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ABSTRACT

Background: Convolutional neural networks (CNNs) are widely employed in motor imagery (MI)
classification. However, due to cumbersome data collection experiments, and limited, noisy, and non-
stationary EEG signals, small MI datasets present considerable challenges to the design of these
decoding algorithms. New method: To capture more feature information from inadequately sized
data, we propose a new method, a multi-scale attention convolutional neural network (MSAttNet).
Our method includes three main components—a multi-band segmentation module, an attention
spatial convolution module, and a multi-scale temporal convolution module. First, the multi-band
segmentation module adopts a filter bank with overlapping frequency bands to enhance features in the
frequency domain. Then, the attention spatial convolution module is used to adaptively adjust different
convolutional kernel parameters according to the input through the attention mechanism to capture the
features of different datasets. The outputs of the attention spatial convolution module are grouped to
perform multi-scale temporal convolution. Finally, the output of the multi-scale temporal convolution
module uses the bilinear pooling layer to extract temporal features and perform noise elimination. The
extracted features are then classified. Results: We use four datasets, including BCI Competition IV
Dataset Ila, BCI Competition IV Dataset IIb, the OpenBMI dataset and the ECUST-MI dataset, to test
our proposed method. MSAttNet achieves accuracies of 78.20%, 84.52%, 75.94% and 78.60% in cross-
session experiments, respectively. Comparison with existing methods: Compared with state-of-the-
art algorithms, MSAttNet enhances the decoding performance of MI tasks. Conclusion: MSAttNet
effectively addresses the challenges of MI-EEG datasets, improving decoding performance by robust
feature extraction.

1. Introduction

Parvis (2022a). MI is a spontaneous BCI paradigm, requir-
ing the BCI user to imagine the movement of body parts

Brain-Computer Interfaces (BCIs) construct a transmis-
sion link between brain activity and computing devices.
They do so by attempting to decode information from brain
signals Liang, Kuang, Wang, Yuan, Zhang and Sun (2023a).
The electroencephalogram (EEG) is the dominant brain ac-
tivity recording methodology used in the majority of current
non-invasive BCI systems and contains limited, noisy, and
non-stationary signal features Wang, Yao and Wang (2023).
Numerous paradigms have been developed for EEG-based
BCI systems based on decoding of specific neural events
in the EEG. Examples of these neural events include the
event-related potential (ERP) Jin, Xu, Daly, Zhao, Wang
and Cichocki (2024), the steady-state visual evoked potential
(SSVEP) Jin, Wang, Xu, Liu, Wang and Cichocki (2021)
and Motor Imagery (MI) Arpaia, Esposito, Natalizio and
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instead of perform actual action Padfield, Zabalza, Zhao,
Masero and Ren (2019), and is one of the most popular BCI
paradigms Duan, Li, Ji, Pang, Zheng, Lu, Li and Zhuang
(2020); Barmpas, Panagakis, Bakas, Adamos, Laskaris and
Zafeiriou (2023). However, the recognition of MI related
brain activity is challenging due to the limited, noisy, and
non-stationary of EEG signal properties, which makes de-
sign of effective decoding algorithms highly challenging
Wang et al. (2023).

Over recent years, the most popular methods for extract-
ing features of EEG activity related to motor imagery is the
common spatial pattern (CSP) Miiller-Gerking, Pfurtscheller
and Flyvbjerg (1999) algorithm and variants of it Jin, Xiao,
Daly, Miao, Wang and Cichocki (2020), such as the Filter-
Bank CSP (FBCSP) algorithm Ang, Chin, Zhang and Guan
(2008), which operates in the frequency-domain Arpaia
et al. (2022a), Barmpas et al. (2023). These methods have
achieved excellent results in binary classification by using
classifiers, for example support vector machines (SVM)
Hearst, Dumais, Osuna, Platt and Scholkopf (1998) or linear
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discriminant analysis (LDA) Wu, Wu, Pal, Chen, Chen and
Lin (2013). Furthermore, some methods also use channel
selection to eliminate channels containing redundant infor-
mation and noise in order to gain further improvements in
single user decoding accuracies Jin, Miao, Daly, Zuo, Hu
and Cichocki (2019), Xiao, Huang, Xu, Wang, Wang and
Jin (2022).

MI classification networks are inspired by computer
vision (CV). Various network structures, including convo-
lutional neural networks (CNN) Schirrmeister, Springen-
berg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hut-
ter, Burgard and Ball (2017); Lawhern, Solon, Waytowich,
Gordon, Hung and Lance (2018); Wang et al. (2023), re-
current neural networks (RNN) Arpaia, Esposito, Natalizio
and Parvis (2022b) with sequential signal processing mech-
anisms, and Transformers with self-attention mechanisms
Song, Zheng, Liu and Gao (2022), are increasingly ap-
plied to the challenge of MI classification and achieve good
performance. Compared to methods such as CSP, the net-
work automates feature extraction, reducing the dependence
on manual design. Although emerging methods, particu-
larly deep learning, have introduced novel structural designs
and data processing techniques, conventional approaches
still influence network structure design. For instance, Shal-
lowNet utilizes neural network to achieve FBCSP-like log-
variance calculations, aimed at decoding band power fea-
tures Schirrmeister et al. (2017). However, the direct ap-
plication of network architectures and mechanisms from
CV and natural language processing (NLP) to MI signal
recognition does not necessarily improve accuracy and may
even decrease it Schirrmeister et al. (2017); Song et al.
(2022).

Unlike the deep convolutional neural networks used
in CV and NLP applications, the MI-EEG classification
networks generally benefit from shallow networks, such
as ShallowNet, which outperform deeper networks in MI
classification Schirrmeister et al. (2017). In the EEGNet ar-
chitecture, depthwise separable convolution is incorporated
to achieve a compact structure Lawhern et al. (2018); Chollet
(2017). However, lightweight CNNs are limited by their
fewer convolutional layers and the processing of MI signals
only in a single frequency band, which restricts both model
scale and data feature representation, making them prone to
performance bottlenecks Chen, Dai, Liu, Chen, Yuan and
Liu (2020).

EEG signals convey information through various fre-
quency components Ko, Jeon, Jeong and Suk (2021). Dur-
ing MI, task-specific event-related desynchronization (ERD)
and event-related synchronization (ERS) events occur in
sensory-motor rthythms within specific frequency bands and
brain regions Wang et al. (2023). Generally, the main MI
rhythms are localized in the x4 band (7-13Hz) and § band
(13-30Hz) McFarland, Miner, Vaughan and Wolpaw (2000).
For instance, in FBCNet, a filter bank is applied to decom-
pose MI data into distinct frequency bands, which are then
processed through individual convolutional branches Mane,
Chew, Chua, Ang, Robinson, Vinod, Lee and Guan (2021).

This approach is also utilized in FBMSNet, and TSFCNet
Liu, Yang, Yu, Wang and Wu (2022); Zhi, Yu, Yu, Gu and
Yang (2023). Unlike the filter bank design, the Interactive
Frequency Convolutional Neural Network (IFNet) model
employs the concept of cross-frequency coupling to process
MI data using two frequency bands Wang et al. (2023).
Although y band (> 30Hz) generally cannot reach the scalp
with sufficient integrity to be recorded via EEG with a good
signal-to-noise ratio, making it difficult to use for MI activity
classification Deng, Zhang, Yu, Liu and Sun (2021), high-
frequency features have been shown to positively impact the
generalization ability of network classification models for
MI activities as network model performance continues to
break through bottlenecks Liang et al. (2023a); Luo, Mao,
Wang, Shi and Hei (2022). However, MI recognition is
constrained by noise interference during EEG acquisition
and limited dataset sizes, presenting significant challenges
to MI classification attempts.

In contrast to the large-scale annotated datasets available
for CV or NLP, the deficiency of publicly available datasets
impedes the classification of MI tasks Liang et al. (2023a),
Arpaia et al. (2022a), Deng, Dong, Socher, Li, Li and Fei-
Fei (2009), Radford, Narasimhan, Salimans, Sutskever et al.
(2018), Lin, Maire, Belongie, Hays, Perona, Ramanan, Dol-
lar and Zitnick (2014). EEG data-gathering, as used for
MI, is much more challenging, entailing long experimental
sessions to record neural data from participants and high
experimental costs. Furthermore, the EEG signal properties
results in large degrees of variability between participants
and within a participant across experimental sessions Liang
et al. (2023a), Tangermann, Miiller, Aertsen, Birbaumer,
Braun, Brunner, Leeb, Mehring, Miller, Miiller-Putz et al.
(2012a). Consequently, the majority of MI datasets con-
tain data from only a few participants. For example, the
BCI Competition Datasets, that are widely used in BCI
research, include EEG data from a relatively small num-
ber of participants. Furthermore, the feature distributions
from these EEG signals are inconsistent across participants
Arpaia et al. (2022a), Tangermann et al. (2012a), Blankertz,
Muller, Krusienski, Schalk, Wolpaw, Schlogl, Pfurtscheller,
Millan, Schroder and Birbaumer (2006). Few-shot learning
may be applied to these small datasets with the aim of
extracting additional feature information across participants
to enhance classification results, but the outcomes encounter
challenges, such as limitations in feature distributions, that
are insurmountable compared to single-participant tasks.

To address the issue of insufficient individual EEG data,
Transfer Learning has been introduced, aiming to enhance
model generalization performance by learning discrimina-
tive signal features across different subjects Wu, Jiang and
Peng (2022). However, the feature distributions derived
from these EEG signals exhibit significant inconsistency
across subjects. EEG combined with other modal signals
enriches the brain activity data captured at the same mo-
ment, for example, by introducing functional near-infrared
spectroscopy (fNIRS), which enhances the spatiotemporal
resolution Wang, Yuan, Zhang, Wan, Li and Xu (2025);
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Xu, Zhou, Yang, Li, Li, Bezerianos and Wang (2023); Li,
Sun, Wan, Yuan, Jung and Wang (2025). However, it still
faces challenges such as limited individual data and other
issues. Furthermore, some researchers have adopted large
model frameworks, such as EEGPT Wang, Liu, He, Xu,
Ma and Li (2024) and LaBraM Jiang, Zhao and Lu (2024),
for cross-dataset task recognition by aggregating EEG data
from diverse tasks. However, their performance currently
falls short of State-of-the-Art (SOTA) models. Moreover,
designing effective decoding algorithms for these small and
highly variable datasets is a considerable challenge Liang
et al. (2023a), Wang et al. (2023).

With these challenges in mind, in this paper, we propose
a novel CNN, the multi-scale attention convolutional neural
network (MSAttNet), to improve MI classification perfor-
mance. Our MSAttNet model includes three main com-
ponents: a multi-band segmentation module, an attention
spatial convolution module, and a multi-scale temporal con-
volution module. First, the multi-band segmentation mod-
ule adopts filter banks with overlapping frequency bands
to increase the number of channels in the MI signal and
enhance band features in the frequency domain. Then, the
attention spatial convolution module is used to adaptively
adjust different convolutional kernel parameters according
to the input through the attention mechanism to capture
the important features of the EEG data. The outputs of the
attention spatial convolution module are grouped to perform
multi-scale temporal convolution. Finally, the multi-scale
temporal convolution module uses a variance operation to
extract temporal features and to perform noise elimination.
The extracted features are then classified. The main contri-
butions of this work are summarized as follows:

e We propose a new method, a multi-scale attention
convolutional neural network (MSAttNet). Our method
achieves state-of-the-art performance across multiple
datasets, recording an accuracy of 78.20% on the
IV2a dataset, 84.52% on the IV2b dataset, 75.94%
on the OpenBMI dataset, and 78.60% on the ECUST-
MI dataset. All other metrics—including Precision,
Recall, Fl-score, and Kappa coefficient—also reach
state-of-the-art levels, demonstrating robustness to
inter-subject variability and differing channel config-
urations.

e We employ a multi-band segmentation module. By
setting overlapping frequency band divisions (4-16Hz,
12-24Hz, 20-36Hz, 32-44Hz, 40-100Hz) and utilizing
optimized convolutional kernel sizes (63, 31, 15, 7,
3) in the multi-scale temporal convolution, effective
frequency-domain feature extraction is achieved.

e We construct an attention spatial convolution module,
which automatically selects the most suitable convo-
lutional kernel weights without manual parameter ad-
justment, adapting to different subjects across various
datasets.

The rest of this paper is organized as follows. Section
2 introduces the related works. Section 3 presents our pro-
posed method. Section 4 presents the experimental results.
Section 5 presents a discussion of the results. Finally, Section
6 describes the conclusions from our work.

2. Method

Our proposed network, MSAttNet, is constructed with
the intention of effectively extracting spectro-spatial features
from the EEG by diverse convolutional kernels based on
an attention mechanism. This allows the model to avoid
the need for manual parameter adjustment for different MI
signals for different participants and datasets. The MSAttNet
includes the multi-band segmentation module, the attention
spatial convolution module, and the multi-scale temporal
convolution module, and the classifier module, shown in
Figure 1. The parameter of the MSAttNet structure is listed
in Table 1.

2.1. Multi-Band Segmentation Module
A single trial of raw MI-EEG signals are denoted as
(x;,¥,),i =1,2,--- ,n,wherex; € ROT y, € {1,2,---, N,.}
with x; representing MI-EEG data, y; the trial labels, C the
number of channels, 7' the number of sample points, and
N, the number of motor imagery tasks. So, (X,Y) is input
n trials of MI-EEG data, where X = [x, Xy, -, xn]T and
Y = [y vl
In FBCSP and its variants, the filter bank uses a fre-
quency band from 4 to 40 Hz to construct 9 filters (4-8, 8-12,
...,36-40 Hz) Ang et al. (2008). A multi-scale convolutional
transformer model uses 4-60Hz and 4-120Hz frequency
bands Ahn, Lee, Jeong and Lee (2022). To capture more
feature information, the MI-EEG signals (B, C, T') are then
transformed by the multi-band segmentation module, where
B represents batch trials. The multi-band segmentation us-
ing a filter bank reconstructs single-frequency data into
various frequency bands for data augmentation, enhancing
feature extraction efficiency Wang et al. (2023). The filter
bank F = {f; ,J»i"l uses N, fifth-order Butterworth filters
f; € RWWXOXT i overlapping bands, spanning 4-16Hz,
12-24Hz, 20-36Hz, 32-44Hz, and 40-100Hz, as shown in the
Figure 1. The filtered MI data output becomes:
Xp = Fen(X).  Xpp € RMXOXT (1
with N, = 5 narrow-band temporal filters. The chan-

nel dimension of the MI data increases from (B, C,T) to
(B,5C,T).

2.2. Attention Spatial Convolution Module
Generally, the first two layers of the network structure
habitually use temporal or spatial convolutional layers to
realize the convolution of channels and sample points, such
as EEGNet, and EEGsym Lawhern et al. (2018); Pérez-
Velasco, Santamaria-Vazquez, Martinez-Cagigal, Marcos-
Martinez and Hornero (2022). In our proposed network, the
first layer of the structure discards the temporal or spatial
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Figure 1: The structure of MSAttNet

Table 1

The parameters of our proposed method MSAttNet

Module Layer Kernel Size Output
. . Input (B.C,T)
Multi-band Segmentation Filter Bank (B.5C.T)
Attention Block 1) (B, K)
Attention Spatial Convolution Group Convolution (B,5C,,T)
BatchNorm (B,5C,,T)
Depth-wise ConvlD  (63),(31),(15),(7),(3) 5(B,C,,T)
. . BatchNorm1D 5(B,C,,T)
Multi-scale Temporal Convolution Sum (B.C,,T)
Reshape (B,Cy, Np, T/Np)
Bilinear Pooling (B.Cy,N,)
Classifier Flatten (B,C\N,)
Fully connected (B,N,)

B is the batch size of the EEG trials, C is the number of the EEG channels, T is the number of EEG sample points, K is the number of

convolutional kernels in the attention spatial convolution mod

ule, C; denotes the number of channels output from the Attention

Convolution, and N, is the patch size in the bilinear Pooling layer.

convolutional layer, and attention spatial convolution is sub-
stituted to capture features that are common across different
datasets. The attention spatial convolution module uses K
parallel convolutional kernels instead of the single kernel,
continuously adjusting the weights of each kernel to select
the optimal kernel size for feature extraction. The attention
spatial convolution module consists of the attention block,
the group convolution layers, and batch normalization layers.
The attention block calculates the attention weights for each
kernel in the group convolutions. It includes an average pool-
ing layer, two convolution layers, a ReLU activation layer,
and a SoftMax activation layer. The calculation process is as
follows.

First, compression along the temporal dimension T is
performed using the average pooling layer to capture the

global information of each channel:

T

_ Go) _ 1 )
Xap = Fap <XFB ) T ZX
i=1

L9 e=1,2,...,C,

B VS B)
The channels can be expressed as X yp = [xap, Xypr o+

T
s xgp] €
RX! where C, = N, x C. A two-layer convolution layer
is applied to X »p, using activation functions to obtain the
attention weights Wg:

where Fpc represents the dimensionality reduction convo-
lution layer, F5 denotes the ReLU layer, Fjc represents the
dimensionality expansion convolution layer, and 7; denotes
the Softmax layer.
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The attention weights W are then applied to each
convolutional kernel as follows:

C,
x8(C,) = Foe (WGCXFlg) “

C
where C, = = is the number of output channels af-

ter dividing the ignput channels C, into N, groups, and
Xég():(Cg), g=12,..., Ng is the output signal of each group
processed by the dynamic weighted convolution.
Additionally, considering that the number of input chan-
nels is too small and significant spatial information be-
tween channels is lost, channel expansion is introduced
in Eq. (2),(3), and (4). This expands the low-dimensional
compressed representation of the original MI-EEG signal
into a higher-dimensional space, enhancing the information
dimensions processed by subsequent layers. Finally, X ég()j is
processed through the batch normalization layer to obtain
X&) which is then fed into the multi-scale temporal convo-

BN’
lution module.

2.3. Multi-scale Temporal Convolution Module

In the Multi-scale Temporal Convolution Module, we
employ a multi-branch architecture where the number of
branches corresponds to the number of frequency band
divisions. Each signal group is processed by convolutional
layers with distinct kernel sizes: specifically, 4-16 Hz band
utilizes a kernel size of 63, 12-24 Hz employs kernel size 31,
20-36 Hz uses kernel size 15, 32-44 Hz applies kernel size
7, and 40-100 Hz operates with kernel size 3. Each convo-
lutional layer is succeeded by a Batch Normalization layer,
collectively constituting the temporal block as expressed by:

© _ p@ p@ ( y©
X18 = FenoFc <X8N> ®)

Subsequently, the X% signals from each group are con-
catenated along the channel dimension, transforming from
5 groups of (B, C;,T) into a single group Xg = (B, C,T).
Finally, to align with the signal dimensions of the Bilinear
layer, X is reshaped into Xy = (B, Ci, Ny, T/Np) and fed
into the classifier module.

2.4. Classification Module

Most networks use pooling layers at the end of a CNN for
feature extraction and dimensionality reduction. However,
the features derived from the first two modules typically
contain substantial intra-class variance and high noise levels.
Considering that MI-EEG activity exhibits distinct spectral
power, variance computation—which reflects the spectral
power of a given time series—is a more suitable choice
for representing EEG temporal characteristics. Therefore,
we apply a bilinear layer to enhance temporal features and
reduce noise. This layer is defined as:

T

|
—_

Xy =Fy (Xg(0) = (Xg(®) - )?R(t))2 (6

Sl
)

I

(=}

Algorithm 1 MSAttNet

Require: EEG trials X € RBXCXT
Ensure: Predicted labels Y € RB
1: /I Multi-band Segmentation

2: Define F « [4,16],[12,24],[20,36], [32, 44], [40, 100]
3: for each f;, f;, in F do > Filter Bank
4: Xgg < Xgg U Butterworth(X,band = (f;, f3,)) €
RBX5CXT > Eq. (1)
5: end for
6: // Attention Spatial Convolution
7: X ap < AvgPool ID(Xpp) € RBXSCXI > Eq. (2)
8: W5c <« SoftMax(ConvIlD(ReLU(ConvlD(X »p)))) €
RK > Eq. (3)
9: Xgc < GroupConvID(Wge Xpg) € RESCXT
> Eq. (4)

10: Xpy < BatchNorm(Xc)

11: // Multi-scale Temporal Convolution

12: Define G « (63,31,15,7,3)

13: for each g in G do > Process each frequency band
14: X%g]; < DepthwiseConv1D(X'®), kernel = g)

BN’

15: X{ « BatchNormID(X%) > Eq. (5)
16: end for

17 Xg < X, X&) e RBXCXT

18: Xg < reshape(Xs,[B.Cy, N,,T/N,])
19: // Classifier Module
20: Xy < BilinearPool(Xg) € RBXC1*Np
21: Xp, < Flatten(Xy) € REXC1N)
2: ¥ « FC(Xg,,) € REXNe

retuen f/

> Eq. (6)

> Eq. (7)

where X j(t) is the signal processed by the first two modules,
X r(2) is the mean of X x(¢), and ¢ represents the sampling
time point.

The resulting signal is then passed through a dropout
layer for regularization and subsequently flattened using
F . Finally, the output is passed to a fully connected layer
F rc to produce the final result:

Y = FreoFrr(Xy) D

The procedure of the proposed MSAttNet method is
illustrated in Algorithm 1, where each step corresponds to
its relevant formula locations.

3. Experiments

3.1. Experimental setting

We use four datasets, including The BCI Competition
IV Dataset I1a (IV2a) dataset Tangermann, Miiller, Aertsen,
Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Miiller-
Putz et al. (2012b), the BCI Competition IV Dataset IIb
(IV2b) dataset Tangermann et al. (2012b), the OpenBMI
dataset Lee, Kwon, Kim, Kim, Lee, Williamson, Fazli and
Lee (2019), and the East China University of Science and
Technology Motor Imagery (ECUST-MI) dataset, to evalu-
ate our proposed method.
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The IV2a dataset includes left hand, right hand, both
feet, and tongue. The MI-EEG data of 9 healthy participants
are recorded by 22 electrodes sampled at 250 Hz. For each
participant, the first session is the training set, and the second
session is the test set. Each session contains 288 trials with
72 trials per class.

The IV2b dataset consists of left hand and right hand.
The MI-EEG data is recorded from 9 healthy participants
with 3 electrodes sampled at 250 Hz. For each participant,
three sessions are training set, and the last two sessions are
test set. Each session contains 120 trials.

The OpenBMI dataset contains EEG signals of 62 chan-
nels recorded from 54 healthy subjects. The experiments
involve balanced left-hand and right-hand MI tasks, and 100
trials for both the training and testing phases. Each trial
lasts 4 seconds, and the data are downsampled to 250 Hz.
All trials on the IV2a dataset, the IV2b dataset, and the
OpenBMI dataset use data from 0.5 to 3.5 seconds.

The ECUST-MI dataset is approved by the East China
University of Science and Technology (ECUST-2022-054).
Eleven healthy participants (9 males, and 2 females), aged
between 25 and 28 years, participated in the experiments.
One subject was excluded due to insufficient trials. The MI-
EEG data are recorded from 16 electrodes (FC5, FC1, FCz,
FC2, FC6, C5, C3, Cl, Cz, C2, C4, C6, CP5, CP1, CP2,
and CP6) and sampled at 600 Hz. Each subject is required
to execute two MI tasks, which are the left hand and right
hand. The tasks have 4 sessions, the interval of which is 5
minutes, and each session has 30 trials. The first two sessions
are training sets, and the last two sessions are test sets. At
the beginning of each trial, a cross in the center of the screen
appears for 2s and reminds the subject to concentrate on MI
task. In 2s, a left or right arrow appears for 3s and reminds
the subject to image the left or right-hand motor. Then a
blank interface of 2s in a solid color guides the subjects to
rest for 10s and prepare for the next trial. All trials of the
ECUST-MI datasets use 3s from the beginning cue of MI
tasks.

We employ cross-entropy loss together with the Adam
optimizer to update all model parameters during training
Kingma and Ba (2014). The learning rate of Adam optimizer
is 0.001. The number of training epochs is set to 1000 for all
models Wang et al. (2023). Therefore, a batch size of 256 to
reduce the influence of the mini-batch size with the increased
error is used for all models Ioffe and Szegedy (2015); Wu and
He (2018). Increasing the batch size within the same epoch
reduces training time and promotes stable gradient descent,
thereby enhancing network training effectiveness. Note that,
when the number of trials in the training set is less than the
desired batch size, the training batch size is set to the number
of trials. We use a NVIDIA RTX4090 GPU and an Intel
19-13900KF processor, and 32GB of RAM for training and
testing.

3.2. Comparison with State-of-the-Art Methods
We compare MSAttNet with 12 models, including Shal-
lowNet Schirrmeister et al. (2017), DeepNet Schirrmeister

et al. (2017), EEGNet Lawhern et al. (2018), FBCNet Mane
et al. (2021), EEGConformer Song et al. (2022), FBM-
SNet Liu et al. (2022), IFNet Wang et al. (2023), TSFCNet
Zhi et al. (2023), ADFCNN Tao, Wang, Wong, Jia, Li,
Chen, Chen and Wan (2023), EISATCFusion Liang, Cao,
Wang, Zhang and Wu (2024), EEGSimpleConv El Ouahidi,
Gripon, Pasdeloup, Bouallegue, Farrugia and Lioi (2024),
and DMSACNN Liu, Xing, Yang, Yu, Xiao, Wang and Wu
(2025), on four datasets, including the IV2a dataset, the IV2b
dataset, the OpenBMI dataset, and the ECUST-MI dataset,
to evaluate the effectiveness of our proposed method. The
experimental evaluation metrics adopted include accuracy
(Acc.), precision (Prec.), recall (Rec.), Fl-score (F1), and
Cohen’s kappa coefficient (Kappa) Liang, Yu, Liu, Wang,
Liu and Dong (2023b). The p-value (p) of t-test is used to ex-
amine whether the proposed method achieves a statistically
significant improvement in accuracy. The results are shown
in Table 2. To ensure comparability, all models adopt their
original hyperparameters except for necessary input/output
adjustments. Input trials are standardized to 3s segments,
and the final fully connected layer dimensions are modified
to match dataset-specific class counts.

As shown in Table 2, the proposed MSAttNet achieves
statistically significant improvements over other state-of-
the-art (SOTA) methods across all four datasets. It attains
an accuracy of 78.20% on the IV2a dataset, 84.52% on
IV2b, 75.94% on OpenBMI, and 78.60% on the ECUST-
MI dataset. The method also achieves SOTA performance
in all four metrics, including precision, recall, F1-score,
and Kappa. Although some networks perform similarly to
ours on the IV2b dataset, our proposed method exhibits
less sensitivity to inter-subject variability across different
datasets, maintaining stable optimal performance even in
scenarios with a large number of subjects and channels, such
as on the OpenBMI dataset. This advancement is attributed
to the network’s optimized lightweight hierarchical archi-
tecture, where the filter banks are better aligned with the
neurophysiological characteristics of motor imagery tasks.
The synergistic integration of these components enables
efficient extraction of discriminative spatial-spectral features
while maintaining computational efficiency, significantly
outperforming traditional methods in motor imagery EEG
feature representation.

4. Discussion

4.1. Different Bands

The proposed methods, MSAttNet, employs different
frequency bands, which can have varying impacts on the
network’s recognition performance. We first consider the
setting without high frequencies (4-16Hz, 12-24Hz, 20-
36Hz, 32-40Hz) and without overlapping frequency bands
(4-12Hz, 12-20Hz, 20-32Hz, 32-40Hz, 40-100Hz). We ref-
erence existing frequency band segmentation methods, in-
cluding the single-band setting (4-40Hz) used in EEGNet
Lawhern et al. (2018) and the filter bank methods used in
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Table 2

Comparisons of our proposed method, MSAttNet, and 12 models, on four datasets, including the IV2a, IV2b, OpenBMI, and
ECUST-MI dataset. The experimental evaluation metrics include accuracy (Acc., %), precision (Prec., %), recall (Rec., %),
Fl-score (F1, %), kappa, and p-value (p). The *, **, and *** indicate that the accuracies of MSAttNet are significantly higher
than the compared methods with p < 0.05, p < 0.01, and p < 0.001, respectively.

Method ‘ Acc. Prec. Rec. F1 Kappa »p Method ‘ Acc. Prec. Rec. F1 Kappa »p

ShallowNet 63.04 63.09 63.04 62.68 0.5072 *** ShallowNet 81.27 81.74 81.26 81.10 0.6253 *

DeepNet 55.79 56.22 55.79 54.80 0.4105 *** DeepNet 81.46 82.06 81.46 81.10 0.6293 ***
EEGNet 60.92 61.53 60.92 60.77 0.4789 *** EEGNet 78.33 78.77 78.33 78.24 0.5667 0.06
FBCNet 74.69 75.27 74.69 74.40 0.6626 * FBCNet 80.40 80.80 80.40 80.24 0.6080 ***
EEGConformer |57.14 57.28 57.14 56.86 0.4285 *** EEGConformer |80.73 81.38 80.73 80.55 0.6147 0.19
FBMSNet 73.80 74.32 73.80 73.36 0.6507 ** FBMSNet 80.35 80.46 80.35 80.30 0.6070 ***
IFNet 74.46 75.26 74.46 74.22 0.6595 IFNet 81.21 81.71 81.21 81.10 0.6242 ***
TSFCNet 71.64 7234 71.64 71.41 0.6219 TSFCNet 80.31 80.68 80.31 80.01 0.6062 ***
ADFCNN 66.36 66.74 66.36 65.80 0.5514 ** ADFCNN 82.45 83.35 82.45 82.25 0.6489 0.49
EISATCFusion |63.81 64.26 63.81 63.51 0.5175 *** EISATCFusion |81.13 81.81 81.13 80.97 0.6225 0.15
EEGSimpleConv | 65.08 67.59 65.08 63.88 0.5345 ** EEGSimpleConv | 80.21 80.44 80.21 80.16 0.6043 **
DMSACNN 74.42 7462 7442 T74.00 0.6589 * DMSACNN 80.07 80.75 80.07 79.92 0.6015 ***
MSAttNet 78.20 78.69 78.20 78.02 0.7094 - MSAttNet 84.52 84.81 84.52 84.44 0.6905 -

(a) The results on the 1V2a dataset

(b) The results on the IV2b dataset

Method ‘ Acc. Prec. Rec. F1 Kappa »p Method ‘ Acc. Prec. Rec. F1 Kappa »p
ShallowNet 65.98 66.24 65.98 65.11 0.3196 *** ShallowNet 65.79 67.21 65.79 64.74 0.3159 ***
DeepNet 68.91 70.72 68.91 67.51 0.3781 *** DeepNet 67.47 71.25 67.42 65.11 0.3486 **
EEGNet 70.31 70.77 70.31 69.96 0.4063 ** EEGNet 67.68 68.37 67.66 67.28 0.3533 *
FBCNet 72.46 73.47 72.46 7156 0.4493 *** FBCNet 71.67 7224 71.67 71.38 0.4332 **
EEGConformer |71.17 71.69 71.17 70.73 0.4233 * EEGConformer |70.87 71.10 70.87 70.75 0.4174 *
FBMSNet 70.76 7159 70.76 69.97 0.4152 *** FBMSNet 69.64 70.29 69.66 69.20 0.3930 ***
IFNet 74.67 75.92 74.67 73.90 0.4933 IFNet 75.23 75.94 75.26 75.02 0.5049 *
TSFCNet 74.62 75.11 T74.62 74.28 0.4924 TSFCNet 74.06 7490 74.05 73.77 0.4809 ***
ADFCNN 72.31 73.04 7231 71.84 0.4461 ADFCNN 7155 73.13 71.51 71.05 0.4305 *
EISATCFusion |70.74 71.12 70.74 70.57 0.4148 ** EISATCFusion |66.83 67.03 66.85 66.72 0.3369 *
EEGSimpleConv | 66.24 67.47 66.24 65.26 0.3248 *** EEGSimpleConv | 65.10 67.86 65.11 62.02 0.3022 **
DMSACNN 72.65 73.86 72.65 71.97 0.4530 *** DMSACNN 73.37 74.10 73.39 73.01 0.4676 **
MSAttNet 75.94 76.50 75.94 75.68 0.5189 - MSAttNet 78.60 79.04 78.60 78.50 0.5721 -

(c) The results on the OpenBMI dataset

FBCNet Mane et al. (2021), which divide the bands into (4-
8Hz, 8-12Hz, 12-16Hz, 16-20Hz, 20-24Hz, 24-28Hz, 28-
32Hz, 32-36Hz, 36-40Hz). We introduce frequency band
settings mentioned in IFNet Wang et al. (2023), including the
(4-16Hz, 16-40Hz), (4-8Hz, 8-16Hz, 16-40Hz) and (4-8Hz,
8-16Hz, 16-30Hz, 30-40Hz). Finally, we consider the impact
of starting the segmentation from higher frequencies on the
network’s performance, so we design three reverse filter
bank methods, including (16-40Hz, 4-16Hz), (40-100Hz,
32-44Hz, 20-36Hz, 12-24Hz, 4-16Hz) and (36-40Hz, 32-
36Hz, 28-32Hz, 24-28Hz, 20-24Hz, 16-20Hz, 12-16Hz, 8-
12Hz, 4-8Hz). The other settings of the network remain
unchanged.

As shown in Table 3, in the proposed network, the
accuracy and Kappa exhibit an oscillating downward trend
across the four datasets when using different frequency
band divisions. We also observe that reversing the filter

(d) The results on the ECUST-MI dataset

bank division—(16-40Hz, 4-16Hz) versus (4-16Hz, 16-
40Hz)—yields comparable performance, but the two meth-
ods of 9-band division produce significantly different results.
When using a network without the 40-100Hz frequency
band, the performance is significantly lower than that of
MSALttNet, and we find that overlapping frequency bands
help improve the network’s recognition performance. This
set of experiments demonstrates the effectiveness of the
specific frequency division filter banks we employ.

Based on the cortical topography maps presented in
Figure 2 for different subjects from IV2a, OpenBMI, and
ECUST-MI datasets, distinct MI time periods across fre-
quency bands are observed. This finding aligns with the
frequency plot in Figure 1, which reveals differential acti-
vation frequencies at distinct time points in the subject. This
phenomenon likely reflects collaborative interactions among
brain regions through oscillatory coupling mechanisms.
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Table 3

The comparison of accuracy (%, Acc) and Kappa results between different frequency bands using MSAttNet on four datasets.

Dataset IV2a 1V2b OpenBMI ECUST-MI
Metric Acc. Kappa Acc. Kappa Acc. Kappa Acc. Kappa
4-16, 12-24, 20-36, 32-40 74.34 0.6579 8252 0.6505 69.68 0.3935 66.68 0.3336
4-12, 12-20, 20-32, 32-40, 40-100 77.04 0.6939 83.48 0.6696 72.92 0.4583 73.07 0.4610
4-40 73.69 0.6492 82.73 0.6547 6850 0.3700 67.18 0.3436
4-16, 16-40 75.85 0.6780 82.91 0.6582 69.40 0.3880 65.15 0.3031
4-8, 8-16, 16-40 72.18 0.6291 81.11 0.6222 66.00 0.3200 64.50 0.2899
4-8, 8-16, 16-30, 30-40 73.46 0.6461 82.12 0.6424 67.13 0.3426 63.11 0.2624
4-8, 8-12, 12-16, 16-20, 20-24, 24-28, 28-32, 32-36, 36-40 65.70 0.5427 80.85 0.6171 65.58 0.3117 62.63 0.2525
16-40, 4-16 76.04 0.6806 81.86 0.6372 67.71 0.3543 67.94 0.3538
40-36, 36-32, 32-28, 28-24, 24-20, 20-16, 16-12, 12-8, 8-4 72.69 0.6358 81.25 0.6250 65.96 0.3193 64.95 0.2995
4-8, 8-12, 12-16, 16-20, 20-24, 24-28, 28-32, 32-36, 36-40 64.16 0.5221 79.35 0.5870 60.83 0.2167 58.10 0.1604
4-16, 12-24, 20-36, 32-44, 40-100 (MSAttNet) 78.20 0.7094 84.52 0.6905 75.94 0.5189 78.60 0.5721
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Figure 2: Topographic Maps from

4.2. Different Kernal Size on Multi-Scale
Temporal Convolution Module

We select different kernel sizes to evaluate the per-
formance of the multi-scale temporal convolution module.
First, three kernel sizes—31, 63, and 127—are tested. For
example, when the size 31 is chosen, all kernels in the
network are uniformly set to 31. Additionally, we design a
configuration scheme starting with sizes 31 and 127. Taking

(h) subject 9 on ECUST-MI dataset

-1.7e+00 -1.7e+00

(i) subject 10 on ECUST-MI dataset

different subject on three datasets over different times and frequencies.

31 as an example, the kernel sizes in Table 1 are modified
to (31, 15,7, 3, 1). The experimental results are presented in
Table 4.

We find that whether choosing all convolutional kernels
to be 63 or starting with 63 in MSAttNet, both perform
better than using 31 or 127. This may be because grouped
convolutions at different frequencies are suited to different
kernel sizes. Additionally, comparisons reveal that when all
convolutional kernels use the same size, their performance
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Table 4

The comparison of accuracy (%, Acc) and Kappa results between different kernal size using MSAttNet on four datasets.

Dataset IV2a 1V2b OpenBMI ECUST-MI
Metric Acc. Kappa Acc. Kappa Acc. Kappa Acc. Kappa
All31 7492 0.6656 8251 0.6502 68.08 0.3617 65.93 0.3189
All63 76.00 0.6800 82.46 0.6491 70.83 0.4167 69.56 0.3919
All127 7242 0.6322 81.38 0.6276 64.03 0.2806 59.06 0.1809
Begin31 7438 0.6584 82.87 0.6573 69.40 0.3880 70.16 0.4033
Beginl27 7261 0.6348 81.45 0.6291 66.06 0.3211 61.25 0.2253
MSAttNet 78.20 0.7094 8452 0.6905 7594 05189 78.60 0.5721

on the OpenBMI dataset is inferior to settings with varying
kernel sizes. This indicates that when using Filter Banks
in combination with the multi-scale temporal convolution
module, selecting different kernel sizes can more effectively
extract the time-frequency features of the signal.

4.3. The parameters of the attention spatial
convolution module
The hyperparameter K determines the number of convo-
lution kernels controls attention weights. We set convolution
kernels K to 2, 3,4, 5, and 6.

—e— [V2a
IV2b

== OpenBMI
=—4— ECUST-MI

Accuracy (%)
(o N ~ ~ 0 o]
f=] W [=} W (=} W
—

2 3 4 5 6
the number of kernels

(a) the accuracy on four dataset

W
[

0.8

0.7+
06 ¥

Kappa
[=1
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the number of kernels

(b) the Kappa on four dataset

Figure 3: The comparison of accuracy (%, Acc) and Kappa
results between different kernels of the attention spatial
convolution module using MSAttNet on four datasets.

As shown in Figure 3, selecting 4 kernels for the at-
tention spatial convolution module consistently yields op-
timal performance across different datasets. Both accuracy
and Kappa coefficients gradually increase when the kernel

count rises from 2 to 4, but gradually decrease beyond this
point. We also observe that performance fluctuations vary
across datasets due to differences in acquisition channels,
subject numbers, and original EEG frequencies. Notably,
the ECUST-MI dataset contains the fewest trials per subject
among the four datasets, indicating it is more susceptible to
variations in trial counts.

4.4. Different Pooling Layer

To investigate the impact of different pooling layers on
the final results of MSAttNet, we select commonly used
average pooling layer, max pooling layer, and the bilinear
pooling layer employed in MSAttNet for evaluation.

We demonstrate that employing the bilinear pooling
layer effectively integrates spatial information between global
and local features, achieving optimal performance with
78.2% accuracy and 0.7094 Kappa on the IV2a dataset,
84.52% accuracy and 0.6905 Kappa on the IV2b dataset,
75.94% accuracy and 0.5189 Kappa on the OpenBMI dataset,
and 78.60% accuracy and 0.5721 Kappa on the ECUST-
MI dataset. The max pooling layer consistently outperforms
the average pooling layer across multiple datasets, likely
because averaging local features generates uniform values
across regions, thereby weakening the network’s feature
extraction capability. Given the shallow architecture and
numerous network branches amplifying outlier effects, max
pooling effectively discriminates between different local
regions while accentuating outlier influence. Through bilin-
ear pooling application, the network significantly enhances
outlier handling capacity while simultaneously balancing
local and global feature representation, ultimately achieving
superior performance.

Furthermore, we investigate the impact of using different
patch sizes (375, 250, 125, 50, and 25) in the bilinear pooling
layer on the results, as shown in Figure 4.

In Figure 4, we observe that the model achieves optimal
performance when the patch size approaches 125. If the
vectors input to the bilinear pooling layer are regarded as
features extracted from MI signals by the convolutional
neural network, the patch size can be understood as sampling
points. When the sampling points are too few, short sam-
ples cannot provide effective classifiable features through
local bilinear transformations. Moreover, when the sampling
points are too large, although more global information is
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Table 5

The comparison of accuracy (%, Acc) and Kappa results between different pooling layer using MSAttNet on three datasets.

Dataset IV2a 1V2b OpenBMI ECUST-MI
Metric Acc. Kappa Acc. Kappa Acc. Kappa Acc. Kappa
AvgPool 3229 0.0972 58.80 0.1760 58.43 0.1685 61.78 0.2362
MaxPool 62.50 0.5000 81.56 0.6313 61.76 0.2352 61.44 0.2289
MSAttNet 7820 0.7094 84.52 0.6905 7594 05189 78.60 0.5721
—e— IV2a  —4— OpenBMI that 4-40Hz cannot meet the requirements of multi-branch
IV2b  =—#= ECUST-MI usage. As shown in Table 4, the multi-band segmentation
module divides into multiple branches, but only branches
gk with the same kernel size perform similarly. When the
depthwise convolution layer is ablated, despite the presence
9 8or of the multiband segmentation module, a single branch
2 5F cannot extract feature information from multiple frequency
§ 70+ bands. This proves that multi-band division requires multiple
< st different convolutional kernels, and the absence of any con-
ol dition leads to performance degradation. The ablation of the
attention spatial convolution layer results in the least metric
332530 25 '230 375 decline. The ablation of the bilinear pooling layer causes
(@) the accf:;g;;fiour dataset the largest performance drop, indicating that the pooling
0.8 structure is essential in the network. Moreover, as seen in
07k — Tab.le 5, even replacing it with .o.ther poolipg layers cannot
o = T achieve the same effect as the bilinear pooling layer.
£osh 4.6. Parameters of different networks
& We evaluate four key metrics across three datasets. The
04r number of parameters (Paras) reflects model size in thou-
03F sands (K) and spatial complexity through trainable weights.
ol . . ‘ Training time (TT, seconds, s) represents the time required
" 2550 125 e SiZ2650 375 to train on the training set for an individual model. Inf time

(b) the Kappa on four dataset

Figure 4: The comparison of accuracy (%, Acc) and Kappa
results between different patch size of the bilinear pooling layer
using MSAttNet on four datasets.

considered, the reduction in local information leads to a
decline in performance at the local level.

4.5. Ablation Study

The four modules or layers of MSAttNet need to be dis-
cussed. These modules include the multi-band segmentation
module, the attention spatial convolution module (ASC), and
the depthwise convolution layer, and the bilinear pooling
layer. Within the multi-band segmentation module, the filter
bank is replaced with a bandpass filter of 4-100Hz, and
the number of network branches is adjusted to one. The
depthwise convolution layer use normal convolution layer
to connect the filter bank. The attention spatial convolution
module, and the bilinear pooling layer are removed.

In the ablation experiments, it demonstrates that all mod-
ules of the proposed MSAttNet are useful. When the multi-
band segmentation module is ablated, the results are consis-
tent with those in the 4-40Hz range in Table 3, indicating

(millisecond, ms) denotes the per-trial inference duration for
the different depth model on the test set.

From the evaluation metrics of SOTA methods in Table 2
and the results such as Parameters in the Table 7, it can
be observed that although the Paras, Training Time, and
Inference Time of the proposed MSAttNet are higher than
those of ADFCNN and EEGSimpleConv, the accuracy of
these networks is significantly lower than that of MSAttNet.
Compared to networks using nine frequency bands, such as
FBCNet and FBMSNet, the training time and inference time
of MSAttNet decrease, while the accuracy and other metrics
improve, demonstrating the effectiveness of the proposed
frequency band division and the network structure design
coordinated with the frequency bands. Meanwhile, com-
pared to networks using a single frequency band, it achieves
comprehensive improvements across all metrics.

5. conclusion

We propose a novel convolutional neural network (CNN),
the Multi-scale Attention Convolutional Neural Network
(MSAttNet), to improve motor imagery (MI) classifica-
tion performance. This architecture dynamically adapts to
inter-subject neurophysiological patterns through its atten-
tion spatial convolutional module, eliminating the need
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Table 6

The comparisons of the ablation study with the Proposed Method, MSAttNet, for the method’s four modules, including the
multi-band segmentation (MS) module, the attention spatial convolution module (ASC), and the depthwise convolution (DC)
layer, and the bilinear pooling (BP) layer, on four dataset. The experimental evaluation metrics include accuracy (Acc., %),
precision (Prec., %), recall (Rec., %), Fl-score (F1, %), kappa, and p-value (p). The *, **, and *** indicate that the accuracies
of MSAttNet are significantly higher than the compared methods with p < 0.05, p < 0.01, and p < 0.001, respectively.

Method Acc. Prec. Rec. F1 Kappa p Method Acc. Prec. Rec. F1 Kappa p
w/o MS  73.69 7411 73.69 73.13 0.6492 w/o MS  82.73 83.04 8273 82.68 0.6547 ***
w/o ASC 75.00 76.25 75.00 74.65 0.6667 ** w/o ASC 81.48 8220 81.48 81.27 0.6297 ***
w/o DC  69.75 6859 69.75 68.43 0.5967 ** w/o DC  80.09 80.29 80.09 79.96 0.6018 ***
w/o BP  28.59 28.88 2859 28.61 0.0478 *** w/o BP 5517 5520 55.17 55.08 0.1035 ***
MSAttNet 78.20 78.69 78.20 78.02 0.7094 - MSAttNet 84.52 84.81 8452 84.44 0.6905 -
(a) The results on 1V2a dataset (b) The results on 1V2b dataset
Method Acc. Prec. Rec. F1 Kappa »p Method Acc. Prec. Rec. F1 Kappa »p
w/oMS 6850 70.41 6850 66.98 0.3700 *** w/o MS  67.18 68.25 67.18 66.80 0.3436 ***
w/o ASC 7456 75.42 7456 73.96 0.4911 * w/o ASC 74.03 7496 74.05 73.58 0.4810 *
w/o DC  65.83 66.89 65.83 65.08 0.3167 *** w/o DC  65.11 66.59 65.02 63.77 0.3009 ***
w/o BP 57.11 57.16 57.11 57.02 0.1422 *** w/o BP 55.36 55.55 55.33 54.89 0.1065 ***
MSAttNet 75.94 76.50 75.94 75.68 0.5189 - MSAttNet 78.60 79.04 78.60 78.50 0.5721 -

(d) The results on OpenBMI dataset

(d) The results on ECUST-MI dataset

Table 7

The comparison of the number of parameters (K), training time (TT, s) and inference time (IT, ms) of networks on four datasets.
Model 1V2a 1IV2b OpenBMI ECUST-MI

Paras TT IT Paras TT IT Paras TT IT Paras TT IT

ShallowConvNet 43.36 96.14 34.47 9.44 24.34 10.94 103.84 208.05 44.89 30.24 19.41 6.27
DeepConvNet 280.45 7151 2450 266.98 24.34 9.09 303.85 142.00 28.88 275.10 15.15 5.91
EEGNet 2.62 38.24 11.75 1.52 16.24 7.52 246 98.22 20.59 1.73 10.28 5.12
FBCNet 10.66 235.46 145.06 3.46 43.70 15.59 20.45 270.37 105.24 7.20 34.32 13.90
EEGConformer 615.49 79.74 19.21 585.03 39.71 12.03 679.43 122.67 28.82 605.83 22.82 7.85
FBMSNet 15.08 223.89 96.36 7.88 53.91 16.38 24.87 466.25 95.62 11.62 35.44 12.83
IFNet 10.88 121.35 4491 7.68 26.60 9.12 15.23 107.25 33.86 9.35 11.59 5.60
TSFCNet 43.98 167.85 73.76  8.27 45.19 15.91 114.47 304.97 93.13 31.67 32.98 13.45
ADFCNN 4.03 50.02 1491 267 2226 7.86 691 11751 2434 3.60 13.29 5.91
EISATCFusion 25.86 48.44 14.84 2442 31.25 10.56 26.31 109.41 21.99 24.84 18.20 6.87
EEGSimpleConv  29.44 2995 11.82 25.67 17.72 8.37 36.99 151.00 33.37 28.16 8.70 4.52
DMSACNN 27.72 9291 2517 14.64 29.83 9.45 21.72 237.79 51.28 16.20 17.50 6.84
MSAttNet 43.21 110.08 43.27 15.68 46.00 14.84 113.97 171.47 49.04 32.60 23.14 10.27

for subject-specific parameter calibration while effectively
capturing discriminative spectral-spatial features across fre-
quency bands. The integration of overlapping filter banks
and multi-scale temporal convolutions ensures comprehen-
sive coverage of rhythm dynamics and transient neural
events characteristic of MI tasks.

In frequency band selection, we demonstrate the effec-
tiveness of partitioning bands at 4-16Hz, 12-24Hz, 20-36Hz,
32-44Hz, and 40-100Hz. Furthermore, ablation studies in-
volving the removal of the multi-scale temporal convolution
structure confirm that the number of frequency bands should
match the number of branches in the multi-scale architecture.

As shown in Figure 2, features vary across different time seg-
ments and frequency bands, allowing complementary inte-
gration through the carefully designed network architecture.
We conduct detailed parameter comparisons across different
structural components and perform ablation experiments to
verify the effectiveness of the proposed architecture.
Experimental validation across four benchmark datasets
demonstrates that this framework outperforms 12 state-
of-the-art (SOTA) methods. Our method achieves SOTA
performance across multiple datasets, recording accura-
cies of 78.20% on the IV2a dataset, 84.52% on the IV2b
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dataset, 75.94% on the OpenBMI dataset, and 78.60% on
the ECUST-MI dataset.

The existing frequency band division mainly relies on
the settings of the Filter Bank, and networks such as Oct-
Conv network can automatically separate high-frequency
and low-frequency signals for images Chen, Fan, Xu, Yan,
Kalantidis, Rohrbach, Yan and Feng (2019). We will com-
bine dynamic spatial convolution and OctConv to design
a network for the automatic division of frequency bands,
and at the same time to adjust the weight of different fre-
quency bands to achieve further improvements in accuracy.
We also incorporate viable methodologies from other EEG
tasks, such as SSVEP Deng, Li, Zhang, Zheng, Liu, Ding,
Wang and Gao (2025), emotion recognition Ye, Jing, Wang,
Li, Liu, Yan, Zhang and Gao (2023); Gao, Liu, Zhang,
Wang, Chang, Ouyang, Liu and Li (2025), and fatigue de-
tection Li, Zhang, Liu, Lin, Zhang, Tang and Gao (2023),
into MSAttNet to further enhance recognition efficiency. In
transfer learning, we experiment with various cross-subject
approaches to reduce individual variability and mitigate the
impact of limited single-subject data Zhang, Li, Chang, Liu,
Qin, Xie, Wang, Gao and Wu (2025); Lin, Li, Wang, Bai,
Cui, Yu, Gao and Zhang (2024). We introduce multiple
modalities, such as EOG Tang, Li, Zhang, Deng, Liu, Zheng,
Chang, Zhao, Wang, Zuo et al. (2024) and fNIRS Xu et al.
(2023), and design variants of MSAttNet to improve recog-
nition performance. Ultimately, this enables MSAttNet to
demonstrate utility beyond MI-EEG tasks.
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