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Abstract

This study proposes innovations to financial valuation models. Fundamental valuation is used

by investors to make buy/sell decisions regarding stock issues. Valuation is the process of

determining the intrinsic value — the price reasonable to pay for a stock given its future

prospects, which are measured with cash flows, given the level of risk an investor bears when

buying stock. These cash flows are measured with two key series: Earnings-Per-Share (EPS)

and Free Cash Flows (FCF). Correspondingly, the two series are used as inputs in common

valuation models: the Forward Price-Earnings and Discounted Cash Flows. It is required that

investors estimate the future cash flows — a sensitive process whereby under- or overstating

future cash flows is prone to the risk of losing invested equity. Hence, being able to accurately

capture the next quarter’s value is of utmost importance for investors active in financial

markets: it guides the stock selection process.

We propose to formulate this as a regression problem, where the target variable is the next

quarter’s Earnings-Per-Share or Free Cash Flow value. The input features are their respective

lags. The main challenge in this problem is the fact that the series are sparse and limited in

the number of observations. This is because the fundamental financial data is published every

quarter of the year, as required by law. Hence, our estimators have limited training/validation

data to learn from. We approach this problem with the selection of 8 Machine Learning (ML)
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and 5 Statistical (SE) estimators, conducting experiments on a representative sample of 100

U.S. publicly traded companies.

Our study contributes in several ways. First, we show that the quantile transformer and

the PCHIP interpolation improves model generalization by making more blatant the linear

relationship of the target variable with its features and artificially increasing the number of

data observations, respectively. Second, we demonstrate that while certain ML estimators do

overfit to the small data sets, others perform at the same or better rate than the statistical

estimators. Third, building on top of our observations about data patterns and behaviour of

a diverse range of estimators, we propose the transfer learning methodology that allows to

combine the predictive capabilities of the ML and SE. We demonstrate the effectiveness of

our approach based on the reduction across the range of regression error measures, and the

improvement in portfolio performance, over a fixed backtesting simulation period.
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Chapter 1

Introduction

Financial data tend to be modeled as a random walk process, with a constant mean and

variance over the observed period. This is usually the case in both pricing and fundamental

data. However, in reality, the ‘random walk’ assumption is often violated, as financial data tend

to have varying drift. With increasing interest in applications of machine learning algorithms

in the area of finance, most researchers tend to focus on pricing data [1], that is, the market

price of a financial security (e.g., common stock, bond), due to the open-source availability and

abundance of such data: 252 data points are created every year (assuming daily frequency).

Fundamental data, such as earnings per share and free cash flows, usually used by creditors,

auditors, suppliers, and investors to perform their analyses, on the other hand, is in short

supply, as companies only disclose such figures on a quarterly basis, resulting in four data

points per annum.

Free cash flow (FCF) is a measure of cash available to shareholders after all necessary

expenses and investments have been made. Earnings per share (EPS) is a measure of net

profit made by a company at the end of the accounting period. The key distinction between

3
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the two series is that FCF allows the addition of non-cash expenses back. These non-cash

expenses include the depreciation of tangible assets such as buildings, manufacturing facilities,

machinery, etc. Conversely, EPS reports profits net of all cash and non-cash expenses and other

allowances alike.

Fundamental investors aim to predict the FCF and EPS in order to estimate a business’s

intrinsic value. Compared to the price of a financial security, intrinsic value is a measure

of how much a business is worth [2], given its future profits to investors, discounted at an

appropriate rate. The two models are widely used to establish intrinsic value: Discounted Free

Cash Flows (DCF) and Forward Price-Earnings (Forward PE). Specifically, the DCF model takes

the next period’s FCF and discount rates as inputs, while the forward PE method multiplies the

quotient of the current stock price and EPS by the estimated next period’s EPS value. Both

economic models output the intrinsic value.

This study aims to model financial time-series data. Specifically, we seek to predict the next

quarter’s EPS and FCF values (the targets) given their past lags, mean, and standard deviation

(feature set). We utilize historical EPS and FCF data from 100 publicly traded U.S. companies.

These datasets exhibit distributional shifts, high skewness, and excess kurtosis.

In this part of the work, we specify the motivation and the layout of the study. We start

with the motivation.

1.1 Motivation and Contributions

As mentioned previously, the two target variables in this study are used by fundamental

investors to determine the intrinsic value of a stock. Compared to the market price, the

intrinsic value gives an estimate of a price worth paying for a stock, given future income and
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the risk an investor bears when buying into the issue [2]. On the other hand, price is how

much one must pay for a stock in order to buy it.

While there is a consensus among investment practitioners and researchers on how to

derive the discount rate [3], the best way to approximate next period’s EPS and FCF values is

still an open question. This is partly due to the fact that the future value at a particular point

in time tends to be highly dependent on a company’s financial and operating conditions and

other external factors, which are generally not constant.

Therefore, our motivation is to propose a state-of-the-art approach to modeling EPS and

FCF values. These values could then be used in their respective models: forward PE and DCF,

to estimate intrinsic values. Given the number of data augmentation, transformation, and

regression approaches used in this study, we seek to outline a methodology that yields the

lowest error between the genuine and estimated target data points.

Importantly, under- or over-stating either of the target values leads to financial losses, as it

results in unrealistic estimates of intrinsic values. However, we earlier emphasized the fact

that these series display distributional shifts and high excess kurtosis, in addition to the main

challenge — the lack of data observations.

Over the course of this research, we make several contributions. First, our study compares

the performance of machine learning (ML) and statistical estimators (SE) in the sparse time-

series context. Further, we investigate how the two approaches perform on datasets augmented

with mathematical interpolation and on those transformed to a different space using quantiles.

Second, we outline reasons why certain regression methodologies and estimators fit better

than others, investigating properties of datasets and their influence on the outcome. Thirdly,

we propose a transfer learning methodology that allows combining the predictive performance

of a subset of both ML and SE estimators, while transferring the knowledge within the same
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data domain: the fundamental financial time-series.

Finally, our main contribution lies in the innovation of established valuation methods

commonly used in finance. Specifically, we incorporate advanced quantitative techniques to

estimate more precise expectations for next quarter’s EPS and FCF values. As a result, our

method enables more accurate computation of a stock’s fundamental intrinsic value. Our work

follows the structure outlined in the next section.

1.2 Structure

This work is structured as follows. We first give a detailed explanation of the concepts

used in this study in Chapter 2. There, we outline the mathematics used by the feature

transformation and scaling approaches tested, the interpolation methods utilized, and the ML

and SE approaches used. Following this is the Literature Review in Chapter 3. This chapter

gives an overview of existing methods for forecasting not only FCF and EPS variables but also

modeling sparse time-series data from financial and other domains.

Our first contribution is presented in Chapter 4. This chapter gives a technical overview of

the statistical properties and outlines the data preprocessing pipeline for both FCF and EPS

series, which will be used by the end of this study. Experiments in this chapter are conducted

using Ordinary Least Squares Regression on a subset of 50 companies.

Our second contribution is the subject of Chapter 5. There, we investigate how various

regression algorithms from both the ML and SE branches perform on sparse time-series data.

We also describe why certain estimates were made and how the data affected the decisions

made by the model-types. This chapter is the first to use all 100 datasets and the ML estimators.

Our third contribution is presented in Chapter 6, where we propose a transfer learning-
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based methodology that allows transferring knowledge from both ML and SE estimators within

the same data domain. This chapter makes use of a subset of estimators that meet a specific

criterion outlined in the previous Chapter 5.

The final contribution is presented in Chapter 7. Here, we conduct a series of experiments

on the out-of-sample simulation (not previously used anywhere in this work), forming series

of portfolios based on various estimation methodologies from Chapters 5 and 6. In this

chapter, we seek to find the relationship between regression error and the resulting portfolio

performance. Specifically, we perform both Forward PE and DCF valuation for all 100 stocks,

program buy/sell rules for them, and check how the resulting basket of assets performs against

the commonly used market benchmark.

Results and contributions of this work are summarized in Chapter 8. We start with a

background review in the next section.



Chapter 2

Background Review

2.1 Introduction

In finance, data can be split into two categories: pricing data and fundamental data. Pricing

data is a collection of stock or other security prices that an investor must pay in order to

purchase a security [4]. The fundamental data, on the other hand, gives an investor an

understanding of how well the management leads the business [5]. For the purposes of this

study, the key distinction between the two types of series is the frequency of their publication.

Specifically, pricing data is recorded every second of the trading day, while fundamental data

is only revealed on a quarterly basis. As such, this difference is one of the reasons the research

community pays vast attention to pricing data and less to fundamental data [1]. Given that

the organized digital collection and distribution of fundamental stock data began in the 1980s

[6], a typical dataset with fundamental financial data is sparse and limited in the number of

observations.

Fundamental analysis refers to the process of researching a company’s financial data in

order to determine whether and how a company increases sales volume and profits, if it

8
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is financed in a way that minimizes investors’ risks, and whether its market price is lower

than the estimated ‘intrinsic’ value. Typically, fundamental investors — i.e. those undertaking

to perform a fundamental analysis — conduct their due diligence on the basis of financial

reports filed by companies every quarter of the year. Specifically, publicly traded companies are

obligated by law to submit three ‘10-Q’ and one ‘10-K’ report. The ‘10-Q’ report is known as the

‘quarterly statement’ and provides all related parties, including investors, customers, suppliers,

regulators, etc., with information on what the company owns and owes (Balance Sheet

section), how much money the company managed to make from selling products/services

(Income/Loss section), and finally, how the company decided to allocate available cash (Cash

Flow section). The ‘10-K’ report is the annual report, which, in addition to the information

supplied in the ‘10-Q’, also provides a more detailed discussion of the business and other

relevant matters (Management Discussion and Analysis section) [7]. This constitutes the

essence of fundamental analysis — a crucial step in deciding whether a company is a good

investment [8].

In this chapter, we provide background information on the two fundamental financial series

and valuation methods used in this study. Financial valuation is a function that approximates

the intrinsic value of a stock [8]. The idea of valuation originates from the notion of present

value, which is simply the value of a financial security given its expected duration, the level

of risk, and the future expected cash flows an investor receives [8]. The present value itself

was useful for computing the market price of a bond — the debt security issued by a company

and sold to investors [9]. With bonds, intrinsic value is easy to compute: it is the present

value of the coupon — the interest payment an investor receives while holding a company

debt contract and before the debt is paid off [10].

And while the coupon payment is fixed with bonds in most cases, there is no such fixed



10 CHAPTER 2. Background Review

amount paid by companies when it comes to corporate stocks. The exception is the dividend

payment which may not be paid by a company. Therefore, whenever an investor aims to

purchase stock in a company’s shares, she needs to evaluate the future potential cash flows a

company generates [2]. She then needs to first, pick the cash flows relevant to her and then

forecast the future direction of these cash flows. Under- or over-stating the future cash flows

places the investor in financial jeopardy, as it can lead to the over- or under-estimation of the

intrinsic value of a stock. The estimation of future cash flows can be formulated as a regression

problem, where the target is to predict the next period’s cash flow, given its past values — the

lags’ features’ set.

In this study, we consider two types of such cash flows: Earnings-Per-Share (EPS) and Free

Cash Flow (FCF). The two series are used in two different valuation methods, respectively:

the Price-Earnings (PE) and the Discounted Cash Flow (DCF) methods. The two series and

respective valuation methods are described in Section 2.2.

We mentioned that the series we model are sparse and limited in the number of obser-

vations. In an attempt to provide regression estimators with more training data, we carry

out a series of experiments to select the transformations and interpolation techniques. These

methods are described in Section 2.3.

Additionally, we mentioned that the problem of this study is of a regression type, which we

attempt to solve with the use of statistical and machine learning estimators. The two branches

of regression model types are described in Section 2.4.

When data is in limited supply, quantitative estimators tend to be less reliable and prone to

poor generalization. In such cases, an estimator can be trained on similar data or data from

the same domain, thereby transferring knowledge about the target and feature relationships

to the key series to be predicted. This constitutes the transfer learning approach, which we



2.2. FINANCIAL SERIES AND VALUATION METHODS 11

outline in Section 2.4.3.

We begin with Section 2.2, which provides a description of the two target variables.

2.2 Financial Series and Valuation Methods

In this section, we provide an explanation of the Earnings-Per-Share (EPS) series and the

Price-Earnings (PE) valuation model in Subsection 2.2.1, followed by a similar description

of Free Cash Flows (FCF) and the Discounted Cash Flow (DCF) method. We then provide

a description of other valuation methods, outlining reasons for not including those into our

study.

2.2.1 Earnings-per-Share and the Price-Earnings Multiples model

In accounting, EPS is the measure of net profit a company made at a point in time, divided by

the number of shares outstanding [8], and is expressed as in Equation 2.1.

EPSq =
Net Incomeq

Number of Shares Outstandingq
(2.1)

where Net Incomeq denotes a company’s profit, net of all accounting expenses, at the end of

quarter q, and Number of Shares Outstandingq is the physical number of shares a company

issued, as reported at quarter q, traded on the public markets [5]. The two components

required for EPS computation can be found in the ‘10-K’ and ‘10-Q’ annual and quarterly

financial reports.

There are two reasons for interest in EPS. First, an increase in EPS means a company can

invest more in its production, implying higher future profits [11]. Second, as mentioned earlier,

EPS can be used to determine the ‘intrinsic value’ of a stock. For a stock to be considered
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purchasable, the ‘intrinsic value’ should be greater than the current ‘market value’ [2].

In this study, we consider the ’forward’ P/E method for determining the ‘intrinsic value.’

‘Forward’ in this context means the expected or predicted next quarter’s EPS value. P/E refers

to the ratio of the current price to earnings per share, expressed in Equation 2.2.

P/E =
Pricet
EPSq

(2.2)

where Pricet denotes the price of a stock on day t and EPSq refers to the most recent quarter’s

(q) EPS value. The result of this computation is used for valuation as in Equation 2.3.

Vt = P/E × EPSq+1 (2.3)

where Vt refers to the ‘fair value’, P/E is the result of Equation 2.2, and EPSq+1 denotes

the next quarter’s EPS. EPSq+1 from Equation 2.3 is the target variable in our regression

problem. Observe that over-/under-stating the future EPS figure results in inflated or deflated

Vt estimates, which is why getting the forward EPS is important. Another series utilized over

the course of this study is the FCF, which is used as the input to the DCF valuation model,

which we explain next.

2.2.2 Free-Cash-Flows and the Discounted Cash Flows model

From economic theory, the value of any asset should be equal to the future cash flows this

asset generates, discounted at an appropriate rate, corresponding to the risk an investor takes

when purchasing the asset in question [8]. This constitutes the ‘intrinsic value’ [2], which

is an estimate of a reasonable price worth paying for the stock, given its future cash flows,

discounted at the appropriate rate. The most popular method for estimating the intrinsic value
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is the DCF model [3]. The DCF model takes the Free Cash Flows (FCF) as input, with FCF

defined as follows:

FCFq =
(CFOq − CUIq)

Number of Shares Outstandingq
, (2.4)

where CFOq denotes the ‘Cash From Operations’, and CUIq denotes the ‘Cash Used Investing’,

scaled by the ’Number of Shares Outstanding’. These two variables are reported quarterly by

a company and can be found in the ‘Cash Flow Statement’. In Equation 2.4, q denotes the

financial quarter, for which the FCF value is computed.

In addition to Free Cash Flows, DCF model requires the weighted average cost of capital

(WACC), commonly accepted as an approximation of the risk embedded in common stock [3].

The WACC takes into account the default risk given the amount of leverage at a firm, as well

as the risk related to stock market shocks, given the amount of equity capital a firm possesses

[5]. More formally:

WACC = rE
E

D + E
+ rD

D

D + E
, (2.5)

where we let D denote the total debt a firm possesses, E denote the total equity of the firm,

rD denote the required return on debt, and rE the required return on equity. The values for D

and E are displayed on the Balance Sheet of a firm, usually labeled as ‘Total Liabilities’ and

‘Total Shareholders’ Equity’, respectively.

The cost of debt, rD, is usually assigned by credit rating agencies, such as Moody’s, Standard

& Poor’s, and Fitch, and is disclosed in 10-K/Q financial reports. The calculation of rE is

different; researchers usually apply the Capital Asset Pricing Model (CAPM) formula, as:
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rE = Rf + β(Rm −Rf ), (2.6)

where Rf denotes the risk-free rate, which is typically estimated via the 3-month U.S. Treasury

bills rate (i.e., the yield on short-term U.S. government bonds with a 3-month maturity); Rm

denotes the expected (average) return on a broader market index, such as the S&P 500; and β

denotes the slope coefficient from an Ordinary Least Squares regression, performed on 3 years’

worth of monthly returns on the stock, against the financial index’s price returns. Specifically,

the required rate of return on stock Rs is derived from:

Rs = βRidx + ϵ, (2.7)

where Ridx is the vector of market returns; the slope coefficient β is the quantity required for

Equation 2.6; and finally, ϵ denotes the regression error [12].

Together, the WACC and FCF are an essential part of the DCF valuation model, formally

defined as:

Vq =

Q∑
q=1

FCFq+1

(1 +WACC)q
+

FCFq ∗ (1 + g)

(WACC − g)
, (2.8)

where q = 1, ..., Q is the time index, with q = 1 corresponding to the first quarter; Q denotes

a sufficiently distant point of interest in the future; Vq denotes the intrinsic value of a stock,

estimated at quarter q; FCFq denotes the Free Cash Flows at quarter q; and WACC is the

weighted average cost of capital. The right-hand side of Equation 2.8 is the terminal rate —

the long-term expected FCF growth, where g denotes some long-term growth rate, typically

set at the expected inflation rate [5].

Notice that the variable FCFq+1 is the quarter-ahead FCF value, which is the target variable
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of the regression problem in this study. In other words, to arrive at the intrinsic value with

respect to a future point in time, researchers predict the future Free Cash Flows Q periods

into the future, scale each future FCF by (1 +WACC)q and sum up the resulting values. We

calculate the Free Cash Flows as:

As mentioned earlier, intrinsic value estimation is typically performed using the DCF model,

and there is broad agreement on calculating the WACC, often through the CAPM and detailed

financial statements. However, there is no universally accepted approach for deriving future

FCF. Therefore, this research seeks to address this gap by formulating the derivation process

as a regression problem. Specifically, we aim to predict future FCF (FCFq+1) using past lags

of this variable.

In this study, we only consider a limited subset of valuation approaches: DCF and PE

valuation methods. We chose these two primarily because of their popularity within the

investment community. The popularity of these arises due to the input series being used: FCF

and EPS, respectively. These input series are more reflective of how a business performed in

the most recent quarter. Specifically, a portion of these values, both the EPS and FCF that net

the necessary business expenses, will be retained by a company to finance further growth,

while another portion will be distributed to shareholders. In the next section, we consider

other valuation models, their series, and the reasons for not including them as part of the

experiments in this document.

2.2.3 Other Valuation Methods

For this study, we focus on two widely used valuation methods—DCF and PE valuation—which

will be applied throughout the subsequent chapters [13]. In this section, we present an

overview of other notable valuation models, which typically rely on different types of financial
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data and have certain limitations that we will discuss. The following subsection is structured

as follows: we begin by examining models that utilize data from the ‘Income/Loss’ statements,

before moving on to those based on a typical ‘Balance Sheet.’

Price-to-Sales Multiple Model

The Price-Earnings (PE) valuation method is often referred to as the "multiples" approach. In

this method, the price of a stock is divided by a key financial figure and then multiplied by the

expected value of that same figure. As a result, companies also publish various other financial

metrics that can be used for valuation purposes.

The ‘Income/Loss’ statement in any financial filing begins with the ‘Revenues’ or ‘Net Sales’

figure, which represents the total volume of a product or service sold, multiplied by its price,

after accounting for any discounts and value-added taxes [14]. For simplicity, we will refer to

this figure as ‘Sales’. Similar to the EPS method, the sales figure can also be used for valuations.

To do so, we first divide the total sales by the number of shares outstanding, as shown in

Equation 2.9.

SPSq =
Total Salesq

Number of Shares Outstandingq
(2.9)

where Total Salesq represents a company’s revenue at the end of quarter q, and Number of

Shares Outstandingq is the total number of shares, as discussed earlier. The resulting value

is the Sales Per Share (SPS) ratio. To convert this into a financial multiple, the stock price is

divided by the SPS ratio, as shown in Equation 2.10.

P/Sq =
Pricet
SPSq

(2.10)
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where P/Sq represents the Price-To-Sales ratio, with Pricet being the price of a stock on day

t during quarter q, and SPSq is the result from Equation 2.9, the Sales per Share ratio. To

estimate the intrinsic value, the P/S ratio is multiplied by the expected (forecasted) Sales for

the upcoming quarter, as shown in Equation 2.11.

Vt = P/S × Salesq+1 (2.11)

where, as in the previous equations, Vt represents the intrinsic value, P/S is the Price-To-Sales

Ratio, and Salesq+1 denotes the projected sales for the next quarter [15]. The Price-to-Sales

(P/S) method is particularly useful when a company reports negative earnings, as its sales

can never be negative — a negative sales figure is legally prohibited [16]. This method is

especially relevant for new, fast-growing businesses that have developed a popular product

with high sales growth, even though their expenses remain high.

However, this model overlooks any expenses a company may have incurred or will incur in

the future, focusing solely on the demand for the company’s product or service. As a result, it

fails to account for the investments a company must make to reach the projected sales level, as

well as essential accounting deductions such as salaries, taxes, and other operational costs.

This limitation of the current valuation method is addressed by the next model we will

describe.

Enterprise Value to Earnings Before Interest, Taxes, Depreciation and Amortization

Multiple Model

The essence of investing lies in identifying stocks that not only exhibit strong growth potential

but also offer protection against bankruptcy. For shareholders, bankruptcy can result in the



18 CHAPTER 2. Background Review

permanent loss of capital.

In most cases, when a company declares bankruptcy, it faces two options: either complete

liquidation or continuation under restructuring. In both scenarios, shareholders have claims

on the company’s assets — everything the company owns [14].

This is what the Enterprise Value to Earnings Before Interest, Taxes, Depreciation, and

Amortization (EV/EBITDA) multiple captures: the value of a company, considering its debt,

relative to the profits it generates from selling its product, paying its employees, and covering

operating expenses.

Often, liquidation is caused by high levels of debt a company owes—more than it can

service. Hence, Enterprise Value (EV) is a financial measure that considers the value of a

business based on its total debt. It is mathematically represented in Equation 2.12.

EVq = Mkt Capq + Total Debtq − Cash and Cash Equivalentsq (2.12)

where EVq is the Enterprise Value, Mkt Capq is the market capitalization, defined as the number

of shares outstanding multiplied by the price per share, and Cash and Cash Equivalentsq

represent the immediate funds and their equivalents—assets that can be quickly sold or

converted to cash, available to a business in quarter q. EVq is the numerator in the EV/EBITDA

multiple.

The denominator in this multiple is EBITDA—the profit a company made from selling its

product, net of operating expenses. Operating expenses are those that a business must pay to

keep operating—such as manufacturing, promoting, and distributing its goods. These include

salaries, marketing, research, and manufacturing expenses. This figure can be found in the

‘Income/Loss’ section of quarterly and annual reports.
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The EV/EBITDA multiple is obtained by dividing the Enterprise Value by the EBITDA figure.

Hence, deriving the intrinsic value using this multiple is similar to the multiples we presented

earlier and is outlined in Equation 2.13.

Vq = EV/EBITDAq ∗ EBITDAq+1 (2.13)

where Vq denotes the intrinsic value, EV/EBITDAq is the Enterprise Value to Earnings Before

Interest, Taxes, Depreciation, and Amortization multiple for quarter q, and EBITDAq+1 is the

EBITDA value for the next quarter.

The benefit of this valuation method lies in the fact that EBITDA is used as the input series.

Unlike a company’s sales, this figure takes into account the necessary expenses required to

keep the business operating. At the same time, this is a significant drawback of using this

model as the basis for a valuation decision.

EBITDA cannot be used as a replacement for Earnings Per Share or Free Cash Flow. This

is because EBITDA can be misleading — it does not represent the value a shareholder will

receive. In fact, it represents the cash flow available to the debtor, as interest on debt is paid

first. Then, the government receives its portion in the form of taxes [14].

Depending on where and how the business is conducted, a company must recognize the

depreciation and amortization of its tangible and intangible assets, respectively. Depreciation

and amortization allow a business that has recently purchased property or a patent to expand

and reduce taxable income [14]. This is done by regulators to encourage business activities

and investments.

After deductions for amortization and depreciation, a company pays taxes, the rate of

which varies depending on the regulator to which the company is subject. Finally, after all
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previous deductions, shareholders receive the amount they are entitled to: the net profit,

which is explained in Section 2.2.1.

Therefore, EBITDA is not the figure that represents cash flows to a shareholder; rather, it

indicates whether the operations conducted by a business are generally profitable. Hence, this

is why we did not use this model in the present study. The next model we describe has similar

mechanics, but it uses a different type of series as input.

Price-To-Book Multiple

An essential part of the annual and quarterly report is the ‘Balance Sheet’, which shows the

position of a company in terms of what it owns and owes. A company owns assets—cash,

buildings, and everything else it has purchased over the course of its existence. These purchases

can be made using debt, or funds borrowed.

In the case of liquidation of a business, the company must sell its assets, pay all its debts,

and the remainder is given to the shareholders. This remainder is called the ‘Book Value

of Equity’ or ‘Total Equity,’ as these funds represent everything gathered and owned by the

company’s shareholders. Since every shareholder has claims, the total book value can be

divided by the number of shares, as indicated in Equation 2.14.

BPSq =
Eqq

Number of Shares Outstandingq
(2.14)

where BPSq is the Total Equity per Share (or Book Value per Share), Eqq is the book value of

equity for quarter q, and Number of Shares Outstanding is the total number of shares issued

by the company.

The derivation of intrinsic value is similar to the Price-to-Sales and Price-to-Earnings
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models: we divide the price of a stock by the BPSq value and multiply the result by the

expected total equity for the next quarter, as illustrated in Equation 2.15.

Vq =
Priceq
BPSq

×BPSq+1 (2.15)

where Vt denotes the value of a stock, Priceq is the price of the company’s stock during quarter

q, and BPS is the book value of equity per share for quarter q and the following quarter q + 1.

The book value of equity, while better reflecting what belongs to a shareholder in a company

compared to figures such as Sales, Earnings, and EBITDA, has one important flaw due to how

the company recognizes debt and assets [17]. Specifically, for an established and mature

company, the book value could be very small relative to its stock price; thus, the intrinsic value

computed using this method may not be accurate: it could be too small and not useful for

comparison with the market price.

This is the last multiple we consider in this study. Next, we consider the final model

included as part of the Background review.

Dividend Discount Model

When an investor purchases a stock, she is entitled to a dividend. The dividend represents the

cash flow to a shareholder and can therefore be used to derive the value of a business.

The Dividend Discount Model (DDM) is similar to the Discounted Free Cash Flow model:

it takes the dividend as input and computes the intrinsic value based on the required rate of

return and the risk the investor assumes when buying a stock [18].

The dividend is a portion of Earnings-Per-Share that is distributed by the company to

investors. This is not required by law, and the company’s management is free to choose any
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amount they deem appropriate. However, there is a trade-off: the higher the portion of the

dividend relative to EPS, the lower the amount of earnings available to reinvest in the business.

Hence, it is rare for dynamically growing companies to pay a large portion of their income as

a dividend [8]. The model that uses the dividend payment is mathematically represented in

Equation 2.16.

Vq =
Dq ∗ (1 + g)

r − g
(2.16)

where Vq is the intrinsic value of a stock in quarter q, Dq is the dividend in quarter q, r is the

required rate of return, computed using the Capital Asset Pricing Model, similar to the DCF

model in Equation 2.6, and g is the dividend growth rate.

It is proposed that the growth rate g can be computed using the Return on Equity (ROE)

ratio, which measures how much money a company generates per unit of currency invested,

in percentage terms, as depicted in Equation 2.17.

ROEq =
NIq
Eqq

(2.17)

where ROE is the return on equity ratio in quarter q, NIq is the net income, and Eq is the

total shareholders’ equity in quarter q, respectively.

Originally, it is proposed that a reasonable assumption for the growth rate g is computed

using the ‘bare-minimum’ required growth. Hence, the growth rate implied in the Dividend

Discount Model is calculated as g = ROEq ∗ rq, the expected return on equity proportional to

the required return. However, one may use any other growth rate they deem appropriate [19].

There are two reasons this model is not used in our study. First, not every firm pays a

dividend, as it is not an obligation. Therefore, this limits the number of companies on which



2.2. FINANCIAL SERIES AND VALUATION METHODS 23

we could theoretically perform our experiments. Additionally, if a company reports a negative

EPS value, it is possible that it cancels dividend payments. For our study, this implies that there

could be extended gaps between dividend payments, further complicating estimator training

and inference.

Second, firms may declare dividend proceeds at different frequencies. While some compan-

ies pay dividends quarterly, others may opt for annual payments. This difference in payment

frequencies would further complicate the forecasting pipeline, as data would arrive at different

intervals.

Finally, a dividend is not an obligation—some businesses, especially those with rapid

increases in sales volume [8], prefer to retain more money within the company rather than

distributing funds to shareholders. For our study, this imposes a limitation on the selection of

stocks for inclusion in our experiments.

In the next section, we summarize information about the financial valuation models we

use.

2.2.4 Summary of Valuation Methods

In this part of the Background Review, we present a number of financial valuation approaches

considered for this study. The models presented here are among the most popular with the

investment community.

The multiples outlined in this section can be used in two ways. The first, as presented in

this study, involves multiplying by the expected value of a key series (sales, earnings, EBITDA,

etc.). The second method is to multiply by the average multiple for the comparable company

or industry.

This method is outside the scope of our study for several reasons. First, the method of
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comparables requires selecting companies to which the business under consideration will be

compared.

Specifically, it is important to choose a company or set of companies with similar size, region,

and product. Picking the wrong companies leads to elevated multiples and, consequently, to

an inaccurate intrinsic value. In particular, a fast-growing start-up is hardly comparable to a

mature, established business: the two have different risk tolerances and different fund sizes to

allocate for production.

Technically, the comparable method would eliminate the need for forecasting, thereby

imposing a different kind of research, one that does not propose innovations to valuation

models (or innovations of a different nature).

From the selection of multiples, we identified the Price-Earnings method as the most

appropriate for our study. Unlike the Price-Sales and EV/EBITDA methods, it considers

Earnings-Per-Share as money attributable to shareholders and, therefore, is more suitable for

determining the intrinsic value of a stock.

Alternatively to the multiples, there are the Discounted Cash Flow and Dividend Discount

Models, which we also describe in this part of the document. Since dividends are not required

by law, some companies may choose not to pay them at all. Additionally, gaps in dividend

payments could limit the number of available data points for model training and validation

purposes. Therefore, we chose the Discounted Cash Flow model, as its primary input series

(Free Cash Flows) are reported by companies each quarter.

Therefore, in this study, we aim to model FCF and EPS data. Both series, along with other

types of fundamental financial time-series data, are sparse due to their quarterly publication

frequency and the fact that organized data collection began in the 1980s [6]. However,

mathematical methods exist that allow us to assume the data is generated at a higher frequency.
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One such method is interpolation, which is discussed along with feature transformations in the

next section.

2.3 Series Augmentation and Transformation Methods

As mentioned earlier, we aim to solve a regression problem, where the objective is to minimize

the distance between the target variable (EPS or FCF in our case) and the value predicted by a

regression model.

To solve these types of problems, researchers define a cost function — the objective function

to be minimized by a regression algorithm [20]. This cost function can be sensitive to the

distribution and units of the data. For this reason, it is common to apply feature scaling and

transformation methods to both the target and feature variables.

In our case, both the target and feature variables are in the same units. However, due to

adverse external or internal factors, companies could report a negative FCF/EPS value after

a quarter of positive results, creating a discrepancy between the target and feature values.

Therefore, several scaling and transformation methods were applied to identify the most

appropriate methodology for our series. These methods are described in the next Subsection

2.3.1.

2.3.1 Scaling and Transformation Methods

Scaling, normalization, and transformation are commonly applied to regression-type problems

[21]. This is typically done to minimize the impact that the distribution or unit measure might

have on the estimation process [22].

One way to address this challenge is to enforce that both the target and feature vectors
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follow a Gaussian (normal) distribution. This is the purpose of the normalization function in

Equation 2.18.

x′t =
(xt − µ)

σ
(2.18)

where x′t is the output, a scaled variable, xt denotes an observation at time t of variable x,

and µ and σ represent the sample mean and standard deviation, respectively.

Normalization in Equation 2.18, while imposing a Gaussian distribution on a vector, does

not scale it to the 0-1 range. This is important because, if the features and target are in

different units, the estimator may struggle to minimize the regression error [23].

There are several methods that allow scaling a vector to the 0-1 range. The simplest is the

‘MinMax’ scaling, defined in Equation 2.19.

x′t =
xt − xmin

xmax − xmin
(2.19)

where, again, x′t is the output, xt denotes the t-th observation of vector x, xmin is the minimum

of vector x, and xmax is the maximum of vector x. When the original data ranges from a high

positive to a high negative number, ‘MinMax’ scaling has the effect of compressing the data

into a narrow range [24]. In such cases, ‘MaxAbs’ scaling is applied, as shown in Equation

2.20.

x′t =
xt
|xmax|

(2.20)

where x′t is the scaled output variable, xt is the value of variable x at index t, and || is the

absolute value operator, i.e., | − 1| = 1, with xmax being the maximum value of vector x.

The aforementioned scaling methods are not without flaws: they are all sensitive to a small
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number of marginal outliers. This challenge is overcome with the robust scaler, a technique

where values in a vector are scaled into the -3 to 3 range, according to the percentiles. The

formula for the robust scaler is outlined in Equation 2.21.

x′t =
xt −Q1

Q3−Q1
(2.21)

where x′t is the output scaled variable of x at index t, and Q1 and Q3 are the first and third

quartiles of the distribution of vector x. The denominator in Equation 2.21 is therefore the

inter-quartile range.

The ‘MaxAbs’, ‘MinMax’, and ‘Robust’ methods are used solely to scale data within a

specific range. In contrast, Normalization is applied to enforce data to follow a predefined

Gaussian distribution. Alternatively to the Normal (Gaussian) distribution, we use the Quantile

Transformer (QT), which, makes the transformed data to follow the Uniform distribution, in

order to minimize the potential impact of outliers [25].

The Quantile Transformer (QT) works as follows. First, each observation is assigned a

specific rank based on its position in a sorted (in descending order) array:

rt = rank(xt) (2.22)

where rt is the output of the function rank, which ranks the input value of xt at index t.

Consequently, all values of rt are scaled to the 0-1 range, as shown in Equation 2.23.

qt =
rt − 1

T − 1
(2.23)

where qt is the transformed value at index t, rt is the ranked value of the original vector

x according to Equation 2.22, and T is the total number of data points in the vector to be
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transformed.

Apart from scaling and transforming our datasets, we also make an assumption about the

data frequency. Specifically, the interpolation techniques described in the next section allow us

to assume a more frequent data stream.

2.3.2 Augmentation Methods

Interpolation is a mathematical technique used to approximate values between two known

data points [26]. This technique allows us to assume a frequency different from the quarterly

one for our target series by approximating a new EPS/FCF value between two quarters.

Different approximation techniques exist for performing interpolation. The simplest is

Linear Interpolation, which is formulated for a data point y as defined in Equation 2.24.

ỹ = y1 + (x− x1)
y2 − y1
x2 − x1

(2.24)

where ỹ is the approximated data point, y1 and y2 are the two known data points, and x, x1

and x2 are the x-axis coordinates of the data points. Since the interpolation occurs along a

1-dimensional vector, the x-values are simply the indexes at which the interpolation takes place.

However, this interpolation method has one flaw: the resulting series tends to be smoother

than the original, thus lacking the volatility present in the known data in our setting [27].

A more advanced interpolation technique we used involves polynomials. Specifically,

consider the polynomial function defined in Equation 2.25.

P (x) =

n∑
i=0

yiLi(x) (2.25)

where P (x) is the polynomial function output, n is the maximum degree of the polynomial,
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and Li(x) is the Lagrange multiplier corresponding to the x-coordinate of i-th order. The

Lagrange multiplier is defined in Equation 2.26.

Li(x) =
n∏

j=0,j ̸=i

x− xj
xi − xj

(2.26)

where n is the degree of the polynomial and x is the x-coordinate of the data point to which

we attempt to interpolate.

Spline interpolation builds upon polynomial interpolation [28] by also utilizing polynomials.

The key difference is that spline interpolation is a piecewise method: it operates on intervals

[xi, xi+1] and is defined as shown in Equation 2.27.

Si(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3 (2.27)

where Si(x) is the spline interpolation function of degree i with input x. The coefficients ai, bi,

ci and di are determined by the system of equations in Equation 2.28.

ci =
Mi

2
; di =

Mi+1 −Mi

6(xi+1 − xi)
; bi =

yi+1 − yi
xi+1 − xi

− xi+1 − xi
6

(2Mi +Mi+1); ai = yi (2.28)

where i is the degree of polynomial and M is the second derivative of function Si(x).

The final interpolation method used is the Piecewise Cubic Hermite Interpolating Poly-

nomial (PCHIP). This method is particularly useful for preserving the local properties of the

series [29]. The PCHIP interpolation is defined as follows.

Pi(x) = h00(t)yi + h10(t)mi + h01(t)yi+1 + h11(t)mi+1 (2.29)

Equation 2.29 defines a PCHIP polynomial, where t = x−xi
hi

is the normalized parameter
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with hi The Hermite basis functions, defined in Equation 2.30, and mi and mi+1 represent the

slopes (first derivatives) at xi and xi+1, respectively.

h00(t) = 2t3 − 3t2 + 1;h10(t) = t3 − 2t2 + t;h01(t) = −2t3 + 3t2;h11(t) = t3 − t2; (2.30)

Notice that index values of function h: 00, 10, 01, 11 are used to denote the specific functions

associated with the cubic Hermite interpolation. The function h00 is used to weight the function

at a first point, yi. Function h10 is associated with the slope and derivative at the first point mi.

Function h01 weights the second function value yi+1. Finally, h11 is associated with the second

slope of mi+1.

Computation of mi and mi+1 terms is given in Equation 2.31.

mi =
di−1 + di

2
min(

|di−1|
w1

,
|di|
w2

) (2.31)

where di =
yi+1−yi
xi+1−xi

represents the slope between two points to be interpolated. In Equation

2.31, the terms w1 = 2hi + hi−1 and w2 = hi + 2hi−1 are scaling factors.

The interpolation methods described above enable us to generate additional data points

between the existing ones. Combined with the scaling and transformation techniques, the goal

is to provide our estimators with more information to better address the regression problem,

which is outlined in the next section.

2.4 Regression Problem

In this section, we define the regression problem that we aim to solve in this study. Specifically,

our goal is to predict the EPS/FCF value for the next quarter using the past lags, along with
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the mean and standard deviation of these series. This implies a supervised regression setting,

where the estimator aims to minimize the distance between the predicted values and the true

values (labels) [20]. Therefore, we employ several machine learning (ML) and statistical (SE)

regression estimators, each with different cost functions. For the purposes of this study, we

define the distinction between a ML and a SE estimator as follows: the former utilizes a form

of regularization during the estimation process.

We begin with a description of the statistical estimators in the next subsection.

2.4.1 Statistical Estimators

As mentioned in the previous section, we aim to model a regression problem where the goal is

to minimize the cost function between the target and the inferred values of the features. In

this study, we consider several regression estimators, each with varying cost functions.

We start with a description of the ‘Ordinary Least Squares’ estimators.

Ordinary Least Squares

One of the most common cost functions in regression problems is the Mean Squared Error

(MSE) [30], as formulated in Equation 2.32.

ϵMSE =
1

N

N∑
i=1

(ỹi − yi)
2 (2.32)

where N is the total number of observations, and ỹi is the estimated value of the target variable

yi, at observation i = 1, . . . , N . The estimated value ỹ can be formulated as in Equation 2.33.

ỹ =
K∑
k=1

θkxk (2.33)
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where θk is a weight assigned to each feature vector xk — a parameter to be optimized during

the training procedure, with k = 1, . . . ,K the total number if input features, K in total.

Equation 2.33 is also known as ‘Ordinary Least Squares’ (OLS) and is one of the statistical

methods we will use in this study. Specifically, in this method, we aim to minimize the

regression error (Equation 2.32) by optimizing the coefficient θ. In matrix notation, the

solution for the optimal θ is expressed in Equation 2.34.

θ = (XTX)−1XT y (2.34)

where X represents the matrix of input features, T denotes the matrix transpose operation,

X−1 indicates the inverse of matrix X, and y represents the target variables.

The benefit of this estimator lies in its simplicity. The interpretation of the assigned weights

signals a higher correlation between the target and a feature. However, several assumptions

are imposed on the data, and the violation of these assumptions can lead to poor results [30].

These assumptions are as follows:

1. Linearity — relation between target and features must be strictly linear;

2. No Multicollinearity — features matrix should be invertible, otherwise weights are

impossible to estimate;

3. Homoscedasticity — the difference between target and estimated values, known as

residuals, has a constant variance;

4. Independence — features are independent of each other;

5. Normality — errors are assumed to be normally distributed between 0 and a constant

variance;
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The violation of any of these assumptions could lead to an inconsistent estimation pro-

cedure, resulting in overfitting or poor generalization to out-of-sample data. However, in the

context of time series, it is common for errors to exhibit non-constant variance, and for the

data to violate other assumptions.

Due to this, we also employ the Weighted Least Squares regression, which is described

next.

Weighted Least Squares

The ‘Weighted Least Squares’ (WLS) is an extension of the OLS regression that addresses

violations of the homoscedasticity assumption. Specifically, for each data point, a weight is

assigned such that observations with smaller variance receive higher weights [31].

Specifically, the objective function is an extension of the MSE error, with an additional term

that accounts for weighting, as shown in Equation 2.35.

ϵWMSE =
1

N

N∑
i=1

wi(ỹi − yi)
2 (2.35)

where N is the total number of observations, ỹi is the i-th estimated value of the target variable

y, and wi is the weight, formulated as wi =
1
σ2
i
, with σ2

i = Var(ϵi), where ϵi is the regression

error, defined in Equation 2.32. Hence, the WLS regression cost function extends the OLS

method by bypassing some of its limitations related to strict assumptions about the data.

Consequently, this alters the optimization of the regression θ parameters, which is represented

in Equation 2.36.

θ = (XTWX)−1XTWy (2.36)
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where X represents the input feature matrix, XT denotes the transpose, and X− 1 represents

the inverse of matrix X. The vector y represents the target values, and W is the weighting

matrix, optimized using Equation 2.35. The diagonal elements of W represent the inverse of

the variance terms, so that W = diag
(

1
σ2
1
, 1
σ2
2
, 1
σ2
3
, . . . , 1

σ2
N

)
for N observations.

One limitation of the WLS estimator is that the structure of the variance of residuals

(regression errors) needs to be known in advance [30]. If the variance is not known, the

estimation may yield inconsistent results due to the bias introduced by the regression procedure.

Additionally, since the data used in this study is time-series in nature, the variance of the error

term is subject to changes over time, further complicating the estimation process. Additionally,

the WLS estimator shares some of the assumptions of the OLS estimator, particularly the

assumption of feature independence. In our study, the features represent past lags of the target

variables, which may lead to a high correlation between them. Moreover, both the OLS and

WLS estimators are sensitive to outliers, which makes them less effective for datasets that

exhibit dynamic or volatile behavior.

The next estimator we present combines both OLS and WLS: the Robust Linear Model.

Robust Linear Models

The Robust Linear Model (RLM) is an extension of both OLS and WLS methods [32]. Specific-

ally, it is designed to be less sensitive to outliers by replacing the MSE cost function with the

Huber Loss Function [33]. The Huber loss is given in Equation 2.37.

L(θ) =


1
2(yi − xTi θi)

2, if|yi − xiθi| ≤ c

c|yi − xTi θi| − 1
2c

2otherwise

(2.37)

where θ represents a set of regression parameters, xi represents the i-th observation of input
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vector x, c is the threshold parameter, commonly set at 1.35 [33]. The Huber Loss function

represents a kernel function, where the loss is computed as either an MSE or absolute difference

between a target and predicted observations, depending on the threshold.

Similar to the WSL, we aim to update regression coefficients, using the total error as in

Equation 2.38.

θt+1 = (XTW(t)X)−1XTW(t)y (2.38)

where, again, X is the input matrix, T and X−1 are transpose and inverse of matrix X,

and W = diag(w1, w2, . . . , wN ), where each w = L(θ), with parameters θ derived from the

previous iteration of optimization.

By switching from squared to absolute loss, the RLM estimator becomes more robust to

outliers. However, this requires a choice of the threshold c, which we keep fixed at 1.35, the

commonly accepted value [34]. The major flaw of this regressor is its computational efficiency,

as it requires several iterations for optimization of parameters θ.

Following the footsteps of the previous two estimators, the RLM model also assumes a

constant variance term, therefore being prone to errors in a time-series context. The next

estimator, however, focuses more on time-series properties.

Auto-Regressive Integrated Moving Average

The Auto-Regressive Integrated Moving Average is a model type specifically designed to work

with time-series data. Specifically, in such a setting, the target variable often displays high

auto-correlation — a correlation with its own lags [35].

The ARIMA regression is performed in several steps. Generally, this model is expressed in
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Equation 2.39.

ϕp(B)(1−B)dyt = θq(B)ϵt (2.39)

where B is the lag-shift operator, i.e. Byt = yt−1 for time-step index t, d is the number

of differencing steps, which is necessary to assure that the series is stationary. The whole

estimation process is split into two steps [30].

The first step is the Auto-Regressive step, formulated as a function ϕp(B) in Equation 2.39.

This step is therefore formulated in Equation 2.40.

yt = ϕp(B) = 1− ϕ1B − ϕ2B
2 − ...− ϕpB

p (2.40)

where we assume the value of the target variable y at time-step t depends on its past lags

— the function B. ARIMA allows integrating the moving average component of residuals,

computed as in Equation 2.41.

yt = θq(B)ϵt = ϵt + θ1ϵ1 + ...+ θqϵq (2.41)

where yt depends on the moving average moments of error ϵ up to the q-th moment.

The final step is the integration, which is given with the use of Equations 2.40 and 2.41,

and, after reorganization and integration, yields the results in Equation 2.42 for the next

quarter.

yt+1 = ϕ1yt + ϕ2yt−1 + ...+ ϕpyt−p+1 + θ1ϵt + θ2ϵt−1 + ...+ θqϵt−q+1 (2.42)

where ϕ and θ are weights optimized for the lags of y and errors ϵ.
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ARIMA is generally used for time-series settings as it combines the Auto-Regressive and

Moving Average components, both of which are used to estimate series trend and volatility.

On the other hand, this forecasting model type requires data to be stationary, meaning it needs

to be de-trended and de-seasoned before fitting the estimator.

The final estimation methodology used in this study accounts for the dynamic nature of

the data.

Exponential Smoothing

Exponential Smoothing (SES) estimates future values by assigning higher weights to the more

recent data observations, and lower weights to the older ones, making it a more appropriate

choice of estimator for time-series data with no clear structure [36]. Specifically, we use the

Holt-Winters Seasonal method that accounts for trends and seasonality [37].

The prediction is done via the specification outlined in Equation 2.43.

ỹt+h = (St + hbt)It+h−m(k) (2.43)

where ỹ is the predicted value at time t, with a forecasting horizon of h, m is the seasonality

period, and k = ⌊ (h−1)
m ⌋ is the result of floor division to control the indexing of seasonal

periods. In Equation 2.43, the term St is the level of smoothing of the series, defined in

Equation 2.44.

St = α
yt

It−m
+ (1− α)(St−1 + bt−1) (2.44)

where α is the smoothing parameter, where 0 < α ≤ 1, yt is the observed target variable value

at time t, and bt is the smoothed trend, defined in Equation 2.45.
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bt = θ(St − St−1) + (1− θ)bt−1 (2.45)

with θ being the smoothing weight. The last component that we have not yet defined in

Equation 2.43 is It, which controls the seasonality smoothing and is defined in Equation 2.46.

It = γ
yt
St

+ (1− γ)It−m (2.46)

where γ is the seasonality smoothing components.

The SES estimator is effective at predicting short-term series, effectively smoothing the

observed series. However, it, as well as all the previous estimators, requires the relation

between features and target variables to be strictly linear. It is more effectively handled by the

Machine Learning Estimators, present in the next section.

2.4.2 Machine Learning Estimators

We mentioned earlier that for the purposes of this study, we use a series of Machine Learning

(ML) estimators. The key distinction we draw between ML and SE estimators is that the former

imposes regularization on the parameters of regression. As such, one of the first estimators we

consider from an ML branch is Lasso.

Least Absolute Shrinkage and Selection Operator

The LASSO estimator is an extension of the OLS estimators by imposing restrictions on the

weights [38]. The estimator attempts to minimize an MSE cost function, with a modification

to simplify the derivation of gradients, as shown in Equation 2.47.
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MSElasso =
1

2N

N∑
i=1

(yi − xiθi)
2 (2.47)

where 1
2N is the scaling factor used to simplify the derivation procedure with respect to θ, as

the factor of 2 in the fraction and the power will cancel each other out. In a similar to the

previous equations manner, the yi represents the i-th observation of the target variable y (the

scalar value), xi is, respectively i-th observation of the input features vector, with respective

weights vector θ One of the key properties of Lasso regression is the fact that it maximizes the

impact of the most relevant features on an estimated value. This is accomplished via the use

of L1-regularization [39], expressed in Equation 2.48.

∥θ∥1 =
p∑

j=1

|θj | (2.48)

where ∥θ∥1 denotes L1-regularization, which is the sum of the absolute values of the regression

coefficients. Note that the number of coefficients p will coincide with the number of vectors

in the input data. The regularization term in Equation 2.48 adds to the total loss function,

as expressed in Equation 2.47. This creates the minimization objective: to select the set of

coefficients θ that minimizes the distance between observed and estimated target values, as

expressed in Equation 2.49.

θ̂ = argmin
θ

 1

2n

n∑
i=1

(
yi − xT

i θ
)2

+ λ

p∑
j=1

|θj |

 (2.49)

where the estimated set of coefficients is the one that minimizes the MSE, as expressed in

Equation 2.47, subject to regularization as per Equation 2.48, with parameter λ. Here, λ ≥ 0

is a tunable parameter that controls the strength of regularization: the larger λ, the more

coefficients will shrink to zero. Conversely, with small λ, coefficients will be closer to those
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estimated with OLS.

One of the flaws of this estimator is the fact that when features are highly correlated, it

may maximize a weight for a single feature, effectively ignoring the rest [38]. Additionally, a

high weight imposed on the regularization term may introduce bias in the estimation process,

leading to overfitting.

A similar idea is to pick a subset of features and assign higher weights to them, while

replacing the standard MSE with the more robust Huber Loss function. As mentioned earlier,

this cost function is robust to outliers. The ML estimator that uses it is the Huber Regressor,

outlined next.

Huber Regressor

The Huber Regressor (HR) is an extension of the Robust Linear Models (RLM) statistical

estimator that uses the Huber Loss function. Effectively, this cost function represents a kernel

that adjusts depending on the size of the regression residuals, which are defined as the squared

error between predictions and observed target values [34]. For convenience, the Huber loss

function is repeated in this subsection in Equation 2.50.

Lc(θ) =


1
2(yi − xT

i θi)
2, if |yi − xT

i θi| ≤ c

c|yi − xT
i θi| − 1

2c
2 otherwise

(2.50)

where yi is the target observation, xi is the set of features at observation i, θi is the set of

regression parameters, and c is a constant threshold, commonly set to 1.35 [34].

As with other loss functions, we aim to minimize the average Huber Loss by adjusting the

θ regression parameters, as mathematically expressed in Equation 2.51.
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θ̂ = argmin
θ

n∑
i=1

Lc(yi − xT
i θ) (2.51)

where we seek to find the set of optimal parameters θ̂ that yields the lowest Huber loss error Lc,

with respect to the difference between the true target observation yi and the model estimate

xT
i θ̂.

The major extension is due to the fact that Huber loss makes use of L2-regularization of

the regression coefficients, an extension of the type of regularization used by Lasso regression.

Hence, our final version of the regression loss function is provided in Equation 2.52.

θ̂ = argmin
θ

n∑
i=1

Lc(yi − xT
i θ) +

λ

2

p∑
j=1

θ2j (2.52)

where the additional term denotes the regularization, i.e., the sum of squared regression

coefficients, where p coincides with the number of features in the input matrix, and the λ term

controls the strength of regularization. The major difference between L1 and L2 regularization

is that with the latter, coefficients will never become exactly zero for any feature — all features

contribute at least partially to the regression output [40].

The Huber loss is not the only regression model with a loss function different from the

standard MSE. We next consider Automatic Relevance Determination, which makes use of

Bayes’ theorem for optimizing regression coefficients.

Automatic Relevance Determination

The Automatic Relevance Determination (ARD) estimator makes use of certain Bayesian

properties of the estimation process. Specifically, it places independent Gaussian priors on

each regression coefficient [38]. Mathematically, this is expressed in Equation 2.53.
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θj = θj ∼ N (0, α−1
j ) (2.53)

where each coefficient θj with j = 1, ..., p, and p is the total number of coefficients, which

coincides with the number of features. Each coefficient thus comes from a Gaussian (Normal)

distribution with mean 0 and inverse variance α−1
j . This term is the precision parameter for

the j-th coefficient.

This suggests that the probability of the coefficients set, given the precision parameter, is

expressed in Equation 2.54.

p(θ|α) =
p∏

j=1

N (θj |0, α−1
j ) (2.54)

where α = [α1, α2, ..., αp]
T is the vector of precision terms, independent for each coefficient

θ. The p(θ|α) denotes the probability of the set of coefficients θ, given the vector of precision

terms α.

This implies that the likelihood of the observed data y given the input matrix X and the

set of parameters θ is expressed in Equation 2.55.

p(y|X, θ, σ2) = N (y|Xθ, σ2I) (2.55)

which states that the likelihood p(·) of y given the feature matrix X, parameters θ, and the

variance of the target variable σ2, with I as the identity matrix, necessary to convert the scalar

value σ2 to the corresponding matrix form.

Using Bayes’ theorem [20], we derive the posterior distribution of the parameterization θ,

given in Equation 2.56.
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p(θ | y,X,α, σ2) ∝ p(y | X, θ, σ2)p(θ | α) (2.56)

also following the Gaussian distribution: p(θ | y,X,α, σ2) = N (θ|µ,Σ), where the distribution

is centered around the mean, defined as µ = σ−2ΣXT y, and the variance is defined as

Σ = (σ−2XTX+ diag(α))−1. This implies that, for the estimation process, we need to derive

the precision terms α and the noise variance σ2. This can be done by maximizing the marginal

log-likelihood of the data [41], represented in Equation 2.57.

log p(y|X, α, σ2) = −n

2
log(2π)− 1

2
log |C| − 1

2
yTC−1y (2.57)

where C = σ2I+X,diag(α)−1XT represents the combination of uncertainty due to the noise

(σ2I) and the uncertainty due to the regression coefficients (X,diag(α)−1XT ). Generally, the

parameters α and σ2 are the tunable hyperparameters of this regression estimator.

The main advantage of the model is that it selects the most relevant features given the

uncertainty of the regression parameters. However, it assumes Gaussian priors, which may not

be suitable in all cases [38].

In our study, we utilize another estimator that makes use of Bayes’ theorem — the Bayesian

Ridge, which we describe next.

Bayesian Ridge

The Bayesian Ridge (BR) estimator is similar in nature to the ARD regression. Both estimators

are designed to estimate the value of the target variable y by selecting the most relevant input

features from the matrix of all features X. The key difference is that BR imposes a single

precision parameter λ, meaning that the same prior variance is imposed on all regression
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coefficients θ [41].

In particular, the prior distribution of the regression coefficients is assumed to follow a

zero-mean multivariate Gaussian prior, expressed mathematically in Equation 2.58.

p(θ|λ) = N (θ|0, λ−1I) (2.58)

where λ denotes the precision of the prior on θ. The conjugate Gamma prior controls the

prior distribution of the precision, given by: p(σ−2) = Gamma(α, β), where α and β are

hyperparameters that can be tuned.

Again, following Bayes’ theorem, we derive the posterior distribution of θ, which is

proportional to the product of the likelihood and the priors [42], as shown in Equation 2.59.

p(θ|y,X, λ, σ2) ∝ p(y|X, θ, σ2)p(θ|λ) (2.59)

with p(y|X, θ, σ2) = N (y|Xθ, σ2I) denoting the likelihood of the target variable, conditioned

on θ and the noise term σ2. Therefore, the regression coefficients θ are assumed to follow a

Gaussian distribution, given in Equation 2.60.

p(θ | y,X, λ, σ2) = N (θ | µ,S), (2.60)

where the mean is given by µ = σ−2SXT y with the covariance defined as S = (λI +

σ−2XTX)−1.

The posterior allows us to estimate the marginal log-likelihood of the target variable, given

the input feature matrix, precision, and noise, as shown in Equation 2.61.

log p(y | X, λ, σ2) = −n

2
log(2π)− 1

2
log

∣∣σ2I+ λ−1XTX
∣∣− 1

2
yT

(
σ2I+ λ−1XTX

)−1
y (2.61)
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where π is the mathematical constant, which is part of the Gaussian distribution. Therefore,

in Bayesian Ridge, the regression parameters are estimated by the mean of the posterior

distribution, as shown in Equation 2.62.

θ̂ = µ = σ−2(λI+ σ−2XTX)−1XT y (2.62)

which means that the BR estimator assumes equal contribution of each feature to the target

variable [41]. This suggests that the BR estimator may not perform well when only a subset of

features is informative of the target variable.

Our subset of Machine Learning estimators also includes non-parametric estimators, of

which the K-Nearest Neighbours is the example, described next.

K-Nearest Neighbours

K-Nearest Neighbours (KNN) is one of the non-parametric regression methods we used through-

out this study. Non-parametric means that it does not rely on coefficients and makes predictions

based on distances between data points [43].

The KNN estimator has several important hyperparameters. One of them is p, which affects

the type of distance measure in Equation 2.63 [44].

Lp(xj , xq) = (
∑
i

|xj,i − xq,i|p)1/p (2.63)

where we measure the distance between two data points, xi and xj , with i ̸= j, raised to the

power of p. This function is often referred to as the Minkowski distance [44], as depending on

the value of p, we get the Manhattan distance for p = 1, the Euclidean distance for p = 2, or

other types of distances as the value of p increases.
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Therefore, for a regression problem, for a data point in the target vector yi, we compute

the distance from observation i to every data point in the feature matrix xi = [x1, x2, ..., xN ]T

and store these distances. This is done using a function Nk(x), where k denotes the number of

nearest neighbours to consider. In other words, Nk(x) is a function that returns the indices of

the k closest data points to y in the Lp space. Consequently, we can approximate the target

vector y using the function given in Equation 2.64.

ˆf(x) =
1

k

∑
i∈Nk(x)

yi (2.64)

where k is a tunable hyperparameter. To avoid pairing features with a target at specific

observations, the value of k is typically odd, i.e., k = 1, 3, 5, . . . . This prevents a regression

from assigning equal distances to each data points. In other words, the odd number will always

result in a clear winner. Notice that k controls the fit: a smaller value of k provides more

flexibility, as it will look up distances between fewer features, while a larger value of k makes

the estimator less flexible. For instance, if k = n, where n is the total number of observations

available for training, the model would essentially predict the mean of the target values. In

such a setting, the estimator becomes a constant, where ˆf(x) = 1
n

∑n
i=1 yi, representing the

mathematical mean of all yi values at each x [45].

To prevent such behavior, we typically apply a distance-based weighting during the estima-

tion process. Thus, our estimation procedure takes the form outlined in Equation 2.65.

ˆf(x) =

∑
i∈N (x)wi(x)yi∑

i∈Nwi(x)

(2.65)

where wi(x) is the weight function, which also represents a tunable hyper-parameter. The

weighting can be done in two ways: uniform or distance-based. ‘Uniform’ means that we scale
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the appropriate data point x with the number of k, as illustrated in Equation 2.66.

wi(x) =


1
k , if i ∈ Nk(x), i = 1, ..., n,

0, otherwise

(2.66)

The second option is to assign a weight to a value of x based on the resulting distance

measure, Lp, as provided in Equation 2.67.

wi(x) =
1

Lp(yi, xi) + ϵ
(2.67)

with ϵ being a small value necessary to avoid zero-division.

KNN estimator is effective in data sets characterized by the presence of noise [44]. At the

same time, because the number of k-neighbours is tunable, one might set it too high, leading

to poor generalization. We next consider a branch of tree-based estimators, starting with

Decision Trees outlined next.

Decision Trees

Tree-based structures are one of the fundamental structures in Computer Science. These are

commonly used to partition the data in various types of problems [46]. As such, we can utilize

tree structures in order to solve regression problems of the kind we study in this research.

Specifically, the Decision Tree (DT) estimator is commonly applied for these tasks.

Specifically, our input feature matrix X and output target values y can be split into subsets

based on some threshold t, specifically:

Sleft = {(x, y)|xj ≤ t}; Sright = {(x, y)|xj > t} (2.68)
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for a data point xj . In other words, we recursively divide the feature space into subspaces

conditioned on the threshold parameter t. For regression-type problems, t is estimated as the

impurity of the split [47]. For a subset S, we first compute the variance, defined in Equation

2.69.

V ar(S) =
1

|S|
∑
i∈S

(yi − ȳS)
2 (2.69)

where ȳS = 1
|S|

∑
i∈S yi is the mean of the target values in subset S. This can then be used to

calculate the MSE of the split, weighted by the variance V ar of S, defined in 2.70.

MSE(Sleft, Sright) =
|Sleft|
|S|

V ar(Sleft) +
|Sright|
|S|

V ar(Sright) (2.70)

which is the objective function of the DT estimator. For the unseen set of features, x∗, the DT

estimator will traverse the tree constructed during training to find a node with the minimum

MSE result. Therefore, a prediction made by the DT estimator is the average target value

at that node of the tree closest to the unseen input data. This is mathematically depicted in

Equation 2.71.

ŷ∗ = 1

|Sleaf |
∑

i∈Sleaf

yi (2.71)

The overfitting is typically prevented by the maximum depth and the minimum number of

data points/features per node. These are the tunable hyperparameters of the DT estimator. In

problems where data is in limited supply, any tree could potentially overfit to the training data

[48]. One of the possible ways to prevent it is to fit several trees — a procedure accomplished

by the Random Forest estimator, considered next.



2.4. REGRESSION PROBLEM 49

Random Forest

As its name implies, Random Forest (RF) is a collection of Decision Trees, each fit on different

subsets of data [49]. It makes use of bootstrapping — a technique used for generating multiple

data set samples: D = xi,1, xi,2, ..., xi,n with uniform probability ij ∼ Uniform(1, 2, ..., n). For

the purposes of regression, each underlying tree is fit with a subsample D, with the objective

function outlined in the previous subsubsection.

The prediction in RF is the average of the predictions from all trees (thus from all respective

subsamples), as illustrated in Equation 2.72.

ŷ∗ = 1

T

T∑
t=1

ŷt (2.72)

where t = 1, . . . , T is the total number of trees constructed during the training stage, and ŷt is

the t-th tree’s prediction regarding the target variable.

To further increase the robustness of the forest, the Out-Of-Bag (OOB) error is used. This

is a technique where a model is evaluated on a sample not used during the training stage [44].

This consists of a few steps. First, for each (xi, yi) sample, yield an estimate only using trees

that were fit without xi in their sample, as per Equation 2.73.

ŷOOB =
1

Ti

∑
t∈Ti

ŷt, Ti = {t|xi /∈ X
(t)
b } (2.73)

where Ti denotes the i-th tree in a forest T , D := X
(t)
b is a bootstrap sub-sample of the training

matrix X split into b parts for every t-th tree.

The second step involves the calculation of the OOB score across every sample, defined as

the MSE for regression-type problems, as indicated in Equation 2.74.
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OOB Error =
1

n

n∑
i=1

(yi − ŷOOB,i)
2 (2.74)

While the idea is simple, it is not without a flaw: our sparse data sets are split into further

(and smaller) samples, therefore each tree is constructed with an even fewer number of data

observations. This could lead to overfitting. Next, we move to the final estimator used in our

study: the Multi-Layer Perceptron regression.

Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) is the final estimator we use for the purposes of this study.

Generally, the MLP estimator is an artificial neural network, which consists of several layers

of interconnected nodes, with each performing a weighted summation with an activation

function [23].

MLP is characterized by the input layer, hidden layers, and the output layer. Each layer has

a certain number of interconnected nodes. The input layer simply accepts the features matrix

and propagates it to the next layers. The hidden layer performs the computation of the form

outlined in Equation 2.75.

h = f1(W1x+ b1) (2.75)

where h denotes the output of a hidden layer, W1 denotes a matrix of weights assigned to

each feature in the input matrix x, b1 is the vector of biases computed at the hidden layer, and

f1 denotes an element-wise activation function.

Activation function is a tunable parameter. In this study, we choose the appropriate

activation function for a specific data set during the hyper-parameter tuning. Appropriate,
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in the context of our problem, is the activation function that yields the lowest error on the

validation subset of data. Specifically, one of the several options is chosen. The Rectified Linear

Unit (ReLU): f1(z) = max(0, z), which outputs either the input or zero. Another option is

the Sigmoid activation function: f1(z) =
1

1+exp−z , which maps the input to a small number

in the zero-one range. The final activation function is the Tanh: f1(z) =
expz − exp−z

expz +exp−z , which

introduces the sigmoid-like activation but in the -1 to 1 range. These activation functions

allow the MLP estimator to derive non-linear patterns as data is being propagated through the

network [23].

In the MLP estimator, a prediction can mathematically be described as in Equation 2.76.

ŷ = W2h+ b2 (2.76)

where ŷ is the output prediction, and the rest of the variables are the same as represented

in Equation 2.75. Neural networks generally consist of several layers. Equation 2.76 then

illustrates the final (output) layer in the network. Because this is an estimator, it aims to

minimize the regression error, which we set to be the MSE. The training process takes several

steps (epochs), where at each step, we minimize the MSE loss with respect to the regression

parameters. Specifically, at every epoch, we update the parameters as outlined in Equation

2.77.

W1 ←W1 − η
∂L
∂W1

,

W2 ←W2 − η
∂L
∂W2

,

b1 ← b1 − η
∂L
∂b1

,

b2 ← b2 − η
∂L
∂b2

.

(2.77)
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where the operation ← denotes an update step, and η is the learning rate — a tunable

hyper-parameter. According to Equation 2.77, we take the derivative of the loss function

L = 1
n

∑n
i=1(yi − ŷi)

2, MSE in our study, with respect to each element over the course of

training. Generally, as long as the this function is differentiable and provides the convergence

to the target problem, any other loss function is possible. All derivatives are outlined in

Equation 2.78.

∂L
∂W1

= −2
n∑

i=1

(yi − ŷi)W
T
2 σ

′
1(W1xi + b1)x

T
i ,

∂L
∂W2

= −2
n∑

i=1

(yi − ŷi)h
T
i ,

∂L
∂b1

= −2
n∑

i=1

(yi − ŷi)W
T
2 σ

′
1(W1xi + b1),

∂L
∂b2

= −2
n∑

i=1

(yi − ŷi) .

(2.78)

This process is also known as the backpropagation [23] and is used to minimize the regression

error. The process of error minimization is repeated for several epochs — until convergence or

some other stopping criterion.

Because of the number of computational steps, the MLP estimator is probably the most

complex in our selection of estimators. One of its benefits is the embedded non-linearity in the

form of the activation function. At the same time, because of the continuous minimization, it

requires a high number of observations to avoid overfitting the training data.

The final methodology we consider in this study — Transfer Learning — allows us to apply

inferences gained from one domain (or one data set) to another domain. We consider this

methodology in more depth in the next section.
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2.4.3 Transfer Learning

For the statistical inference to be successful, it is important that the training data follows the

same distribution as the unseen data [20]. This assumption is, however, frequently violated

in the real world [50]. This is especially important when the training series is limited in the

number of observations.

Transfer Learning helps to prevent this problem. Effectively, knowledge transfer tackles

two issues. First, it is effective when labeled data is in limited supply. In this case, one could fit

a model on the data domain that has a similar pattern and apply it to the problem where the

number of observations is limited. Second, it is useful when the distribution is easily outdated.

In this case, learning from different distributions is effective at minimizing errors [50].

Transfer Learning is defined by several key components. The first is the source task: the

data set with a sufficient number of data points: DS = (xiS , ySi )
N
i=1. The purpose of the source

task is to minimize the regression error using the parameters from the regression fit in the

source domain, fθ, defined in Equation 2.79.

LS =
1

NS

NS∑
i=1

ℓ(fθ(x
S
i ), y

S
i ) (2.79)

where x is the vector of observations for i, y is the target variable, and N denotes the number

of observations available for training in the source domain S. The objective at this stage is to

pick a set of parameters that minimize the loss function: θS = argminθ LS .

The optimized parameters are then used in the target task domain. Specifically, for a target

domain data set DT = (xjT , yTj )j = 1K , we apply a model fθS fitted with the domain data set

DS. In order to perform the knowledge transfer — the key feature of the transfer learning

approach — we fine-tune a model, keeping at least a portion of the parameters θS untouched.
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Our objective at this stage is to minimize the loss function in the target domain, mathematically

expressed in Equation 2.80.

LT =
1

K

K∑
i=1

ℓ(fϕ(x
K
i ), yKi ) (2.80)

where K denotes the number of observations available for the target space and ϕ denotes

the tuned coefficients for the target domain θ. Our objective is to minimize the loss: ϕ =

argminϕ LT .

The benefit of transfer learning, for the purposes of this study, is that it allows for the

transfer of knowledge from one domain to another, bypassing limitations caused by the lack of

training data observations. At the same time, the source domain could differ too much from

the target domain; therefore, the knowledge gained in one domain is not transferrable to the

other [51].

Because in multiple parts of this document we compare transformation, data augmentation

and estimators comparative analysis, we need error measurements that will reveal how a

particular methodology performs in comparison to other. These error measurements are

considered in the next section

2.5 Error Measurements

In this study, we use several error measurements, commonly applied to problems of regression

type. The choice of several metrics is necessary by the fact that every error measurement

has its flaws and benefits. We therefore try to cover these limitations and get an objective

measure about the results of our experiments. The first metric is the Mean Absolute Error

(MAE), depicted in Equation 2.81.
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MAE =
1

n

n∑
i=1

|yi − ŷi| (2.81)

where MAE is the output error for a regression, i = 1, ..., n is the index for a data point with n

denoting the total number of data points an error is measured with, yi is the true, genuine

data point and ŷi is the estimate of the genuine data point inferred by a model-type.

MAE measures errors in the same units as the data. Specifically, it does not differentiate

between cases when estimated value was much larger/smaller than the actual data: all errors

make equal contribution to the final measure, regardless of their sign.

While it is convenient to measure the error in the same units as data, it may lead to

inconsistent and therefore incomparable results, as some companies may have very large

EPS/FCF values (in 1000s). Visually, it will appear as if the error is very large in these data

sets, while it may not be, in relative terms. To account for these defects of the MAE error

measurement, we use the Mean Absolute Percentage Error (MAPE), provided in Equation 2.82.

MAPE =
1

n

n∑
i=1

|yi − ŷi
yi
| (2.82)

where MAPE is the output we measure, i is the index of total n number of data points in a

measurement set, yi is the genuine i-th observation with ŷi being the value of i-th data point

inferred by an estimator.

Unlike MAE, MAPE errors are relative. The relativity is due to the fact that each residual

(difference between a genuine and an estimated data value) is scaled by the actual data

observation. However, in some cases, the actual data observation may be near or very close to

zero; therefore, the final result could explode, leading to a high output value, not representative

of the actual difference between the actual and estimated data values. Therefore, the output
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of the MAPE computation is not bounded and can be misleading if not incomputable, in cases

the division by zero involved.

The third error measurement we use is the symmetric Mean Absolute Percentage Error

(sMAPE), represented in Equation 2.83.

sMAPE =
100

n

n∑
i=1

|ŷi − yi|
|yi|+ |ŷi|

(2.83)

where, as previously, yi and ŷi are the actual and inferred i-th data observations with i =

1, . . . , n the index, where n is the total number of data points used for computing of the sMAPE

score.

In our study, the sMAPE is the only error measurement, bounded between zero and 100.

Thus, this error measurement is helpful in evaluating overall results regardless of size of data

points values.

Besides investigative work of looking at how different ML and SE regression model-types

perform in sparse time-series data sets, we also aim to outline pipelines and algorithmic

regression approaches for EPS and FCF forecasting to be used in the financial valuation

models. Thus, we seek to compare data preprocessing techniques and regression algorithmic

approaches.

In order to do this comparison, we used the Friedman test statistical procedure. The

Friedman test is a non-parametric test, in a sense that it does not assume a specific probability

distribution for the population from which the data is. The Friedman test works in the several

steps. First, for every method under consideration, the average ranking is computed, where the

lower ranking is indicative of a better performance. A methodology with the lowest average

rank is then considered to be the ‘control’ methodology. To derive statistical significance, we
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apply the Hommel’s post-hoc test [52, 53]. Hommel’s post-hoc test represents the pair-wise

comparison of distribution of error metrics the ‘control’ (i.e. best) methodology against the

rest. Particularly, for each pairwise comparison — and for each type of error separately, i.e.

MAE, MAPE, and sMAPE — the null hypothesis to be rejected at a 5% level (α = 0.05), states

that the observed error ranks obtained during the Friedman ranking process are all sampled

from the same continuous distribution.

Next section summarizes the background information outlined in this chapter.

2.6 Conclusion

When making a buy/sell decision, it is vital for a fundamental investor to determine the

intrinsic value of a company. The intrinsic value is the approximate price worth paying for a

stock given its future expected cash flows and risk. If the resulting intrinsic value is greater

than the market price, the stock is worth buying, suggesting a buy decision; otherwise, sell.

To estimate intrinsic value, two valuation techniques are commonly used: the Discounted

Cash Flows (DCF) and the Price-Earnings-Per-Share (PE) multiple. The former makes use

of the Free Cash Flows (FCF) series, and the latter uses the Earnings-Per Share (EPS) series.

Both are measures of cash flows to investors, with the key difference being the computation

methodology: EPS subtracts all the accounting expenses, while FCF adds the non-cash expenses

back.

Valuation methods, such as DCF and PE multiple, require an estimate of the input series

for the upcoming quarter (FCF and EPS, respectively). Underestimating or overestimating the

quarter-ahead value could lead to financial losses. Hence, we propose to formulate this as a

regression problem where the target variable is the EPS and FCF values.
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To solve this regression problem, we use a set of statistical and machine learning estimators.

To tackle this challenge, we make use of the predictive power of Machine Learning (ML)

and Statistical Estimator (SE) methods for these series. For our purposes, the operational

distinction between ML and SE methods here is that the former make use of regularization to

improve model generalization where appropriate, whereas the latter do not. Regularization is

the process of favouring solutions that are more ‘regular’ in some useful sense over ‘irregular’

ones; the particular choice of regularization (i.e., what it means for a solution to be more

‘regular’) reflects, to some extent, prior knowledge regarding the problem domain, which is

directly injected into the training process of the model in question. As a result, the use of

regularization prevents ML models, to some extent, from producing solutions that are ‘too

irregular’ in a manner that would make the model more prone to overfitting; however, this

often comes at the expense of requiring a somewhat higher volume of data to train adequately.

SE models, on the other hand, are completely data-driven, making no assumptions about the

‘regularity’ of potential solutions (other than the models themselves being expressed in some

useful parametric form), and thus do not involve any regularization coefficients, which might

require the model to undergo further training to account for their effect.

The technical challenge of our study is due to the sparsity of the series under consideration.

Because the data is published on a quarterly basis, as required by law, the target values of

both EPS and FCF series are limited in the number of observations. To mitigate the effects of

sparsity, we propose applying interpolation techniques that allow us to approximate a value

between two existing data points. This enables us to assume a different data stream frequency:

we assume weekly and monthly arrivals in both EPS and FCF series. Another way to address

this challenge is to use the transfer learning methodology. Transfer learning allows us to train

a model in the source domain — one with a sufficient number of labeled observations — and
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apply it to another domain — one with a lack of data observations.

To evaluate the validity of our results we use three regression error measures: Mean Abso-

lute Error (MAE), Mean Absolute Percentage Error (MAPE) and symmetrical Mean Absolute

Percentage Error (sMAPE). These three metrics measure the absolute distance between the

genuine and inferred with an estimator data points, reporting results in different units. The

MAE reports in the same units as the data, the MAPE reports in percentages, without any

upper boundary and sMAPE reports error in the 0-100 range. For all three of those measures,

the lower value indicates a better fitness of estimator to data.

The next chapter gives an overview of state-of-the-art approaches to the regression problem

outlined in this chapter.



Chapter 3

Literature Review

3.1 Introduction

In this chapter, we conduct a literature review of the state-of-the-art methodologies for

approximating financial time-series data. While this study primarily focuses on the EPS and

FCF series, other types of financial data have been the subject of numerous studies that we

consider in this chapter. Our interest in the EPS and FCF series stems from the fact that the

two are used to estimate the intrinsic value of a stock, which, compared to the stock price,

outlines the reasonable price an investor should pay for a stock based on its future prospects

and risk.

From this definition, our study aims to outline a method for forecasting future prospects.

We define this forecasting task as a regression estimation problem, where the objective is to

minimize the distance measure between the target values and the model’s predicted values.

Specifically, we assume that both target series depend on their past lags, mean, and standard

deviation.

The finance literature emphasizes the usefulness of machine learning (ML) algorithms in

60
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addressing classification and regression problems [1, 54]. Typical regression tasks involve

predicting revenues and earnings, as these variables are indicative of future stock price

performance. Classification tasks, on the other hand, often focus on estimating the likelihood

of significant events, such as the probability of bankruptcy for companies.

The purpose of this chapter is to outline the approaches and challenges associated with

forecasting financial time-series data.

To achieve this, we first introduce novel techniques used in modeling financial and economic

time-series, including both pricing and fundamental data in Section 3.2, followed by Section

3.3 which narrows the review down to the fundamental financial time series forecasting.

Subsequent Section 3.4 gives an overview of techniques utilized to model sparse series,

including those outside of financial domain. Finally, Section 3.5 summarizes the information

given in this chapter.

3.2 Financial and Economic Forecasting

Time-series modeling has been a central topic in numerous studies [55], spanning applications

such as electricity demand forecasting [56], retail decision-making [57], and finance [58]. As

noted earlier, financial time-series data can generally be divided into two categories: pricing

data and fundamental data. The primary distinction between these categories lies in their

publication frequency, with pricing data typically reported daily and fundamental data reported

quarterly. Both types of data have been subjects of scientific interest [59], [60].

The surveyed publications differ in the algorithmic approaches applied. For instance, Box

et al. [61] provides the thorough description of the widely used quantitative methods, such

as Maximum Likelihood Estimation methods, examples of which are the stochastic models,
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including univariate and multivariate settings. Typical examples of such models are Integrated

Moving Average (IMA), Auto-Regressive Integrated Moving Average (ARIMA), Vector Auto-

Regressive Models (VAR), etc. The book outlines the common approaches to time-series

analysis and modeling. A study by [62] showed the ARIMA method can be successfully applied

to model Netflix Inc., stock price. In their study, they examined how the number of past lags

and moving average components affects the Mean Absolute Percentage Error (MAPE) score.

In particular, their study achieved 99.75% accuracy, showing almost a perfect fit to the data,

successfully predicting the next three months of stock movements (daily percent returns) on

the handout data set. Paper by [63] did a similar study, introducing the Back-Propogation

Neural Network and also expanding the number of data sets up to two European Stocks (JD

inc., and PDD Holdings Inc.). In particular, their study which utilized around 600 training data

points and 10 test data observations, showed that ARIMA and the Neural Network produce

similar results, with ARIMA showing a slightly better out-of-sample performance.

Exponential smoothing is another approach utilized by scholars. In particular, study by

Gardner et al., [37] introduces the Exponential Smoothing model and outlines common cases

for its use. Specifically, it is acknowledged that the model is more complicated than the standard

ARIMA in terms of explainability and the number of computational steps, however, it is noted

that the Holt-Winters variant of exponential smoothing is more effective at capturing seasonality

and other recurring patterns in the time-series data. Nevertheless, a book by Andrew C. Harvey

[64] examined a broad range of exponential smoothing and other structured models, outlining

a wide spectrum of time-series forecasting tasks, mostly focusing on macroeconomic data.

This illustrates that by capturing the general trend in data (which the majority of smoothing

models aim to accomplish) it is possible to accurately form expectations regarding the future

Gross Domestic Product growth in the UK and US economies, rainfalls in Brazil and even the
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number of car crashes in Chicago, US.

A more recent set of experiments documented by Shukor et al., [65] demonstrated how

various types of exponential smoothing, linear trend and random walk models can be applied

to estimate the market price of gold, crude oil and other precious metals. Of the proposed

methods, the Holt’s Linear Trend exponential smoothing variant demonstrated the lowest

regression error, measured in their study as the Root Mean Squared Error, Sum Squared Error

and Mean Squared Error, when predicting the crude oil and platinum prices. In their study,

they used approximately 200 data points for model training, predicting the next 10 data points.

They noted that the data is remarkable in high number of fluctuations, hence smoothing these

fluctuations is beneficial for the estimation of the future prices of these commodities.

The interest in financial time-series modeling extends beyond the use of a single estimator

or the comparison between various estimators. Using the Bayesian Model averaging which

allows approach to fit different variants of LASSO estimator to the pricing data of a set of

financial firms, over the time span of 1990s to 2017. Additionally, a number of external

indicators typically used to detect the economic recession were used as the input data to the

LASSO estimators. It is concluded that by examining the weights in the Bayesian Weighted

average approach across different models, it is possible to establish which factors (input vectors

representing signals of recession) contribute to the volatility the most.

One of the foundations of economic theory is the notion of uncertainty [66]. Broadly, the

uncertainty is the spread of potential outcomes. In technical terms, we can formulate the

past stock returns as the distribution, where, on most future days, the return will be within a

predefined, measurable spread. The uncertainty can also be modeled, commonly with Bayesian

methods.

As an example of such, the paper by Bertschinger et al., [67] proposes to model volatility
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in the agent-based economic simulation, with the use of GARCH and Bayesian estimation

methods. This paper states that the simulation performs in par with the economietric methods,

such as GARCH and its variants, albeit there are cases where the simulation requires a more

sophisticated simulation techniques to properly estimate the volatility levels.

Further, Bayesian methods were applied for investigative purposes. A notable publication

by Takyi et al., [68] utilized the Bayesian structural models for examination of the impact

of COVID-19 on African stock returns. As expected, the majority of stock markets were

significantly and negatively affected by the pandemic, with only 3 out of 10 countries not

experiencing significant impact. No markets gained positive returns with the declaration of

the global pandemic.

The price of selected financial instruments, such as derivatives depends on the future price

of an underlying commodity. A derivative is a type of contract that allows the future sale or

purchase of a financial asset (such as a stock) at an agreed-upon price [69]. Therefore, to

determine whether the price for a derivative contract is ‘fair’ it is necessary to approximate the

future price of such goods. Number of studies have advanced this field. For instance, Krzysztof

Drachal [70] attempts to estimate the future spot price of crude oil. In their study, they use

the Bayesian Symbolic regression methodology compared against the LASSO, Ridge, ARIMA,

dynamic, genetic and Bayesian model averaging techniques. Their objective is not only to

propose a more accurate solution to the problem of estimating the future crude oil price, but

also to outline the method that will incorporate more complicated, non-linear features set by

experimenting with the symbolic regression in a Bayesian way. Their study concludes that

the Bayesian Symbolic Regression, while not yielding most accurate results at a statistical

significance, is still computationally faster than genetic benchmark methods.

Derivative instruments also exist for common stocks: these are called stock options, which
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allow the owner of a option the right to buy or sell a stock in the future, at agreed upon price

[71]. The study by Carverhill et al., [72], attempts to model the stock price dynamics and

associated options pricing via means of Monte Carlo Markov Chains (MCMC) simulations.

Their paper demonstrated that simultaneous increases in volatility are useful for explaining

the time-series of the stock returns [72].

Another study, conducted by Gao et al., [73] an investigative work on the sensitivity

of stock options to the underlying stock liquidity constraints. Liquidity in stock markets is

defined as the ease of quickly converting a stock to cash [71]. The study shows that there

is a significant impact of market liquidity on options’ prices [73], clarifying the previously

established assumptions imposed by the Black-Scholes Model, commonly used for stock options

pricing [74].

A collection of stocks can be used as an index, which is representative of how the stock

market performs in a particular geographic region. These indexes are often used to assess

whether an economy or a particular segment is in a recession or experiencing economic

upheaval. This has generated interest in estimating the future values of stock indexes. In

this respect, focused on the long-term price levels of the global financial indexes, a study

by Beniwal et al., [75] use a series of machine learning, namely Support Vector Machines,

Long-Short Term Memory models and Genetic Algorithm to predict year ahead prices in the US,

Japanese, German and Shanghai indexes. The study finds the SVM regression to outperform

other regression methods.

Another study by Abraham et al., [76] also attempts to predict the daily trends of the

global stock market indexes. In particular, they employ a Genetic Algorithm to select the

set of international indexes and select a stock to be forecasted. A Genetic Algorithm is then

employed to find which indexes are significant in forecasting the stock’s trend. Finally, the
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Random Forest regressor is applied to estimate the hidden relationships between the selected

features and the stock’s trend. It is shown that such approach yields up to 80% accuracy for

the stock trend forecasting.

A paper by Arashi et al., [77] employs the ARMA and GARCH models to estimate the future

NASDAQ stock market index returns. In particular, combining a model (ARMA) to estimate

the trend and another (GARCH) to estimate the volatility yields a 1% error rate.

Generally, various machine learning methods show robust performance in predicting stocks

and stock indexes returns in different geographic regions. As such, a number of studies aims

to predict stock returns in China [78], [79], Europe [80], [81], and the Americas [82], [83].

Researchers also highlight the usefulness of machine learning estimators in high-dimensional

data sets [84], [85]. High-dimensional data sets are characterized by the number of input

variables exceeding the number of observations [84]. This is especially useful since modern

capabilities allow to collect data from multiple sources and combine these entries into a single

data set, as well as to use complex mathematical functions and transformations to exploit

non-linear settings in regression problems. Thus, researchers focus on predicting options

returns conditioned on their non-linear patterns [86], extracting useful features that minim-

ize prediction error by transforming high-dimensional data sets [87], and exploring market

efficiency with a large number of input variables [88].

Another way to extract information from the input features matrix is through transform-

ations [22]. There are still doubts about whether transformers bring any benefits to the

modeling process or if they cause model overfitting [89]. Nevertheless, transformers enable

the modeling of pricing data with Convolutional Neural Networks [90] and the use of multi-

attention mechanisms with linear models [91], both of which report more accurate prediction

done with this approach, as compared to state-of-the-art approaches. There are cases where
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transformers allow for faster data processing [92], thus minimizing the time it takes to predict

a data point. The estimation speed is essential for high-frequency trading.

Importantly, modern computational techniques also enable the inclusion of non-quantitative

data in the estimation process [93] as part of features set. Specifically, multiple studies report

increased accuracy in the Long-Short Term Memory Gating model when sentiment from

multiple text-based data sources is included as part of the features in the estimation process

[94], [95], [96], compared to models fit with more traditional features, such as technical

indicators and past lags.

Despite the successes mentioned earlier, predicting longer-term horizons remains a chal-

lenge for quantitative estimators [97], both statistical and machine learning [98]. Nevertheless,

researchers have discovered ways to improve the reliability of longer-horizon financial predic-

tions, such as using the extended Long-Short Term Memory algorithm [99] which outperforms

the classical LSTM model when the prediction horizon widens. Additionally, data transform-

ations, such as wavelet transformations, have also proven useful in increasing estimation

accuracy under the extended forecasting horizons, against the collection of neural networks fit

with data without the wavelet transformations [100].

Finally, Reinforcement Learning has been successfully applied to pricing data predictions

[101], [102]. Specifically, it has been demonstrated that Reinforcement Learning can also be

used for stock market forecasting tasks [103], volatility predictions [104], trading strategy

optimization [105], and automation [106], [107], [108], options pricing [109], and hedging

[110], [111].

Departing from the financial forecasting task, a text by Valle-Cruz et al., [112] explored

how Twitter data impacted stock market performance during H1N1 and COVID-19 pandemics.

They discovered that markets reacted to the news about pandemics within 10-15 days.
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A more complex task of analyzing financial documents is accomplished by Xie et al., [113].

In particular, they propose the Large Language model tailored for performing crucial financial

tasks such as financial documents analysis and interpretation.

From this section, we see that there is an increased interest in applying the various machine

learning approaches to the financial data, not only to predict a value in the future but also to

understand the potential volatility levels, understand a relation between various quantitative

and qualitative variables in the financial markets, and automate trading strategies. As we

mentioned earlier, the pricing data, which was the subject of studies mentioned in this section,

is published on the daily and more frequent basis. This differs from the fundamental financial

data, published quarterly, subject of studies explored in the next section.

3.3 Fundamental Financial Variables Forecasting

It is acknowledged that the reports disclosure affects the stock prices in a large way. This

data is vastly used for financial valuations. However, due to the fact that the financial data is

published quarterly, and the organized data collection started in the 1980s [6] the typical data

set will be limited in the number of records. Because of the limited data size, investors tend

to look for ways that do not involve quantitative modeling. For instance, investors usually

refer to the projections made by financial institutions and investment banks. The benefit of

using these estimates is that analysts tend to have more insights into the state of a business

[5]. A study by [114] showed that these estimates indeed outperform quantitative time-series

models, due to information that cannot be incorporated into the model.

Nevertheless, such projections are akin to a black box and are often biased [115]. Spe-

cifically, the source of bias is the agency-type problem: pessimistic reports tend to worsen the
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client-analyst relationship, and analysts also tend to lose interest in companies that have seen

several quarters of earnings below expectations [114].

Another popular approach is to use financial variables or the past historical average growth

rate [8]. However, this ignores external factors such as economic recessions or seasonal drops

in consumer demand. Moreover, since companies evolve over time, their growth tends to

decrease as a company matures [8], and hence, the past growth rate can end up being a poor

estimator of future performance.

Numerous studies have reported robust performance from quantitative forecasting models,

such as ARIMA [116]. However, such models usually make predictions based on a set of

assumptions, which financial data tends to violate over longer periods of time [30]. And

while there has been increasing interest in the use of ML algorithms, which avoid the need for

stationarity and linearity assumptions [23], such research has mainly focused on forecasting

earnings per share [117], revenues [118], and cash flows [119].

The predictability of EPS is a popular question in scientific and professional communities,

given the fact that earnings announcements (i.e., the disclosure of a company’s EPS) tend to

have a significant impact on stock returns [120]. Several studies have attempted to predict

future changes in EPS using other accounting variables. Specifically, [121] used the Economic

Value Added (EVA) financial measure to fit an ordinary least squares (OLS) model. The focus of

their study is on the relationship between EVA and EPS changes, rather than the performance

of the OLS model. The study reveals that out-of-sample OLS predictions tend to be more

accurate than analysts’ estimates.

Additionally, an earlier paper by Brown et al., [122] showed that four different variations

of the Box-Jenkins model, varying in the number of lags, outperformed analysts’ estimates on

a quarter-ahead basis, even without the inclusion of other accounting variables.



70 CHAPTER 3. Literature Review

More recently, a study by Kureljusi et al., [118] evaluated a selection of machine learning

algorithms — namely Decision Trees, Random Forests, Neural Networks, XGBoost, Gradient

Descent Linear Regression, LightGBM, and CatBoost — to check if these algorithms are capable

of producing more accurate results over time, benchmarking them against expectations data

available at I/B/E/S (Institutional Brokers’ Estimate System). Their conclusion was that

ML models provided better or comparable results to those of analysts. A study by Easton

et al., [123] showed that K-Nearest Neighbours regression successfully captures a year and

three-years ahead EPS values, as compared to market analysts.

Another study, conducted by Cao et al., [124] showed that Backpropagation Neural

Networks (MLP) and Genetic Algorithm models outperform the OLS and Auto-Regressive

Integrated Moving Average (ARIMA) regressions, in both univariate and multivariate cases.

Additionally, Fisher et al., [125] compared the ARIMA and Support Vector Machine (SVM)

regression models under different scenarios, including multiple prediction horizons (two and

three quarters ahead) and the limited availability of historical data for model training. They

demonstrated that, in most cases, the SVM model performs better than ARIMA in a univariate

setting. A study by Jadhav et al., [126] showed that OLS regression generally performs well

across their sample of companies, but fails when the data exhibits highly non-linear patterns,

where MLP outperforms.

The forecasting of business fundamentals and earnings per share has also been approached

as a classification problem. For instance, paper by Chen et al., [127] used Random Forests and

Stochastic Gradient Descent Boosting to predict year-ahead directional changes in corporate

earnings. Ensemble learning models demonstrate robust performance on out-of-sample data,

primarily due to their ability to automatically select significant variables from high-dimensional

data. Another study by Jiang et al., [128] developed a tree-based technique called TreeNet
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to estimate the probability of bankruptcy in Chinese public companies using financial ratios,

valuation multiples, macroeconomic variables, and other factors. The model achieved an

accuracy of over 90% in predicting bankruptcy.

The applicability of ML algorithms to fundamental company valuation was studied in

paper by Vayas-Ortega et al., [3]. In their work, they examined two components of the DCF:

WACC and the FCF growth rate. To predict the latter, they used a linear regression model with

detailed data from balance sheets and income/loss statements, polynomials denoting past FCF

lags, and selected macroeconomic variables. Although the study did not consider benchmark

models, their research shows that linear regression-based valuation models produce less biased

estimates of intrinsic value compared to market analysts. Study by Anand et al., [129] focused

on the directional changes of several enterprise profitability measures, including the FCF

growth rate. In their study, they trained multiple Random Forest Classification algorithms,

adding one feature for each successive training iteration. The results show that ML algorithms

can predict the directional changes of future FCF growth rates with 55-67% accuracy, compared

to 50% accuracy from the Random Walk model on out-of-sample data.

We acknowledge that studies cited in this section performed experiments similar to the

ones conducted in this thesis, albeit they pursue rather different purposes. For example, [3]

focus on performing fundamental valuation with predictions made for both the FCF and WACC.

Additionally, they experimented with different input variables using only Linear Regression as

the forecasting model. Other studies, including Kureljusic et al., [118], Easton et al., [123] and

Fisher et al., [125] are focused on forecasting with a limited selection of regression models,

benchmarking those against market analysts.

Therefore, in this study, we address a gap in the fundamental financial forecasting literature

by examining how the accuracy of Earnings Per Share (EPS) and Free Cash Flow (FCF) forecasts



72 CHAPTER 3. Literature Review

impacts firm valuation. Specifically, we investigate the relationship between the forecasting of

these two key financial variables, fundamental valuation, and portfolio performance. We assess

whether predictions generated using transfer learning, machine learning (ML), and statistical

estimators (SE) — each with different regression errors—provide measurable benefits to the

fundamental investment decision-making process.

Because the series we predict in this study are characterized by limited number of observa-

tions, rather than increasing the number of regression input variables as was done in papers

by Cao et al., [124], Easton et al., [123], Vayas-Ortega et al., [3], we tackle the problem of

sparsity by augmenting data sets with interpolation and linearizing those with transformation.

Similar methods were successfully applied to other types of sparse series in studies summarized

in the next Section.

3.4 Other Sparse Series Forecasting

A number of transfer learning techniques have been applied to different kinds of financial data.

Specifically, experiments by He et al., [130] showed that training an Artificial Neural Network

to predict the price of a stock, using data from another, positively impacts the overall predictive

accuracy. A further study by Cao et al., [131] revealed that transfer learning techniques can be

successfully applied to portfolio optimization problems.

Study by Zhang et al., [17] showed that transfer learning can be applied to stock recom-

mendation systems, tailored for different products, where part of the feature set includes

fundamental stock data. Another, done by Laptev et al., [132] proposed a pre-trained LSTM-

based Neural Network with a new type of loss function. Their methodology shows robust

performance in sparse time-series data over state-of-the-art time-series forecasting methods,
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based on Pacific Gas & Electric energy demand data sets. The paper by Christinaki et al., [133]

successfully applied Transfer Learning and Bayesian Model Averaging to predict the well-being

of patients through wearable devices. Particularly, they successfully used this methodology to

forecast a patient’s well-being even over longer-term horizons. Similarly, study by Zhang et

al., [134] used Bayesian Model Averaging to average predictions made with several ResNet

pre-trained models, with different hyperparameters. Their study, which proposes a new way

of forecasting residential load data, shows that Bayesian Model Averaging with incorporated

Transfer Learning outperforms other methods, given the low availability of training data.

Interpolation is one additional way to generate more time-series data. A study by Oh et al.,

[135] evaluates a number of popular techniques for augmenting time-series data, including

Jittering, Cropping, Scaling, Rotation, etc. [136]. The study concludes that cubic splines were

helpful in training a deep learning neural network, regardless of the fact that the data showed

changes in seasonality, trends, and other patterns that commonly affect the estimation process

[135].

In particular, paper by Wang et al., [137] studied how different interpolation methods affect

clustering outcomes in the task of predicting electric bus driving cycles. Their results show

that a mix of linear and cubic interpolation yields better results over benchmark methods, as it

generates synthetic data that is closest to the genuine series. Additionally, the text by Challu et

al., [138] proposed an interpolation technique that improves the accuracy of longer prediction

horizons. This is achieved through multi-rate sampling and hierarchical interpolation. Their

results indicate a 20% accuracy increase across various time-series datasets, including currency

exchange rates, San Francisco traffic load, and electricity consumption.

More recent advances in Generative Artificial Intelligence allow researchers to generate

synthetic data using Generative Adversarial Networks (GANs). For instance, paper by Smith
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et al., [139] propose the Time-Series GAN, which successfully generates health-related data

that closely resembles genuine samples. They demonstrated the benefits of their approach

for classification tasks. Similarly, paper by Liu et al., [140] proposed several GAN models to

generate synthetic data. The generator model is then used to make predictions on the series

it has just synthesized. Several models they tested showed a 15-20% reduction in error rate

compared to state-of-the-art predictions made with publicly available datasets.

From this section, it is observed that the two primary methods for training ML estimators

are interpolation and transfer learning. Interpolation is primarily used to generate synthetic

data, which is especially useful in the time-series context. In this context, slight deformations

of a data observation, similar to those performed on images [22], can significantly impact the

estimation process [135]. While the use of GANs is gaining popularity, it is acknowledged that

these models require large volumes of data to generate realistically looking samples [23]. In

the studies mentioned in this chapter, researchers had access to more than 3,000 data points,

which is more than what is available on EPS and FCF data sets as there are only four data

points produced annually, due to the fact that companies publish their reports on quarterly

basis.

3.5 Conclusion

This chapter explores the financial time-series forecasting literature, with some papers revealing

important findings on time-series modeling outside of the financial domain.

Our findings indicate an increased interest in the applications of various ML and statistical

estimators to financial time-series forecasting problems. Predominantly, most studies are

concerned with forecasting EPS values, as these have a direct impact on stock returns. Several
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studies also consider the use of forecasting models for FCF series in order to perform financial

valuations. In both cases, the lack of data observations is cited as a significant challenge in the

estimation process.

Studies outside the financial domain, propose the use of transfer learning: a methodology

whereby the information gained in one (source) domain is applied to problems in similar

or other domains (tasks). Researchers dealing with this methodology cite the improved per-

formance over state-of-the-art methods and propose it as a way around the sparsity challenge.

Interpolation is another way to solve the lack of data observations. This allows generating

synthetic data between the real observations. Researchers found it useful, especially when

fitting deep learning models.

There are only limited papers that discuss the forecasting of the financial time series data

with the aim of using those predictions as inputs to established fundamental valuation models:

the Price-Earnings and the Discounted Free Cash Flows. In such papers, researchers have

limited discussion on the impact of prediction accuracy on intrinsic value computation and

further economic benefits to financial markets. Our study therefore attempts to cover this

gap: we first explore the key financial series, EPS and FCF, using a diverse range of machine

learning and statistical estimators to model those. Consequently, we study the impact that the

proposed forecasting methods have on established valuation methods.

In the next chapter, we conduct analysis of our time-series data and the first set of

experiments.
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Exploratory Analysis

4.1 Introduction

In this chapter, we conduct a comprehensive analysis of both types of our financial time-series.

The purpose of this analysis is to select the appropriate data augmentation or transformation

technique. First, we perform a set of statistical tests to better understand the nature of the series

used in this study. Specifically, we use the Shapiro-Wilk (SW) normality test, which determines

whether the series follows a normal (Gaussian) distribution. Second, we run the Augmented

Dickey-Fuller (ADF) test to assess how many data sets in our selection are stationary. A data is

said to be stationary if it has a constant mean and variance terms [141]. The final statistical

test used is the Mann-Kendall (MK) Trend test, which identifies any monotonic upward or

downward trends in the series.

Statistical tests are crucial for recognizing and understanding distributional moments of our

data sets, as such tests inform the preprocessing steps required for effective data modeling. In

our study, modeling is performed with a selection of statistical and machine learning regression

estimators. Since both types of estimators are prone to overfitting when the number of
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training observations is in limited supply, we also conduct experiments involving interpolation

techniques. Interpolation allows to artificially increase the sample size while preserving the

shape of the original data thus giving an estimator more information about the target-feature

dynamics. While interpolation can help increase sample size, it may also introduce biases by

smoothing out variance [142].

Another way to provide estimators with more information about the data is to scale or

transform it, using feature scaling/transformation techniques. As our features represent past

lags of the target series, it is expected that our data will be in the same units. At the same time,

since companies tend to experience decreases in revenues and even business closures during

economic recessions, seasonal decline in demand for their products, natural disasters, and

other adversarial circumstances, it is possible that EPS/FCF values drop below zero. Therefore,

in such cases, the scaling/transformation techniques can enhance the suitability of the series for

ML/SE modeling [143] by enforcing the data to follow a particular distribution and converting

all the data to unit variance.

For this chapter, we use Ordinary Least Squares (OLS) regression as a proxy for other

forecasting model types. The OLS estimator was chosen because of the simplicity of interpreting

its results. In this chapter, all experiments are carried out on the sample of 50 randomly selected

data sets which meet the filtering criteria explained in Section 4.3 of this Chapter. We selected

a subset of 50 companies to maintain objectivity. In this chapter, we establish a pipeline that

will be used in later parts of the thesis. Using all datasets from the outset could have led to the

criticism that we merely optimized the pipeline for the specific sample, thereby attributing

any subsequent improvements to this tailored configuration rather than to the robustness of

the method Information about these data sets, including the full business name and economic

sector it operates in is given in Table A-1 in the Appendix, Section A.
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The main contribution of this chapter lies in the outlined pipeline, which will be utilized in

future chapters. Specifically, we provide the rationale behind the choice of specific interpolation

methods and feature transformations. Additionally, we illustrate, using specific datasets, why

certain techniques were effective or ineffective and how interpolation and transformation

influenced the estimation process.

This chapter is structured as follows: Section 4.2 outlines the statistical tests and formulates

the data preprocessing steps. Section 4.3 demonstrates the experimental setup, followed by

Section 4.4 which provides the results of our experiments. Section 4.5 concludes this chapter.

4.2 Methodology

In this section, we outline the methodology pursued throughout this chapter, beginning with a

description of the statistical tests used in the following subsection.

4.2.1 Statistical tests

As mentioned in the previous section, we use statistical tests to better characterize the prop-

erties of our datasets. The first of these is the Shapiro-Wilk (SW) normality test, which

evaluates whether the data follows a normal (Gaussian) distribution. The null hypothesis is

that the underlying data follows a normal distribution, with the alternative being a non-normal

distribution. We reject the null hypothesis at a 5% significance level (α = 0.05) and fail to

reject it otherwise. This test will identify how many datasets are normally distributed, as

many regression algorithms perform better when this assumption holds [22]. In a normal

distribution, most data points cluster around the mean, allowing us to reasonably expect future

values to remain near that average.
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The second test used in this section is the Augmented Dickey-Fuller (ADF) test. The purpose

of this test is to determine if a series in our selection is stationary or follows a deterministic

trend. Specifically, the null hypothesis is that a unit root is present in the time-series sample.

As with the SW test, we reject the null hypothesis at a 5% significance level (α = 0.05) and

fail to reject it otherwise. The presence of a unit root in the series means that the data is

non-stationary — its mean and variance can change over time. The ADF test complements

the SW test by examining whether the statistical properties of the series (mean and variance)

remain constant over time. If the series is non-stationary, modeling becomes more difficult,

as future values may shift unpredictably [30]. Hence scaling/transformation should mitigate

such issues by enforcing the data to unit variance.

The third test used in this section is the Mann-Kendall (MK) test, which detects the presence

of a monotonic trend — a consistent upward or downward pattern — in a time series [144].

The null hypothesis, which is rejected at a 5% significance level (α = 0.05) is that the data are

independent and randomly ordered. The alternative is that a monotonic trend is present.

The results of these statistical tests help explain why interpolation and feature scaling may

improve prediction accuracy for certain datasets. For example, interpolation might smooth out

heavy-tailed distributions caused by outliers, leading to better model performance. Notably, no

preprocessing is applied before running these tests — we aim to observe the natural statistical

properties of each series. In contrast, during interpolation and transformation experiments,

the data is preprocessed according to the steps outlined in the next subsection.

However, when performing the interpolation and transformation experiments, the data is

subject to specified changes. The data preprocessing step is directly linked to the forecasting

approach we use in this study, outlined in next section.
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4.2.2 Forecasting Approach

Financial time series forecasting involves approximating some future value of a target variable

by means of regression. Therefore, in order to make a prediction, a regression model needs to

first be fit with some training data, fine-tuned (in the ML context) and finally, a prediction can

be gathered with some out-of sample data.

These steps can be performed in several ways. In most financial time-series forecasting

studies, researchers use the rolling window. This process is similar to the stack data structure,

whereby old data is being popped out of a stack and a new data is pushed. Specifically, a

‘window’ is the fixed number of data points used to train a regression model-type. ‘Rolling’

refers to the fact that after making a forecast, the oldest data is dropped and the most recent,

future, data is added to the set [145].

This approach, while being widely popular with researchers and professional data mod-

ellers, is not appropriate for our experiments. It is due to the training data size: one of the

largest, in terms of number of available observations from both Earnings Per Share and Free

Cash Flows, data sets we have is no more than 140 data observations. Excluding the test

set (20% of the total size) there is roughly 112 data points available for model training (and

fine-tuning in case of ML estimators). Tables A-2 and A-3 in the Appendix, Section A, reveal

the number of data points available for both EPS and FCF data sets.

Because we aim to utilize as many data points as possible for predicting the next quarter

Earnings-Per-Share and Free Cash Flows values, we follow the expanding window approach,

pseudo-algorithm for which is outlined in Algorithm 1.

In Algorithm 1, X and y are the input and target data, respectively, with train and test

denoting the training and testing subsets, respectively. The Concat denotes the concatenation —
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Algorithm 1: Expanding Window Algorithm
Input: Training data Xtrain, ytrain, Testing data Xtest, ytest, Estimator f(X, y)

Output: Prediction set ŷ

1 for i← 1 to length(ytest) do

2 f ← f(Xtrain, ytrain) ; // Fit a regression model

3 ŷi ← f(Xtest, i) ; // Make a prediction for a test data point

4 Xtrain ← Concat(Xtrain, Xtest,i) ; // Expand the training data

5 ytrain ← Concat(ytrain, ytest,i)

6 end

7 return ŷ;

the process of including the i-th data observation from the test subset to the training, whereby

the latter increases the number of data observations and thus the sample size. In other words,

the training matrix continuously increases with the number of iterations through the test

data set. Unlike the rolling window, the expanding window does not discard any past data

points. As a result, our estimators have access to a longer history of a company’s EPS and FCF

records. Moreover, in real-world scenarios where data availability is limited, researchers are

often inclined to utilize all available data — a behavior that the outlined algorithm is designed

to mimic. In summary, our choice of forecasting algorithm is justified by two factors: our

intention to replicate real-world forecasting conditions as closely as possible, and the scarcity

of available data.

Algorithm 1 is the base version we use in this study. We conduct a number of experiments

involving the data transformation and interpolation, hence the base Algorithm 1 is subject

to changes, specified for the types of experiments we conduct. The changes we intend to
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introduce are specified in the next section.

4.2.3 Data Preprocessing

The data preprocessing pipelines we aim to establish in this chapter are formed with data

interpolation and transformation techniques, embedded into above described Algorithm

1. Particularly, we apply the most popular interpolation methods, which include: Linear

Interpolation, Polynomial Interpolation, PCHIP Interpolation, and Spline Interpolation [142].

Generally, interpolation methods allow us to assume that data arrives at more frequent intervals

rather than quarterly (the original frequency). For our experiments, we assume monthly and

weekly frequencies. Assuming more frequent data arrival (daily) means that many artificial

data points are used to generate additional artificial data points, placing our estimator at

risk of inferring relationships between artificial data points, rather than the real ones. Also,

for methods with varying degrees (e.g., polynomials), we limit the maximum degree to 2 in

order to preserve the shape of the data and avoid unnecessary oscillations. Oscillation is the

phenomenon whereby the value of an interpolated data is higher than the value of either of

two data points, between which an interpolation is performed.

In the similar fashion, we use representative transformation/scaling methods, including

Quantile Transformation, Max-Absolute Scaling, Min-Max Scaling, Standard Scaling, and

Robust Scaling — the most popular for modifying time-series data [143].

Experiments in this chapter are carried out to establish the pipeline that minimizes the

error between a true data point and its estimate, generated with the OLS regression model.

The objective and evaluation functions are outlined in the next section.
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4.2.4 Evaluation of results

In this study, we aim to solve a regression problem where the target variable is dependent on

its past lags, mean, and standard deviation. As outlined earlier, the purpose of conducting

experiments in this section is to establish a pipeline effective at minimizing the distance

between the target value and its OLS estimate. The pipeline, in this context, refers to the

expanding window forecasting algorithm augmented with interpolation or transformation that

helps an estimator make more precise estimates of a quarter-ahead value. Specifically, we

declare a transformation or augmentation as useful if it yields the lowest Mean Absolute Error

(MAE), Mean Absolute Percentage Error (MAPE), or symmetric Mean Absolute Percentage

Error (sMAPE).

In order to mitigate the effects of randomness when choosing the leading interpola-

tion/transformation method, we apply the Friedman test to the results of our experiments. Spe-

cifically the null hypothesis — the distribution of groups is identical, is rejected at α = 0.05 or

the 5% significance level. In cases where there is no single leading interpolation/transformation

technique, we give preference according to majority voting: we pick the technique ranked

highest by two of the three accuracy measures. In the next section, we discuss the datasets on

which our experiments were carried out.

4.3 Experimental Setup

In this section, we outline the data used for our experiments and the modifications to the base

forecasting for both interpolation and transformation techniques. We begin with a description

of the data used in these experiments.
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4.3.1 Data

For our experiments, we exclude companies from the financial, services, and other non-

manufacturing sectors, as well as those with a market capitalization below $1 billion USD.

These firms are subject to different tax treatments under U.S. Generally Accepted Accounting

Principles (US GAAP), which may cause their EPS and FCF series to behave differently,

potentially biasing the estimation process. To minimize such effects, we aim to control for

these structural differences.

Additionally, firms with small market capitalizations are typically subject to less stringent

disclosure requirements, which can affect data quality. These are therefore excluded as well.

In the case of holding companies—businesses that derive profits primarily from owning

shares in other publicly traded firms—we exclude the parent entity, as it is a non-manufacturing

unit with distinct tax treatment. Instead, we include the operational (manufacturing) subsidi-

aries, which are treated as separate entities.

To further ensure that accounting requirements of different jurisdictions do not affect

the model estimation process, all the stocks in our selection are from US stock exchanges.

Additionally, due to data set size considerations, specifically the number of data points, we

excluded all companies that went public (started selling their shares to investors on stock

exchanges) after 2008, as this ensures that our ML/statistical models are exposed to at least 50

data observations. Furthermore, all data sets are limited to the 2021-Q4 period for the purpose

of evaluating other experiments in subsequent chapters of this study. Note that companies

went public at different times, meaning that not all data sets in our selection have the same

number of periods for model training. In this chapter, we work with the representative sample

of 50 companies.
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As discussed earlier, we create univariate models, meaning that the next quarter’s value

depends on its past lags. Consequently, the appropriate number of lags is determined auto-

matically using the Akaike Information Criterion (AIC): for each company, the number of

lags corresponding to the lowest AIC score is included as a feature. Due to data scarcity, we

allow the program to automatically select up to 5 past lags (5 past quarters). To account for

deviations and trends in the data, we also incorporate the mean and standard deviation of the

target variable distribution as part of the feature set. All data sets in our selection were split

into 80/20 (train/test) subsets.

Lastly, we would like to mention that in the early stages of this work, we conducted a

number of experiments using a different setup. Specifically, our feature set included a number

of external variables: financial ratios computed from financial statements and micro-/macro-

economic variables, such as gross domestic product (GDP), inflation rate, etc. Further, we

conducted a number of experiments with Genetic Algorithms to exploit possible non-linear

relationships in our datasets and tried other distributional moments of the target series, such

as skewness, kurtosis, and median. Because the inclusion of these variables did not yield any

advantage over univariate models, we do not include the results of these experiments in this

thesis. The next section explains modifications made to the baseline forecasting algorithm.

4.3.2 Forecasting Algorithm

Because the experiments in this section emphasize the need for interpolation and scaling of

our data sets, we modify the baseline forecasting Algorithm 1 explained earlier in this chapter

in two ways: to account for interpolation and transformation, respectively. Therefore, our

interpolation forecasting algorithm is outlined in Algorithm 2.

Algorithm 2 demonstrates the set of actions for performing the interpolation experiments,
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Algorithm 2: Expanding window algorithm for interpolation experiments
Input: Training data Xtrain, ytrain, Testing data Xtest, ytest, Estimator f(X, y),

interpolation function interp

Output: Prediction set ŷ

1 for i← 0 to I := length(ytest) do

2 Xtrain ← interp(Xtrain); // interpolate training data

3 ytrain ← interp(ytrain)

4 f ← f(Xtrain, ytrain) ; // fit estimator with interpolated data

5 ŷi ← f(Xtest,i) ; // make a prediction

6 Xtrain ← Concat(Xtrain, Xtest,i) ; // concatenate to training data

7 ytrain ← Concat(ytrain, ytest,i)

8 end

which yield the estimated data points ŷ. Specifically, for each data point i = 0, . . . , length(ytest)

in the test subset, we first perform interpolation of the train set, interp(Xtrain) and interp(ytrain).

Then, we fit the OLS model f with the interpolated data. After that, we make a prediction

ŷi using the i-th slice of Xtest and the trained OLS estimator. Following the prediction, we

concatenate (Concat) the i-th slice of Xtest and ytest to the training subsets and repeat the

process for all observations in the test set: I denotes the total number of observations in the

test subset.

A similar pipeline was used for the transformation functions, as illustrated in Algorithm 3.

In a similar fashion, we use the function h to denote a scaling/transformation method, with

h−1 denoting the inverse process (mapping from the transformed data back to the original

space), to obtain the test set predictions ŷ. At every iteration through the test set, we first
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Algorithm 3: Expanding window algorithm for data transformation/scaling experi-

ments
Input: Training data Xtrain, ytrain, Testing data Xtest, ytest, Estimator f(X, y),

transformation function h

Output: Prediction set ŷ

1 for i← 0 to I := length(ytest) do

2 Xtrain ← h(Xtrain); // transform the training data

3 ytrain ← h(ytrain)

4 f ← f(Xtrain, ytrain); // fit the estimator with transformed data

5 ŷi ← f(h(Xtest,i)); // make and de-transform a prediction

6 Xtrain ← h−1(Xtrain); // de-transform the training data

7 ytrain ← h−1(ytrain)

8 Xtrain ← Concat(Xtrain, Xtest, i); // concatenate to training data

9 ytrain ← Concat(ytrain, ytest, i)

10 end
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transform the data, then fit the regression model f(X, y), predicting one test data point ŷi,

with i = 0, . . . , length(ytest). We then transform the i-th slice of the input test data Xtest,i using

the function h. Afterward, we transform both the input and target data back to their original

format, concatenating the i-th test data point to the train subset. The process is repeated for

all data points in the test subset. In the next section, we present the results of the experiments.

4.4 Results

This section presents two sets of results. First, we describe the datasets and report the outcomes

of the statistical tests — the Shapiro-Wilk, Augmented Dickey-Fuller, and Mann-Kendall tests

— applied to these series. The second set of results focuses on evaluating data preprocessing

pipelines — specifically, whether interpolation or scaling/transformation improves forecasting

performance relative to a benchmark, which involves no preprocessing. For these experiments,

we use Ordinary Least Squares (OLS) regression as a proxy for forecasting algorithms. The

performance of each pipeline is benchmarked using three error metrics: Mean Absolute Error

(MAE), Mean Absolute Percentage Error (MAPE), and symmetric Mean Absolute Percentage

Error (sMAPE), with lower values indicating better model fit. In all benchmark cases, the

OLS estimator was trained on raw, unprocessed data — that is, without interpolation or

transformation.

We refer to the benchmark as the ‘Baseline’ in all tables that present results. When

presenting interpolation results, we explicitly state whether the result of the regression is

monthly or weekly. Additionally, a number denotes the degree of polynomial of interpolation,

i.e. ‘Weekly PCHIP2’ means that data was subject to PCHIP interpolation of order 2, assuming

the weekly frequency.
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Importantly, all statistical tests were conducted on raw data — without any interpolation

or transformation — to preserve the original characteristics of the series. All statistical test,

interpolation and transformation/scaling experiments are conducted on the representative

sample of 50 randomly selected companies.

This section is structured as follows. We begin by describing the data and presenting

the results of statistical tests in Subsection 4.4.1. This is followed by interpolation results in

Subsection 4.4.2, and scaling/transformation results in Subsection 4.4.3. A detailed discussion

of all results is provided in Subsection 4.4.4.

4.4.1 Data Characteristics

In this subsection, we examine the distributional properties and key statistical characteristics

of 50 EPS and FCF data sets, with a particular focusing on normality, stationarity, and trend

behavior. First, we present box plots summarizing the distribution of the data sets, starting

with the EPS series in Figure 4.1.

Figure 4.1 provides valuable insights. The average EPS value of most data sets is around

zero, but the variance exceeds one unit, a finding corroborated by the high skewness. Some

data sets exhibit extreme outliers, such as TEGNA Incorporated (‘TGNA’ in the figure), which

shows a value around -21, indicating an extreme outlier. This observation is further supported

by the statistical tests, the details of which are summarized in the following bullet points (for

full table with p-values for each data set, please refer to Table A-4 in the Appendix, Part A):

1. All 50 data sets are non-normally distributed (SW null hypothesis is rejected);

2. 35 data sets are stationary — the ADF test rejects the null hypothesis of a unit root,

indicating constant mean and variance over time;



90 CHAPTER 4. EXPLORATORY ANALYSIS

Figure 4.1: Earnings Per Share data sets box plot

3. 45 data sets do have the monotonic increasing/decreasing trend (MK hypothesis rejec-

ted);

Given this information, we can expect typical data sets to exhibit thick tails in the observed

distribution. Furthermore, due to the non-stationary nature of the majority of these data sets,

we can infer the presence of distributional shifts. This implies that the statistical properties of

the data sets—such as their moments (mean, variance, skewness, and kurtosis)—may vary

across time intervals, suggesting dynamic behavior over different periods. This behavior could

be attributed to the presence of outliers in the data, which are likely to impact the performance

of the regression estimator. We now focus on the distribution of two specific data sets: TEGNA

Incorporated (‘TGNA’ in Figure 4.1) and Applied Materials Incorporated (‘AMAT’ in Figure 4.1).

These data sets were selected as representatives because AMAT exhibited the fewest outliers,

while TGNA had the most significant outlier.
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Figure 4.2: EPS: Histograms for representative data sets

(a) EPS: TGNA Histogram (b) EPS: AMAT Histogram

It is seen that the TGNA data set exhibits a visible negative outlier near -21 and another

around -10. Despite this, most values are concentrated near 0. In contrast, the AMAT data

set shows values distributed within a variance range of +/-1, indicating a unit variance

distribution. Additionally, more values are clustered to the right of the mean, suggesting a

positive trend in the series. We now turn to the FCF data sets, summarized by the box plot in

Figure 4.3.

Notably, more FCF data sets appear to have outliers, a wider distance between the upper

and lower quantiles in most data sets, and longer whiskers in specific data sets, such as DE,

TEX, and WLY. The resulting p-values for each of 50 companies are represented in Table A-5.

The results of the statistical tests applied to the FCF series are summarized as follows:

1. 44 data sets are non-normally distributed (SW null hypothesis is rejected);

2. 42 data sets contain at least one unit-root, suggesting non-stationary behaviour (reject

the ADF null hypothesis);

3. 43 data sets show monotonic increasing/decreasing trend (MK null hypothesis rejected);
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Figure 4.3: Free Cash Flows data sets box plot

Therefore, a typical FCF data set exhibits large positive and negative swings, where a

positive FCF value can be followed by a significant negative value in the next quarter. These

fluctuations lead to outliers that can potentially impact the estimation process. Additionally, the

series does not need to be monotonically increasing or decreasing, further supporting the earlier

statement about sudden shifts in the data. Evidently, more FCF data sets appear centered

around a consistent mean, they also display greater overall variance and volatility, often

exceeding a unit variance and exhibiting frequent large swings between positive and negative

values. However, the variance is expected to be larger than 1, as the normality assumption does

not hold for most of the data sets. To illustrate this, we choose two representative companies:

Deere & Company, Incorporated (DE in Figure 4.3), which exhibits the largest dispersion

in its distribution, and Google Incorporated (GOOG in Figure 4.3), which has the opposite

distributional properties. The histograms for these two series are shown in Figure 4.4.
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Figure 4.4: FCF: Histograms for representative data sets

(a) FCF: DE Histogram (b) FCF: GOOG Histogram

The histogram of Deere & Company (left panel in Figure 4.4) data set displays thicker tails

in the distribution. Both the extreme right and left tails exhibit a significant distance from the

mean (greater than +/- 1). Additionally, many values in this data set are clustered in the -2 to

0 range, with a local peak around 3. In contrast, the Google Inc. (right in Figure 4.4) data set

is more concentrated around 0, with values predominantly positive.

In summary, both EPS and FCF series share key characteristics: most are non-normally dis-

tributed, with high skewness and excess kurtosis. These distributional challenges, particularly

the high concentration of outliers, can worsen the performance of regression estimators. The

OLS estimator, in particular, may be sensitive to such extreme values, leading to overfitting

and poor generalization. Moreover, limited data availability can further constrain model

performance. In the next subsection, we explore whether interpolation helps mitigate these

issues.
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4.4.2 Interpolation Experiments

As previously discussed, one major challenge in our regression problem is the lack of data

observations. To address this, we apply interpolation techniques, which estimate synthetic

values between existing data points [142]. Interpolation allows us to assume higher data fre-

quency—such as monthly or weekly observations—thus expanding the dataset while preserving

its original structure.

Apart from increasing the number of observations, interpolation can also reduce the impact

of abrupt changes or nonlinearity in the series. In some cases, this smoothing effect can help

linearize underlying exponential trends, making them more suitable for linear estimators

[146].

Consequently, the purpose of interpolation in our study is to improve model generalization

to the unseen data, which we assess by the comparing MAE, MAPE and sMAPE scores of OLS

estimator fit with and without a set of interpolation methods. To avoid being misled by the

cases of extreme overfitting, when the OLS estimator shows a regression error of 0.0, we use

the scores derived from the test set — the unseen data. If we see an improvement in error

measures, we say that an interpolation method aided in model generalization, which resulted

in better model predictions.

We start this section with the analysis of the EPS results. Table 4.1 summarizes the

regression results on the test set after applying various interpolation methods.

Table 4.1 presents the mean, standard deviation, minimum, median, and maximum values

of the error distribution for the interpolation experiments conducted on the EPS data sets. We

comment on several key insights.

Overall, interpolation methods do not yield substantial improvements over the baseline
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Table 4.1: EPS: Interpolation results summary statistics. Values in boldface denote minimum of

a measure (mean, standard deviation, etc.) in the respective error measure (MAE, MAPE, sMAPE)

Method Error Mean Std. Dev. Minimum Median Maximum

Baseline

MAE 0.97895 1.67613 0.12440 0.50707 10.76355

MAPE 1.63271 3.27743 0.09778 0.60601 21.25606

sMAPE 28.96751 18.87042 5.15181 22.77532 79.95304

Monthly

Linear 1

MAE 0.99503 1.73630 0.12278 0.52381 11.22503

MAPE 1.70009 3.45690 0.09845 0.62296 22.27229

sMAPE 29.052311 18.934526 5.134335 23.425523 80.038339

Monthly

Polynomial 1

MAE 0.996035 1.742502 0.122831 0.524122 11.272853

MAPE 1.70085 3.458871 0.09839 0.623214 22.277953

sMAPE 29.0493 18.928378 5.131712 23.395255 79.919035

Monthly

Spline 1

MAE 0.973438 1.643451 0.118837 0.521998 10.80452

MAPE 1.614219 3.338584 0.097928 0.614505 22.159659

sMAPE 28.994147 18.656644 5.152158 23.100348 75.662816

Monthly

PCHIP 1

MAE 0.997062 1.730282 0.123651 0.510233 11.138308

MAPE 1.665886 3.389082 0.098546 0.613627 22.046341

sMAPE 29.014919 18.821727 5.172756 23.631413 81.047683

Weekly

Linear 1

MAE 0.990492 1.710275 0.122808 0.519559 10.963642

MAPE 1.708696 3.452646 0.097208 0.621173 22.142379

sMAPE 29.066509 18.900958 5.074706 23.335044 79.859941

Weekly

PCHIP 1

MAE 0.993432 1.752783 0.120236 0.520427 11.510278

MAPE 1.629862 3.322401 0.097856 0.618049 21.752521

sMAPE 28.910007 18.660071 5.146853 23.55941 81.261767

Weekly

Spline 1

MAE 0.985378 1.631284 0.119053 0.524067 10.457265

MAPE 1.637371 3.352342 0.097947 0.61431 22.331203

sMAPE 29.221365 18.866999 5.151777 23.124244 83.724062

Weekly

Spline 2

MAE 0.97724 1.598191 0.113362 0.537623 10.322918

MAPE 1.664693 3.56369 0.097997 0.633882 24.035365

sMAPE 29.590481 18.723452 5.210329 24.079268 74.661986
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approach (denoted as ‘Baseline’ in Table 4.1), which makes predictions from non-interpolated

training data. In some cases, the baseline even outperforms interpolated models.

Notably, the lowest average MAE is achieved using Monthly Spline interpolation of order

1, followed closely by other interpolation methods (Monthly Polynomial of order 1, Weekly

PCHIP of order 1, etc.). The baseline achieves the third-best mean MAE score of 0.978958.

Similar is observed for MAPE error measurement, where Monthly Spline of order 1 achieves

the lowest average error, followed by Monthly PCHIP of order 1 and the baseline. For sMAPE,

the lowest mean error is recorded by Monthly PCHIP of order 1, with the baseline again being

second best by this measure.

When considering the median, it is seen that the baseline achieves the lowest MAE, MAPE,

and sMAPE scores. Still, some interpolation methods remain competitive—for example,

Monthly PCHIP of order 1 ranks second for both median MAE and MAPE, while Monthly

Spline of order 1 shows the second-best median sMAPE.

These results suggest that interpolation offers limited benefits when applied to EPS data

sets. This conclusion is further supported by the Friedman average ranking test results,

presented in Table 4.2.

The Friedman average ranking test is conducted in two steps. In the first step, interpolation

methods are ranked for each data set based on their performance (i.e., MAE, MAPE, or sMAPE),

with a higher rank indicating lower error. The average rank, referred to as ‘Rank’ in Table 4.2,

for each method is then computed across all data sets.

In the second step, the method with the highest average rank—referred to as the control

method (marked as ‘control’ in Table 4.2) — is statistically compared to the others. We use the

Hommel’s post-hoc correction to evaluate significance at the 5% level. The null hypothesis

is that all methods (i.e., the OLS regression errors, measured as MAE, MAPE and sMAPE,
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Table 4.2: EPS: Interpolation Friedman Test average ranking results. The Hommel’s post-hoc

p-value (the ‘p-val’ column) in boldface indicate statistical significance at 5% significance against

the ‘control’ method.

MAE MAPE sMAPE

Method Rank p-value Method Rank p-value Method Rank p-value

Baseline 4.18 control Baseline 4.12 control
Monthly

4.38 control
Polynomial 1

Monthly
4.6 4.43E-01

Weekly
4.48 5.11E-01

Weekly
4.46 8.84E-01

Polynomial 1 PCHIP 1 Linear 1

Weekly
4.72 4.43E-01

Monthly
4.88 3.31E-01

Monthly
4.62 8.84E-01

PCHIP 1 Spline 1 Linear

Weekly
4.74 4.43E-01

Monthly
4.98 2.48E-01

Weekly
4.88 8.84E-01

Linear 1 PCHIP 1 PCHIP 1

Monthly
4.92 4.43E-01

Weekly
5.02 2.48E-01 Baseline 4.9 8.84E-01

Linear Spline 2

Monthly
5.04 4.32E-01

Monthly
5.3 1.56E-01

Monthly
4.98 8.20E-01

PCHIP 1 Polynomial 1 PCHIP 1

Monthly
5.18 3.49E-01

Weekly
5.34 1.30E-01

Monthly
5.2 6.02E-01

Spline 1 Linear 1 Spline 1

Weekly
5.64 5.38E-02

Monthly
5.36 1.18E-01

Weekly
5.78 7.41E-02

Spline 2 Linear Spline 1

Weekly
5.98 8.12E-03

Weekly
5.52 7.28E-02

Weekly
5.8 6.67E-02

Spline 1 Spline 1 Spline 2
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respectively) are drawn from the same distribution.

Overall, the results from the Friedman test support our earlier conclusions. The baseline

(OLS without interpolation) achieved the lowest MAE and MAPE, and thus served as the control

method for these two metrics. MAE was the only case in which the baseline showed statistically

significant superior over an interpolation method — the Weekly Spline interpolation of order

1, in particular.

For sMAPE, however, the control method was not the baseline but the Monthly Polynomial

interpolation of order 1. Still, no statistically significant differences were observed between

this method and the baseline or any other method.

These findings reinforce the conclusion that interpolation methods — regardless of type or

assumed frequency — yield nearly identical regression errors. Hence, interpolation does not

improve forecasting performance for EPS data sets.

Next, we consider the results interpolation methods yield in FCF data sets. The summary

statistics for regression errors are presented in Table 4.3.

In contrast to the EPS data sets, interpolation methods show clear benefits in reducing

regression errors when applied to the FCF data sets. For two of the three metrics — MAE and

MAPE — the average error across data sets is lower when interpolation is applied.

In particular, the lowest mean MAE is achieved by the Monthly PCHIP interpolation of order

1, although the baseline method performs comparably, with only a slightly higher average

MAE. A similar pattern is observed for MAPE, where the Weekly PCHIP interpolation of order

1 yields the lowest mean error, again followed closely by the baseline. sMAPE is the only error

measure where the baseline method outperforms all interpolation methods in terms of average

error.

When considering median errors, the trend remains consistent. The baseline results in
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Table 4.3: FCF: Interpolation results summary statistics. Values in boldface denote minimum of

a measure (mean, standard deviation, etc.) in the respective error measure (MAE, MAPE, sMAPE)

Method Error Mean Std. Dev. Minimum Median Maximum

Baseline

MAE 0.857650 0.673946 0.129569 0.620380 2.960124

MAPE 1.690080 3.270545 0.186151 0.903037 21.92372

sMAPE 32.507354 16.333727 9.916542 29.730031 83.982047

Monthly

Linear 1

MAE 0.866845 0.680179 0.126789 0.607757 2.903412

MAPE 1.658828 3.203385 0.185489 0.908472 21.457507

sMAPE 32.90149 16.27178 9.651893 30.94456 72.748908

Monthly

PCHIP 1

MAE 0.854957 0.665041 0.129851 0.605366 2.873514

MAPE 1.591966 3.096013 0.181974 0.898569 20.916913

sMAPE 32.98231 16.01472 9.943527 30.69275 74.98501

Monthly

Spline 1

MAE 0.864368 0.683621 0.128209 0.643145 3.069775

MAPE 1.579684 2.929102 0.189549 0.896556 19.93913

sMAPE 34.744739 17.059801 11.249774 31.070145 85.473258

Weekly

Linear 1

MAE 0.869406 0.680508 0.126301 0.611776 2.881614

MAPE 1.588979 3.119459 0.180874 0.880441 21.098495

sMAPE 33.0355 16.402578 9.560491 31.032589 73.793001

Weelky

PCHIP 1

MAE 0.868055 0.666317 0.140166 0.611805 2.862962

MAPE 1.569065 2.965519 0.182871 0.872971 20.177581

sMAPE 32.510369 15.997815 9.619502 30.433799 74.708957

Weekly

Spline 1

MAE 0.896610 0.731839 0.127709 0.656187 3.378738

MAPE 1.658001 2.953568 0.191867 0.900086 19.825926

sMAPE 35.106848 17.555128 10.978659 31.004538 86.557502

Weekly

Spline 2

MAE 0.900582 0.719487 0.127562 0.659008 3.169090

MAPE 1.661887 2.974079 0.201369 0.931428 19.80648

sMAPE 35.306848 17.555128 11.178659 31.204538 86.757502
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Table 4.4: FCF: Interpolation Friedman Test average ranking results. The Hommel’s post-hoc

p-value (the ‘p-val’ column) in boldface indicate statistical significance at 5% significance against

the ‘control’ method.

MAE MAPE sMAPE

Method Rank p-val Method Rank p-val Method Rank p-val

Weekly
3.66 control

Weekly
3.84 control

Weekly
2.7 control

PCHIP 1 PCHIP 1 PCHIP 1

Baseline 4.02 4.62E-01
Weekly

3.84 1.00E+00 Baseline 2.78 8.70E-01
Linear 1

Monthly
4.24 4.62E-01

Monthly
4.14 1.00E+00

Monthly
3.76 6.10E-02

Spline 1 PCHIP 1 Linear 1

Monthly
4.28 4.11E-01

Weekly
4.38 8.10E-01

Weekly
3.94 3.41E− 02

Linear 1 Spline 1 Linear 1

Weekly
4.48 3.15E-01

Monthly
4.76 2.42E-01

Monthly
4.38 2.42E− 03

Linear 1 Linear 1 PCHIP 1

Weekly
4.6 2.35E-01

Monthly
4.88 1.51E-01

Weekly
5.5 5.47E− 08

Spline 1 Spline 1 Spline 1

Weekly
5.04 2.91E− 02

Weekly
4.98 1.01E-01

Monthly
6.26 2.21E− 12

Spline 2 Spline 2 Spline 1

Monthly
5.68 2.61E− 04 Baseline 5.18 4.36E− 02

Weekly
6.68 3.15E− 15

PCHIP 1 Spline 2

the lowest median sMAPE. However, the Weekly PCHIP interpolation of order 1 achieves the

lowest median MAPE, while the Monthly PCHIP interpolation of order 1 records the lowest

median MAE.

These summary statistics suggest that, unlike with EPS, interpolation can enhance forecast-

ing performance in the FCF data sets. We now examine how these differences are reflected in

the Friedman average ranking test, the results of which are shown in Table 4.4.

The Friedman average ranking test for the FCF data sets drastically contrasts with the
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EPS results. Across all three error measures—MAE, MAPE, and sMAPE—the Weekly PCHIP

interpolation method of order 1 consistently emerges as the control method.

Importantly, some lower-ranked interpolation methods perform statistically significantly

worse than the control. For example, in the MAE error group, the Monthly PCHIP interpolation

method performs significantly worse than Weekly PCHIP of order 1. In the MAPE group,

the baseline method also underperforms the control, making it the only instance where the

non-interpolated benchmark is statistically inferior to an interpolation method.

In the sMAPE group, the Weekly PCHIP interpolation method significantly outperforms

several data interpolation methods: Monthly PCHIP interpolation of order 1, Monthly Spline

interpolation of order 1, and both Weekly Spline interpolations of order 1 and 2.

Given that all three error metrics agree on the top-performing method, we conclude that

Weekly PCHIP interpolation of order 1 should be used in all further experiments involving

the Free Cash Flows data sets. Conversely, since no such consensus was observed across error

metrics in the EPS results, we opt to proceed without interpolation for those data sets.

We now turn to experiments involving scaling and transformation methods, detailed in

Section 4.4.3.

4.4.3 Transformations

In both regression and classification tasks, it is common to apply data transformations or

scaling techniques—either to enforce a particular distribution or to constrain values within a

specific range, or both. This study pursues the transformation/scaling experiments to assess

whether such techniques can enhance the performance in our regression problem.

As with the previous experiments, we use the expanding window algorithm described in

Algorithm 3 and evaluate model performance on the test set. The benchmark results correspond
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Table 4.5: EPS: Transformations/Scaling results summary statistics. Values in boldface denote

minimum in the respective statistic (i.e. Average, Minimum, Maximum, etc.)

Transformer

/ Scaler

Error Average Std. Dev. Minimum Median Maximum

Baseline

MAE 0.978958 1.676134 0.124404 0.507073 10.763558

MAPE 1.632711 3.277434 0.097785 0.606011 21.256066

sMAPE 28.967513 18.87042 5.151815 22.775323 79.953044

MaxAbs

MAE 0.978958 1.676134 0.124404 0.507073 10.763558

MAPE 1.632711 3.277434 0.097785 0.606011 21.256066

sMAPE 28.967513 18.87042 5.151815 22.775323 79.953044

MinMax

MAE 0.978958 1.676134 0.124404 0.507073 10.763558

MAPE 1.632711 3.277434 0.097785 0.606011 21.256066

sMAPE 28.967513 18.87042 5.151815 22.775323 79.953044

Quantile

MAE 0.67181 0.584655 0.11811 0.457743 2.997248

MAPE 0.702621 0.614924 0.080227 0.503758 3.39168

sMAPE 26.108303 16.850372 3.05345 22.745026 73.187807

Robust

MAE 0.978958 1.676134 0.124404 0.507073 10.763558

MAPE 1.632711 3.277434 0.097785 0.606011 21.256066

sMAPE 28.967513 18.87042 5.151815 22.775323 79.953044

Standard

MAE 0.978958 1.676134 0.124404 0.507073 10.763558

MAPE 1.632711 3.277434 0.097785 0.606011 21.256066

sMAPE 28.967513 18.87042 5.151815 22.775323 79.953044

to predictions made using the expanding window algorithm without any transformation or

scaling applied.

We begin with presenting regression errors summary statistics depicted in Table 4.5. Since

our focus is on incorporating these estimates into valuation models, as discussed in Chapter 2,

all results are reported on the de-scaled (or de-transformed) series. This is to mitigate the fact

that certain error measures are sensitive to the units of data.

From Table 4.5 we observe that while most transformation and scaling techniques offer



4.4. RESULTS 103

Table 4.6: EPS: Friedman Test results ranking for Scaling/Transformers. The Hommel’s post-

hoc correction p-value (the ‘p-val’ column) in boldface indicate statistical significance at 5%

significance against the ‘control’ method.

MAE MAPE sMAPE

Method Rank p-val

Quantile 2.90 control

Baseline 3.62 5.43E-02

MaxAbs 3.62 5.43E-02

MinMax 3.62 5.43E-02

Robust 3.62 5.43E-02

Standard 3.62 5.43E-02

Method Rank p-val

Quantile 2.40 control

Baseline 3.72 4.19E-04

MaxAbs 3.72 4.19E-04

MinMax 3.72 4.19E-04

Robust 3.72 4.19E-04

Standard 3.72 4.19E-04

Method Rank p-val

Quantile 2.40 control

Baseline 3.72 4.19E-04

MaxAbs 3.72 4.19E-04

MinMax 3.72 4.19E-04

Robust 3.72 4.19E-04

Standard 3.72 4.19E-04

little to no advantage to the estimator on the EPS data sets, the Quantile Transformer stands

out as an exception, consistently outperforming all other methods across all evaluation metrics.

For example, most scaling and transformation techniques result in a median MAE of

0.978959. In contrast, the Quantile Transformer achieves a significantly lower median MAE

of 0.507073. This trend holds across other error measures as well, where the Quantile

Transformer yields the lowest (i.e., best) scores.

The superiority of the Quantile Transformation on the EPS series is further supported by

the Friedman average ranking test, summarized in Table 4.6.

Because the error measures for each score are identical, the MaxAbs, MinMax, Robust, and

Standard scalers all received the same average rank of 3.62 and 3.72 for MAE, MAPE and

sMAPE errors, respectively. In every error metric group, the Quantile Transformer emerges as

the ‘control’ method, demonstrating statistical significance when compared to the remaining

scaling techniques.
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Table 4.7: FCF: Transformations/Scaling results summary statistics. Values in boldface denote

minimum in the respective statistic (i.e. Average, Minimum, Maximum, etc.)

Transformer

/ Scaler

Error Average Std. Dev. Minimum Median Maximum

Baseline

MAE 0.85765 0.673947 0.12957 0.620381 2.960124

MAPE 1.69008 3.27055 0.18615 0.90304 21.92372

sMAPE 32.50735 16.33372 9.91654 29.73003 83.98204

MaxAbs

MAE 0.85765 0.67395 0.12957 0.62038 2.96012

MAPE 1.69008 3.27055 0.18615 0.90304 21.92372

sMAPE 32.50735 16.33373 9.91654 29.73003 83.98205

MinMax

MAE 0.85765 0.67395 0.12957 0.62038 2.96012

MAPE 1.69008 3.27055 0.18615 0.90304 21.92372

sMAPE 32.50735 16.33373 9.91654 29.73003 83.98205

Quantile

MAE 0.92515 0.7374 0.11709 0.65452 3.56262

MAPE 1.52453 3.12619 0.17805 0.87359 21.59568

sMAPE 35.84087 18.30355 8.25396 34.38557 83.18649

Robust

MAE 0.85765 0.67395 0.12957 0.62038 2.96012

MAPE 1.69008 3.27055 0.18615 0.90304 21.92372

sMAPE 32.50735 16.33373 9.91654 29.73003 83.98205

Standard

MAE 0.85765 0.67395 0.12957 0.62038 2.96012

MAPE 1.69008 3.27055 0.18615 0.90304 21.92372

sMAPE 32.50735 16.33373 9.91654 29.73003 83.98205

Notably, in two out of three error groups, the Quantile Transformer also shows statistically

significant improvements over the baseline approach, where the OLS was fit on the raw data.

These findings for the EPS series contrast sharply with those for the FCF series, the summary

statistics of which are presented in Table 4.7.

Table 4.7 indicates that scaling and transformation techniques offer no improvements

for the FCF series. Specifically, scaling methods do not help reduce the approximation error

(as measured by MAE, MAPE, and sMAPE scores). As with the EPS results, both the scaling
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Table 4.8: FCF: Friedman Test results ranking for Scaling/Transformers. The Hommel’s post-

hoc correction p-value (the ‘p-val’ column) in boldface indicate statistical significance at 5%

significance against the ‘control’ method.

MAE MAPE sMAPE

Method Rank p-val

Baseline 3.32 control

MaxAbs 3.32 1.00E+00

MinMax 3.32 1.00E+00

Robust 3.32 1.00E+00

Standard 3.32 1.00E+00

Quantile 4.4 1.95E-02

Method Rank p-val

Quantile 3.00 control

Baseline 3.60 1.09E-01

MaxAbs 3.6 1.09E-01

MinMax 3.6 1.09E-01

Robust 3.6 1.09E-01

Standard 3.6 1.09E-01

Method Rank p-val

Baseline 3.30 control

MaxAbs 3.30 1.00E+00

MinMax 3.30 1.00E+00

Robust 3.30 1.00E+00

Standard 3.30 1.00E+00

Quantile 4.50 6.70E-03

techniques and the baseline approach yield the same outcomes.

However, unlike the EPS results, the Quantile Transformer tends to worsen the forecasting

error for the FCF series. In fact, in two of the three error measures, the Quantile Transformer

results in higher errors. For example, it produces the highest average and median MAE and

sMAPE, while yielding the lowest average and median MAPE.

These findings lead to conflicting results from the Friedman average ranking procedure, as

shown in Table 4.8.

Table 4.8 highlights that, in two out of three cases, the baseline approach ranks ‘control’

among other candidate methods, with average rankings of 3.32, and 3.3 in the MAE and

sMAPE groups, respectively. Importantly, the similarly to the EPS values, the Baseline, MaxAbs,

MinMax, Robust and Standard data transformation methods result in exact same errors, hence

show the same rank of 3.32, 3.50 and 3.30 in MAE, MAPE and sMAPE error measurements,

respectively, expectedly displaying no statistical significance. At the same time, the baseline



106 CHAPTER 4. EXPLORATORY ANALYSIS

approach yields statistically significant results compared to the Quantile Transformer, which is

the only transformation/scaling method that differs in its mean and median MAE and sMAPE

results from the other methods in our selection.

The MAPE error measure is the only case where the Quantile Transformer ranks as the ‘con-

trol’ methodology. However, it is not statistically significant against the benchmark approach.

From this subsection, we draw the following conclusions. Empirically, for the sample of

50 EPS/FCF data sets, we observed that interpolation benefits the FCF series but does not

significantly improve the EPS series. In contrast, when the OLS regression is applied to the

EPS series with Quantile Transformation, we see improvements across all error measures.

Therefore, in the following sections of this thesis, we will apply weekly PCHIP interpolation

of order 1 to the FCF data sets and use Quantile Transformation for the EPS data sets. In the

next subsection, we use a representative sample of five data sets to explore the underlying

reasons for the results observed in this section.

4.4.4 Results Discussion

The question now arises: why did interpolation work for the FCF series but not for the EPS

series, and why did transformation work for the EPS series but not for the FCF series? In

this part of the thesis, we investigate the possible reasons for this kind of phenomenon. Our

analysis starts with discussion of interpolation effects on data in the next subsection.

Interpolation effects on data

Over the course of this study, we used interpolation to artificially increase the number of data

points for subsequent estimator training. As a side effect, the interpolated data tends to be

smoother than the original data while preserving its overall shape.
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Table 4.9: Average and Median of the Standard Deviations computed using quarter-to-quarter

percentage change (magnitude of changes): original and interpolated

Series type Methodology Average Median

FCF
Original 15.17357 6.88747

Interpolated 9.99605 2.41903

EPS
Original 4.856711 2.5588

Interpolated 1.82774 0.84208

In the case of the EPS series, the interpolation smooths the data too much, causing the

estimator to struggle with capturing the potential volatility of the series. In contrast, the FCF

data is smoothed just enough to improve the OLS estimator’s forecasting accuracy.

To support this conclusion, we measure the percent change of the target series (EPS

and FCF) from one quarter to the next, which indicates the magnitude of change between

consecutive quarters. This is done in two steps. First, we compute the percent change from one

quarter to the next, showing how much the EPS/FCF value increased or decreased compared

to the previous quarter, in percentage terms. Second, we compute the standard deviation of

the resulting percentage series.

For clarity, we present the average and median of this procedure across the 50 companies

used in this study. These results are shown in Table 4.9. Note that for the interpolated series,

we used the weekly PCHIP interpolation method of order 1, as it ranked higher across the

error measures for both EPS and FCF, ensuring consistency in our comparisons.

There are two key observations to be made from Table 4.9. First, even before interpolation,

the two series exhibit different magnitudes of change. The baseline FCF series is more than
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three times as volatile as the baseline EPS series. This could be attributed to the fact that EPS is

of greater interest to shareholders, as managers are motivated to maintain positive EPS values,

and a sudden decrease often results in poor market reactions [8]. However, the volatility in

FCF is often associated with increased business investments, which is typical for a growing

company requiring significant investments [5].

Second, both the EPS and FCF series see a significant reduction in the magnitudes of

changes when interpolated, which indicates that interpolation has indeed smoothed the

original data. In both cases, the magnitude of change from one quarter to the next drops more

than twofold. For FCF, this smoothing simplifies the regression task by reducing the complexity

of the data, making it easier for the estimator to identify trends. Conversely, the EPS data,

which is already smoother than FCF, becomes ‘too smooth’, causing the OLS estimator to

undermine volatility in the series.

The next question concerns why the weekly PCHIP interpolation method was helpful, while

other methods ranked lower in the FCF data sets. This may be due to the characteristics of the

PCHIP method, which tends to produce fewer extreme values across all 50 data sets. Unlike

other interpolation methods, which can introduce local oscillations (i.e., extreme spikes or

drops above or below the original data), PCHIP is better at preserving the original shape of

the data, especially in contexts of rapidly changing values [147]. In contrast, other methods

produce monotonic series that may distort OLS predictions for FCF data.

Overall, in the FCF data sets, interpolation makes the data smooth enough for the OLS

estimator to accurately predict quarter-ahead FCF values. The weekly PCHIP interpolation

method of order 1 shows better performance for these data sets, likely due to its ability to

handle dynamic, rapidly changing data. In the EPS data sets, interpolation smooths the data

too much, making it harder for the OLS estimator to capture volatility.
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Next, we will discuss the effects of scaling and transformation on the FCF and EPS data

sets.

Transformation effects on data

Previously, we observed that the EPS series responded positively to the Quantile Transformation

(QT), while the FCF series exhibited no response to either scaling or transformation methods.

In this section, we examine how QT modifies these data sets by applying it to a subset of

randomly selected companies from the sample of 50 companies we experimented on, namely:

Comcast Corporation (CMCSA), Alphabet Inc. (GOOG), Patterson-UTI Energy Inc. (PTEN),

Kimberly-Clark Corporation (KMB), and The Sherwin-Williams Company (SHW). More detailed

information on these companies can be found in Table A-1 in the Appendix, Section A.

We present figures for GOOG and PTEN here for illustrative purposes, with the correspond-

ing plots for other companies available in the Appendix, Section A.

As previously noted, the Quantile Transformation is designed to map feature and target

variables to a uniform distribution. This transformation moves every transformed feature

closer to the transformed target, with all values now falling within the 0-1 range, following

the same, uniform distribution. This makes extreme EPS and FCF values more influential on

predictions. To illustrate, Figure 4.5 presents a scatterplot with the target variable (EPS) on

the y-axis and all its features on the x-axis for both GOOG and PTEN. Similar plots for the

other companies are shown in Figure A-1 in the Appendix, Section A. Note that the number of

features in each data set differs, as our features matrix represents past lags of the target series.

The optimal number of past lags, which minimizes the Akaike Information Criterion (AIC),

was determined for each dataset.

From Figure 4.5, it is evident that the original data in plots (a) and (b) tends to cluster
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Figure 4.5: EPS: scatter plot of the target series (y-axis) against its features (x-axis), transformed
(right) and original (left)

(a) GOOG: original data scatter plot

(b) PTEN: original data scatter plot

(c) GOOG: transformed data scatter plot

(d) PTEN: transformed data scatter plot
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around certain points: most values are concentrated in a certain place of graph. Some data

points are visibly distant from this cluster, again supporting our earlier observation of the more

monotonic nature of the EPS series.

After the transformation, many of the outliers are drawn closer to the main cluster, which

exposes the estimator to these outliers during regression. Specifically, the higher the EPS

values on the y-axis, the higher the corresponding feature values on the x-axis. This suggests

that the Quantile Transformation emphasizes the linear relationship between the EPS series

and its lags, which complements the OLS estimation process.

Next, we turn to the FCF data sets. Figure 4.6 shows the scatter plots for GOOG and PTEN,

with additional plots available in the Appendix (Figure A-2 in Section A).

When transformed, the data points for FCF appear nearly random in some cases, making it

difficult to establish a clear relationship between the target (FCF) and the features. This is

particularly evident for the PTEN dataset, as seen in subfigures (b) and (d) of Figure 4.6, and

in the KMB and SHW data sets in Figure A-2 in Appendix, Section A.

This randomness in the transformed FCF data reinforces that the relationship between the

target and features is not strictly linear, which likely explains why the Quantile Transformation

did not improve prediction accuracy for FCF. In some cases, the prediction accuracy improved

slightly, but not enough to make QT a better-performing technique compared to the baseline.

In conclusion, the Quantile Transformation, while effective in minimizing regression error

for EPS data sets, worsened inference for the FCF data sets. The transformation enhanced the

linearity of the EPS series, potentially improving OLS accuracy. However, since FCF data does

not exhibit a linear relationship, QT did not provide similar benefits. Therefore, while QT is

not a necessary procedure in our forecasting pipeline, it can be a useful tool for datasets like

EPS, where linearity is more blatant. Next section concludes this chapter.
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Figure 4.6: FCF: scatter plot of the target series (y-axis) against its features (x-axis), transformed
(right) and original (left)

(a) GOOG: original data scatter plot

(b) PTEN: original data scatter plot

(c) GOOG: transformed data scatter plot

(d) PTEN: transformed data scatter plot
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4.5 Chapter Conclusions

In this chapter, we outlined the characteristics of our data sets and examined the impact of

interpolation methods and scaling/transformation techniques on these sets. Specifically, we

investigated how these techniques influence the accuracy of predictions made by the Ordinary

Least Squares (OLS) regression estimator. All experiments were conducted on a representative

set of 50 data sets.

Generally, our data sets are non-stationary, meaning that their mean and variance change

over time. Additionally, most of our data sets exhibit a trend and are not normally distributed.

This did not pose a significant problem, as normalization did not provide any clear benefits.

Since the data is already in the same units, scaling was unnecessary. However, empirically, we

found that a specific type of transformer applied to the EPS data sets minimized the error.

We found that the PCHIP interpolation technique of the first order, which assumes the data

arrives on a weekly basis rather than quarterly, was effective at minimizing error measures

for the FCF data sets but not for the EPS ones. Generally, interpolation methods create a

smoothing effect on outliers in model outcomes, as seen with the FCF data sets. In contrast,

for the EPS data sets, where the OLS regression was more successful at distinguishing outliers

from general data points, all interpolation techniques increased the error between the model’s

inferred values and the true data points.

The second part of experiments stresses the benefits transformation/scaling techniques

bring to the estimation process. In particular, we found that the Quantile Transformation

allowed the OLS estimator to more accurately explore the relationships between the EPS

target values and their lags, by making the linearity pattern in these data sets more obvious

to the estimator. In contrast, applying the transformation to the FCF data sets distorted the
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relationship between the target and features so much, that visibly these seems random.

The contribution of this chapter lies in the resulting pipelines for both the EPS and FCF data

sets. For the remainder of this study, we will use the expanding window forecasting algorithm,

augmented with interpolation for the FCF data sets and with Quantile Transformation for

the EPS data sets. The next chapter will examine the performance of machine learning and

statistical estimators also increasing the number of EPS and FCF data sets to 100.



Chapter 5

Single Estimators

5.1 Introduction

In this section, we conduct a series of experiments to examine how Machine Learning (ML)

and Statistical Estimators (SE) perform on our sparse Earnings Per Share (EPS) and Free Cash

Flow (FCF) data sets. In the previous Chapter 4, we outlined technical details of both the

EPS and FCF data sets and selected appropriate data pipelines for each series. Specifically,

we found that the EPS data sets responded well to Quantile Transformation, which forces the

data to follow a uniform distribution within the 0-1 range. This transformation technique

emphasizes the linearity in the EPS data, as evidenced by lower regression error across all

proposed metrics (MAE, MAPE, sMAPE).

On the other hand, the weekly PCHIP of order 1 interpolation, when applied to the FCF

data sets, achieved the highest average rank according to the Friedman Average Ranking test

across all of our proposed error measures. Interpolation allows us to assume that the data

arrives at weekly, rather than quarterly intervals, effectively smoothing outliers and enabling

better generalization by the OLS regression model.

115
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In this chapter, we expand the range of both Machine Learning (ML) and Statistical

Estimators (SE) and increase the number of data sets from the initial 50 to 100. The decision

to expand the data set is driven by our intention to test the generalization capabilities of our

approach across a wider range of stocks from the financial markets, all of which meet similar

filtering criteria. The additional 50 data sets included in this chapter were selected using the

same characteristics outlined in Chapter 2: companies from the manufacturing industry, with a

market capitalization greater than US $1 billion, and publicly traded on the financial markets

since or prior to 2008.

While classical statistical estimation (SE) methods are commonly applied in regression

problems with limited data observations [148], our primary objective is to investigate whether

ML estimators can achieve the same level of accuracy, or even outperform, SE methods.

Furthermore, we explore the properties of the ML and SE techniques that may influence the

estimation process, especially with respect to the transformed EPS and interpolated FCF series.

Throughout this study, we distinguish between ML and SE methods by highlighting the fact

that ML models apply regularization to the parameters of an estimator (whether coefficients or

hyperparameters), while SE methods focus solely on minimizing a cost function. Additionally,

we examine how the limited number of observations in our data sets may affect the performance

of both statistical and machine learning models.

In the following sections, we first outline the methodology used in our experiments in

Section 5.2, followed by an overview of the data and parameter tuning for models with tunable

hyperparameters in Section 5.3. The results are presented in Section 5.4, and conclusions are

drawn in Section 5.5.
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5.2 Methodology

Throughout this thesis, we address a regression problem where the goal is to estimate the next

quarter’s EPS/FCF value using a series of past lags, along with mean and standard deviation.

As discussed in previous chapters, our target variables are sparse, non-stationary series with

a high number of outliers, and in most cases, they follow a non-Gaussian distribution. This

chapter investigates how these characteristics affect the estimation procedure of Machine

Learning (ML) and Statistical Estimators (SE) in regression models.

We assume a linear relationship between the target variable and its past lags, with no other

data included in the feature set.

This assumption allows us to explore how various data patterns, such as sparsity, outliers,

and non-stationarity — affect model performance while maintaining the simplicity of the

estimators. Introducing non-linearity could risk obscuring the impact of these data charac-

teristics. For instance, if we allowed for complex polynomial functions or other non-linear

transformations, we might not be able to establish if worse performance results from model

complexity or from the inherent properties of the data, such as its sparse size.

Despite assuming linearity, we do introduce data augmentation for the FCF and transform-

ation for the EPS data sets, as described in the previous chapter. These adjustments aim to

address the sparsity and outlier issues, frequent in our selection of data sets, while improving

the overall model performance. These adjustments are summarized in the next section.

5.2.1 Data preprocessing

For both the EPS and FCF series, the input data consists of past lags, as well as the mean and

standard deviation of the target variable (next quarter’s EPS/FCF values). The number of
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past lags is determined by the Akaike Information Criterion (AIC), with the optimal number

yielding the minimum AIC forming the feature set.

Statistical tests on a subset of 50 data sets indicate that both series exhibit a tendency

to trend over time. Therefore, we include the mean of the target variable to provide our

estimators with insight into the direction of the series.

Given the non-stationary nature of most EPS and FCF series—meaning the data distribution

may change over time—we augment the feature set with the standard deviation of the target

variable. This feature helps capture changes in volatility, complementing the mean by providing

information on fluctuations in the data over the observed period.

In Chapter 4, we also designed two pipelines: one utilizing Quantile Transformation for

the EPS series, and the other employing PCHIP interpolation of 1st order, assuming weekly

data frequency, for the FCF series. These methods were empirically shown to improve the

OLS regression model, which served as a proxy due to its straightforward optimization and

interpretability.

Quantile Transformation is a non-parametric feature transformation technique that maps

the original data values to their respective quantiles [25]. This transformation method minim-

izes the impact of marginal outliers, ensuring that extreme values do not disproportionately

affect the model’s output. For example, a very high EPS value followed by a very low can create

a large gap between a feature and its target. To address this, we configured the transformer to

map values to a uniform distribution within the 0-1 range for these experiments.

PCHIP interpolation applied to the FCF data sets generates a monotonic series approx-

imation based on the existing data points, as described in Chapter 2. The advantage of this

method against other candidate interpolation techniques is its ability to preserve the shape and

monotonicity of the series, avoiding the oscillations that can arise from interpolation methods
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that prioritize smoothness over monotonicity [149]. In highly volatile data, PCHIP may miss

local trends by producing overly generalized approximations between data points. However,

empirical experiments on a subset of 50 data sets, conducted in Chapter 4, show that this

interpolation method was the most effective compared to other candidates for the FCF series.

In the next section, we explain the experimental setup used in this chapter.

5.3 Experimental Setup

In this chapter, apart from increasing the sample size, we use a broader range of both statistical

and machine learning regression models, described at length in Section 2. Our objective is to

determine how both types of estimators handle data sparsity and to identify the properties of

sparse series that influence estimator performance.

As mentioned previously, in this set of experiments we employ a selection of ML estimators

that have tunable hyperparameters. The next section introduces the hyperparameters tuning

process.

5.3.1 Parameter Tuning and Results Interpretation

For hyperparameter tuning, we split the data sets into 60% training, 20% validation, and

20% test subsets. We perform grid search over candidate hyperparameter combinations,

selecting the set that minimizes the Root Mean Squared Error (RMSE) on the validation set.

For each data set, we select the individual hyper-parameters that yield the lowest RMSE on

the validation subset, allowing for tailored optimization per data set. RMSE is chosen because

it is sensitive to larger errors and provides a clear metric for comparing models with different

error distributions, making it appropriate for parameter tuning in this context. Proposed
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hyper-parameters with relevant range of values for every ML algorithm are given in Table B-3

of the Appendix Section B.

Prior to grid searching, we employ data preprocessing to our data sets. In particular, for

all EPS series, we fit the Quantile Transformer to respective stock’s training data, mapping

the original values to their respective quantiles, and then transform the validation set without

refitting the transformer.

For the FCF data sets, subject to PCHIP interpolation, we do not interpolate the validation

data to avoid over-smoothing, as it could distort the model’s ability to capture dynamic trends.

Instead, we first interpolate the training set, tune the hyper-parameters on the validation set,

and then predict on the test set.

We carefully set the grid search space — all possible combinations of hyper-parameters,

relevant to a ML estimator, to mitigate overfitting due to the sparsity of the series. For example,

we limit the maximum number of trees in the Random Forest Regressor to 8 and restrict the

number of neighbors to 14 for the K-Nearest Neighbors Regressor. Regularization techniques

such as l1 and l2 penalties in LASSO, ARD, and BR, or tree depth in Decision Tree (DT),

Random Forest (RF), and the number of nodes and layers in Multi-Layer Perceptron (MLP),

are critical for controlling the fitness of the model to the data. These penalties help prevent the

model from perfectly fitting the training data, which could lead to high errors when predicting

on the test set.

Inference on the test set follows the procedure outlined in Chapter 4, Algorithms 2 and

3 for EPS and FCF series, respectively. The results are interpreted using the Friedman test,

which ranks models based on prediction performance, followed by the Hommel’s correction

for statistical significance.

In the next section, we present the results of our experiments.
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5.4 Results

In this section, we present the results of our experiments conducted on a set of 100 randomly

selected companies that meet the criteria outlined in Chapter 2. The results are organized into

several parts. First, for both EPS and FCF series, we present summary statistics and the results

of the Friedman Test in Subsections 5.4.1 and 5.4.2, respectively. These statistical analyses

provide an overview of the performance of the models.

Following this, Section 5.4.3 provides a detailed discussion of the obtained results, split

into EPS and FCF series. This section explores the insights derived from the experiments and

the significance of the findings. The results are then summarized in the concluding Section

5.5, which offers final remarks.

Note that all results in this section are based on predictions made on the test subset of

the data sets. Before computing any metrics, we de-transform both the predicted and true

data and exclude the artificially generated data. This ensures that the metrics reflect the

performance of the model on real-world data, rather than on augmented inputs.

We begin with the description of the results for the EPS series in the next section.

5.4.1 Earnings Per Share Results

The summary statistics of the results for EPS forecasting are shown in Table 5.1. Notice that

the MAPE error measure has exploded for some models. As discussed in Chapter 2, when the

denominator of the MAPE formula is close to zero, it can cause the MAPE score to become

extremely large. This phenomenon is observed in the EPS data presented here, where some

values become unreasonably high.

From Table 5.1, it is observed that for the MAE error measure, the BR estimator has the
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Table 5.1: EPS: ML and SE forecasting results. Minimum value in each respective category is

highlighted in boldface

Regressor Error Mean Std. Dev. Minimum Median Maximum

ARD

MAE 0.7459 0.61091 0.02823 0.51758 2.95877

MAPE 1.15E+12 7.84E+12 0.08152 0.66204 7.23E+13

sMAPE 32.5529 19.0478 4.07467 28.8716 88.7325

ARIMA

MAE 1.95097 2.04048 0.04861 1.28827 12.4908

MAPE 7.09E+12 6.45E+13 0.13618 1.61308 6.41E+14

sMAPE 46.9334 19.3127 7.3306 44.447 89.0417

BR

MAE 0.74435 0.60179 0.02678 0.54659 2.98745

MAPE 1.17E+12 7.86E+12 0.07831 0.67304 7.23E+13

sMAPE 32.3072 18.5712 3.91688 28.4101 78.508

DT

MAE 0.82644 0.79137 0.0502 0.59395 6.13264

MAPE 1.28E+12 1.10E+13 0.11187 0.75045 1.08E+14

sMAPE 35.6157 19.1268 6.0034 31.8366 90.2946

HR

MAE 0.80339 0.91137 0.028 0.53952 7.01702

MAPE 1.12E+12 7.50E+12 0.08276 0.80245 6.83E+13

sMAPE 30.5534 18.623 4.09854 27.6609 74.5993

KNN

MAE 0.79923 0.71735 0.04121 0.5508 4.84414

MAPE 8.95E+11 7.05E+12 0.11316 0.71213 6.89E+13

sMAPE 34.2269 19.028 6.1342 30.4293 89.165

LASSO

MAE 0.98384 1.14125 0.13366 0.68317 10.3683

MAPE 1.21E+12 8.68E+12 0.15728 0.70282 8.00E+13

sMAPE 41.0962 17.0538 8.64868 38.2159 80.1939

MLP

MAE 1.43847 2.02078 0.22302 0.89896 13.1717

MAPE 1.50E+12 1.08E+13 0.18988 0.84936 9.31E+13

sMAPE 51.578 15.5537 11.0019 51.2033 86.8683

OLS

MAE 0.75165 0.77237 0.02582 0.51874 6.21485

MAPE 1.14E+12 8.10E+12 0.07612 0.69636 7.69E+13

sMAPE 31.0005 19.3254 3.77864 27.981 84.7159

RF

MAE 0.81437 0.6894 0.05299 0.6015 4.29442

MAPE 2.19E+12 1.49E+13 0.11973 0.67336 1.11E+14

sMAPE 35.1476 18.9726 6.4123 31.5862 90.2034

RLM

MAE 0.88352 1.15328 0.02781 0.60869 8.0369

MAPE 1.34E+12 9.78E+12 0.08293 0.81141 9.35E+13

sMAPE 31.2529 18.7271 4.07287 27.6074 80.0174

SES

MAE 0.78747 0.739 0.03596 0.53413 5.0594

MAPE 1.06E+12 8.21E+12 0.08836 0.70188 8.00E+13

sMAPE 32.949 19.8265 4.5712 28.62 90.3022

WLS

MAE 0.92742 1.04882 0.0331 0.6779 8.01863

MAPE 1.23E+12 9.90E+12 0.09488 0.91982 9.70E+13

sMAPE 32.6783 18.0939 4.8153 28.7732 80.4459
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minimum average error of 0.74435. For other error measures, the KNN estimator shows the

lowest MAPE error of 1.21E+12. Additionally, the HR estimator demonstrates the lowest

average sMAPE of 30.5534. Although some classical statistical estimators perform similarly

across the sample of 100 data sets, ARIMA and WLS perform poorly compared to the ML

algorithms. The MLP algorithm, while ranking among the worst, demonstrates the lowest

standard deviation for sMAPE errors, suggesting that its regression error is concentrated

around the average error for most data sets. These observations are further supported by the

median values across the error measures. The ARD estimator results in the lowest median

MAE and MAPE. The BR estimator, along with OLS, HR, LASSO, RLM, and RF, are among

the better-performing estimators across regression error metrics. Consider also the difference

between median errors in training and test sets, provided in Table 5.2. We propose to study

median values to avoid the influence of extremely high or low errors.

Median train and test set error values in Table 5.2 indicate that, overall, our proposed

estimators tend to overfit the training data — they are biased toward training observations.

Notably, the KNN estimator achieves near-zero MAE, MAPE, and sMAPE on the training set,

but this performance does not transfer to the test set.

The ARIMA estimator, on the other hand, exhibits high variance in the MAPE error

measurement: it shows relatively low test set error despite having a significantly higher

training error. Conversely, its MAE performance shows the overfit, with training score nearly

double the test, and almost a ‘fair’ fit with sMAPE error measurement.

Across other estimators, we observe varying degrees of bias. Importantly models that

demonstrate stronger overall performance on the out-of-sample test subset, show a smaller

degree of bias, i.e. ARD could be said to fit well, with relatively low difference between median

train and test MAPE and sMAPE scores.
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Table 5.2: EPS: Median of Train (marked ‘Train’) and Test (marked ‘Test’) Set Errors Across a

Sample of 100 Data Sets. Values in boldface indicate the lowest value in the respective column.

MAE MAPE sMAPE

Regressor Train Test

ARD 0.1741 0.5175

ARIMA 0.6345 1.2882

BR 0.1760 0.5465

DT 0.1650 0.5939

HR 0.1582 0.5395

KNN 2E− 16 0.5508

LASSO 0.2301 0.6831

MLP 0.3020 0.8989

OLS 0.1739 0.5187

RF 0.1607 0.6014

RLM 0.1640 0.6086

SES 0.4391 0.5341

WLS 0.1770 0.6778

Regressor Train Test

ARD 0.7033 0.6620

ARIMA 3.5172 1.6130

BR 0.7086 0.6730

DT 0.6829 0.7504

HR 0.7031 0.8024

KNN 3E− 16 0.7121

LASSO 0.7312 0.7028

MLP 1.3128 0.8493

OLS 0.6832 0.6963

RF 0.6889 0.6733

RLM 0.7156 0.8114

SES 3.4812 0.7018

WLS 0.7186 0.9198

Regressor Train Test

ARD 22.8248 28.8716

ARIMA 44.7970 44.4469

BR 22.1495 28.4101

DT 21.6449 31.8365

HR 19.9665 27.6609

KNN 2E− 14 30.4292

LASSO 28.8028 38.2158

MLP 37.4301 51.2032

OLS 21.9309 27.9810

RF 21.4788 31.5862

RLM 20.6188 27.6074

SES 47.6743 28.6199

WLS 23.1317 28.7731
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Table 5.3: EPS: Friedman Test of forecasting errors. The Hommel’s post-hoc correction p-value

(the ‘p-val’ column) in boldface indicate statistical significance at 5% significance against the

‘control’ method.

MAE MAPE sMAPE

Regressor Rank p-val

OLS 4.86 control

HR 4.90 9.42E-01

BR 4.95 9.42E-01

ARD 5.03 9.42E-01

SES 5.31 9.42E-01

RLM 5.94 2.54E-01

KNN 6.28 6.38E-02

RF 7.08 4.50E-04

DT 7.11 3.57E-04

WLS 7.25 1.49E-04

LASSO 9.25 2.21E-14

MLP 11.03 9.70E-28

ARIMA 11.95 1.72E-36

Regressor Rank p-val

BR 5.07 control

ARD 5.41 5.35E-01

SES 5.44 5.35E-01

OLS 5.82 5.31E-01

KNN 6.10 2.51E-01

RF 6.34 1.07E-01

DT 6.43 6.88E-02

HR 6.59 4.34E-02

LASSO 6.77 1.74E-02

RLM 7.50 1.03E-04

WLS 8.22 1.24E-07

MLP 9.21 8.06E-13

ARIMA 12.09 8.86E-36

Regressor Rank p-val

HR 4.08 control

OLS 4.69 2.74E-01

RLM 4.76 2.74E-01

BR 5.17 1.49E-01

SES 5.59 2.62E-02

ARD 5.79 1.02E-02

WLS 5.90 6.13E-03

KNN 6.71 1.46E-05

RF 7.55 3.10E-09

DT 7.96 2.19E-11

LASSO 10.03 6.67E-26

ARIMA 11.30 7.22E-38

MLP 11.49 7.84E-40

To rank our selection of regression estimators by their respective performance, we conduct

the Friedman average ranking test. A statistically significant difference between the model

with the lowest rank (the ‘control’ algorithm) and the other models is determined using the

Hommel’s post-hoc pairwise comparison between the control and rest estimators. The null

hypothesis states that there is no difference between two groups. A p-value less than 0.05

indicates statistical significance at the α = 5% level, meaning that the algorithm outperforms

other candidates (reject the null). The Friedman results are shown in Table 5.3.

Results in Table 5.3 indicate that for the MAE error, OLS serves as the control algorithm

with an average rank of 4.8687, significantly outperforming ARIMA, DT, LASSO, MLP, RF, and



126 CHAPTER 5. Preliminary Experiments

WLS.

For MAPE errors, BR is the control algorithm, with an average rank of 5.0707 across all

100 data sets, significantly outperforming HR, ARIMA, LASSO, MLP, RLM, and WLS.

Finally, in terms of sMAPE, HR acts as the control estimator for this group, with an average

rank of 4.0808, significantly outperforming SES, ARIMA, DT, KNN, LASSO, MLP, RF, and WLS.

So far, we have observed that simpler optimization functions tend to perform better across

the error measures: linear estimators (both statistical and ML), show better performance than

more complex ones. However, the difference between statistical and linear ML models is

not substantial, as some statistical models are outperformed by ML algorithms. This trend

is evident in all three error measures: in the MAPE group, the BR estimator significantly

outperforms both the WLS and ARIMA estimators. Similarly, HR, as the control estimator for

sMAPE, significantly outperforms both ARIMA and WLS.

Although statistical estimators like OLS serve as the control for MAE, they do not signific-

antly outperform more complex ML models like ARD, BR, HR, and KNN. Therefore, in sparse

datasets, certain ML algorithms demonstrate performance comparable to, or even better than,

statistical models. In the next section, we examine how similar regression model types perform

on FCF data sets.

5.4.2 Free Cash Flows Per Share Results

As in the previous subsection, we first present the summary statistics for the performance of

our candidate model types, outlined in Table 5.4.

According to the results in Table 5.4, in the MAE error category, the HR estimator achieves

the lowest average score of 0.9166, with RLM and OLS showing comparable results. LASSO

demonstrates the lowest average MAPE of 1.465855, followed by KNN and RF. The RLM
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Table 5.4: FCF: ML and SE forecasting results. Minimum value in each respective category is

highlighted in boldface

Regressor Error Mean Std. Dev. Minimum Median Maximum

ARD

MAE 0.94792 1.09135 0.09922 0.64635 9.48691

MAPE 1.58169 2.47646 0.1478 0.99207 21.8384

sMAPE 36.3373 18.7468 7.40593 35.1177 83.3887

ARIMA

MAE 1.62076 1.813 0.09866 1.067 14.1239

MAPE 3.48169 4.81037 0.22893 2.09918 33.2296

sMAPE 47.9918 19.7963 11.0375 50.2808 89.3059

BR

MAE 0.94475 1.05385 0.10174 0.65806 9.00807

MAPE 1.58989 2.43898 0.14709 1.00485 21.4453

sMAPE 36.2016 18.5686 7.39127 34.5688 79.3623

DT

MAE 1.19463 1.59065 0.0918 0.89374 14.0693

MAPE 2.00571 2.78388 0.16909 1.14824 19.9108

sMAPE 40.8114 18.7168 8.39649 41.2244 81.339

HR

MAE 0.9166 0.9751 0.10006 0.64483 8.03927

MAPE 1.58611 2.5036 0.1454 0.96463 21.9906

sMAPE 35.6955 18.0524 7.23168 34.0282 77.2455

KNN

MAE 0.97111 1.00077 0.10391 0.65088 8.02428

MAPE 1.49012 2.22453 0.16313 0.93762 19.1861

sMAPE 37.6241 17.9849 7.75897 36.6972 73.5482

LASSO

MAE 0.96352 0.98387 0.19708 0.69566 8.21571

MAPE 1.46585 2.54057 0.16362 0.90572 23.8392

sMAPE 41.028 19.9654 8.53684 38.4035 98.2851

MLP

MAE 1.2081 1.73105 0.15709 0.80848 16.4313

MAPE 1.575 2.65591 0.26093 1.05438 23.6316

sMAPE 44.6809 17.6801 15.7884 41.7842 89.5712

OLS

MAE 0.94332 1.03875 0.10167 0.65126 8.79351

MAPE 1.61222 2.44855 0.14447 1.02872 20.718

sMAPE 36.5929 18.7699 7.23404 34.8286 84.2797

RF

MAE 1.01936 0.99624 0.0989 0.70349 7.34269

MAPE 1.53956 2.04565 0.16807 1.05558 15.9174

sMAPE 38.9161 18.4643 8.69915 39.2003 82.2

RLM

MAE 0.91958 0.98416 0.10146 0.64755 8.18703

MAPE 1.6044 2.53489 0.14405 0.97436 21.8535

sMAPE 35.8191 18.0169 7.15913 34.6885 77.0579

SES

MAE 1.49971 1.8155 0.08793 0.97871 14.9667

MAPE 3.07685 4.24365 0.1909 1.97855 31.2205

sMAPE 46.295 20.0886 9.13817 47.3676 85.007

WLS

MAE 1.39648 1.57233 0.10256 0.93168 12.9202

MAPE 2.39587 2.84965 0.14887 1.5404 20.9617

sMAPE 43.0903 19.7382 7.27023 45.6705 79.96
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estimator, which previously ranked highly based on average MAE and MAPE, shows the lowest

average sMAPE of 35.69552. Across all three error measures, ARIMA and SES demonstrate

consistently worse average performance.

Regarding the median of our error measures, the HR estimator stands out with the lowest

median MAE and sMAPE. The lowest median MAPE is found for the LASSO estimator. Addi-

tionally, ARD, RLM, KNN, and HR exhibit lower median error measures, whereas, confirming

earlier observations, ARIMA, SES, and MLP remain among the worst-performing estimators.

In addition to the descriptive statistics, we also check the median train and test error scores

across our sample of 100 data sets, given in Table 5.5.

Table 5.5: FCF: Median of Train (marked ‘Train’) and Test Set (marked ‘Test’) Errors Across a

Sample of 100 Data Sets. Values in boldface indicate the lowest value in the respective column.

MAE MAPE sMAPE

Regressor Train Test

ARD 0.2948 0.6463

ARIMA 0.6362 1.0670

BR 0.2955 0.6580

DT 0.2711 0.8937

HR 0.2899 0.6448

KNN 0 0.6508

LASSO 0.3121 0.6956

MLP 0.3293 0.8084

OLS 0.2961 0.6512

RF 0.2045 0.7034

RLM 0.2921 0.6475

SES 0.8168 0.9787

WLS 0.4003 0.9316

Regressor Train Test

ARD 1.3562 0.9920

ARIMA 1.6663 2.0991

BR 1.3576 1.0048

DT 1.4205 1.1482

HR 1.3263 0.9646

KNN 0 0.9376

LASSO 1.4328 0.9057

MLP 1.8183 1.0543

OLS 1.3728 1.0287

RF 1.0843 1.0555

RLM 1.3316 0.9743

SES 4.4565 1.9785

WLS 1.6890 1.5404

Regressor Train Test

ARD 34.4859 35.1176

ARIMA 69.2057 50.2807

BR 34.2572 34.5688

DT 35.0150 41.2244

HR 33.1740 34.0281

KNN 0 36.6971

LASSO 39.9324 38.4034

MLP 38.0742 41.7841

OLS 34.8306 34.8286

RF 27.4640 39.2002

RLM 34.1464 34.6885

SES 56.2883 47.3676

WLS 41.2696 45.6704

From Table 5.5, we observe that many estimators exhibit overfitting behavior across the
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data sets. Similar to the EPS series, the KNN estimator yields zero error on the training set but

performs poorly on the test set, indicating significant overfitting.

Interestingly, the ARD estimator displays signs of underfitting, particularly evident in the

MAPE error score. In contrast, the better-performing estimators — such as ARD, BR, HR,

LASSO, and OLS — generally exhibit more balanced performance, with training and test set

errors closely aligned. This is especially visible from their sMAPE scores.

Meanwhile, other models, including ARIMA and MLP, show a relatively high degree of bias,

as indicated by the discrepancy between their training and test errors.

In line with the EPS data sets, we conduct the Friedman test to rank our candidate model

types based on the resulting error measures. The Friedman average ranking test is conducted

in two steps. In the first step we perform ranking,where each data set is assigned an estimator

that shows the lowest error (MAE, MAPE or sMAPE) on this data, with a higher rank indicating

lower error. The average rank, referred to as ‘Rank’ in Table 5.6, for each method is then

computed across all data sets.

In the second step, the method with the highest average rank—referred to as the control

method (marked as ‘control’ in Table 4.2) — is statistically compared to the others. We use the

Hommel’s post-hoc correction to evaluate significance at the 5% level. The null hypothesis

is that all methods (i.e., the OLS regression errors, measured as MAE, MAPE and sMAPE,

respectively) are drawn from the same distribution.

Table 5.6 summarizes the results of this statistical test, where statistically significant

differences at the 5% level between the top-performing (‘control’) model and the worst-

performing model types are highlighted in boldface.

As suggested by results in Table 5.6, with MAE as the error measure, RLM serves as the

control model, achieving an average rank of 4.06. It is statistically significant compared to a
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Table 5.6: FCF: Friedman Test of forecasting errors. The Hommel’s post-hoc correction p-value

(the ‘p-val’ column) in boldface indicate statistical significance at 5% significance against the

‘control’ method.

MAE MAPE sMAPE

Regressor Rank P-Val

RLM 4.06 control

HR 4.09 9.57E-01

ARD 4.61 6.36E-01

BR 4.74 4.77E-01

OLS 4.84 4.70E-01

KNN 6.25 3.50E-04

LASSO 6.25 3.50E-04

RF 7.19 9.26E-08

DT 8.87 1.98E-17

MLP 8.95 6.09E-18

SES 9.92 1.94E-25

WLS 10.02 3.00E-26

ARIMA 11.21 1.85E-37

Regressor Rank P-Val

LASSO 4.94 control

HR 5.05 8.42E-01

KNN 5.14 8.42E-01

RLM 5.22 8.42E-01

BR 5.75 5.65E-01

ARD 5.82 4.40E-01

OLS 5.9 3.53E-01

RF 6.25 1.22E-01

MLP 6.72 9.84E-03

DT 8.18 3.63E-08

WLS 9.54 6.70E-16

SES 10.78 3.15E-25

ARIMA 11.71 1.20E-33

Regressor Rank P-Val

RLM 4.3 control

HR 4.43 8.13E-01

BR 4.92 5.21E-01

ARD 4.96 4.62E-01

OLS 5.26 3.25E-01

KNN 6.33 1.14E-03

LASSO 7.04 3.92E-06

RF 7.16 1.45E-06

DT 8.23 7.71E-12

WLS 8.82 2.04E-15

SES 9.4 2.04E-19

MLP 9.81 1.60E-22

ARIMA 10.34 6.63E-27
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set of estimators, including KNN, LASSO, RF, DT, WLS, SES, MLP, and ARIMA. In the MAPE

error category, LASSO ranks highest, with an average rank of 4.94, and is significant against

MLP, DT, WLS, SES, and ARIMA. Lastly, in the sMAPE category, RLM ranks highest with an

average score of 4.3 and is significant compared to KNN, LASSO, RF, DT, WLS, SES, MLP, and

ARIMA.

Similar to the EPS data sets, we observe that more complex estimators, such as MLP,

ARIMA, and tree-based models, tend to perform worse than simpler estimators like ARD, BR,

and HR. Interestingly, some ML estimators in both the EPS and FCF data sets perform as well

as, or even outperform, statistical models. In the next section, we explore the reasons behind

this phenomenon.

5.4.3 Results Discussion and Analysis

For a more thorough discussion, we split this section into two parts: the first describes the

two data sets—one exhibiting high error scores across estimators and the other with low error

scores. This distinction helps highlight properties that may have influenced the estimation

process, either positively or negatively. The following subsection details the behavior of

estimators on these data sets.

In the main body of this chapter, we present figures for two companies that, in both

the FCF and EPS cases, show the highest and lowest regression errors across all proposed

metrics. Similar figures for eight other companies, randomly chosen from a sample of 98 data

sets (excluding the ones with the highest and lowest errors), are provided in the Appendix,

Section B of this thesis. Hewlett-Packard Inc. (HP) is a data set that typically exhibits higher

error scores in both the EPS and FCF cases, while Fastenal Co. (FAST) demonstrates better

predictability for the quarter-ahead EPS/FCF value. Results for other 8 companies are given in
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the Appendix, Section B. Notice that the results of fitting various estimators on these data sets

fall between the two extreme cases, which we use as representative examples throughout this

chapter.

Our analysis begins with an overview of observations about the data sets the next Subsec-

tion.

Data Properties

We begin by analyzing the behavior of the target variables, EPS and FCF, and their relationships

with the features: past lags, mean, and standard deviation. Figure 5.1 show the full data

sets (training, validation and test subsets) for the FAST and HP data sets, EPS and FCF

series, respectively. These figures display the target variable alongside its features in the train,

validation and test subsets, providing a visual representation of the dataset structure.

Figure 5.1: Representative FAST and HP Data Sets: EPS and FCF series

(a) EPS: FAST (b) EPS: HP

(c) FCF: FAST (d) FCF: HP

Notice that in both FCF and EPS data sets, the target variable and its features show dynamic
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behaviour, with sudden up-/down-ward movements. Meanwhile, the mean and standard

deviation features appear smoother, as they filter out short-term fluctuations and align with

the overall trend of the target variable.

As mentioned in the previous chapter, the FCF datasets tend to exhibit higher volatility

than the EPS datasets. However, the EPS plots display large spikes too, particularly towards the

end of the HP dataset, followed by smaller fluctuations. These spikes impact the relationships

within the data: the higher the variance of a feature, the stronger its correlation with the target

variable. Consequently, these fluctuations inflate the correlation coefficients.

Periods of high volatility persist across the lags in the dataset. For example, in datasets

with large errors (indicating poor model fit), the correlations are unstable, as shown in Figure

5.2, which illustrates the correlation of features with the target variable across iterations in

the test set.

Figure 5.2: EPS and FCF correlations of the target variable with its features through test-set
iterations: comparison between poorly and well-fitted data sets

(a) HP: EPS correlation (b) HP: FCF correlation

(c) FAST: EPS correlation (d) FAST: FCF correlation
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As shown in Figure 5.2, the EPS correlations are unstable and tend to decrease with each

iteration in the test set. This pattern is consistent across data sets with high error rates. The

FCF data set, however, shows more stability: correlations for lags 1 and 2 are roughly 0.6

and 0.45, respectively. The ‘average’ feature increases its influence over time, though the

correlations remain relatively low, suggesting a moderate dependence of the target variable on

its features. In contrast, datasets that perform better, such as the FAST dataset, exhibit high

and stable correlations.

In conclusion, in datasets with better performance, the target variable shows a high and

stable correlation with its features, which improves as the training data expands. Both types of

datasets exhibit volatility, but high-performing datasets show a trend, while lower-performing

datasets do not. The volatility in the features tends to cluster, and extreme fluctuations in

the target variable are propagated to the lag features. Meanwhile, the moments (mean and

standard deviation) are relatively smoother.

The following section will analyze the performance of the estimators and explore how

these data properties influence the estimation results.

Impact on Estimators

In this section, we examine the performance of various estimators. Both our EPS and FCF

series exhibit similar patterns: when within-sample correlations are high, the error scores tend

to be lower, and vice versa. However, we have observed that machine learning models often

perform similarly to statistical estimators.

For instance, consider the performance of the ARIMA model, one of the estimators that

generally yields higher error scores. Its performance on the less stable HP dataset is shown in

Figure 5.3.
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This estimator captures variability in the dataset but tends to make more volatile predictions

during less volatile periods, as shown by the test set predictions for the HP dataset in Figure 5.3.

This suggests that the coefficients were properly optimized, although at times the predictions

are lagged by one period.

In its best-case dataset, where correlations between the target and feature variables are

stable and increasing, such as in the FAST dataset, ARIMA successfully captures the trend

in the series but misses small increments, as shown in Figure 5.3. This conclusion is further

validated by other datasets, as depicted in Figures B-5 for EPS predictions and B-6 for FCF

series predictions.

Figure 5.3: ARIMA prediction results: EPS and FCF forecasts on HP and FAST test sets

(a) HP: EPS test set predictions (b) HP: FCF test set predictions

(c) FAST: EPS test set predictions (d) FAST: FCF test set predictions



136 CHAPTER 5. Preliminary Experiments

The SES model, another statistical estimator, yields different results between FCF and

EPS predictions. For EPS predictions, it infers a straight line through the data, capturing the

trend rather than the variance. While this minimizes regression error in datasets like FAST, it

overlooks large deviations in datasets like HP. Generally, SES predicts the FCF data sets, visibly

better than the EPS ones. Predictions of the SES model for EPS and FCF datasets, against the

actual data, are provided in Figure 5.4.

Figure 5.4: SES prediction results for EPS and FCF on FAST and HP data sets

(a) EPS: FAST data set predictions (b) EPS: HP data set predictions

(c) FCF: FAST data set predictions (d) FCF: HP data set predictions

It is possible that the observed effect is due to interpolation, which has a smoothing effect

on the series. Additionally, in the FCF series, HP dataset, the predicted values closely resemble

the previous step in the ground-truth data. Since all of the features used to fit this model
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are past lags, it is apparent that the SES model is simply copying the first lag of the series,

ignoring the rest of the information. This effect is not useful for the modeling task: rather than

predicting the future value, we get an exact approximation of one of its lags.

Another notable effect occurs in tree-based estimators, specifically Decision Trees (DT) and

Random Forests (RF). The fitted tree structures in the FCF and EPS cases differ. Therefore,

consider the best-fit tree for both selected EPS datasets in Figure 5.5.

Figure 5.5: EPS: Decision Tree Structures for HP and FAST datasets

(a) HP dataset decision tree (b) FAST dataset decision tree

In the HP tree (which corresponds to worse-performing predictions depicted as (a) in

Figure 5.5), there is a leftward skew. The ‘lag 1’ feature drives the inference, meaning that if it

fails to meet a certain threshold, the estimation process can be misled. This is particularly true

given the dynamic correlations observed in this dataset.

In contrast, the better-performing FAST tree in Figure 5.5 has a more balanced structure,

with more estimated nodes explored during the training stage. Given that it is one of the

better-performing datasets, this structure appears to be more suitable for future inference.

More balanced structures are also observed in the FCF datasets. Here, both the HP and
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FAST datasets exhibit an equal number of nodes in each leaf, as shown in Figure 5.6.

Figure 5.6: FCF: Decision Tree Structures for HP and FAST datasets

(a) HP dataset decision tree (b) FAST dataset decision tree

In the case of the FCF series, the HP dataset indeed builds a more balanced, granular tree.

However, this estimator fails to capture the relationships between the features and the target,

as indicated by the high squared error (0.087) at one of the lower nodes, compared to the

much smaller errors in the FAST dataset.

In the FAST dataset, shown in subplot (b) of Figure 5.6, the DT estimator performs better

at inference, minimizing errors at every node. This can be attributed to the high correlation

between the features and the target, which makes it easier for the DT estimator to make

accurate inferences.

The key observation from examination of the tree structures for FCF and EPS data sets

suggest that the highly imbalanced trees (ones with nodes on either side being deeper than

nodes on the other), are a sign of overfitting, and therefore of the poor generalization of a DT

estimator to the unseen data. Our argument is due to the fact that in the majority of cases,

data sets with lower error measures typically show a more balanced tree structure, whereas
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trees displaying a high bias are typically deeper.

Despite using different optimization approaches, non-parametric methods face similar

challenges. An examination of Shapley values force plots, which show how each feature

observation influences the estimator’s outcome [150], reveals that for the KNN forecasting

model, single observations have the most impact. Figure 5.7 illustrates the contribution of

each feature in estimating the EPS target variable.

Figure 5.7: EPS: KNN Shapley values force plots

(a) HP Shapley values (b) FAST Shapley values

The FCF data sets, subject to interpolation, display similar Shapley value patterns, as shown

in Figure 5.8.

Figure 5.8: FCF: KNN Shapley values force plots

(a) HP Shapley values (b) FAST Shapley values

In the HP data set (a set with higher error measures), a few data observations significantly

impacted the performance of the KNN estimator: some data records in the ‘lag 1’ vector have a
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Shapley value close to -1.0. In contrast, in the FAST data set (a better-performing dataset with

lower error measures), the values are more evenly distributed across the scale. Interestingly,

the most influential feature, ‘lag 4,’ contains many data points with a maximum impact of

0.15. Therefore, all features contributed to the final outcome. While outliers are present in the

figure, their contribution is likely neglected by the estimator, given the high impact of other

features. It is also noteworthy that, in better-performing series, all features had some impact

on the outcome, whereas in worse-performing ones, typically only one feature dominated the

estimation.

We observed a group of better-performing regression model types in our selection. Ana-

lyzing their Shapley values confirms our earlier conclusion about the equal contribution of

features in better-performing estimators. In particular, consider the Shapley values for the HR

estimator — one with a lower ranking across all error measures —– depicted in Figure 5.9.

Figure 5.9: EPS: HR Shapley values force plots

(a) HP Shapley values (b) FAST Shapley values

In Figure 5.9, there is rarely a single data observation that affects the outcome the most.

Additionally, the range of feature impact on the estimation differs: in the HP data set, the most

influential feature, ‘lag 1’, has Shapley values in the range of +/- 0.30, while the second most

influential feature has values in the +/- 0.20 range. In contrast, for the FAST data set, the

highest impact is made by the ‘lag 1’ feature with Shapley values in the +/- 0.15 range, while
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the second most influential feature, ‘lag 4’, has an impact in the +/- 0.10 range.

This phenomenon is consistent in the interpolated FCF data sets, as shown in Figure 5.10.

The HP data set, which exhibits higher error, displays a pattern previously observed in the EPS

series. The key difference lies in the magnitude of the impact: ‘lag 1’ has an impact in the

range of +/- 1.0, while the remaining features have almost no influence. In contrast, the FAST

data set shows the opposite pattern.

Figure 5.10: FCF: HR Shapley values force plots

(a) HP Shapley values (b) FAST Shapley values

A similar effect is observed with the other top-performing estimators, including OLS, RLM,

LASSO, ARD, and BR, and other data sets given in the Appendix, Section B, Figures B-13,

B-15 for the EPS predictions and Figures B-14, B-13 for the FCF predictions. These better

performing models tend to assign the highest weight to a single feature in data sets with

higher errors, while distributing the impact more evenly across features in data sets with better

performance. The next section will summarize the results and findings of this chapter.

5.5 Chapter Conclusions

In this chapter, we conducted a series of experiments using a selection of machine learning

(ML) and statistical modeling (SM) estimators on a sample of 100 datasets, covering both EPS

and FCF time series. Our results suggest that, in sparse series, ML estimators can perform
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comparably to traditional statistical models typically used for such problems.

Specifically, the LASSO, BR, ARD, and HR estimators outperformed the ARIMA, WLS, and

SES models. Non-parametric models such as KNN, Decision Trees (DT), and Random Forests

(RF) tended to overfit, performing worse than the top models but still achieving lower MAE,

MAPE, and sMAPE scores than ARIMA and SES. The MLP estimator, likely due to its complex

structure and estimation process, exhibited the poorest performance across both EPS and FCF

series.

Robust models, those utilizing Huber loss (Robust) as the objective function, tended to

show better performance. We attribute the poor performance of certain datasets to several

factors.

First, recall that we used an expanding window approach. As we iterated through the

test subsets of each dataset, the number of training data points increased. In datasets that

showed lower error across our proposed metrics, we observed a stable high positive or negative

correlation, which either remained constant or increased as the training data expanded.

Second, in certain datasets, the features with the highest variance generally had a greater

impact on the regression outcome. The highest variance was typically observed in features

that contained outliers from the target series. Due to the sparsity of our data, outliers were

difficult to distinguish from regular data points, leading to biased estimations. In contrast, in

datasets where estimators performed better, the Shapley values indicated that the impact was

more evenly distributed across the feature set. This allowed each feature to contribute to the

estimation, with outliers exerting less influence on the overall prediction.

Third, we recognize that different estimators capture different aspects of the relationship

between the target variable and its features. This is evident from the fact that estimators

sometimes place varying weights on the same set of features.
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We propose that combining information from both ML and SM estimators could enhance

the solution to our estimation problem. Specifically, since each estimator places different

weights on various features, averaging their performance may yield better results. Furthermore,

the ‘exchange of information’ can also be achieved by using the estimated coefficients from

different models, as these will differ across estimators. This approach is explored next.



Chapter 6

Transfer Learning and Averaging

6.1 Introduction

In the previous Chapter 5, we examined the performance of ML and SE estimators on the

sparse EPS and FCF datasets. Building on top of the results from Chapter 4, we applied

two different pre-processing pipelines: Quantile Transformation to the EPS series and PHCIP

interpolation to the FCF series, respectively. After the preprocessing applied, we fed the data

to the ML and SE regression estimators in order to measure the performance of the two types

of the quantitative modeling techniques, with past lags, mean and standard deviation serving

as the input features.

Using the Friedman ranking test procedure applied to the set of error measures, namely

Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and symmetric Mean

Absolute Percentage Error (sMAPE), we identified a group of estimators that consistently

outperform other candidate estimators. This group includes both ML and SM regression

models, specifically: ARD, BR, OLS, LASSO, RLM, and HR. Additionally, in datasets with

lower error measures, these estimators tend to be impacted by a larger number of features:

144
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empirically, it is shown that in the less performing regression model-types, a single input

feature is often used by such estimators to make a prediction. The existence of a group of

consistently better performing estimators, rather than a single top-performing model-type,

suggests that we can choose a regressor suited to a given dataset. However, due to the relatively

small size of the typical datasets in our selection, even these top-performing estimators tend

to overfit to training data, meaning that a model’s performance on the training or validation

subset may not be used as indication of better out-of-sample performance of such estimator,

as evident from examination of median errors across our sample of 100 data sets in train

and test subsets. Further, it is hard to determine if statistical or machine learning estimators

perform better — across our sample of data sets ML and SE model-types tend to show similar

performance, on average.

Building on top of this argument, in this chapter we propose and test methodology that

allows to combine predictions of Statistical and Machine Learning estimators by means of

averaging and transfer learning. In particular, we let Bayesian Model Averaging determine

which model(s) performs better in the transfer learning setting, and weigh those that show

better performance more when obtaining the final prediction. Combining Statistical and ML

estimators in such a manner helps to overcome their respective limitations (in a given case).

For each dataset, the prediction is done in two steps. The first step involves obtaining

a measure of quality for each model, expressed as ‘evidence’ of high performance in the TL

domain. Without loss of generality, we assume that, if we have 100 datasets (i.e. companies),

we may use 99 of these as the TL domain, and use BMA to make a prediction for the remaining

one dataset (i.e. the ‘target’ company). In order to obtain this measure of quality for each

model, we train the respective model normally on each of the 99 datasets, resulting in 99

unique feature-coefficient vectors for a given model. Given this set of vectors, we can then use
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Kernel Density Estimation (KDE), to estimate the probability density function (pdf) within the

space of all possible coefficient configurations, for this particular set of vectors, but weighted

via their respective performance in each case. The resulting empirically-derived pdf over this

space, captures ‘evidence’ of high performance in the TL domain, which can be evaluated

for any arbitrary vector of coefficients. Therefore, once the target company has been trained

on a particular model, the resulting parameterisation can be evaluated as above, to obtain a

measure of quality for that parameterisation, as informed by the TL domain.

The second step then involves using the BWA framework: for each estimator, we use the

trained model to make a prediction for the target company, but this prediction is then weighted

according to the height on the PDF curve at the point corresponding to the particular coefficient

configuration used by the estimator. In other words, our approach weighs each prediction

according to the degree of ‘evidence of high performance’ corresponding to the particular

model coefficients, as obtained from the transfer setting. Therefore, the overall prediction for

the target company emerges as a weighted average of individual model predictions, where

higher weights indicate better anticipated estimator performance, given knowledge obtained

from external data.

In other words, our approach weighs each prediction according to the degree of ‘evidence

of high performance’ corresponding to the particular model coefficients, as obtained from

the transfer setting. Therefore, predictions for each data point represent a weighted average,

where higher weights indicate better estimator performance with respect to external data.

This chapter is structured as follows: Section 6.2 outlines methodology used for Transfer

Learning Averaging framework. Immediately after, Section 6.3 shows the results of our

experiments. Conclusions are the final part of this Chapter, outlined in Section 6.5.
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6.2 Methodology

In Section 6.1, we stated that a prediction for an unseen data point is represented as the

weighted average over a number of predictions — one per estimator — obtained from a pool

of estimators involving both machine learning (ML) and statistical models (SE). The weight

assigned to each estimator is determined by a probability density score, which reflects the

degree of evidence regarding how well the estimator performs over the domain of possible

coefficient configurations, as determined from other datasets. This score is inferred using

Kernel Density Estimation (KDE), as explained in Section 6.2.1. For this inference step, we

assume a linear dependency of the target variable, EPS, on its past lags, mean, and standard

deviation moments. This assumption is supported by the simplicity and interpretability of

linear models.

In other words, our regression model can be expressed akin to Equation 6.1:

ŷt = θ1 × yt−1 + ...+ θ5 × yt−5 + θ6 × µ+ θ7 × σ (6.1)

where the estimate ŷt is linearly dependent on its five past lags, mean (µ), and standard

deviation (σ). For all datasets, the number of lags is fixed for two reasons. First, five lags

capture relatively recent information. Second, our methodology requires that every estimator

have a consistent number of input features for each training dataset, such that all companies

can be expressed as equivalent vectors whose components reflect the respective coefficients.

Because a collection of coefficients serves as the input matrix to the Kernel Density Estimation

when building the pdf, we cannot have one company with 2 lags and another with 4 — the

input matrix must have the same number of elements in every row. Second, as mentioned in

Chapter 4, we use the Akaike Information Criterion to pick the appropriate number of lags per

data set. Empirically, we observed that the total majority of companies in our sample of 100
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data sets, show smallest AIC at 5 lags. Those with fewer lags show no differences in our key

error measures.

As established by the results in Chapter 4, we apply two separate data preprocessing

pipelines for the respective series. Specifically, for both forming the parameterization space

and subsequent estimation, we apply Quantile Transformation to the EPS series and PCHIP

interpolation to the PCHIP series. The next section introduces the methodology we pursue in

this chapter.

6.2.1 Transfer Learning Averaging Methodology

Transfer Learning allows compensating for individual estimators’ lack of data observations

by using information available from other, similar domains, providing general and thus

‘transferrable’ information about the problem. The main advantage of our approach is that

knowledge is shared between estimators within the same data domain. We employ Bayesian

Averaging of Statistical and Machine Learning regression models to combine their predictions.

As will be explained later in this section, this method allows us to dynamically assign a weight

to each estimator’s prediction, with the weights mathematically constrained between 0 and

1. Dynamic assignment is due to the fact that weights are directly tied to each estimator’s

performance on the other 99 data sets. For comparison, the simple average would assign the

same weight to every estimator, regardless of its performance. As a result, the prediction in

our methodology is expressed as Equation 6.2.1.

P̄n =

∑K
k=1D

(k)
n P

(k)
n∑K

k=1D
(k)
n

(6.2)
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where P̄n denotes a prediction for data set n made with algorithm k, k represents an algorithm

from the set of K algorithms, and Dk is the density score for algorithm k obtained using Kernel

Density Estimation, serving as a weighting that reflects the ‘evidence’ for that model: the

extent to which the model is known to perform well more generally (i.e. when considering all

datasets). In other words, the numerator is the sum of predictions from candidate algorithms,

pre-multiplied by the respective algorithms’ density score. The denominator is the sum of

density scores across all algorithms for the given data set. The density score here refers to

the probability of algorithm k’s parameterization within the parameterization space, obtained

from other datasets. Since the density score for a specific model type is divided by the sum

of densities for all model types used, it is ensured that the density score for each individual

model can be treated as a weight: the result of this division will be scaled between 0 and 1.

The parameterization space consists of the coefficients of algorithm k with respect to other

datasets, excluding the one for which we make a forecast, to avoid data leakage. For the set of

100 companies used, the parameterization space is a matrix Sm×(N−1), with m denoting the

number of coefficients, and N being the total number of datasets, excluding the one for which

we make forecasts. m coincides with the number of features used (7, as per Equation 6.1),

and N is equal to 99, as we run experiments for 100 companies.

As explained, the parameterization space is used as in the input for the Kernel Density

estimation, mathematically expressed as:

τ(θn;h) =
1

h
√
2π

exp

{
−1

2
· θ

⊤
n θn

h2

}
(6.3)

Here, τ(x;h) represents the kernel function, θ(k)
n denotes the optimal coefficient vector for

dataset n (given algorithm k), and h is the bandwidth parameter, which controls the size of the

kernel’s ‘local neighbourhood’, and thus the smoothness of the resulting density function. In
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our experiments, the Gaussian kernel is used with h = 1. We acknowledge that for the choice

of the bandwidth h more complex and dynamic methods exist. However, our decision to set

h = 1 as fixed and symmetric is due to our intention to keep the model averaging process

simple and digestible for comparison. Further, we empirically observed that standard deviation

of the coefficients of both EPS and FCF regressions in the Transfer set is approximately 1,

making h = 1 a reasonable choice.

For an unseen set of regression parameters, the computation of the density score is given

as:

D(k)
n =

N−1∑
i=1

w
(k)
i · τ

(
θ
(k)
i − θ(k)

n

)
N−1∑
i=1

w
(k)
i

(6.4)

where D
(k)
n is the density score, θ(k)

n is the point in the parameterisation domain where this

density is being evaluated, θ(k)
i is the resulting parameterisation vector for company i after

having being trained with algorithm k, and finally the term w
(k)
i denotes the weight given

to company i, serving as a measure of how well algorithm k performs on dataset i, and is

obtained by applying the following logistic function to the MSE score:

wk
i = 1− 1

1 + exp{−ϵ(k)i }
(6.5)

where ϵ
(k)
i is the Mean Squared Regression Error (MSE), calculated over the training subset of

respective data set. This is because our data sets are limited in number of observations. In

particular, the training data is subset our estimators used for fitting: in case of overfitting, the

MSE would result in extremely low values not representative of the actual fitness. Additionally,

computing it over the validation set would result, again, in an extremely low MSE value for
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those estimators that we fine-tune (the ML branch). Hence, using the train and validation sets

represents the only viable trade-off for computing the MSE for our purposes.

In other words, we estimate the prior probability distribution of each model’s parameter

space by fitting and adding Gaussian kernels at the specific parameter vectors of each of

the other 99 companies, weighted by their ‘performance’; D(k)
n then represents the height of

the resulting probability distribution at position θ
(k)
n . Note that, without the w

(k)
i weights,

the density estimation would have only given evidence of ‘how common’ θ(k)n is, based on

information coming from the other companies. If the parameterization is seen as some sort

of ‘profile’ or ‘personality’ of a company (in the context of algorithm k), then the density at

θ
(k)
n represents how well that personality is represented in the Transfer set. The addition of w

terms converts this to making the density at each point a measure of the degree of evidence

that the parameterization is performant, or how well that company is represented, judging

preferentially on the basis of performant companies rather than over all companies. Due to

the sparsity of our datasets, the MSE is computed on both the training and validation sets

combined.

Apart from the newly proposed transfer learning approach, our pipelines outlined in

Chapter 4 stay the same. We use the expanding window forecasting approach to forecast

in the test set. In EPS series, we use the Quantile Transformation to both the target and

features’ variables. In FCF series, we use PCHIP interpolation that allows us to assume the

new data arrival on the weekly, rather than quarterly basis. These tools were also applied

to the parametrization space used for KDE estimation: EPS coefficients are estimated on the

transformed data and FCF parameters on the interpolated series.

In the next section, we report results of our experiments.
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6.3 Results

In this section, we present the results of applying transfer learning with a Bayesian averaging

component to the algorithm selection discussed in the previous subsection, including ARD,

BR, HR, LASSO, OLS, RLM, and WLS. Effectively, these estimators represent OLS variants;

the trained coefficients are directly comparable to the coefficients of a standard OLS model,

although with varying cost functions and parameter regulation methods. In practice, models

such as ARIMA or MLP could also have been included in our experiments; their coefficient space

would have been dimensionally different from that of the aforementioned seven estimators,

ruling out the direct comparison of the KDE spaces. Hence, we avoid using them for transfer

learning experiments.

In order to draw the comparison of how our methodology stands against the use of a

single regression model type, we used the top-performers — the highest ranked estimators as

established with the Friedman Average ranking statistical test in Chapter 5, as the benchmark

models for this set of experiments, summarized for convenience in Table 6.1.

Table 6.1: Benchmark results summary

Series Type EPS FCF

Error Measure MAE MAPE sMAPE MAE MAPE sMAPE

Control Estimator OLS BR HR RLM LASSO RLM

Mean 0.75165 1.17E+12 30.55336 0.91958 1.46585 35.81909

Standard Deviation 0.77237 7.86E+12 18.62303 0.98416 2.54057 18.01686

Min 0.02581 0.07831 4.09854 0.10146 0.16362 7.15913

Median 0.51874 0.67303 27.66093 0.64755 0.90572 34.6885

Max 6.21485 7.23E+13 74.59926 8.18703 23.8392 77.05792

As per Table 6.1, our benchmarks are OLS, BR and HR for EPS, and RLM, LASSO and RLM

again, for FCF series, with respect to error measures: MAE, MAPE, sMAPE.
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In addition to these single estimators, we employ the simple (‘NAIVE’) averaging of the

aforementioned estimators for the comparative purposes, i.e. whether our methodology beats

the simple averaging, where each estimator has even contribution to the prediction outcome.

By design of our methodology the number of estimators to be used for averaging can

be treated as a hyper-parameter. Therefore, apart from combining all seven estimators, we

also explore combinations of these estimators in pairs, triplets, and other groupings. We first

present results of the EPS series, followed by those of FCF experiments.

6.3.1 EPS results

The top-performing combinations, listed in Table 6.2, are identified by ranking them using

the Friedman test across all possible combinations for each respective error measure. For

simplicity, the averaging results are denoted as ‘BWA(n)’, where ‘n’ represents the number of

estimators combined (from 2 to 6).

Table 6.2: EPS: Top-ranked model-types combinations. BWA(n) denotes the number n of models

used for averaging

COMBINATION MAE MAPE sMAPE

Baseline OLS BR HR

BWA(2) HR-ARD ARD-BR HR-BR

BWA(3) HR-ARD-BR HR-ARD-BR RLM-HR-BR

BWA(4) RLM-HR-ARD-BR OLS-LASSO-HR-ARD RLM-HR-ARD-BR

BWA(5) OLS-RLM-HR-ARD-BR OLS-RLM-LASSO-HR-ARD OLS-RLM-HR-ARD-BR

BWA(6) OLS-RLM-HR-ARD-BR-WLS OLS-RLM-LASSO-HR-ARD-BR OLS-RLM-HR-ARD-BR-WLS

Table 6.3 outlines the summary of error distributions for the transfer learning experiment.
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Notice that, ‘BWA(7)’ denotes the result of averaging of all seven model-types and ‘NAIVE’

represents the simple average methodology.

These results suggest that the predictions made with our methodology bring benefits in

terms of increasing the accuracy of forecasts as compared to using the individual estimator

(referred to as ‘Baseline’) and simple averaging of the same 7 regressors (referred to as ‘NAIVE’).

Notably, the standard deviation decreases when multiple estimators are used for prediction.

Next, Table 6.4 presents the final Friedman test comparison of the combinations from Table

6.2.

The Friedman average ranking test is conducted in two steps. In the first step, regression

methods are ranked for each data set based on their performance (i.e., MAE, MAPE, or sMAPE),

with a higher rank indicating lower error. The average rank, referred to as ‘Rank’ in Table 6.4,

for each method is then computed across all data sets.

In the second step, the method with the highest average rank—referred to as the control

method (marked as ‘control’ in Table 6.4) — is statistically compared to the others. We use the

Hommel’s post-hoc correction to evaluate significance at the 5% level. The null hypothesis

is that all methods (i.e., the OLS regression errors, measured as MAE, MAPE and sMAPE,

respectively) are drawn from the same distribution.

Results depicted in Table 6.4 suggest important implications. For MAE, MAPE and sMAPE,

there exists a combination of fewer than 7 model-types that outperforms the single benchmark

estimator at a 5% significance level. Moreover, the result of combining all 7 model-types is also

statistically outperformed by a combination of fewer estimators at a 5% significance level. In

particular, the combination of RLM-HR-ARD-BR is the control for the MAE measure. Similarly,

OLS-RLM-LASSO-HR-ARD is the top-ranked (control) combination for MAPE measures. Finally,

RLM-HR-BR is the control combination for sMAPE error measurements. Notably, the ‘naive’
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Table 6.3: EPS: Transfer Learning regression error summary statistics over 100 companies.

Minimum value in each category is highlighted in boldface

Method Error Measure Mean Std. Dev. Min Median Max

Baseline

MAE 0.75165 0.77237 0.02581 0.51874 6.21485

MAPE 1.167E+12 7.858E+12 7.831E-02 6.730E-01 7.230E+13

sMAPE 30.5533 18.6230 4.09854 27.6609 74.5992

NAIVE

MAE 0.75242 0.72370 0.03355 0.51076 4.30845

MAPE 1.195E+12 8.480E+12 8.142E-02 7.227E-01 8.020E+13

sMAPE 30.7137 18.1118 4.35476 27.5513 79.6623

BWA(2)

MAE 0.63659 0.55620 0.02003 0.44960 2.90813

MAPE 7.768E+11 6.323E+12 5.644E-02 6.284E-01 6.220E+13

sMAPE 27.31376 17.83229 2.849486 24.25039 68.74795

BWA(3)

MAE 0.63984 0.55809 0.02035 0.45729 2.90617

MAPE 7.995E+11 6.189E+12 5.916E-02 6.388E-01 6.030E+13

sMAPE 27.13541 17.67014 2.82522 24.76198 67.55550

BWA(4)

MAE 0.636033 0.55564 0.020394 0.45008 2.90167

MAPE 7.712E+11 6.941E+12 7.653E-02 6.156E-01 6.880E+13

sMAPE 27.37324 17.87506 2.883657 24.47756 68.93462

BWA(5)

MAE 0.636826 0.55171 0.02049 0.45524 2.91703

MAPE 7.865E+11 7.081E+12 6.622E-02 6.266E-01 7.02E+13

sMAPE 27.41672 17.90846 2.891734 24.45839 70.90860

BWA(6)

MAE 0.643041 0.552278 0.020137 0.463891 2.933588

MAPE 7.693E+11 6.911E+12 6.270E-02 6.310E-01 6.850E+13

sMAPE 27.57921 17.77825 2.81045 24.43242 71.22289

BWA(7)

MAE 0.649708 0.560237 0.020057 0.460913 2.936132

MAPE 8.462E+11 7.293E+12 5.678E-02 6.401E-01 7.220E+13

sMAPE 28.13213 18.12167 2.856022 24.69830 74.78230
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Table 6.4: EPS: Friedman Test results. The Hommel’s post-hoc correction p-value (the ‘p-val’

column) in boldface indicate statistical significance at 5% significance against the ‘control’ method.

MAE MAPE sMAPE

Method Rank p-val

BWA(4) 3.51 control

BWA(2) 3.63 7.29E-01

BWA(5) 3.86 6.25E-01

BWA(3) 3.99 4.68E-01

BWA(6) 4.21 1.86E-01

BWA(7) 4.82 7.79E-04

NAIVE 4.95 1.94E-04

Baseline 7.03 2.06E-23

Method Rank p-val

BWA(5) 3.695 control

BWA(6) 3.75 8.62E-01

BWA(4) 3.83 8.62E-01

BWA(2) 3.98 8.62E-01

BWA(3) 4.16 7.18E-01

BWA(7) 4.55 6.79E-02

NAIVE 5.42 3.82E-06

Baseline 6.61 2.75E-16

Method Rank p-val

BWA(3) 3.15 control

BWA(2) 3.43 4.19E-01

BWA(4) 3.75 2.12E-01

BWA(5) 4.12 1.53E-02

BWA(6) 4.17 1.02E-02

BWA(7) 5.25 6.71E-09

NAIVE 5.28 4.03E-09

Baseline 6.89 2.50E-26

averaging technique performs worse compared to the control methodology. This is likely

because each estimator is assigned an equal weight, resulting in a small contribution from each

(since the averaging assigns the same weight to all estimators). This highlights the advantages

of our proposed methodology, which allows for dynamic weighting based on the performance

of each estimator on other, similar datasets.

We next consider the implications of our methodology to the FCF data sets.

6.3.2 FCF results

We followed the same procedure as described in Section 6.3.1 to identify the top-ranked

combinations in each category. These results are summarized in Table 6.5.

Table 6.6 depicts summary statistics of results of our proposed methodology, the naive

approach and baseline results.
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Table 6.5: FCF: Top-ranked model-types combinations. BWA(n) denotes the number n of models

used for averaging

COMBINATION MAE MAPE sMAPE

Baseline RLM LASSO RLM

BWA(2) LASSO-HR LASSO-HR HR-ARD

BWA(3) RLM-LASSO-HR LASSO-HR-ARD RLM-HR-ARD

BWA(4) RLM-LASSO-HR-ARD RLM-LASSO-HR-ARD RLM-LASSO-HR-ARD

BWA(5) OLS-RLM-LASSO-HR-ARD OLS-RLM-LASSO-HR-ARD OLS-RLM-HR-ARD-BR

BWA(6) OLS-RLM-LASSO-HR-ARD-BR OLS-RLM-LASSO-HR-ARD-BR OLS-RLM-LASSO-HR-ARD-BR

Results for the FCF differ from those of the EPS series. First, the minimum average MAPE

and sMAPE are achieved by the baseline model. Additionally, the lowest standard deviation

is attained by the combination of 6 model-types (BWA(6)). The lowest median MAPE is also

produced by the baseline model. At the same time, the lowest median MAE and sMAPE results

are achieved by BWA(4) and BWA(3), respectively. Now, consider how these results translate

into the Friedman ranking test, presented in Table 6.7.

The Friedman average ranking test is conducted in two steps. In the first step, regression

methods are ranked for each data set based on their performance (i.e., MAE, MAPE, or sMAPE),

with a higher rank indicating lower error. The average rank, referred to as ‘Rank’ in Table 6.7,

for each method is then computed across all data sets.

In the second step, the method with the highest average rank—referred to as the control

method (marked as ‘control’ in Table 6.7) — is statistically compared to the others. We use the

Hommel’s post-hoc correction to evaluate significance at the 5% level. The null hypothesis

is that all methods (i.e., the OLS regression errors, measured as MAE, MAPE and sMAPE,
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Table 6.6: FCF: Transfer Learning error-score summary statistics over 100 companies. Minimum

value in each category is highlighted in boldface

Method Error measure Mean Std. Dev. Min Median Max

Baseline

MAE 0.919575 0.98416 0.101457 0.647547 8.18703

MAPE 1.465855 2.54057 0.163621 0.905719 23.83922

sMAPE 35.81909 18.01686 7.159129 34.6885 77.05792

NAIVE

MAE 0.92265 0.98386 0.10299 0.64831 8.14012

MAPE 1.57604 2.43811 0.15067 0.95085 21.8007

sMAPE 36.05695 17.94680 7.712541 34.07787 73.93169

BWA(2)

MAE 0.913353 0.97373 0.113626 0.642767 8.097124

MAPE 1.518504 2.501799 0.149569 0.959443 22.57839

sMAPE 35.92945 18.37849 7.278942 34.46989 82.62183

BWA(3)

MAE 0.914061 0.978805 0.104367 0.641402 8.150634

MAPE 1.539032 2.489742 0.148962 0.954749 22.25185

sMAPE 35.92804 18.19211 7.270376 34.43649 82.38804

BWA(4)

MAE 0.922915 1.031578 0.100349 0.636046 8.804111

MAPE 1.556182 2.503543 0.14757 0.952017 22.15925

sMAPE 36.08357 18.24624 7.262758 34.67848 81.35213

BWA(5)

MAE 0.92679 1.035178 0.0985 0.641428 8.837274

MAPE 1.566158 2.490003 0.147023 0.96355 21.85575

sMAPE 36.27452 18.41871 7.288516 34.69977 80.97185

BWA(6)

MAE 0.931226 1.046976 0.09773 0.645918 8.983521

MAPE 1.571833 2.480273 0.147078 0.986959 21.80394

sMAPE 38.62848 20.02297 7.32137 36.5014 96.88514

BWA(7)

MAE 1.080065 1.311022 0.112664 0.713509 11.21646

MAPE 1.827305 2.601091 0.148318 1.089375 21.68352

sMAPE 38.64761 20.08558 7.440908 36.4191 96.82387
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respectively) are drawn from the same distribution.

Table 6.7: FCF: Friedman Test results. The Hommel’s post-hoc correction p-value (the ‘p-val’

column) in boldface indicate statistical significance at 5% significance against the ‘control’ method.

MAE MAPE sMAPE

Method Rank P-Val

BWA(4) 3.80 control

BWA(3) 4.04 4.88E-01

BWA(2) 4.22 4.51E-01

BWA(5) 4.29 3.38E-01

Baseline 4.34 3.38E-01

BWA(6) 4.65 7.07E-02

NAIVE 4.66 6.52E-02

BWA(7) 6.00 1.50E-09

Method Rank P-Val

BWA(2) 3.69 control

BWA(4) 3.99 3.86E-01

BWA(3) 4.00 3.86E-01

Baseline 4.11 3.86E-01

BWA(5) 4.58 4.08E-02

NAIVE 4.66 2.55E-02

BWA(6) 5.05 5.18E-04

BWA(7) 5.92 8.50E-10

Method Rank P-Val

Baseline 3.80 control

BWA(3) 3.94 6.86E-01

BWA(2) 3.99 6.86E-01

BWA(4) 4.28 4.98E-01

NAIVE 4.44 2.59E-01

BWA(5) 4.51 1.62E-01

BWA(7) 5.50 5.54E-06

BWA(6) 5.54 3.23E-06

From Table 6.7 we observe that the results of applying our methodology to the FCF data

sets is drastically different from those of the EPS. In particular, we observe that BWA(4)

is the ‘control’ methodology in MAE error measurement group, significant only against the

BWA(7) — the transfer learning methodology that combines all 7 estimators, with Baseline

and naive averaging approaches ranked 4.34 and 4.66, respectively. Similarly, the transfer

learning BWA(2) methodology is the ‘control’ forecasting approach in MAPE group, significant

against three other methodologies, namely: naive, BWA(6) and BWA(7). Finally, the sMAPE

error measurement group is the only one where the Baseline approach — a single estimator,

is the ‘control’ methodology, significant against the BWA(7) and BWA(6) transfer learning

regressions.

From both the EPS and FCF results, we observe that our methodology is helpful at minimiz-
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ing the regression error, in the majority cases. Specifically, we saw that the in the EPS case, the

transfer learning approach is better than the baseline and the naive averaging approaches at a

statistical significance. At the same time, we saw that in the FCF case, the transfer learning is

the ‘control’ approach in two our of three regression error measures. We acknowledge the fact

that, based on the results from this section, it could be said that the improvement over the

baseline results is “tiny”, given the complexity of our proposed approach. However, it is worth

emphasizing the fact that the EPS and FCF predictions will be used as inputs to the valuation

models. As explained in Chapter 2, these valuation methods represent equations where the

estimated next quarter FCF/EPS value is taken in relation to some other variables. Therefore,

as will be discussed in depth in the next Chapter 7, even a seemingly insignificant improvement

in the regression error measurement may lead to improved monetary gains from one financial

quarter onto the next. In turn, that leads to larger gains, when profits are measured over

longer periods of time. Before going deeper into applied analysis of our proposed model, we

would like to conduct a further analysis of our transfer learning results in the next section.

6.4 Results Discussion

For the interpretation of results in this chapter, we use the two data sets, namely Caterpillar

Inc. (CAT) and eBay Inc. (EBAY) as the representative company for demonstration purposes in

this part, with other 8 examples randomly picked from the pool of 100 data sets present in the

Appendix, Section C of this thesis.

Examination of Tables 6.4 and 6.7 reveals a notable finding: the weighted with the aid

of transfer learning average of statistical and ML estimators generally improves performance

on sparse datasets. Importantly, the transfer learning component of our methodology assigns
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greater weight to estimators that perform better across most datasets. However, we observed

that combining all 7 proposed models performed worse and was statistically outperformed by

certain subsets, even to a degree of statistical significance as observed in the FCF cases.

In all three cases, the naive averaging technique is also worse (statistically significantly

worse in the EPS case) than the control transfer learning-based averaging method. This

phenomenon can be attributed to the fact that in our framework, each estimator is assigned

a weight in the density approximation to the parameter space, although some weights may

be marginal. In our methodology, the number of models is considered as a hyperparameter

— a higher number of estimators leads to a more complex prediction being made. What we

observe is effectively more complex models overfitting, yet there is an optimal complexity for

our Bayesian Model Averaging approach; e.g., in the optimal model bias-variance balance

sense.

As an example of this, Figures 6.1 and 6.2 show Caterpillar Inc., EPS and FCF datasets,

respectively, with the same graphs for other data sets given the Appendix Section C, Figure

C-3 for EPS and Figure C-4.

We can see that in some areas of the the EPS timeline (e.g., up to quarter 14 on the

‘EPS-CAT’ graph), predictions from various single estimators are fairly consistent — they are

‘grouped’ or ‘clustered’ with each other, whereas from quarter 15 onwards the opposite effect

emerges: predictions made by estimators are more spread around the true value, visibly distant

from each other. We observe the same behaviour on the ‘CAT-EBAY’ graph: the majority of

predictions done by various estimators are ‘grouped’ together, visibly not far from a genuine

data point, with few outlier cases around the outlier at quarter 11.

Similarly, estimators yield such behaviour for the FCF series, with WLS often making

extremely high or low predictions regarding the next quarter’s value: as indicated by the pink
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Figure 6.1: EPS: Single estimators; test set predictions. Dots denote individual estimator
predictions, solid line denotes actual data.

(a) EPS-CAT: Single Estimators Predictions

(b) EPS-EBAY: Single Estimators Predictions
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Figure 6.2: FCF: Single estimators; test set predictions. Dots denote individual estimator
predictions, solid line denotes actual data.

(a) FCF-CAT: Single Estimators Predictions

(b) FCF-EBAY: Single Estimators Predictions

dots, at first, 8th and 17th quarters from the CAT predictions, evident from the ‘FCF-CAT’

figure. The ‘FCF-EBAY’ figure supports this observation. Further, visibly all estimators tend to

over-/under-shoot the actual series, possibly due to the volatility of past lags as discussed in

Chapters 4 and 5 for the dynamic FCF values. Otherwise, the majority of estimators tend to

predict approximately similar values differing in decimal places.

The Friedman average ranking results from Tables 6.4 and 6.7 would suggest that excluding

algorithms with worse rank from the averaging process might lead to improved performance.

Figures 6.3 and 6.4 therefore shows forecasts for 2, 4, and 7 averaged model-types for

representative EPS and FCF data sets, respectively.
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Figure 6.3: EPS Transfer Learning results; test set predictions. Dotted lines denote averaged
predictions of 2, 4, and 7 models. Solid line denotes actual data.

(a) EPS-CAT: BWA(n) Predictions

(b) EPS-EBAY: BWA(n) Predictions
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Figure 6.4: FCF Transfer Learning results; test set predictions. Dotted lines denote averaged
predictions of 2, 4, and 7 models. Solid line denotes actual data

(a) FCF-CAT: BWA(n) Predictions

(b) FCF-EBAY: BWA(n) Predictions

We note that in the EPS and FCF series, despite the fact that the average ranking of the

BWA(4) is generally higher than that of BWA(7), which signals a better performance of the

former, in this particular data set there does not appear to be too much visible difference

between averaged estimators.

Rarely, there is a difference in the FCF predictions: BWA(4) occasionally makes visibly

higher or lower prediction of the target series. This is unsurprising to an extent, since we

would expect the ‘better’ estimators to contribute the lion’s share to the averaging process.



166 CHAPTER 6. Transfer Learning

Extreme weight values would be required for the ‘worse’ estimators to significantly influence

the end-result (and we do not observe such extreme values in this particular example). We

also note that the averaged algorithms are not only more consistent with each other, but also

with respect to the underlying ground truth compared to the range of individual predictions

from Figures 6.1 and 6.2. This observation can be extrapolated to other series: observe similar

patterns in Figures C-1 for the EPS and Figures C-2 for the FCF data sets, respectively, in the

Appendix Section C.

Another finding aligns with the theory: averaging results of estimators with diverse

optimization and penalty functions yields consistently better results [23]. Specifically, superior

performance tends to arise from models employing varied cost functions, as outlined in

Chapter 2, as well as different coefficient penalty characteristics (L1 and L2 regularization).

Furthermore, both Statistical Models (SE) and Machine Learning (ML) estimators capture

distinct information from the series. Therefore, the weighted average of all estimators, both SE

and ML where weight is assigned given how well an estimator fits similar data sets, consistently

yields higher accuracy compared to using a single estimator. In next section we summarize our

findings for this chapter.

6.5 Conclusion

This chapter introduces a transfer learning technique for averaging predictions over multiple

models, by leveraging external information regarding the model’s performance when evaluated

on similar datasets.

Our approach assigns weights to estimators by considering how ‘likely’ this estimator’s

parameter vector is, with reference to the empirical probability distribution of all possible
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parameterizations resulting from the application of the same estimator onto other, external

datasets. As this empirical distribution is obtained via a Kernel Density Estimation process,

modifying the contribution of each dataset’s kernel according to its performance further

modifies the underlying distribution. This adjustment expresses not only how ‘likely’ but also

how ‘performant’ the estimator is at any particular location in the parameterization space.

These weights can then be used as model priors in a Bayesian averaging process, serving as

weights that dictate the contribution of each estimator onto the final prediction.

We found that combining up to 5 models generally improves forecasting accuracy in most

cases of EPS and FCF data sets, compared to either including all the proposed estimators

into the averaging process or using estimators individually, especially in sparse datasets. This

method effectively integrates insights from both ML and Statistical estimators.

This chapter introduced the final estimation methodology to the EPS and FCF series. In

next chapter, we apply predictions of those respective series to the Forward Price/Earnings and

Discounted Cash Flows valuation models, explained in greater details in Chapter 2, in order to

establish the economic benefits our models brings to the fundamental investment procedure.



Chapter 7

Out-Of-Sample Testing

7.1 Introduction

In this chapter, we demonstrate that predicting the Earnings Per Share (EPS) and Free Cash

Flows (FCF) with our proposed transfer learning approach yields practical applications when

the next quarter estimates are used as inputs to the Price-Earnings (PE) and Discounted Cash

Flows (DCF) models, respectively. Valuation models are used by fundamental investors to

derive the intrinsic value of a business, which, in contrast to the market price, states the price

worth paying for a stock, given its future prospects. For a more rigorous treatment of these

and other valuation methods refer to Sections 2.2.1 and 2.2.2 of Chapter 2 of this thesis.

The primary objective of this chapter is to determine whether the proposed forecasting

methodology enhances the PE and FCF fundamental investment approaches. Specifically,

we assess the performance of a stock portfolio in which intrinsic value fo stocks exceeds the

market price at a given point in time. As discussed in Chapter 2, intrinsic value represents the

reasonable price one should pay for a stock based on its future prospects [2].

The intrinsic value is calculated using valuation models. For this study, we employed two

168
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such models. The first is the PE model, which incorporates the predicted EPS value for the

upcoming quarter. The second is the DCF model, which relies on the predicted FCF for the

same period.

In this thesis, our primary focus has been to identify the regression methodology that

minimizes error when making quarter-ahead predictions for EPS and FCF target values,

respectively. Hence, in Chapter 6, we introduced the transfer learning method, which combines

the predictive power of the top-performing group of ML and SE estimators identified in Chapter

5. Additionally, Chapter 4 discusses the properties of these series, outlining the pipeline that

interpolates the FCF values and transforms the EPS values.

This chapter presents the results of backtesting the valuation techniques augmented with

our methodology. Backtesting allows us to assess how the portfolio performed over a specified

period of time. A portfolio of stocks refers to a group of financial securities purchased according

to specific guidelines. In our case, these guidelines are outlined in Chapter 2: we add a stock

to the portfolio if its intrinsic value exceeds the market price at time t, and sell the stock if it

has previously been purchased and its intrinsic value is now lower than the market price at

time t.

We benchmark our portfolios against the Standard and Poor’s 500 broad market index,

S&P 500 for short. The market index is also a portfolio of stocks: the S&P 500 is the collection

of more than 500 largest (by market capitalization) companies, traded on the U.S. stock

exchanges. The market capitalization is the total worth of a company, given its current market

price and the number of shares in circulation, physically issued by a company, at a point in

time. The S&P500 index was chosen because it includes companies from various sectors,

representing a diversified portfolio of stocks, which we consider as a potential alternative

to the portfolios created in this study. More specific guidelines regarding the backtesting
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methodology are outlined in Section 7.2. The experimental setup is described in Section 7.3,

while the results and their analysis are presented in Section 7.4. Conclusions for this section

are provided in Section 7.5.

7.2 Methodology

The need for more accurate forecasts arises because overstatement or understatement of

EPS/FCF values can lead to financial losses. Capturing it with minimal error results in financial

gains or the avoidance of financial catastrophe.

To measure the benefits our proposed methodology brings, we conduct back-testing, which

allows us to evaluate how a portfolio would have performed if we had bought a selection of

undervalued stocks in a past period. ‘Undervalued’ in this context means that its intrinsic value

is higher than its market price.

In this section, we first outline the valuation rules followed by our program. These rules

are designed to mimic the decision-making process undertaken by a fundamental investor

when determining the intrinsic value of a stock. The rules are detailed in Section 7.2.1. The

benefits an investor gains from the proposed regression approach are measured using the

standard portfolio performance ratios described in Section 7.2.2.

7.2.1 Simulation procedure

Generally, our simulation program is designed to mimic a decision-making process akin to

that of a fundamental investor. Every day, thousands of financial professionals study financial

reports produced by companies to determine the intrinsic value of a stock. Their aim is to

assess the prospects of a particular stock for the next financial period.
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Our program works in a similar way. At a high level, the program scans through its

investment universe of 100 stocks and computes the DCF/PE intrinsic values for each. Then, if

an intrinsic value is higher than the price of a stock at any point during the quarter, the stock

will be added to the portfolio; otherwise, it will be ignored. The stock is then held until the

next quarter, during which the program evaluates it again. If its intrinsic value is less than the

market price, the stock will be sold; otherwise, it will continue to be held.

A stock cannot be bought multiple times, as this would violate our principle of equal

contribution to the portfolio and force us to optimize the portfolio weights. We avoid this,

as the portfolio’s performance could then be attributed to the optimization process rather

than the stock selection process, which is the primary objective of this study. We are more

inclined toward observing the effects of portfolio formation rather than maximizing portfolio

returns. In other words, since our study primarily focuses on the impact of forecasting accuracy

on portfolio performance, in terms of how this affects the portfolio’s composition over time.

In other words, since the forecasting process decides what stocks enter or leave a portfolio

at different points in time, this means that different forecasting algorithms will form very

different portfolios over a given period of time, whose financial performance can be evaluated

directly.

In light of this, the stock can exist in several states: it can either be in the portfolio or out

in the market. If a stock is in the market, it can only be bought or ignored. If a stock is in

the portfolio, it can only be held or sold. We also restrict short-selling, an investment strategy

whereby investor profits from the depreciation of an asset’s price. This restriction is due to

the fact that short selling is largely available to institutional rather than individual investors.

Additionally, this investment vehicle has limited profit potential: a stock’s price can drop by

as much as 100%. The risk then becomes infinite, as a stock can appreciate indefinitely if
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it is bought by other market participants [8]. All together, this is outside the scope of value

investment reasoning [2], which we aim to mimic through our program.

In addition, we do not consider bid/ask quotes on stocks and other liquidity nuances. The

bid price is the price at which a stock can be sold, while the ask price is the one at which it

can be purchased [5] by an investor. Therefore, in our investment simulation, every stock has

only one price: the closing price of the day. The bid/ask quotes are updated every second

during a trading day and usually change by decimal places. Hence, their inclusion in the

simulation is not necessary, as the buy/sell procedure is executed on a quarterly basis, with

stocks held for at least 80 days (the typical number of trading days in a financial quarter).

Ignoring the bid/ask spread does not lead to major consequences, as the spread itself is

typically in decimals and would only cause a marginal effect on quarterly price appreciation or

depreciation. Furthermore, any stock held in the portfolio can be sold; there are no liquidity

constraints.

Finally, we ignore any capital gains tax imposed on profits. Capital gains tax is subject to

different jurisdictions and varies depending on the size of the stake sold as well as the profit or

loss made. Including this would overly complicate our simulation, distorting the final results

and preventing us from conducting a deeper analysis of the performance of our methodology.

In the next section, we introduce the three portfolio performance metrics used to determine

the success of our portfolio-building efforts.

7.2.2 Performance metrics

The three measures, which we explain below, operate on daily returns. Daily returns are the

percent change in stock price from one day to the next, as illustrated in Equation 7.1.
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Rp =
pd − pd−1

pd−1
(7.1)

where pd denotes the total portfolio value on day d, with pd−1 denoting the portfolio value on

the previous day, and Rp is the output of the equation. This represents the percent change in

the portfolio value — how much the value of our portfolio increased or decreased on a daily

basis.

The first portfolio performance metric we use is the Sharpe ratio, which measures the

risk-premium stock return per unit of risk [12], as expressed in Equation 7.2.

Sharpe Ratio =
E[Rp −Rf ]

σp
(7.2)

where E[] is the expectation (mathematical mean) operator, Rp represents the daily returns of

our portfolio, Rf is the risk-free rate, and σp is the standard deviation of portfolio returns on

a daily basis. Here, the numerator is the risk premium — the reward an investor gains from

holding a stock (a risk-bearing asset) over three year US Treasury bonds (the risk-free asset).

The standard deviation embedded as the denominator in the Sharpe Ratio measures daily

risk. However, it reveals nothing about systematic risk. Systematic risk refers to the potential

for losing funds due to events that affect the entire market, such as an economic recession or

a stock market collapse [151]. To account for systematic risk, financial professionals use the

Treynor Ratio, outlined in Equation 7.3.

Treynor Ratio =
E[Rp −Rf ]

βp
(7.3)

The numerator in Equation 7.3 is the same as in the Sharpe Ratio in Equation 7.2, while the

denominator is the portfolio beta, denoted as βp. The portfolio beta is found by regressing
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portfolio returns against market returns. In other words, βp is the slope coefficient of the linear

regression, where the X-input data is the market daily percent change and the y-output is the

daily portfolio returns.

The Sharpe Ratio and Treynor Ratio measure the reward gained with respect to daily

fluctuations of funds on the market and the risk of losing funds due to a financial collapse.

However, it is also important to understand how much the portfolio gains relative to the

minimum historically observed drop in portfolio value. This is what the third ratio — the

Sortino Ratio — measures [152], as presented in Equation 7.4.

Sortino Ratio =
E[Rp −Rf ]

DDp
(7.4)

where, similarly to the previous two measures, the numerator is the expectation of stock

returns net of the risk-free rate. The denominator, DDp, is the downside risk of portfolio p.

The downside risk in the Sortino Ratio is the standard deviation of daily returns below the

expected (average daily returns). The computation of downside risk is outlined in Equation

7.5.

DDp =

√√√√ 1

N

N∑
i=1

min(0, (Rp,i − E[Rp])2) (7.5)

The Sortino ratio is computed on a daily basis, where the index i = 1, . . . , N represents the

days, with N denoting the total number of days in a sample. In particular, we make use of the

min function, which selects the minimum between zero and the squared difference between

the return of portfolio p on day i and the expected (arithmetic mean) portfolio daily returns

E[Rp].

For illustrative purposes, we also disclose the expected rate of return and the standard
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deviation. However, because daily fluctuations of the prices are typically in decimal places,

we multiply both numbers by 252 — the number of trading days per year. The standard

deviation is multiplied by
√
252, as the standard deviation function represents the square root

of variance.

For all these metrics, except for the Annualized Standard Deviation, a higher value indicates

better performance of the corresponding portfolio. A higher Annualized Standard Deviation,

on the other hand, implies an increased risk for the respective portfolio, which is undesirable.

Our experiments are performed on 100 stocks and compared to the market index and the

ground true data, which is described in length in next section.

7.3 Experimental Setup

7.3.1 Data

Similarly to the previous sections, we used a sample of stocks from U.S. publicly traded com-

panies with a market capitalization of over US $1 billion, specifically from the manufacturing

industries. In earlier chapters, the same test set was used for all experiments. However, for

clarity in this section, we utilized data from Quarter 1, 2022, to Quarter 2, 2024. This subset

of EPS and FCF series was not used in previous chapters, making the tests in this section

entirely out-of-sample experiment. Tables D-1 and D-2 in the Appendix, Section D, contain

more information regarding timelines used for regression and backtesting, for each data set

in our EPS and FCF series selection, respectively. The main purpose of using the updated

timelines is to avoid the bias in our study: we do not know which methodology yields most

accurate results on the added subsets of data.

For the evaluation of financial results, we used pricing data, which enables us to compute
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various portfolio performance metrics on a daily basis. This characteristic of the pricing data

also allows us to calculate PE ratios daily. To ensure objectivity, we allow our PE-based model

to randomly select a PE ratio for the computation of intrinsic value at each quarter.

In practice, it is common to perform portfolio optimization: buy more or less of some

shares, to minimize the standard deviation or other measure of risk. In this study, we perform

no portfolio optimization, as it is outside of the scope of the present study: we seek to establish

the benefits our EPS and FCF forecasting methodology brings to the fundamental investors,

not to find the most profitable trading strategy or least volatile portfolio formation technique.

Therefore, each stock in the portfolio is assigned an equal weight. In other words, every stock

purchased by the program, following the rules outlined above, has an equal contribution to

portfolio performance.

7.3.2 Benchmarks

Up to this chapter, our study stressed the performance of various ML and SE regression

estimators in the sparse time-series data. In Chapter 5 we used a set of single estimators to

make forecasts, with Chapter 6 building on top of that narrative, by introducing a transfer

learning methodology for combining the predictive power of two branches of regression

estimators used in this study. Thus, in addition to comparing one of our portfolios to the

market index, we also compare the performance of various portfolios against each other. We

consider a collection of stocks selected using the transfer learning methodology introduced in

Chapter 6, along with those studied in Chapter 5. Specifically, we include ARIMA, a model

type that was consistently ranked lower than the top-performing estimators at a statistically

significant level. We also incorporate predictions from the ‘second-best’ estimator in each error

metric to assess whether our transfer learning methodology provides an advantage. Specifically,
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we include: LASSO, HR, OLS, ARIMA, and MLP. Further, in tandem with the previous Chapter

6 we use the naive averaging as one of the benchmarks in this chapter. We refer to the naive

averaging approach as to ‘NAIVE’ when presenting results. In our work, the naive averaging is

the simple arithmetic average across predictions made with the same collection of estimators

used as input models to our proposed transfer learning approach.

Apart from the aforementioned regression models, for certain tests we include actual data,

referred to as ‘ACT’, to demonstrate the highest possible result we can achieve, assuming

perfect foresight into the future. For practical reasons we exclude this benchmarks from

comparison procedures, such as Friedman average ranking: this portfolio exactly ‘knows’ what

the EPS/FCF value will be next quarter.

Finally, the market benchmark — the S&P 500 market index, referred to as ‘MKT’ serves

as the primary comparison parameter. The MKT represents a single alternative to the assets

in our portfolios, as it is a diversified set of more than 500 stocks (503 as of 2025, the title

‘S&P500’ is kept for historical reasons and convenience).

In the next section, we reveal the results of conducted experiments.

7.4 Results

This section is divided into several parts. First, we present the financial ratios and an overview

of the backtesting results in Subsection 7.4.1. Second, we conduct a deeper analysis of our

portfolios and the relationship between the regression error and the portfolio performance in

Subsection 7.4.2.
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7.4.1 Financial Performance

In this section, we first present the results of both DCF and PE valuation method portfolios,

followed by a Friedman test analysis to rank the portfolios. Since the objective is to maximize

reward per unit of risk, we rank the portfolios from highest to lowest ratio. We begin with the

DCF portfolios.

We used several conventions to display values in tables. ‘(TL)’ denotes portfolios where

valuation for stocks is done with predictions based on the transfer learning methodology.

Therefore, ‘(TL)PE:MAE’ refers to the portfolio, where EPS predictions used for Price-Earnings

valuation model are done with combination of estimators that act as control in the MAE

category, as per Friedman Average ranking test. In a similar way, the ‘(TL)DCF:MAPE’ denotes

the transfer learning based portfolio where the Discounted Cash Flows model is used to

perform valuations. In accordance with the previous Chapter 6, for EPS and FCF regressions,

we found the following transfer learning combinations to rank lower in each respective error

measures, summarized in Table 7.1.

Table 7.1: Highest Ranked Estimator Combinations

Error Measure EPS FCF

MAE RLM-HR-ARD-BR RLM-LASSO-HR-ARD

MAPE OLS-RLM-LASSO-HR-ARD LASSO-HR

sMAPE RLM-HR-BR RLM

Finally, the ‘(TL)DCF:ALL’ and ‘(TL)PE:ALL’ refers to transfer learning portfolios where

predictions are made by averaging the outputs of all forecasting model types, as outlined in

Chapter 6.
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We begin the presentation of our results with the DCF portfolios, which are outlined in the

next section.

DCF portfolios

Table 7.2 summarizes the ratios for the DCF portfolios and the benchmarks.

Table 7.2: DCF: Summary ratios. Best values are highlighted in boldface

Portfolio Annualized Av-

erage Return

Annualized Std.

Dev.

Sharpe Ratio Treynor Ratio Sortino Ratio

MKT 0.05032 0.18781 0.004435 0 0.006244

DCF:ACT 0.122762 0.204856 0.026342 0.000414 0.039032

(TL)DCF:ALL 0.063717 0.20659 0.008117 0.000126 0.011615

DCF:ARIMA 0.047192 0.202967 0.003133 0.000048 0.004512

DCF:HR 0.063474 0.188323 0.008823 0.000137 0.012498

DCF:LASSO 0.055429 0.216144 0.005342 0.000086 0.007695

(TL)DCF:MAE 0.05707 0.200433 0.006277 0.000098 0.009072

(TL)DCF:MAPE 0.088435 0.205076 0.015769 0.000248 0.023035

DCF:RLM 0.066265 0.201074 0.009138 0.000143 0.013246

(TL)DCF:sMAPE 0.066265 0.201074 0.009138 0.000143 0.013246

NAIVE 0.048405 0.201611 0.003533 0.000055 0.005073

Table 7.2 suggests the following implications. The highest Annualized Average Rate of

Return (‘Annualized Average Return’ in Table 7.2), is observed in the portfolio made with

transfer learning predictions produced by the highest-ranked estimators, according to the

MAPE error metric. This implies that, on an annual basis, the portfolio added an 8.8%

gain every year, compared to the market benchmark, which added approximately 5%. For

comparison, the actual data portfolio achieved a 12% annual gain.

The lowest annualized standard deviation is observed in the market portfolio. In fact, this

is the only measure where the market outperforms every portfolio in our selection. The highest
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risk measure is seen in the LASSO-based portfolio, while the transfer learning-based portfolios

all exhibit approximately 20% annualized deviations.

The highest Sharpe, Treynor, and Sortino ratios are all achieved by the transfer learning,

MAPE-based portfolios. This indicates that this portfolio, in particular, provides the highest

return per unit of daily deviation (Sharpe ratio), the best compensation for potential negative

systematic events (Treynor ratio), and the highest reward for returns below expectations

(Sortino ratio).

Next, we conduct a Friedman test ranking analysis to assess how all our portfolios are

ranked based on their respective daily portfolio returns. The results of the Friedman test are

presented in Table 7.3.

The Friedman average ranking test is conducted in two steps. In the first step, every

portfolio is ranked based on its average daily portfolio return, with a higher rank indicating

higher return. The average rank, referred to as ‘Rank’ in Table 7.3, for each method is then

computed across all data sets.

In the second step, the method with the highest average rank—referred to as the control

method (marked as ‘control’ in Table 7.3) — is statistically compared to the others. We use the

Hommel’s post-hoc correction to evaluate significance at the 5% level. The null hypothesis is

that each portfolios’ returns are drawn from the same distribution.

For comparative purposes, we exclude the portfolio based on Actual data (‘ACT’), as its

inclusion might distort the results and analysis.

The Friedman test results conducted on DCF-based daily portfolio returns, presented in

Table 7.2, suggest that the transfer-learning, MAPE-based model-type combination serves

as the control for the group. It is statistically significant against the market (MKT), naive

averaging (naive), HR, MAE, RLM, and sMAPE portfolios.
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Table 7.3: DCF: Friedman Test results. The Hommel’s post-hoc correction p-value (the ‘p-val’

column) in boldface indicate statistical significance at 5% significance against the ‘control’ method.

Portfolio Rank p-value

(TL)DCF:MAPE 5.031702899 control

(TL)DCF:ALL 5.037137681 9.76E-01

DCF:LASSO 5.083333333 9.76E-01

ARIMA 5.221014493 8.97E-01

NAÏVE 5.551630435 1.73E-02

(TL)DCF:sMAPE 5.601449275 8.85E-03

RLM 5.601449275 8.85E-03

(TL)DCF:MAE 5.727355072 9.45E-04

MKT 6.00 8.62E-07

HR 6.144927536 9.05E-09

We acknowledge that the combination of all 7 estimators, denoted as ‘(TL)DCF:ALL’ in

Table 7.3 is the second best according to average ranking, not significant against the ‘control’.

Due to its design in the transfer learning methodology, these two are bounded to be close:

possibly, predictions of estimators used in the ‘(TL)DCF:MAPE’ were assigned higher weights

in the ‘(TL)DCF:ALL’, therefore leading to almost the same result. The minor difference in

the results of the two is due to other, less accurate estimators also used in the ‘(TL)DCF:ALL’

methodology.

Next, we consider results of portfolios based on the PE valuation model.

PE portfolios

Table 7.4 summarizes the key financial ratios for PE-based portfolios.

Results presented in Table 7.4 reveal several important conclusions. In terms of annualized

return performance, the transfer-learning-based combination of all estimators portfolio, labeled
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Table 7.4: PE: Summary ratios. Best values are highlighted in boldface

Portfolio Annualized Av-

erage Return

Annualized Std.

Dev.

Sharpe Ratio Treynor Ratio Sortino Ratio

MKT 0.05032 0.18781 0.004435 0 0.006244

PE:ACT 0.158914 0.190842 0.04021 0.00052 0.058373

(TL)PE:ALL 0.152753 0.200654 0.036309 0.000483 0.053073

PE:ARD 0.093637 0.193688 0.018392 0.000255 0.026594

PE:ARIMA 0.085697 0.195623 0.015653 0.000204 0.022522

PE:HR 0.104118 0.185365 0.022779 0.000302 0.03294

(TL)PE:MAE 0.108326 0.196682 0.022813 0.000295 0.033069

(TL)PE:MAPE 0.103521 0.196846 0.021257 0.000276 0.030784

PE:OLS 0.101419 0.194783 0.020805 0.00028 0.029885

(TL)PE:sMAPE 0.116576 0.197611 0.025336 0.000329 0.036808

PE:NAIVE 0.110223 0.190443 0.024191 0.000330 0.035043

as ‘(TL)PE:ALL’, yields the highest results, gaining approximately 15.27% per annum, on

average, over the backtesting period. Notice how close returns of this portfolio are to that of

the actual data, denoted as ‘PE:ACT’, which sees a 15.89% annualized return. In comparison,

our benchmark market, labeled as MKT in Table 7.4, gains 5.03% annually. Results presented

in Table 7.4 reveal several important conclusions. In terms of annualized return performance,

the transfer-learning-based combination of all estimators portfolio, labeled as ‘(TL)PE:ALL’,

yields the highest results, gaining approximately 15.27% per annum, on average, over the

backtesting period. Notice how close this return is to the actual data portfolio, denoted as

PE:ACT, which sees a 15.89% annualized return. In comparison, our benchmark market,

labeled as MKT in Table 7.4, gains 5.03% annually.

The lowest annualized standard deviation is produced by the HR-based portfolio, which is

also smaller than that of the benchmark market portfolio, although only by decimal places.
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The transfer-learning-based portfolios are riskier than the benchmark, as risk is defined by

the standard deviation. The highest annualized deviation is produced by the ‘(TL)PE:ALL’

portfolio. Interestingly, this suggests an important implication that aligns with financial theory:

the higher the risk, the higher the potential gain [8]. It is possible that the higher standard

deviation is due to the absence of portfolio optimization, which falls outside the scope of this

work.

Once again, the transfer-learning-based portfolio, ‘(TL)PE:ALL’, displays the highest Sharpe,

Treynor, and Sortino ratios. Similar to the DCF portfolios, this indicates that this particular

portfolio offers the highest premium per unit of risk, as reflected by the Sharpe ratio. Further-

more, this portfolio provides the highest reward per unit of systematic risk, although, as with

all portfolios, that reward is close to zero. Finally, regarding the Sortino ratio, this means that

the ‘(TL)PE:ALL’ portfolio delivers the best yield even when portfolio returns fall below the

expected level.

In addition to the portfolio performance metrics outlined above, we conduct the Friedman

test to assess the statistical significance between the returns of the PE portfolios. The results of

the Friedman test are presented in Table 7.5.

The Friedman average ranking test is conducted in two steps. In the first step, each portfolio

is ranked based on its daily performance (i.e., daily return), with a higher rank indicating a

higher return. The average rank, referred to as ‘Rank’ in Table 7.5, for each method is then

computed across all data sets.

In the second step, the method with the highest average rank—referred to as the control

portfolio (marked as ‘control’ in Table 7.5) — is statistically compared to the others. We use

the Hommel’s post-hoc correction to evaluate significance at the 5% level. The null hypothesis

is that returns of each portfolio are drawn from the same distribution.
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Table 7.5: PE: Friedman Test results. The Hommel’s post-hoc correction p-value (the ‘p-value’

column) in boldface indicate statistical significance at 5% significance against the ‘control’ method.

Portfolio Rank p-value

(TL)PE:ALL 4.99 (control)

(TL)PE:sMAPE 5.32 7.36E-02

PE:ARIMA 5.36 7.36E-02

(TL)PE:MAPE 5.37 7.36E-02

(TL)PE:MAE 5.40 6.24E-02

PE:ARD 5.45 5.20E-02

PE:OLS 5.54 1.89E-02

PE:NAIVE 5.63 3.65E-03

MKT 5.84 2.89E-05

PE:HR 6.07 3.59E-08

The Friedman test procedure suggests the ‘(TL)PE:ALL’ portfolio as the control, significantly

outperforming the market benchmark and individual estimators such as HR, OLS, and ARD.

No significant difference was found among the transfer-learning-based portfolios. Additionally,

the ARIMA-based portfolio does not significantly underperform the control method.

In the next section, we conduct a more in-depth analysis of the different DCF and PE

portfolios, providing additional insights into their respective performances.

7.4.2 Results Analysis

The back-testing results suggest that each of our transfer learning portfolios generates better

daily returns than the market.

First, we consider how our portfolios performed during the back-testing period. Specifically,

we allocated an initial investment of imaginary $ 1000 for the simulation. Figure 7.1 presents

two graphs for the DCF and PE portfolios, respectively.
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Figure 7.1: The movement of $1000 invested through the simulation period

(a) DCF portfolios

(b) PE portfolios
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Our top-ranked portfolios, (TL)DCF:MAPE and (TL)PE:ALL, achieved profits of $150 and

$290, respectively. Notably, PE portfolios generally outperformed DCF portfolios, indicating

higher daily returns for the former. This could be attributed to two factors. First, the EPS,

used for PE intrinsic value estimation, exhibited generally lower errors, as discussed in earlier

chapters of this thesis. Second, EPS signals often suggest higher potential profits for investors

[11], which may drive stock prices upward. According to the PE valuation formula outlined in

Section 2, Equation 2.3, an increase in earnings compared to the previous quarter is one way

to push the intrinsic value higher. Therefore, under the rules of our simulation, a stock with

higher earnings than the current quarter will be included in the portfolio.

Apart from that, notice the tight movements of the portfolios together. Even when our

portfolios outperform the market, we still observe the dynamics of price fluctuations. This

information is reflected in the high beta coefficients of every portfolio we consider, as presented

in Table 7.6. Beta coefficient is the value obtained from regressing portfolio returns against

those of the market (simple OLS regression), where a higher coefficient is indicative of closer

co-movement of the overall market and a portfolio.

Table 7.6 provides important insights into the systematic risk of our portfolios. A higher β

value indicates that a stock or portfolio moves more in line with the market, with a value of 1

signifying perfect co-movement with the market.

This suggests that, although our PE portfolios yield higher returns, they also result in

higher systematic risk compared to the DCF portfolios. In other words, investing based on PE-

estimated intrinsic value exposes the investor to higher level of systematic risk than when using

the DCF valuation method. This can be attributed to the fact that FCF, the foundation of the

DCF formula as outlined in Chapter 2, Equation 2.8, reflects the company’s net earnings after

accounting for necessary expenses and financing operations [5]. These financing decisions
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Table 7.6: DCF and PE beta values per portfolio

DCF PE

Portfolio βp Portfolio βp

(TL)DCF:ALL 0.838256 (TL)PE:ALL 0.949428

DCF:ARIMA 0.82752 PE:ARIMA 0.94121

DCF:HR 0.763429 PE:HR 0.878958

(TL)DCF:MAE 0.805159 (TL)PE:MAE 0.956608

(TL)DCF:MAPE 0.818507 (TL)PE:MAPE 0.953621

(TL)DCF:sMAPE 0.806423 (TL)PE:sMAPE 0.958004

NAIVE 0.808683 NAIVE 0.878196

DCF:RLM 0.806423 PE:OLS 0.910183

DCF:LASSO 0.839429 PE:ARD 0.87775

are typically based on the expectation of generating higher future cash flows, often extending

beyond a single quarter [5].

In other words, the primary reason for the outlined behavior is that a company may

sacrifice short-term EPS growth in favor of increasing investments in its business, with the

expectation that these investments will generate future returns. This would be reflected in

future increases in DCF, while potentially leading to a decrease in near-term EPS.

The second reason for the higher beta of PE-based portfolios is that during economic

downturns, companies typically report a decrease in quarterly EPS, and vice versa. As a

result, an increase in a company’s EPS tends to drive a corresponding rise in its stock price.

For the majority of stocks, this increase in stock prices leads to a higher market index value,

as described by [8]. It is possible that this relationship results in a higher covariance—and

consequently a higher beta value—between the portfolios and the market.

Along with a high beta, our portfolios are also highly correlated with each other, as

indicated in Figure 7.2. This figure presents the correlation matrix of all our portfolios,
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including the market.

From Figure 7.2, DCF portfolios are moderately correlated with the market (at approx-

imately the 0.75 level), while PE portfolios exhibit very high correlations, typically greater

than 0.95. Additionally, DCF and PE portfolios show a moderate correlation with each other,

around 0.85, but not exceeding this threshold. This suggests that investors may benefit from

pursuing both strategies, as it provides some diversification, potentially minimizing losses

during systematic downturns.

Notice that our transfer learning methodology yields higher returns than both the market

and most single estimators. We also observed that PE-based portfolios generate higher returns

than DCF-based portfolios, which can be attributed to the fact that EPS estimation had lower

errors than FCF estimation. This suggests that there may be a relationship between regression

errors and portfolio performance.

To establish relationships between regression errors and portfolio returns, we conducted

correlation tests between the average and median errors for each estimation method, annual-

ized daily returns, Sharpe ratio, Treynor ratio, and Sortino ratio of our resulting portfolios. The

correlations are summarized in Tables 7.7 and 7.8, for DCF-FCF and PE-EPS series, respectively.

Note that for regression error computation, we only included the regression errors generated

by the Transfer Learning methodology.

In both cases, the correlations indicate a moderately negative relationship between regres-

sion error and the performance ratios. This suggests that a lower error corresponds to higher

daily returns on the portfolio. It is important to note that the regression error measures the

distance between model-inferred and target values. Specifically, both of these values could

be negative. Therefore, a better score indicates a smaller distance between either positive or

negative values.
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Figure 7.2: Correlations of DCF, PE and market portfolios
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Table 7.7: Correlations between DCF generated returns and FCF errors

Correlation between Annualized

Average Return

Sharpe Ratio Treynor Ratio Sortino Ratio

Average MAE -0.57984 -0.5908 -0.59592 -0.58497

Median MAE -0.58978 -0.60182 -0.60543 -0.59535

Average MAPE -0.55023 -0.55351 -0.56003 -0.54798

Median MAPE -0.54007 -0.5436 -0.54988 -0.53743

Average sMAPE -0.65564 -0.68208 -0.6805 -0.67489

Median sMAPE -0.62791 -0.64631 -0.64707 -0.63837

Table 7.8: Correlations between PE generated returns and EPS errors

Correlation between Annualized

Average Return

Sharpe Ratio Treynor Ratio Sortino Ratio

Average MAE -0.50499 -0.52237 -0.52937 -0.51996

Median MAE -0.49626 -0.51586 -0.52438 -0.51327

Average MAPE -0.48284 -0.50522 -0.51446 -0.50246

Median MAPE -0.48565 -0.49867 -0.50840 -0.49647

Average sMAPE -0.56051 -0.57666 -0.56897 -0.57444

Median sMAPE -0.53701 -0.55569 -0.55682 -0.55329
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In contrast, for the valuation models to work correctly, the resulting intrinsic value must be

positive and higher than the current stock price. Therefore, if the predicted EPS or DCF value

is negative, the resulting intrinsic value will also be negative, and it will fall outside the scope

of our portfolio selection methodology. This excludes the possibility of perfectly correlated

errors and portfolio measures, as short selling is restricted. Therefore, it is possible that the

current correlations represent the highest achievable in our methodology.

In next section, we summarize results of this chapter with concluding remarks.

7.5 Conclusions

In this chapter, we conducted a back-testing simulation, forming portfolios using the DCF and

PE valuation models. For both models, we used quarter-ahead predictions of FCF and EPS,

mined through the transfer learning methodology outlined in Chapter 6.

The simulation is programmed to buy a stock if its intrinsic value exceeds the observed

market price and to sell it otherwise. Portfolio revisions occur quarterly, in line with the

publication of quarterly financial results.

Our results suggest that both DCF and PE portfolios outperform the market index, with

statistical significance at the 5% level. The transfer learning portfolios also yield the highest

Sharpe, Treynor, and Sortino ratios, which are commonly used to measure the quality of an

investment strategy. However, performance comes at a cost: our highest-ranking portfolio

also exhibits the highest standard deviation. This may be due to the fact that no portfolio

optimization was performed, as we aimed to evaluate the performance of our strategy without

the influence of additional optimization techniques.

In absolute terms, our PE-based portfolios outperform the DCF-based portfolios. This
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is primarily due to the fact that the DCF-based method requires a long-term perspective.

Additionally, the EPS series, which is used in the PE valuation model, has direct implications

on stock returns, as highlighted in financial literature.

Importantly, our results show a moderate correlation between portfolio metrics and regres-

sion errors. Since companies with negative FCF/EPS series are excluded from the simulation,

we speculate that this correlation reflects an inverse relationship between portfolio returns

and regression errors.

In the next chapter, we summarize the results and key findings of this study.



Chapter 8

Conclusions

This work introduces an innovation to the most common stock valuation methodologies.

Specifically, we propose a methodology for predicting the EPS and FCF series, which are used

by the Forward PE and DCF valuation models. Given that these series are sparse, limited

in the number of observations, and exhibit high excess kurtosis, we outline a methodology

to model them. Additionally, we investigate the performance of machine learning (ML) and

statistical estimation (SE) methods for forecasting such series. At its core, this study addresses

a supervised regression problem, where the target variables (EPS, FCF) are regressed against a

set of features (past lags, mean, and standard deviation). In this chapter, we summarize the

key information and contributions of this work, beginning with the data pipelines in Section

8.1.

8.1 Interpolation and Transformations

In Chapter 4, we conducted a series of experiments using the OLS estimator as a proxy for the

forecasting model on a set of 50 companies. We found that both the EPS and FCF datasets are

193
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non-stationary, non-normally distributed, and exhibit a tendency toward either a positive or

negative trend. Additionally, this chapter introduces two data preprocessing pipelines.

The first data pipeline utilizes PCHIP interpolation, which was found to be the most suitable

for the FCF series. Assuming the data arrives on a weekly rather than a quarterly basis, the

interpolation smooths out the series, making it easier for the OLS regression to model the

relationship between the FCF variable and its features. In contrast, for the EPS series, all

interpolation methods led to further overfitting of the model, by making the interpolated series

‘too smooth’ and leading the estimator to biased predictions.

The second data pipeline, which is more appropriate for the EPS series than for FCF, uses

Quantile Transformation. This technique not only scales the data to the 0-1 range but also

forces the data to follow a uniform distribution.

From the results of our experiments, we observe that the transformer highlights the linear

relation of the EPS with its lagged features, therefore simplifying the estimation process for

the OLS estimator. In contrast, in a more dynamic FCF data sets, the Quantile Transformer

bring no benefits.

These data pipelines are then used for further experiments, summarized next.

8.2 Machine Learning and Statistical Estimators Experiments

In Chapter 5, we expand our selection of datasets from 50 to 100 companies, while also

introducing the additional estimators outlined in Chapter 2. The diverse selection of cost

functions and regularization properties of the estimator coefficients enables us to investigate

the impact of sparse series on inference.

First, we found that for both the FCF and EPS series, the SE and ML estimators perform
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interchangeably, with no statistically significant difference between the various parametric

models. Furthermore, depending on the error metric used, the Friedman test ranking highlights

either the ML or SE estimator.

Second, there is a set of estimators, predominantly ARIMA, MLP, KNN, SES, DT, and RF,

that do not perform well on sparse series. This is because MLP, DT, and RF subsample the

training data, leading to optimization on even smaller subsets, which makes the estimators

more prone to overfitting. On the other hand, ARIMA, KNN, and SES tend to make forecasts

that overlook the local variability of the data, resulting in poor generalization to the test data.

Third, we observed that in datasets with low errors, the target variable and features

generally exhibit high positive or negative correlations. Additionally, in these datasets, the

correlations tend to be stable or intensify as we progress through the test set. In contrast, for

datasets with higher errors, the correlations tend to approach zero or fluctuate rapidly, making

it difficult for estimators to accurately infer relationships between the target and features.

Since there is no clear distinction in performance between ML and SE, we can combine

their strengths through transfer learning to overcome their mutual limitations. This approach

is the central focus of Chapter 6, which is summarized in the next section.

8.3 Transfer Learning Bayesian Averaging of estimators

Transfer learning is a method designed to address the primary challenge of our series: the

limited number of observations. Additionally, we found that parametric estimators tend to

perform better than non-parametric ones.

Therefore, we propose a two-step approach for forecasting a data point in a dataset. First,

we transfer the knowledge of an estimator’s performance across other datasets. Second, based
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on this prior step, we estimate a weight for each estimator, determined by its realized error on

the other datasets.

Our methodology offers several benefits. First, learning and transferring knowledge occurs

within the same data domain. Second, different estimators provide unique insights into

the data. These two advantages result in a significant improvement over the benchmark

methodology. On the other hand, a major limitation of our methodology is its computational

complexity. However, since the data arrives quarterly, the accuracy of predictions outweighs

concerns about runtime performance.

This methodology is then used to create stock portfolios, which are backtested against the

market benchmark in Chapter 7, summarized in the next section.

8.4 Out-of-sample testing summary

In the final chapter of this study, we conduct out-of-sample testing. Specifically, for each stock

in our selection, we perform Forward PE and DCF valuations. If the stock is undervalued,

it is bought; otherwise, it is sold. The collection of undervalued stocks purchased forms a

portfolio, which is then tracked against the broad market benchmark. Our results indicate that

the proposed methodology yields the top-performing portfolio.

We recognize that the transfer learning-based portfolio carries higher risk, which aligns

with financial literature: the higher the risk, the higher the potential reward. Additionally,

portfolio optimization could help mitigate this risk, though it is outside the scope of our study.

Beyond outperforming market benchmarks, our methodology also surpasses the performance

of non-transfer learning-based estimators, further validating the effectiveness of our approach.

Furthermore, the analysis of regression errors and portfolio metrics reveals a moderately
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negative relationship between the two: the higher the regression error, the lower the portfolio

performance. This supports our earlier hypothesis regarding the importance of accurately

estimating the EPS and FCF values. Notably, we believe the correlations are only moderately

negative due to the fact that while FCF and EPS values can be negative, asset prices cannot.

Specifically, a negative FCF/EPS value results in a negative ‘intrinsic value.’ In such cases,

our program either ignores the stock or sells it if it is already in the portfolio. Therefore, it

is possible that the moderate correlation observed is the highest achievable in this type of

measurement.

Next section outlines possible future directions of this study.

8.5 Further Research

In Chapter 3, we observed the growing popularity of Generative Adversarial Networks (GANs)

applied to the generation of synthetic time series data. These techniques could be integrated

into our proposed methodology to simulate potential scenarios of how the target and features

might behave, given their distributions. This would enable the training of estimators based

on hypothetical relationships, potentially further minimizing regression errors. Additionally,

GANs are known to be effective at isolating the noise from the data, therefore, studying the

merits of explicit denoising of fundamental financial time-series data prior to fitting regression

estimators is another topic for further research.

Our proposed methodology limits the number of possible input features. Therefore, caching

and creating a parameterization space of varying sizes could potentially reduce the regression

error further. In this context, it would be valuable to identify a methodology to generate

possibly more complicated combinations of greater number of statistical/ML estimators. Such
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approach could help in further selecting more advanced data augmentation/transformation

techniques for each dataset individually, as well as in choosing the optimal combination of

estimation algorithms.

Throughout our study, we employed Kernel Density Estimation (KDE) to estimate the

density score of parameterization. However, more advanced techniques, such as Gaussian

Mixture Models and others, could also be applied for density estimation. Since we relied on

regression coefficients for knowledge transfer, we were limited in the number of estimators we

could utilize. Coefficients indicate which features were most useful for regressing the target

against the features. There are other indicators that could be leveraged, allowing for a broader

set of estimators to be considered.

Finally, in terms of valuation, we focused solely on the EPS and FCF series. First, it would

be possible to combine the estimated intrinsic values obtained from the PE and DCF models,

thereby estimating the variability of such values. Second, additional valuation models could

be explored. In this case, it would be necessary to estimate other financial series, such as

revenues, total assets, and others.



Appendix

Appendix A: Chapter 4

In this section of the appendix, we present metadata for the 50 data sets used in Chapter 4,

including the full legal name of each entity, along with its economic industry and sector. This

information is summarized in Table A-1.

For both the EPS and FCF series of each company, we also report the number of available

observations before and after applying monthly or weekly interpolation. It is important to

note that the interpolation method itself does not determine the number of interpolated data

points; rather, this depends on the original sample size. Accordingly, we use first-order PCHIP

interpolation to generate the interpolated data sets. The results are summarized in Tables A-2

and A-3 for the EPS and FCF series, respectively.

In addition, we present the p-values from the statistical tests conducted in Chapter 4. These

are summarized in Tables A-4 and A-5 for the EPS and FCF series, respectively.

In the main part of Chapter 4, we presented scatterplots for two of five companies, randomly

selected for demonstration. Here, we include the corresponding scatterplots for the remaining

three companies: Comcast Corporation (CMCSA), Kimberly-Clark Corporation (KMB), and

The Sherwin-Williams Company (SHW). These plots are provided in Figures A-1 and A-2 for

199
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the EPS and FCF series, respectively.

Table A-1: Metadata for 50 companies used in Chapter 4

Ticker Full Business Name Industry Sector

AMAT Applied Materials Inc. Semiconductor Equipment &

Materials

Technology

AMZN Amazon.com Inc. Internet Retail Consumer Cyclical

ANSS ANSYS Inc. Software - Application Technology

APD Air Products and Chemicals Inc. Specialty Chemicals Basic Materials

APH Amphenol Corporation Electronic Components Technology

ATI ATI Inc. Metal Fabrication Industrials

BBY Best Buy Co. Inc. Specialty Retail Consumer Cyclical

CAH Cardinal Health Inc. Medical Distribution Healthcare

CAT Caterpillar Inc. Farm & Heavy Construction

Machinery

Industrials

CF CF Industries Holdings Inc. Agricultural Inputs Basic Materials

CHRW C.H. Robinson Worldwide Inc. Integrated Freight & Logistics Industrials

CLX The Clorox Company Household & Personal Products Consumer Defensive

CMCSA Comcast Corporation Telecom Services Communication Ser-

vices

COO The Cooper Companies Inc. Medical Instruments & Supplies Healthcare

COST Costco Wholesale Corporation Discount Stores Consumer Defensive

CTXS Citrix Systems Inc. Software - Application Technology

CVS CVS Health Corporation Inc. Healthcare Healthcare Plans
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Table A-1 continued

Ticker Full Business Name Industry Sector

DE Deere & Company Farm & Heavy Construction

Machinery

Energy

DHI D.R. Horton Inc. Residential Construction Consumer Cyclical

DISH DISH Network Corporation Telecom Services Communication Ser-

vices

DRI Darden Restaurants Inc. Restaurants Consumer Cyclical

ECL Ecolab Inc. Specialty Chemicals Basic Materials

EMR Emerson Electric Co. Specialty Industrial Machinery Industrials

GOOG Alphabet Inc. Internet Content & Information Communication Ser-

vices

GWW W.W. Grainger Inc. Industrial Distribution Industrials

HD The Home Depot Inc. Home Improvement Retail Consumer Cyclical

INTU Intuit Inc. Software - Application Technology

JNJ Johnson & Johnson Drug Manufacturers - General Healthcare

KMB Kimberly-Clark Corporation Household & Personal Products Consumer Defensive

KSS Kohl’s Corporation Department Stores Consumer Cyclical

MAS Masco Corporation Building Products & Equipment Industrials

MLM Martin Marietta Materials Inc. Building Materials Basic Materials

MRK Merck & Co. Inc. Drug Manufacturers - General Healthcare

NKE NIKE Inc. Footwear & Accessories Consumer Cyclical
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Table A-1 continued

Ticker Full Business Name Industry Sector

NRG NRG Energy Inc. Utilities - Independent Power

Producers

Utilities

NVDA NVIDIA Corporation Semiconductors Technology

OI O-I Glass Inc. Packaging & Containers Consumer Cyclical

PM Philip Morris International Inc. Tobacco Consumer Defensive

PTEN Patterson-UTI Energy Inc. Oil & Gas Drilling Energy

SHW The Sherwin-Williams Company Specialty Chemicals Basic Materials

SSD Simpson Manufacturing Co. Inc. Lumber & Wood Production Basic Materials

TEX Terex Corporation Farm & Heavy Construction

Machinery

Industrials

TGNA TEGNA Inc. Broadcasting Communication Ser-

vices

TTC The Toro Company Tools & Accessories Industrials

URBN Urban Outfitters Inc. Apparel Retail Consumer Cyclical

VZ Verizon Communications Inc. Telecom Services Communication Ser-

vices

WLY John Wiley & Sons Inc. Publishing Communication Ser-

vices

WM Waste Management Inc. Waste Management Industrials

WMT Walmart Inc. Discount Stores Consumer Defensive

XRAY DENTSPLY SIRONA Inc. Medical Instruments & Supplies Healthcare
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Table A-1 continued

Ticker Full Business Name Industry Sector

Table A-2: Earnings Per Share number of observations original, after applying monthly/weekly

interpolation, used in Chapter 4

Data set Train set size Test set size Monthly Interpolated Weekly Interpolated

AMAT 101 26 302 1306

AMZN 79 20 235 1018

ANSS 86 22 256 1110

APD 101 26 301 1306

APH 98 25 292 1266

ATI 80 21 238 1031

BBY 101 26 300 1301

CAH 85 22 253 1097

CAT 133 34 397 1723

CF 52 13 154 667

CHRW 71 18 211 914

CLX 101 26 301 1305

CMCSA 101 26 301 1306

COO 101 26 301 1305

COST 88 23 262 1137
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Data set Train set size Test set size Monthly Interpolated Weekly Interpolated

CTXS 88 23 262 1137

CVS 101 26 301 1306

DE 101 26 301 1305

DHI 97 25 289 1253

DISH 88 23 262 1136

DRI 82 21 244 1058

ECL 101 26 301 1306

EMR 101 26 301 1306

GOOG 58 15 172 744

GWW 101 26 301 1306

HD 101 26 302 1306

INTU 92 23 274 1188

JNJ 133 34 397 1722

KMB 102 26 304 1319

KSS 93 24 277 1201

MAS 101 26 301 1306

MLM 88 23 262 1136

MRK 101 26 301 1306

NKE 101 26 301 1306

NRG 56 15 166 718

NVDA 70 18 208 901

OI 98 25 292 1266
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Data set Train set size Test set size Monthly Interpolated Weekly Interpolated

PM 48 13 142 614

PTEN 92 23 274 1188

SHW 101 26 301 1306

SSD 92 23 274 1188

TEX 101 26 301 1306

TGNA 101 26 301 1306

TTC 101 26 303 1318

URBN 88 23 262 1136

VZ 101 26 301 1306

WLY 101 26 301 1305

WM 79 20 235 1018

WMT 101 26 301 1305

XRAY 92 23 274 1188

Table A-3: Free Cash Flows: number of observations original, after applying monthly/weekly

interpolation, used in Chapter 4

Data set Train set size Test set size Monthly Interpolated Weekly Interpolated

AMAT 86 22 256 1110

AMZN 78 20 232 1005

ANSS 82 21 244 1057
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Data set Train set size Test set size Monthly Interpolated Weekly Interpolated

APD 73 19 217 940

APH 85 22 253 1097

ATI 79 20 235 1018

BBY 84 21 249 1079

CAH 86 22 256 1110

CAT 78 20 232 1005

CF 51 13 151 654

CHRW 68 17 202 874

CLX 83 21 247 1070

CMCSA 72 18 214 927

COO 88 23 262 1135

COST 82 21 245 1061

CTXS 82 21 245 1061

CVS 84 22 250 1084

DE 76 19 226 979

DHI 88 22 262 1136

DISH 85 22 253 1097

DRI 83 21 247 1071

ECL 85 22 253 1097

EMR 86 22 256 1110

GOOG 60 15 178 770

GWW 84 22 250 1083
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Data set Train set size Test set size Monthly Interpolated Weekly Interpolated

HD 84 22 250 1084

INTU 82 21 244 1058

JNJ 85 22 254 1097

KMB 84 22 250 1083

KSS 84 22 249 1083

MAS 85 22 253 1097

MLM 81 21 241 1044

MRK 85 22 253 1097

NKE 83 21 247 1071

NRG 75 19 223 966

NVDA 72 19 214 927

OI 84 22 250 1083

PM 44 12 130 562

PTEN 84 22 250 1083

SHW 85 22 253 1097

SSD 85 22 253 1097

TEX 84 22 250 1083

TGNA 85 22 253 1097

TTC 81 21 241 1045

URBN 84 22 250 1084

VZ 63 16 187 810

WLY 68 18 202 875
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Data set Train set size Test set size Monthly Interpolated Weekly Interpolated

WM 79 20 235 1018

WMT 84 22 250 1084

XRAY 84 22 250 1083
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Table A-4: P-Values from statistical tests conducted on Earnings Per Share data sets in Chapter 4.

‘SW’ denotes Shapiro-Wilk test, ‘DF’ denotes Augmented Dickey-Fuller test, ‘MK’ denotes Mann-

Kendall test

Data Set SW DF MK

SHW 1.56e-12 1.00000 0.04436

CAT 3.04e-12 0.91490 1.96e-06

ANSS 3.40e-11 0.99830 0.00664

WLY 3.24e-13 0.83823 1.30e-08

ECL 2.07e-18 4.12e-15 2.46e-05

DRI 1.70e-09 0.00241 0.00027

DHI 1.02e-11 0.96384 0.01503

CHRW 4.08e-06 0.96417 0.01182

CAH 3.96e-20 1.48e-19 6.30e-07

TGNA 4.12e-23 0.00001 0.58983

NRG 4.31e-12 5.64e-12 0.36021

BBY 1.89e-12 0.37466 0.03736

PM 0.03469 0.20896 6.14e-06

JNJ 1.53e-19 0.99583 0.00011

APD 3.67e-14 0.93602 0.00068

WMT 0.00017 0.89754 2.58e-05

TTC 2.33e-11 0.96794 0.00857

DE 2.46e-13 0.98739 8.71e-06

DISH 9.56e-07 0.00002 2.00e-14

MRK 1.37e-09 0.38663 8.29e-07

PTEN 1.60e-07 0.04013 0.09911

SSD 2.66e-13 0.98289 4.30e-05

OI 1.18e-15 1.67e-21 0.21646

CVS 1.92e-08 0.65294 0.01936

URBN 1.12e-09 0.96117 8.35e-11

Data Set SW DF MK

INTU 4.38e-17 1.00000 0.00035

VZ 1.57e-10 1.62e-06 1.44e-11

KSS 1.35e-10 0.43721 5.11e-15

WM 7.14e-08 0.75680 0.00940

AMAT 2.24e-14 0.99314 0.01532

CMCSA 3.59e-13 0.74913 0.00718

TEX 1.43e-06 0.00159 1.12e-07

GOOG 1.11e-08 0.98128 3.43e-05

NVDA 2.53e-18 1.00000 3.29e-11

CLX 7.57e-07 0.08434 2.16e-07

XRAY 5.10e-20 0.00170 1.75e-05

MLM 2.37e-15 1.00000 1.91e-11

HD 2.98e-13 0.99357 7.64e-09

COO 2.48e-23 6.08e-07 5.11e-05

ATI 2.50e-14 0.00101 0.14407

APH 8.44e-11 1.00000 4.18e-05

CTXS 1.76e-10 0.04954 2.34e-08

MAS 2.31e-12 0.29982 4.72e-09

COST 4.54e-10 1.00000 0.00089

NKE 1.00e-08 0.99678 5.18e-18

KMB 2.43e-05 0.69403 2.26e-05

EMR 3.25e-23 0.99770 0.00045

CF 1.39e-06 0.08327 0.04054

AMZN 8.04e-15 0.01316 0.00772

GWW 1.62e-13 1.00000 6.47e-13
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Table A-5: P-Values from statistical tests conducted on Free Cash Flows data sets in Chapter 4. ‘SW’

denotes Shapiro-Wilk test, ‘DF’ denotes Augmented Dickey-Fuller test, ‘MK’ denotes Mann-Kendall

test

Data Set SW DF MK

SHW 1.77e-7 8.93011e-1 1.51e-11

CAT 7.97e-6 9.94514e-1 4.77e-12

ANSS 7.09e-7 9.98576e-1 3.5987e-5

WLY 1.3573e-3 3.88973e-1 4.08475e-1

ECL 3.75e-6 9.32055e-1 4.44e-16

DRI 3.08601e-3 9.96751e-1 3.21e-9

DHI 5.96e-6 1.0164e-2 7.54061e-2

CHRW 9.11e-11 7.24158e-4 1.5e-7

CAH 1.13e-7 8.19263e-1 1.12e-5

TGNA 1.19e-11 5.65678e-1 1.76404e-4

NRG 1.56e-5 1.58528e-4 4.7099e-3

BBY 1.27e-9 2.04417e-1 3.56509e-3

PM 7.72094e-1 4.25999e-2 3.54584e-2

JNJ 8.58663e-4 6.63747e-1 3.63594e-2

APD 6.24e-7 8.47954e-1 1.65989e-1

WMT 2.31e-5 7.13884e-1 1.11e-6

TTC 6.0629e-2 3.31741e-1 3.18e-5

DE 9.02699e-3 8.26439e-1 5.40319e-2

DISH 6.4952e-2 4.55484e-1 1.18e-10

MRK 3.24689e-2 2.49522e-2 1.59085e-4

PTEN 1.04e-7 1.47e-13 2.31179e-1

SSD 2.65e-10 9.986e-1 5.07e-6

OI 1.06348e-3 5.49858e-3 2.24051e-2

CVS 2.32e-8 5.29294e-1 1.2934e-3

URBN 4.14e-9 6.69123e-1 2.43859e-4

Data Set SW DF MK

INTU 2.19e-14 1e+0 2.65616e-2

VZ 5.97565e-1 2.90586e-1 7.32e-6

KSS 4.54e-5 5.96799e-1 2.58652e-4

WM 1.11119e-3 4.99064e-1 1.0289e-4

AMAT 1.67e-12 9.98809e-1 9.98794e-3

CMCSA 4.58996e-4 9.86569e-1 2.38957e-2

TEX 2.34029e-1 3.81338e-1 5.59444e-2

GOOG 1.68e-8 8.77153e-1 8.23929e-3

NVDA 6.01e-18 1e+0 5.00213e-2

CLX 1.76e-5 3.91335e-1 6.57e-9

XRAY 3.34e-10 4.38181e-1 8.12e-10

MLM 5.01e-20 5.23624e-2 1.42167e-4

HD 1.12e-9 9.99023e-1 4.0125e-3

COO 2.91e-5 4.38457e-1 6.44e-15

ATI 2.7341e-3 4.98505e-3 6.17885e-2

APH 1.53e-9 1e+0 1.342e-3

CTXS 1.54e-6 7.0409e-1 2.1542e-2

MAS 3.6135e-1 4.6569e-1 1.83816e-4

COST 9.39e-9 9.97676e-1 2.23e-10

NKE 9.27e-11 9.96765e-1 1.55e-15

KMB 1.55274e-2 8.58769e-1 9.15e-12

EMR 1.37085e-4 3.46466e-1 1.02e-9

CF 2.0764e-2 2.80352e-1 3.58293e-4

AMZN 6.14e-10 5.40593e-1 1.98532e-3

GWW 4.26e-8 1e+0 1.9289e-4
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Figure A-1: EPS: scatter plot of the target series (y-axis) against its features (x-axis), transformed
(right) and orignal (left), for three companies randomly selected from the pool of 50 data sets

(a) CMCSA: original data scatter plot

(b) KMB: FCF original data scatter plot

(c) SHW: FCF original data scatter plot

(d) CMCSA: transformed data scatter plot

(e) KMB: transformed data scatter plot

(f) SHW: transformed data scatter plot
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Figure A-2: FCF: scatter plot of the target series (y-axis) against its features (x-axis), transformed
(right) and orignal (left), for three companies randomly selected from the pool of 50 data sets

(a) CMCSA: original data scatter plot

(b) KMB: FCF original data scatter plot

(c) SHW: FCF original data scatter plot

(d) CMCSA: transformed data scatter plot

(e) KMB: transformed data scatter plot

(f) SHW: transformed data scatter plot
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Appendix B: Chapter 5

In Chapter 5, we conduct a set of experiments using machine learning and statistical estimators,

applied to an expanded sample of 100 data sets. Accordingly, this section of the thesis begins

by presenting metadata for all 100 companies included in the experiments. This information is

summarized in Table B-1.

As established in Chapter 4, interpolation improves forecasting accuracy, particularly for

FCF data sets. Table B-2 reports the number of available data points across the 100 FCF data

sets, both before and after interpolation.

Chapter 5 is the first chapter we use ML estimators in. Because these estimators have

tunable hyperparameters, we perform parameter tuning using the grid-search on the hold-out

validation subset of each of 100 sample data sets. Therefore, in this part of the thesis we

provide a table of proposed hyperparmeter values for each estimator in Table B-3.

We then introduce the results of applying machine learning and statistical regression models.

To assess the performance of the proposed estimators, we present a range of visualizations. As

in the previous chapter, we highlight a selected subset of companies, while additional plots

are included in this appendix. Specifically, this appendix provides plots for both EPS and FCF

series of The Sherwin-Williams Company (SHW), Caterpillar Inc. (CAT), ANSYS Inc. (ANSS),

John Wiley & Sons Inc. (WLY), Ecolab Inc. (ECL), Darden Restaurants Inc. (DRI), D. R. Horton

Inc. (DHI), and C. H. Robinson Worldwide Inc. (CHRW).

Figures B-1 and B-2 show the training, validation, and test subsets of the target series,

along with their lags, for EPS and FCF data respectively. Figures B-3 and B-4 illustrate the

autocorrelation between the target variable and its past values, allowing us to explore temporal

dependencies. Since we use an expanding window approach, as described in Section 4.2.2 of
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Chapter 4, correlations are measured at each iteration over the test set.

Next, we present predictions generated by various estimators. Figures B-5 and B-6 show

the forecasts made using the ARIMA model, while Figures B-7 and B-8 display results from the

Simple Exponential Smoothing (SES) model.

Among the machine learning estimators employed is the Decision Tree (DT). To illustrate

how DTs generate predictions, we include visualizations of their learned structures in Figures

B-9 and B-11 for EPS and FCF series respectively (Figures B-10 and B-12 are continuation of

main graphs).

Finally, to better understand feature influence in the estimation process, we apply Shapley

value analysis. In this section of the Appendix, we present Shapley values force plots for KNN

and HR estimators across the remaining eight companies. In particular, Figures B-13 and B-14

show the results for the KNN estimator, while Figures B-15 and B-16 present those for the HR

estimator.

Table B-1: Metadata for 100 companies used in Chapter 5 we conducted regression experiments

on

Ticker Full Business Name Industry Sector

ALB Albemarle Corporation Specialty Chemicals Basic Materials

AMAT Applied Materials Inc. Semiconductor Equipment &

Materials

Technology

AMD Advanced Micro Devices Inc. Semiconductors Technology

AMZN Amazon.com Inc. Internet Retail Consumer Cyclical

ANSS ANSYS Inc. Software - Application Technology

APD Air Products and Chemicals Inc. Specialty Chemicals Basic Materials
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Table B-1 continued

Ticker Full Business Name Industry Sector

APH Amphenol Corporation Electronic Components Technology

ATI ATI Inc. Metal Fabrication Industrials

AZO AutoZone Inc. Specialty Retail Consumer Cyclical

BA The Boeing Company Aerospace & Defense Industrials

BALL Ball Corporation Packaging & Containers Consumer Cyclical

BBWI Bath & Body Works Inc. Specialty Retail Consumer Cyclical

BBY Best Buy Co. Inc. Specialty Retail Consumer Cyclical

BWA BorgWarner Inc. Auto Parts Consumer Cyclical

CAH Cardinal Health Inc. Medical Distribution Healthcare

CAT Caterpillar Inc. Farm & Heavy Construction

Machinery

Industrials

CE Celanese Corporation Chemicals Basic Materials

CF CF Industries Holdings Inc. Agricultural Inputs Basic Materials

CHRW C.H. Robinson Worldwide Inc. Integrated Freight & Logistics Industrials

CL Colgate-Palmolive Company Household & Personal Products Consumer Defensive

CLX The Clorox Company Household & Personal Products Consumer Defensive

CMCSA Comcast Corporation Telecom Services Communication Ser-

vices

COO The Cooper Companies Inc. Medical Instruments & Supplies Healthcare

COST Costco Wholesale Corporation Discount Stores Consumer Defensive

CSCO Cisco Systems Inc. Communication Equipment Technology
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Table B-1 continued

Ticker Full Business Name Industry Sector

CTXS Citrix Systems Inc. Software - Application Technology

CVS CVS Health Corporation Inc. Healthcare Healthcare Plans

CVX Chevron Corporation Oil & Gas Integrated Energy

DE Deere & Company Farm & Heavy Construction

Machinery

Energy

DHI D.R. Horton Inc. Residential Construction Consumer Cyclical

DISH DISH Network Corporation Telecom Services Communication Ser-

vices

DRI Darden Restaurants Inc. Restaurants Consumer Cyclical

DVN Devon Energy Corporation Oil & Gas E&P Energy

EA Electronic Arts Inc. Electronic Gaming & Multimedia Communication Ser-

vices

EBAY eBay Inc. Internet Retail Consumer Cyclical

ECL Ecolab Inc. Specialty Chemicals Basic Materials

EIX Edison International Utilities - Regulated Electric Utilities

EMN Eastman Chemical Company Specialty Chemicals Basic Materials

EMR Emerson Electric Co. Specialty Industrial Machinery Industrials

FAST Fastenal Company Industrial Distribution Industrials

FL Foot Locker Inc. Apparel Retail Consumer Cyclical

GLW Corning Incorporated Electronic Components Technology

GME GameStop Corp. Specialty Retail Consumer Cyclical
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Table B-1 continued

Ticker Full Business Name Industry Sector

GOOG Alphabet Inc. Internet Content & Information Communication Ser-

vices

GPC Genuine Parts Company Auto Parts Consumer Cyclical

GVA Granite Construction

Incorporated

Engineering & Construction Industrials

GWW W.W. Grainger Inc. Industrial Distribution Industrials

HAL Halliburton Company Oil & Gas Equipment & Services Energy

HD The Home Depot Inc. Home Improvement Retail Consumer Cyclical

HP Helmerich & Payne Inc. Oil & Gas Drilling Energy

IBM International Business Machines

Corporation

Information Technology Services Technology

IFF International Flavors &

Fragrances Inc.

Specialty Chemicals Basic Materials

INTC Intel Corporation Semiconductors Technology

INTU Intuit Inc. Software - Application Technology

JNJ Johnson & Johnson Drug Manufacturers - General Healthcare

KMB Kimberly-Clark Corporation Household & Personal Products Consumer Defensive

KO The Coca-Cola Company Beverages - Non-Alcoholic Consumer Defensive

KSS Kohl’s Corporation Department Stores Consumer Cyclical

M Macy’s Inc. Department Stores Consumer Cyclical

MAS Masco Corporation Building Products & Equipment Industrials
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Table B-1 continued

Ticker Full Business Name Industry Sector

MDLZ Mondelez International Inc. Confectioners Consumer Defensive

MLM Martin Marietta Materials Inc. Building Materials Basic Materials

MMM 3M Company Conglomerates Industrials

MO Altria Group Inc. Tobacco Consumer Defensive

MRK Merck & Co. Inc. Drug Manufacturers - General Healthcare

MSFT Microsoft Corporation Software - Infrastructure Technology

NFLX Netflix Inc. Entertainment Communication Ser-

vices

NKE NIKE Inc. Footwear & Accessories Consumer Cyclical

NOV NOV Inc. Oil & Gas Equipment & Services Energy

NRG NRG Energy Inc. Utilities - Independent Power

Producers

Utilities

NVDA NVIDIA Corporation Semiconductors Technology

OI O-I Glass Inc. Packaging & Containers Consumer Cyclical

OLN Olin Corporation Chemicals Basic Materials

PARA Paramount Global Entertainment Communication Ser-

vices

PG The Procter & Gamble Company Household & Personal Products Consumer Defensive

PM Philip Morris International Inc. Tobacco Consumer Defensive

POOL Pool Corporation Industrial Distribution Industrials

PTEN Patterson-UTI Energy Inc. Oil & Gas Drilling Energy
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Table B-1 continued

Ticker Full Business Name Industry Sector

QRTEA Qurate Retail Inc. Internet Retail Consumer Cyclical

RSG Republic Services Inc. Waste Management Industrials

SCHL Scholastic Corporation Publishing Communication Ser-

vices

SHW The Sherwin-Williams Company Specialty Chemicals Basic Materials

SLGN Silgan Holdings Inc. Packaging & Containers Consumer Cyclical

SSD Simpson Manufacturing Co. Inc. Lumber & Wood Production Basic Materials

STLD Steel Dynamics Inc. Steel Basic Materials

TEX Terex Corporation Farm & Heavy Construction

Machinery

Industrials

TGNA TEGNA Inc. Broadcasting Communication Ser-

vices

TTC The Toro Company Tools & Accessories Industrials

URBN Urban Outfitters Inc. Apparel Retail Consumer Cyclical

UVV Universal Corporation Tobacco Consumer Defensive

VMC Vulcan Materials Company Building Materials Basic Materials

VRSN VeriSign Inc. Software - Infrastructure Technology

VZ Verizon Communications Inc. Telecom Services Communication Ser-

vices

WBD Warner Bros. Discovery Inc. Entertainment Communication Ser-

vices
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Table B-1 continued

Ticker Full Business Name Industry Sector

WLY John Wiley & Sons Inc. Publishing Communication Ser-

vices

WM Waste Management Inc. Waste Management Industrials

WMT Walmart Inc. Discount Stores Consumer Defensive

X United States Steel Corporation Steel Basic Materials

XRAY DENTSPLY SIRONA Inc. Medical Instruments & Supplies Healthcare

Table B-2: Free Cash Flows: number of observations for each of 100 data sets used for regression

experiments

Ticker Train set size Test set size Monthly Interpolated Weekly Interpolated

ALB 84 22 250 1083

AMAT 86 22 256 1110

AMD 84 22 251 1084

AMZN 78 20 232 1005

ANSS 82 21 244 1057

APD 73 19 217 940

APH 85 22 253 1097

ATI 79 20 235 1018

AZO 66 17 196 852

BA 78 20 232 1005
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Ticker Train set size Test set size Monthly Interpolated Weekly Interpolated

BALL 85 22 253 1097

BBWI 84 21 249 1083

BBY 84 21 249 1079

BWA 84 22 250 1083

CAH 86 22 256 1110

CAT 78 20 232 1005

CE 52 14 154 666

CF 51 13 151 654

CHRW 68 17 202 874

CL 85 22 253 1097

CLX 83 21 247 1070

CMCSA 72 18 214 927

COO 88 23 262 1135

COST 82 21 245 1061

CSCO 87 22 259 1123

CTXS 82 21 245 1061

CVS 84 22 250 1084

CVX 84 22 250 1083

DE 76 19 226 979

DHI 88 22 262 1136

DISH 85 22 253 1097

DOV 84 22 250 1083
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Ticker Train set size Test set size Monthly Interpolated Weekly Interpolated

DRI 83 21 247 1071

DVN 84 22 250 1083

EA 84 21 250 1083

EBAY 74 19 220 953

ECL 85 22 253 1097

EIX 84 22 250 1083

EMN 84 22 250 1083

EMR 86 22 256 1110

FAST 85 22 253 1097

FL 71 18 212 914

GLW 85 22 253 1097

GME 65 17 193 836

GOOG 60 15 178 770

GPC 85 22 253 1097

GVA 84 22 250 1083

GWW 84 22 250 1083

HAL 86 22 256 1110

HD 84 22 250 1084

HP 84 22 250 1083

IBM 88 23 262 1136

IFF 68 18 202 875

INTC 85 22 254 1097
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Ticker Train set size Test set size Monthly Interpolated Weekly Interpolated

INTU 82 21 244 1058

JNJ 85 22 254 1097

KMB 84 22 250 1083

KO 81 21 241 1044

KSS 84 22 249 1083

M 84 21 249 1083

MAS 85 22 253 1097

MDLZ 66 17 196 849

MLM 81 21 241 1044

MMM 84 22 250 1083

MO 81 21 241 1044

MRK 85 22 253 1097

MSFT 86 22 256 1110

NFLX 62 16 184 797

NKE 83 21 247 1071

NOV 79 20 235 1018

NRG 75 19 223 966

NVDA 72 19 214 927

OI 84 22 250 1083

OLN 84 22 250 1083

PARA 49 13 145 628

PG 86 22 256 1110
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Ticker Train set size Test set size Monthly Interpolated Weekly Interpolated

PM 44 12 130 562

POOL 81 21 241 1044

PTEN 84 22 250 1083

QRTEA 46 12 136 588

RSG 76 19 226 979

SCHL 83 21 247 1071

SHW 85 22 253 1097

SLGN 79 20 235 1018

SSD 85 22 253 1097

STLD 78 20 232 1005

TEX 84 22 250 1083

TGNA 85 22 253 1097

TTC 81 21 241 1045

URBN 84 22 250 1084

UVV 55 14 163 705

VMC 85 22 253 1097

VRSN 75 19 223 966

VZ 63 16 187 810

WBD 52 13 154 667

WLY 68 18 202 875

WM 79 20 235 1018

WMT 84 22 250 1084
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Ticker Train set size Test set size Monthly Interpolated Weekly Interpolated

X 84 22 250 1083

XRAY 84 22 250 1083

Table B-3: Hyperparameters for ML Estimators

Estimator Values Range

Automatic Relevance Determination

threshold_lambda 50, 100, 500, 1000, 1500

lambda_1 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9

Bayesian Ridge

alpha_1 0, 2, 4, 6, 10

alpha_2 0,1

lambda_1 0,1,2,3

lambda_2 0,1,2,3

alpha_init 1,2,3

lambda_init 1,2

Decision Tree

min_samples_split 2,4,6

max_depth 4,6,8,10,12

min_samples_leaf 3,5,7,9,11
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Estimator Values Range

max_features 1.0, ‘log2’, ‘sqrt’

max_leaf_nodes 4,6,8,10,12

Huber Regressor

alpha 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5

fit_intercept true, false

K-Nearest Neighbours

algorithm ‘kd_tree’, ‘ball_tree’, ‘brute’

p 2,4,6,8,10

n_neighbors 5, 7, 9, 12, 14

weights ‘distance’

Lasso

alpha 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5

selection ‘cyclic’, ‘random’

fit_intercept true, false

positive true, false

Multi-Layer Perceptron

hidden_layer_sizes ( 4, 1 ), ( 6, 1 ), ( 8, 1 ), ( 16, 1 ), ( 2, 4, 1 ), ( 4, 6, 1 ), ( 6, 8, 1 )

batch_sizes 4,8,16

Random Forest

n_estimators 2,4,6,8

max_features ‘log2’, ‘sqrt’, 1.0
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Estimator Values Range

max_depth 2,4,6

min_samples_split 8, 10, 12, 14

min_samples_leaf 4,6,8,10

bootstrap true, false
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Figure B-1: EPS: Train, validation and test subset plots of the target variable (Earnings Per

Share) with its features for the 8 representative companies

(a) EPS: SHW data set (b) EPS: CAT data set

(c) EPS: ANSS data set (d) EPS: WLY data set

(e) EPS: ECL data set (f) EPS: DRI data set

(g) EPS: DHI data set (h) EPS: CHRW data set



8.5. FURTHER RESEARCH 229

Figure B-2: FCF: Train, validation and test subset plots of the target variable (Free Cash Flows)

with its features for 8 representative companies

(a) FCF: SHW data set (b) FCF: CAT data set

(c) FCF: ANSS data set (d) FCF: WLY data set

(e) FCF: ECL data set (f) FCF: DRI data set

(g) FCF: DHI data set (h) FCF: CHRW data set
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Figure B-3: EPS data sets: correlations of target variable with its features, through iterations

in the test set for 8 representative companies

(a) EPS: SHW data set (b) EPS: CAT data set

(c) EPS: ANSS data set (d) EPS: WLY data set

(e) EPS: ECL data set (f) EPS: DRI data set

(g) EPS: DHI data set (h) EPS: CHRW data set
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Figure B-4: FCF data sets: correlations of target variable with its features, through iterations in

the test set for 8 representative companies

(a) FCF: autocorrelations SHW data set (b) FCF: CAT data set

(c) FCF: ANSS data set (d) FCF: WLY data set

(e) FCF: ECL data set (f) FCF: DRI data set

(g) FCF: DHI data set (h) FCF: CHRW data set
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Figure B-5: ARIMA: EPS predictions for 8 representative companies

(a) EPS: SHW predictions (b) EPS: CAT predictions

(c) EPS: ANSS predictions (d) EPS: WLY predictions

(e) EPS: ECL predictions (f) EPS: DRI predictions

(g) EPS: DHI predictions (h) EPS: CHRW predictions
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Figure B-6: ARIMA: FCF predictions for 8 representative companies

(a) FCF: SHW predictions (b) FCF: CAT predictions

(c) FCF: ANSS predictions (d) FCF: WLY predictions

(e) FCF: ECL predictions (f) FCF: DRI predictions

(g) FCF: DHI predictions (h) FCF: CHRW predictions
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Figure B-7: SES: EPS predictions for 8 representative companies

(a) EPS: SHW predictions (b) EPS: CAT predictions

(c) EPS: ANSS predictions (d) EPS: WLY predictions

(e) EPS: ECL predictions (f) EPS: DRI predictions

(g) EPS: DHI predictions (h) EPS: CHRW predictions
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Figure B-8: SES: FCF predictions for 8 representative companies

(a) FCF: SHW predictions (b) FCF: CAT predictions

(c) FCF: ANSS predictions (d) FCF: WLY predictions

(e) FCF: ECL predictions (f) FCF: DRI predictions

(g) FCF: DHI predictions (h) FCF: CHRW predictions
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Figure B-9: Decision Tree: EPS best-fit tree structures for 8 representative companies

(a) EPS: SHW tree (b) EPS: CAT tree

(c) EPS: ANSS tree (d) EPS: WLY tree
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Figure B-10: Decision Tree: EPS best-fit tree structures 8 representative companies, continued

(a) EPS: ECL tree (b) EPS: DRI tree

(c) EPS: DHI tree (d) EPS: CHRW tree
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Figure B-11: Decision Tree: FCF best-fit tree structures for 8 representative companies

(a) FCF: SHW tree (b) FCF: CAT tree

(c) FCF: ANSS tree (d) FCF: WLY tree
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Figure B-12: Decision Tree: FCF best-fit tree structures for 8 representative companies, continued

(a) FCF: ECL tree (b) FCF: DRI tree

(c) FCF: DHI tree (d) FCF: CHRW tree
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Figure B-13: Shapley Values: KNN-EPS predictions for 8 representative companies

(a) EPS: SHW shapley values (b) EPS: CAT shapley values

(c) EPS: ANSS shapley values (d) EPS: WLY shapley values

(e) EPS: ECL shapley values (f) EPS: DRI shapley values

(g) EPS: DHI shapley values (h) EPS: CHRW shapley values
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Figure B-14: Shapley Values: KNN-FCF predictions for 8 representative companies

(a) FCF: SHW shapley values (b) FCF: CAT shapley values

(c) FCF: ANSS shapley values (d) FCF: WLY shapley values

(e) FCF: ECL shapley values (f) FCF: DRI shapley values

(g) FCF: DHI shapley values (h) FCF: CHRW shapley values
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Figure B-15: Shapley Values: HR-EPS predictions for 8 representative companies

(a) EPS: SHW shapley values (b) EPS: CAT shapley values

(c) EPS: ANSS shapley values (d) EPS: WLY shapley values

(e) EPS: ECL shapley values (f) EPS: DRI shapley values

(g) EPS: DHI shapley values (h) EPS: CHRW shapley values
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Figure B-16: Shapley Values: HR-FCF predictions for 8 representative companies

(a) FCF: SHW shapley values (b) FCF: CAT shapley values

(c) FCF: ANSS shapley values (d) FCF: WLY shapley values

(e) FCF: ECL shapley values (f) FCF: DRI shapley values

(g) FCF: DHI shapley values (h) FCF: CHRW shapley values
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Appendix C: Chapter 6

In Chapter 6, we introduce a transfer learning methodology that enables us to treat a prediction

for a data point as a weighted average of outputs from statistical and machine learning

estimators. We then analyze the performance of this approach by comparing it to predictions

made using individual estimators.

For the analysis, we present results from two data sets in detail, with results from eight

additional data sets included in this chapter. These additional data sets correspond to the

following companies: Devon Energy Corporation (DVN), GameStop Corp. (GME), NRG Energy

Inc. (NRG), O-I Glass Inc. (OI), The Toro Company (TTC), AutoZone Inc. (AZO), Johnson &

Johnson (JNJ), and Steel Dynamics Inc. (STLD).

Figures C-1 and C-2 show the predictions for the EPS and FCF series, respectively, made

using a collection of single estimators. Subsequently, Figures C-3 and C-4 display the corres-

ponding predictions generated using our transfer learning methodology.
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Figure C-1: EPS: Single Estimators Predictions For 8 Random Data Sets

(a) DVN data set predictions (b) GME data set predictions

(c) NRG data set predictions (d) OI data set predictions

(e) TTC data set predictions (f) AZO data set predictions

(g) JNJ data set predictions (h) STLD data set predictions
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Figure C-2: FCF: Single Estimators Predictions For 8 Random Data Sets

(a) DVN data set predictions (b) GME data set predictions

(c) NRG data set predictions (d) OI data set predictions

(e) TTC data set predictions (f) AZO data set predictions

(g) JNJ data set predictions (h) STLD data set predictions
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Figure C-3: EPS: BWA(n) Predictions For 8 Random Data Sets

(a) DVN data set predictions (b) GME data set predictions

(c) NRG data set predictions (d) OI data set predictions

(e) TTC data set predictions (f) AZO data set predictions

(g) JNJ data set predictions (h) STLD data set predictions
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Figure C-4: FCF: BWA(n) Predictions For 8 Random Data Sets

(a) DVN data set predictions (b) GME data set predictions

(c) NRG data set predictions (d) OI data set predictions

(e) TTC data set predictions (f) AZO data set predictions

(g) JNJ data set predictions (h) STLD data set predictions

Appendix D: Chapter 7

In Chapter 7, we demonstrate practical applications of our forecasting approach through

out-of-sample backtesting. To reduce bias in our analysis, we extend the timeline for each data

set. Each data set is divided into four consecutive periods: training, validation, testing, and
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simulation. Tables D-1 and D-2 summarize the time periods corresponding to each phase for

the EPS and FCF data sets, respectively.

Table D-1: EPS: Timelines of data sets used for training, validation, regression, and simulation

testing

Data set Training

period start

Validation

period start

Regression

testing

period start

Simulation

period start

Simulation

period end

ALB 1994-06-30 2015-12-31 2017-06-30 2022-12-31 2024-06-30

AMAT 1991-04-28 2015-01-25 2016-07-31 2022-10-30 2024-07-28

AMD 1991-06-30 2015-03-28 2016-09-24 2022-12-31 2024-06-29

AMZN 1998-06-30 2016-12-31 2018-03-31 2022-12-31 2024-06-30

ANSS 1996-06-30 2016-06-30 2017-09-30 2022-12-31 2024-06-30

APD 1991-03-31 2014-12-31 2016-06-30 2022-09-30 2024-06-30

APH 1992-06-30 2015-06-30 2016-12-31 2022-12-31 2024-06-30

ATI 1997-12-31 2016-09-30 2017-12-31 2022-12-31 2024-06-30

AZO 1991-08-31 2014-11-22 2016-08-27 2022-08-27 2024-05-27

BA 1981-06-30 2012-09-30 2014-09-30 2022-12-31 2024-06-30

BALL 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-27

BBWI 1990-08-04 2014-05-03 2015-10-31 2022-01-29 2024-02-03

BBY 1990-09-01 2014-05-03 2015-10-31 2022-01-29 2024-01-27

BWA 1995-09-30 2016-03-31 2017-09-30 2022-12-31 2024-06-30

CAH 1995-12-31 2015-12-31 2017-03-31 2022-06-30 2024-06-30

CAT 1981-06-30 2012-09-30 2014-09-30 2022-12-31 2024-06-30
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Table D-1 continued

Data set Training

period start

Validation

period start

Regression

testing

period start

Simulation

period start

Simulation

period end

CE 2006-06-30 2018-12-31 2019-09-30 2022-12-31 2024-06-30

CF 2006-12-31 2018-12-31 2019-12-31 2022-12-31 2024-06-30

CHRW 2001-09-30 2017-09-30 2018-09-30 2022-12-31 2024-06-28

CL 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

CLX 1990-12-31 2014-09-30 2016-03-31 2022-06-30 2024-06-30

CMCSA 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

COO 1991-04-30 2015-01-31 2016-07-31 2022-10-31 2024-07-31

COST 1995-02-12 2015-11-22 2017-02-12 2022-08-28 2024-05-12

CSCO 1991-01-27 2014-10-25 2016-04-30 2022-07-30 2024-07-27

CTXS 1997-03-31 2016-03-31 2017-06-30 2022-06-30 2023-09-30

CVS 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

CVX 1991-03-31 2015-03-31 2016-09-30 2022-12-31 2024-06-30

DE 1991-04-30 2015-01-31 2016-07-31 2022-10-30 2024-07-28

DHI 1992-06-30 2015-03-31 2016-09-30 2022-09-30 2024-06-30

DISH 1995-06-30 2016-03-31 2017-06-30 2022-12-31 2024-06-30

DOV 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

DRI 1996-11-24 2016-02-28 2017-05-28 2022-05-29 2024-05-27

DVN 1991-03-31 2015-03-31 2016-09-30 2022-12-31 2024-06-30

EA 1991-03-31 2014-06-30 2016-03-31 2022-03-31 2024-03-31
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Table D-1 continued

Data set Training

period start

Validation

period start

Regression

testing

period start

Simulation

period start

Simulation

period end

EBAY 1999-12-31 2017-03-31 2018-06-30 2022-12-31 2024-06-29

ECL 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

EIX 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

EMN 1994-06-30 2015-12-31 2017-06-30 2022-12-31 2024-06-30

EMR 1991-03-31 2014-12-31 2016-06-30 2022-09-30 2024-06-30

FAST 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

FL 1990-07-28 2014-05-03 2015-10-31 2022-01-29 2024-08-03

GLW 1991-06-16 2015-03-31 2016-09-30 2022-12-31 2024-06-30

GME 2002-08-03 2017-04-29 2018-05-05 2022-01-29 2024-05-04

GOOG 2005-03-31 2018-09-30 2019-06-30 2022-12-31 2024-06-30

GPC 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

GVA 1991-03-31 2015-03-31 2016-09-30 2022-12-31 2024-06-30

GWW 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

HAL 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

HD 1990-07-29 2014-05-04 2015-11-01 2022-01-30 2024-07-28

HP 1991-03-31 2014-12-31 2016-06-30 2022-09-30 2024-06-30

IBM 1981-06-30 2012-09-30 2014-09-30 2022-12-31 2024-06-30

IFF 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

INTC 1987-06-27 2014-03-29 2015-12-26 2022-12-31 2024-06-29
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Table D-1 continued

Data set Training

period start

Validation

period start

Regression

testing

period start

Simulation

period start

Simulation

period end

INTU 1994-01-31 2015-07-31 2017-01-31 2022-07-31 2024-07-31

JNJ 1981-06-30 2012-09-30 2014-09-28 2023-01-01 2024-06-30

KMB 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

KO 1981-06-30 2012-09-28 2014-09-26 2022-12-31 2024-06-28

KSS 1993-01-31 2014-11-01 2016-04-30 2022-01-29 2024-08-03

M 1993-07-31 2015-01-31 2016-07-30 2022-01-29 2024-08-03

MAS 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

MDLZ 2001-06-30 2017-09-30 2018-09-30 2022-12-31 2024-06-30

MLM 1995-06-30 2016-03-31 2017-06-30 2022-12-31 2024-06-30

MMM 1991-03-31 2015-03-31 2016-09-30 2022-12-31 2024-06-30

MO 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

MRK 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

MSFT 1987-12-31 2013-12-31 2015-09-30 2022-06-30 2024-06-30

NFLX 2003-09-30 2018-03-31 2019-03-31 2022-12-31 2024-06-30

NKE 1990-11-30 2014-08-31 2016-02-29 2022-05-31 2024-05-31

NOV 1998-06-30 2016-12-31 2018-03-31 2022-12-31 2024-06-30

NRG 2005-06-30 2018-09-30 2019-06-30 2022-12-31 2024-06-30

NVDA 2000-04-30 2016-10-30 2017-10-29 2022-01-30 2024-07-28

OI 1992-06-30 2015-06-30 2016-12-31 2022-12-31 2024-06-30
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Table D-1 continued

Data set Training

period start

Validation

period start

Regression

testing

period start

Simulation

period start

Simulation

period end

OLN 1991-03-31 2015-03-31 2016-09-30 2022-12-31 2024-06-30

PARA 2007-03-31 2019-03-31 2019-12-31 2022-12-31 2024-06-30

PG 1990-12-31 2014-09-30 2016-03-31 2022-06-30 2024-06-30

PM 2008-06-30 2019-06-30 2020-03-31 2022-12-31 2024-06-30

POOL 1997-06-30 2016-09-30 2017-12-31 2022-12-31 2024-06-30

PTEN 1994-06-30 2015-12-31 2017-06-30 2022-12-31 2024-06-30

QRTEA 2007-09-30 2019-03-31 2019-12-31 2022-12-31 2024-06-30

RSG 1999-06-30 2017-03-31 2018-06-30 2022-12-31 2024-06-30

SCHL 1992-05-30 2014-11-30 2016-05-31 2022-05-31 2024-05-31

SHW 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

SLGN 1997-06-30 2016-09-30 2017-12-31 2022-12-31 2024-06-30

SSD 1994-06-30 2015-12-31 2017-06-30 2022-12-31 2024-06-30

STLD 1998-03-31 2016-12-31 2018-03-31 2022-12-31 2024-06-30

TEX 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

TGNA 1991-06-30 2015-03-29 2016-09-30 2022-12-31 2024-06-30

TTC 1991-02-01 2015-01-30 2016-07-29 2022-10-31 2024-05-03

URBN 1994-07-31 2015-04-30 2016-07-31 2022-01-31 2024-07-31

UVV 1990-06-30 2014-06-30 2015-12-31 2022-03-31 2024-06-30

VMC 1991-03-31 2015-03-31 2016-09-30 2022-12-31 2024-06-30
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Table D-1 continued

Data set Training

period start

Validation

period start

Regression

testing

period start

Simulation

period start

Simulation

period end

VRSN 1999-06-30 2017-03-31 2018-06-30 2022-12-31 2024-06-30

VZ 1991-06-30 2015-03-31 2016-09-30 2022-12-31 2024-06-30

WBD 2006-09-30 2018-12-31 2019-09-30 2022-12-31 2024-06-30

WLY 1990-10-31 2014-07-31 2016-01-31 2022-04-30 2024-04-30

WM 1998-06-30 2016-12-31 2018-03-31 2022-12-31 2024-06-30

WMT 1990-07-31 2014-04-30 2015-10-31 2022-04-29 2024-29-07

X 1992-06-30 2015-06-30 2016-12-31 2022-12-31 2024-06-30

XRAY 1994-06-30 2015-12-31 2017-06-30 2022-12-31 2024-06-30

Table D-2: FCF: Timelines of data sets used for training, validation, regression, and simulation

testing

Data set Training

period start

Validation

period start

Regression

testing

period start

Simulation

period start

Simulation

period end

ALB 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

AMAT 1996-07-28 2012-04-29 2017-10-29 2023-01-29 2024-07-28

AMD 1996-09-29 2012-06-30 2017-09-30 2022-12-31 2024-06-29

AMZN 1998-09-30 2013-03-31 2018-03-31 2022-12-31 2024-06-30

ANSS 1997-06-30 2012-09-30 2017-12-31 2022-12-31 2024-06-30
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Table D-2 continued

Data set Training

period start

Validation

period start

Regression

testing

period start

Simulation

period start

Simulation

period end

APD 2000-06-30 2013-12-31 2018-06-30 2022-12-31 2024-06-30

APH 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

ATI 1998-09-30 2013-03-31 2018-03-31 2022-12-31 2024-06-30

AZO 2002-05-04 2014-08-30 2018-11-17 2022-11-19 2024-05-04

BA 1998-09-30 2013-03-31 2018-03-31 2022-12-31 2024-06-30

BALL 1996-09-29 2012-07-01 2017-09-30 2022-12-31 2023-12-31

BBWI 1996-11-02 2012-07-28 2017-10-28 2022-10-29 2024-08-03

BBY 1996-11-30 2012-08-04 2017-10-28 2022-10-29 2024-08-03

BWA 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

CAH 1996-03-31 2012-03-31 2017-09-30 2022-12-31 2024-06-30

CAT 1998-09-30 2013-03-31 2018-03-31 2022-12-31 2024-06-30

CE 2006-09-30 2016-06-30 2019-09-30 2022-12-31 2024-06-30

CF 2007-03-31 2016-09-30 2019-12-31 2022-12-31 2024-06-30

CHRW 2001-12-31 2014-09-30 2018-12-31 2022-12-31 2024-06-28

CL 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

CLX 1997-03-31 2012-09-30 2017-12-31 2022-12-31 2024-06-30

CMCSA 2000-09-30 2014-03-31 2018-09-30 2022-12-31 2024-06-30

COO 1995-07-31 2012-01-31 2017-07-31 2023-01-31 2024-07-31

COST 1997-05-11 2012-09-02 2017-11-26 2022-11-20 2024-05-12
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Table D-2 continued

Data set Training

period start

Validation

period start

Regression

testing

period start

Simulation

period start

Simulation

period end

CSCO 1996-04-28 2012-04-28 2017-10-28 2023-01-28 2024-07-27

CTXS 1997-03-31 2012-03-31 2017-06-30 2022-06-30 2023-09-30

CVS 1996-09-28 2012-06-30 2017-09-30 2022-12-31 2024-06-30

CVX 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

DE 1999-07-31 2013-10-31 2018-07-29 2023-01-29 2024-07-28

DHI 1995-06-30 2011-12-31 2017-06-30 2022-09-30 2024-06-30

DISH 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

DOV 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

DRI 1997-02-23 2012-08-26 2017-11-26 2022-11-27 2024-05-26

DVN 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

EA 1996-12-31 2012-09-30 2017-12-31 2022-12-31 2024-06-30

EBAY 2000-03-31 2013-09-30 2018-06-30 2022-12-31 2024-06-30

ECL 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

EIX 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

EMN 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

EMR 1996-06-30 2012-03-31 2017-09-30 2022-12-31 2024-06-30

FAST 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

FL 2000-10-30 2014-02-01 2018-08-04 2022-10-29 2024-08-03

GLW 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30
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Table D-2 continued

Data set Training

period start

Validation

period start

Regression

testing

period start

Simulation

period start

Simulation

period end

GME 2002-11-02 2014-11-01 2018-11-03 2022-10-29 2024-05-04

GOOG 2005-06-30 2015-12-31 2019-06-30 2022-12-31 2024-06-30

GPC 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

GVA 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

GWW 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

HAL 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

HD 1996-10-27 2012-07-29 2017-10-29 2023-01-29 2024-07-28

HP 1997-06-30 2012-09-30 2017-12-31 2022-12-31 2024-06-30

IBM 1995-09-30 2012-03-31 2017-09-30 2022-12-31 2024-06-30

IFF 2001-09-30 2014-06-30 2018-09-30 2022-12-31 2024-06-30

INTC 1996-09-28 2012-06-30 2017-09-30 2022-12-31 2024-06-29

INTU 1997-07-31 2012-10-31 2018-01-31 2023-01-31 2024-07-31

JNJ 1996-09-29 2012-07-01 2017-10-01 2023-01-01 2024-06-30

KMB 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

KO 1997-09-30 2012-09-28 2017-12-31 2022-12-31 2024-06-28

KSS 1996-11-02 2012-07-28 2017-10-28 2023-01-28 2024-08-03

M 1996-11-02 2012-07-28 2017-10-28 2022-10-29 2024-08-03

MAS 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

MDLZ 2002-09-30 2014-09-30 2018-12-31 2022-12-31 2024-06-30
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Table D-2 continued

Data set Training

period start

Validation

period start

Regression

testing

period start

Simulation

period start

Simulation

period end

MLM 1997-09-30 2012-09-30 2017-12-31 2022-12-31 2024-06-30

MMM 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

MO 1997-09-30 2012-09-30 2017-12-31 2022-12-31 2024-06-30

MRK 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

MSFT 1996-03-31 2012-03-31 2017-09-30 2022-12-31 2024-06-30

NFLX 2003-09-30 2015-03-31 2019-03-31 2022-12-31 2024-06-30

NKE 1997-02-28 2012-08-31 2017-11-30 2022-11-30 2024-05-31

NOV 1998-09-30 2013-03-31 2018-03-31 2022-12-31 2024-06-30

NRG 1999-09-30 2013-09-30 2018-06-30 2022-12-31 2024-06-30

NVDA 2000-10-29 2014-04-27 2018-10-28 2023-01-29 2024-07-28

OI 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

OLN 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

PARA 2007-09-30 2016-09-30 2019-12-31 2022-12-31 2024-06-30

PG 1996-03-31 2012-03-31 2017-09-30 2022-12-31 2024-06-30

PM 2009-06-30 2017-09-30 2020-06-30 2022-12-31 2024-06-30

POOL 1997-09-30 2012-09-30 2017-12-31 2022-12-31 2024-06-30

PTEN 1997-09-30 2012-09-30 2017-12-31 2022-12-31 2024-06-30

QRTEA 2008-06-30 2016-12-31 2019-12-31 2022-09-30 2024-06-30

RSG 1999-09-30 2013-09-30 2018-06-30 2022-12-31 2024-06-30
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Table D-2 continued

Data set Training

period start

Validation

period start

Regression

testing

period start

Simulation

period start

Simulation

period end

SCHL 1997-02-28 2012-08-31 2017-11-30 2022-11-30 2024-05-31

SHW 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

SLGN 1998-09-30 2013-03-31 2018-03-31 2022-12-31 2024-06-30

SSD 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

STLD 1998-09-30 2013-03-31 2018-03-31 2022-12-31 2024-06-30

TEX 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

TGNA 1996-09-30 2012-06-24 2017-09-30 2022-12-31 2024-06-30

TTC 1997-08-01 2012-08-03 2017-10-31 2022-10-31 2024-05-03

URBN 1996-10-31 2012-07-31 2017-10-31 2023-01-31 2024-07-31

UVV 2005-12-31 2016-03-31 2019-09-30 2022-12-31 2024-06-30

VMC 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

VRSN 1999-09-30 2013-09-30 2018-06-30 2022-12-31 2024-06-30

VZ 2003-09-30 2015-03-31 2019-03-31 2022-12-31 2024-06-30

WBD 2007-03-31 2016-09-30 2019-12-31 2022-12-31 2024-06-30

WLY 2001-01-31 2013-10-31 2018-01-31 2022-04-30 2024-04-30

WM 1998-09-30 2013-03-31 2018-03-31 2022-12-31 2024-06-30

WMT 1996-10-31 2012-07-31 2017-10-31 2023-01-31 2024-07-31

X 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30

XRAY 1996-09-30 2012-06-30 2017-09-30 2022-12-31 2024-06-30
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