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Abstract—The capacity of a complex and discrete-time mem-
oryless additive white Gaussian noise (AWGN) channel under
three constraints, namely, input average power, input amplitude
and output delivered power is studied. The output delivered
power constraint is modelled as the average of linear combination
of even moments of the channel input being larger than a
threshold. It is shown that the capacity of an AWGN channel
under transmit average power and receiver delivered power
constraints is the same as the capacity of an AWGN channel
under an average power constraint. However, depending on
the two constraints, the capacity can be either achieved by a
Gaussian distribution or arbitrarily approached by using time-
sharing between a Gaussian distribution and On-Off Keying. As
an application, a simultaneous wireless information and power
transfer (SWIPT) problem is studied, where an experimentally-
validated nonlinear model of the harvester is used. It is shown
that the delivered power depends on higher order moments of the
channel input. Two inner bounds, one based on complex Gaussian
inputs and the other based on further restricting the delivered
power are obtained for the Rate-Power (RP) region. For Gaussian
inputs, the optimal inputs are zero mean and a tradeoff between
transmitted information and delivered power is recognized by
considering asymmetric power allocations between inphase and
quadrature subchannels. Through numerical algorithms, it is
observed that input distributions (obtained by restricting the
delivered power) attain larger RP region compared to Gaussian
input counterparts. The benefits of the newly developed and
optimized input distributions are also confirmed and validated
through realistic circuit simulations. The results reveal the crucial
role played by the energy harvester (EH) nonlinearity on SWIPT
and provide new engineering guidelines on how to exploit this
nonlinearity in the design of SWIPT modulation, signal and
architecture.

I. INTRODUCTION

Radio-Frequency (RF) waves can be utilized for transmission
of both information and power simultaneously. Recent wireless
network designs call for unifying wireless transmission of
information and power so as to make the best use of the RF
spectrum and radiation as well as the network infrastructure
for the dual purpose of communicating and energizing [2].
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One of the major efforts in a simultaneous wireless in-
formation and power transfer (SWIPT) architecture is to
increase the direct-current (DC) power at the output of the
harvester without increasing transmit power. In the literature,
this problem is approached by considering a constraint on the
minimum delivery power at the output of the energy harvester
(EH). The EH, known as rectenna, is composed of an antenna
followed by a rectiﬁerE] In [3]], [4]], it is shown that the RF-to-
DC conversion efficiency (harvested DC power over the power
of received RF signal) is a function of rectenna’s structure, as
well as its input waveform (power and shape). Accordingly, in
order to maximize rectenna’s DC power output, a systematic
waveform design is crucial to make the best use of an available
RF spectrum [4]]. In [4], an analytical model for the rectenna’s
output is introduced via the Taylor expansion of the diode
characteristic function and a systematic design for multisine
waveform is derived. The nonlinear model and the design of the
waveform was validated using circuit simulations in [4], [5]] and
recently confirmed through prototyping and experimentation in
[6]]. Those works also confirm the inaccuracy and inefficiency
of a linear model of the rectifief’]

The SWIPT literature has so far focused on the linear model
of the rectifier, e.g., [7], [9], [10], whereas, considering non-
linearity effect changes the SWIPT design, signalling and ar-
chitecture, significantly. In [[11]], the SWIPT waveforms design
and the characterization of achievable rate-power (RP) region
are studied on additive white Gaussian noise (AWGN) channels
accounting for the rectenna’s nonlinearity with a power splitter
at the receiver. In single-carrier transmission, it is shown
that modulation with circular symmetric complex Gaussian
(CSCQG) input is beneficial to delivered power compared to an
unmodulated continuous wave. In multi-carrier transmission,
however, it is shown that a non-zero mean Gaussian input
distribution leads to an enlarged RP region compared to a

In the literature, the rectifier is usually considered as a nonlinear device
(usually a diode) followed by a low-pass filter. The diode is the main source
of nonlinearity induced in the system.

2In the linear model, the output power of the EH, is proportional to the
second moment of the received signal. The linear model has for consequence
that the RF-to-DC conversion efficiency of the EH is constant and independent
of the harvester’s input waveform (power and shape) [7], [8].



CSCG input. This highlights that the choice of a suitable
input distribution (and therefore modulation and waveform) for
SWIPT is affected by the rectifier nonlinearity and motivates
the study of the capacity of AWGN channels under nonlinear
power constraints.

The capacity of complex and real discrete-time memoryless
AWGN channels has been investigated in the literature under
various constraints, extensively. The most classical one is
the channel input average power constraint, under which the
optimal input is demonstrated to be Gaussian distributed [12].
It seems that the linear AWGN channel subject to transmit
average power constraint is an exception and under many
other constraints, the optimal input leads to discrete inputs. To
mention a few, Smith in [[13]] considered a real AWGN channel
with an average power and an amplitude constrained inputs,
where he established that the optimal capacity achieving input
distribution is discrete with a finite number of mass points.
Similar results were reported in [14] for complex AWGN
channels with average and peak-power constraints and in [15]]
for complex Rayleigh-fading channel under average power
constraint with no channel state information (CSI) at both the
receiver and the transmitter. As a more general result, in [[16]], a
real channel is considered, in which sufficient conditions for the
additive noise are provided, such that the support of the optimal
bounded input has a finite number of mass points. In [17], real
AWGN channels with nonlinear inputs are considered subject
to multiple types of constraints such as the even moments
and/or compact-support constraints, under which the optimal
input is proved to be discrete with a finite number of mass
points in the vast majority of the cases.

A survey of the literature reveals that almost all models
considered for AWGN channels do not include the inevitable
nonlinearities, such as fibre optic channels, power amplifiers or
EHs. The lack of fundamental results in the literature relating to
nonlinear models is becoming more sensible due to the growth
of applications involving devices with nonlinear responses. The
typical and straightforward approaches to tackle such problems
are either considering linearized models with nonlinear effects
being part of the noise model [[I8 Sec 14.2] or obtaining
approximations and lower bounds on capacity by assuming
Gaussian statistics [19]], [20]. As one of the novel works in
the information theory literature, in [17], the authors consider
a real AWGN channel with their focus on nonlinear channel
inputs and different types of transmit power constraints.

Leveraging the aforementioned observations, we provide a
step closer at identifying the fundamental limits of SWIPT
structures taking into account the nonlinearities of the EH, i.e.,
rectenna. In this paper, we study a deterministic, complex and
discrete-time memoryless AWGN channel under the transmit
average power and amplitude constraints as well as a constraint
on the delivered power at the output of the EH. We show that
the delivered power, modelled as in [4], can be lower bounded
by a sum of even moments of the baseband channel input.
Motivated by this, we model the constraint on the delivered
power as the (statistical) average over a linear combination of
even moments of the channel input. The contributions of this

paper are listed below.

First, we show that the capacity of an AWGN channel
under a transmit average power and a receiver delivered
power constraints (this constraint is modelled as the
average of linear combination of even moments of the
channel input being larger than a threshold) is the same
as the capacity of an AWGN channel. However, depending
on the two constraints, the capacity can be either achieved
using a unique CSCG input or approached arbitrarily
(irrespective of the delivered power constraint) using time
sharing between a Gaussian distribution and an on-off
keying (OOK) distribution (with low probability of high
amplitude signals).

Second, we show that under input average power and am-
plitude and output delivered power constraints, similarly
to the results reported in [[13]-[15] and [17], the capacity
achieving input distribution is discrete in amplitude with
a finite number of mass-points and with a uniformly
distributed independent phase.

Third, as an application of the obtained results, we
consider SWIPT over a complex AWGN channel, where
the receiver is equipped with a rectenna in order to
harvest and convert RF power into DC power. Taking the
advantage of the small-signal approximation for rectenna’s
nonlinear output introduced in [4]], [L1], we obtain the
general form of the delivered power for independent and
identically distributed (iid) complex inputs in terms of
system baseband parameters. Assuming that the receiver
jointly extracts information and harvests power from the
received RF signal, it is shown that the delivered power at
the receiver depends on different moments of the channel
input. Defining RP region for the considered application,
we obtain two inner bounds for the RP region. The first
inner bound is based on merely iid complex Gaussian
inputs, where we show that the optimal complex Gaussian
inputs are zero mean. We also recognize a tradeoff be-
tween transmitted information and delivered power result-
ing from asymmetric power allocations between inphase
and quadrature subchannels. The second inner bound
is based on restricting the delivered power constraint
and obtaining the necessary and sufficient conditions for
optimality in the corresponding optimization probability
space. Using numerical programming, it is observed that
the Numerically Obtained Input distributions outperform
their Gaussian counterparts.

Fourth, the analysis provides new engineering guidelines
and refreshing views on the crucial role played by non-
linearity in SWIPT design. First, in contrast with the
conventional linear model of the EH for which CSCG
inputs are capacity achieving under average power con-
straints [9]], [21]], CSCG inputs cannot achieve the optimal
RP region boundaries in the presence of nonlinearity.
Second, the EH nonlinearity enlarges the RP region.
Hence, in contrast with other systems subject to nonlinear
responses, where nonlinearity is compensated (e.g. [22])),
the nonlinearity in SWIPT is exploitable in the signal and



system design and is beneficial to the system performance.
Third, in contrast with the linear model for which time
sharing between power and information transmission is
suboptimal [7]], time sharing between a CSCG distribution
and an OOK signalling (with low probability of the On
signal), is sufficient to approach the capacity in the pres-
ence of nonlinearity. Fourth, the efficacy of the derived
and optimized input distributions to boost the harvested
DC power is validated and confirmed through realistic
circuit simulations. This sheds light on a new form of
signal design for wireless power transfer (WPT) relying
on (energy) modulation for single-carrier transmission,
as an alternative to the multi-carrier (energy) waveform
approach of [4].

« Fifth, as an independent result, we note that in analyzing
complex AWGN channels, Bessel modified function of
first kind of order zero appears frequently. Due to the form
of Bessel functions, it is sometimes hard to analyse such
channels. Accordingly, we obtain a tight upper bound on
the Bessel modified function of first kind of order zero,
which might also come useful in future applications and
analysis.

Organization: In Section |[I, we introduce the system model
and define the channel capacity problem studied here. In
Section we introduce the main results of the paper. A
SWIPT problem is considered in Section [[V] as an application
of the main results introduced in Section [III] In Section [[V-A]
the delivered power for the considered SWIPT problem is
obtained in terms of channel baseband parameters for iid
channel inputs accounting for small-signal approximations of
rectenna. Defining the RP region in Section an inner
bound on the RP region based on complex Gaussian distributed
inputs and an inner bound on the RP region based on the results
developed in Section [[TI] are introduced in Section and
Section[[V-B2] respectively. In Section [V] numerically obtained
inner bounds of RP region are illustrated. In Section some
problems are posed as potential future research directions. We
conclude the paper in Section [VII] and the proofs for some of
the results are provided in the Appendices at the end of the
paper.

Notations: Throughout this paper, the standard CSCG dis-
tribution is denoted by CAN(0,1). Complex conjugate of a
complex number ¢ is denoted by ¢. For a random process
X(t), the corresponding random variable at time index k is
represented by xj. The support of the random variable xy, is
denoted as supp{zy}. =, and z; denote the real and imaginary
parts of the complex random variable z, respectively. Re{-} and
Im{-} are real and imaginary operators, respectively. Define

a; = sinc(l + 1/2), ()

for integer [, where sinc(t) = 5111757?) Fp(z) and fz(z) denote,
respectively, the cumulative distribution function (cdf) and the
probability density function (pdf) of the random variable z.
For the random process X (t), the expectation over statistical

randomness E[-] and averaging over time &[] are defined as

E[X (1)) = /Oo 2(t)dFx o (@), @
EIX (1] —Tlglgoﬁ/ X(t 3)

respectively. ®(-,-;-) denotes the confluent hypergeometric
function defined as in [23] Section 9.21]. The Heaviside step
function is denoted by ng ), and the error function is defined

as erf(z) = 2/y/7 [ e " dt.

II. SYSTEM MODEL, PROBLEM DEFINITION AND
PRELIMINARIES

Consider the following complex representation of a discrete-
time memoryless AWGN channel,

Yr = Tg + Ny, €]

where {yi}, {zx} and {nj} represent the sequences of
complex-valued samples of the channel output, input and
AWGN, respectively, and k is the discrete-time index. The real
and imaginary parts of the signal {y;} indicate the inphase
and quadrature components, respectively. The noise samples
{ny} are assumed to be CSCG distributed as CN(0,2), i.e
E[Re{n;}?] = E[Im{n;,}?] = 1 and E[Re{n;}Im{n;}] = ¢}

We are interested in the capacity of the channel in (@) with
input samples subject to

Eflzy|?] < P,
Py < Elg(|lzx])] , )]
|z < 7p

for all k, where throughout the paper P, < co, P; < oo and
r, < oo are interpreted as the transmitter maximum allowable
average power, minimum delivered power and channel input
amplitude constraints, respectively.

Remark 1. Note that the single-letter characterizations of the
constraints in [O) are equivalent to their multi-letter charac-
terization in the operational definition of capacity. The details
have been provided in Lemma [5| Appendix [[X]

Throughout the paper, any operator that involves a random

a.s.
variable reads with the term almost-surely (e.g. |xi| < 7p).
g(-) is assumed to be a continuous positive function having
the form of

g(r) =Y air®, r >0, ©6)

where d > 2 is an arbitrary integer. Note that since g(r) is
assumed to be a positive function, we have oy > 0, and hence,

lim, o g(r) =

3We choose E[|n,|2] = 2 for brevity, however the results can be extended
to any noise variance value.

4In Section we show that the delivered power based on the experi-
mentally validated model in [4] can be lower bounded by even moments of
the baseband channel input. Motivated by this, we model the delivered power
constraint as the average over function @



Remark 2. The scenario g(r) = ag + aq7? is not considered
in this paper, as the capacity problem in (3) boils down to
either [|I2]] (when r, = 00), where a CSCG distribution is
optimal, or [I4)] (when r, < 00), where optimal distribution
is discrete with a finite number of mass points. Accordingly,
we are interested in g(r) with a; # 0 for at least one of
1=2,...,1n

The capacity of a discrete-time memoryless complex AWGN
channel [24, Chapter 7] is therefore given byf]

C(Py, Py,rp) = sup  I(z;y)
f:c('ﬁ)
E[|z[*] < P,

s.t. Py < E[g(|z])],
|z < 7p,

)

By expressing I(z;y) in terms of differential entropies, i.e.,
I(z;y) = h(y) — In2me, () boils down to the supremization
of differential entropy h(y). Using the polar coordmatesﬂ
z=re? andy = Re’® r,R > 0 and 0,¢ € [—7, 7)) and
following the same steps in [[14] eq. 5 to eq. 12], we have

/hRF i L)

where fr(R; Fy) is the pdf of R induced by F; and is given
by

dR+1n2r, (8)

fa(BiF) = [ K(Rr)E (), ©
0
where the kernel K (R, r) is defined as
K(R,7) £ Re™ (rR), (10)

with Io(z) = 1/7 [ e “*(!)df the modified Bessel function
of the first kind and order zero. Note that by selecting r and
0 independent with uniformly distributed @ over [—, ﬂ)ﬂ
holds with equality and we have

fro(R.0) = o Ir(R: Fy). an

Therefore, the optimization problem in is reduced to the
following problem

C(Py, Pq,7mp) = sup

FreQ1ns

») = 1 and H(F,

H(F,) —1Ine,

12)

where F.(07) = 0, F.(r
given as

r), 1 and Qg are

fR(R; Fr)

SRR, (13)

H(Fr)éf/fR(RQFr)ln
0

SGiven that the channel model is stationary and memoryless, and due to the
type of the constraints, it can be verified that the capacity-achieving statistics
of zj, are also memoryless; therefore, we can suppress the time index.

5The polar representation simplifies the problem, since the constraints are
circular symmetric.

"Note that this causes no loss of optimality, since the constraints are circular
symmetric.

and
Q=< F,: /erF,.(r) <P,», (14a)
0
Qo =<K Fp: Py < /g(r)dFr(r) (14b)
0

III. MAIN RESULTS

In this section, we provide the main results of this paper.
First, we characterize the capacity in (IZ) when the channel
input amplitude constraint is 7, = oo. In the following
theorem, we study the capacity problem in @), when 7, < oo.
We accordingly, derive the necessary and sufficient condition
for the optimal distributions achieving the capacity.

Theorem 1. The capacity of the channel in @) forr, =00 is

C(P,, Pj,00) =In (1 + Pa) . (15)

2
.2
Let P = 1/P, [;° rg(r)e” 2P dr be the delivered power
corresponding to an input distributed as x ~ CN (0, P,). The
supremum in ([7]) is achieve by a unique input if and only if
P; < Pg, inwhich case it is x ~ CN(0, P,). If Py > Pg,
is not attained, however, (I3) can be approached arbitrarily

closely by using time-sharing between a Gaussian distribution
and OOK.

Proof: See Appendix [B]

Remark 3. One example of a sequence of distributions (ap-
proaching (I3)) arbitrarily closely) is illustrated in ({77), which
is a time sharing between a CSCG and an OOK (with a low
probability for the On signal) distributed inputs.

From Theorem [T} it is verified that for n > 2 in (6),
the capacity of an AWGN channel in @) for r, = oo is
independent of the value of the delivered power constraint,

e., P;. That is, given P,, the capacity C(P,, P;,c0) is
constant with Py. This is represented in Figure [T} where the
solid line illustrates the capacity C(P,, P;,00) achievable by
z ~ CN(0,P,), and the dashed line illustrates the capacity
C(P,, Pg,00) that can be approached arbitrarily using time
sharingﬂ between high information distributions, e.g. CSCG
inputs, and high power distributions, e.g. OOK inputs, (see
Appendix [B| for construction of such inputs).

Note that, the result of Theorem [I] is due to the fact that
the function g(r) is of the order of at least 4. In Section
we show that accounting for the rectifier nonlinearity{ﬂ at the

8i.e., sup can be replaced by max.

9We note that power splitting at the receiver (dividing the received signal
into two streams with different power levels using a power splitter) results in
a larger RP region [[7]. The main use of time sharing in our results is that
from approaching the capacity point of view, time sharing is sufficient. We
also note that, in a practical receiver, the information decoder and the EH are
separate. Accordingly, in practical applications, power splitting may still be
preferred.

10We note that, in practice, nonlinearity of the EH (rectenna) occurs in the
low average RF input power regime.
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Figure 1: The capacity C(P,, Py,00) of an AWGN channel.
The solid blue line is achievable by a unique input x ~
CN(0, P,), however, the red dashed line can be approached.

receiver, the delivered power at the output of the EH depends
on higher order moments of the channel input z.

Theorem 2. The optimal distribution denoted by Fy o achieving
the capacity C(P,, Py,1p) for 1, < o0, is unique and its
corresponding set of points of increase[r] is finite (the cardi-
nality of the support of the random variable r° is finite, i.e.,
|supp{r°}| < oo). Furthermore, Fyo is optimal if and only if
there exist unique parameters X\ > 0 and 1 > 0 for which

h(r; Fyo) — Mr? +pug(r)—Kp,, = 0, Vr € supp{r°}, (16a)
h(r; Fyo) — Ar®+ug(r)—Kp,, <0, Vr € [0,7,], (16b)

where Kp., & H(Fpo) — AP, + uPy and
h(r; Fpo) = /KRr SR Fre) ) p (17)

Proof: See Appendix

Note that the results in are important in the sense that
they can be utilized to obtain the optimal distributions using
numerical programming. In [25]], the capacity of a real AWGN
channel is studied with g(r) = Io(r). It can be easily verified
that for both real and complex AWGN channels the obtained
results (uniqueness and finite cardinality of the optimal input
distribution) in [25]] and here in Theorem [2| remain valid if the
function g(r) grows faster than 72, i.e., 72 = O(g(r))[ﬂ

Remark 4. Rewriting the KKT condition for the inequality in

(16), we get

0<u<

Kpo +24Mr?

90 , T €10,7p],

(18)

!z is said to be a point of increase of Fj if and only if Pr(z —n < x <

z+mn) > 0 for all n > 0.

2By definition, given two functions f(:) and g(-), we write f(z) =
O(g(z)) if and only if there exist two positive scalars, ¢ > 0, xg > 0,
such that |f(z)| < ¢|g(z)], Vo > zo.

where we used the inequality h(r; F.) > —2 for any F, €
Q1 N Qg (see (88) in Appendix [C). We note that, since by
definition the function g(r) grows faster than r%, we have ji —
0 as r, — oo. The intuition behind this is as follows. u can
be considered as the opposite sign of O0C(P,, Py,r,)/0rp. As
rp increases, C(P,, Py, 7p) approaches C(P,, Py, c0). From
Theorem (I} we already know that capacity C(P,, Py, 00) is
unchanged for any Py < oo. Therefore, 0C(P,, Py, r},)/0rp —
0, and accordingly, i — 0 as v, increases. In other words, the
dependency of the capacity on T, reduces as r, grows large.

Remark 5. In [25, Corollary 2], it is stated that for a real
AWGN channel and g(r) = Iy(r), when 1, — oo and Py
is greater than the feasible delivered power corresponding
to Gaussian input, the capacity is still achievable and the
corresponding input distribution is discrete with a finite number
of mass points. We note that, this claim cannot hold, since as
in Theorem [I| the capacity is not achievable, however, it can
be approached arbitrarily (See Appendix [B) for construction
of such distributions approaching capacity when r, = 00.).

IV. APPLICATION

As an application of the results in Section |I1I} in this section,
we consider the channel in @]) under a scenario where the
receiver is equipped with a nonlinear EH. In the following,
we first explain the transmission process. Next, we obtain a
baseband equivalent for the harvested power at the receiver.
Later, we define the rate-power region, and obtain two inner
bounds on the rate-power region.

Transmitter: The transmitted process X (¢) is produced as

= mysinc(fut — k), (19)
k

where z; is an information-power symbol at time index £k,
modelled as a random variable, which is produced in an iid
fashio Next, the process X (t) is upconverted to the carrier
frequency f. and is sent over the channel.

Receiver: The filtered received RF waveform at the receiver
is modelled as
Yie(t) =

V2Re {Y (t)el*m et} | (20)

where Y'(¢) is bandlimited to f,/2 Hz. In order to have a
narrowband transmission, we assume that f. > 2f,,.

Power: At the receiver, the power of the RF signal Y(t)
is captured via the rectenna. Leveraging the small-signal ap-

31n this paper, we are interested in a random coding achievability bound
in which iid symbols are mapped into continuous waveform through sync
interpolation. Accordingly, the iid assumption on transmitted symbols xj
in @]} is an imposed condition; and it is due to the fact that in general,
deriving the baseband equivalent of the delivered power (see equation (ZI)) is
cumbersome.



proximation for rectenna’s output introduced in [4], [1 1] the
delivered power, denoted by Py is modelled asE]

Pio = EE[kaYie(t)? + kaYie()Y], (1)

where ko and k4 are constants. Note that, in the linear model
for the delivered power Py, in , we have only the second
moment of the received RF signal Y¢(t), where the optimal
input is shown to be a CSCG distribution [12].

Information: The signal Yi¢(t) is downconverted producing
the baseband signal Y (¢) given aﬂ

Y(t) = X () + W(t). 22)

Next, Y () is sampled with a sampling frequency f,, producing

y=x+n as in @[]

A. Delivered power in the baseband

From a communications system design point of view, it is
most preferable to have baseband equivalent representation of
the system. Henceforth, in the following Proposition, we derive
the delivered power Py at the receiver (see @I)) in terms of
the system baseband parameters.

Lemma 1. Assuming the channel input distributions are iid,
the delivered power Py, at the receiver can be expressed as

Pia=a(Q+Q) + SP +7, (23)
where Q is given by
~ 1
Q= g(Qr + Qi + 2(u T + piT3)
+ 6P, P + 6P:(P, — ) + 6B5,(P; — 1)), (24
and the parameters o, 3 and y are given as
3ky
= — 25
=3 25)
B = ko + 48ky, (26)
v = 4ko + 96k, 27

where ko, ky are constants as in , and Q = E[lz|*], T =
E[z]?], P = E[|z|?], p = E[z]. Similarly, Q, = Elz2], T, =
Elz?], P, = Bz} i = Efe,] and Q: = Elz], T; — Efg?)

Proof: See Appendix [D}
It is observed that the obtained delivered power Py in (23)) is
a function of different (odd and even) moments of the channel

'4According to [4], due to the presence of a diode in rectenna’s structure, its
output current is an exponential function, which is approximated by expanding
its Taylor series. The approximation used here, is the fourth moment truncation
of Taylor series, in which the first and third moments are zero with respect to
the time averaging. Discussions on the assumptions and validity of this model
can be found in [4].

15 According to [4]], rectenna’s output in is in the form of current with
unit Ampere. However, since power is proportional to current, with abuse of
notation, we refer to the term in as power.

16We model the baseband equivalent channel impulse response as H (,t) =
> 6(T) + W(t), where the delay and the gain of the channel are assumed
to be 0 and 1, respectively.

"Due to the assumption of iid channel inputs and discrete memoryless
channel, we neglect the time index k.

input. In the next section, we show that a convex (with respect
to the input distribution) lower bound of the delivered power
Py is obtained by restricting Py to merely the even moments
of the channel input. Accordingly, we use the restricted version
of the delivered power to use the results in Theorem

Remark 6. We note that, obtaining a closed form expression
for the delivered power Py, at the receiver, when the channel
inputs are not iid is cumbersome. This is due to the fact that
the fourth moment of the received RF signal Yy (t) creates
dependencies of the statistics of the present channel input on
the statistics of the channel inputs on the other time indices

(see e.g., eq. (I107) and eq. (I03) in Appendix [D).

B. Rate-Power (RP) region

We define the RP region as the convex hull of the following
union of regions

R(Paarp):U{(Ra P)R < CSWIPT(Pav-Pdarp)7P é Pd}7

Py
(28)
where Cswipr(P,, Py, 7p) is defined similarly to (7) as
Cswipr(Pa, Py, 1p) =sup I(z;y)
E[|z|?] < P, (29)
Je(z) : Py < Py,
|$| S TP)

and Py is given in (23).

In the following, we consider two different inner bounds
on the RP region defined in (28). In the first approach, we
assume that the inputs are Gaussian distributed, where it is
shown that the optimal Gaussian inputs are zero mean. In the
second, we obtain an inner bound on the harvested power in
by considering a convex subset of optimization probability
space, and accordingly, apply the result of Theorem 2]

1) Complex Gaussian Inputs: Assuming that the inputs
are Gaussian distributed, we show that for the considered
scenario, there is a tradeoff between the rate of the transmitted
information, namely I(z;y) and delivered power Py at the
receiver, and accordingly, we characterize the tradeoff.

Lemma 2. If a channel input distribution fy(x) is complex
Gaussian, the supremum in (29) is achieved by zero mean
inputs, i.e., Re{z} ~ N(0, P.), and Im{z} ~ N (0, P;), where
P, + P; = P,. Furthermore, let Py oy = 3aP,? +28P, + y
and Py min = ZaPaQ—I—QﬁPa—I—fy be the maximum and minimum
delivered power at the receiver, respectively. If Py > Py max
the solution does not exist. If Py = Pjomax, the maximum in
(29) is attained by P; = 0,P, = P, or P, = P,, P, = 0.
If Pioimin < Py < Pjemax, the optimal power allocation that
attains the maximum in is given by P} and P = P,— P},
where P} is chosen, such that the following equation is

K3

satisfied

20(4P;? +3P? —8P,P;) +2BP, +~ = Py. (30)

For Py < Py min, the optimal power allocation is attained
by P = P¥ = P,/2 and the delivered power is still Py pin.

T



Proof: See Appendix

We note that the tradeoff between transmitted information
and delivered power for Gaussian inputs, results from the
asymmetric power allocation between inphase and quadrature
subchannels. We have illustrated the RP region corresponding
to Gaussian inputs in Section [V]

Remark 7. From , it is seen that the delivered power
Py at the receiver depends on the average power Py, P;,
as well as the fourth moment Q,.,Q; of the channel input
. This is due to the presence of the fourth moment of the
received RF signal in modelling the rectenna’s output. From
Lemma 2] it is seen that the maximum rate corresponding to
Py = Piimax is when the available power at the transmitter is
fully allocated to one of the real or imaginary dimensions.
This is because allocating power to one dimension, leads
to a higher fourth moment statistic. On the other hand, the
maximum rate corresponding to Py = Py is when the
available power is equally distributed between the real and the
imaginary dimensions. Note that as also mentioned in Remark
there is no tradeoff when the linear model is considered for
the delivered power ,i.e., n < 2 in @)

2) Restricted optimization probability space: In this section,
we consider an inner bound on the RP region defined in (28),
by considering a convex subset of the optimization probability
space in (29). The reason for restricting the optimization
probability space is to utilize the analytic results presented in
Section [[I] Note that the optimization probability space in (29)
is convex with respect to the peak amplitude and average power
constraint. Accordingly, we only need to consider a convex
subset for the delivered power constraint. Then, the convexity
of the optimization probability space follows due to the fact
that the intersection of a finite number of convex sets is convex.

The convex subset of the optimization probability space in
(29) is obtained by noting that the delivered power at the
receiver in (2I) can be lower bounded by the sum of the even
moment terms of its baseband equivalence in as below

3k
Paa = koE [lyel’] + 5+ (Ellsznia ] + Ells2s”]) - G
3k
> ko [lyel*] + 5 Ellsax ] (32)
3k
= ko [lyxl*] + = Ellyx[ ] (33)
3k
= 741@ [l *] + (k2 + 24k4)E [|z4 ]
+ 4ko + 48Ky (34)
= Elgne(r)], 35)

where in (31) we use the definition s; £ |V (k/2f,)|? and it
is due to (93) (see Appendix [D] for more details). (33) is due

to (96). In (35), we have r = |z| and gni(r) is given as

3k
gnL(r) = 204 4 (kg 4 24ky)r? + 4kg + 48k,

2 (36)

By gnu(r) in hand and noting that I(z;y) = H(F,) — 1,
can be written as
Cwg(P,, Py,rp) =sup H(Fy)—1
E[r?] < Py,
Fy: Py < Elgne(r)],
r < 7rp.

(37

The inner bound for the RP region in (28) is obtained by finding
the corresponding delivered power E[gn(r)] and transmitted
information I(z;y) of the optimal solutions of the problem
(37). We illustrate the related results in Section [V]

V. NUMERICAL RESULTS

In this section, we first illustrate through numerical evalu-
ations the RP regions and highlight the benefits of nonlinear
energy harvesting. We then evaluate through realistic circuit
simulations the impact of various input distributions on the
harvested DC power in WPT and contrast with the analytical
results.

A. Numerical Evaluations of SWIPT RP Regions

In this section, we provide some numerical illustrations of
the two inner bounds (see Section [[V-B1] and [V-B2) for the
RP region defined in Section In the following, we first
summarize the steps in obtaining the bounds, and next, we
illustrate the obtained numerical results.

Complex Gaussian inputs: To obtain the RP region corre-
sponding to Gaussian inputs, we use (30). Note that when
symmetric power allocation is used between the real and
imaginary subchannels, ie., E[z?] = E[z?] = P,/2, the
delivered power is Pyel,min With the transmitted information
In(1 + P,/2). We gradually increase Py (Py > Pgelmin) and
using the fact that the average power constraint is satisfied
with equality (see Lemma [I) and using (30), the optimal
power allocations for inphase and quadrature channels are
obtained. We continue increasing Py until allocated power for
one of the subchannels gets zero. At this point, the delivered
power is equal to Py max and the transmitted information is
1/2In(1 + P,).

Inputs obtained by restricting the optimization probability
space: To obtain the RP region corresponding to the dis-
tributions obtained by solving (37), we resort to numerical
programming. Accordingly, we solve the optimization problem
in using the interior-point algorithm implemented by the
fmincon function in MATLAB software. Note that, since we
already know that the optimal distribution is discrete with
a finite number of mass points, the numerical optimization
is over the position, the probabilities and the number of the
mass points. Hence, there are 2m parameters to be optimized,
where m is the number of the mass points. We aim at
calculating the capacity I(z;y) in under given an average
power and an amplitude constraints and for different values of
the delivered power constraint. As a result, we consider the
following unconstraint optimization problem

H(F.) — AE[r?] + pE[gnL (r)], 0 <7 <7, A, > 0. (38)
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Figure 2: Mutual information I(z;y) corresponding to the
complex Gaussian inputs (denoted by GAPA). Mutual informa-
tion I (z;y) corresponding to the optimal solutions of with
respect to different values of the minimum delivered power
constraint Py with amplitude constraints r, = 4, 5, 6 and
rp = 00. Average power constraint is P, = 5.

In the following, the different steps of the optimization are
summarized:

1) Fix the average power constraint. Set P; = Pejmin + 9,
where § is the step size (Note that for Py < Piejmin and
rp = 00, Gaussian inputs are optimal [12]] and for P; <
Pgetmin and 1, < oo, the optimal distributions for the
input amplitude r are discrete with a finite number of
mass points [14]). Set m = 1.

2) Utilizing interior-point algorithm, minimize the objective
function in (38) initialized by a random guess.

3) Once the optimal positions and their respective probabil-
ities are found, the answer is validated by checking the
average power constraint and the necessary and sufficient
KKT conditions in (I6). If the conditions are not satisfied,
the initial guess is changed. We continue changing the
initial guess for a large number of times.

4) If the KKT conditions are not satisfied, the number of
mass points is increased by one. We continue from stage
1 to 4 until at some values of m, KKT conditions are met.

5) Obtain the delivered power corresponding to the optimal
solution.

Illustration of the numerical results: In Figure 2] simulation
results for the transmitted information in terms of mutual infor-
mation /(z;y) and harvested power in terms of the expectation
Elgn.(|z|)] are illustrated for an average power constraint
P, = 5 and gn(r) = 0.01(r* + 72 + 1). The horizontal
solid line corresponds to the AWGN channel capacity under
an average power constraint P, = 5, (i.e., Cig(5, Py, 00))
achieved by only a CSCG distribution. The horizontal dashed
line related to Cig (5, Py, 00) corresponds to the capacity under
an average power constraint P, = 5, which is not achiev-
able, however, can be approached arbitrarily (see Theorem [I).
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Figure 3: The position of the optimal mass points for
Cis(5, P4, 4) versus different values of the minimum delivered
power P, constraint.

Cs(5, Py,4), Cig(5, Py, 5) and Cig(5, Py, 6) correspond to the
optimal solution in for r, = 4, 5 and 6, respectively.
The RP region obtained from Gaussian inputs is denoted
by Gaussian Asymmetric Power Allocation (GAPAE The
distributions obtained numerically by restricting the probability
optimization space are denoted as numerically obtained input
distributions. As it is observed from Figure [2] numerically
obtained input distributions yield significantly larger RP region
compared to the region corresponding to GAPA. It is also
observed that by increasing the amplitude constraint 7, the
RP region tends to the RP region corresponding to 7, = oo.
This observation is inline with Remark E], that increasing 7,
reduces the dependency of the capacity on r,. Note that given
the value of r,,, the amount of harvested power at the receiver is
limited. This is the reason for the vertical lines corresponding
to CIB(E), Py, 4), 013(5, Py, 5) and 013(5, Py, 6).

In Figures and [5] the position of the mass points r = |z|
corresponding to Cig(5, Py, 4), Cig(5, Py, 5) and Cig(5, Py, 6)
are illustrated, respectively, with respect to different delivered
power constraints Py;. It is observed that by increasing the
delivered power constraint P, at the receiver, the number of
mass points decreases. Also, as it is seen from the figures, one
of the mass points is always equal to 7).

In Figure @ the information rate I(z;y) and delivered power
Py for complex Gaussian inputs is shown versus the inphase
subchannel power allocation P; (P, = P, — P;). In line with
the previous results, it is observed that (unlike the linear model
for the EH, that is g(r) = o172 in (@)), under nonlinear
model for the EH, the information rate and delivered power are
maximized and minimized, respectively, for P; = P, = %.
Alternatively the information rate and delivered power are
minimized and maximized, respectively when P, =0, P, = P,
or P,=PFP,,P.=0.

Finally, we note that the algorithm used for finding numer-

$Note that there is no amplitude constraint for this input.
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Figure 4: The position of the optimal mass points for
Cis(5, Py, 5) versus different values of the minimum delivered
power P, constraint.
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Figure 5: The position of the optimal mass points for
Cis(5, Py, 6) versus different values of the minimum delivered
power P, constraint.

ically obtained input distributions is extremely sensitive on
the first guess as the number of mass points m increases.
This is due to the fact that the optimization of the capacity
given that the number of mass points m is fixed, is not
a concave function. This, accordingly, makes the problem
computationally demanding with m.

B. Realistic Circuit Simulations for WPT

In order to assess and validate the analysis and the benefits of
OOK signallinﬂ and asymmetric Gaussian distribution (from
WPT perspective only), we designed, optimized and simulated
the rectenna circuit of Figure [/ We used a conventional
single series rectifier circuit that consists of a rectifying diode,

YFor OOK signalling, we use the distributions introduced in (75) for
different values of the parameter [.
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Figure 6: Mutual information I(z;y) (Red dashed line) and

delivered power Py (blue solid line) corresponding to the com-

plex Gaussian inputs with asymmetric power allocation. The

transmitted information rate is maximized for P, = P, = %

and delivered power is maximized when P; = 0, P, = P, or

P,=P,, P =0.

impedance matching circuit, and low pass filter. The Schottky
diode Skyworks SMS7630 is chosen for the rectifying diode
because it requires low biasing voltage level, which is suitable
for low power rectifier. The impedance matching and low pass
filter circuits are designed for an inphase 4-tone multisine
input signal centered around 2.45GHz with an average power
of -20dBm and with 2.5MHz inter-carrier frequency spacing.
The load impedance R2 is chosen as 10K in order to
reach maximum RF-to-DC conversion efficiency with the 4-
tone multisine waveform. The matching network capacitor C1,
inductor L1 and output capacitor C'2 values are optimized
(using an iterative process) to maximize the output DC power
under a given load impedance and for the given multisine input
waveform at -20dBm RF input power. The chosen values are
given by 0.4pF for C1, 8.8nH for L1, and 1nF for C2. The
antenna impedance is set as R1 = 50¢2 and the voltage source
V1 is expressed as V1 = 2er(t)\/ﬁ.

In Table [, the measured delivered DC power is shown
for four types of channel input, namely, continuous wave
(CWE Complex Gaussian (CG), Real Gaussian (RG) and
inputs of for different values of parameter ! is shown.
A first observation is to note that the second moment (i.e.,
average input power) of the input distribution is the same for
all distributions, though a significant range of harvested DC
power is observed. This is due to the rectenna nonlinearity
that favors distributions with a large fourth moment. Indeed,
the fourth moment increases proportionally to 1, 2, 3 and [?
for the CW, CG, RG and OOK signalling (with [), respectively.
This shows that the nonlinearity model through a polynomial
expansion with a second and fourth order terms as in (2I)
predicts the dependency of the rectenna nonlinearity on the

20A single tone with frequency 2.45GHz.
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Figure 7: Conventional single series rectifier circuit consisting
of a rectifying diode, impedance matching circuit, and low pass
filter.

Transmission type | Delivered DC Power (W)
CW 1.0959
CG 1.5296
RG 1.7547
1=2 2.6899
1=3 3.4262
1=4 3.4884
1=5 3.2965

Table I: Delivered power for Continuous Wave (CW), Complex
Gaussian (CG), Real Gaussian (RG) and OOK signalling with
different pdfs.

input signal quite accurately, and confirm observations made
in [4]], [5], [11]. Recall that the linear model of the rectifier
would not capture this dependency since it only accounts for
the second order term in (ZI)) [4]], [11]. A second observation
is the significantly larger power delivered with inputs in
(2T) compared to other schemes. Specifically, the maximum
delivered power occurs at [ = 4. The reason that the delivered
power decreases for [ > 4 is due to the finite RC constant in
the low pass filter of the rectenna.

VI. DISCUSSION AND FUTURE WORKS

In the following, we discuss a number of interesting research
avenues that can be considered in the future.

o Note that the delivered power in (23], contains odd
moments of the channel input 2. Accordingly, for the
problem considered in (7)), it is interesting to find optimal
input distributions when the function g(r) (we recall that
g(r) models the baseband representation) contains odd
powers of the argument.

o The practical EHs exhibit nonlinear behaviors since their
efficiency becomes different (not constant) when the re-
ceived RF power level changes. Specifically, the efficiency
is very small in low RF power level (due to the turn-on
voltage of the diode), is large in the middle RF power
level, and is again very small in the high RF power level
(due to the reverse breakdown of the diode). In order to
capture this behaviour, the function g(r) should not tend
to infinity when r — oo. Accordingly, finding optimal
inputs for bounded g(r) is of interest.

o The problem considered in , is indeed an optimization
over circular symmetric solutions. However, in practical

SWIPT problems, harvesters are also phase dependent
and circuit simulations reveal that phase variations in
the channel input can also affect the delivered power at
the receiver significantly [26]]. Hence, it is interesting to
develop a systematic approach in order to capture the
effect of phase variations as well.

o Note that the harvester’s input is the RF signal Yi(¢)
(see @), and therefore, in the baseband representation
(for nonlinear harvesters), it appears that we have higher
order moment of the baseband equivalent of the channel
output, i.e., Y(¢) (see in Appendix [D). Accordingly,
to represent the signal perfectly in terms of its samples, we
require to consider more values of the baseband channel
output Y'(¢) between any consecutive information samples
(see in Appendix D). If we allow correlation among
the samples in Section (recall that iid assumption
on samples xj for different k£ in (19) is an imposed
condition), the problem becomes cumbersome to analyze.
However, it seems to the authors that from a power
harvesting point of view, correlation among different sam-
ples is good, in opposition to information transmission.
Hence, it is also interesting to consider even very simple
achievable schemes which utilize the effect of correlation.

« Finally, we note that the results presented here can be
extended to vector Gaussian channels with bounded inputs
[27] and Gaussian multiple access channels [28]], utilizing
the similar tools presented therein.

o There might be interesting connections to make with
other systems subject to nonlinear responses. In op-
tical communications, for instance, the nonlinearity is
commonly compensated and transmission is performed
using constellations approximating the zero-mean Gaus-
sian distribution optimum for AWGN channels (e.g. ring
constellations) [22]. The information theoretic limits of
optical channels are studied by modelling the nonlinear
optical communication channel as a linear channel with a
multiplicative noise or using a finite-memory model with
additive noise [22], [29]]. On the contrary, in SWIPT, the
diode nonlinearity is exploited in the signal design and
in the characterization of the RP region, therefore leading
to non-zero mean Gaussian inputs and enlarged region
compared to that obtained with zero-mean inputs.

o As the average power constraint grows, obtaining the
optimal distribution gets computationally demanding. One
alternative to reduce the computational load of the op-
timization is to follow the approach presented in [30],
where a modified cutting-plane algorithm is applied on a
piecewise-linear approximation of mutual information.

VII. CONCLUSIONS

In this paper, we studied the capacity of a complex AWGN
channel under transmit average power, amplitude and receiver
delivered power constraints. We focused on nonlinear delivered
power constraints at the receiver. We showed that under an
average power constraint and for any given delivered power
constraint, the capacity of an AWGN channel can be either



achieved or approached arbitrarily. In line with the similar
results in the literature, we showed that including the amplitude
constraint causes the optimal inputs to be discrete with a finite
number of mass points. As an application of the presented
results, we considered SWIPT over a complex AWGN channel
in the presence of a nonlinear EH at the receiver. Defining
the RP region, we provided two inner bounds for the RP
region. Considering general complex Gaussian inputs as the
first inner bound, we showed that the optimal Gaussian inputs
are zero mean. A tradeoff between the transmitted information
and delivered power is recognized by allocating the power
budget asymmetrically between the real and imaginary sub-
channels. By restricting the optimization probability space, we
utilized the obtained results in this paper to derive the second
inner bound. Numerical results reveal that there are significant
improvements in the second inner bound with respect to the
first inner bound corresponding to complex Gaussian inputs.
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IX. GUIDE ON USING APPENDICES

In the following, the proof of the main results of the paper,
e., Theorem [T} Theorem [2] Lemma [I] and Lemma [2] are
provided in Appendices [B] [C| [D] and [E] respectively. The
preliminary results required for the main proofs are provided
in Appendix |A| where the proofs of some of them are provided

in Appendices [ [/ [G| H [ 7] [

APPENDIX A
LEMMAS

In this appendix, we provide the lemmas required to prove
Theorems [T and 21

Lemma 3. The capacity of the channel in ({)) with input subject
to
LS lanm)? < P,
2 2= 9(|TR(m)]) = Py
j@x(m)| <7p

is the same as the capacity of the channel in @) with input
samples subject to (9.

Proof: We follow [31, Section 3.3],
following modification. Define

C(Pa,Pd7T’p) = sup I(.’B,y)

,Vm € [1: 2], (39)

however with the

1:(93
El|z|’] < P, (40)
s.t. Elg(Jz|)] > Py
lz| <7y

First, we note that
o C(P,, Py,7p) is concave in (P,, Py).

o C(P,, Py,7p) is nondecreasing in P, and nonincreasing

in Pd.

o The continuity follows due to concavity.

Proof of achievability: In contrast to [31, Theorem 3.2],
we are not dealing with a maximum. Let f°(z) be such
that I(z;y) under f°(x) falls within §—neighbourhood of
C(P,/(1+e€1), Pi/(1—e€3),1p) with arbitrary small €; and e5.
Also assume there is an g, < Py, g(|zol) >
Pd and |(E0‘ < Tp.

In an iid fashion, generate 2" n-length sequences z"(m)
according to I, f°(z;).

o If 2"(m) € T¢ "), then transmit it, and accordingly, due

to typical average lemma we have

%2221 jzy(m)]* < P,
& 2o 9(mr(m)]) = Pa
@k (m)| < 7p

Note that the last inequality is already guaranteed.

o If2"(m) ¢ 7™ then transmit a randomly chosen typical

sequence.

We have now generated a coding scheme that satisfies the
constraints. Analysis of error events Pr(&;), Pr(&;) follows
along the similar lines as in [31, Section 3.3]. Therefore, every
rate R < C(P,/(1 + €1),Pa/(1 — €2),7p) — & is achievable.
By continuity of C(-,-,r,), let €1, e — 0, and therefore, any
rate R < C(P,, Py,7p) — § is achievable. Finally, since § was
chosen arbitrarily, any R < C(P,, Py,7p) is achievable.

Proof of converse:

nR < ZI T Yk)+ne,
k=1

<2t

C<n > Bzl

<nC(P,, Py, rp)+nen,

Vm e [1:2"8]. @41)

(42)

Ellzx %), Elg(lex])], Bs)+nen (43)

IN

k=1

]7 % ZE[ngkDL BS) +ne, (44)

(45)

where (42) is due to Fano and Data processing inequality, (43)
is due to the definition, (#4) is due to the concavity of with
respect to P,, Py and @3) is due to monotonicity. O

Lemma 4. In the Levy’s metricE] the space Q01 N is convex,
however, compact if r, < oo.

Proof: The proof is obtained by following exactly the
same approach used in [13]]. In the following, we bring a
counterexample which proves that the space {2; N s for
7, = 00 is not compact. For simplicity, assume g(r) = r* (the
following argument can be extended to the general definition of
g(r) in @) and consider the following sequence of probability
distributions

0 r <0,

Fr(r)=4 1—% 0<r<+/Py,

1 r > /Py,
21For two cumulative distribution function F, G : R — [0, 1], the Levy’s

distance L(F, G) is defined as L(F, G) = inf{e > 0|F(z—¢)—e < G(z) <
F(z+¢€) + ¢ Vo € R}

1=0,1,.... (46)



It can be verified that E[r*] = P, and for integer | > {/P;/ P2
we have E[r?] < P,. However, the limiting distribution (when
I = o0)is EX(r) = U(r) does not satisfy the second
constraint, i.e., E[rt] = 0. This establishes that the space
0y N Qy for Py, P, < 0o and rp = 00, is not compac@ O

4 e2ax>

Lemma 5. For all x > 0 we have

erf (\/%)

a(l — —2ax
Ip(z) < inf €” <a( c ) +
0<a<1 T

2mx
“47)
1 —
where a4 = 1276 1. Furthermore, it is verified that
i e (d(l — g~ 2aT) N erf (v2ax) N 6_2“3”)
z—0 T 2rx
a a
=14 i + L (48)
™ ™1l —a

Substituting a = 1/2 in and noting that erf(z) < 1 and
1 —e™ < /max we have

el‘

N

Using the inequality \/7x < e*(\/m —1), we can further upper
bound [#9) as

+ 1.

Io(z) < (49)

Proof: See Appendix [F}
Lemma 6. In the following integral transform
[ K(RDGERR = (), s
0

where g(r) is defined in (6). if G(R) is Zestricted to be a
polynomial with a finite degree, i.e., of the Y, ¢; R*!, there are
unique ¢;’s that satisfy ([1). =

Proof: See Appendix [G|

Lemma 7. fr(R;F,), R >0, F. € Q1 NQy is bounded and
continuous in both of its arguments.

Proof: Continuity of K(R,r) follows by the continuity of
Iy(rR). Note that

K(0,r) = K(oo,7) = K(R,00) =0, (52)
K(R,0) = Re™ % < o0, (53)
K (00,00) < \/?em?)z < o0, (54)

where is due to (50). Therefore the function K(R,7)
is bounded. After some algebraic manipulations (details have
been provided in Appendix [K), it can be shown that

K(R,r) <1 (55)

22Note that compactness is a sufficient condition for continuous functions
to achieve their supremum or infimum, however, not necessary.

Continuity of fgr(R;F;) is obtained by following the same
steps as in [16, Lemma 3]. From and K(R,r) > 0 it can
also be easily verified that

0< fr(R;Fy)<1, R>0. (56)

O
The following Lemma is indeed a generalization of [17|
Theorem 13] to complex channels.

Lemma 8. Let n be a CSCG random variable of variance 2,

and let x be a complex random variable that is independent of

n. The PDF f,(-) of the random variable y = x +n = |y|e’®
decays as exp —|y|?/2 or slower, that is

1

f) # 0 (7 A7), va > o (57)

Proof: By calculating the characteristic function of the

complex random variable y, we have

M,y (z = r,el?)| = [E[e/Re="Y) (58)
y
= |E[ejRe(z*m)H . |E6J'RC(Z*”)]| (59)
< [EeZRET)| (60)
oo 27
Tn _Th jrnrs cos(0,—0.)
= %e 2 e’z »=%)dr,db, 61)
00
o0 T:i
= /rne_TIO(jrnrz)drn (62)
0
2
=e 2, (63)
where is due to the transform ¢ = % and [23, ET I

197(20)a].

Continuity of y is verified due to continuity of the complex
Gaussian noise n. From Lemma [/ existence of the pdf of y
is guaranteed. Hence, the result of the lemma is proved by
Hardy’s theorem (see [32])) and (63) and noting that any pdf in
the form of fy(y) = O(e*AW‘Q), A > 1/2 is identically zero,
i.e., fy(y) =0, which is not a legitimate pdf. .

Lemma9. fgr(R; Fy,)In fr(R; Fy,) for R >0, Fr, € 1N
Qo is dominated by the following absolutely integrable function

R<2

R>2 > (64)

where ¢ = 4(128 + 4P,)3.
Proof: See Appendix [H|

Lemma 10. For every F, € Q1 N Qy, H(F,) exists, and is
continuous, strictly concave and weakly differentiable.

Proof: See Appendix [I}
The following series will be useful throughout the proof of
Lemma Il



Lemma 11. Recalling that a; = sinc(l + 1/2) for integer I,
we have the following serie@'

So £ af =1, (65)
1
S1EY Y wap =0, (66)
I kik£l
Sy 2 Z Z Z Z aaiaqa, = 0, 67)
l kik#l d:dAl mim£l
d#k m#d
m#k
2
S £ Z Z a%ai =3 (68)
I kik£l
1
S, & Z Z Z atapag = —3 (69)
I k:ks#l d:d#l
d£k
1
55éza?:§7 (70)
1
1
Sg 2 Z Z ajay = 5 (71)

1 kikl
Proof: See Appendix

APPENDIX B
PROOF OF THEOREMI]

It is easy to verify that for a given average power constraint
P,, capacity C(P,, Py,00) is a non-increasing function with
P,;. Therefore, we have

C(Py,0,00) = C(Py, Py, 00). (72)

Note that C(P,,0,00) = In(1 + P,/2) and is achieved by a
unique CSCG input distribution as £ ~ CN (0, P,) (with its
amplitude r distributed as %ayleigh distribution according to
the CDF F,_(r) = 1 — e 272 )% The uniqueness of the input
is proved by noting that the integral transform (9) is invertible
(the proof follows exactly the same steps in [14, appendix
IT]. Accordingly, we have removed the proof for brevity.) The
delivered power corresponding to  ~ CN(0, P,) is obtained
as

1 T 2
Ps = B /rg(r)eiﬁdr. (73)
“0
Hence, we have
C(P,,0,00) = C(P,, Pyg,00), Py < Pg. (74)

Since & ~ CN (0, P,) is the only distribution achieving the
capacity C(P,,0,c0), therefore, C(P,,0,00) is not achieved
for Py > P} In what follows, we show that, holds for
P; > Pg. In other words, when P; > Pg, any rate lower
than C(P,,0,00) can be achieved by a distribution whose

2The summations are from —oco to co. They are removed due to brevity.

24The subscript R stands for the Rayleigh distribution.

25We note that the reason the capacity is not achieved is not due to the fact
that the optimization probability space is open (i.e., is not compact), but rather
is due to the contradiction in uniqueness of the achievable input.

corresponding delivered power is equal to P;. Consider the
following sequence of distribution functions

0 r<0
F, (r) = 1*%2 0<r<+Pil ,1=23,.... (75
1 r>+/P,l

Itis easy to verify that Fy., (r), | = 2,... satisfy Ef,, [r?] = P,,
hence, satisfying the average power constraint. Also, for the
delivered power constraint we have

n
Pd,l £ EFrl [g(’l"l)] =qo+a1 P, + Z OéZ‘P;ZZiiQ. (76)
i=2
Since n > 2 by construction, it is guaranteed that there exists
an integer number L, such that for [ > L, P;; > Py (note
that Py; — oo as [ — o00). Due to Lemma E], time sharing is
valid in our system model. Hence, we can construct a complex
input with its phase uniformly distributed over [—7, ) and its
amplitude distributed according to the following CDF

F,.(r)=Q—=7)F.,(r)+7F,(r), 7€ (0,1), I > L,

(77)

where the subscript ¢s in Fj., stands for time-sharing. By
choosing 7 = (Py— Pg)/ (P4 — Pg), we have 0 < 7 < 1 and
the constraints

{ Ef,,, [ri] = Pa, (78)

EF,.tS [g(rts)] = Pd.

are both satisfied. Accordingly, we have

H(Frp) > H(F,,)
> (1—7)H(Fy,) + TH(Fy,)

>-2 7€(0,1), I > L, (79)

where the first inequality in (79) is due to non-increasing
behaviour of C'(P,, Py, o0) and uniqueness of  ~ CN (0, P,)
in achieving C'(P,, 0, 00). The second inequality in is due
to strict concavity of the entropy H(F,) (see Lemma [10),
and the third inequality is verified by noting that H(F,.) =

OTP h(r; F.)dF,(r) and h(r; F,) > —2 for any F,. € Q1 Ny
(see (88) in Appendix [C). For a given P;, we can increase
l arbitrarily. Therefore 7 can be made arbitrarily close to
zero by letting [ — oo. Therefore, by letting 7 tend to zero
(equivalently letting P;; — o00), the result of Theorem [1| is
concluded. We note that there is no distribution achieving the
supremum.

APPENDIX C
PROOF OF THEOREM [2]

The main steps of the proof of Theorem [2] are parallel to
those provided in [[13]]-[17]]. Therefore, we provide the details
for the different arguments and briefly mention (for brevity)
the straightforward outcomes.

Since the set 23 N2, is compact for r, < oo (see LemmaEf[)
and H(F,) is continuous (see Lemma[9), it is verified that the
supremum in (7)) is achieved and therefore it can be replaced by
maximum. Due to convexity of the set {2; N{2 (see Lemma H)



and strict concavity of H(F;.) (see Lemma E]) it is concluded
that the maximum is achieved by a unique Fp. € Q5 N Q.
It is verified from Lemmas @] and [ that the conditions of the
Lagrangian theorem [33, Section 8.3] are met. By writing the
Lagrangian we have

L(Fp, A\ 1)
- / h(r: Fr) — A2 — Po) + p(g(r) — Pa)dE,(r), (80)
0

where A > 0, p > 0 are Lagrange multipliers and h(r; F.)
is defined in (17). By weak differentiability of H(F;) (see
Lemma[9) and the linear constraints in (I4), the weak derivative
[33, Section 7.4] of @]) with respect to Fy.. reads as

LlF,.o (F‘!‘, Aa :U/)
— /h(r; Fro) — Ar? + pug(r) — Kp,dFy(r),
0

where K, = H(Fpo) — AP, + pP;. From Lagrangian theory,
we obtain that in order for a distribution Fp. to be optimal
(achieving the maximum), it is necessary and sufficient to

Ly, (Fp A ) <0, VE € QN Q. (82)

(81)

Following the same approach in [[13]—[17], it is verified that
(82) is equivalent to

{ h(r; Fpo) — Ar? 4 pg(r)
h(r; Fro) — A2 + ug(r)

=Kp.,, 7€ supp{r’}
SKF,-O7 e [O’Tp]'
(83)

Assume that the optimal input r° contains at least one limit
point in its support. This case occurs if support of 7° contains
an interval or it is discrete with an infinite number of mass
pointﬂ Extending the equation in to the complex domain,
we have

h(z; Fro) = A2* — ug(2) + Kr.., 2 €Re(z) >0. (84)

h(z; Fro) is analytic due to analyticity of K(R,z) (see (17))
on the domain defined by Re(z) > 0. holds if z is the
support of 7° on [0,7,] (due to (83)). Hence, by the identity
theorem, we have h(z; Fro) = \z® — pg(z) + K., over the
whole domain Re(z) > 0 if z € supp{r°} is a limit point. In
the following, we examine (84) for different range of values
for A\ >0 and pu € R.

e (A = p = 0): Expanding h(r; Fyo) from (17), the KKT

equality condition in (83) reads as

/K (R,7) R ir—HE). @)

Tr(T%: Fre)
Noting that the integral transform in (83) is invertible, i.e.,

the solution is unique (see Appendix [G), we have

fr(R; Fro) = Re H(F), (86)

26The existence of a limit point in this case follows by Bolzano-Weierstrass
theorem.

which can be easily verified that is not a legitimate pdf.

e (A > 0, = 0): In this case the problem at hand is reduced
to the capacity of an AWGN channel under average power
and amplitude constraints. In [[14]], it is shown that the
optimal inputs for this setup are discrete with a finite
number of mass points.

e (A > 0,1 > 0): By expanding h(r; Fyo) from , we
have

T R
/K (R,T) ln FalR: Fro)dR
0

K(R,r)In RdR

- / K(R,7)In fr(R; Fyo)dR (87)
0

1

> /lanR— /fR(R; Fro)dR > -2, (88)
0
where the first inequality is due to (55) and Inz <
x. Therefore, since h(r; Fy.) is bounded from below, the
optimality conditions in (83)) are not met as  — oo (under
the assumption of p > 0).
e (A >0, < 0): From Lemma [6] it can be easily verified
that fr(R) is in the form of

JR(R; Fro) ReXp{ ZCZRQZ} (89)

According to Lemma [ (89) is not a legitimate distribu-
tion, since it decays faster than e -y’ (recall that d > 2).
Therefore, the only possibility for the optimal amplitude r°
is to be discrete with a finite number of mass points. We
note that, the channel input is indeed continuous due to the
uniformly distributed phase.

O
APPENDIX D
PROOF OF LEMMAII
Considering first the term E&[Yy¢(¢)?], we have
EE[Yu(t)?] = P + 0. (90)
Considering the term EE[Y;(t)*], we have
3
EE[Yu(t)") = SEE [V ()] - 1)

Note that, the signal |Y (¢)|? is real with bandwidth [~ f,, f.].
Hence, it can be represented by its samples taken each ¢t =
1/2f,, seconds. Therefore, we have

2= Zsksinc@fmt — k), (92)
where s;, = |Y (k/2f,)|?. Accordmgly, reads as
— 4 = 1 — 2
215:5 (1Y (£)[*] Jim T8 ;IEHSM ] (93)



ZE|s2k+1| +2Tf ZE|3%| (94)

- g (Ellso11]2] + E[lsox[]) - (95)

Note that 8o, = |Y(2k/2f)|?> = |yx|>. Hence, E[|s2x|?] in

(©4) reads
El|s2x)?] = Ellyx|"] (96)
=E[/(z +n)Z +7)’]
=Q+16P + 32. 97)

To calculate the term E[|soz41|?] in , we note that the
channel’s baseband equivalent signal Y (¢) can be written as

= Z:L‘nsinc(fwt —n)+ W(t), (98)
n
Substituting ¢t = (2k + 1)/ f., we have
gk 2 ( )lt 22kf+1 99)
=+ (100)

A oo

where . o ZTnSk—n and B = W((2k + 1)/2fy).

don
Similarly to (97), we have

E[|s2r+11%] = E[[g,|'] (101)
=Q+ 16P + 32, (102)
where Q = E[|2]*], P = E[|z|?]. For P, we have
P= ]E{Zmna;msknskm} (103)
n,m

= Y Elzlsio,

+ Y E@)EEm]sk—nSk—m (104)
n,m:nm#m

= SoP + Sy|ul? (105)
=P, (106)

where in (T04) we used the assumption that ,, is i.i.d. with
respect to different values of n. For (), we have
Q = E|: Z LT (X 4T 1 Sn—1Sn—kSn—dSn—m | - (107)
Lk,d,m
Accounting for the different cases for the possible values of
l,k,d,m, we have

o If all the indices [, k, d, m are with different values, we

have
Q = |pu*S,. (108)
eIf (l=k d#k d=m)or (l=d, k+#d, k=m),
we have
Q = P?Ss. (109)
o If I=m, k#m, k=d), we have
= |P'|?8;. (110)

eIf (Il =k, d#m, d#k, m+#k)or (Il =d, k+#
m, k#d, m#d)or(k=m, l#d, l#m, d# m)
or (d=m, l#k, l#m, k#m), we have

Q = P|u|S,. (111)
e If Il=m, k#d, k#m, d#m), we have
Q= P'E2S,. (112)
o If (k=d, l#£m, I #d, m+# d), we have
Q = P 1%S,. (113)
o If | =k =d=m, we have
Q= QSs. (114)
e Ifl=k=d#mor k=d=m #1, we have
Q=T uSs. (115)
e Ifl=d=m#korl=k=m#d, we have
Q =T 7Ss. (116)
In the above expressions we define P' £ E[z?], T" £ E[|z|?z].

Hence, (107) reads
= [p|*S2 + (2P + [P ") S5 + (4P|uf* + P’
P'u?)Sy+QSs +2(T 7+ T p)Ss

= 2 |Q+ 4P —|uP)

+2(|P'|? = Re{P'1?}) + 2Re{T 11} |. (117)

Expanding the terms |P'|2 — Re{P 7i?} and Re{T 7z} in

(TT7), we have
|P'[P=Re{P' %} = (P — P)(Pr— P — (2 —pi})),
Re{T 11} = pr (T +p1r Pi) +pi(Ti+ 1 Pr).

(118)
(119)

Noting that @ = Q; + @ + 2P, P; and substituting in (T17)
along with (118) and (119), after some manipulations @) reads

Q= (@ + Qi+ 2T, + uiT)

+6(P.P;+ P(P, — 1i2) + Py(P; — (120)

,uz))

Substituting (120), (106) in (I02) and substituting the result
along with (97) in (94), and adding with (90) yields the result

of the Proposition.

APPENDIX E
PROOF OF LEMMA[2]

Note that constraining the input distributions f () to those
of non-zero mean Gaussian distributions for each dimension,
we have Re{z} ~ N (11, 02) and Im{z} ~ N (i, 0?), where



2

02 & P. — p? and 0? & P; — p?. Therefore, the rate

maximization problem reads

Jw
L omax (In(1 + ac?) + In(1 + ac?))
P+ P <P, 121
s.t. a(Q+Q)+BP+~y>P;
02 >0, 02 >0
where a £ 2/f,02. Writing the KKT conditions for the

optimization problem in (I12I), we have

M(Pr+Pi—P) =0, A\ >0 (122)
A((Q+Q)+BP+~v—P) =0, Ay >0, (123)
¢or =0, oy =0, (G >0 (124)
 —fea |
¢ = T raod * A — Ao(2a(3P, + P) + B),  (125)
A L ,
fw““’” o 8Xaapd + 2, = 0, (127)
1+a
f“’a“’ ~ + 8\aap® + 2Gip; = 0, (128)
1+a
where in @ to (128) we used the following
0Q  0Q 4
30 = 30, = 6P, + 2P;, (129)
0Q  0Q
b~ op — 0P 20, (130)
0Q  9Q 3
o o Bty (131)
0Q _9Q _ 4
= 813 (132)

It can be easily verified from (122), (I23) and (126) that

when As = 0, the maximum is achieved when p,, = p; = 0 and
P, = P; = Lo, yielding Py = 2aP,” + 3P, + . For positive
values of Ay from (123) it is verified that A; > 0, which from
(122) results that P, + P; = P,. The condition P, + P; = P,
reduces the number of variables P;, P, to one. Accordingly,
since the rate (expansion of the mutual information accounting
Gaussian input) is concave wrt P; € [0, P,] attaining its maxi-
mum and minimum at P; = P, /2 and P; = 0, P,, respectively
and the delivered power Py is convex wrt P; € [0, P,]
attaining its maximum and minimum at P, = 0, P, and
P, = P, /2, respectively, the Proposition is proved.

APPENDIX F
PROOF OF LEMMA 3]

Rewriting the function Io(z), we have

™

1
Io(z) = — / e® st g (133)

i

0

2vE 2

_c / T (134)
T/ T u2
0 1_5

T 2voz —u e o—2at
- 0/ 17%(1 mt (135)
z 2vaz 2
< :\/5 O/ (\a/% + 1> % du
e L e—?xt
(136)

A N —
n) i—at-0"

where (133) is the definition, in (T34), we used the transforma-
tion u = 2y/z sin(¢/2), in (135), 0 < @ < 1 and in the last term
of (135)), we used the transformation u?/2 = 2xt. In , we
used the inequalities 1/4/1 — u?/4z < au/v/x + 1, 0 <u<
2vaz, a=(1/yVI—a—1)/ 2f>land Visi—a, t>
a, for the first and second terms, respectively. The first integral
in (I36) is the error function. From [23, ET I 139(23)], the
second integral in (T36) can be obtained as

1

e—2wt

) VE=a)i -1

dt = e 2*®(1/2,1;22(1 — a))

—2ax

< me (137)

The inequality in (I37) can be easily verified from the defini-
tion of ®(-,-;-), that is, we have

2z(1—a)

®(1/2,1;22(1 — a)) <®(1,1;22(1 — a))=e (138)

where the equality in (I38) is due to [23] MO 15]. Hence, the
term in (T36)) can be further upper bounded by (137) as follows

- _ ,—2ax </
Tow)<er (A=) el (V302) | aa) (g5,
T 21z

Since (139) is valid for any a € (0, 1), therefore, the result
of the lemma is concluded.
O

APPENDIX G

PROOF OF LEMMA[6]
Using the transform ¢ = u? /2 and [23| MI 45], it is verified

that
/ R°K(R,r)dR =
0

b b r2 b r2
22T (= +1 70 1,1

for 0 < r < oo, b > —2. By substituting G(R) in
using (T40), we have

> e /R”K (R,7)dR
=0

(140)

, and

2TThis can be easily verified by noting that the function f(u) =

\/ﬁ — (au + 1) is concave and f(0) = f(2v/az) = 0.



- 4 2 r?
:ZciTz’!e_TfI) <i+1,1;2>. (141)
i=0

The function ® (74 1, 1; %) can be found for integer values
of ¢ using the following two properties of Confluent Hyperge-

ometric functions (see [23, MO 15, MO 112])

O (iizz)=e, i=1,2,..., (142a)
O (a+1,b2) :%q)(a—i—l,b—f— 1;2) + ® (a,b;z). (142b)
Denoting e D <z k; g) 2 ®,.(i,k) fori =1,2,... and
k=0,.,i—1, we have
O, (i,i)=1, (143a)
2
.
®,(i,i—1)= 3, ®,(i—1,i—1 14
#(1,1—1) 2G=1) (4,)+P-(i—1,i—1) (143b)
7"2
S| 14
21 (143c)
2
.. r
@T(272—2)—2(i72)<1>r(2,z 1)+ ®,.(i—1,i—2) (143d)
,r.2 2 ,’,.2
- 1, (143
2i-2) (2@—1)* )*2( )
,,,2
@i, k) = 2@ (i, k1) + @, (i— 1, ), (143f)
7,2
P, (6,2) = 8, (6,3) + @, (i~ 1,2), (143g)
2
<I>T(z',1):%<I>T(i,2)+<l>r(i—171). (143h)

Note that for example in (1431), both @, (i, k+1), ®,(i—1,k)
can be obtained from the previous stage. Also, it is verified that
®,.(i, k) is a polynomial of degree 2(i — k), 1 < k < 4, i.e,
the degree of the polynomial depends on the difference of the
arguments 4, k. Therefore, ®..(i,1) is a polynomial of degree
2(i —1).

Using the aforementioned approach, in the following, we
have calculated ®,.(¢,1) fori =2,...,6

2

D,(2,1) = % +1, (144a)
4

®,.(3,1) = 5+ r? 41, (144b)
6 gpt 3

®,(4,1) = 28+ ; +%+1 (144c)
rs 8 3rt

@r(5,1):@+—+7+2r 11, (144d)
710 58 5r6 5rd 52

3,(6,1) = Ty 1 (144

Gl=3gpTaatag T T (49

Therefore, c;s can be simply found by comparing the RHS of
(141) with g(r). Uniqueness of the coefficients ¢; is guaranteed

by the fact that the integral transform in (51)) is invertible. To
verify the invertibility of (5I)), consider the following transform

r) = / K(R,7)S(R)dR,
0

where S(R) is restricted to be a polynomial with a finite
degree in order to guarantee the existence of the transform.
It is enough to show that S(R) = 0 if and only if V(r) = (ﬁ
It is easily verified that S(R) = 0 yields V(r) = 0. For the
converse, assume V (r) = 0. By taking the second integral over
r as below, we have

/ /KRr

By changing the order of the integrals in (I46) (This is
validated by our assumption on S(R) and due to Fubini’s
theorem), we have

(145)

R)dRdr =0, s>0. (146)

//re_gr K(R,r)S(R)drdR
R2

_ / R(T / A R\f ) dtdR  (147)
0
_ _RZ 1 s _ > 14
1+2s/ JS(R)AR =0, s>0, (148)
0

where is obtained by expanding K(R,r) and transfor-
mation 72 = t. (148) is obtained using [23, ET I 197(20)a,
MO 115, MO 15]. From it is verified that is valid
only if S(R) =

O
APPENDIX H
PROOF OF LEMMA [9]
Solving M = 0, we have
Iy(r*R) I, (r*R)
*=R2L = 149
" Io(r"R) _ 'Io(r*R)’ (149)
where the second equality in (I49) is due to the equality
IO( ) = I1(x). Using the inequalities IOE g < 1 and Ilg*g >
x+1 from [34], we have
1
R— —=<r*<R. (150)

RS
Note that for R > +/2 we have r*
fr(R, Fy.,,) for R > 2, we have

> R/2. Rewriting

fr(R, Fyp) = / K (R, r)dFs(r) (151)

28Note that an integral transform functional Z(f) is invertible when Z(f1 —

f2) =08 f1 = fo.



/ (R, r)dFp(r) + / K(R,r)dFy(r) (152)
0 R
2
R ) R
K (R,R/2)Pr r§§ +K (R,7*)Pr >3 (153)
4P,
< K (R, R/2) + = (154)
4P,
= Re "% 10(32/2) 73 (155)
4P,
< Re % + = (156)
128R 4P,
" TR (57
128 4P,
<zt (158)
128 + 4P,
e (159)
where (I34) is due to the Markov’s inequality and (]3;1) (156)

is due to Ip(z) < e”. is due to e™* < f—k for any
nonnegative integer k (here k = 2).

Finally, from and the inequality |zInz| < 4z%, 0 <
xr < 1 we have

[fR(R, Frw)In fR(R, Frp)| < Af(R, Frn)3  (160)
4 R<2
R2
where ¢ = 4(128 4+ 4P,)%. It is easy to verify that g(R) is
integrable.
O
APPENDIX I
PROOF OF LEMMA [10]
1) Existence: Rewriting |H (Fy)| in (13), we have
7))l <7f (R:Fy)In——dR
r)| > / R s L fR(R; Fr)
+ /fR(R; F.)|In R|dR. (162)

The first term in the RHS of (I62) is the entropy of the random
variable R, which exists and is finite due to Lemma |§| and is
always positive due to (36). For the second term in the RHS
of (I62) and for any F,. € Q1 Ny we have

/ Sr(R: Fy)| In RldR = / Jr(R; Fy)|In RIdR
0

+/fR(R;Fr)1anR. (163)
1

The first term in (I63) is bounded by noting that
fo fr(R; F+)In RAR < 0 and due to
1
/fR(R; F,)In RdR > /lanR — 1, (164)

0

where the inequality in (T64) is due to (56). The second term
n (163) is bounded due to the inequality Inz < \/x and the
following lemma

Lemma 12. The expectation E[R®], 0 < a < 1 for any F,. €
01 N Qs exists and is bounded.

Proof: See Appendix

Existence of validates existence of H(F;) and this
concludes the proof.

2) Continuity: Let Iy ,, % F. Using the weak topology, the
continuity of H(F;) is equivalent to

Frp = F = H(Fr ) = H(F). (165)
Therefore, we have
lim H(Fy,)
= —lim/fR(R7 Frpn)ln @d}z (166)
0
= —/lim fr(R,F,.,)In @d}% (167)
/fR (R; F}) Ir(B; 1y )dR (168)
= H( ) (169)

where (T66) and (I69) are definitions. (I67) is due to Lebesgue
Dominated Convergence Theorem and absolute integrability
of the integrand in (T66) due to Lemma [9] (T68) is due to
continuity of xzlnz.

3) Strict concavity: Concavity follows by noting that in
(I62), the first term is the entropy function and therefore
concave with respect to the distribution function fg(R; ),
and the second term is a linear function of fgr(R;F;). Strict
concavity follows by noting that the transform

fR(R§F'r) = K(RvT)dFr(T)J (170)

is invertible (for the proof see [14, Appendix II]).

3) Weak differentiability: The proof for weak differentiability
is the same as [14] Proposition 4] or [15, AppendixIl.B]. For
brevity we avoid the details. It can be verified that applying
weak derivative over (162) yields

Hp,, (Fy)
_ 0 _
iy HOA = O+ 0F;)
0—0 0

H(FY)

,0e[0,1] 7D



= /h(r;Fro)dFr — H(F?),
0
where h(r; Fyo) is defined as in (17).

We conclude the proof by noting that the integral transform
in (T7) is invertible (see Appendix [G).

(172)

APPENDIX J
PROOF OF LEMMA [12]

For E[R“] we have

E[R"] = / R® fa(R: Fy)dR

(173)
0
- / / RK (R, r)dFa(r)dR (174)
0 0
2 oo
://RO‘K(R,T)dFT(r)dR
0 0
oo 1
+ / / ROK(R,r)dFy(r)dR
2 0
+//R°‘K(R,r)dF,.(r)dR, (175)
2 1

where we have divided the integrals due to the similar reason
explained in Appendix (H) (see equation (T30)).
For the first integral in the RHS of (175) we have

0/ 0/ RK (R, r)dF,(r)dR

</RadR: < oo, a>0,
1+«

(176)

where the inequality is due to (53). For the second integral in
the RHS of (T73) we have

(177)

2
< oo, a >0, (178)

where in (177) we used K(R,r) < K(R,1) for R>2,r <1
due to (150). In we used the inequality Ip(z) < e

Note that for R > 2, it is easy to verify that 1 + R/4 <
R — 1/R. This along with , guarantee that

K(R,r) < K(R,1+R/4), R>2 r<1+R/4 (179

Therefore, for the third integral in the RHS of (I75) we have

/ / ROK (R, r)dFa(r)dR (180)
2 1
oo 144
</ / ROK(R,r)dFy(r)dR (181
2 1
+ / / RK (R, r)dFa(r)dR (182)
2144
< / ROK(R,1+ R/4)dR (183)
+ / R°Pr(r > 1+ R/4)dR (184)
oo % (3R 4)2
ne iR (185)
5 4
[ PR
et <
+/(1+R/4)2dR<OO,Oia<1, (186)
2

where (I83) is due to and (33). In (183) we used
Markov’s inequality. From (T76), (I78) and (I83), it can be

easily verified that E[R®] for 0 < « < 1 exists, which also
concludes the result of Lemma
O

APPENDIX K
UPPERBOUND FOR K (R, 1)

Using the upperbound in @#7) with a = 0.5 (accordingly
a = 0.293), K(R,r) is upperbounded as

2

R24r
N erf(vVrR)Re™ "=
V2rrR
R2+r2
0.293(e"™® —1)e= "=
+
mr

R2+r2
2

K(R,r) <Re~

(187)

In the following, we bound each term in (I87), separately.

« First term on the RHS of the inequality (I87): Differen-
tiating with respect to R, it is verified that the maximum
occurs at R = 1. We get

R2 412 1472

Re™ 72 <e™

< e™2 < 0.6066.

(188)

o Second term on the RHS of the inequality (I87): We
first note that (after taking the derivative and some ma-
nipulations) the function erfzﬂ is decreasing having its

supremum at x = 0. Accordingly, the function % is



decreasing™} and having its supremum at = = 0 as welP?]  According to (T88), (T89) and (T99) we get

Therefore, we get

erf(vVrR)Re~
VarrR

where for the inequality (T89), we also used (I88).
o Third term on the RHS of the inequality (I87): First
assume the range rR < 1. We get

0.293 BTR -1 R 7R22+r2

R24r2

V2 - 0.6066

<0.274, (189)

T rR ©
0.293
< —— (e —1)-0.6066
< 0.0973, (190)

where the 1nequa11%/ in (I90) is due to (I88) and noting
that the function = L is increasing with respect to rR <
1 (and its maximum occurs at rR = 1).

For the range rR > 1 and r > 1, we get

2,2 24,2
0.293(e"® — 1)e= "= L0293 erRe— "5 (1o1)
mr T
_ 2
0.293 e "=
=" (19
0.293

< —— < 0.0955. (193)
s

And finally, for the range "R > 1 and r < 1 (therefore
R >1), we get

0.293 erft -1 242

2

™

O 293

™

O i—1 i X
Zr R ) e F ey (194)

=1

.
0193 <i ri-le=% R > - 195)

=1

0.293 — R\

<28 (Rtog Z,> e (196)

=2

0.293 ,

= (RemF +062e”F - (P-R-1)) (197)
0.203

< - (0.62 4+ 0.62-0.7) < 0.099, (198)
m

where in l 1194)), we used Taylor e)gpansmn of the function
i1 | is due to ri"le™7 <1f0rz:1and

T

ri~le 2<062f0rz>2(mtherangefr<1)1s
due to Re~"2 < 0.62 and e~ RT(eRfR 1) <0.7.
According to (T90), (T93) and (T98), the third term in the
RHS of (I87) is upperbounded as
0293 ™ -1 Ro- B3
T rR
< max{0.0973,0.0955,0.099} = 0.099. (199)

2Note that if f(x) is decreasing and g(x) is increasing with respect to x,
then, f(g(x)) is decreasing.

30Note that limg—_so L\/@ = %

K(R,r) < 0.6066 4+ 0.274 + 0.099 < 1.

APPENDIX L
PROOF OF LEMMA [T1]
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