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Summary
Stroke is the most prevalent neurological disorder, the primary cause of long-term disability, and the second leading 
cause of mortality. Post-stroke motor symptoms critically impact and limit stroke survivors’ quality of life. Reha
bilitation aims to restore motor function by promoting neuroplasticity and neuronal reorganisation. A promising 
therapeutic approach involves combining non-invasive brain stimulation (NIBS) with activity-based training to 
enhance neuroplasticity. NIBS are thought to promote the innate neuronal reorganisation of the functionally 
relevant networks after a stroke. Amongst NIBS techniques, a pioneering method, often referred to as cortico- 
cortical paired associative stimulation (ccPAS), allows to enhance neuroplasticity in cortical networks. Unlike 
traditional approaches, ccPAS enables the manipulation of interregional connectivity within specific cortical path
ways. In particular, ccPAS can promote synaptic plasticity and connectivity in a functionally relevant cortico-cortical 
route tailoring the interventions to individual lesion-specific network alterations. In this viewpoint, we propose and 
critically evaluate the use of ccPAS as a therapeutic tool using upper-limb motor rehabilitation as a primary example, 
highlighting its potential for post-stroke recovery. We summarise the limited and contrasting evidence supporting 
the use of ccPAS after a stroke and make suggestions to overcome the current limitations emphasising the need for 
further future research.

Copyright © 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC li
cense (http://creativecommons.org/licenses/by-nc/4.0/).
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Introduction
Stroke is the most prevalent neurological disorder in 
adults, representing the primary cause of long-term 
disability and the second leading cause of mortality 
globally.1 It causes a range of cognitive and motor 
impairments that evolve over time and often present 
simultaneously in a non-systematic, compounded 
manner. Among these symptoms, lasting functional 
limitations of the upper limb are particularly com
mon, affecting 55%–75% of survivors.2 Upper-limb 
motor impairments lead to a significant underutili
zation of the affected upper limb, representing a 
burden to basic activities of daily living, such as 
feeding and dressing, dramatically impacting stroke 
survivor’s independence and overall quality of life. 
Here, we discuss a novel neurorehabilitation 

approach using upper-limb motor recovery as a key 
example to illustrate its potential for improving clin
ical outcomes.

Upper-limb motor impairments involve weakness 
and paralysis arising from disrupted signal trans
mission from the motor cortex to the spinal cord.3 

These changes impact the generation and timing of 
muscle contractions and, in turn, affect motor dexterity 
and movement. Notably, upper-limb motor impair
ments are often intensified by altered tactile, proprio
ceptive, and visuomotor integration; abilities needed to 
identify errors and adapt movements accordingly.3 Such 
impairments significantly impact upper-limb neuro
rehabilitation, often involving reaching and grasping 
training, which helps to explain the limited efficacy of 
current clinical approaches, leaving 15–30% of survi
vors with permanent disability.1 To improve clinical 
outcomes, it is paramount to develop interventions that 
can effectively promote neural plasticity and re- 
establish the cortico-cortical pathways between visual, 
sensory, and motor areas.
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Cortical remapping after stroke
Following an ischaemic insult, surviving neural net
works initiate a process of spontaneous reorganisation 
(synaptogenesis) to compensate for the damaged tissue 
and restore motor output, a process highly dependent 
on the integrity of the corticospinal tracts.4 This process 
starts in the very early stages after the lesion, continues 
for several weeks, and involves the recruitment of near 
and distal regions. Thus, soon after a lesion involving 
the middle cerebral artery, activity in the primary motor 
cortex (M1) decreases while activation in either pre
motor or parietal regions increases, depending on the 
lesion size and location.5,6 Such overactivation is 
observed in premotor regions like the dorsal premotor 
cortex (PMd) and the ventral premotor cortex (PMv) and 
the supplementary motor area (SMA). These areas are 
densely interconnected with M1 and share functional 
properties with M1, including their somatotopic orga
nisation and direct corticospinal projections.7,8 Pre
motor regions can assume control over motor functions 
previously subserved by M1, contributing to adaptive 
motor behaviour via parallel descending pathways.9 

Thus, animal models show that recovery of dexterity 
after an M1 lesion is linked to the expansion of PMv 
and the formation of new corticocortical connections 
from PMv to the somatosensory cortex (S1).10 Similarly, 
patient studies demonstrate increased PMv and PMd 
activity bilaterally during hand movements,8,11,12 which 
are predictive of the degree of motor recovery.13,14

Both ipsi-and contra-lesional cortical activations are 
often observed post-stroke. However, the role of the 
contralesional hemisphere has been subjected to 
extensive debate, explained by competing models of 
cortical remapping involving divergent therapeutic 
predictions (Fig. 1). The ‘interhemispheric competition’ 

model suggests that a stroke leads to excessive inhibi
tion from the healthy onto the damaged hemisphere,15 

implying that non-invasive brain stimulation (NIBS) 
interventions should focus on disrupting the unaffected 
hemisphere reinstating interhemispheric equilibrium. 
However, this view is challenged by evidence showing 
that the primary change is decreased excitability in the 
affected hemisphere, with little corresponding hyper
excitability in the contralesional cortex.16,17 By contrast, 
the ‘vicariation’ model proposes that activity in the 
unaffected hemisphere is likely to reflect the brain’s 
attempt to generate motor output to spinal cord moto
neurons via any residual pathway, particularly after 
larger lesions.11 This model suggests that NIBS should 
instead be used to enhance contralesional activations. 
Lastly, in an attempt to reconcile these two opposing 
views, the ‘bimodal balance-recovery’ model posits that 
in patients with smaller lesions (where more healthy 
neural areas and pathways can contribute to recovery— 
i.e., more structural reserve) the interhemispheric 
competition model better predicts recovery, whereas the 
vicariation model is more applicable to those with 
extensive damage (Fig. 1).18 Taken together, these 
models highlight the need to tailor NIBS interventions 
by triaging and stratifying patients based on lesion 
extent and cortico-cortical connectivity changes.

Potentiating post-stroke cortical remapping 
with cortico-cortical paired associative 
stimulation
Although the exact neurophysiological impact of NIBS 
on neurotransmission and cellular excitability is not yet 
fully understood, NIBS is thought to modulate synaptic 
efficacy in glutamatergic and γ-aminobutyric acid- 

A Interhemispheric competition model

BA C High structural 
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Low structural 
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B Vicariation model C Bimodal balance-recovery model

Fig. 1: Models of post-stroke cortical remapping. Stroke area displayed in red. A: Interhemispheric competition model assumes a reciprocal, 
balanced inhibitory relationship between the hemispheres in the healthy brain. Following a stroke, damage to one hemisphere disrupts this 
equilibrium leading to excessive inhibition of the lesioned hemisphere by the healthy hemisphere (solid line) and reduced inhibition from the 
affected side to the healthy side (dashed line). Consequently, the affected hemisphere is considered ‘double-disabled,’ suffering both from its 
intrinsic damage and excessive inhibition from the contralateral side. B: The Vicaration model suggests that activity in the intact hemisphere 
contributes to post-stroke functional recovery by ‘taking over’ the functions lost by damaged areas (light-blue dotted arrow); this process in
volves functional reorganisation of intercortical connections. C: The Bimodal balance-recovery model states that if the structural reserve (i.e., the 
extent to which neural pathways and relays spared by the lesion contribute to recovery in an individual patient) is high, the interhemispheric 
competition model can better predict recovery; by contrast, if the structural reserve is low the Vicariation model is more useful in predicting 
recovery (Di Pino et al., 2014). Brain image is taken from the neuroanatomy website (https://neuroanatomy.ca/coronals.html).
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mediated (GABAergic) circuits essential for motor 
learning,19 potentiating innate post-stroke neuronal 
reorganisation.20 NIBS has been used post-stroke to 
improve gait, neglect and language symptoms; here we 
will focus on NIBS on upper-limb rehabilitation.

Amongst NIBS techniques, transcranial magnetic 
stimulation (TMS) is a key tool used for both prognosis 
and treatment. For instance, corticospinal tract integ
rity, assessed by the presence of TMS-induced motor- 
evoked potentials (MEPs) in the acute stage, is highly 
predictive of long-term functional outcome.21 Further
more, several meta-analyses show moderate efficacy of 
repetitive TMS in promoting functional recovery,20,22 

particularly when combined with cognitive training23 

or activity-based training.24 Notably, it is also possible 
to examine the causal functional influence of one 
cortical area over another area in post-stroke recovery 
using paired-coil TMS methods, whereby two TMS coil 
are placed over two anatomically connected cortical re
gions.12 Paired-coil TMS studies have demonstrated that 
the abnormal increases in interhemispheric inhibition 
from the contralesional to the ipsilesional hemisphere 
persists at the onset of attempted contraction of the 
paretic limb, potentially interfering with movement 
initiation.15 Furthermore, other paired-coil TMS studies 
have probed the physiological influence of contrale
sional premotor regions, such as the PMd over the 
ipsilesional M1, revealing that PMd’s facilitatory effect 
on M1 at rest becomes more pronounced following 
stroke in patients experiencing greater severity.12 These 
investigations highlight the potential of paired-coil ap
proaches to target two nodes of the motor control 
network. By precisely characterising an individual’s 
unique cortico-cortical network alterations after a 
stroke, paired-coil approaches can inform the design of 
circuit-based interventions tailored to their specific 
patterns of interhemispheric imbalance and compen
sation, and corticospinal tract damage.

Some paired-coil TMS protocols, often referred to as 
Paired Associative Stimulation (PAS) protocols, involve 
coupling peripheral nerve stimulation (PNS) over for 
example median nerve, with a cortical TMS pulse (e.g., 
on M1) in a repetitive manner.25 (Fig. 2) PAS is thought 
to engage mechanisms of spike-timing dependent 
plasticity (STDP), and its evoked effects have been 
characterised as Hebbian in nature.26,27 According to the 
principles of Hebbian-like STDP,26 the repeated activa
tion of presynaptic neurons immediately before post
synaptic neurons typically results in long-term 
potentiation-like changes at the relevant synapses.27,28 

Conversely, when postsynaptic cells fire before pre
synaptic cells, it often induces long-term depression- 
like changes. PAS mimics this pre- and post-synaptic 
neuronal activation by repeated stimulation of two 
areas in the nervous system. The processes of long-term 
potentiation and depression are crucial for neuronal 
reorganisation and strengthening of connections after 

stroke. In this line, several studies have tested the ef
ficacy of PAS in recovery functions of the affected up
per29,30 or lower limb31 by coupling PNS with 
ipsilesional29,32 or contralesional M1 stimulation,33 

delivered alone or combined with movement and 
strength training.29,33,34 Despite some visible improve
ments in motor function for some patients, there were 
no clear changes in motor-related cortical excitability or 
motor functional responses in the stroke survivors 
across studies in response to these protocols. It is 
possible that only stroke survivors who retain some of 
the spinal cord gating mechanisms and polysynaptic 
descending pathways from M1 to the peripheral 
effector may benefit from PAS interventions.21 Specif
ically, patients exhibiting greater damage over M1 area 
are less likely to benefit from PAS protocols potenti
ating M1-effector pathways. However, they may benefit 
from PAS protocols targeting descending pathways 
from compensatory premotor areas instead.

Thus, much like in the way that paired-coil TMS is 
used to examine functional connectivity between two 
cortical regions of the stroke-affected network,29–34 it is 
indeed possible to apply paired pulses with two TMS 
coils over two cortical regions in a repetitive manner 
(Fig. 2). The latter approach is referred to as cortico- 
cortical PAS (ccPAS),35,36 and it critically allows to 
manipulate physiological connectivity in a specific 
neural route that connect two targeted areas with un
precedented anatomical precision.37–40 Given that the 
natural synaptic reorganisation process post-stroke ex
tends across functional networks, ccPAS holds the po
tential to outperform other forms of NIBS for several 
key reasons. First, traditional TMS approaches 
involving single-coil protocols lead to local plastic 
changes within a cortical area. While such effects may 
spread to distant, anatomically connected regions, these 
methods lack the ability to specifically probe synaptic 
efficacy within preferred anatomical pathways. On the 
other hand, transcranial electrical stimulation (tES) 
methods which aim at modulating cortical excitability 
within a network exert diffuse effects, making the pre
cise manipulation of specific inter-regional pathways 
challenging. These limitations are critical in stroke 
rehabilitation, as the functional relevance of specific 
cortico-cortical connections in motor rehabilitation is 
highly patient-dependent, varying with the precise 
location and extent of the lesion. For instance, if a pa
tient exhibits increased activation in the dorsal part of 
the premotor cortex during action selection, the inter
vention should strengthen connections between PMd 
and M1, promoting compensatory mechanisms for M1 
damage. By contrast, if greater PMv activation is 
observed during tasks like object grasping, enhancing 
connectivity between the ventral part of the premotor 
cortex and M1 would be more appropriate. ccPAS al
lows such a level of precision intervention; by 
increasing or decreasing synaptic efficacy in specific 
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cortico-cortical routes connecting distinctive areas of 
the premotor cortex with M1, ccPAS can differentially 
promote specific key motor functions. ccPAS can be 
delivered at rest or during the relearning of motor 
patterns (motor adaptation), lending itself as a prom
ising neuromodulation approach to tailor interventions 
that are truly effective for each individual.

Converging evidence from studies with healthy in
dividuals presents ccPAS as a reliable approach to in
crease synaptic plasticity and connectivity between 
premotor cortex regions and M1.36 Most of the ccPAS 
studies investigating and manipulating connectivity in 
the motor control network focus on the pathway con
necting PMv and M1, showing that increasing PMv-M1 
connectivity leads to an increased functional influence 
of PMv on M1 reflected in enhanced cortical motor 
responses and motor performance.37 PMv is connected 
through direct monosynaptic projections to M1 exerting 
a powerful influence over M1.41 Uniquely amongst 
premotor regions, PMv plays an especially important 
role in grasping and manipulating objects.8 A lesion in 
PMv often results in incorrect finger positioning for 
grasping and object manipulation, misestimation of 
grip force, and deficient modulation of M1.8 Impor
tantly, PMv is critical for post-stroke re-learning of 
sensorimotor transformations for visually guided ac
tions during upper-limb rehabilitation, where 
compensatory increase in PMv activity and in the 
strength of PMv-M1 connections is often observed.11,12,42 

Therefore, we propose that delivering ccPAS over the 
pathway connecting PMv and M1 to potentiate its syn
aptic efficacy may improve the relearning of the skills 
within the injured brain by increasing the functional 
influence of the healthy PMv through the compensatory 
mechanism, improving upper-limb function recovery.

Consistent with the bimodal balance-recovery 
model, this approach is likely to be particularly effec
tive in patients with larger lesions. This notion is sup
ported by a recent study showing that coupling the 
presentation of a hand-grasping action (which activates 
the dorsal stream connecting the associative visual 
cortex to the parietal and premotor cortices) with pulses 
of TMS over M1 in chronic stroke survivors leads to a 
muscle-specific increase of cortico-spinal excitability.43 

Such effects are putatively driven by the strength
ening of long-range connections between visual and 
motor control regions promoting visuomotor integra
tion for visually guided actions during recovery. Further 
evidence of the potential of ccPAS for motor rehabili
tation comes from published studies and registered 
clinical trials where they test ccPAS efficacy in cortico- 
cortical remapping between different brain areas as 
shown in Fig. 3.44–47

Strengthening connectivity between M1 and areas in 
the premotor cortex (PMv, PMd), the parietal cortex 
(posterior parietal cortex) or the visual cortex (associa
tive visual cortex) is crucial for effective upper-limb 
motor rehabilitation. While the capacity of ccPAS to 
strengthen such short- or long-range connections and 
thereby improve the efficacy of learning and adaptation 
during post-stroke motor rehabilitation is yet to be fully 
proven, some initial evidence suggests this is indeed 
possible. For example, Rosso and colleagues (2022)47 

used ccPAS with the aim of increasing synaptic effi
cacy in the long-range pathways connecting the con
tralesional cerebellum and the ipsilesional M1. Five 
sessions of ccPAS in chronic stroke survivors lead to 
increased blood oxygen level-dependent (BOLD) signal 
in M1 right after the intervention, followed by an 
improvement in hand coordination and dexterity after 

ccPASPAS

M1 coil

PMv coil

EMG 
leads

M1 coil

EMG 
leads

A B C

Peripheral
coil

Fig. 2: A: PAS protocol involving stimulation on left M1 and on the right median nerve. B: ccPAS protocol involving stimulation on left M1 
and on the left PMv. C: MEP amplitude changes recorded when a single pulse of TMS is delivered on the contralateral M1 (yellow line) and 
when the single TMS pulse is preceded by a conditioning pulse delivered in the pre-frontal cortex at rest (white line).
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one month. Notably, not all stroke survivors showed a 
comparable level of motor improvement. Such inter
individual variability was partially explained by the 
integrity of the afferent pathway targeted with ccPAS, 
which highlights the importance of taking the integrity 
of this pathway into account to tailor interventions.

Another recently published study used ccPAS over 
the primary visual cortex (V1) and the middle temporal 
area (MT) to strengthen the connections between these 
two areas in 16 acute stroke survivors with occipital 
damaged and homonymous visual field loss. Belvi
lacqua and colleagues (2025)48 showed that in 
increasing the strength of the connections from MT to 
V1 increased motion direction discrimination. 

Additionally, those patients with more preserved 
structural integrity in the ipsilesional pathway con
necting V1 with MT also showed enhanced electro
physiological (EEG) coupling between these two 
regions, as well as EEG coupling with other visual re
gions. These results showcase the potential of ccPAS to 
strengthen cortico-cortical connections in stroke reha
bilitation. However, further research is needed to assess 
the translational application ccPAS in stroke motor 
rehabilitation.

Conclusions and future directions
In this viewpoint, we highlight ccPAS potentiality to 
improve motor rehabilitation after stroke. We highlight 

Fig. 3: Summary of pre-registered clinical trials and a published study (Rosso et al, 2022) using ccPAS for motor stroke recovery. 
Abbreviations: SMA = supplementary motor area; M1 = primary motor cortex; Cereb = cerebellum; PPC = posterior-parietal cortex; 
V1 = primary visual cortex; MBI = Modified Barthel Index; ARAT = Action Research Arm Test; FMA-UE = Fugl-Meyer Assessment of the Upper 
Extremity; fMRI = functional Magnetic Resonance Imaging; EEG = electroencephalogram; GS = Grip Strength; JTT = Jebsen–Taylor Test; 
MEPs = Motor Evoked Potentials; MAS = Modified Ashworth Scale; BBT = Box and Block Test; TMS = Transcranial Magnetic Stimulation; PLV = 
Phase Locking Value; TRSP = TMS-Related Spectral Perturbation; TEPs = TMS-evoked potentials; NIHSS = National Institutes of Health Stroke 
Scale; MTCF = Modified Taylor Complex Figure; DTI = Diffusion Tensor Imaging.
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its ability to manipulate lesion-specific network alter
ations, paving the way for individualised and effective 
therapeutic strategies. Nonetheless, there is an incip
ient need to continue investigating the benefits of 
ccPAS for neuronal recovery after stroke. Such studies 
should focus on systematically examining the mecha
nistic understanding of the effects of ccPAS on 
neuronal functioning, both locally at the target site, and 
distally, across the interconnected networks. This chal
lenge may be addressed by combining ccPAS with 
neurophysiological36,39,40 (e.g., EEG connectivity mea
sures) and neuroimaging38,49 (e.g., magnetic resonance 
spectroscopy) techniques which can offer a deeper un
derstanding of the real effects of NIBS on neuronal 
networks affected by stroke.

Furthermore, a systematic testing of ccPAS stimula
tion parameters is essential to clarify mechanisms and 
dose-effect relationships. Similarlty to recent work in 
healthy young adults,36 systematic testing of crucial pa
rameters like inter-pulse interval, pulse frequency, and 
coil direction (e.g., antero-posterior for precision move
ments) is essential. Other influential factors include 
lesion characteristics (duration, size/location), stimula
tion session number and duration, and neurophysiolog
ical and clinical outcome measures. Moreover, scientific 
rigour, robust methodological designs, sufficient statis
tical power, and transparent reporting are vital to advance 
our understanding of ccPAS benefits in stroke recovery. 
Identifying optimal stimulation parameters will facilitate 
the development of individualised ccPAS protocols, 
maximising clinical outcomes for each patient.

Finally, the risks of adverse effects merits attention. 
Thus far, two patients noted minor, transient issues 
(headaches, reflex syncope) post-PAS.47 A systematic 
investigation of ccPAS risks for stroke survivors across 
numerous studies is vital to promote its rehabilitation 
use.
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