversarial network (GAN) to handle large volumes of labeled data.
The method in [25] employs an LSTM in a multitask learning framework
to detect multiple anomalies. The method in [12] integrates self-attention
mechanism with Gated Recurrent Unit (GRU) model to extract long term
dependency from longer CAN frames sequences. The method in [26] em-
ploys a sequential CNN approach to automatically extract spatial features
from in-vehicle network traffic. The method in [27] designs an auxiliary clas-
sifier GAN to generate more abnormal CAN frames sequences to balance the
ratio of norms and anomalies to increase the detection accuracy.

The methods above cannot detect previously unseen attacks, as they are
limited to defend against the attack types represented in the training dataset.

2.4. Unsupervised Deep Learning Based IDS
Unsupervised learning model requires only the normal data for training,
thus can detect unseen attacks and demonstrating greater robustness than

8

supervised counterparts. Normal data is the majority in numbers, while
anomalous CAN bus data are scarce and unpredictable, resulting in high
labeling costs and imbalance in datasets. Unsupervised methods do not rely
on pre-labeled anomalous samples and only depend on the normal samples.
Moreover, since they do not require labeled data, they assess the distance
with mean square loss or cosine similarity between anomalous and normal
states, regardless of whether the anomalies stem from seen or unseen attacks.
The method in [13] combines CNN and multilayer perceptron (MLP) to
create a hybrid autoencoder to reconstruct the input ID sequence, analyzing
anomaly scores with the correlation between the original and reconstructed
sequence. The method in [28] deploys a CNN-LSTM model to fit for the one-
shot learning to detect unseen attacks. Autoencoder-based CAN IDS works
for unsupervised training, but simple CNN or MLP networks are insufficient
for extracting complex time series information from CAN data messages.
A few works use time series analysis model for CAN IDS. The methods in
[14] and [29] employs LSTM to predict future CAN frames sequences for the
intrusion detection. The method in [30] employs an LSTM autoencoder to
recognize intrusive events from CAN gateways.

However, unsupervised LSTM exhibits low accuracy as it struggles to
capture the long-term sequence feature of the entire CAN frames sequences,
so the attention mechanism is introduced into model. The method in [31]
designs a bidirectional encoder representations from transformers (BERT)
model to reconstruct the CAN frames with masked autoencoder method.
The method in [32] converts CAN IDs into consisting word tokens and de-
signs a generative pretrained transformers model to learn the normal patterns
of CAN ID sequences. The method in [15] combines LSTM with attention
mechanism for long term CAN frames prediction. The method in [33] fuses
CNN and RNN with attention mechanism to identify driving behavior em-
bedded in CAN sequences.

However, the attention mechanism involves huge computation overhead,
which limits its application in recourse constraint vehicular environments.
The method in [34] designs a patch-transformer and BiLSTM fused model
to predict CAN sequence and uses model distillation method to decrease the
computation demand but this method also cannot be implemented on real
cars as its overall computation overhead is still too high.

3. Threat Model

This section delineates the threat model adopted throughout our research.
We assume that an attacker has the capability to remotely compromise one
or more ECUs through a wireless interface, such as a telematics port [35],
or physically via the On-Board Diagnostics IT (OBD-II) port [36]. There are
three types of intrusion attacks against CAN bus [17], introduced as follows:

3.1. Denial of Service (DoS) Attack

In this attack, the attacker deliberately disrupts normal operations by
overwhelming the network with an excessive number of CAN messages. This
is achieved by exploiting the priority mechanism inherent in the CAN pro-
tocol, where messages with lower numeric IDs are granted higher priority
during arbitration. By injecting messages with the lowest possible identi-
fier (ID 0x000), an adversary ensures that these messages consistently win
the arbitration process, thereby effectively monopolizing the bus. As a conse-
quence, legitimate messages from other nodes are delayed or entirely blocked,
leading to a significant degradation in system performance.

3.2. Fuzzy Attack

This attack is characterized by the injection of data that exhibits random
identifier sequences. The adversary generates CAN messages with arbitrary
IDs and corresponding data frames, without knowing any pre-defined proto-
col or structure. The randomness in the CAN IDs, ranging from 0x000 to
0x7FF, which covers the entire spectrum of possible identifiers, is intention-
ally employed to obscure the inherent semantics of the messages. Then, the
attacker aims to facilitate reverse engineering of the communication protocol
and to induce confusion among the receiving nodes. This attack can lead
to an overall degradation of system performance, and may even allow the
attacker to glean sensitive information about the underlying architecture or
operational parameters of CAN network.

3.8. Spoofing Attack

In this attack, the adversary first intercepts and monitors valid messages
transmitted by a specific ECU. By analyzing these messages, the attacker
gathers critical information about the transmission frequency and the format
of legitimate messages. The next phase of the attack involves the imitation of
the compromised ECU. The attacker reproduces the intercepted messages at
the same or a higher frequency, thereby misleading other ECUs into believing
that these messages originate from the authentic source. This replication can
induce abnormal behaviors within the network. For instance, it might cause
nonauthorized control of vehicle functions, such as activating lights or other
systems directly through the injected CAN messages.

All the attack mechanisms mentioned above are based on message injec-
tion. The message injection attack is affected by the frequency at which the
ECU sends CAN frames and the interval between adjacent CAN messages.
Based on such foundings, we propose an unsupervised model which can an-
alyze the frequency-time features of CAN frames and extract the normal
scenarios of the entire CAN sequence.

10

4. The Proposed LUFT-CAN Model

4.1. Overview

According to the observation in Fig. 1, LUFT-CAN extracts the fre-
quency and time domain features that differentiate the benign status from
abnormal ones. LUFT-CAN has two phases: model training and anomaly de-
tection, as shown in Algorithm 1. In the training phase, the model iteratively
learns a representation of normal data by reconstructing each input sample
from the training dataset and minimizing the reconstruction error calculated
by the mean squared error (MSE). Once training is complete, a threshold is
established based on the reconstruction loss of the training data, serving as
a benchmark for anomaly detection. During the anomaly detection phase,
each sample from the test dataset is processed by the trained model to gen-
erate a reconstructed output. The algorithm calculates an anomaly score by
measuring the discrepancy between the test sample and its reconstruction. If
this anomaly score exceeds the predefined threshold, the sample is classified
as an anomaly. Otherwise, it is considered normal. The advantages of the
proposed IDS method are as follows:

e To capture characteristics of the time and frequency domains, the CAN
sequence is segmented according to the frequency components. Convo-
lutional layers are used to extract features of these segments, followed
by a layer to concatenate those features. In this manner, the differences
between benign states and those under attack in both frequency and
time domains can be captured for anomaly detection.

e To improve the computational efficiency, a model compression method
is proposed with weight quantization to make the model lightweight.

4.2. Data Preprocessing

Fig. 3 illustrates the fields within the CAN bus data frame. The Arbitra-
tion ID (CAN ID) serves as a unique marker to denote the type or category
of each data frame. Data frames with distinct CAN IDs are transmitted
and interpreted by Electronic Control Units (ECUs) with specialized func-
tions. The payload, encompassing 64 bits (equivalent to 8 bytes, ranging
from DATA [0] to DATA [7]), is structured such that each individual bit or
a concatenation of multiple bits corresponds to a specific function or status
present in the actual vehicle. The data preprocessing step works as follows:

11

Algorithm 1: The proposed IDS method.

Input : Training-loader X;,qin, Testing-loader X,
Output: Intrusion detection result
// Model Training Phase:
while Model has not been trained do
for s € Xy,4in do
§ = Model(s);
Loss = MSE(s, s);
Loss.backward();
end
end
Calculate Threshold 7: by Loss of Xyqin;
// Anomaly Detection Phase: 1 represents anomalies, 0
represents norms
9 for Stest € Xtest do

[* I BRSNS

10 Stest = Model(Sest);

11 AnomalyScore R(sgest) = MSE(Stest, Stest);
12 if R(Stest) > 7 then

13 | result = 1;

14 end

15 else

16 | result = 0;

17 end

18 end

4.2.1. Format Convertion

The proposed IDS model handles CAN frames a time-series sequence. In
the CAN data frames, the ID field varies over time, and the time series is
formed with respect to the ID. The payloads of different CAN IDs have differ-
ent functional definitions and adjacent CAN frames typically have different
IDs. There is no inherent relationship between the payloads of adjacent
frames, nor do they contain meaningful temporal information. Therefore,
including payloads as model input is useless, which is also the case as in
previous works [13], [14]. Consequently, we confine our analysis to the ID
field of the captured CAN data frames by converting from hexadecimal to
decimal.

4.2.2. Timestamp Processing

Although there is no timestamp attribute in CAN frames, we can get the
timestamps from the CAN sniffer device when collecting the data. Upon an-
alyzing the entire dataflow of the CAN bus, it can be observed that the time
interval between adjacent data frames is time varying. Hence, we incorporate

12

CAN Frame

Control Control

Arbitration
Field Payload CRC I “Field

ID

~lmow
== 1=

11 6 64 15 10

Figure 3: The standard structure of CAN frame.

an analysis of timestamps during preprocessing by adding the time interval
between adjacent data frames as a new feature, and the time intervals be-
tween same ID frames is also extracted as auxiliary features for analysis. A
consecutive CAN frames sequence is defined as follows:

{Fdl,thv Fd27Q272> Fds,%,?n) de#}m,m} <1>

where F'is a CAN frame, m is the frame index in the sequence, d,, is the
CAN ID of the frame, g, is the occurrence index of ID d,,. The feature of
each frame can be expressed as a tuple:

< dm7 tsdvamym - tsdm»‘]m—l’ tsdm,m - tsdm—hm_l > (2)

where ts donates the timestamp of a CAN frame. This tuple serves as the
input to the model, as illustrated by the Input s in Fig. 4(a).

The time intervals between frames with the same CAN ID are fixed, which
allows for predictable patterns that can be utilized as features in the model.
By incorporating intervals between frames as features, it enables the model
to more effectively distinguish between normal and anomalous behavior.

4.2.3. Data Normalization

We use the reversible instance-wise normalization (RevIN) module [39]
when preprocessing the data. The RevIN module can normalize the traffic
data to a mean of 0 and a standard deviation of 1, and the inverse re-
versible instance-wise normalization (iRevIN) module can restore the nor-
malized data. Initially, the RevIN technique denoises non-stationarities from
the input traffic data, thereby mitigating intrinsic distribution shift issues
inherent in time series data. As a result, the CAN dataflow becomes more
concentrated and more analyzable for the DL model.

4.83. The Proposed LUFT-CAN Architecture

The overall architecture of the proposed IDS model is illustrated in Fig.
4. To simultaneously capture both temporal and frequency-domain features,
the time series data including CAN ID and time intervals which are one
dimensional are segmented according to their periodicals and these segments

13

1200, : f,=11t,

SN /\ f=11t,
1000 -
- t, FFT, fi=1/t,
800 v
A
o | b Attt by b g ot Al
% index 0 frequency
Segment
&Concat

Linear

%% 4 Gi1+Ge+Gs

Feature Map

Segment
&Concat
Segment

Gl G2 G3

(a) Model architecture of segmentation module.

Feature Conv Conv Conv Flatten m
[Map Block Block @‘r Block o Output Map Linear -

(b) Model architecture of feature expansion and refactoring module.

Figure 4: Overview of our proposed model architecture.

are reorganized as a 2D matrix as shown in Fig. 4(a). This makes data
suitable to convolutional layers for feature extraction. The FFT [16] module
is used to analyze the frequency components, extracting periodicity, global
trends and perform noise filtering of CAN sequence. In the frequency domain,
the signal trends are captured by low-frequency components, while high-
frequency components correspond to noise and thus low pass filtering can
remove noises by selecting the top-k frequency components with the highest
intensity.

The time domain features encompass short-term trends, such as local vari-
ations and abrupt changes, which reflect dynamic fluctuations within short
time windows, and long-term dependencies, including continuous trends and
evolving seasonal patterns. In CAN data sequences, the short-term trends

14

are more important than long-term dependencies because the ordering of dif-
ferent data frames and the intervals between frames in the CAN sequences
are much more critical than the overall variations in their quantity and in-
tensity. Therefore, the convolutional neural network is selected as backbone
layers instead of transformer with attention mechanism which focus more on
long-term dependencies [37].

Overall, the preprocessed CAN bus data is fed into the FFT module
for frequency domain analysis of the CAN sequence. Then, the sequence is
segmented into multiple groups according to the frequency components, re-
sulting in the formation of several feature maps [38]. These feature maps are
then processed by the feature expansion module to generate high-dimensional
feature maps in order to extract and represent more comprehensive temporal
features. Finally, the feature maps are mapped back to a predicted sequence
through a flattening layer and a linear layer. The modules of the model are
as follows:

4.8.1. Sequence Segmentation Module

As shown in Fig. 4(a), this module segments the CAN frames sequence
into distinct groups of segments according to different frequency components.
A 2-D feature map is later formed upon these segments, which captures the
frequency-time domain features.

Initially, the CAN frames sequence s of length [is input into the module.
The top-k frequency components are obtained by FFT, as follows:

{f17f277fl77fk}:t0pk(FFT(S)) (3>
where f; denotes the i-th frequency component, and the number of k is a hy-
perparameter of this model. A corresponding sequence of periods {t1,ts, ...t}
is formed by:

1
ti:?’ ie {1,2,,k} (4)
Then the CAN frames sequence is segmented into k groups {G1, Gs, ..., Gy}
according to the periods in the sequence {t1,ts,...,%;} , each corresponding

to a unique feature vector group. The sequence lengths for these groups are
as follows:

l
li:t—, ?:E {1,2,,]{7} (5)
where [; denotes the length of the vector group G; , divided by ¢; . We
apply three distinct linear layers with the number of input channels [; and
the number of output channels being ¢, as follows:

'§i,j = Lz’nean (Si,j) ,i - {1,2, ceey k’},] - {1,27 e lz} (6)

15

where s; ; denotes the raw vector of GG , 3; ; denotes the linearized vector of
G; . In this manner, the vector length of {Gy,Gs, ..., G} becomes c¢. The
one-dimensional feature vectors are concatenated in parallel, resulting a two-
dimensional feature maps { M, M, ..., M} , each with dimensions of ¢ x t;,
as follows:

M,; = concat ('§i,17'§i,27 ~--a§i,li) ,i S {1,2, ...,l{?}, {.§Z‘71,§i72, -"7'§i,li} € Gz (7)

Eqn. (7) is the reorganized 2D tensor M transformed from the 1D CAN
data sequences G; as in Eqn. (3).

4.8.2. Feature Expansion Module
As shown in Fig. 4(b), this module is designed to generate high-dimensional

features from the two-dimensional feature maps for richer transformations
through nonlinear activation functions, enabling the model to learn more
complex mappings. This module consists of several blocks of convolutional
neural network layers. As illustrated in Fig. 3(b), the first layer has four
convolution channels with kernel sizes of 1 x 1,3 x 3,5 x 5,7 X 7, respectively,
each with a stride of 1, while padding is applied to maintain the spatial di-
mensions of the feature maps. For activating the features, GeLU activation
is applied following the first convolutional layer for the retention of positive
features and the discarding of negative features, that is:

M, v, = GeLU (Conuvyy, (M;)) i € {1,2,....k}, pe {1,3,5,7} (8)

where M ., donates the output of convolutional layer with the kernel size
of p x p. The GeLLU function is as follows:

GeLU (z) = - % (1 4 tanh (@ (+ 0.044715:1:3))) 9)

where @ represents each input element of GeLLU function. The resulting fea-
ture maps from each channel are concatenated along the channel dimension,
as follows:

Mi = concat (Mi,lxla Mz',3><37 Mz’,5><57 Mz‘,?x?) 1 E {17 2, .. k?} (10)

The output channel count of the first convolutional layer is four times of the
input channel count. The result is passed to the second layer which mirrors
the structure of the first layer: it has an input channel number that is four
times of the original, and the number of output channels is identical to the
original channels, thus forming an inverted residual structure to enhance
feature representation. The final output of the convolutional layers is also
activated using GeLU and serves as the output of the convolutional block

16

and is connected by a residual module. The entire feature expansion module
is as follows:

M = M + ConvLayer2 (ConvLayerl (M)) (11)

where M denotes the output matrix of feature expansion module, ConvLayer
includes the convolutional layers and GeLLU activation function. The number
of convolutional blocks is a hyperparameter of this model.

4.3.3. Data Refactoring Module

This module is designed to convert the high-dimension feature maps into
the predicted sequence. This module consists of a flattening layer and a fully
connected layer, as follows:

8 = Linear (Flatten <M>> (12)

where § denotes the output vector of this module. The flattening layer con-
verts the high-dimensional feature map into a one-dimensional feature vector,
while the fully connected layer aligns the length of this feature vector with
that of the input vector, producing the predicted sequence. The predicted
sequence output by this module serves as the final output of the model.

4.4. Training and Threshold

In the training phase, we choose mean squared error (MSE) as the loss
function and reconstruction error as follows:

n

1 2
L - — T Ai 13
088 = — ;:1 (yi — Us) (13)

where vy; , ; are the elements in raw and reconstructed sequence s, 8§ respec-
tively, n represents the length of the sequence. During training, the model
is iteratively optimized to minimize the MSE between each input s and its
reconstructed output 8. The model’s reconstruction error on the validation
set is used to evaluate its fitting performance.

We use the Adam optimizer with a learning rate of 0.0001 and adopt
a warm-up scheduler. We apply the early stopping mechanism during the
training phase to minimize overfitting and ensure that the model generalizes
well to unseen data. By monitoring the model’s performance on a validation
set, we interrupt the training process when the performance stops improving
for a specified number of epochs, thereby avoiding unnecessary computation
and preventing the model from becoming too tailored to the training data.

17

This helps to achieve a balance between underfitting and overfitting, improv-
ing the model’s overall robustness. If the training loss keeps decreasing but
validation loss starts increasing, as follows:

L08Strain (t) < LOSStrain (t — 1)

L0SSya) (1) > L0SSya1 (t — 1) (14)
where t represents the training epoch, it is considered that the model has
been fitted. Because of the early stopping strategy, the number of training
epochs is not fixed, with an average number being 100.

Once training convergence is reached, a threshold is derived based on
the distribution of reconstruction errors over the training set, following an
existing selection method [40]. Specifically, the MSE values for all training
samples are analyzed, and a suitable percentile or statistical criterion is cho-
sen to establish the threshold. This threshold then serves as the criterion for
distinguishing normal from anomalous inputs in subsequent inference stages.

Initially, the model computes an anomaly score R (s) for each sample s
based on MSE. The first phase involves analyzing the distribution of these
scores on the training set Xr,4,. A candidate threshold is defined by select-
ing a specific quantile of the training set score distribution. For instance, if
the 95th percentile is chosen, the preliminary threshold is given by:

T(train) = Quantile(g gs) {R (8) | 8 € Xirain) (15)

which represents the upper bound of anomaly scores for the majority of
normal instances as learned during training. In our experiments, the approx-
imate proportion of anomalies is used as the chosen percentile, with 95th
percentile typically being selected.

In the second phase, the validation set is used to refine this threshold. The
anomaly scores for the validation samples are computed, and the candidate
threshold is adjusted to optimize a performance metric such as the Fl-score.
This can be achieved through a grid search or an iterative process where
multiple candidate thresholds are evaluated against the validation set Xy qq-
The optimal threshold 7 is then selected as the value that best balances the
trade-off between false positives and false negatives, ensuring that the model
accurately identifies anomalies without excessive misclassification. Thus, the
final threshold can be represented as:

7 = argmax F1 — score (7" Xvatid) (16)

where 7/ varies over a range of candidate thresholds in the training set Xr,qin.
This two-step approach, combining the statistical properties of the training
set with performance-driven calibration on the validation set, ensures that
the anomaly threshold is both statistically sound and practically effective,
performing well on the test set Xpeq.

18

Accuracy (%)
8 8

@
a

N

4 8
Bit-width

Figure 5: Accuracy comparison for 2-bit, 4-bit, and 8-bit quantization on the Tesla dataset.

4.5. Model Compression

To improve the computational efficiency, Quantization-Aware Training
(QAT) strategy [41] is used to compress CNN layers after the model has
been trained. QAT involves simulating the effects of quantization during
the training phase, allowing the model to learn under conditions that mimic
lower precision. This model implements 8-bit quantization, which can be
expressed mathematically as:

Wi
Wi, j,quantized = round <2b_1_’11> (17>
where w; ;j and wj j quantizea denote the weights of the proposed method and
the quantized model respectively, b is the bit-width of the quantized weights,
which equals to 8 in our proposed method. It is evident that reducing the
precision of model parameters can lead to a degradation in model accuracy.
Therefore, we adopt the Quantization-Aware Training (QAT) approach to
mitigate this loss. Specifically, for the trained LUFT-CAN model, we insert
fake quantization nodes to simulate parameter quantization. Then we use the
supervised fine-tuning on the quantized-aware model using the full dataset,
allowing the original model parameters to adapt to the quantization-induced
errors. This procedure significantly reduces the accuracy loss when the final
quantized model is obtained. Fig. 5 illustrates the accuracy across different
quantization precisions. Notably, 8-bit quantization achieves highest accu-
racy and thus is adopted in our method.

5. Evaluation

In this section, we evaluated the performance of the proposed IDS method
on two datasets extracted from modern cars, Tesla Model 3 2022 and Leap-
Motor C10 2024, and a public Car-Hacking dataset [17].

5.1. Experimental Setup

Our proposed IDS method is developed using Python with the Pytorch
[42] library. The experiments were conducted on a personal computer equipped

19

with an Intel i7-13700K CPU and an NVIDIA RTX 4060 GPU with 8 GB
memory, running Windows 11. To evaluate the inference efficiency in the
computing resource constrained environment, we used a Raspberry Pi 4B
with a BCM2711 CPU (4 Cortex-A72 cores at 1.8 GHz) and 8 GB RAM,
running Ubuntu 22.04.

There are two hyperparameters in our proposed IDS. The model employs
a top-k selection mechanism in the segmentation module, by choosing the pe-
riods with the highest top-k intensity, and k=3, ensuring that only the three
most relevant elements are retained at each selection step. Additionally, the
proposed IDS model incorporates three convolutional blocks, facilitating hi-
erarchical feature extraction and enhancing the model’s capacity to capture
complex spatial representations. This configuration balances computational
efficiency and representational power, optimizing performance for the intru-
sion detection on the real cars.

To compare, four recent IDS works, [10], [13], [14], [26] were selected.
The method in [10] applies a DCNN network for network traffic patterns
and identify malicious traffic with the spatial features. The method in [13]
designs an unsupervised IDS with CNN layers and MLP autoencoders which
is the best unsupervised learning based IDS on [17] so far. The method
in [14] employs an LSTM model to identify anomalous messages within the
CAN bus. The method in [26] employs a sequential CNN approach to ex-
tract spatial-temporal hybrid features from CAN frames. For each dataset
and each method for comparison, retraining and hyperparameter optimiza-
tion were performed using the corresponding dataset. Since the methods for
comparison have not released their source code, we reproduced them based
on our understanding of their original papers. The experimental results were
obtained with parameters carefully tuned to the best of our ability. To en-
sure a fair comparison, we employed EarlyStopping to prevent overfitting
and performed grid search hyperparameter tuning [45]. The search space in-
cluded variations in learning rate (1e-3, le-4), batch size (16, 32, 64, 128), and
training epochs (5, 10, 20). Optimal settings were determined via validation
accuracy.

We also ported LUFT-CAN to a LeapMotor C10 2024 test car with Qual-
comm 8295 MCU. The IDS model was trained on the personal computer with
GPU support and then deployed on a central electric control unit (ECU) or
microcontroller unit (MCU), which connects to the CAN bus and is capable
of reading real-time CAN frames. The operating system in this car provides
APIs designed for reading the real-time CAN bus data, enabling a continu-
ous sequence of single-frame messages to be read by simply calling this API,
without the need for segmentation. Each incoming frame is processed by a
preprocessor, which reads the data and stores it in a buffer. Once 100 frames
are accumulated in the buffer, they are subsequently fed into the IDS model
for inference. This process ensures that the model can handle large amounts
of real-time data effectively, allowing for continuous monitoring of the CAN

20

Car-Hacking Dataset [1] Tesla Dataset

1100 1200

1000 1 1100

©
o
1=}

1000
800 900

700 800

ID Value
ID Value

600 700

500 600 -

400 500
0 50 100 150 0 50 100 150

Index Index
Figure 6: Difference between the Car-Hacking dataset [17] and the Tesla dataset.

bus traffic and the detection of potential anomalies.

The training time of LUFT-CAN model is around 10 seconds for each
epoch with a 100K training set; and thus for a specific car, it can be trained
within 12 epochs, i.e., 2 minutes in total, and detect threats later on. For
different cars, LUFT-CAN needs to be retrained to capture the distinct in-
ternal frequency-time features of CAN bus for each vehicle which takes 2
minutes and thus is very efficient. Since our model is lightweight enough, the
approach of using transfer learning with another vehicle’s dataset does not
significantly reduce the training time compared to retraining.

5.2. Modern Cars Datasets

We generated two CAN datasets from a Tesla Model 3 2022 and a Leap-
Motor C10 2024. Through data reverse engineering, we launched three dif-
ferent types of network attacks on the vehicles’” CAN bus systems: DoS,
Spoofing and Fuzzy. Among these, two types of Spoofing attacks were im-
plemented: manipulating the vehicle’s turn signal and horn, which are easy
to identify on real cars. We monitored and collected traffic on the CAN bus
and reverse engineer the CAN bus data fields according to [44], generating
a dataset containing both benign and malicious data. Compared to existing
datasets, such as the Car-Hacking dataset [17] whose data were collected
from old cars before 2020, the data collected from modern vehicles after 2022
has more frequency components, as illustrated in Fig. 6.

Our datasets include over 200 unique CAN IDs and a larger number of
frequency components. In contrast, the existing public dataset [17] collects
data from older vehicles before 2020 with fewer functionalities, including only
about 40 CAN IDs, which makes it outdated and less suitable for modern
vehicle systems. For the Tesla dataset, the training set consists of 1M normal
frames, while each of the four attack types in the test set includes 500K sam-
ples with injection attacks. It provides a diverse range of normal and attack
data to train and evaluate the IDS model. For the LeapMotor dataset, the
training set comprises 500K normal frames, and each of the two attack types

21

Table 4: Experimental results on the Tesla dataset.

Attack Model Accuracy Recall Fl-score AUC FPR
DoS DCNNJ10] 0.764 0.621 0.797 0.668 0.285
Hist CAN|[13] 0.348 0.252 0.516 0.356 0.539

LSTM][14] 0.642 0.352 0.573 0.518 0.316

Hybrid[26] 0.666 0.402 0.648 0.489 0.423
LUFT-CAN 0.973 0.972 0.986 0.963 0.046

Spoofl DCNNJ10] 0.844 0.331 0.559 0.487 0.358
Hist CAN[13] 0.847 0.839 0.917 0.867 0.106

LSTM][14] 0.796 0.640 0.802 0.712 0.217

Hybrid[26] 0.673 0.351 0.597 0.462 0.426
LUFT-CAN 0.956 0.954 0.977 0.945 0.063

Spoof2 | DCNNJ10] 0.755 0.643 0.811 0.684 0.276
Hist CAN[13] 0.276 0.070 0.432 0.090 0.890

LSTM][14] 0.677 0.384 0.593 0.567 0.251

Hybrid[26] 0.681 0.350 0.576 0.504 0.342
LUFT-CAN 0.961 0.960 0.980 0.950 0.059

Fuzzy DCNNJ10] 0.821 0.353 0.589 0.483 0.386
Hist CAN[13] 0.791 0.760 0.884 0.735 0.221

LSTM][14] 0.306 0.468 0.421 0.594 0.851

Hybrid[26] 0.744 0.468 0.678 0.589 0.290
LUFT-CAN 0.873 0.866 0.932 0.882 0.102

in the test set contains 200K frames with injection attacks since LeapMotor
C10 has an more complicated CAN bus data fields, only two attacks were
successfully implemented. In our experiments, we found that 500K normal
CAN frames sequences was enough for the model convergence, fewer data
would cause underfitting and more data would cost more training time and
more computation resources. We chose 100K attacked data as test data. We
released the Tesla dataset in [43].

We also choose a public dataset named Car-Hacking dataset [17]. This
dataset is from old cars before 2020 which has no ADAS system, fewer func-
tions and fewer car features, resulting in fewer categories of CAN messages
and fewer frequency components than modern car datasets. So our method
and existing methods show different results compared with the modern car
datasets, as illustrated in Section 5.3.

Each vehicle manufacturer defines CAN bus data differently across vehi-

22

Table 5: Experimental results on the LeapMotor dataset.

Attack Model Accuracy Recall Fl-score AUC FPR
DoS DCNNJ10] 0.838 0.761 0.910 0.610 0.541
Hist CAN[13] 0.348 0.281 0.516 0.430 0.421
LSTM][14] 0.048 0.010 0.091 0.060 0.999

Hybrid[26] 0.658 0.480 0.711 0.541 0.399
LUFT-CAN 0.937 0.923 0.961 0.931 0.060

Spoof DCNNJ10] 0.674 0.340 0.619 0.401 0.537
Hist CAN[13] 0.716 0.650 0.835 0.616 0.419
LSTM][14] 0.796 0.636 0.802 0.696 0.243

Hybrid[26] 0.662 0.254 0.597 0.277 0.701
LUFT-CAN 0.960 0.957 0.979 0.942 0.074

cle models, and the functions corresponding to different data, the frequency
and order of CAN IDs, as well as the resulting spectral features after pre-
processing. Therefore, retraining is performed for different datasets while
comparing the accuracies of different methods [10], [13], [14], [26].

5.3. Fxperimental Results

Tables 4 and 5 present results for the Tesla Model 2 2022 and LeapMotor
C10 2024 datasets respectively. The Tesla dataset includes four attacks, DoS,
Spoofl, Spoof2 and Fuzzy. The LeapMotor dataset includes two attacks,
DoS and Spoof. Accuracy, Recall, F1-score, ROC-AUC (Receiver Operating
Characteristic-Area Under Curve) and FPR (False-Positive Rate) are the
evaluation metrics. Our proposed method outperforms the other methods
on each attack, with accuracy of 97.3%, 95.6%, 96.1%, 87.3%, Recall of
97.2%, 95.4%, 96.0%, 86.6%, Fl-score of 98.6%, 99.7%, 98.0%, 93.2% and
ROC-AUC of 0.963, 0.945, 0.950, 0.882 respectively for the four types of
attacks with the Tesla dataset. For the LeapMotor dataset, LUFT-CAN
yields accuracy of 93.7%, 96.0%, Recall of 92.3%, 95.7%, F1l-score of 96.1%,
97.9%, ROC-AUC of 0.931, 0.942 respectively. These results significantly
surpass the performance of the IDS methods in [10], [13], [14], [26]. For the
FPR, LUFT-CAN gets 4.6%, 6.3%, 5.9%, 10.2% on the Tesla dataset and
6.0%, 7.4% on the LeapMotor dataset, and they are much lower than four
previous IDS methods. The existing IDS methods [10], [13], [14], [26] perform
poorly on modern vehicle datasets, because they fail to capture the frequency-
time features. The two modern datasets contain a significantly larger number
of CAN IDs and control functions, reflecting much more complicated system
structure, and previous methods in [10], [13], [14], [26] cannot handle them

properly.

23

Table 6: Experimental results on the Car-Hacking dataset [17].

Attack Type Model Accuracy F1l-score
DoS DCNNJ10] 0.999 0.997
Hist CAN[13] 0.992 0.997
LSTM][14] 0.965 0.942
Hybrid[26] 0.982 0.947
LUFT-CAN 0.991 0.993
Gear DCNNJ10] 0.999 0.998
Hist CAN[13] 0.999 0.997
LSTM][14] 0.990 0.988
Hybrid[26] 0.979 0.996
LUFT-CAN 0.992 0.989
RPM DCNNJ10] 0.999 0.999
Hist CAN[13] 0.997 0.996
LSTM][14] 0.991 0.984
Hybrid[26] 0.988 0.957
LUFT-CAN 0.994 0.991
Fuzzy DCNNJ10] 0.999 0.998
Hist CAN[13] 0.998 0.997
LSTM][14] 0.943 0.961
Hybrid[26] 0.991 0.966
LUFT-CAN 0.976 0.981

Table 6 shows results of the proposed IDS model in comparison with four
previous IDS methods on the public Car-Hacking dataset [17]. Our proposed
method achieves 99.1%, 99.2%, 99.4%, 97.6% accuracy for the four attacks,
and it is approximately the same as those of existing works. The method
in [13] can extract the temporal features much more easily with the dataset
from old cars. The method in [10] is a supervised learning based model,
with higher efficacy on feature extraction on datasets with simple structure.
However, with more complicated datasets extracted from modern cars like
the Tesla and LeapMotor datasets, these previous works perform poorly as
indicated in Tables 4 and 5.

5.4. Ezecution Evaluation

We evaluated the inference time of LUFT-CAN on the Tesla dataset with
10K CAN frames and the compression version on a PC with an NVIDIA
GeForce 4060 GPU and a Raspberry Pi 4B, as presented in Table 7. For
comparison, we evaluated the inference time of other existing methods on a

24

Table 7: Experiment results of inference time on the Tesla dataset.

Environment Accuracy | Inference Time
On PC with GPU 0.941 1.125s
On Raspberry Pi 0.941 6.266s
On PC with GPU after QAT 0.937 0.967s
On Raspberry Pi after QAT 0.937 5.891s

Table 8: Experiment results of inference time for different methods on PC with GPU.

Method Inference Time
DCNNJ10] 3.107s
Hist CAN|[13] 1.684s
LSTM][14] 7.192s
Hybrid[26] 5.214s
LUFT-CAN 0.967s

PC with GPU, as shown in Table 8. The previous work were implemented in
the same experimental platform as our method. Table 8 shows that LUFT-
CAN has the lowest inference time among these five IDS methods. With the
proposed 8-bit quantization method, the execution time of the compressed
LUFT-CAN is decreased by 14.0% over the original model on PC with GPU,
and this number is around 6% on Raspberry Pi with almost the same accu-
racy, demonstrating that our quantization method has good performance on
model compression.

In Raspberry Pi 4B to the power consumption when running our algo-
rithm is 4.972 W. For comparison, the power consumptions of the other four
methods [10], [13], [14], [26] are 4.982W, 5.023W, 5.066W, and 4.933W re-
spectively, which are higher than ours. In LeapMotor C10 testbed, our algo-
rithm consumes 41.6W of power while the testbed standby power is 38.2W.
This can demonstrated that our method have lower energy consumption.
Considering the extremely limited computational resources of the Raspberry
Pi, the increase in power consumption caused by more complex algorithms
is also limited.

5.5. In the Wild Evaluation on a Real Car

We also evaluated the inference time and CPU utilization in a LeapMotor
C10 2024 test car, with Qualcomm 8255 as the MCU. Our method captures
CAN frames through an API function based on the operating system of the
T-Box in this car and collects real-time data from the vehicle’s CAN bus.

25

Our method contains a data queue to store CAN frames, wherein every 100
stored CAN frames are input into the model for analysis. The inference time
is 14.27s/100K frames when the MCU is fully used. With the real CAN bus
transmission rate, the MCU utilization is 6.42% in average. Therefore, the
proposed LUFT-CAN is suitable for efficient detection of threats in real cars.

6. Conclusion

This paper proposed a novel unsupervised learning based IDS designed
specifically for vehicular CAN bus. The proposed method effectively cap-
tures and integrates both temporal and frequency domain features from
CAN frames sequences for anomaly detection. By segmenting CAN frames
according to frequency components, we generated feature vectors that are
subsequently concatenated to form a 2D tensor feature map, enabling fu-
sion of temporal and frequency information. To further ensure suitability for
resource-constraint automotive environments, the model is compressed to im-
prove computational efficiency. Experimental results demonstrated that the
proposed method achieves over 94% accuracy on datasets from the Tesla
Model 3 2022 and the LeapMotor C10 2024, outperforming state-of-the-
art approaches. Consequently, the proposed IDS method holds significant
promise for enhancing security in smart vehicles.

Acknowledgment

This work was supported in part by the key R&D programme of Zhejiang
Province No. 2024C01012, in part by the National Key Research and De-
velopment Program of China No. 2023YFB4404404, in part by the National
Natural Science Foundation of China under Grants 92373205 and 62374146,
in part by Ant Group Research Fund, in part by the Key Technologies R&D
Program of Jiangsu (Prospective and Key Technologies for Industry) un-
der Grant BE2023005-2, and in part by CIE-Smartchip research fund No.
2023-004.

References

[1] Andy Greenberg, Hackers remotely kill a jeep on the highway — With
me in it - WIRED, url: https://www.wired.com/2015/07 /hackers-
remotely-kill-jeep-highway /, 2015.

[2] Eduard Kovacs, Thieves use CAN injection hack to steal cars - Security
Week, url: https://www.securityweek.com/thieves-use-can-injection-
hack-to-steal-cars/, 2023.

26

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[13]

Miller, Charlie and Valasek, Chris, Remote exploitation of an unaltered
passenger vehicle, Black Hat USA, no. S 91, pp. 1-91, 2015.

Zhao, Yilin and Xun, Yijie and Liu, Jiajia, ClockIDS: A real-time vehicle
intrusion detection system based on clock skew, IEEE Internet of Things
Journal, vol. 9, no. 17, pp. 15593-15606, 2022.

Lee, Hyunsung and Jeong, Seong Hoon and Kim, Huy Kang, OTIDS: A
novel intrusion detection system for in-vehicle network by using remote
frame, IEEE Conference on Privacy, Security and Trust (PST), pp. 57—
5709, 2017.

Guiqi, Zhang and Qi, L. and Chenhong, C and others, Bit scan-
ner: Anomaly detection for in-vehicle CAN bus using binary sequence
whitelisting, Computers & Security, vol. 134, 2023.

Miiter, Michael and Asaj, Naim, Entropy-based anomaly detection for
in-vehicle networks, IEEE Intelligent Vehicles Symposium (IV), pp.
1110-1115, 2011.

Song, Hyun Min and Kim, Ha Rang and Kim, Huy Kang, Intrusion
detection system based on the analysis of time intervals of CAN messages
for in-vehicle network, IEEE International Conference on Information

Networking (ICOIN), pp. 6368, 2016.

Tanksale, Vinayak, Intrusion detection for controller area network using
support vector machines, IEEE International Conference on Mobile Ad
Hoc and Sensor Systems Workshops (MASSW), pp. 121-126, 2019.

Song, Hyun Min and Woo, Jiyoung and Kim, Huy Kang, In-vehicle net-
work intrusion detection using deep convolutional neural network, Ve-
hicular Communications, vol. 21, pp. 100198, 2020.

Cheng, Pengzhou and Han, Mu and Li, Aoxue and Zhang, Fengwei,
STC-1DS: Spatial-temporal correlation feature analyzing based intrusion
detection system for intelligent connected vehicles, International Journal
of Intelligent Systems, vol. 37, no. 11, pp. 9532-9561, 2022.

Javed, Abdul Rehman and Ur Rehman, Saif and Khan, Mohib Ullah
and Alazab, Mamoun and Reddy, Thippa, CANintellilDS: Detecting in-
vehicle intrusion attacks on a controller area network using CNN and
attention-based GRU, IEEE Transactions on Network Science and En-
gineering, vol. 8, no. 2, pp. 1456-1466, 2021.

Shuguo Zhuo, Nuo Li, Kui Ren, HistCAN: A real-time can ids with en-
hanced historical traffic learning capability, Symposium on Vehicle Se-
curity and Privacy, 2024.

27

[14]

[15]

[22]

Taylor, Adrian and Leblanc, Sylvain and Japkowicz, Nathalie, Anomaly
detection in automobile control network data with long short-term mem-
ory networks, IEEE international Conference on Data Science and Ad-
vanced Analytics (DSAA), pp. 130139, 2016.

Sun, Heng and Chen, Miaomiao and Weng, Jian and Liu, Zhiquan
and Geng, Guanggang, Anomaly detection for in-vehicle network using
CNN-LSTM with attention mechanism, IEEE Transactions on Vehicular
Technology, vol. 70, no. 10, pp. 10880-10893, 2021.

Cooley, James W and Tukey, John W, An algorithm for the machine
calculation of complex Fourier series, Mathematics of Computation, vol.

19, no. 90, pp. 297-301, 1965.

HCRL, Car-Hacking Dataset for the intrusion detection, url:
https://ocslab.hksecurity.net /Datasets/car-hacking-dataset, 2020.

Zhang, Jiangjiang and Gong, Bei and Waqas, Muhammad and Tu, Shan-
shan and Chen, Sheng, Many-objective optimization based intrusion de-
tection for in-vehicle network security, IEEE Transactions on Intelligent
Transportation Systems, vol. 24, no. 12, pp. 15051-15065, 2023.

Yu, Zhangwei and Liu, Yan and Xie, Guoqi and Li, Renfa and Liu,
Siming and Yang, Laurence T, TCE-IDS: Time interval conditional
entropy-based intrusion detection system for automotive controller area
networks, IEEE Transactions on Industrial Informatics, vol. 19, no. 2,
pp- 1185-1195, 2022.

Olufowobi, Habeeb and Young, Clinton and Zambreno, Joseph and
Bloom, Gedare, SAIDuCANT: Specification-based automotive intrusion
detection using controller area network (CAN) timing, IEEE Transac-
tions on Vehicular Technology, vol. 69, no. 2, pp. 1484-1494, 2019.

Jeong, Yeonseon and Kim, Hyunghoon and Lee, Seyoung and Choi,
Wonsuk and Lee, Dong Hoon and Jo, Hyo Jin, In-vehicle network in-
trusion detection system using CAN frame-aware features, IEEE Trans-
actions on Intelligent Transportation Systems, vol. 25, no. 5, pp. 3843—
3853, 2023.

Gao, Sheng and Zhang, Linchuan and He, Lei and Deng, Xiaoyang and
Yin, Huilin and Zhang, Hao, Attack detection for intelligent vehicles via
can-bus: A lightweight image network approach, IEEE Transactions on
Vehicular Technology, vol. 72, no. 12, pp. 16624-16636, 2023.

28

23]

[24]

[29]

[30]

[31]

Hoang, Thien-Nu and Kim, Daehee, Supervised contrastive ResNet and
transfer learning for the in-vehicle intrusion detection system, Expert
Systems with Applications, vol. 238, pp. 122181, 2024.

Hoang, Thien-Nu and Kim, Daehee, Detecting in-vehicle intrusion via
semi-supervised learning-based convolutional adversarial autoencoders,
Vehicular Communications, vol. 38, pp. 100520, 2022.

Balaji, Prashanth and Ghaderi, Majid and Zhang, Hongwen, CANLite:
Anomaly detection in controller area networks with multitask learning,
IEEE Vehicular Technology Conference (VTC2022-Spring), pp. 1-5,
2022.

Lo, Wei and Algahtani, Hamed and Thakur, Kutub and Almadhor,
Ahmad and Chander, Subhash and Kumar, Gulshan, A hybrid deep
learning based intrusion detection system using spatial-temporal repre-

sentation of in-vehicle network traffic, Vehicular Communications, vol.
35, pp. 100471, 2022.

Zhao, Qingling and Chen, Mingqgiang and Gu, Zonghua and Luan, Siyu
and Zeng, Haibo and Chakrabory, Samarjit, CAN bus intrusion detec-
tion based on auziliary classifier GAN and out-of-distribution detection,
ACM Transactions on Embedded Computing Systems (TECS), vol. 21,
no. 4, pp. 1-30, 2022.

Tariq, Shahroz and Lee, Sangyup and Woo, Simon S, CANTransfer:
Transfer learning based intrusion detection on a controller area network
using convolutional LSTM network, ACM Symposium on Applied Com-
puting, pp. 1048-1055, 2020.

Qin, Hongmao and Yan, Mengru and Ji, Haojie, Application of con-
troller area network (CAN) bus anomaly detection based on time series
prediction, Vehicular Communications, vol. 27, pp. 100291, 2021.

Ashraf, Javed and Bakhshi, Asim D and Moustafa, Nour and Khur-
shid, Hasnat and Javed, Abdullah and Beheshti, Amin, Nowvel deep
learning-enabled LSTM autoencoder architecture for discovering anoma-
lous events from intelligent transportation systems, IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 7, pp. 4507-4518,
2020.

Nwafor, Ebelechukwu and Olufowobi, Habeeb, Canbert: A language-
based intrusion detection model for in-vehicle networks, IEEE Interna-
tional Conference on Machine Learning and Applications (ICMLA), pp.
294-299, 2022.

29

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Nam, Minki and Park, Seungyoung and Kim, Duk Soo, Intrusion de-
tection method using bi-directional GPT for in-vehicle controller area
networks, IEEE Access, vol. 9, pp. 124931-124944, 2021.

Zhang, Jun and Wu, Zhongcheng and Li, Fang and Xie, Chengjun and
Ren, Tingting and Chen, Jie and Liu, Liu, A deep learning framework
for driving behavior identification on in-vehicle CAN-BUS sensor data,
Sensors, vol. 19, no. 6, pp. 1356, 2019.

Cheng, Pengzhou and Wu, Zongru and Liu, Gongshen, MKF-ADS: A
multi-knowledge fused anomaly detection system for automotive, arXiv
preprint arXiv:2403.04293, 2024.

Miller, Charlie and Valasek, Chris, Remote exploitation of an unaltered
passenger vehicle, Black Hat USA| vol. 2015, no. S 91, pp. 1-91, 2015.

Moore, Michael R and Bridges, Robert A and Combs, Frank L and Starr,
Michael S and Prowell, Stacy J, Modeling inter-signal arrival times for
accurate detection of can bus signal injection attacks: a data-driven ap-
proach to in-vehicle intrusion detection, ACM Conference on Cyber and
Information Security Research, pp. 1-4, 2017.

Li, Shanda and Chen, Xiangning and He, Di and Hsieh, Cho-
Jui, Can wvision transformers perform convolution?, arXiv preprint

arXiv:2111.01353, 2021.

Wu, Haixu and Hu, Tengge and Liu, Yong and Zhou, Hang and Wang,
Jianmin and Long, Mingsheng, TimesNet: Temporal 2D-variation mod-
eling for general time series analysis, International Conference on Learn-
ing Representations, 2023.

Kim, Taesung and Kim, Jinhee and Tae, Yunwon and Park, Cheonbok
and Choi, Jang-Ho and Choo, Jaegul, Reversible instance normalization
for accurate time-series forecasting against distribution shift, Interna-
tional Conference on Learning Representations, 2021.

Xu, Jiehui and Wu, Haixu and Wang, Jianmin and Long, Mingsheng,
Anomaly Transformer: Time series anomaly detection with associa-
tion discrepancy, International Conference on Learning Representations,
2022.

Jacob, Benoit and Kligys, Skirmantas and Chen, Bo and Zhu, Meng-
long and Tang, Matthew and Howard, Andrew and Adam, Hartwig and
Kalenichenko, Dmitry, Quantization and training of neural networks for
efficient integer-arithmetic-only inference, IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 2704-2713, 2018.

30

[42] Paszke, A, Pytorch: An imperative style, high-performance deep learning
library, arXiv preprint arXiv:1912.01703, 2019.

[43] Tesla Car Dataset. url: https://github.com/fcas-LAB/Tesla, 2024.

[44] Cai, Yunlang and Shi, Hanxue and Wang, Xiaohang and Shen, Haoting
and Lu, Li and Ren, Kui, On Bit-level Reverse Engineering of Vehicular
CAN Bus, Design Automation Conference, 2025.

[45] Liashchynskyi P, Liashchynskyi P Grid search, random search, genetic

algorithm: a big comparison for NAS., arXiv preprint arXiv:1912.06059,
2019.

31

