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Abstract
Continuous emotion recognition is to predict emotion states through affective infor-
mation and more focus on the continuous variation of emotion. Fusion of electroen-
cephalography (EEG) and facial expressions videos has been used in this field, while
there are with some limitations in current researches, such as hand‐engineered features,
simple approaches to integration. Hence, a new continuous emotion recognition model is
proposed based on the fusion of EEG and facial expressions videos named residual
multimodal Transformer (RMMT). Firstly, the Resnet50 and temporal convolutional
network (TCN) are utilised to extract spatiotemporal features from videos, and the TCN
is also applied to process the computed EEG frequency power to acquire spatiotemporal
features of EEG. Then, a multimodal Transformer is used to fuse the spatiotemporal
features from the two modalities. Furthermore, a residual connection is introduced to
fuse shallow features with deep features which is verified to be effective for continuous
emotion recognition through experiments. Inspired by knowledge distillation, the authors
incorporate feature‐level loss into the loss function to further enhance the network
performance. Experimental results show that the RMMT reaches a superior performance
over other methods for the MAHNOB‐HCI dataset. Ablation studies on the residual
connection and loss function in the RMMT demonstrate that both of them is functional.
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1 | INTRODUCTION

Continuous emotion recognition refers to the continuous
identification of emotional categories or prediction of valence‐
arousal values over time. The discrete categories of emotion
identification initially came from the six basic emotions theory
proposed by Ekman [1] in 1992. However, human emotions
are always complex and diverse, so many researchers choose
the dimensional model proposed by Lang [2]. In the dimen-
sional model, each emotion can correspond to a set of valence‐
arousal values, so more emotional categories can be covered,
which makes it more convenient to distinguish similar emo-
tions. This paper takes the dimensional model as the target of
emotion analysis and continuously analyses sentiment over
time.

Facial expressions, as the most intuitive and observable
form of emotional expression, have been extensively employed
in sentiment analysis. Initially, the extraction of facial action
units or landmark features [3, 4] is required in facial expression
recognition. However, with end‐to‐end models such as con-
volutional neural networks (CNN), the complex process of
manual feature extraction can be skipped, and emotions can be
recognised directly through inputs. 2D CNN plays an impor-
tant role in image sentiment recognition, while it lacks
expression continuity information. 3D CNN can be used for
recognising emotions in videos, but the model becomes diffi-
cult to be trained due to its large number of parameters.
Whereas using a combination of 2D CNN and 1D CNN as a
substitute for 3D CNN is feasible, which have demonstrated
by studies such as in refs. [5, 6]. In this paper, we also utilise a
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2D spatial feature extractor and a 1D temporal feature
extractor to extract the spatiotemporal information of the
videos.

Facial expressions are subjectively controlled and can be
easily disguised. If the subjects are unable to accurately express
their emotional states or subjectively conceal their emotions,
the accuracy of sentiment analysis will be affected. In this case,
electroencephalography (EEG) and other physiological signals
that are less influenced by subjective factors can compensate
for the insufficient information source, and are more condu-
cive to sentiment analysis. The brain is a high‐level neural
centre that controls movement, generates sensation and en-
ables advanced cognitive functions. Du [7] decoded visual
neural representations from EEG, further demonstrating the
abundance of EEG information. Hence, EEG has been widely
employed in sentiment analysis with three types of features
including time‐domain features [8], frequency‐domain features
[9], and time‐frequency features [10]. In this paper, EEG is
represented with the most commonly used feature type,
frequency‐domain power spectral density (PSD).

As human emotions are inherently multimodal, one of the
key research focuses is how to effectively integrate multiple
emotional features, such as facial expressions, voice, physio-
logical signals, and others. Some multimodal fusion methods
do not rely on specific models, such as feature fusion, decision
fusion etc., while others integrate the process of fusing
different modalities directly into the deep learning network
[11]. The former is widely adopted, for example, Yin [12] fused
music and skin conductance using feature concatenation,
achieving an accuracy of 83.76%, which is a 7% improvement
compared to the single‐modality approach. The latter includes
Wu [13] who utilised long short‐term memory (LSTM) and
temporal self‐attention mechanism to fuse EEG and facial
expression signals for emotion recognition, achieving at least
2% higher accuracy than other models. Similarly, Tsai [14]
proposed a multimodal Transformer that integrates text, audio,
and video modalities, and improves the accuracy of emotion
recognition on CMU‐MOSEI dataset by 10%–15%. Due to
the significant advantages of Transformer in various fields of
deep learning, we propose a framework named residual
multimodal Transformer (RMMT) using the multimodal
Transformer based on the multimodal attention mechanism to
fuse facial expressions and EEG. In addition, a residual
connection module is added to fuse shallow and deep features,
further improving the accuracy of continuous emotion recog-
nition. Furthermore, inspired by knowledge distillation [15–
17], we add a L1 loss between the spatiotemporal features of
EEG and facial expressions in the loss function to fully exploit
the advantages of the two modalities and train a model that is
more favourable for emotion analysis.

Facial expression is the most important external feature of
emotional expression, and EEG is the most related physio-
logical signal to emotions. Through the complementarity and
fusion of these two modes in the RMMT, the accuracy of
continuous emotion recognition is improved. The experiments
are conducted on the MANHOB‐HCI dataset, and the results

demonstrate the effectiveness of the proposed approach in
enhancing emotion analysis.

This paper makes two main contributions:

1) A new continuous emotion recognition model based on the
fusion of EEG and facial expressions is constructed, uti-
lising cross‐modal attention mechanisms for multimodal
fusion. Moreover, informed by the principles of knowledge
distillation, loss between spatiotemporal features of the two
modalities, namely KD loss is added into the loss function.
Extensive experiments and comparisons are conducted on
MANHOB‐HCI dataset, and the results demonstrate that
the proposed method consistently outperforms the state‐
of‐the‐art methods by a large margin.

2) A residual connection is added on the basis of the multi-
modal Transformer to combine shallow and deep features,
which further improved the effectiveness of affective
analysis.

2 | RELATED WORKS

2.1 | Multimodal emotion analysis

In interpersonal communication, humans often use various
modalities such as languages and facial expressions to accu-
rately convey information and express emotions. D'mello [18]
indicates that multimodal systems consistently outperform
single modality systems, with an average accuracy improvement
of 9.83%. Du [19] solved the labelled‐data‐scarcity problem
and the missing‐modality problem at the same time through a
novel multi‐view deep generative framework which is a very
successful method to fuse multiple modalities.

According to the different stages of fusion, multimodal
fusion can be classified into feature fusion, decision fusion, and
hybrid fusion. Their process is presented in Figure 1. Feature
fusion, also known as early fusion, refers to the fusion at the
data or feature level. It only requires the training of a single
model. While one or more modalities are missing, such early
fusion will fail. Decision fusion is typically performed after the
single‐modal output results are obtained. It is more flexible and
superior because the optimal classifiers can be selected for
different modalities and it can still work with some missing
modalities. However, the inter‐modality correlations remain
unutilised. Hybrid fusion is a method that combines feature
and decision fusion approaches and exploits the advantages of
them while it requires more parameters and computational
resources. In 2022, Sun [20] fused brain functional connectivity
networks and eye gaze at feature level and achieved a classifi-
cation accuracy of 91.32%. Tian [21] achieved the optimal
fusion of facial expressions and audio signals through Bayesian
that also known as decision fusion method. The accuracy of
the model reached 98.56% on the CK þ dataset. A hybrid
fusion approach was used by Ayari [22] to integrate the pre-
diction emotions from text, audio, and facial expressions with
features from event detection model. The performance of
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multimodal emotion recognition based on hybrid fusion was
enhanced in terms of F1 score from 0.67 to 0.95.

The fusion methods mentioned above are agnostic to the
model architecture and the input to the model remains a
feature vector, which is either a unimodal feature or a new
concatenated feature vector composed of multiple modalities.
The fusion methods based on models are distinct from the
above fusion methods, because they are specifically proposed
to handle multi‐modal information [11]. In these approaches,
the modalities are no longer fused by simple methods like
feature concatenation before inputted models, instead, their
features are directly inputted models. Deep neural networks
approaches are the typical representatives and show good
performance when compared to non‐neural networks with
their capacity to learn from large amounts of data. However, a
common challenge encountered when training deep learning
networks is the lack of sufficient data. In 2021, Zhou [23]
proposed a multimodal fusion attention network based on
adaptive multilevel factorised bilinear pooling for audio‐visual
emotion recognition, which achieved an accuracy of 75.49% on
the IEMOCAP dataset outperforming previous models. In
2022, Wang [24] utilised CNN to extract spatial features of
EEG and used the statistical features, approximate entropy,
and hurst exponents as temporal features. Then they fused
these features through Bi‐LSTM to recognise emotion, and
finally achieved outstanding performance. In this paper, a
model which realises the fusion of EEG and facial expressions
based on the RMMT is proposed, fully leveraging the advan-
tages of feature fusion.

2.2 | Continuous emotion recognition

Discrete emotion recognition is limited in expressing a finite
set of emotional categories and neglects the temporal conti-
nuity of emotional changes, while continuous emotion recog-
nition more focuses on the changes. In spatial terms, emotional
states are treated as continuous point values in a multidimen-
sional emotional space, while in temporal terms, emotional

states and their changing trends are predicted continuously
over a certain time interval ultimately. Continuous emotion
recognition presents more obstacles and challenges to over-
come compared to discrete emotion recognition.

In 2020, Pei [25] demonstrated the effectiveness of 3D
morphable models in extracting spatiotemporal information of
facial muscle deformations for continuous emotion recogni-
tion. It outperformed handcrafted features by average of
37.05% on the RECOLA development set. Chen [26]
employed a CNN and multi‐head attention to capture dynamic
relationships both between and within audio and video mo-
dalities and reached 0.583 for arousal and 0.564 for valence in
terms of Consistency Correlation Coefficient (CCC) on the
AVEC2019 dataset, achieving state‐of‐the‐art performance. In
2021, Hu [27] utilised a combination of 2D CNN and 1D
CNN for continuous video emotion analysis, with static fea-
tures of image sequences extracted by a residual attention
network and then input into a two‐stage spatiotemporal
attention time convolutional network. The model achieved
CCC values of 0.659 and 0.69 for arousal and valence on the
RECOLA dataset, respectively. These results represent an
improvement of 25%–36% compared to Pei's results. In 2022,
Li [28] proposed a multi‐timescale model and verified that
combining time pooling at different scales can fully utilise
temporal information and improve the accuracy of continuous
emotion recognition.

The majority of existing literatures on continuous emotion
recognition primarily concentrate on audio and video modal-
ities, with relatively fewer based on the fusion of EEG and
facial expressions. In 2016, Soleymani [29] proposed the
MANHOB‐HCI dataset and extracted PSD features from
EEG and landmark features from facial expressions. They used
and compared various basic models, including multilayer per-
ceptron, support vector machine, conditional random field,
and long‐short term memory. But ref. [29] only simply
concatenated the features. Similarly, Li [30] also used PSD
features from EEG signals and landmark features from facial
expressions in 2019. Furthermore, in EEG signal processing, t‐
SNE was utilised for feature selection (dimension reduction) to

F I GURE 1 Diagram of different fusion methods.
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simplify the model and enhance its generalisation ability. Then,
a multi‐step LSTM was adopted to fuse the two modalities, and
ultimately, the model attained desirable outcomes on self‐
collected data. In 2020, Choi [31] proposed a fusion network
that combined CNN and LSTM to extract spatiotemporal
features from both EEG and facial expressions modalities.
Multiple layers of attention structures based on bilinear pool-
ing were used to fuse the two modalities, and the proposed
fusion network improved the performance by at least 6.9%
compared to single‐modal models. But bilinear pooling
method may ignore the correlation between different modal-
ities, which may lead to the loss of critical information. In
2022, Zhang [32] utilised knowledge distillation to continuous
emotion recognition based on EEG and facial expressions
modalities. They trained the EEG feature extraction model
with the more effective facial expressions modality to improve
the information utilisation rate of the EEG modality. The re-
sults indicate that with the assistance of the facial expressions,
the EEG feature extraction model can extract more favourable
features for emotion analysis, thereby improving the accuracy
of the EEG unimodal emotion analysis. But facial expressions
are not involved in the process of emotion prediction.

In the field of continuous emotion recognition combining
EEG and facial expressions, the PSD, a typical feature of EEG,
has never been abandoned, while as for facial expressions, the
commonly used features have evolved from handcrafted fea-
tures to deep learning features. Hence, while retaining the PSD
features, we employ a CNN to extract facial expressions fea-
tures. Building upon the advantages of knowledge distillation
and multimodal fusion, the loss function is optimizsed and a
RMMT is employed in fusing EEG and facial expressions to
achieve the best performance.

3 | PROPOSED METHOD

The proposed continuous emotion recognitionmodel RMMT is
illustrated in Figure 2. There are four components in the model:
a face feature extractor, an EEG feature extractor, a feature
fusion module and a regressor. In the face feature extractor,
image sequences from the videos are fed into a pre‐trained

50‐layer residual network (ResNet50) [33] and a temporal con-
volutional network (TCN) [34] to obtain spatiotemporal fea-
tures. In the EEG feature extractor, after preprocessing such as
denoising and re‐reference, EEG signals are first processed in
the PSD calculation to calculate the relative power density of
each frequency band, and then fed into a TCN to extract the
spatiotemporal features of EEG. Subsequently, the spatiotem-
poral signals of the two modalities are fused by a feature fusion
module based on a multimodal Transformer with a residual
connection module. Finally, the emotional states are predicted
by a regressor.

The details of each module will be introduced in the
following subsections.

3.1 | Face feature extractor

As shown in Figure 2, to extract spatial and temporal features
of videos respectively, a pre‐trained ResNet50 and a TCN are
utilised in the face feature extractor. The ResNet50 network is
first pre‐trained on the MS‐CELEB‐1M dataset for facial
recognition as a downstream task, and subsequently fine‐tuned
on the FER þ dataset for facial expressions analysis. In
modelling sequential data, the most commonly used method is
recurrent neural network (RNN) and its variants, such as
LSTM and gated recurrent unit. However, TCN is a completely
different model for analysing time‐series data based on dilated
causal convolutions. Causal convolution, similar to LSTM is a
unidirectional model of which output of each moment only
relates to the previous layers and values while the future data is
unknown for it. Such a model can only capture a fixed number
of values over time. To capture information over longer time
periods, more network layers need to be added, which not only
increases the number of parameters but also makes the model
harder to train. Thus, dilated convolution is proposed. Dilated
convolution allows for interval subsampling of the input: a
subsampling distance of 1 means that every point of the input
is sampled, while a subsampling distance of two means that
every second point is sampled. The greater the depth of the
network, the larger the available sampling distance, thus, the
effective window size grows exponentially with the depth,

F I GURE 2 The illustration of the RMMT. EEG, electroencephalography; PSD, power spectral density; RMMT, residual multimodal Transformer; TCN,
temporal convolutional network.
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thereby obtaining a larger receptive field with fewer network
layers. According to the research, TCN composed of dilated
causal convolutions has achieved better accuracy than RNN in
a variety of fields, hence, in this paper, TCN is utilised as the
main network for extracting temporal features.

3.2 | EEG feature extractor

Similar to the face feature extractor, the EEG feature extractor
is composed of a spatial feature extractor and a temporal
feature extractor as illustrated in Figure 2. The latter is a TCN
same to the facial feature extraction module, while the former
is a relative PSD calculation which has been widely used in
EEG emotion recognition. The computation of relative power
spectrum for EEG data serves as a normalisation step that
enhances the accuracy.

EEG signals can typically be divided into six frequency
bands, with each band associated with a distinct mental state,
which is summarised in Table 1. The δ wave (0.3–5 Hz) is
characterised by high‐amplitude waves and is associated with
the unconscious mind. It often appears during sleeping or
unconscious states and is typically located in the frontal region
in adults and the occipital region in infants. The θ wave (5–
8 Hz) is associated with dreaming and is also observed during
meditation. The α wave (8–12 Hz) is associated with a relaxed
but conscious mental state and is the most notable rhythmical
brain wave that can be detected in both the posterior and
lateral regions of the brain. The β wave (12–30 Hz) is a low‐
amplitude wave that often fluctuates with brain activity. It
typically occurs symmetrically on both sides of the brain and is
most prominent in the frontal region. The γ wave (30–45 Hz)
generally appears in the somatosensory cortex, and its presence
is usually associated with highly excited or stimulated states.
The β wave can be further divided into β1 (12–18 Hz) and β2

(18–30 Hz), with the former associated with a relaxed state of
focused attention, while the latter indicates a state of deep
concentration and high mental effort.

Based on the theoretical knowledge above, the relative
PSD of 32 channels of EEG in 6 frequency bands is calculated
and the feature dimension is L � 192 (L represents the number
of sampling points, 192 = 32 � 6). The periodogram is the
simplest spectral estimation technique for stochastic signals

like EEG. The method is a biased estimation, but results in an
uneven power spectrum with a large mean square error and
hence a non‐consistent estimate. Due to the limitations of the
periodogram, the Welch method is employed to estimate the
PSD. The data x(n) with a length of N (n = 0, 1, …, N − 1) is
first divided into L segments, each containing M data points.
The ith segment of data is denoted as follows:

xiðnÞ ¼ xðnþ iM −MÞ; 0 ≤ n ≤M; 1 ≤ i ≤ L: ð1Þ

Next, a window function w(n) is applied to each data
segment, and the periodogram for each segment is calculated.
The periodogram for the ith segment is as follows:

IiðωÞ ¼
1
U

�
�
�
�
�

XM−1

n¼0
xiðnÞwðnÞe−jωn

�
�
�
�
�

2

; i¼ 1; 2; 3; :::;M − 1; ð2Þ

where the symbol U is the normalisation factor:

U ¼
1
M

XM−1

n¼0
w2ðnÞ; ð3Þ

If the periodograms of each segment are considered to be
nearly uncorrelated, then the PSD estimate represented by Pxx
is defined as follows:

Pxx ejω
� �

¼
1
L

XL

i¼1
IiðωÞ: ð4Þ

Substituting ω¼ 2πf into the equation yields the following
expression:

Pxxð f Þ ¼
1
L

XL

i¼1

Iið f Þ: ð5Þ

Using the Welch method in Python, the Pxxð f Þ can be
directly calculated, hence the PSD in the frequency band in-
terval [f1,f2] is as follows:

P f1;f2½ � ¼

Z f2

f1
Pxxð f Þdf : ð6Þ

The relative PSD of the frequency band interval [ f1,f2] to
the total frequency band interval [ f0, f3] can be obtained by
division:

P¼
P f1;f2½ �

P f0;f3½ �

: ð7Þ

3.3 | Feature fusion module

As illustrated in Figure 3, the feature fusion module includes a
multimodal Transformer and a residual connection. The multi-
modal Transformer [13] is designed to enable one modality for

TABLE 1 Electroencephalography frequency bands and their
characteristic.

Name
Frequency
band Characteristic

δ 0.3–5 Hz Appearing during sleeping or unconscious states

θ 5–8 Hz Appearing when dreaming or meditating

α 8–12 Hz Appearing when relaxing

β1 12–18 Hz Appearing during a relaxed state of focused attention

β2 18–30 Hz Appearing when deeply concentrating

γ 30–45 Hz Appearing during highly excited or stimulated states
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receiving information from another modality. Due to the various
challenges and limitations of using EEG for emotion recogni-
tion, only one multimodal Transformer is employed to fully
extract emotion‐relevant features from EEG signals with the
help of facial expressions features, which is denoted by ‘E→F’.

Each multimodal Transformer is composed of N layer
blocks. As for the ith layer (i = 0,1, …, N), the cross‐modal
attention in multimodal Transformer is defined as follows:

X ½0�E→F ¼ X F ; ð8Þ

QF ¼ X ½i−1�
E→FW

T
Q; ð9Þ

K E ¼ X ½0�E W T
K ; ð10Þ

V E ¼ X ½0�E W T
V ; ð11Þ

Att ¼ ReLU
QFK

T
Effiffiffiffiffiffi

dK
p

 !

; ð12Þ

CroM E→F ¼ AttV T
E ; ð13Þ

where X ½0�E and XF denote the EEG and face features respec-

tively, X ½i−1�
E→F is the output of the previous layer, WQ, WK and

WV are the weights used to map the EEG signals onto the facial
expression features. QF represents ‘Query’ which refers to the
information to be queried. It determines what the model fo-
cuses on, indicating where to concentrate attention. KE denotes
‘Key’, representing a set of reference data used to measure the
similarity between the Query and other data. It reflects the inter‐
modality relationships. VE is ‘Value’, representing the values
associated with Key. Attention score (Att) in Equation (12) is
computed by measuring the similarity between QF and KE. To
stabilise the gradient, the product ofQF andKE is normalised by
dividing it by

ffiffiffiffiffiffi
dK

p
. Through theAtt, weights are assigned to the

VE, and, ultimately, information from different modalities is

aggregated through weighted summation into the output
CroM E→F . In comparison to the complexity of EEG, facial
expressions are more intuitive. Additionally, results from ex-
periments in single‐modal emotion analysis also affirm that
emotion‐based approaches based on facial expressions often
provide superior capabilities for capturing emotional informa-
tion. Hence, in the first layer of the multimodal Transformer,
facial expression signals are set as Query, serving as the refer-
ence for retrieval. Then features in the EEG modality that
resemble facial expressions can be searched for and weights can
be allocated to EEG features based on their similarity before
they are integrated with facial features. Due to the strong as-
sociation between facial expressions and emotions, the cross‐
modal attention mechanism allocates greater weight to EEG
features associated with emotions, while assigning lower weight
or even discarding redundant information.

After the EEG is weighted, the face features are supple-
mented and strengthened through residual connections in the

cross‐modal module, and then are normalised to obtain ~X
½i�
E→F :

~X
½i�
E→F ¼ LN QF þ CroME→Fð Þ; ð14Þ

where LN means layer normalisation.

Then, ~X
½i�
E→F is fed into a feed‐forward network:

F ~X
½i�
E→F

� �
¼W 2 ReLU W 1 ~X

½i�
E→F þ b1

� �� �
þ b2; ð15Þ

where W1, b1, W2 and b2 are the parameters of the feedfor-
ward network.

Finally, the output of the ith layer of Transformer is
defined as follows:

X ½i�E→F ¼
~X
½i�
E→F þ F ~X

½i�
E→F

� �
: ð16Þ

In the subsequent levels, the output will serve as a new
Query for the continued exploration of emotion‐related

F I GURE 3 The illustration of the feature fusion module.
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features in the EEG modality, subsequently proceeding to
another round of fusion. The number of repetitions in this
process depends on the number of layers.

In order to prevent excessive loss of shallow features in a
deep network, a residual connection [35] is incorporated into
the fusion module to fuse the spatiotemporal features of
shallow layers with the outputs of the multimodal Transformer.
Ref. [32] indicates that facial expressions play a more important
role in emotion analysis than EEG. Hence, only the facial
expressions features are taken as an input of the residual
connection to avoid redundancy:

X cat ¼ concat X F ;X
½N �
E→F

� �
; ð17Þ

where N is the total layers of Transformer.
Finally, the concatenated Xcat is fed into a regressor for

predicting the valence value.

3.4 | Loss function based on knowledge
distillation

The loss function utilised in this study is the CCC loss. CCC is
a widely used evaluation metric for regression problems, which
can simultaneously measure the correlation and absolute dif-
ference between the predicted values X ∈ RN�1 and the true
values Y ∈ RN�1. The formula is given as follows:

ρc ¼
2σXY

σ2
X þ σ2

Y þ μX − μYð Þ
2; ð18Þ

where σXY is covariance, σ2
X and σ2

Y are variances, μX and μY
are means. The value of CCC ranges from −1 to 1, with a
higher value indicating a stronger similarity between the
predicted values and the true values, indicating a better pre-
dictive ability of the model. Thus, the CCC loss is defined as
follows:

LCCC ¼ 1 − ρc: ð19Þ

Additionally, inspired by knowledge distillation, an
improvement to the loss function is proposed in this paper.

Knowledge distillation is the process of transferring
knowledge from a larger deep neural network to a smaller one
and is commonly used for model compression. The larger one is
named the teacher model while the smaller one is the student
model. Cross‐modal feature‐level knowledge distillation is a
technique to enhance model performance by transferring
knowledge across different modalities, which is displayed in
Figure 4a. Generally, the teacher model is trained on a more
effective modality and then the outputs of a certain layer or
several layers of it are saved. One of the main purposes of
training the student model is to minimise the loss between its
corresponding network layers outputs and those of the teacher
model, as showed in Figure 4b. For example, Liu [36] trained a
multispectral pedestrian detector (teacher model) on thermal
images and then transferred the knowledge to a model that only
receives RGB images, ultimately, they alleviated the reliance of
existing multispectral pedestrian detectors on thermal images
and the distillation method achieved robust performance.

In traditional knowledge distillation, the loss function is
Kullback–Leibler divergence [37], while cross‐entropy loss and
L2 loss are also used in many papers. We utilise a sparser L1
loss, namely Knowledge distillation loss (KD loss), to measure
the difference of given two feature vectors U ∈ RT�H and
V ∈ RT�H:

L1ðU ;V Þ ¼
1
TH

XT

i¼1
jui − vij; ð20Þ

where ui and vi ∈ RH are the feature points in each time step.
The loss function is introduced into the training of the

multimodal fusion model and has a positive effect on model
training which can be demonstrated by the experimental re-
sults. Therefore, the final loss function is defined as follows:

l ¼ LCCCðX ;Y Þ þ αL1 X E;X Fð Þ; ð21Þ

where X and Y are the predicted and true values of valence
respectively, XE and XF are EEG and facial expressions

F I GURE 4 Illustrations of cross‐modal feature‐level knowledge distillation.
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features vectors respectively. The parameter α is used to
control the degree of influence of KD loss on model
training.

4 | EXPERIMENTS

4.1 | Dataset and data preprocessing

The MAHNOB‐HCI dataset used in this paper was acquired
by the Biosemi active II system with active electrodes. Thirty‐
two EEG electrodes were placed on a cap using international
10–20 system [38] as shown in Figure 5. Figure 5a is the EEG
cap layout for 32 EEG electrodes and Figure 5b is the distri-
bution of the four brain lobes, including the frontal, parietal,
temporal and occipital lobes. Different colours indicate the
correspondence between brain lobes and EEG electrodes.

To discuss the relationship between human emotions and
each lobe of the brain. Data from several subjects with
different emotional states and genders are selected. Table 2
illustrates their expressions and topo maps of their EEG PSD
in six frequency bands during positive or negative emotions. In
the topo maps, deeper colour means greater PSD and greater
PSD means that part of the brain is more active.

Taking into account all the maps, it is evident that all the
four lobes can be active on the six bands. The reason is that
during experiments, when the subjects are viewing stimulus
videos, the occipital and temporal lobes perceive visual and
auditory stimuli, the parietal lobe integrates perception, and the
frontal lobe makes decisions and guides facial expressions. In
fact, all parts of the brain should collaborate to produce
emotions in real life.

Upon separate observation, it can be noted that in the β1

band, β2 band, and γ band, the colours are deeper on both
sides of the brain. These three frequency bands tend to be
associated with strong emotions, and thus human emotional
activation channels are primarily distributed in the temporal
lobe. In the δ band, the frontal lobe is the most active. The
parietal lobes are the most active in the θ and α bands.

Additionally, EEG is highly individualised. Comparing the first
and the third subjects, they are both in the negative state, but
their EEG topo maps are not the same. Therefore, how to
train a common emotion recognition model for different
people is also one of the future research directions.

The dataset is composed of facial expressions, audio signals,
EEG, and peripheral physiological signals of 30 subjects when
they were watching 20 videos, with video lengths ranging from
35 to 117 s. During each trial, subjects rate arousal, valence,
dominance, and basic emotions categories with an integer scale
ranging from 1 to 9. In addition to discrete emotion labels, a
subset with continuous labels has been derived from the dataset.
The subset consists of 239 experimental data from 24 subjects
with clear facial expressions which are annotated by five experts
using a joystick at 4 Hz. Since the arousal value is related to
physical movements which cannot be observed solely through
facial expression videos, only the valence is annotated. Valence
values range from −0.5 to 0.5 and our experiments are carried
out on this subset.

4.2 | Data preprocessing

Preprocessing is required for both the facial expressions videos
and the EEG data before they are fed to the model. For video
data, the initial preprocessing step involves clipping the
beginning and end of the video based on the timestamp in-
formation in the dataset, ensuring that only the reactions to
emotional stimuli are preserved. Subsequently, the videos are
changed to 64fps for synchronisation with the 4 Hz labels.
Lastly, the video frames are cropped to a size of 48 � 48. For
EEG data, the most crucial step is to remove artifacts with the
average reference, which means each recorded EEG signal
from any electrode needs to be subtracted by the average
amplitude of all EEG signals from all electrodes. This is due to
the fact that these average signals contain noise and artifacts
that can be detected on the scalp but are not from the brain,
such as eye movement signals, skin electrical signals etc.
The introduction of an average reference can enhance the

F I GURE 5 The illustration of the international 10–20 system and the brain lobes.
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signal‐to‐noise ratio of EEG and consequently reduce errors in
affective analysis.

4.3 | Data partitioning

The results are evaluated in a 10‐fold cross‐validation. In every
fold, the dataset is divided into three sets, with 10% used for
testing, 60% of the remaining samples used for training, and
the rest used as validation sets. Specifically, the 239 trials are
split into 129, 86, and 24 trials for training, validation, and
testing in each fold. There may be data from the same subject
in the training set, validation set, and test set, which may lead
to better test results because the model has learnt similar data
to the test set during training. So, it is neither subject‐
independent nor subject‐dependent. To verify the general-
isability of the RMMT across subjects, the leave‐one‐out cross‐
validation which is subject‐independent is also employed.
Specifically, the data from 24 subjects are divided into 24 folds
according to the subjects, and one of the folds is used as the
test set each time, while the data from the remaining 23 sub-
jects are divided into the validation set and the test set in a
ratio of 8:2.

4.4 | Evaluation metrics

The evaluation metrics are Root Mean Square Error (RMSE),
Pearson Correlation Coefficient (PCC), and CCC. Given the
prediction X ∈ RN�1 and the continuous label Y ∈ RN�1,
RMSE which measures the deviation between predicted and
true values can be calculated as follows:

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1

Xi − Yið Þ
2

v
u
u
t : ð22Þ

PCC and CCC are two commonly used correlation co-
efficients that reflect the degree of correlation between vari-
ables. PCC represents the linear correlation between variables
and is calculated as following:

ρX;Y ¼
σXY

σXσY
; ð23Þ

where X is the prediction and Y is the continuous label, σXY is
the covariance between X and Y, and σX and σY are the
standard deviations of X and Y respectively. Values of PCC

TABLE 2 PSD topo maps of subjects in the six frequency bands for different emotions.

Face Topo maps of EEG PSD

Abbreviations: EEG, electroencephalography; PSD, power spectral density.
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range from −1 to 1, with 0 indicating no correlation between X
and Y, a negative value indicating a negative correlation, and a
positive value indicating a positive correlation between X and
Y. The closer the absolute value of PCC is to 1, the stronger
the correlation between the two variables. CCC is an
improvement over PCC as it not only considers the linearity
between variables, but also focus on the numerical distance
between them. The computation method is described in For-
mula (18). The value of CCC also falls within the range of −1
to 1, and the closer its absolute value is to 1, the closer the
relationship between X and Y.

4.5 | Experimental results

Firstly, with the same feature extractors, two traditional fusion
methods are used as the baseline models for the RMMT,
including F‐Fusion based on feature fusion, D‐Fusion based on
decision fusion. Numerical experiments have been conducted
on the proposed RMMT and the two baseline models. Experi-
mental results demonstrate that the proposed RMMT out-
performs the benchmark models. Secondly, the RMMT is
compared with previous methods to further prove the effec-
tiveness of it. Eventually, ablation experiments about the residual

module in the RMMT and KD loss function are performed to
verify the necessity of them. The RMSE, PCC, and CCC in the
experimental results are obtained by summing up the experi-
mental results of each fold and then calculating the arithmetic
mean in the 10‐fold cross‐validation or leave‐one‐out method.

4.5.1 | Models with different fusion methods

As mentioned earlier, there are various methods for multi-
modal fusion. To demonstrate the superior performance of the
proposed method, a model based on feature fusion (F‐Fusion)
and a model based on decision fusion (D‐Fusion) are designed.
The model diagrams are illustrated in Figure 6, where XF and
XE represent the spatiotemporal features extracted by the EEG
and face feature extractors described in Chapter 3:

X F ¼ f1 f2 ::: fn½ �;X E ¼ e1 e2 ::: em½ �: ð24Þ

As shown in Figure 6a, in F‐Fusion, XF and XE are directly
concatenated to obtain X and then X is fed into the regression
layer to predict the valence value:

X ¼ concat X F ;X Eð Þ ¼ f1 f2 ::: fn e1 e2 ::: em½ �: ð25Þ

F I GURE 6 Illustrations of different fusion methods.
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In Figure 6b, the D‐fusion model takes XF and XE as inputs to
their respective prediction layers. The predictions from both
regressors are fused by means of a weighted average:

X ¼ μX F þ ηX E; ð26Þ

where μ and η represent the weights of facial expressions and
EEG predictions, respectively. Different values are assigned to
μ and η, and the experimental results are visualised in Figure 7.
It reveals that the optimal values are achieved when μ = 0.6
and η = 0.4, resulting in RMSE, PCC, and CCC values of 0.05,
0.747, and 0.713, respectively. Hence, μ = 0.6 and η = 0.4 are
assigned as the final values.

Figure 6c depicts a simplified diagram of the RMMT
proposed in Chapter 3.

The results of each model are illustrated in Table 3. The
fusion of EEG and facial expressions in F‐Fusion and D‐
Fusion are relatively simple, leading to insufficient fusion,
while the multimodal Transformer in the RMMT can consider
contextual information and fully leverage the temporal re-
lationships and spatiotemporal context among modalities
during the fusion process, thereby enhancing the understand-
ing and representation capability to data of the model. Hence
the performance of the RMMT is optimal. While the RMSE
values of these three models are comparable, the RMMT ex-
hibits significantly better performance with PCC of 0.755,
surpassing F‐Fusion and D‐Fusion by 0.017 and 0.008. The
RMMT also achieves an optimum of 0.736 on the CCC with
4% and 3% more than F‐Fusion and D‐Fusion.

4.5.2 | Comparison with the state‐of‐the‐art
methods

The experimental results of the proposed RMMT as well as
previous methods are displayed in Table 4. The results of refs.
[29, 31] in the table are from the original paper, while the re-
sults of paper [32] are obtained by using the same parameters
as our proposed model. They all use the 10‐fold cross‐
validation.

On the one hand, for the single‐modal experiments, the
single‐modal Transformers are added to the EEG feature
extractor and the video feature extractor, respectively, obtain-
ing residual single‐modal Transformer for EEG (RSMT‐E)
and residual single‐modal Transformer for face (RSMT‐F). In
the self‐attention mechanism of the single‐modal Transformer,
each position is allowed to interact directly with all other po-
sitions, enabling the capture of long‐range dependencies and
thereby enhancing the accuracy. So, the obtained results of
RSMT‐E and RSMT‐F are greater than the other models. In
particular, the CCC value of RSMT‐F is improved from 0.67 in
ref. [32] to 0.701.

On the other hand, the multimodal experiments, the
multimodal Transformer effectively enhances the fusion per-
formance of multimodal data. As shown in the last row of
Table 4, despite a slight increase in RMSE compared to the
previous works, the PCC values of our model have significantly
improved. The PCC values are improved by 65% and 42%
compared to refs. [29, 31]. The main reason is the application of
the multimodal Transformer with a residual connection module
greatly improves the fusion effect. Multimodal Transformer
facilitates interaction and information exchange between
different modalities. Moreover, by utilising attention mecha-
nism, the model captures the correlations and dependencies
among different modalities. Another reason is that the feature
extraction network for each modality demonstrates better
effectiveness than refs. [29, 31]. For example, ref. [29] utilise
traditional facial landmark features as video modality features,

F I GURE 7 Results for different μ and η. CCC, consistency correlation coefficient; PCC, Pearson correlation coefficient; RMSE, root mean square error.

TABLE 3 Results of different fusion methods.

(a) F‐Fusion (b) D‐Fusion (c) RMMT

RMSE↓ 0.050 � 0.010 0.050 � 0.009 0.051 � 0.007

PCC↑ 0.738 � 0.082 0.747 � 0.074 0.755 � 0.082

CCC↑ 0.706 � 0.080 0.713 � 0.076 0.736 � 0.078

Note: ↑: the higher the better. ↓: the lower the better. Bold fonts indicate the best
results.
Abbreviations: CCC, consistency correlation coefficient; PCC, Pearson correlation
coefficient; RMMT, residual multimodal Transformer; RMSE, root mean square error.
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whereas more effective deep learning techniques are employed
for feature extraction in our proposed model. And the TCN
used for extracting temporal sequence features in the RMMT is
also superior to the LSTM employed in ref. [29, 31].

The valence results of each single‐modal and the RMMTof
10‐fold cross‐validation are separately plotted in Figure 8, as
well as the target valence values to visualise the effectiveness of
the model in emotion prediction and the performance of
multimodal fusion. Results from two subjects are presented,
respectively. From Figure 8a, it is evident that the curves of
RSMT‐F and RMMT closely match the target curve, indicating
their effective capability in recognising emotional states.
Moreover, the curves demonstrate consistency and stability in
the RMMT for emotion analysis. For instance, in Figure 8a, the
facial expressions at the 7th and 37th seconds are similar, and
the corresponding valence values of the RMMT at these time
points are also similar, with target values and the results of the

RMMT are all around 0.25. The data at the 50th second reveals
that results of the RMMT is closer to the target values,
demonstrating the beneficial effect of EEG‐face modality
fusion in emotion analysis. Additionally, Figure 8b demon-
strates negative emotions can also be recognised by the
RMMT, despite slight deviations from the target values. The
reason is that frowning amplitude in negative emotions is too
small that it is more difficult to recognise than smiling in
positive emotions, which is the same as ref. [29].

Table 5 presents the results from leave‐one‐out cross‐
validation, with the results of ref. [32] reproduced under the
same configuration as the RMMT. Overall, the RSMT‐F per-
forms an improvement over ref. [32] and the RMMT out-
performs unimodal models. However, the performance of the
RSMT‐E is slightly suboptimal compared to ref. [32]. This is
attributed to the inherent individual differences in EEG, which
result in a comparatively lower generalisation capability of

TABLE 4 Results from different models of the 10‐fold cross‐validation: '‐' indicates missing data in the original paper.

Models RMSE↓ PCC↑ CCC↑

EEG Soleymani [29] 0.053 � 0.029 0.240 � 0.340 ‐

Choi [31] 0.049 � 0.005 0.290 � 0.080 ‐

Zhang [32] 0.068 � 0.017 0.492 � 0.142 0.443 � 0.148

RSMT‐E 0.077 � 0.014 0.492 � 0.135 0.450 � 0.127

Face Soleymani [29] 0.043 � 0.026 0.480 � 0.370 ‐

Choi [31] 0.039 � 0.004 0.520 � 0.070 ‐

Zhang [32] 0.056 � 0.008 0.715 � 0.079 0.670 � 0.076

RSMT‐F 0.054 � 0.009 0.727 � 0.084 0.701 � 0.079

Multimodal Soleymani [29] 0.044 � 0.026 0.450 � 0.35 ‐

Choi [31] 0.037 ± 0.003 0.530 � 0.05 ‐

Zhang [32] 0.068 � 0.019 0.471 � 0.155 0.42 � 0.116

RMMT 0.051 � 0.007 0.755 ± 0.082 0.736 ± 0.078

Note: ↑: the higher the better. ↓: the lower the better. Bold fonts indicate the best results.
Abbreviations: CCC, consistency correlation coefficient; PCC, Pearson correlation coefficient; RMMT, residual multimodal Transformer; RMSE, root mean square error; RSMT‐E,
residual single‐modal Transformer for EEG; RSMT‐F, residual single‐modal Transformer for face.

F I GURE 8 Valance results of proposed method plotting of the MAHNOB‐HCI dataset. RMMT, residual multimodal Transformer; RSMT‐E, residual
single‐modal Transformer for EEG; RSMT‐F, residual single‐modal Transformer for face.
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emotion analysis models. Moreover, the limited size of EEG
data is insufficient for training larger models, and larger models
may introduce some noise, resulting in a decline in perfor-
mance. In comparison with the results in Table 4 of the 10‐fold
cross‐validation, the PCC and CCC of the RMMT drop by 7%
and 14%. Better results in Table 4 are attributed to data leakage
in 10‐fold cross‐validation, where training and testing sets may
share data from the same subjects, allowing the model to
prematurely learn similar features. Nevertheless, even using
leave‐one‐out cross‐validation, the performance of the RMMT
remains superior to unimodal models from refs. [29, 31].

4.5.3 | Ablation experiments

Two ablation experiments are conducted in this section to
further validate the performance of the RMMT, and the results
are shown in Table 6.

Firstly, in order to verify the influences of the residual
connection in the RMMT on the model performance, the re-
sidual connection is removed, obtaining the multimodal
Transformer named MMT, and it is trained and tested on the
MAHNOB‐HCI dataset in the same way as the RMMT. The
results are shown in the first column of Table 6. Theoretically,
the spatiotemporal features of expressions extracted by
ResNet50 and TCN may experience some information loss
after repeated mapping and calculation in the multimodal

Transformer. Because facial expression signals contribute more
to emotion analysis results than EEG, the loss of facial
expression information has a more negative impact on the
results. The residual connection is employed to avoid this
negative effect. As shown in Figure 6c, the residual connection
enables the shallow facial expression features (XF) to skip the
Transformer and directly input into the regression layer along
with the output of the Transformer to predict the emotion
state, and the XF is utilised again to offset the loss caused by
the Transformer, resulting in better experimental results. In
multimodal fusion, if the contribution of different modalities is
unbalanced, this approach can be considered to retain more
effective information. From the experimental results, a com-
parison with the results of the RMMT reveals that the addition
of the residual connection not only reduces the RMSE but also
improves the PCC and CCC by 0.024 and 0.057, respectively,
which means there is some crucial information lost in the
multimodal Transformer.

In addition, to verify the impact of the feature‐level KD
loss, the RMMT is also trained without the KD loss. Results
are shown in the second column of Table 6. Comparison with
the RMMT shows that with the addition of KD loss, the
RMSE is lower and both PCC and CCC are improved. The
results suggest that the facial features can also effectively su-
pervise the training of the model in multimodal fusion through
KD loss.

Meanwhile, we conduct experiments to compare and select
values of the weight α in the loss function. The value of α is set
between 0.2 and 2, with an increment of 0.2. The variation of the
results with the value of α is shown in Figure 9, and the details
are shown in Table 7. When α < 1, the impact of KD loss on
model training is smaller than that of CCC loss, while it is
opposite when α > 1. It is evident from Figure 9 that the model
can achieve favourable results when α ≤ 1, while the best per-
formance is attained when α = 1. As α increases beyond 1, both
PCC and CCC gradually decrease. Obviously, this is because the
influence of the KD loss becomes greater than that of the
original labels, whereas the supervisory role of original labels is
the most direct and effective in the deep learning model training
process. The introduction of KD loss only helps the model
extract more accurate features, but it cannot directly guide the
model to predict emotional states.

5 | CONCLUSION

In this paper, a new network for emotion recognition based on
EEG and facial expressions named RMMT is proposed. Spe-
cifically, a face feature extractor and an EEG feature extractor
are utilised to extract the spatiotemporal features of the two
modalities separately. And then a multimodal Transformer is
utilised to fuse the spatiotemporal features, and a residual
connection is employed to compensate for the information
loss caused by the deep neural network. The RMMT is verified
on MANHOB‐HCI dataset and the RMSE, PCC and CCC
reach 0.051, 0.746 and 0.722 respectively, outperforming other
state‐of‐the‐art approaches.

TABLE 5 Results from different models of the leave‐one‐out
method: '‐' indicates missing data in the original paper.

Models RMSE↓ PCC↑ CCC↑

EEG Zhang [32] 0.064 � 0.026 0.498 � 0.245 0.391 � 0.245

RSMT‐E 0.070 � 0.020 0.438 � 0.254 0.374 � 0.246

Face Zhang [32] 0.054 � 0.018 0.668 � 0.231 0.574 � 0.226

RSMT‐F 0.052 � 0.013 0.675 � 0.249 0.603 � 0.225

Multimodal RMMT 0.047 ± 0.011 0.703 ± 0.195 0.635 ± 0.195

Note: ↑: the higher the better. ↓: the lower the better. Bold fonts indicate the best
results.
Abbreviations: CCC, consistency correlation coefficient; PCC, Pearson correlation
coefficient; RMMT, residual multimodal Transformer; RMSE, root mean square error;
RSMT‐E, residual single‐modal Transformer for EEG; RSMT‐F, residual single‐modal
Transformer for face.

TABLE 6 Results of ablation experiments.

MMT RMMT (without KD loss) RMMT

RMSE↓ 0.071 � 0.012 0.053 � 0.007 0.051 ± 0.007

PCC↑ 0.731 � 0.091 0.746 � 0.087 0.755 ± 0.082

CCC↑ 0.659 � 0.098 0.722 � 0.082 0.736 ± 0.078

Note: ↑: the higher the better. ↓: the lower the better. Bold fonts indicate the best
results.
Abbreviations: CCC, consistency correlation coefficient; MMT, multimodal
Transformer; PCC, Pearson correlation coefficient; RMMT, residual multimodal
Transformer; RMSE, root mean square error.
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Due to the fact that difficulty in recognising frowns in
negative emotions due to their small amplitude, the perfor-
mance of the RMMT in negative emotions is slightly weak.
This is also one of the directions for future improvement of
our model. In addition, it can be seen from the residual
connection structure and loss function of the model that the
RMMT relies too heavily on the guidance of facial expressions
in extracting emotional information from EEG during multi-
modal fusion. But theoretically, EEG contains very abundant
and available information that can be utilised for better
experimental results. Therefore, in subsequent studies, more
features can be considered to be extracted and utilised from
EEG, such as statistical features in the time domain, rational
asymmetric (RASM) features in the frequency domain, and
wavelet transform features in the time‐frequency domain. This
may reduce the reliance on facial expressions and address the
imbalance in emotion recognition based on the two modalities.
Furthermore, RMMT currently utilises only EEG and facial
expressions as input. In the future, the incorporation of
additional physiological signals, such as electrocardiogram,
electromyogram, and galvanic skin response, could be
explored.
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