

Research Repository

Essential role of weekly high-frequency plyometric training to enhance physical performance 2 and manage muscle soreness in male adolescent soccer players

Accepted for publication in the International Journal of Sports Physiology and Performance

Research Repository link: <https://repository.essex.ac.uk/41596/>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the published version if you wish to cite this paper.

<https://doi.org/10.1123/ijsspp.2025-0006>

www.essex.ac.uk

Essential role of weekly high-frequency plyometric training to enhance physical performance and manage muscle soreness in male adolescent soccer players

Journal:	<i>International Journal of Sports Physiology and Performance</i>
Manuscript ID	IJSPP.2025-0006.R2
Manuscript Type:	Original Investigation
Date Submitted by the Author:	n/a
Complete List of Authors:	Trapletti, Michele; Università degli Studi di Milano, Department of Biomedical Science for Health Formenti, Damiano; University of Insubria, Department of Biotechnology and Life Sciences Moran, Jason; University of Essex, School of Sport, Rehabilitation, and Exercise Sciences Merati, Giampiero; University of Insubria, Department of Biotechnology and Life Sciences Esposito, Fabio; University of Milan, Department of Biomedical Sciences for Health Trecroci, Athos; Università degli Studi di Milano, Department of Biomedical Science for Health
Keywords:	youth soccer, stretch-shortening cycle, programming, athletic performance, recovery

SCHOLARONE™
Manuscripts

1 **Essential role of weekly high-frequency plyometric training to enhance physical performance**
2 **and manage muscle soreness in male adolescent soccer players**

3 Running head: Weekly high-frequency plyometric training

4

5 **Abstract**

6

7 **Purpose:** this study aims to investigate the effects of **volume-matched** plyometric training (PT) with
8 different frequency distributions on physical performance and muscle soreness in adolescent soccer
9 players. **Methods:** Thirty-four sub-elite players were allocated into two groups: PLYO-1 (n = 17, age
10 = 16.02 ± 0.26 years) underwent one PT session per week, while PLYO-3 (n = 17, age = 15.81 ± 0.37
11 years) underwent three volume-matched PT sessions per week. The PT program lasted 9 **weeks** with
12 an initial weekly volume of ~ 55 **foot contacts**, increasing by 10% per week. The 7-point Likert scale
13 was employed to assess the perceived muscle soreness before and after each PT session. All players
14 were tested for countermovement horizontal (CMHJ) and vertical (CMVJ) jumps, 10-m sprint and
15 change of direction (COD) performance using the modified 505 test (505mod). **Results:** After the 9-
16 week experimental period, both groups exhibited significant improvements in CMHJ distance ($p <$
17 0.001; $d = -0.55$) and CMVJ variables (jump height and modified reactive strength index, $p < 0.001$;
18 $d = -0.34$ and $d = -0.33$), and 505mod time (COD deficit) ($p < 0.001$, $d = 1.09$). However, no
19 improvements were observed in the 10-m sprint time for PLYO-1 and PLYO-3 ($p > 0.911$, $d = -0.12$).
20 The changes in perceived muscle soreness were significantly lower for PLYO-3 compared with
21 PLYO-1 ($p < 0.001$, $d = 1.04$) throughout the experimental period. **Conclusions:** Employing weekly
22 volume-matched PT conducted at different frequencies can help to maintain, or even enhance, jump
23 and COD performance, while differently impacting muscle soreness.

24 **Keywords:** football, stretch-shortening cycle, programming, athletic performance, recovery

25

26 Introduction

27 Plyometric training (PT) is a strength training method characterized by the transition from an
28 eccentric (lengthening) to a concentric (shortening) muscle action ¹. During the eccentric phase,
29 muscles store elastic energy, which is reutilised during the concentric phase and translated to the
30 execution of dynamic athletic movements ². This process involves neuromuscular adaptations and is
31 central to the stretch-shortening cycle function, promoting neural potentiation and the stretch-reflex
32 response ¹. These adaptations improve neuromuscular efficiency and athletic performance. Studies
33 have demonstrated that PT is effective for enhancing physical performance in youth athletes (aged
34 under 18 years), with significant improvements in jumping, sprinting and change of direction (COD)
35 abilities ^{3,4} observed in preadolescent ³ and adolescent ^{11,12} soccer players.

36 In youth athletes, growth and maturation can further amplify the effects of PT through changes in
37 muscle size, muscle fascicle length, pennation angle, tendon stiffness and motor unit recruitment
38 through various different physiological mechanisms and environmental factors (i.e., other training
39 types) ^{5,6}. However, despite the potential benefits of PT as a training modality in youth, the high
40 impact-based nature of plyometric type movement imposes significant forces on the trainee of up to
41 seven times bodyweight for specific exercises ⁷, which, if not properly managed, can jeopardize
42 recovery by leading to potentially negative consequences such as overtraining ⁸, performance
43 decrements ⁹, increased training load ¹⁰ and augmented injury risk ¹¹. Proper programming ^{11,12}, as
44 previously emphasized by Ramirez-Campillo et al. ⁹, is essential to balance the high-intensity
45 demands of PT with adequate recovery, ensuring progression while minimizing fatigue and soreness, as
46 previously emphasized by Ramirez-Campillo et al. ⁹.

47 Recent studies have investigated the effects of different PT distributions (i.e., 1 session per week vs.
48 2 sessions per week) on physical performance in young soccer players ¹³⁻¹⁶. Performing 1 or 2
49 sessions per week provided similar physical performance adaptations in young soccer players, at least
50 in the short term (~8 weeks). Similarly, this applied also for higher frequency distribution (2 sessions
51 per week vs. 4 sessions per week) resulting in comparable physical performance improvements
52 among adolescent soccer players ¹⁷. Notably, distributing plyometric sessions more frequently (>2
53 sessions per week) appears to optimize weekly training loads and mitigate fatigue ¹⁸⁻²⁰. Despite these
54 beneficial effects, limited evidence exists on how different training PT distributions can affect athletic
55 performance and muscle soreness in adolescent soccer players. This is a crucial factor for the
56 management of soccer-specific training demands and recovery in youth players. Accordingly, the
57 purpose of this study was to investigate the effects of PT, conducted at different weekly frequencies,
58 on physical performance and muscle soreness in adolescent soccer players. We hypothesized that
59 both PT frequencies (1 session per week vs. 3 sessions per week) would improve physical
60 performance with high weekly training frequency leading to a lower muscle soreness perception, due
61 to a more distributed load of PT.

62 Methods

63 Participants

64 A priori power analysis determined that a pre-to-post parallel design with 16 participants per group
65 (power = 0.95) could detect a medium effect size (0.5) with $\alpha = 0.05$. Sample size computation
66 accounted for two groups and measurements based on prior research examining changes in jumping
67 performance metrics for a similar purpose ¹⁷. Thirty-four under-16 sub-elite male soccer players from
68 the same academy were recruited and divided into two experimental groups: one underwent PT once
69 per week (PLYO-1, n = 17, age = 16.02 ± 0.26 years, height = 1.79 ± 0.06 m, body mass = $67.77 \pm$
70 8.84 kg, maturity offset = 1.7 ± 0.4 years) and the other received a total volume-matched PT
71 distributed three times per week (PLYO-3, n = 17, age = 15.81 ± 0.37 years, height = 1.76 ± 0.06 m,
72 body mass = 66.54 ± 7.10 kg, maturity offset = 1.73 ± 0.5 years) for a 9-week training period.
73 Specifically, they were matched based on baseline physical performance, considering all test results,

74 and then randomly assigned to either PLYO-1 or PLYO-3. This ensured initial comparability and
75 reduced selection bias. No control group was included, as PT was already part of the players' soccer
76 training routine ¹⁴. Each participant had a minimum of seven years of soccer training background.
77 Required adherence to the training intervention was set at 85%. All participants who started the
78 intervention completed the study. To be included, players had to train at least four times per week,
79 (1.5 h per session), play one weekly official competition and compete in a league below the
80 professional level for their age group. Exclusion criteria included chronic conditions (e.g., asthma),
81 illnesses (e.g., flu-like conditions), or injuries (e.g., musculoskeletal and osteoarticular disorders).
82 Players and their parents or legal guardians provided a signed informed consent, and the study
83 followed the Helsinki Declaration principles. The study was approved by the Ethical Committee of
84 the local University.

85 *Experimental design*

86 This study used a randomized pre- and post-intervention parallel group design (Figure 1) conducted
87 during the second phase of the 2023/2024 in-season period, from February to May. The participants
88 underwent one or three weekly volume-matched PT sessions for a 9-week period. The sprint, COD,
89 and jump ability assessments were conducted at pre- and post- intervention. A muscle soreness scale
90 was employed to assess the perceived muscle discomfort induced by the PT in each group, for each
91 session.

92 ***Insert Figure 1 here***

93 *Procedures*

94 A familiarization session was conducted to standardize procedures, even though perceptual and
95 physical performance assessments were part of the players' monitoring routine. Measurements
96 occurred one week before and after the intervention over three days. Anthropometric variables
97 (stature, sitting height and body mass) were recorded on day one using a stadiometer (SECA 213,
98 Germany) and a portable scale (SECA 813, Germany), accurate to 0.1 cm and 0.1 kg, respectively.
99 Maturity offset was estimated using the equation by Mirwald et al. ²¹. Sprint and COD tests were
100 conducted on day two of testing and jump tests on day three, both randomized and performed at the
101 same time of day. This order was based on logistical constraints and surface availability. Players wore
102 their usual footwear soccer shoes for outdoor sprint and COD tests on outdoor artificial grass, and
103 sneakers for indoor jump tests.

104 *Perceptual assessments*

105 The Borg category-ratio scale anchored at the number 10 was used to ensure all players experienced
106 the similar rate of perceived exertion (RPE) ²² and training load (session RPE). The training load was
107 calculated by multiplying RPE by session duration in minute. RPE was collected individually 30 min
108 after each session (Table 2). Muscle soreness was monitored using thea 7-point Likert scale ²³, where
109 0 indicates no soreness and 6 indicates soreness that limitsing the participants' ability to move.
110 Participants rated their lower-limb soreness before the warm-up and immediately after the
111 intervention in each session (Table 2), ensuring consistent perceptions of soreness without impairing
112 performance ²³.

113 *Physical performance assessment*

114 The testing battery encompassed a 10-m sprint test, a modified 505 COD test (505mod), and vertical
115 (CMVJ) and horizontal (CMHJ) jump tests with countermovement. Prior to the athletic assessment,
116 a standardized 5-minute warm-up was conducted based on slow running (forward and backward),
117 acceleration and deceleration exercises, and jumping drills at progressive intensities ²⁴.

118 10-m sprint test. Each subject performed three maximal 10-m sprints from a standing position,
119 interspersed with 2 min of passive recovery ²⁵. The best performance time was considered in the
120 analysis. To measure sprinting speed, an electronic timing system based on photocells (WICHRO,
121 Chronojump Boscosystem©, Barcelona, Spain) was used. The photocells were placed at a height of
122 0.7 m near the start and finish lines. The athletes were positioned 0.3 m away from the start timing
123 gates to prevent an early trigger of the electrical instrumentation due to the leaning trunk.

124 *Modified 505 COD test (505mod)*. Players performed a 10-m sprint test with a 180-degree turn,
125 sprinting 5 m back to the starting point ²⁶. Three trials were completed in each direction (left and
126 right) with ~~two minutes~~^{2 min} of passive recovery between them. The best time for each direction was
127 used for the analysis. Total time and COD deficit, calculated by subtracting the 10-m sprint time from
128 the 505mod total time, were the variables analysed. The timing gate system setup was the same as
129 that used for the 10-m sprint test.

130 *Countermovement vertical jump (CMVJ)*. The CMVJ was evaluated using a force platform
131 (ForceDecks, VALD, Brisbane, Australia) with sampling at 1000 Hz and cut-off filtering at 50 Hz to
132 allow evaluation of force-time characteristics. The force platform was placed on a flat, solid surface
133 and zeroed before giving instructions to participants. Participants were required to stand upright on
134 the platform with their hands on their hips for the time required for body weight acquisition ²⁷. After
135 that, they were asked to jump as high and as fast as possible. Each participant performed three jumps
136 with a recovery time between 30 s and 60 s, and the best one was incorporated into the analysis. The
137 variables to be evaluated were: i) jump height, derived from the velocity of the centre of mass at the
138 time of take-off, based on the impulse-movement relationship and take-off time; ii) reactive strength
139 index (RSImod) representing the ratio between jump height and contraction time and indicating the
140 efficiency of force generation during ground contact relative to the achieved vertical height; iv) 50
141 ms and 100 ms concentric impulse for assessing the ability to express force during the concentric
142 phase and the ability to maintain it over time.

143 *Countermovement horizontal jump (CMHJ)*. In this test, each participant had to perform a horizontal
144 jump with both feet, starting from a static position with a free use of the arms. The goal was to measure
145 the maximum horizontal distance. The distance was assessed by a measuring tape (accuracy of 0.1
146 cm) from the starting line to the heel of the furthest back foot at the point of impact on the landing
147 surface. Each participant performed three jumps, and the longest jump was used for analysis.

148

149 *Training intervention*

150 Both PLYO-1 and PLYO-3 groups completed a 9-week in-season PT intervention with 1 or 3 training
151 sessions per week, respectively, performed after a standardized warm-up at the initial phase of each
152 session. PLYO-1 completed its PT session on ~~a~~ Tuesday while PLYO-3 performed its sessions on
153 Tuesdays, Thursdays and Fridays. All players participated in regular soccer-specific training
154 (technical and tactical drills) on the same days as their PT sessions. Competitive matches were held
155 on Sundays and rest days were scheduled on Mondays and Saturdays. On non-PT days, both groups
156 followed the same soccer-specific training as part of their regular weekly routine (Figure 1).
157 Specifically, on Thursdays and Fridays, the PLYO-1 group engaged in standard soccer training,
158 including technical skills such as ball conduction, passing and receiving. Although different in nature
159 from the PT performed by PLYO-3, the technical drills completed by PLYO-1 likely imposed a
160 comparable neuromuscular load. The PT program (Table 1) included vertical (e.g., drop jumps, tuck
161 jumps) and horizontal (e.g., bilateral forward jumps, lateral zig-zag jumps) jumping exercises with <
162 15 s recovery between repetitions and > 60 s between sets ¹⁵. The volume began at ~55 foot contacts
163 per week ⁹ and increased by 10% weekly, reaching ~118 foot contacts per each week, ensuring
164 maximum effort for each jump ⁹. Training sessions were supervised (1:4 coach-to-player ratio) to
165 ensure proper demonstration and execution. Each session followed a six-step protocol: I) pre-training

166 muscle soreness evaluation; II) warm-up; III) PT or soccer training; IV) post-intervention evaluation
167 of muscle soreness; V) soccer training; VI) post-session RPE and training load computation (RPE \times
168 session duration) (Table 2).

169 *Statistical Analyses*

170 Data normality was verified by the Shapiro-Wilk's test. Relative reliability was assessed with the
171 intraclass correlation coefficient (ICC, model 3,k), interpreted as poor (< 0.50), moderate (0.5-0.74),
172 good (0.75-0.90) and excellent (> 0.90)²⁸. Absolute reliability was evaluated using the coefficient of
173 variation (CV = [standard deviation/mean] \times 100). After verifying the homogeneity of variance by
174 the Levene's test, a two-way repeated measures analysis of variance was conducted to analyze
175 potential interactions between PLYO-3 and PLYO-1 on perceptual and physical performance after 9
176 weeks. Bonferroni's post-hoc test was applied for multiple comparisons. Cohen's *d* (*d*) effect size
177 quantified the magnituded of the simple and main effects. The magnitude thresholds were as follows:
178 *d* < 0.2 negligible, *d* < 0.5 small, *d* < 0.8 medium, and *d* ≥ 0.8 large²⁹. Confidence intervals (95%)
179 were provided. To assess the practical significance of performance changes by PLYO-1 and PLYO-
180 3, the small worthwhile change (SWC) was computed as $0.2 \times$ between-subject standard deviation
181 from baseline measures. All analyses were performed using GraphPad Prism software (GraphPad
182 Software v.8.0.2, San Diego, USA).

183 **Results**

184 Table 3 showed good to excellent reliability data and sensitivity values for physical performance. The
185 SWC values are also reported indicating a practical significant in all performance outcomes (Table
186 3). A significant main effect of time ($F_{(4,136)} = 5.029$, $p < 0.001$) was observed for the delta score of
187 muscle soreness (Figure 2), with week 9 differing significantly from week 3 ($p < 0.001$, *d* = 0.89
188 [0.16 to 1.62]), week 5 ($p < 0.01$, *d* = 0.70 [-0.006 to 1.42]), and week 7 ($p = 0.041$, *d* = 0.64 [-0.06
189 to 1.35]). Moreover, muscle soreness was significantly higher in PLYO-1 compared with PLYO-3
190 ($F_{(1,32)} = 144.3$, $p < 0.001$, *d* = 1.04 [0.30 to 1.78]). No significant interaction was detected between
191 groups ($F_{(4,136)} = 0.59$, $p = 0.663$, *d* = 0.25 [-0.44 to 0.95]). Across all sessions, session-RPEtraining
192 load values for PLYO-1 and PLYO-3 were comparable (ranging from 241 ± 25 a.u. to 349 ± 36 a.u.),
193 showing negligible to small effect sizes (from $0.04 \leq d \leq 0.24$).

194 ***Insert Figure 2 here***

195 In the 10-m sprint test, neither significant effect of time ($F_{(1,32)} = 0.01$, $p = 0.911$, *d* = -0.12 [-0.81
196 to 0.57]) nor effect of group ($F_{(1,32)} = 0.24$, $p = 0.62$, *d* = 0.04 [-0.64 to 0.73]) nor significant
197 interaction ($F_{(1,32)} = 0.61$, $p = 0.436$, *d* = -0.09 [-0.78 to 0.60]) were found (Figure 35; Panel A). For
198 505mod performance (Figure 35, Panel B), a significant main effect of time ($F_{(1,32)} = 22.96$, $p <$
199 0.001 , *d* = 1.09 [0.35 to 1.84]), although neither significant interaction ($F_{(1,32)} = 2.70$, $p = 0.110$, *d* =
200 -0.54 [-1.24 to 0.16]) nor significant effect of group ($F_{(1,32)} = 3.28$, $p = 0.08$, *d* = -0.23 [-0.93 to
201 0.46]) were revealed. For CMHJ performance (Figure 43), a significant main effect of time ($F_{(1,32)} =$
202 27.28, $p < 0.001$, *d* = -0.55 [-1.25 to 0.15]) was observed, but neither interaction ($F_{(1,32)} = 1.18$, $p =$
203 0.285, *d* = -0.23 [-0.71 to 0.25]) nor group effect ($F_{(1,32)} = 0.93$, $p = 0.34$, *d* = -0.30 [-1.00 to 0.38])
204 were found. Similarly, CMVJ height showed a significant main effect of time ($F_{(1,32)} = 16.91$, $p <$
205 0.001, *d* = -0.34 [-1.04 to 0.35]), but neither significant interaction ($F_{(1,32)} = 0.83$, $p = 0.368$, *d* =
206 -0.17 [-0.65 to 0.31]) nor group effect ($F_{(1,32)} = 0.52$, $p = 0.47$, *d* = 0.00 [-0.69 to 0.69]) were found
207 (Figure 54, Panel A). In the RSImod performance, neither significant interaction ($F_{(1,32)} = 0.92$, $p =$
208 0.344, *d* = -0.29 [-0.77 to 0.19]) nor significant effect of group ($F_{(1,32)} = 0.34$, $p = 0.56$, *d* = -0.10
209 [-0.80 to 0.58]) were found, while it was observed a significant main effect of time ($F_{(1,32)} = 5.45$, $p =$
210 0.026, *d* = -0.33 [-1.02 to 0.36]) (Figure 45, Panel B). In the 50 ms concentric impulse, PLYO-1
211 improved by 2.39% (pre, $48.06 \text{ N}\cdot\text{s} \pm 16.71 \text{ N}\cdot\text{s}$; post, $49.21 \text{ N}\cdot\text{s} \pm 15.32 \text{ N}\cdot\text{s}$) and PLYO-3 by 6.84%
212 (pre, $49.36 \text{ N}\cdot\text{s} \pm 8.59 \text{ N}\cdot\text{s}$; post, $52.73 \text{ N}\cdot\text{s} \pm 9.21 \text{ N}\cdot\text{s}$), but neither significant effect of time ($F_{(1,32)} = 1.02$, $p = 0.319$, *d* = -0.17 [-0.86 to 0.52]), nor effect of group ($F_{(1,32)} = 0.40$, $p = 0.52$, *d* = -0.19

214 [-0.88 to 0.50]) nor interaction ($F_{(1, 32)} = 0.24, p = 0.622, d = -0.17 [-0.65 to 0.31]$). Parallelly, for
215 100 ms concentric impulse, improvements were 2.79% (pre, $93.43 \text{ N}\cdot\text{s} \pm 30.88 \text{ N}\cdot\text{s}$; post, $96.04 \text{ N}\cdot\text{s} \pm 28.26 \text{ N}\cdot\text{s}$) in PLYO-1 and 5.16% (pre, $94.28 \text{ N}\cdot\text{s} \pm 14.41 \text{ N}\cdot\text{s}$; post, $99.14 \text{ N}\cdot\text{s} \pm 16.15 \text{ N}\cdot\text{s}$) in
216 PLYO-3, again with neither effect of time ($F_{(1, 30)} = 0.79, p = 0.379, d = -0.16 [-0.86 to 0.52]$) nor
217 group effect ($F_{(1, 32)} = 0.08, p = 0.77, d = -0.01 [-0.78 to 0.59]$) nor interaction ($F_{(1, 32)} = 0.07, p = 0.789, d = -0.09 [-0.57 to 0.38]$). ~~In the 10-m sprint test, neither significant effect of time ($F_{(1, 32)} = 0.01, p = 0.911, d = -0.12 [-0.81 to 0.57]$) nor effect of group ($F_{(1, 32)} = 0.24, p = 0.62, d = 0.04 [-0.64 to 0.73]$) were found (Figure 5; Panel A). For 505mod performance (Figure 5, Panel B), a significant main effect of time ($F_{(1, 32)} = 22.96, p < 0.001, d = 1.09 [0.35 to 1.84]$), although neither significant interaction ($F_{(1, 32)} = 2.70, p = 0.110, d = 0.54 [-1.24 to 0.16]$) nor significant effect of group ($F_{(1, 32)} = 3.28, p = 0.08, d = -0.23 [-0.93 to 0.46]$) were revealed.~~

226 ***Insert Figure 3 here***

227 ***Insert Figure 4 here***

228 ***Insert Figure 5 here***

229

230 Discussion

231 This study examined the effects of volume-matched PT interventions conducted at different
232 frequencies on physical performance and muscle soreness in adolescent soccer players. The main
233 findings indicated that the 9-week PT program significantly improved CMHJ, CMVJ, and 505mod
234 performance in both training frequency groups (PLYO-3 and PLYO-1), with effect sizes ranging
235 from small to large. The absence of significant interaction and group effects with negligible to small
236 effect sizes suggest that both approaches produced comparable outcomes. However, the perceived
237 increase in muscle soreness was significantly lower in PLYO-3 compared to PLYO-1 with a large
238 effect size being demonstrated. These results confirm our initial hypothesis that both PT frequencies
239 enhance physical performance while resulting in different levels of muscle soreness and, by
240 extension, a potentially optimal spreading of workloads across the training week for the PLYO-3
241 group. Overall, this study contributes to the existing literature by comparing different weekly
242 frequencies of volume-matched PT in adolescent soccer players, suggesting that a higher training
243 frequency may reduce perceptions of muscle soreness without compromising physical performance.

244 Previous studies found that low-frequency PT (< 3 sessions per week) can also enhance physical
245 performance^{13–16} in young soccer players. For example, Bouguezzi et al.¹³ found that one session
246 vs. two sessions per week were equally effective in improving sprint, COD, and jumping performance
247 (vertical and horizontal jump height and RSImod) in preadolescent male soccer players. In that study,
248 the weekly jump volume was matched between groups with a progression from ~50 to ~~120~~¹²⁰ foot¹²⁰
249 foot contacts over the course of the study. Similarly, Ramirez-Campillo et al.¹⁵ observed similar
250 improvements in young adult female soccer players with comparable weekly training distributions.
251 Likewise, the training volume was matched between groups ranging from 80 to ~~140~~¹⁴⁰ foot¹⁴⁰ foot
252 contacts per week. Consistent with these findings (except for sprint performance), our volume-
253 matched plyometric intervention (55–118 foot contacts per week) also led to improvements in
254 COD (COD deficit), vertical and horizontal jump performance (e.g., jump height, distance, and
255 RSImod) regardless of training frequency. Furthermore, dividing weekly training volumes into more
256 frequent, shorter sessions appears to reduce neuromuscular fatigue and improve recovery as
257 evidenced by lower RPE values in volume-matched high-frequency strength training protocols^{18,20}.
258 This strategy is particularly useful for optimizing adaptations to plyometric stimuli¹⁹ during
259 congested training and match periods. Supporting this, Liu et al.¹⁷ found that both protocols of four
260 sessions per week and two sessions per week of PT led to improvements in SJ and CMJ height, drop

261 jump RSI, and 10-m sprint time in under-17 soccer players ¹⁷. However, training volume was not
262 matched, as-with the micro-dosed group performed ~~41 foot~~⁴¹ foot contacts per week while the
263 regular-frequency group performed 82¹ foot contacts per week. Despite this limitation, These
264 findings, alongside the current study, confirm the efficacy of higher-frequency PT in improving
265 performance outcomes infor adolescent soccer players.

266 In addition to the above, our study offers novel insights by showing that varying the distribution of
267 volume-matched PT can lead to different levels of perceived muscle soreness as observed in the
268 PLYO-3 group as compared with^{against} PLYO-1. In PLYO-3 and PLYO-1, the perceived muscle
269 soreness, assessed before and immediately after each PT sessions intervention increased over the
270 experimental period, with the highest delta score values observed during the final week of the
271 program. This result was expected, as the 10% weekly incremental increase in foot contacts resulted
272 in progressively higher workloads as the study proceeded. To mitigate the risk of injuries, Bedoya et
273 al. ¹¹ previously recommended an initial volume ~50–60 foot contacts/session, progressively
274 increasing to no more than 80-120 foot contacts/session for youth soccer players. Our study adhered
275 to this recommendation in PLYO-1. However, in PLYO-3, the initial number of foot contacts/session
276 was lower than previously reported ^{10,11}. By the final weeks, foot contacts per session in PLYO-3
277 matched the recommended values, while the total weekly volume of contacts remained identical
278 between the two groups over the 9-week program.

279 Previous studies have highlighted the role of PT in improving both horizontal and vertical jump
280 performance in youth athletes ³⁰. In the current study, the observed changes in RSImod confirm the
281 effectiveness of PT in enhancing the rapid force production required for dynamic soccer-specific
282 actions such as jumps, CODs and sprints ¹³. Additionally, the reported slight increases in the 50 ms
283 and 100 ms concentric impulse observed could also emphasize enhanced force application during the
284 early phase of movement ¹, potentially contributing to faster, more dynamic movement on the field
285 of play. However, these improvements were associated with a small effect size, limiting the extent to
286 which definitive conclusions can be drawn. Collectively, these findings suggest that different PT
287 distributions not only improve overall performance but also provide adaptations aligned with the
288 soccer-specific physical demands (i.e. as jumps, CODs and sprints)⁴.

289 Our findings on COD performance align with previous studies using COD deficit ^{4,31} as an outcome
290 measure, which can isolate COD ability from sprinting performance. Nobari et al. ³¹, reported
291 improvements in COD deficit with both horizontal and vertical PT in semi-professional players, while
292 Söyler et al. ⁴ observed similar improvements following a greater distribution of PT in elite adolescent
293 soccer players. Overall, these results are consistent with the existing literature ^{32,40}, suggesting that
294 between six and nine weeks of PT, with 12–18 sessions and 60–200 contacts per session, appear
295 sufficient to improve COD ability in soccer players. Our findings further support the importance of
296 higher PT frequencies in enhancing COD ability.

297 In contrast to the aforementioned results, neither the PLYO-1 nor the PLYO-3 groups showed
298 improvements in 10-m sprint time following the 9-week PT protocol. Evidence suggests that
299 enhancing sprint performance requires training programs incorporating sprint-specific exercises ³³.
300 Additionally, for adolescent athletes, combining strength training and PT has been shown to be more
301 effective in improving sprint performance than relying solely on PT ³⁴.

302 The present study is not without limitations. The use of a randomized parallel group design might
303 have introduced variability to the interpretation of muscle soreness across different subjects. A cross-
304 over design would have allowed for controlling such individual differences, leading to more accurate
305 interpretations of changes in muscle soreness in response to the intervention. Secondly, the inclusion
306 of sub-elite soccer players might limit the generalization of our findings to elite peers, as differences
307 in training intensity and background could influence their response to PT. Thirdly, while PLYO-3

308 completed PT, PLYO-1 performed technical drills on Thursdays and Fridays. Although these drills
309 likely provided a comparable neuromuscular load, the difference in training content represents a
310 potential confounding factor that should be considered.

311

312 **Practical Applications**

313 A high-frequency PT regimen (3 sessions per week) can be particularly beneficial to optimize weekly
314 load distribution and manage muscle soreness in youth soccer. This approach allows young players
315 to maintain or enhance strength and power while also balancing the often-substantial workloads
316 associated with soccer training and match play, particularly during the in-season period of the
317 calendar year. Incorporating PT exercises with a progressive 10% increase in weekly foot contacts
318 can improve horizontal and vertical jump capacity, COD performance, and overall athletic readiness.

319 **Conclusions**

320 The results of the current study indicate that when PT is applied in volume-matched protocols at
321 different frequencies, it can effectively enhance jump and COD performance but not sprint
322 performance in adolescent soccer players. Furthermore, three sessions per week of PT resulted in
323 lower increase in perceptions of muscle soreness compared with one session per week. Future
324 research should investigate the effects of higher frequency microdosed PT (e.g., 4 vs. 2 sessions per
325 week) on physical performance and muscle soreness perception.

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357 **References**

358 1. Markovic G, Mikulic P. Neuro-musculoskeletal and performance adaptations to lower-
359 extremity plyometric training. *Sports Med.* 2010;40(10):859-895. doi:10.2165/11318370-
360 000000000-00000

361 2. Meylan C, Malatesta D. Effects of in-season plyometric training within soccer practice on
362 explosive actions of young players. *J Strength Cond Res.* 2009;23(9):2605-2613.
363 doi:10.1519/JSC.0b013e3181b1f330

364 3. Ramirez-Campillo R, Alvarez C, Sanchez-Sanchez J, et al. Effects of plyometric jump training
365 on the physical fitness of young male soccer players: Modulation of response by inter-set
366 recovery interval and maturation status. *J Sports Sci.* 2019;37(23):2645-2652.
367 doi:10.1080/02640414.2019.1626049

368 4. Söyler M, Zileli R, Çingöz YE, et al. The effect of high-intensity plyometric training on
369 anaerobic performance parameters: a pilot study in U17 elite A league. *PeerJ.*
370 2024;12:e16648. doi:10.7717/peerj.16648

371 5. Moran JJ, Sandercock GRH, Ramírez-Campillo R, Meylan CMP, Collison JA, Parry DA.
372 Age-related variation in male youth athletes' countermovement jump after plyometric training:
373 a meta-analysis of controlled trials. *J Strength Cond Res.* 2017;31(2):552-565.
374 doi:10.1519/JSC.0000000000001444

375 6. Moran J, Sandercock G, Ramírez-Campillo R, Clark CCT, Fernandes JFT, Drury B. A meta-
376 analysis of resistance training in female youth: its effect on muscular strength, and
377 shortcomings in the literature. *Sports Med.* 2018;48(7):1661-1671. doi:10.1007/s40279-018-
378 0914-4

379 7. Witzke KA, Snow CM. Effects of plyometric jump training on bone mass in adolescent girls:
380 *Med Sci Sports Exerc.* 2000;32(6):1051-1057. doi:10.1097/00005768-200006000-00003

381 8. Faigenbaum AD, Myer GD. Resistance training among young athletes: safety, efficacy and
382 injury prevention effects. *Br J Sports Med.* 2010;44(1):56-63. doi:10.1136/bjsm.2009.068098

383 9. Ramírez-Campillo R, Moran J, Oliver JL, Pedley JS, Lloyd RS, Granacher U. Programming
384 plyometric-jump training in soccer: a review. *Sports.* 2022;10(6):94.
385 doi:10.3390/sports10060094

386 10. Lloyd RS, Meyers RW, Oliver JL. The natural development and trainability of plyometric
387 ability during childhood. *Strength Cond J.* 2011;33(2):23-32.
388 doi:10.1519/SSC.0b013e3182093a27

389 11. Bedoya AA, Miltenberger MR, Lopez RM. Plyometric training effects on athletic performance
390 in youth soccer athletes: a systematic review. *J Strength Cond Res.* 2015;29(8):2351-2360.
391 doi:10.1519/JSC.0000000000000877

392 12. Faigenbaum, A. and Chu, D. Plyometric training for children and adolescents. Indianapolis,
393 IN: American College of Sports Medicine; 2017.

394 13. Bouguezzi R, Chaabene H, Negra Y, et al. Effects of different plyometric training frequencies
395 on measures of athletic performance in prepuberal male soccer players. *J Strength Cond Res.*
396 2020;34(6):1609-1617. doi:10.1519/JSC.0000000000002486

397 14. Moran J, Vali N, Tallent J, et al. Evaluating the effects of consecutive phases of plyometric
398 jump training on athletic performance in male soccer players: the effect of training frequency
399 and volume manipulations. *J Strength Cond Res.* 2024;38(6):1082-1089.
400 doi:10.1519/JSC.0000000000004756

401 15. Ramirez-Campillo R, García-Pinillos F, García-Ramos A, et al. Effects of different plyometric
402 training frequencies on components of physical fitness in amateur female soccer players. *Front*
403 *Physiol.* 2018;9:934. doi:10.3389/fphys.2018.00934

404 16. Yanci J, Castillo D, Iturricastillo A, Ayarra R, Nakamura FY. Effects of two different volume-
405 equated weekly distributed short-term plyometric training programs on futsal players' physical
406 performance. *J Strength Cond Res.* 2017;31(7):1787-1794.
407 doi:10.1519/JSC.0000000000001644

408 17. Liu G, Wang X, Xu Q. Microdosing plyometric training enhances jumping performance,
409 reactive strength index, and acceleration among youth soccer players: a randomized controlled
410 study design. *J Sports Sci Med.* Published online June 1, 2024:342-350.
411 doi:10.52082/jssm.2024.342

412 18. Ochi E, Maruo M, Tsuchiya Y, Ishii N, Miura K, Sasaki K. Higher training frequency is
413 important for gaining muscular strength under volume-matched training. *Front Physiol.*
414 2018;9:744. doi:10.3389/fphys.2018.00744

415 19. Ramírez-Campillo R, Meylan CMP, Álvarez-Lepín C, et al. The effects of interday rest on
416 adaptation to 6 weeks of plyometric training in young soccer players. *J Strength Cond Res.*
417 2015;29(4):972-979. doi:10.1519/JSC.0000000000000283

418 20. Cuthbert M, Haff GG, McMahon JJ, Evans M, Comfort P. Microdosing: a conceptual
419 framework for use as programming strategy for resistance training in team sports.

420 21. Mirwald RL, Baxter-Jones ADG, Bailey DA, Beunen GP. An assessment of maturity from
421 anthropometric measurements.

422 22. Borg G. *Borg's Perceived Exertion and Pain Scales*. Human Kinetics; 1998.

423 23. Impellizzeri FM, Maffiuletti NA. Convergent evidence for construct validity of a 7-point likert
424 scale of lower limb muscle soreness. *Clin J Sport Med.* 2007;17(6):494-496.
425 doi:10.1097/JSM.0b013e31815aed57

426 24. Trecroci A, Cavaggioni L, Rossi A, et al. Effects of speed, agility and quickness training
427 programme on cognitive and physical performance in preadolescent soccer players. Fortes
428 LDS, ed. *PLOS ONE*. 2022;17(12):e0277683. doi:10.1371/journal.pone.0277683

429 25. Trecroci A, Bongiovanni T, Cavaggioni L, Pasta G, Formenti D, Alberti G. Agreement
430 between dribble and change of direction deficits to assess directional asymmetry in young elite
431 football players. *Symmetry*. 2020;12(5):787. doi:10.3390/sym12050787

432 26. Thomas C, Dos'Santos T, Comfort P, Jones PA. Effect of asymmetry on biomechanical
433 characteristics during 180° change of direction. *J Strength Cond Res.* 2020;34(5):1297-1306.
434 doi:10.1519/JSC.00000000000003553

435 27. Bongiovanni T, Trecroci A, Rossi A, Iaia FM, Pasta G, Campa F. Association between change
436 in regional phase angle and jump performance: a pilot study in serie A soccer players. *Eur J*
437 *Investig Health Psychol Educ.* 2021;11(3):860-865. doi:10.3390/ejihpe11030063

438 28. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for
439 reliability research. *J Chiropr Med.* 2016;15(2):155-163. doi:10.1016/j.jcm.2016.02.012

440 29. Cohen J. *Statistical Power Analysis for the Behavioral Sciences*. 2nd ed. L. Erlbaum
441 Associates; 1988.

442 30. Negra Y, Chaabene H, Sammoud S, et al. The increased effectiveness of loaded versus
443 unloaded plyometric jump training in improving muscle power, speed, change of direction,
444 and kicking-distance performance in prepubertal male soccer players. *Int J Sports Physiol*
445 *Perform.* 2020;15(2):189-195. doi:10.1123/ijsspp.2018-0866

446 31. Nobari H, Clemente FM, Vali N, Silva AF, Van Den Hoek D, Ramirez-Campillo R. Effects of
447 horizontal compared to vertical-based plyometric jump training on semi-professional soccer
448 player's performance. *Sci Rep.* 2023;13(1):10039. doi:10.1038/s41598-023-37213-x

449 32. Jimenez-Iglesias J, Owen AL, Cruz-Leon C, et al. Improving change of direction in male
450 football players through plyometric training: a systematic review. *Sport Sci Health.*
451 2024;20(4):1131-1152. doi:10.1007/s11332-024-01230-8

452 33. Sáez De Villarreal E, Requena B, Cronin JB. The effects of plyometric training on sprint
453 performance: a meta-analysis. *J Strength Cond Res.* 2012;26(2):575-584.
454 doi:10.1519/JSC.0b013e318220fd03

455 34. Rumpf MC, Cronin JB, Pinder SD, Oliver J, Hughes M. Effect of different training methods
456 on running sprint times in male youth. *Pediatr Exerc Sci.* 2012;24(2):170-186.
457 doi:10.1123/pes.24.2.170

459 **Figure 1.** A schematic representation of the experimental design. Pre-testing and post-testing sessions
460 were performed one week before and after the 9-week intervention period. PLYO-1 = experimental
461 group receiving one PT session per week; PLYO-3 = experimental group receiving three volume-
462 matched PT sessions per week.

463 Note: M = Monday (rest day for both groups); T = Tuesday (PT session 1 for PLYO-1 and PLYO-
464 3); W = Wednesday (same sport-specific session for both groups); T = Thursday (PT session 2 for
465 PLYO-3); F = Friday (PT session 3 for PLYO-3); S = Saturday (rest day for both groups); S = Sunday
466 (match day for both groups).

467

468 **Figure 2.** Changes of delta score (post-pre) values in muscle soreness by the 7-Point Likert Scale
469 over the 9-week experimental period.

470 Note: PLYO-1 = experimental group receiving one PT session per week; PLYO-3 = experimental
471 group receiving three matched-volume PT sessions per week; u.a. = arbitrary units. # Significant (p
472 < 0.05) main effect of time; post-hoc comparisons for main effect of time: lower case letters indicate
473 significant difference in week 9 compared with week 3 (a), week 5 (b), week 7 (c), respectively. *
474 Significant (p < 0.05) difference for the main effect of group.

475 **Figure 43.** Individual pre and post values of the countermovement horizontal jump (CMHJ) test.

476 Note: PLYO-1 = experimental group receiving one PT session per week; PLYO-3 = experimental
477 group receiving three matched-volume PT sessions per week. ### Significant (p < 0.001) main effect
478 of time.

479 **Figure 54.** Individual pre and post values of the countermovement vertical jump (CMVJ) test. Panel
480 A and Panel B show the individual jump height and the modified reactive strength index (RSImod)
481 performance, respectively.

482 Note: PLYO-1 = experimental group receiving one PT session per week; PLYO-3 = experimental
483 group receiving three matched-volume PT sessions per week. # Significant (p < 0.05) main effect of
484 time; ### Significant (p < 0.001) main effect of time.

485 **Figure 35.** Individual pre and post values of the 10-m sprint and change of direction tests. Panel A
486 and Panel B show the individual sprint time and change of direction deficit (COD deficit)
487 performance, respectively.

488 Note: PLYO-1 = experimental group receiving one PT session per week; PLYO-3 = experimental
489 group receiving three matched-volume PT sessions per week. ### Significant (p < 0.001) main effect
490 of time.

Table 1. Characteristics of the plyometric training programs.

Intervention	N. of Weeks	Session	FCT	Exercise								
				Bilateral forward jump (rebound)	Drop jump + two-foot vertical bounce	Forward side jumps (zig-zag 45°)	Hurdle jumps	Alternate side jumps + bounce	Drop jump + two-foot forward bounce	Tuck jump (rebound)	Two-foot jumps on “square path”	Drop jump + two-foot side bounce
PLYO-1	Week 1	S1	~55	1 × 5	1 × 6	2 × 4	1 × 5	2 × 4	1 × 6	1 × 5	2 × 4	1 × 4
	Week 9		~118	2 × 8	2 × 6	3 × 4	2 × 8	3 × 4	2 × 6	2 × 7	2 × 8	2 × 4
PLYO-3	Week 1	S2	~19	1 × 5	1 × 6	2 × 4		1 × 5	2 × 4	1 × 6		
											1 × 5	2 × 4
PLYO-3		S3	~17									
		S1	~40	2 × 8	2 × 6	3 × 4						
Week 9	Week 9	S2	~40				2 × 8	3 × 4	2 × 6			
										2 × 7	2 × 8	2 × 4
Week 9		S3	~38									

Note: PLYO-1 = experimental group receiving one plyometric training session per week; PLYO-3 = experimental group receiving three plyometric training sessions per week. FCT = ground foot contact. Exercises were performed with the intent to jump at maximum intensity. The number of FCT increased by 10% each week, from ~55 (week 1) to ~118 (week 9).

Table 2. Experimental approach and training protocol.

Intervention	Session 1		Session 2		Session 3	
	PLYO-1	PLYO-3	PLYO-1	PLYO-3	PLYO-1	PLYO-3
I						
II						
III						
IV						
V						
VI	RPE (training load)		RPE (training load)		RPE (training load)	

Note: PLYO-1 = experimental group receiving one plyometric training session per week; PLYO-3 = experimental group receiving three plyometric training sessions per week; RPE = Rate of Perceived Exertion. Within the training sessions, the experimental protocol consisted in six steps: I) muscle soreness evaluation; II) warm-up protocol; III) plyometric/soccer training; IV) muscle soreness evaluation V) soccer training VI) Rate of Perceived Exertion evaluation.

Variables	ICC (95% CI)	CV%	SWC
10-m sprint			
Running time (s)	0.869 [0.756 to 0.932]	1.5	0.021
505mod			
COD deficit (s)	0.822 [0.67 to 0.908]	1.6	0.019
CMHJ			
Distance (cm)	0.974 [0.949 to 0.987]	1.1	3.215
CMVJ			
Jump height (cm)	0.966 [0.931 to 0.981]	2.4	1.025
RSImod (m/s)	0.947 [0.896 to 0.976]	4.3	0.017
50 ms concentric impulse (N·s)	0.948 [0.897 to 0.977]	5.6	2.306
100 ms concentric impulse (N·s)	0.957 [0.914 to 0.981]	5.3	4.184

Note: Values are reported with two or three decimal places depending on the level of precision required. ICC = intraclass correlation coefficient; 95% CI = coefficient interval at 95%; CV = coefficient of variation; SWC = smallest worthwhile change. 505mod = modified 505 change of direction test; COD deficit = change of direction deficit; CMHJ = countermovement horizontal jump; CMVJ = countermovement vertical jump; RSImod = modified reactive strength index.

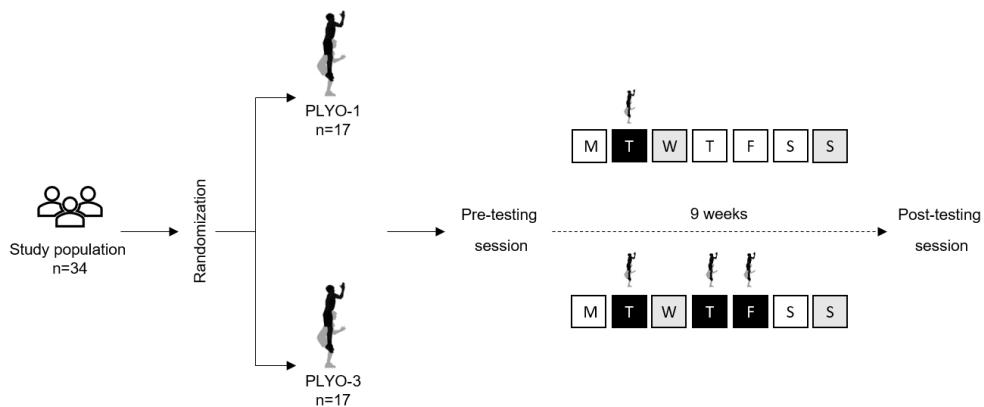


Figure 1. A schematic representation of the experimental design. Pre-testing and post-testing sessions were performed one week before and after the 9-week intervention period. PLYO-1 = experimental group receiving one PT session per week; PLYO-3 = experimental group receiving three volume-matched PT sessions per week.

Note: M = Monday (rest day for both groups); T = Tuesday (PT session 1 for PLYO-1 and PLYO-3); W = Wednesday (same sport-specific session for both groups); T = Thursday (PT session 2 for PLYO-3); F = Friday (PT session 3 for PLYO-3); S = Saturday (rest day for both groups); S = Sunday (match day for both groups).

111x45mm (300 x 300 DPI)

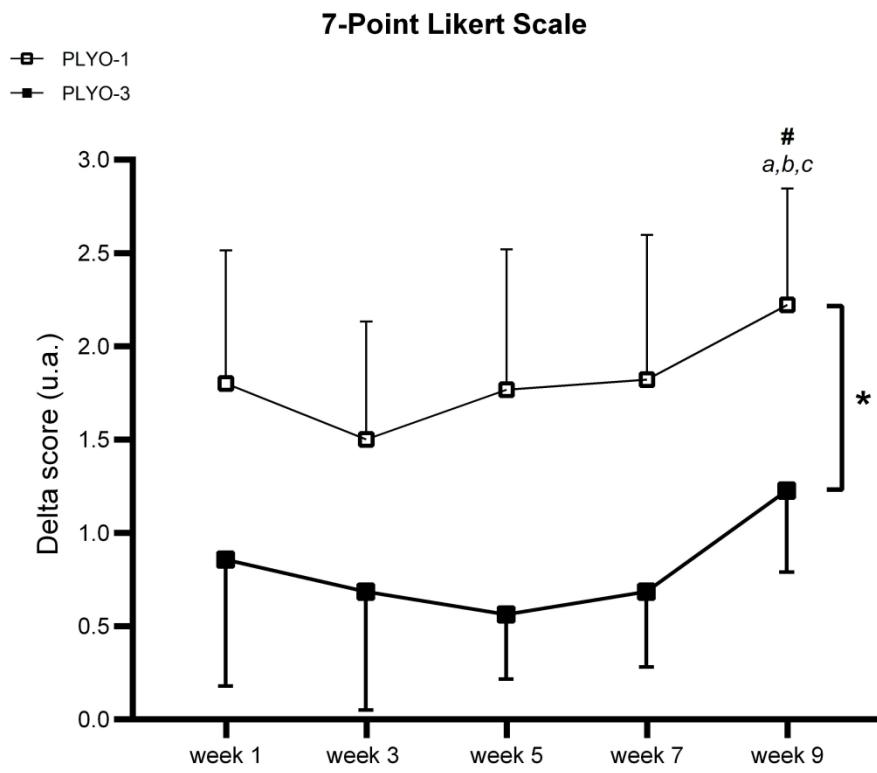


Figure 2. Changes of delta score (post-pre) values in muscle soreness by the 7-Point Likert Scale over the 9-week experimental period.

Note: PLYO-1 = experimental group receiving one PT session per week; PLYO-3 = experimental group receiving three matched-volume PT sessions per week; u.a. = arbitrary units. # Significant ($p < 0.05$) main effect of time; post-hoc comparisons for main effect of time: lower case letters indicate significant difference in week 9 compared with week 3 (a), week 5 (b), week 7 (c), respectively. * Significant ($p < 0.05$) difference for the main effect of group.

835x725mm (118 x 118 DPI)

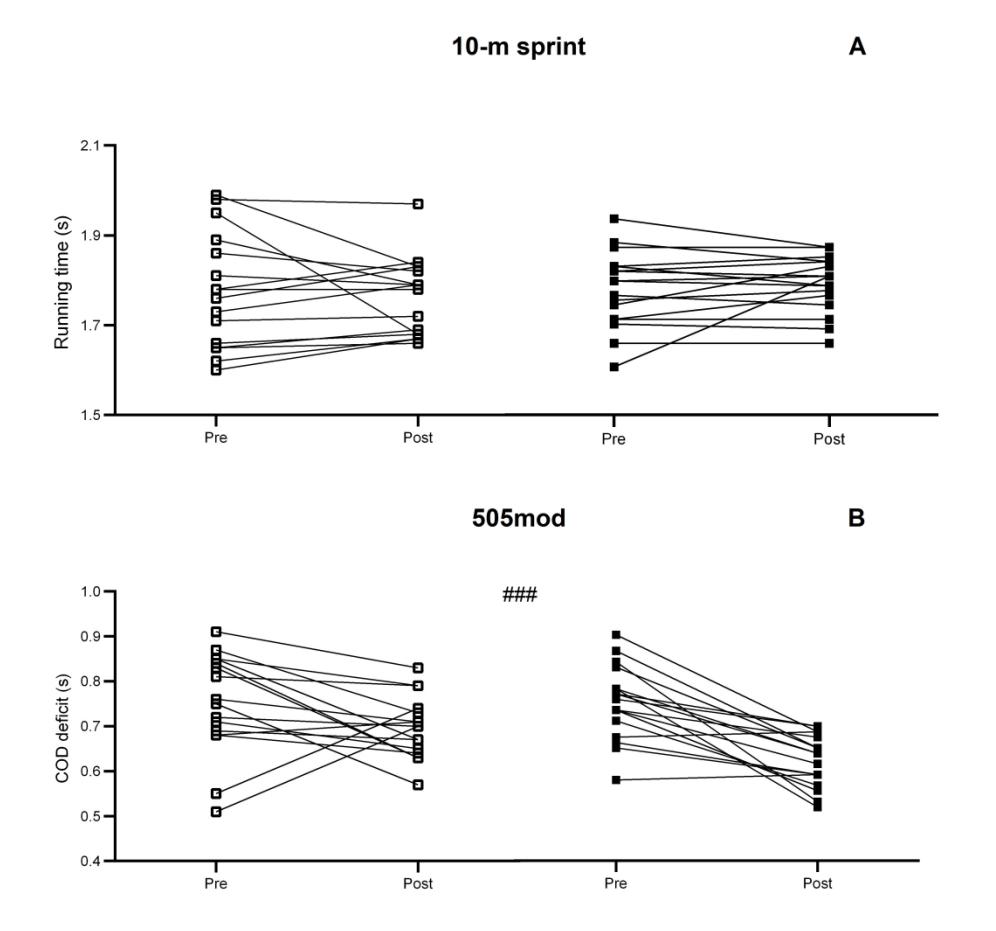


Figure 3. Individual pre and post values of the 10-m sprint and change of direction tests. Panel A and Panel B show the individual sprint time and change of direction deficit (COD deficit) performance, respectively.

Note: PLYO-1 = experimental group receiving one PT session per week; PLYO-3 = experimental group receiving three matched-volume PT sessions per week. # ## Significant ($p < 0.001$) main effect of time.

863x796mm (118 x 118 DPI)

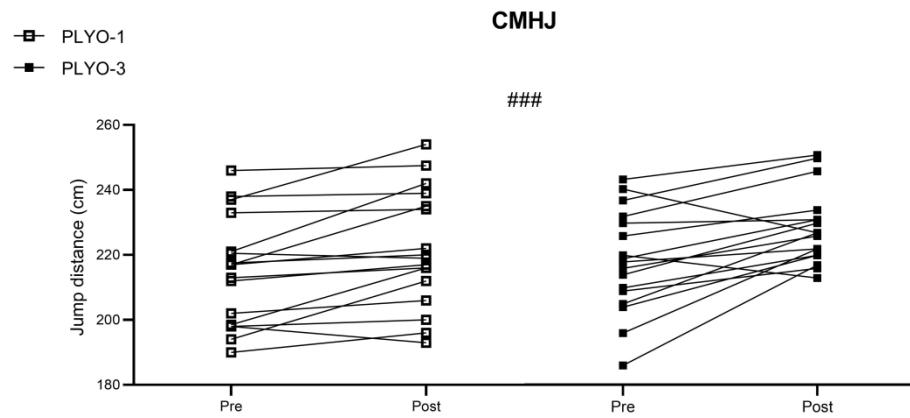


Figure 4. Individual pre and post values of the countermovement horizontal jump (CMHJ) test. Note: PLYO-1 = experimental group receiving one PT session per week; PLYO-3 = experimental group receiving three matched-volume PT sessions per week. ### Significant ($p < 0.001$) main effect of time.

902x419mm (118 x 118 DPI)

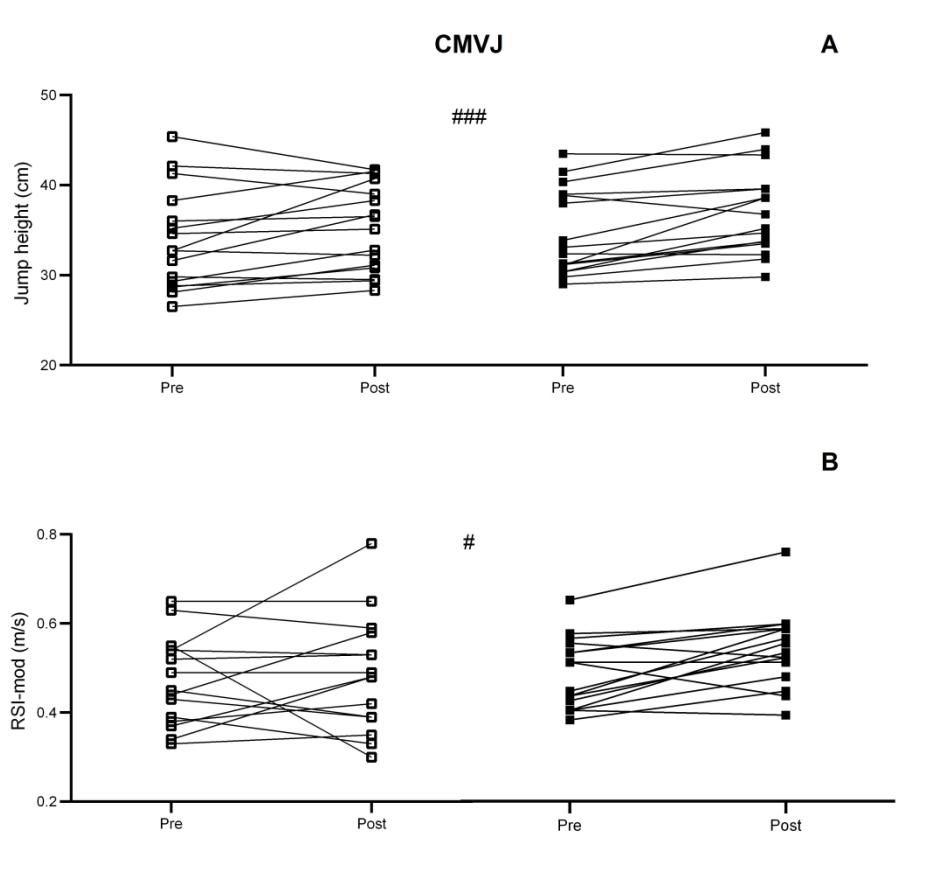


Figure 5. Individual pre and post values of the countermovement vertical jump (CMVJ) test. Panel A and Panel B show the individual jump height and the modified reactive strength index (RSI_{mod}) performance, respectively. Note: PLYO-1 = experimental group receiving one PT session per week; PLYO-3 = experimental group receiving three matched-volume PT sessions per week. # Significant ($p < 0.05$) main effect of time; ### Significant ($p < 0.001$) main effect of time.

860x749mm (118 x 118 DPI)