

University of Essex

Research Repository

Energy-Aware Task Mapping Combining DVFS and Task

Duplication for Multicore Networked Systems

Accepted for publication in the Journal of the Franklin Institute.

Research Repository link: https://repository.essex.ac.uk/41669/

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers
may not be reflected in this version. For the definitive version of this publication, please refer to the
published source. You are advised to consult the published version if you wish to cite this paper.
https://doi.org/10.1016/j.jfranklin.2025.108097

www.essex.ac.uk

https://repository.essex.ac.uk/41669/
https://doi.org/10.1016/j.jfranklin.2025.108097
http://www.essex.ac.uk/

Energy-Aware Task Mapping Combining DVFS and Task Duplication
for Multicore Networked Systems
Lei Moa,∗, Jingyi Zhanga, Minyu Cuib, Xiaoyong Yanc, Shuang Wangd and Xiaojun Zhaie

aKey Laboratory of Measurement and Control of CSE, Ministry of Education, School of Automation, Southeast University, Nanjing, 210096, China
bDepartment of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, 412 96, Sweden
cSchool of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China
dSchool of Computer Science and Engineering, Southeast University, Nanjing, 211189, China
eSchool of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester, U.K.

A R T I C L E I N F O

Keywords:
Multicore embedded systems
Dependent and real-time tasks
Task mapping
Task reliability

A B S T R A C T

Integrating high-performance communication and computation capabilities, multicore embedded
platforms have become key components to realize applications of networked systems, e.g., Cyber-
Physical Systems (CPS). Such systems usually consist of multiple dependent and real-time tasks that
can be executed in parallel on different cores of the nodes and have timing, energy, and reliability
constraints. Designing efficient task mapping methods to transmit and process task data under multiple
constraints is challenging. Existing works seldom consider the joint design problem under timing,
energy, and reliability constraints, which are coupled with each other, introducing complexity in
designing efficient task mapping methods. In this paper, we first formulate the joint design problem as
a complex combinational optimization problem and design a linearization method to find the optimal
solution. To reduce computation complexity and enhance scalability, we design a decomposition-
based heuristic method. Then, a refinement method based on feedback control is added to enhance task
schedulability. The results show that the optimal solution obtained by the proposed method achieves
the desired system performance. Moreover, the proposed heuristic provides a feasible solution with
negligible computing time (reduces 99.9% computation time but with 24.3% performance loss).
Compared with the existing works, our method can optimize the usage of system resources to balance
energy, timing, and reliability requirements.

1. Introduction
Common applications of Cyber-Physical Systems (CPS)

include sensing, control, data transmission and processing,
under real-time and data dependency constraints [27]. These
applications are typically modeled by a set of Directed
Acyclic Graph (DAG) dependent tasks [29, 8]. Due to the
need for energy and computation efficiency of CPS nodes,
multicores have become promising architectures for net-
worked embedded systems [3, 12]. Multicore architectures
can process several tasks simultaneously to improve task
execution efficiency, compared with single-core ones, where
the tasks are processed sequentially. Besides data processing
capabilities, the CPS embedded systems typically integrate
wireless communication capabilities [21, 34]. Since commu-
nication and computation tasks are performed iteratively on
the CPS nodes (e.g., sensors, actuators, or controllers) [8,
32], parallel processing is possible not only among different
CPS nodes but also inside a CPS node, when multicore

∗Corresponding author
lmo@seu.edn.cn (L. Mo); 220221990@seu.edn.cn (J. Zhang);

minyu@chalmers.se (M. Cui); xiaoyong_yan@126.com (X. Yan);
shuangwang@seu.edn.cn (S. Wang); xzhai@essex.ac.uk (X. Zhai)

ORCID(s): 0000-0002-1119-7617 (L. Mo); 0009-0004-9061-5267 (J.
Zhang); 0000-0002-5983-1648 (M. Cui); 0000-0002-8097-9268 (X. Yan);
0000-0003-3405-5942 (S. Wang); 0000-0002-1030-8311 (X. Zhai)

1This work was supported in part by the National Key Research and
Development Program of China under Grant 2022YFF0902800 and in
part by the Natural Science Foundation of Jiangsu Province under Grant
BK20242028.

architectures are used. To meet the desired system require-
ments, application tasks should be mapped appropriately
(i.e., task allocation and scheduling) on the CPS nodes and
their processing elements.

Timing and energy are critical metrics for evaluating the
system performance during the task mapping process [31, 6].
If the real-time tasks are not finished within the deadlines,
this can lead to errors with potentially catastrophic conse-
quences. Energy consumption is vital for networked em-
bedded systems, especially for battery-powered or energy-
harvesting devices. However, energy efficiency and real-
time response usually contradict each other. To address the
energy efficiency and real-time response trade-off, Dynamic
Voltage and Frequency Scaling (DVFS) is used [17, 10], as
it changes the working frequency and supply voltage of the
processing elements of the embedded system during the task
execution process. To reduce energy consumption, the volt-
age/frequency can be lower, which makes the task execution
time longer. However, it also decreases task reliability since
the transient failure rate is increased [36, 7]. Task replica-
tion can improve reliability [36, 19], e.g., task duplication.
Therefore, task reliability, energy efficiency, and real-time
response should be jointly optimized when mapping real-
time tasks on processing elements and nodes of networked
systems under multiple constraints. Furthermore, the CPS
nodes are usually connected through a mesh network [21, 3],
where one node can transmit data to another through multi-
ple paths determined by the network topology. Path selection
defines the route of the data through the networked nodes,

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 1 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

i.e., it impacts the allocation and scheduling of the tasks on
the nodes. Therefore, task communication and computation
costs are determined by data path and task mapping, which
are coupled with each other.

Task mapping works exist for multicore architectures,
dealing with energy efficiency, real-time response, and task
reliability, targeting a single platform (node), without con-
sidering the communication among the nodes [31, 14, 6,
36, 7]. Usually, the cores inside the platform are connected
by a high-speed data bus. The communication costs (e.g.,
communication time or energy) among the cores are very
small compared with the computation costs, and they can
be omitted. When the cores are connected with a Network-
on-Chip (NoC) [1, 19], the routers are responsible for the
data transmission among the cores. Since the routers are
usually arranged in a grid network, the XY routing can
be employed for data transmission [1, 20]. Other works
perform task mapping on the different nodes of networked
systems to improve system performances [17, 21, 34, 16, 37],
such as energy efficiency or real-time response. However,
the multicore platform, task reliability, and multipath data
routing are not comprehensively considered. More details
are in Section 6.

To address these limitations, we target the problem of
mapping a set of dependent and real-time tasks on net-
worked nodes, realized with platforms having multiple cores
and DVFS, which collaborate to execute the tasks energy-
efficiently under multiple constraints. The main contribu-
tions are:

1. A Mixed-Integer Non-Linear Programming (MINLP)
formulation of the task mapping problem on net-
worked nodes, realized with multicore DVFS-enhanced
platforms, under real-time, reliability, dependency,
and multipath data routing constraints. The task-to-
node and task-to-core allocation, frequency-to-task
assignment, task duplication, and data path selection
are optimized simultaneously. To find the optimal so-
lution, we equivalently transform the original MINLP
to a Mixed-Integer Linear Programming (MILP) by
introducing auxiliary variables and additional con-
straints that replace the nonlinear terms and do not
lead to solution quality degradation.

2. To improve scalability, we propose a novel heuristic
method based on the complex joint-design problem
structure and the principles of decomposition and
feedback loop. The original problem is divided into
two subproblems: Frequency Assignment and Task
Duplication (FATD) and Task Allocation and Path Se-
lection (TAPS). These subproblems are solved by low
computational complexity algorithms one after the
other in an iterative way. To enhance schedulability,
a refinement method based on the voltage/frequency
adjustment is introduced during the iteration between
the two subproblems.

3. Extensive experiments are conducted to evaluate the
proposed methods. The results show that our task

Figure 1: Motivation example: task and node graphs.

mapping method outperforms existing methods re-
garding task reliability, task schedulability, and energy
efficiency, as DVFS, task duplication, and multipath
data routing are optimized simultaneously. Further-
more, the proposed heuristic reduces 99.9% of the
computation time, with 24.3% performance loss, com-
pared with the optimal method, being suitable for large
systems.

The remaining paper is organized as follows. Section 2
motivates the proposed method through an example. Sec-
tion 3 introduces the system model and mathematically
formulates the task mapping problem. Section 4 presents the
proposed heuristic method. Section 5 shows the evaluation
results. Section 6 discusses the related work, and Section 7
concludes this paper.

2. Motivation Example
To illustrate the problem under study and motivate the

proposed method, we will use the example of Fig. 1 and
Fig. 2. The original task graph is composed of 𝑀 = 10
dependent and real-time tasks {𝜏1,… , 𝜏10}. Let 𝜏𝑖 and 𝜏𝑖+𝑀
denote the original and duplicated tasks. As we combine
task duplication and DVFS, only a subset of the tasks is
duplicated, depending on the reliability constraints. The
original and duplicated tasks are executed on a networked
system with 𝑁 = 3 nodes {𝜃1,… , 𝜃3}, where each node 𝜃𝑘
has 𝑅 = 2 cores 𝜙1

𝑘 and 𝜙2
𝑘. The number of task execution

cycles is set within the range [4 × 107, 6 × 108] [31]. The
scheduling horizon 𝐻 = 2.2 𝑠 and the reliability constraint
is given by the threshold 𝑅𝑡ℎ = 0.998 [7]. Fig. 1 shows
the allocation of tasks on the cores and the nodes (dashed
arrows), and Fig. 2 compares the scheduling of tasks for the
single-core and multi-core scenarios.

Considering a single-core platform to realize the net-
worked system nodes, the tasks have to be executed in
sequence, e.g., although tasks 𝜏9 and 𝜏1 are independent,
they have to be executed in sequence on node 𝜃1, increasing
the end time of task 𝜏1 to 0.8563 𝑠. However, considering

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 2 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

a multi-core platform, tasks 𝜏1 and 𝜏9 can be executed on
different cores of 𝜃1. As 𝜏1 and 𝜏9 are independent, 𝜃1 can
process these tasks simultaneously, and thus, the end time
of task 𝜏1 is reduced to 0.7373 𝑠. Therefore, multicore archi-
tectures are promising for enhancing the real-time response
of networked systems. Note that task makespan is highly
related to the optimization of task mapping decisions, which
is the main objective of this paper.

As the example shown in Fig. 1, tasks 𝜏2 and 𝜏9 are
dependent and allocated to nodes 𝜃2 and 𝜃1, respectively. To
execute 𝜏2, task data is transmitted from 𝜃1 to 𝜃2. Through
the network topology, there exist two data paths from 𝜃1 to
𝜃2: 𝜃1 → 𝜃2 with communication time 0.15 𝑠 and energy
312 𝑚𝐽 , and 𝜃1 → 𝜃3 → 𝜃2 with communication time 0.2 𝑠
and energy 210 𝑚𝐽 . If we select the energy-oriented path
𝜃1 → 𝜃3 → 𝜃2, although it has a lower communication
energy cost, the task real-time constraint is hard to satisfy, as
max{𝑡𝑒𝑖 } = 2.2308 𝑠 > 𝐻 = 2.2 𝑠. However, if we select the
time-oriented path 𝜃1 → 𝜃2, although the communication
energy increases, all the tasks can be finished by the task
deadline. Therefore, path selection is crucial and should be
jointly considered during task mapping.

On the one hand, using only DVFS to meet the reliability
constraints requires a high V/F level to execute the tasks,
leading to a high energy consumption of 1493.2 𝑚𝐽 . On the
other hand, using only task duplication, the time required
to complete the original and their duplicated tasks is high,
e.g., 3.0431 𝑠 in this example. By combining task duplication
and DVFS technologies, only tasks 𝜏7 and 𝜏10 are duplicated
(denoted them as 𝜏17 and 𝜏20, respectively). As the energy
required for task execution has a quadratic relationship with
the V/F level, executing the original and duplicated tasks
with a low V/F level is more efficient than executing the
original task with a high V/F level. The joint design reduces
the energy consumption to 1478.6𝑚𝐽 and the execution time
to 2.18 𝑠. Since fewer tasks require duplication, the real-
time constraint max∀𝑖{𝑡𝑒𝑖 } ≤ 𝐻 can be satisfied, where 𝑡𝑒𝑖
is the end time of task 𝜏𝑖. Hence, task duplication and DVFS
should be jointly considered during task mapping.

3. System Models and Problem Formulation
3.1. System Model
3.1.1. Network Topology Model

We consider a networked system with 𝑁 wireless nodes
{𝜃1,… , 𝜃𝑁}. Network nodes are connected through wire-
less, having limited communication capability, i.e., one node
can communicate with other nodes within its communica-
tion range. Furthermore, multi-path data routing is consid-
ered, i.e., a pair of nodes can communicate with each other
through multiple routing paths, as shown by the red and
green arrows in the node graph of Fig. 1. Note that the
number of paths between different node pairs may differ. We
consider two types of data-routing paths, i.e., time-oriented
and energy-oriented, since the problem under study is sub-
ject to time and energy constraints. To take multi-path data
routing into account, we introduce a node graph 𝑛(𝑛, 𝑛),

(a) Mapping dependent tasks on single-core (𝑅 = 1) platform.

(b) Mapping dependent tasks on multi-core (𝑅 = 2) platform.

Figure 2: Task allocation and scheduling comparisons under
different platforms.

where the vertexes 𝑛 represent the nodes, and the edges 𝑛
represent the communication cost (i.e., communication time
and energy) between the adjacent nodes.

Based on the node graph 𝑛(𝑛, 𝑛), we obtain an energy
matrix 𝒆 = [𝑒𝛽𝛾𝑘𝜌]𝑁×𝑁×𝑁×𝐶 , and a time matrix 𝒕 =
[𝑡𝛽𝛾𝜌]𝑁×𝑁×𝐶 , where 𝑒𝛽𝛾𝑘𝜌 represents the energy consumed
at a node 𝜃𝑘 when unit of task data is transmitted from
𝜃𝛽 to 𝜃𝛾 through the 𝜌𝑡ℎ path, and 𝑡𝛽𝛾𝜌 represents the time
required to transmit task data from 𝜃𝛽 to 𝜃𝛾 through the 𝜌𝑡ℎ
path. As shown in Fig. 1, the first (path1) and the second
(path2) routing paths are assumed to be the time-oriented
and energy-oriented paths, respectively. Since the weights of
the edges represent the communication costs (e.g., commu-
nication time or energy), the aim of time (energy)-oriented
routing is to find the shortest path, which can be easily found
through the existing methods, such as the Dijkstra algorithm.

3.1.2. Node Model
Each node 𝜃𝑘 is realized with a multicore platform that

contains 𝑅 cores {𝜙1
𝑘,… , 𝜙𝑅

𝑘 }. The cores support DVFS
technology and each core has 𝐿 discrete Voltage/Frequency
(V/F) levels {(𝑣1, 𝑓1),… , (𝑣𝐿, 𝑓𝐿)}. The relationship be-
tween the supply voltage 𝑣𝑙 and working frequency 𝑓𝑙 is
almost linear [7, 6]; when the frequency changes, the voltage
also changes. The processor’s power, working with a given
V/F level (𝑣𝑙, 𝑓𝑙) [6, 31, 17], is

𝑃𝑙 = 𝑃 𝑠
𝑙 + 𝑃 𝑑

𝑙 ,

where 𝑃 𝑠
𝑙 = 𝑣𝑙𝐾1𝑒𝐾2𝑣𝑙𝑒𝐾3𝑣𝑏𝑠 + |𝑣𝑏𝑠|𝐼𝑗 is the static power,

and 𝑃 𝑑
𝑙 = 𝐶𝑒𝑓𝑓𝑣2𝑙 𝑓𝑙 is the dynamic power. 𝐾1 − 𝐾3

are technology-dependent constants. 𝐼𝑗 is the approximately
constant junction leakage current. 𝑣𝑏𝑠 is the reverse bias
voltage used to reduce leakage power and can be treated

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 3 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

as constant. 𝐶𝑒𝑓𝑓 is the average effective switching capac-
itance [31, 17]. Different cores in one processor communi-
cate with each other through the high-speed data bus. The
communication costs among these cores are small enough to
be ignored compared to those between different nodes [15].
Therefore, we introduce two small positive values, 𝜖 and
𝜀, representing the communication time and energy be-
tween the cores in one processor. Based on the node graph
𝑛(𝑛, 𝑛), we can obtain a core graph 𝑐(𝑐 , 𝑐), where the
vertexes 𝑐 represent the cores, and the edges 𝑐 represent
the communication cost between the cores.

3.1.3. Task Model
We consider a real-time application consisting of 𝑀

dependent and periodic tasks  = {𝜏1,… , 𝜏𝑀}. The tasks
are released at time 0 and have the same scheduling horizon
𝐻 , which can be defined as the least common multiple of
task periods [6]. For each task 𝜏𝑖, 𝑊𝑖 is the Worst Case
Execution Cycles (WCEC), and 𝐷𝑖 is the task deadline.
The dependency between the tasks is described by a binary
matrix 𝒑 = [𝑝𝑖𝑗]𝑀×𝑀 , where 𝑝𝑖𝑗 = 1 represents that task
𝜏𝑖 precedes task 𝜏𝑗 and 𝜏𝑗 is the closest task of 𝜏𝑖. For the
dependent tasks 𝜏𝑖 and 𝜏𝑗 , i.e., 𝑝𝑖𝑗 = 1, when 𝜏𝑖 is executed,
it generates a set of data with size 𝑠𝑖𝑗 for 𝜏𝑗 . As the example
shown in Fig. 1, for the dependent tasks 𝜏9 and 𝜏2, we have
𝑝92 = 1, as 𝜏9 generates a set of data with size 𝑠92 for 𝜏2
when finished.

When a task 𝜏𝑖 is executed with a V/F level (𝑣𝑙, 𝑓𝑙), the
reliability of task execution [22] is

𝑅𝑖𝑙 = 𝑒
−𝜆×10

𝑑(𝑓max−𝑓𝑙)
𝑓max−𝑓min ×𝑊𝑖

𝑓𝑙 ,

where 𝜆 is the maximum failure rate, 𝑑 is a positive constant
indicating the sensitivity of failure rate related to frequency
scaling, 𝑓max = max∀𝑙{𝑓𝑙} and 𝑓min = min∀𝑙{𝑓𝑙} are the
maximum and minimum frequencies of core, respectively.

Let 𝑅𝑡ℎ denote the threshold required for the reliability
of a task. If the reliability of 𝜏𝑖 is lower than this threshold,
to enhance the task reliability, 𝜏𝑖 is duplicated. The common
fault detection technologies include consistency checks and
response testing [36]. In Fig. 1, 𝜏17 and 𝜏20 are the replicas
of 𝜏7 and 𝜏10, respectively. Note that by duplicating the
tasks, the task dependencies change. Since 𝜏3 and 𝜏10 are
dependent, and 𝜏20 is a duplicated task of 𝜏10, 𝜏3 and 𝜏20 are
also dependent.

3.2. Task Mapping Problem
This work considers static task mapping, optimizing the

energy consumption of multi-core nodes under task reli-
ability, real-time, and dependency constraints. During the
task mapping process, we determine the following decisions:
1) task frequency assignment, 2) task duplication, 3) task
allocation, 4) task sequence, 5) task start time, and 6) path
selection. To formulate the task mapping problem, we in-
troduce the following binary and parameters and continuous
variables:

1. 𝑦𝑖𝑙 = 1, if task 𝜏𝑖 is executed with frequency 𝑓𝑙,
otherwise, 𝑦𝑖𝑙 = 0;

Table 1
Parameters and variables used in the problem formulation

Parameters
𝑁 number of nodes
𝑀 number of tasks
𝑃 number of node’s cores
𝐿 number of voltage/frequency level
𝐻 scheduling horizon
𝜏𝑖 the 𝑖𝑡ℎ task
𝜃𝑘 the 𝑘𝑡ℎ node
𝜙𝑑 the 𝑑𝑡ℎ core

(𝑣𝑙, 𝑓𝑙) the 𝑙𝑡ℎ V/F level
𝑊𝑖 the worst case execution cycles of 𝜏𝑖
𝐷𝑖 deadline of 𝜏𝑖
𝑝𝑖𝑗 = 1, if 𝜏𝑖 and 𝜏𝑗 are dependent, else, = 0
𝑠𝑖𝑗 task data size 𝜏𝑖 generates for 𝜏𝑗
𝑃𝑙 processor power working on (𝑣𝑙, 𝑓𝑙)
𝑅𝑡ℎ reliability threshold
𝑅𝑖𝑙 reliability of 𝜏𝑖 executed with (𝑣𝑙, 𝑓𝑙)
𝑒𝛽𝛾𝑘𝜌 energy consumed by 𝜃𝑘 for routing task

data from 𝜃𝛽 to 𝜃𝛾 by the 𝜌𝑡ℎ path
𝑡𝛽𝛾𝜌 communication time between 𝜃𝛽 and 𝜃𝛾

by the 𝜌𝑡ℎ path
Binary

Variables
𝑞𝑖𝑑 = 1, if 𝜏𝑖 is assigned to 𝜙𝑑 , else, = 0
𝑥𝑖𝑘 = 1, if 𝜏𝑖 is allocated to 𝜃𝑘, else, = 0
𝑦𝑖𝑙 = 1, if 𝜏𝑖 is executed with (𝑣𝑙, 𝑓𝑙), else, = 0
𝑜𝑖𝑗 = 1, if 𝜏𝑖 precedes 𝜏𝑗 , else, = 0
𝑐𝛽𝛾𝜌 = 1, if task data is routed from 𝜃𝛽 to 𝜃𝛾

by the 𝜌𝑡ℎ path, else, = 0
ℎ𝑖 = 1, if 𝜏𝑖 exists, else, = 0

Continuous
Variables

𝑡𝑠𝑖 start time of 𝜏𝑖

2. ℎ𝑖 = 1, if task 𝜏𝑖 exists, otherwise, ℎ𝑖 = 0;
3. 𝑞𝑖𝑑 = 1, if task 𝜏𝑖 is allocated to core 𝜙𝑑 , otherwise,

𝑞𝑖𝑑 = 0;
4. 𝑜𝑖𝑗 = 1, if task 𝜏𝑖 proceeds 𝜏𝑗 , otherwise, 𝑜𝑖𝑗 = 0;
5. 𝑐𝛽𝛾𝜌 = 1, if task data is routed from 𝜃𝛽 to 𝜃𝛾 along

with the 𝜌𝑡ℎ path, otherwise, 𝑐𝛽𝛾𝜌 = 0;
6. continuous variable 𝑡𝑠𝑖 denotes the start time of task 𝜏𝑖.

The parameters and the variables mainly used in the
problem formulation are summarized in Table 1. For the
sake of problem formulation, let  = {1,… ,𝑀},  =
{1,… , 𝑁},  = {1,… , 𝐿}, and  = {1,… , 𝐶} denote
the sets of tasks, nodes, V/F levels, and data routing paths,
respectively. Considering task duplication and multi-core
platforms, let ′ = {1,… , 2𝑀} denote the set of all
tasks (including the original and duplicated tasks), and let
 ′ = {1,… , 𝑁𝑅} = {1,… ,𝑘,… ,𝑁} denote the set
of all cores, where 𝑘 is the set of cores in the node 𝜃𝑘. The
constraints and the objective function of the task mapping
problem are described as follows.

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 4 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

3.2.1. Task Allocation Constraints
Each task is executed on one core, without considering

task migration [28], we have
∑

𝑑∈ ′ 𝑞𝑖𝑑 = 1, ∀𝑖 ∈ ′. (1)

If task 𝜏𝑖 is executed on core 𝜙𝑑 of node 𝜃𝑘, i.e., 𝜏𝑖 is
mapped to core 𝜙𝑑 and is assigned to node 𝜃𝑘 at the same
time, the variables regarding the task-to-core allocation 𝑞𝑖𝑑
and task-to-node allocation 𝑥𝑖𝑘 are bounded by

∑

𝑑∈𝑘
𝑞𝑖𝑑 = 𝑥𝑖𝑘, ∀𝑖 ∈ ′, ∀𝑘 ∈  . (2)

3.2.2. Frequency Selection Constraints
We consider task-level DVFS [6, 7]. Since each task is

executed with only one V/F level, the frequency assignment
variable 𝑦𝑖𝑙 is bounded by

∑

𝑙∈
𝑦𝑖𝑙 = 1, ∀𝑖 ∈ ′. (3)

3.2.3. Path Selection Constraints
Since node 𝜃𝛽 transmits task data to node 𝜃𝛾 through one

data path, we obtain
∑

𝜌∈
𝑐𝛽𝛾𝜌 = 1, ∀𝛽 ≠ 𝛾 ∈  . (4)

3.2.4. Task Reliability Constraints
With the frequency assignment variable 𝑦𝑖𝑙, the reliabil-

ity of task 𝜏𝑖 without task duplication is 𝑅′
𝑖 =

∑

𝑙∈ 𝑦𝑖𝑙𝑅𝑖𝑙.
If 𝑅′

𝑖 ≥ 𝑅𝑡ℎ, there is no need to duplicate task 𝜏𝑖, and
thus, task 𝜏𝑖+𝑀 (i.e., the replica of task 𝜏𝑖) doesn’t exist,
else (i.e., 𝑅′

𝑖 < 𝑅𝑡ℎ), task 𝜏𝑖 is duplicated, and task 𝜏𝑖+𝑀
exist. To indicate the existence of task 𝜏𝑖, a binary variable ℎ𝑖
is introduced. Since the original tasks {𝜏1,… , 𝜏𝑀} always
exist, while the existences of replicas {𝜏𝑀+1,… , 𝜏2𝑀} relay
on the reliability of original tasks, the relationship between
ℎ𝑖 and 𝑅′

𝑖 can be described as follows: ℎ𝑖 = 1 (∀𝑖 ∈ ) and

ℎ𝑖+𝑀 =
{

0, 𝑅′
𝑖 ≥ 𝑅𝑡ℎ,

1, 𝑅′
𝑖 < 𝑅𝑡ℎ,

∀𝑖 ∈ . (5)

To resolve the comparison problem inside equation (5),
we reformulate the task mapping problem by linearly rewrit-
ing (5). To achieve that, we introduce the following Lemma.

Lemma 3.1. Assume that 𝑏 is a binary variable, and 𝑥
is a continuous variable bounded by 0 ≤ 𝑥 ≤ 𝑠. The
comparisons 1) 𝑥 ≥ 𝑠1 ⇒ 𝑏 = 0, and 2) 𝑥 < 𝑠1 ⇒ 𝑏 = 1,
where 𝑠1 ≤ 1 is a constant, can be described by a linear
function 𝑥−(𝑠1−𝜎)

𝑠 ≤ 1 − 𝑏 ≤ 𝑥
𝑠1

, where 𝜎 is a positive, small
enough value.

Proof 3.1. Let 𝑏1 = 𝑥−(𝑠1−𝜎)
𝑠 and 𝑏2 = 𝑥

𝑠1
. We have the

following two cases: 1) If 𝑥 ≥ 𝑠1, we get 𝑏2 ≥ 1 and
0 < 𝑏1 < 1 due to 0 < 𝑥 − (𝑠1 − 𝜎) < 𝑠. Taking the ranges
of 𝑏1 and 𝑏2 into account, as well as 𝑏 ∈ {0, 1}, we obtain
𝑏 = 0; 2) If 𝑥 < 𝑠1, we have 𝑏2 < 1 and 𝑏1 < 0. Therefore,
we get 𝑏 = 1.

Based on Lemma 3.1, we let 𝜎 = min∀𝑖,𝑙 |{𝑅𝑖𝑙 − 𝑅𝑡ℎ}|,
and then, the comparison (5) can be linearized as follows:

𝑅′
𝑖 − (𝑅𝑡ℎ − 𝜎)
max∀𝑖,𝑙{𝑅𝑖𝑙}

≤ 1 − ℎ𝑖+𝑀 ≤
𝑅′
𝑖

𝑅𝑡ℎ
, ∀𝑖 ∈ . (6)

By duplicating the original task 𝜏𝑖, the reliability of task
execution is

𝑅𝑖 = 1 −
(

1 − ℎ𝑖𝑅
′
𝑖
) (

1 − ℎ𝑖+𝑀𝑅′
𝑖+𝑀

)

,

where 𝑅′
𝑖+𝑀 =

∑

𝑙∈ 𝑦(𝑖+𝑀)𝑙𝑅(𝑖+𝑀)𝑙 is the reliability of the
duplicated task 𝜏𝑖+𝑀 , and 𝑅𝑖 should satisfy the constraint:

𝑅𝑖 ≥ 𝑅𝑡ℎ, ∀𝑖 ∈ . (7)

3.2.5. Task Non-overlapping Constraints
Note that some tasks in the task set are independent, e.g.,

tasks 𝜏𝑖 and 𝜏𝑗 with 𝑝𝑖𝑗 = 0. If 𝜏𝑖 and 𝜏𝑗 are assigned to the
same core, we must determine the task execution sequence
between 𝜏𝑖 and 𝜏𝑗 since one core cannot execute several
tasks simultaneously. To achieve that, we introduce a binary
variable 𝑜𝑖𝑗 leading to the following constraints:

𝑡𝑒𝑖 ≤ 𝑡𝑠𝑗 + (2 − 𝑞𝑖𝑑 − 𝑞𝑗𝑑)𝐻 + (1 − 𝑜𝑖𝑗)𝐻,

∀𝑖 ≠ 𝑗 ∈ ′, ∀𝑘 ∈  , (8)

where 𝑡𝑒𝑖 = 𝑡𝑠𝑖 + 𝑡𝑐𝑜𝑚𝑝𝑖 and 𝑡𝑐𝑜𝑚𝑝𝑖 = ℎ𝑖
∑

𝑙∈ 𝑦𝑖𝑙
𝑊𝑖
𝑓𝑙

are the end
time and the computation time of 𝜏𝑖, respectively.

(8) is meaningful only when 𝜏𝑖 and 𝜏𝑗 are allocated to the
same core 𝜙𝑑 , i.e., 𝑞𝑖𝑑 = 𝑞𝑗𝑑 = 1. If these tasks are allocated
to different cores, (8) is always satisfied due to 𝑞𝑖𝑑 +𝑞𝑗𝑑 ≤ 1,
which can be omitted. With 𝑞𝑖𝑑 = 𝑞𝑗𝑑 = 1, if 𝑜𝑖𝑗 = 1, (8) is
relaxed to 𝑡𝑒𝑖 ≤ 𝑡𝑠𝑗 , which bounds the start time and the end
time of 𝜏𝑖 and 𝜏𝑗 . Since we have 1−𝑜𝑖𝑗 = 𝑜𝑗𝑖 and (8) is for all
tasks, (8) can be rewritten as 𝑡𝑒𝑗 ≤ 𝑡𝑠𝑖+(2−𝑞𝑖𝑑−𝑞𝑗𝑑)𝐻+𝑜𝑖𝑗𝐻 .
It describes the other case where 𝑜𝑖𝑗 = 0: 𝜏𝑗 should be
finished before 𝜏𝑖 starts as 𝑡𝑒𝑗 ≤ 𝑡𝑠𝑖 . As (8) mainly restricts
the start and end time of tasks assigned to the same core,
the communication time between 𝜏𝑖 and 𝜏𝑗 can be omitted.
They are very small compared to the communication time
between the nodes.

3.2.6. Task Dependency Constraints
Based on the task dependency matrix 𝒑, the number

of tasks that precede task 𝜏𝑖 is known, i.e.,
∑

𝑗∈′ 𝑝𝑗𝑖. To
execute a task 𝜏𝑖, we should collect all the data generated
from its predecessors. Note that the existence of 𝜏𝑖 is deter-
mined by the variable ℎ𝑖, and 𝜏𝑖 will not generate data for or
receive data from other tasks if 𝜏𝑖 does not exist. To avoid
communication collision, one node receives the data from
other nodes in sequence, since a node cannot receive data
from multiple nodes simultaneously. Hence, the time spent
for receiving data required by the execution of task 𝜏𝑖 is

𝑡𝑐𝑜𝑚𝑚𝑖 =
∑

𝑗∈′

∑

𝛽∈

∑

𝛾∈

∑

𝜌∈
𝑝𝑗𝑖ℎ𝑖ℎ𝑗𝑥𝑗𝛽𝑥𝑖𝛾𝑐𝛽𝛾𝜌𝑡𝛽𝛾𝜌.

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 5 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

For the dependent tasks, e.g., tasks 𝜏𝑖 and 𝜏𝑗 with 𝑝𝑖𝑗 =
1, no matter whether they are assigned to the same core
or different cores, the execution sequence between them is
fixed. Thus, we have the following constraints:

𝑡𝑒𝑖 + 𝑡𝑐𝑜𝑚𝑚𝑗 ≤ 𝑡𝑠𝑗 , ∀𝑖 ≠ 𝑗 ∈ ′, (9)

where (9) implies that if 𝜏𝑖 is the predecessor of 𝜏𝑗 , the start
time of 𝜏𝑗 should be later than the end time of 𝜏𝑖 plus the
date receiving time of 𝜏𝑗 .

Remark 3.1. This paper does not explicitly consider prior-
ities among the tasks. The proposed approach can support
task priorities, which can be used to define an ordering in
the way the tasks are scheduled and executed. However,
task priorities also have a higher impact when preemptive
execution is considered, which is left as future work.

3.2.7. Real-time Constraints
Since each real-time task 𝜏𝑖 should be finished within its

relative deadline 𝐷𝑖, and the end time of 𝜏𝑖 should small than
the scheduling horizon 𝐻 , we have

𝑡𝑐𝑜𝑚𝑝𝑖 ≤ 𝐷𝑖, ∀𝑖 ∈ ′, (10)
𝑡𝑒𝑖 ≤ 𝐻, ∀𝑖 ∈ ′. (11)

3.2.8. Objective Function and Primary Problem
If tasks 𝜏𝑖 and 𝜏𝑗 (𝑝𝑖𝑗 = 1) are dependent, and they are

allocated to different nodes, e.g., 𝜃𝛽 and 𝜃𝛾 where 𝛽 ≠ 𝛾 , the
energy consumed for node 𝜃𝑘 to transmit the task data from
𝜃𝛽 to 𝜃𝛾 through the 𝜌𝑡ℎ path is 𝑝𝑖𝑗𝑠𝑖𝑗𝑥𝑖𝛽𝑥𝑗𝛾𝑐𝛽𝛾𝜌𝑒𝛽𝛾𝑘𝜌. Con-
sidering the task duplication decision ℎ𝑖, the communication
energy of 𝜃𝑘 is

𝐸𝑐𝑜𝑚𝑚
𝑘 =

∑

𝑖∈′

∑

𝑗∈′

∑

𝛽∈

∑

𝛾∈

∑

𝜌∈
𝑝𝑖𝑗𝑠𝑖𝑗ℎ𝑖ℎ𝑗𝑥𝑖𝛽𝑥𝑗𝛾𝑐𝛽𝛾𝜌𝑒𝛽𝛾𝑘𝜌.

On the other hand, if task 𝜏𝑖 is assigned to core 𝜙𝑑 and
executed by the V/F level (𝑣𝑙, 𝑓𝑙), i.e., 𝑞𝑖𝑑 = 𝑦𝑖𝑙 = 1, the time
and the energy required for the task execution are 𝑞𝑖𝑑𝑦𝑖𝑙

𝑊𝑖
𝑓𝑙

and 𝑞𝑖𝑑𝑦𝑖𝑙
𝑊𝑖
𝑓𝑙
𝑃𝑙, respectively. Hence, taking the decisions 𝑞𝑖𝑑 ,

𝑦𝑖𝑙, and ℎ𝑖 into account, the computation energy of 𝜃𝑘 is

𝐸𝑐𝑜𝑚𝑝
𝑘 =

∑

𝑖∈′

∑

𝑑∈𝑘

(

𝑞𝑖𝑑ℎ𝑖
∑

𝑙∈
𝑦𝑖𝑙

𝑊𝑖
𝑓𝑙

𝑃𝑙

)

.

Let 𝐸𝑖𝑛𝑖
𝑘 denote the initial energy of 𝜃𝑘. To increase the

lifetime and connectivity of the system, task mapping aims
to balance the energy consumption of the nodes under the
above constraints. Therefore, the Primary Problem (PP) can
be formulated as follows:

PP ∶ Φ = min
𝒒,𝒙,𝒚,
𝒐,𝒄,𝒉,𝒕𝑠

max
∀𝑘

{(

𝐸𝑐𝑜𝑚𝑚
𝑘 + 𝐸𝑐𝑜𝑚𝑝

𝑘
)

∕𝐸𝑖𝑛𝑖
𝑘
}

(12)

s.t.

{

(1), (2), (3), (4), (6), (7), (8), (9), (10), (11)
𝑞𝑖𝑑 , 𝑥𝑖𝑘, 𝑦𝑖𝑙, 𝑜𝑖𝑗 , 𝑐𝛽𝛾𝜌, ℎ𝑖 ∈ {0, 1}, 0 ≤ 𝑡𝑠𝑖 ≤ 𝐻.

Since ℎ𝑖𝑦𝑖𝑙, ℎ𝑖ℎ𝑗𝑥𝑖𝛽𝑥𝑗𝛾𝑐𝛽𝛾𝜌, and 𝑞𝑖𝑑ℎ𝑖𝑦𝑖𝑙 are the nonlin-
ear items, PP is a MINLP, which is difficult to solve directly.

Theorem 3.1. The energy-aware task mapping problem
based on DVFS, task duplication, and data routing is -
hard.

Proof 3.2. Please refer to [4] for the details.

3.2.9. Problem Linearization
A linearization method based on variable replacement

is used to find the optimal solution to PP and deal with the
nonlinear items. Since ℎ𝑖, 𝑦𝑖𝑙, 𝑥𝑖𝑘, and 𝑐𝛽𝛾𝜌 are the binary
variables, according to the characteristics of the nonlinear
items, we introduce the following lemma.

Lemma 3.2. Let 𝑥, 𝑦, and 𝑧 denote the binary variables.
The nonlinear item 𝑧 = 𝑥𝑦 can be linearized as follows:
𝑧 − 𝑥 ≤ 0, 𝑧 − 𝑦 ≤ 0 and 𝑥 + 𝑦 − 𝑧 ≤ 1.

Proof 3.3. According to the constraints 𝑧−𝑥 ≤ 0, 𝑧−𝑦 ≤ 0
and 𝑥 + 𝑦 − 𝑧 ≤ 1, we obtain the following four cases: 1)
𝑥 = 0, 𝑦 = 0 ⇒ 𝑧 = 0; 2) 𝑥 = 0, 𝑦 = 1 ⇒ 𝑧 = 0; 3)
𝑥 = 1, 𝑦 = 0 ⇒ 𝑧 = 0; 4) 𝑥 = 1, 𝑦 = 1 ⇒ 𝑧 = 1, which is
equal to 𝑧 = 𝑥𝑦.

Based on Lemma 3.2, we introduce an auxiliary variable
𝑎𝑖𝑑𝑙 to replace the nonlinear term 𝑞𝑖𝑑𝑦𝑖𝑙, and add the follow-
ing linear constraints into problem (12):

𝑎𝑖𝑑𝑙 + 𝑞𝑖𝑑 ≤ 0, 𝑎𝑖𝑑𝑙 + 𝑦𝑖𝑙 ≤ 0, 𝑞𝑖𝑑 + 𝑦𝑖𝑙 − 𝑎𝑖𝑑𝑙 ≤ 1,
∀𝑖 ∈ ′, ∀𝑑 ∈ , ∀𝑙 ∈ . (13)

On this basis, we linearize 𝑞𝑖𝑑ℎ𝑖𝑦𝑖𝑙 and set 𝑤𝑖𝑑𝑙 = ℎ𝑖𝑎𝑖𝑑𝑙
since 𝑎𝑖𝑑𝑙 = ℎ𝑖𝑎𝑖𝑑𝑙:

𝑤𝑖𝑑𝑙 + ℎ𝑖 ≤ 0, 𝑤𝑖𝑑𝑙 + 𝑎𝑖𝑑𝑙 ≤ 0, ℎ𝑖 + 𝑎𝑖𝑑𝑙 −𝑤𝑖𝑑𝑙 ≤ 1,
∀𝑖 ∈ ′, ∀𝑑 ∈ , ∀𝑙 ∈ . (14)

Similarly, to deal with nonlinear item ℎ𝑖ℎ𝑗𝑥𝑖𝛽𝑥𝑗𝛾𝑐𝛽𝛾𝜌,
we set 𝑔𝑖𝛽𝑗𝛾 = 𝑥𝑖𝛽𝑥𝑗𝛾 , 𝑠𝑖𝛽𝑗𝛾𝜌 = 𝑔𝑖𝛽𝑗𝛾𝑐𝛽𝛾𝜌, 𝑑𝑖𝑗 = ℎ𝑖ℎ𝑗 , and
𝑒𝑖𝛽𝑗𝛾𝜌 = 𝑠𝑖𝛽𝑗𝛾𝜌𝑑𝑖𝑗 , and add the following linear constraints
into PP:

𝑔𝑖𝛽𝑗𝛾 +𝑥𝑖𝛽 ≤ 0, 𝑔𝑖𝛽𝑗𝛾 +𝑥𝑗𝛾 ≤ 0, 𝑥𝑖𝛽 +𝑥𝑗𝛾 −𝑔𝑖𝛽𝑗𝛾 ≤ 1,
∀𝑖 ≠ 𝑗 ∈ ′, ∀𝛽 ≠ 𝛾 ∈  , (15)

𝑠𝑖𝛽𝑗𝛾𝜌+𝑔𝑖𝛽𝑗𝛾 ≤ 0, 𝑠𝑖𝛽𝑗𝛾𝜌+𝑐𝛽𝛾𝜌 ≤ 0, 𝑐𝛽𝛾𝜌+𝑔𝑖𝛽𝑗𝛾−𝑠𝑖𝛽𝑗𝛾𝜌 ≤ 1,
∀𝑖 ≠ 𝑗 ∈ ′, ∀𝛽 ≠ 𝛾 ∈  , ∀𝜌 ∈ , (16)

𝑑𝑖𝑗 + ℎ𝑖 ≤ 0, 𝑑𝑖𝑗 + ℎ𝑗 ≤ 0, ℎ𝑖 + ℎ𝑗 − 𝑑𝑖𝑗 ≤ 1,
∀𝑖 ≠ 𝑗 ∈ ′, (17)

𝑒𝑖𝛽𝑗𝛾𝜌+𝑑𝑖𝑗 ≤ 0, 𝑒𝑖𝛽𝑗𝛾𝜌+𝑠𝑖𝛽𝑗𝛾𝜌 ≤ 0, 𝑑𝑖𝑗+𝑠𝑖𝛽𝑗𝛾𝜌−𝑒𝑖𝛽𝑗𝛾𝜌 ≤ 1,
∀𝑖 ≠ 𝑗 ∈ ′, ∀𝛽 ≠ 𝛾 ∈  , ∀𝜌 ∈ . (18)

By using the auxiliary variables 𝑎𝑖𝑑𝑙, 𝑤𝑖𝑑𝑙, 𝑔𝑖𝛽𝑗𝛾 , 𝑠𝑖𝛽𝑗𝛾𝜌,
𝑑𝑖𝑗 , and 𝑒𝑖𝛽𝑗𝛾𝜌 and the additional constraints (13)-(18),

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 6 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

PP (12) can be transformed into the following MILP prob-
lem:

PP1 ∶ min
𝒒,𝒙,𝒚,𝒐,𝒄,𝒉,𝒕𝑠,
𝒂,𝒘,𝒈,𝒔,𝒅,𝒆

max
∀𝑘

{

(𝐸𝑐𝑜𝑚𝑚
𝑘 + 𝐸𝑐𝑜𝑚𝑝

𝑘)∕𝐸𝑖𝑛𝑖
𝑘
}

(19)

s.t.
⎧

⎪

⎨

⎪

⎩

(1) − (4), (6), (7), (8), (9) − (11), (13) − (18)
𝑞𝑖𝑑 , 𝑥𝑖𝑘, 𝑦𝑖𝑙, 𝑜𝑖𝑗 , 𝑐𝛽𝛾𝜌, ℎ𝑖, 𝑎𝑖𝑑𝑙, 𝑤𝑖𝑑𝑙, 𝑔𝑖𝛽𝑗𝛾 , 𝑠𝑖𝛽𝑗𝛾𝜌,
𝑑𝑖𝑗 , 𝑒𝑖𝛽𝑗𝛾𝜌 ∈ {0, 1}, 0 ≤ 𝑡𝑠𝑖 ≤ 𝐻.

Remark 3.2. Lemma 3.2 shows that the linearization does
not change the feasible region of the problem. Therefore,
solving the problems with and without linearization is equiv-
alent.

3.2.10. Discussion
The additional overhead associated with applying DVFS

occurs at the initial and final moments of V/F level transi-
tions. The time and energy overheads can be modeled as

𝑡𝑠𝑤𝑖𝑡𝑐ℎ(𝑓𝑠, 𝑓𝑒) = 𝑡𝑡𝑟𝑎𝑛𝑠 ×
(𝑓𝑒 − 𝑓𝑠)

𝑓𝑒
,

𝐸𝑠𝑤𝑖𝑡𝑐ℎ(𝑓𝑠, 𝑓𝑒) = 𝑃 𝑠𝑤𝑖𝑡𝑐ℎ × 𝑡𝑠𝑤𝑖𝑡𝑐ℎ(𝑓𝑠, 𝑓𝑒),

where 𝑡𝑡𝑟𝑎𝑛𝑠 is the time cost of V/F level transition, 𝑓𝑠 and 𝑓𝑒
are the frequency levels at the start instant and the end instant
of the V/F level transition, and 𝑃 𝑠𝑤𝑖𝑡𝑐ℎ is the power before
the V/F level transition. Based on the parameters of multiple
core nodes, we can obtain the computational overhead 𝑡𝑠𝑤𝑖𝑡𝑐ℎ

𝑖
and 𝐸𝑠𝑤𝑖𝑡𝑐ℎ

𝑖 for task 𝜏𝑖 when computed on the cores, as well
as the communication overhead 𝑡𝑠𝑤𝑖𝑡𝑐ℎ

𝑖𝑗 and 𝐸𝑠𝑤𝑖𝑡𝑐ℎ
𝑖𝑗 for data

transmission over the edge 𝑒𝑖𝑗 . When considering the over-
head introduced by DVFS in problem (12), these additional
overheads should be incorporated into the constraints (8),
(9), (10), and (11).

The proposed task mapping method can be extended to
heterogeneous multicore platforms by modifying the con-
straint (3), where the frequency assignment variable 𝑦𝑖𝑙 is
replaced by 𝑦𝑖𝑘𝑙, and 𝑦𝑖𝑘𝑙 = 1 represents task 𝜏𝑖 is allocated to
the core of 𝜃𝑘 and executed by the 𝑙𝑡ℎ V/F level. With DVFS,
the execution time of task 𝜏𝑖 on the node 𝜃𝑘 is updated to

𝑡𝑐𝑜𝑚𝑝𝑖 =
∑

𝑘∈𝑁

∑

𝑙∈𝐿
𝑦𝑖𝑘𝑙

𝑊𝑖
𝑓𝑘𝑙

,

and the reliability of task 𝜏𝑖 is updated to

𝑅𝑖 =
∑

𝑘∈𝑁

∑

𝑙∈𝐿
𝑦𝑖𝑘𝑙𝑒

−𝜆×10
𝑑(𝑓max−𝑓𝑘𝑙)
𝑓max−𝑓min × 𝑊𝑖

𝑓𝑘𝑙 .

In some applications, the task-to-node allocation is re-
stricted, e.g., the sensing tasks are allocated to the sensor
nodes, the control tasks are allocated to the actuator nodes,
while the data processing tasks can be allocated to the nodes
with communication and computation capabilities. In this
context, additional constraints should be added to the task
mapping problem:

∑

𝑘∈ 𝑠 𝑥𝑖𝑘 = 1, ∀𝑖 ∈ 𝑠, when  𝑠

and 𝑠 are the sets of nodes and tasks that have the links,
respectively.

Figure 3: The structure of the proposed heuristic method.

4. Heuristic Algorithm for Task Mapping
Since the transformed problem PP1 (19) is a MILP,

we can use existing optimal methods, e.g., Branch and
Bound (B&B) and Benders Decomposition (BD) [17], and
optimization solvers, e.g., Gurobi and Cplex [6], to solve it.
However, finding the optimal solution is still time-consuming,
especially when the size of the problem is large. To enhance
the scalability of the proposed method, we design a novel
heuristic approach for solving the problem (12). As shown in
the previous section, problems (12) and (19) are equivalent,
with problem (12) having fewer variables and constraints.
Thus, we target the original problem (12) rather than the
linearized problem (19). The proposed heuristic is based on
the problem decomposition principle. For an optimization
problem, the computational complexity is related to the
number of variables and constraints. Therefore, dividing the
original problem into subproblems solved sequentially is
more efficient than solving the original problem. We observe
that adjusting the V/F level does not affect the decisions in
task allocation as the node cores are homogeneous (i.e., they
have the same V/F levels). Therefore, the proposed heuristic
includes two main steps, i.e., the frequency selection and
task replication, and the task allocation and path selection,
combined with a refinement process. Fig. 3 shows the
structure of the proposed heuristic method.

4.1. Problem Decomposition and Refinement
Process

4.1.1. Frequency Assignment and Task Duplication
(FATD)

In this step, we decide the frequency assignment 𝑦𝑖𝑙
and task replication ℎ𝑖. Note that the values of 𝑦𝑖𝑙 and ℎ𝑖
will influence the reliability constraint (7) and the relative
deadline constraint (10). In addition, 𝑦𝑖𝑙 is restricted by the
frequency selection constraint (3), ℎ𝑖 is determined by 𝑦𝑖𝑙
through (6). The goal of the task mapping problem (19)
is to balance the energy consumption of the networked
system. Therefore, in this step, we reduce the task execution
energy 𝐸𝑐𝑜𝑚𝑝

𝑖 =
∑

𝑙∈ 𝑦𝑖𝑙
𝑊𝑖
𝑓𝑙
𝑃𝑙 under the constraints (3), (6),

(7), (10). Although 𝑦𝑖𝑙 and ℎ𝑖 influence also the real-time
constraint (11), the task-to-node allocation 𝑥𝑖𝑘, task-to-core
allocation 𝑞𝑖𝑑 , and path selection 𝑐𝛽𝛾𝜌 are unknown at this
step. This step does not consider the constraint (11) and the
communication energy. Hence, the Frequency Assignment

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 7 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

and Task Duplication (FATD) problem can be formulated
as:

FATD ∶Φ1 = min
𝒚,𝒉

∑

𝑖∈′ ℎ𝑖
∑

𝑙∈
𝑦𝑖𝑙

𝑊𝑖
𝑓𝑙

𝑃𝑙 (20)

s.t. ∶

{

(3), (6), (7), (10)
𝑦𝑖𝑙, ℎ𝑖 ∈ {0, 1}.

Note that the binary variables 𝑦𝑖𝑙 and ℎ𝑖 are coupled with
each other nonlinearly in (20), and thus, FATD is an INLP
problem. To solve it, we determine the frequency selection
𝑦𝑖𝑙 and the task duplication ℎ𝑖 in sequence, as ℎ𝑖 is influenced
by 𝑦𝑖𝑙, according to (6). Specifically, for each original task 𝜏𝑖
(∀𝑖 ∈ ), when the V/F level (𝑣𝑙, 𝑓𝑙) is assigned to 𝜏𝑖, the
value of 𝑦𝑖𝑙 can be determined by minimizing the computa-
tion energy𝐸𝑐𝑜𝑚𝑝

𝑖 under the relative deadline constraint (10).
Then, based on the reliability of the original task 𝑅′

𝑖 =
∑

𝑙∈ 𝑦𝑖𝑙𝑅𝑖𝑙, the existence of the duplicated task, i.e., ℎ𝑖+𝑀 ,
is determined according to (5) or (6). The frequency selec-
tion for the duplication can be determined using a method
similar to the original tasks. Therefore, the variables and
the constraints in (20) are considered separately. Although
this method has a simpler structure with low computation
complexity, it may significantly impact performance.

To avoid that, we design a greedy-based heuristic method
that simultaneously considers 𝑦𝑖𝑙 and ℎ𝑖, depicted in Algo-
rithm 1. For presentation reasons, a frequency assignment
index 𝐵[𝑖] is introduced for each task 𝜏𝑖, where 𝐵[𝑖] = 𝑙
represents that the 𝑙𝑡ℎ V/F level (𝑣𝑙, 𝑓𝑙) is used to execute
task 𝜏𝑖, and the value of 𝐵[𝑖] is initialized as −1 (Line 1).
The algorithm applies a set of steps to determine a set of
configurations for each original task 𝜏𝑖 that optimize 𝑦𝑖𝑙 and
ℎ𝑖 under multiple constraints:

1. We use the sequence {(𝑣1, 𝑓1),… , (𝑣𝐿, 𝑓𝐿)} for as-
signing a V/F level (𝑣𝑙, 𝑓𝑙) to an original task 𝜏𝑖
(∀𝑖 ∈ ). When 𝜏𝑖 is executed with (𝑣𝑙, 𝑓𝑙), the task
execution time is 𝑊𝑖

𝑓𝑙
. If this time does not satisfy the

deadline constraint (10) (Lines 5–6), the V/F selection
𝐵[𝑖] = 𝑙 is excluded, and thus, 𝑦𝑖𝑙 = 0.

2. When the task execution time with the V/F level
(𝑣𝑙, 𝑓𝑙) satisfies the task relative deadline constraint, of
𝜏𝑖, i.e., 𝑊𝑖

𝑓𝑙
≤ 𝐷𝑖, it implies that with higher V/F levels,

i.e., {(𝑣𝑙+1, 𝑓𝑙+1),… , (𝑣𝐿, 𝑓𝐿)}, the relative deadline
constraint of 𝜏𝑖 is also satisfied. This is because the
V/F levels in the set {(𝑣1, 𝑓1),… , (𝑣𝐿, 𝑓𝐿)} are sorted
in increasing order.

3. Based on a given V/F level (𝑣𝑗 , 𝑓𝑗) (𝑙 ≤ 𝑗 ≤ 𝐿), the
reliability of original task 𝜏𝑖 is known. By comparing
𝑅′
𝑖 with the reliability threshold 𝑅𝑡ℎ (Line 9), we

determine whether 𝜏𝑖 needs duplication or not, and
thus, the value of ℎ𝑖+𝑀 . If the reliability of 𝜏𝑖 satisfies
the constraint (7), no duplication is required, i.e.,
ℎ𝑖+𝑀 = 0. Then, we can calculate the computation
energy 𝑊𝑖

𝑓𝑗
𝑃𝑗 of 𝜏𝑖.

4. If 𝑅′
𝑖 < 𝑅𝑡ℎ, task 𝜏𝑖 needs duplication (Line 15),

i.e., ℎ𝑖+𝑀 = 1 as 𝜏𝑖+𝑀 exists. Note that the relative

Algorithm 1: Frequency Selection and Task Du-
plication

Input: 𝑊𝑖, 𝐷𝑖, (𝑣𝑙, 𝑓𝑙), and 𝑅𝑡ℎ
Output: Frequency assignment 𝑦𝑖𝑙, and task duplication

ℎ𝑖
1 Initialize 𝐵[𝑖] = −1 ;
2 for ∀𝑖 ∈  do
3 𝐸𝑐𝑜𝑚𝑝

min = ∞ ;
4 for ∀𝑙 ∈  do
5 if 𝑊𝑖

𝑓𝑙
> 𝐷𝑖 then

6 Continue;
7 else
8 𝑅′

𝑖 =
∑

𝑙∈ 𝑦𝑖𝑙𝑅𝑖𝑙 ;
9 if 𝑅′

𝑖 > 𝑅𝑡ℎ then
10 ℎ𝑖+𝑀 = 0 ;
11 𝐸𝑐𝑜𝑚𝑝

𝑖 = 𝑊𝑖
𝑓𝑙
𝑃𝑙 ;

12 if 𝐸𝑐𝑜𝑚𝑝
𝑖 < 𝐸𝑐𝑜𝑚𝑝

min then
13 𝐸𝑐𝑜𝑚𝑝

min = 𝐸𝑐𝑜𝑚𝑝
𝑖 ;

14 𝐵[𝑖] = 𝑙 ;

15 else
16 ℎ𝑖+𝑀 = 1 ;
17 Calculate 𝑅′

𝑖+𝑀 by
1 − (1 −𝑅′

𝑖)(1 −𝑅′
𝑖+𝑀) ≥ 𝑅𝑡ℎ ;

18 Calculate minimum frequency 𝑦(𝑖+𝑀)𝑗′

by 𝑅′
𝑖+𝑀 =

∑

𝑙∈ 𝑦(𝑖+𝑀)𝑙𝑅(𝑖+𝑀)𝑙 and
𝑡𝑐𝑜𝑚𝑝𝑖 ≤ 𝐷𝑖 ;

19 𝐸𝑐𝑜𝑚𝑝
𝑖 = 𝑊𝑖

𝑓𝑙
𝑃𝑙 +

𝑊𝑖
𝑓𝑙′
𝑃𝑙′ ;

20 if 𝐸𝑐𝑜𝑚𝑝
𝑖 < 𝐸𝑐𝑜𝑚𝑝

min then
21 𝐸𝑐𝑜𝑚𝑝

min = 𝐸𝑐𝑜𝑚𝑝
𝑖 ;

22 𝐵[𝑖] = 𝑙 ;
23 𝐵[𝑖 +𝑀] = 𝑙′ ;

deadline constraint (10) also restricts the duplicated
tasks. According to 1−

(

1 −𝑅′
𝑖
)

(

1 −𝑅′
𝑖+𝑀

)

≥ 𝑅𝑡ℎ,
𝑅′
𝑖+𝑀 =

∑

𝑙∈ 𝑦(𝑖+𝑀)𝑙𝑅(𝑖+𝑀)𝑙, and 𝑡𝑐𝑜𝑚𝑝𝑖 ≤ 𝐷𝑖, we
can calculate the minimum V/F level for the dupli-
cated task 𝜏𝑖+𝑀 (Line 17) to make sure that task
𝜏𝑖 with duplication satisfies the reliability and time
constraints (7) and (10), e.g., 𝑦(𝑖+𝑀)𝑗′ (Line 18). Then,
we calculate the computation energy for original and
duplicated tasks under the given V/F levels (𝑣𝑗 , 𝑓𝑗)
and (𝑣𝑗′ , 𝑓𝑗′), i.e., 𝑊𝑖

𝑓𝑗
𝑃𝑗 and 𝑊𝑖

𝑓𝑗′
𝑃𝑗′ .

5. Besides (𝑣𝑗 , 𝑓𝑗), that meets the task relative deadline
constraint, we can use a higher V/F level (𝑣𝑗+1, 𝑓𝑗+1)
to execute task 𝜏𝑖 and calculate the corresponding
computation energy 𝑊𝑖

𝑓(𝑗+1)
𝑃(𝑗+1) and 𝑊𝑖

𝑓(𝑗+1)′
𝑃(𝑗+1)′ by

a similar method. If 𝜏𝑖 does not need to be dupli-
cated under the given V/F level (𝑣𝑗+1, 𝑓𝑗+1), we have
𝑊𝑖

𝑓(𝑗+1)′
𝑃(𝑗+1)′ = 0.

6. Assume that V/F levels {(𝑣𝑙, 𝑓𝑙),… , (𝑣𝐿, 𝑓𝐿)} satisfy
the reliability and time constraints. By using them, we
get a set of configurations for the computation energy

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 8 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

Algorithm 2: Task Allocation and Path Selection
Input: Frequency assignment 𝑦𝑖𝑙, task duplication ℎ𝑖, and

task execution sequence 
Output: Task allocation 𝑞𝑖𝑑 and 𝑥𝑖𝑘, path selection 𝑐𝛽𝛾𝜌,

task order 𝑜𝑖𝑗 , task start time 𝑡𝑠𝑖
1 Initialize 𝑂[𝑖] = 𝐶[𝑗][𝑖] = 𝑆𝑇 [𝑖] = −1;
2 for ∀𝑖 ∈ ′ and ℎ𝑖 = 1 do
3 𝐸𝑡𝑜𝑡𝑎𝑙

min,max = ∞ ;
4 for ∀𝑑 ∈  ′ do
5 for ∀𝜏𝑗 ∈ 𝑝𝑟𝑒𝑐(𝜏𝑖) do
6 for ∀𝜌 ∈  do
7 𝑡𝑠𝑖 = max∀𝜏𝑗∈𝑝𝑟𝑒(𝜏𝑖){𝑡

𝑒
𝑗 + 𝑡𝑐𝑜𝑚𝑚𝑗𝑖𝜌 , 𝑡𝑒𝑗′} while

𝑂[𝑗′] = 𝑑 ;
8 𝑡𝑒𝑖 = 𝑡𝑠𝑖 + 𝑡𝑐𝑜𝑚𝑝𝑖 ;
9 if 𝑡𝑒𝑖 > 𝐻 then

10 continue;
11 𝐸𝑡𝑜𝑡𝑎𝑙

𝑖,max = max∀𝑘∈ {𝐸𝑐𝑜𝑚𝑝
𝑘 + 𝐸𝑐𝑜𝑚𝑚

𝑘 };
12 if 𝐸𝑡𝑜𝑡𝑎𝑙

𝑖,max < 𝐸𝑡𝑜𝑡𝑎𝑙
min,max then

13 𝐸𝑡𝑜𝑡𝑎𝑙
min,max = 𝐸𝑡𝑜𝑡𝑎𝑙

𝑖,max;
14 𝑂[𝑖] = 𝑑;
15 𝐶[𝑗][𝑖] = 𝜌;

of task 𝜏𝑖,
{

𝑊𝑖
𝑓𝑙
𝑃𝑙 +

𝑊𝑖
𝑓𝑙′

𝑃𝑙′ ,… , 𝑊𝑖
𝑓𝐿

𝑃𝐿 + 𝑊𝑖
𝑓𝐿′

𝑃𝐿′

}

, and
find the minimum one (Line 21). If the V/F levels
with the minimum computation energy are (𝑣𝑙, 𝑓𝑙) and
(𝑣𝑙′ , 𝑓𝑙′), we select the V/F level 𝐵[𝑖] = 𝑙 for the
original task 𝜏𝑖 and the V/F level 𝐵[𝑖 + 𝑀] = 𝑙′
for the duplicated task 𝜏𝑖+𝑀 (Lines 22–23). Then, we
determine 𝑦𝑖𝑙 and ℎ𝑖 through 𝐵[𝑖] (1 ≤ 𝑖 ≤ 2𝑀).

4.1.2. Task Allocation and Path Selection (TAPS)
When frequency assignment 𝑦𝑖𝑙 and task duplication ℎ𝑖

decisions are determined, the number of total tasks (includ-
ing original and duplicated tasks) and the computation costs
(energy and time) are known. Note that the relative real-time
requirement (10) has been met, and the task allocation deci-
sion does not affect task execution time. Therefore, this step
aims to balance the energy consumption of the nodes by task-
to-core allocation 𝑞𝑖𝑑 , task-to-node allocation 𝑥𝑖𝑘, and path
selection 𝑐𝛽𝛾𝜌 under task non-overlapping constraint (8), task
dependency constraint (9), and task deadline constraint (11).
The Task Allocation and Path Selection (TAPS) problem can
be formulated as follows:

TAPS ∶Φ2 = min
𝒒,𝒙,𝒐,𝒄,𝒕𝒔

max
∀𝑘

{𝐸𝑘∕𝐸𝑖𝑛𝑖
𝑘 } (21)

s.t.

{

(1), (2), (4), (8), (9), (11)
𝑞𝑖𝑑 , 𝑥𝑖𝑘, 𝑜𝑖𝑗 , 𝑐𝛽𝛾𝜌 ∈ {0, 1}, 0 ≤ 𝑡𝑠𝑖 ≤ 𝐻.

Since the binary variable 𝑞𝑖𝑑 , 𝑥𝑖𝑘, 𝑐𝛽𝛾𝜌, 𝑜𝑖𝑗 and the con-
tinuous variable 𝑡𝑠𝑖 are coupled with each other nonlinearly
in (9) and (11), TAPS problem is a MINLP. To effectively
solve this problem, we propose a task layer classification
method to determine the sequence of tasks during task
allocation, satisfying task non-overlapping constraint (8) and

task dependency constraint (9). The proposed method is
summarized as follows.

1. Based on ℎ𝑖, we derive a new task set  = {𝜏𝑖|ℎ𝑖 =
1, 1 ≤ 𝑖 ≤ 2𝑀}, where the tasks in  exist, and
we need to deploy these tasks to the cores of the
nodes. Let 𝑀ℎ denote the number of tasks in the set
 . According to  , we obtain a new matrix 𝒑ℎ =
[𝑝ℎ𝑖𝑗]𝑀ℎ×𝑀ℎ to model the dependency of tasks in the
set  . To perform task stratification, we introduce the
in-degree and out-degree for task 𝜏𝑖 and denote them
as 𝐼𝑛

𝑖 and 𝑂𝑢𝑡
𝑖 , respectively. For a task 𝜏𝑖, its 𝐼𝑛

𝑖 =
∑𝑀ℎ

𝑗=1 𝑝
ℎ
𝑗𝑖, while its 𝑂𝑢𝑡

𝑖 =
∑𝑀ℎ

𝑗=1 𝑝
ℎ
𝑖𝑗 . Note that for an

entry task, 𝐼𝑛
𝑖 = 0, as it has no predecessors; while

for an exit task, 𝑂𝑢𝑡
𝑖 = 0, as it has no successors.

2. The task layer classification starts from the tasks with
𝐼𝑛

𝑖 = 0 and ends at the tasks with 𝑂𝑢𝑡
𝑖 = 0. Let

𝐿𝑖 = max∀𝑝ℎ𝑗𝑖=1{𝐿𝑗} + 1 denote the layer index of
task 𝜏𝑖, i.e., the layer index of 𝜏𝑖 equals the maximum
level of all its predecessors plus one. For instance,
in the example of Fig. 1, we have 𝐿6 = 𝐿3 = 1,
𝐿1 = 𝐿9 = 𝐿10 = 𝐿20 = 2, 𝐿2 = 3, 𝐿4 = 𝐿8 = 4,
and 𝐿5 = 𝐿7 = 𝐿17 = 5. Tasks with adjacent
layers are dependent (e.g., 𝜏6 and 𝜏1), while tasks
in the same layers are independent (e.g., 𝜏1 and 𝜏9).
Based on the task layer index 𝐿𝑖, we generate a task
execution sequence  = {𝐿1 = 1,… , 𝐿𝑖 = 𝑚,𝐿𝑗 =
𝑚+1,…}. For the tasks in the same layer, we sort them
in ascending order based on their execution cycles 𝑊𝑖.
By following  during task allocation, the task non-
overlapping constraint (8) and the task dependency
constraint (9) can be met simultaneously.

On this basis, we design a greedy-based heuristic al-
gorithm to solve problem (21), which considers 𝑞𝑖𝑑 , 𝑥𝑖𝑘,
and 𝑐𝛽𝛾𝜌 simultaneously. The implementation details are
summarized in Algorithm 2. For the sake of presentation, we
introduce the task allocation index 𝑂[𝑖], path selection index
𝐶[𝑗][𝑖], and task start time index 𝑆𝑇 [𝑖], where 𝐵[𝑖] = 𝑑
represents that task 𝜏𝑖 is allocated on core 𝜙𝑑 , 𝐶[𝑗][𝑖] = 𝜌
represents that 𝜏𝑗 transmits data to 𝜏𝑖 through the 𝜌𝑡ℎ path,
and 𝑆𝑇 [𝑖] = 𝑡 represents that 𝜏𝑖 starts its execute at time 𝑡.
They are initialized to −1 (Line 1).

1. We follow the sequence  to assign task 𝜏𝑖 ∈  to
each core 𝜙𝑑 (∀𝑑 ∈  ′). Note that the range of 𝑑 is
 ′. We consider 𝑞𝑖𝑑 and 𝑥𝑖𝑘 at the same time. In addi-
tion, the cores of the nodes are homogeneous, i.e., they
have the same V/F levels. According to the frequency
assignment decision 𝑦𝑖𝑙 from Algorithm 1, we can
calculate the computation time 𝑡𝑐𝑜𝑚𝑝𝑖 =

∑

𝑙∈ 𝑦𝑖𝑙
𝑊𝑖
𝑓𝑙

,

and computation energy 𝐸𝑐𝑜𝑚𝑝
𝑖 =

∑

𝑙∈ 𝑦𝑖𝑙
𝑊𝑖
𝑓𝑙
𝑃𝑙 of

𝜙𝑑 , when 𝜏𝑖 is executed on 𝜙𝑑 (Lines 2-4).
2. Let 𝑝𝑟𝑒(𝜏𝑖) denote the predecessor set of task 𝜏𝑖.

Note that the tasks in  are sorted by their in-
degree 𝐼𝑛

𝑖 and out-degree 𝑂𝑢𝑡
𝑖 . During the allo-

cation process of 𝜏𝑖, the allocation of its predeces-
sor, e.g., 𝜏𝑗 ∈ 𝑝𝑟𝑒(𝜏𝑖), is known. When the task

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 9 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

𝜏𝑖 is mapped on the core 𝜙𝑑 , and the path 𝑐𝜌 is
selected to transmit task data between 𝜏𝑖 and its
predecessor 𝜏𝑗 , we can calculate the communication
time 𝑡𝑐𝑜𝑚𝑚𝑗𝑖𝜌 =

∑

𝛽,𝛾∈ 𝑝𝑗𝑖𝑥𝑗𝛽𝑥𝑖𝛾𝑐𝛽𝛾𝜌𝑡𝛽𝛾𝜌 and energy
𝐸𝑐𝑜𝑚𝑚
𝑗𝑖𝜌 =

∑

𝛽,𝛾∈ 𝑝𝑗𝑖𝑠𝑗𝑖𝑥𝑗𝛽𝑥𝑖𝛾𝑐𝛽𝛾𝜌𝑒𝛽𝛾𝛾𝜌 (Lines 5-6).
3. Based on the computation time 𝑡𝑐𝑜𝑚𝑝𝑖 , the commu-

nication time 𝑡𝑐𝑜𝑚𝑚𝑗𝑖𝜌 , and the allocation of task 𝜏𝑖,
we can obtain task start time 𝑡𝑠𝑖 . The value of 𝑡𝑠𝑖 is
influenced by a) the end time of predecessor 𝜏𝑗 and
the communication time 𝑡𝑐𝑜𝑚𝑚𝑗𝑖𝜌 between 𝜏𝑗 and 𝜏𝑖, i.e.,
𝑡𝑒𝑗 and 𝑡𝑐𝑜𝑚𝑚𝑗𝑖𝜌 , and b) the end time of the earlier task on
the same core 𝜙𝑑 , e.g., 𝜏𝑗′ where 𝑂[𝑗′] = 𝑑. Note that
𝜏𝑖 has multiple predecessors, and 𝜏𝑗′ is the last task
executed on the same core 𝜙𝑑 before 𝜏𝑖. Restricted
by the task dependency, the start time of 𝜏𝑖 can be
set to 𝑡𝑠𝑖 = max∀𝜏𝑗∈𝑝𝑟𝑒(𝜏𝑖)

{

𝑡𝑒𝑗 + 𝑡𝑐𝑜𝑚𝑚𝑗𝑖𝜌 , 𝑡𝑒𝑗′
}

, where 𝑡𝑒𝑗′
is the end time of task 𝜏𝑗′ (Line 7). Based on the
updated start time 𝑡𝑠𝑖 and computation time 𝑡𝑐𝑜𝑚𝑝𝑖 from
Algorithm 1, we can calculate task end time 𝑡𝑒𝑖 , i.e.,
𝑡𝑒𝑖 = 𝑡𝑠𝑖 + 𝑡𝑐𝑜𝑚𝑝𝑖 (Line 8).

4. If the end time 𝑡𝑒𝑖 of 𝜏𝑖 does not satisfy the real-
time constraint (11) (Lines 9-10), the decisions of task
allocation 𝑂[𝑖] = 𝑑 and path selection 𝐶[𝑗][𝑖] = 𝜌
will be excluded, and thus, we have 𝑞𝑖𝑑 = 0 and
𝑐𝑂[𝑗]𝑂[𝑖]𝜌 = 0.

5. If 𝑡𝑒𝑖 satisfies the real-time constraint, i.e., 𝑡𝑒𝑖 ≤ 𝐻 ,
we can get the total computation and communication
energy for 𝜏𝑖 under the given core 𝜙𝑑 and data path
between 𝜏𝑗 and 𝜏𝑖, i.e., 𝐸𝑐𝑜𝑚𝑝

𝑖 +𝐸𝑐𝑜𝑚𝑚
𝑗𝑖𝜌 . Since we have

𝑁 nodes and each node has𝑅 cores, by allocating task
𝜏𝑖 to cores {𝜙1,… , 𝜙𝑁𝑅}, we can get the computation
and communication energy on the nodes {𝜃1,… , 𝜃𝑁},
i.e.,

{

𝐸𝑐𝑜𝑚𝑝
1 + 𝐸𝑐𝑜𝑚𝑚

1 ,… , 𝐸𝑐𝑜𝑚𝑝
𝑁 + 𝐸𝑐𝑜𝑚𝑚

𝑁
}

. We find
the maximum one by comparing these values and
denote it as 𝐸𝑡𝑜𝑡𝑎𝑙

𝑖,max (Line 11).
6. By applying the above method for each task 𝜏𝑖 (1 ≤

𝑖 ≤ 𝑀ℎ) in the set  , we obtain a set of task allocation
and path selection configurations

{

𝐸𝑡𝑜𝑡𝑎𝑙
1,max,… , 𝐸𝑡𝑜𝑡𝑎𝑙

𝑀ℎ,max

}

,
based on the total energy consumption. To balance
the energy consumption of the nodes, we can find the
minimum one and denote it as 𝐸𝑡𝑜𝑡𝑎𝑙

min,max (Line 13).
Through 𝐸𝑡𝑜𝑡𝑎𝑙

min,max, we can determine task allocation
𝑂[𝑖] = 𝑑, path selection 𝐶[𝑗][𝑖] = 𝜌 between tasks 𝜏𝑗
and 𝜏𝑖, and task start time𝑆𝑇 [𝑖] (Lines 14-15). On this
basis, we can get the values of optimization variables
𝑞𝑖𝑑 , 𝑥𝑖𝑘, 𝑜𝑖𝑗 , 𝑐𝛽𝛾𝜌, and 𝑡𝑠𝑖 .

4.1.3. Refinement Process
When solving the problem (21), it may be infeasible

because the real-time constraint (11) is hard to satisfy, while
other constraints (8) and (9) can be easily satisfied according
to the proposed task classification method. In this section, we
design a refinement method to improve the task schedulabil-
ity of problem (21). Note that the adjustment of V/F assign-
ment 𝑦𝑖𝑙 changes the task execution time 𝑡𝑐𝑜𝑚𝑝𝑖 and end time

𝑡𝑒𝑖 , and it also influences the task duplication ℎ𝑖. Therefore,
the basic idea is to adjust 𝑦𝑖𝑙 and ℎ𝑖 through constraint (11).
Therefore, a feedback mechanism is introduced from Step 2
(TAPS) to Step 1 (FATD). Since the refinement increases
the V/F assignment 𝑦𝑖𝑙 in Step 1, the reliability and time
constraints (7) and (10) in (20) are not violated. The details
(Algorithm 3) are summarized below:

1. We find the task 𝜏𝑖 with 𝑡𝑒𝑖 > 𝐻 in Algorithm 2
and obtain the corresponding V/F level 𝑦𝑖𝑙 from Algo-
rithm 1. On this basis, we get the minimum V/F level
(𝑣𝑙+𝑎, 𝑓𝑙+𝑎) for 𝜏𝑖 that meets the real-time constraint
𝑡𝑒𝑖 ≤ 𝐻 , where 𝑓𝑙+𝑎 ≥

𝑊𝑖

𝐻−𝑊𝑖
𝑓𝑙

. Since the V/F levels are

sorted by increasing order, applying the higher V/F
levels {(𝑣𝑙+𝑎, 𝑓𝑙+𝑎),… , (𝑣𝐿, 𝑓𝐿)} to execute 𝜏𝑖 also
satisfies the time constraints (10) and (11)(Lines 2-3).

2. Based on the given V/F level (𝑣𝑙+𝑎, 𝑓𝑙+𝑎), Algo-
rithm 1 is run to calculate the reliability 𝑅′

𝑖 and
the duplication ℎ𝑖+𝑀 of task 𝜏𝑖 (Lines 4). When
the above method is applied to each V/F level in
the set {(𝑣𝑙+𝑎, 𝑓𝑙+𝑎),… , (𝑣𝐿, 𝑓𝐿)}, we can obtain
the corresponding computation energy

{

𝑊𝑖
𝑓𝑙+𝑎

𝑃𝑙+𝑎 +

ℎ𝑖+𝑀
𝑊𝑖
𝑓𝑙+𝑎′

𝑃𝑙+𝑎′ ,… , 𝑊𝑖
𝑓𝐿

𝑃𝐿+ℎ𝑖+𝑀
𝑊𝑖
𝑓𝐿′

𝑃𝐿′

}

, and select
the minimum one as𝐸𝑐𝑜𝑚𝑝

𝑖,min (Lines 6-10). On this basis,
we can update 𝑦𝑖𝑙 and ℎ𝑖 at the same time to meet the
time constraint (11) and the reliability constraint (7).

3. Note that multiple tasks may violate the time con-
straint (11) in Algorithm 2, and they may have de-
pendencies. To reduce problem complexity, Step 1
and Step 2 are performed during the task allocation
and scheduling process of Algorithm 2. For instance,
in Lines 8-10, if the end time 𝑡𝑒𝑖 of 𝜏𝑖 exceeds the
time threshold 𝐻 , we adjust the V/F level 𝑦𝑖𝑙 of 𝜏𝑖.
Then, based on the updated 𝑦𝑖𝑙 and ℎ𝑖, we calculate
the corresponding 𝑞𝑖𝑑 , 𝑥𝑖𝑘, 𝑐𝛽𝛾𝜌, 𝑜𝑖𝑗 , and 𝑡𝑠𝑖 . Since we
follow the task sequence  to adjust the V/F levels of
tasks, the task non-overlapping constraint (8) and the
task dependency constraint (9) can be satisfied.

4.2. Complexity Analysis
The proposed heuristic divides the PP (12) into two

subproblems FATD (20) and TAPS (21) and solves them
in sequence through Algorithm 1 and Algorithm 2. The
refinement method (Algorithm 3) is added during the execu-
tion process of Algorithm 2 to improve task schedulability.
Therefore, a feedback mechanism is introduced between
Algorithm 1 and Algorithm 2.

1. The time complexity of the Algorithm 1 is given by
the number of variables [13] in problem (20), i.e.,
𝒚 = [𝑦𝑖𝑙]𝑀×𝐿 and 𝒉 = [ℎ𝑖]𝑀×1. For each original task
𝜏𝑖 (∀𝑖 ∈ ), we calculate task computation time 𝑡𝑐𝑜𝑚𝑝𝑖
and energy 𝐸𝑐𝑜𝑚𝑝

𝑖 and reliability 𝑅′
𝑖 through the V/F

levels {(𝑣1, 𝑓1),… , (𝑣𝐿, 𝑓𝐿)}, and then determine the
duplication ℎ𝑖+𝑀 of 𝜏𝑖 based on threshold 𝑅𝑡ℎ. A
similar method is used for the duplicated task 𝜏𝑖+𝑀 .

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 10 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

Algorithm 3: Refinement Process
Input: 𝑦𝑖𝑙 and ℎ𝑖 from Algorithm 1, 𝜏𝑖 with 𝑡𝑒𝑖 > 𝐻 in

Algorithm 2
Output: 𝑦𝑖𝑙, ℎ𝑖, 𝑞𝑖𝑑 , 𝑥𝑖𝑘, 𝑐𝛽𝛾𝜌, 𝑜𝑖𝑗 , and 𝑡𝑠𝑖

1 for ∀𝑖 ∈ ′ & ℎ𝑖 = 1 do
2 if 𝑡𝑒𝑖 > 𝐻 then
3 Find V/F level {(𝑣𝑙+𝑎, 𝑓𝑙+𝑎)} by 𝑡𝑒𝑖 ≥ 𝐻 ;
4 Run Algorithm 1 with

{(𝑣𝑙+𝑎, 𝑓𝑙+𝑎),… , (𝑣𝐿, 𝑓𝐿)};
5 𝐸𝑐𝑜𝑚𝑝

𝑖,min = ∞;
6 for ∀𝑗 ∈ {𝑙 + 𝑎,… , 𝐿} do
7 Calculate ℎ𝑖+𝑀 by 𝑅′

𝑖 ≥ 𝑅𝑡ℎ;
8 𝐸𝑐𝑜𝑚𝑝

𝑖 = 𝑊𝑖
𝑓𝑗
𝑃𝑗 + ℎ𝑖+𝑀

𝑊𝑖
𝑓𝑗′

𝑃𝑗′ ;

9 if 𝐸𝑐𝑜𝑚𝑝
𝑖 < 𝐸𝑐𝑜𝑚𝑝

𝑖,min then
10 𝐸𝑐𝑜𝑚𝑝

𝑖,min = 𝐸𝑐𝑜𝑚𝑝
𝑖 ;

11 𝐵[𝑖] = 𝑗;

Since the total number of tasks is 2𝑀 and each core
of a node has 𝐿 V/F levels, the complexity is 𝑂(𝑀𝐿).

2. To deal with problem (21), we propose a task layer
classification method to determine a sequence  to
perform task allocation and scheduling. Note that the
number of original and duplicated tasks is 𝑀ℎ; in
the worst case, we have 2𝑀 . In addition, a recursive
method is used to determine the task layer according
to the task dependency. For each task 𝜏𝑖, the height of
the recursion tree is 2𝑀 . Since the recursive method
has a logarithmic growth with problem size [25], and
this method is applied for 2𝑀 tasks, the complexity of
task layer classification is 𝑂(𝑀𝑙𝑜𝑔(𝑀)). Then, based
on the task sequence , we determine the allocation,
scheduling, and communication of tasks, i.e., the val-
ues of variables 𝒒 = [𝑞𝑖𝑑]2𝑀×𝑁𝑅, 𝒙 = [𝑥𝑖𝑘]2𝑀×𝑁 ,
and 𝒄 = [𝑐𝛽𝛾𝜌]𝑁×𝑁×𝐶 in problem (21). Note that each
task 𝜏𝑖 has at most 2𝑀 − 1 predecessors, and the task
number is 2𝑀 . Moreover, we have 𝑁 nodes, each
node has 𝑅 cores, and the number of communication
paths is 𝐶 . The complexity is 𝑂(𝑀2𝑁𝑅𝐶). Based on
the above analysis, the complexity of Algorithm 2 is
𝑂(𝑀𝑙𝑜𝑔(𝑀) +𝑀2𝑁𝑅𝐶).

3. Algorithm 3 is used to adjust the V/F levels 𝒚 =
[𝑦𝑖𝑙]𝑀×𝐿 during the task allocation and scheduling
of Algorithm 2. In the worst case, the number of
tasks that violate the time constraint (11) in Algo-
rithm 2 is 𝑀ℎ, where 𝑀ℎ ≤ 2𝑀 . For each task
𝜏𝑖 with 𝑡𝑒𝑖 > 𝐻 , we calculate its minimum V/F
level (𝑣𝑙+𝑎, 𝑓𝑙+𝑎) and find the available V/F levels
{(𝑣𝑙+𝑎, 𝑓𝑙+𝑎),… , (𝑣𝐿, 𝑓𝐿)}, where the maximum set
size is 𝐿 − 1. For each V/F level, we calculate the
task reliability 𝑅′

𝑖 and computation energy 𝐸𝑐𝑜𝑚𝑝
𝑖 .

Since the complexity FATD is 𝑂(𝑀𝐿), i.e., similar
to Algorithm 1, Algorithm 3 has complexity 𝑂(𝑀𝐿).

Note that the number of tasks is much larger than that of
V/F levels, cores, and data paths, i.e., 𝑀 ≫ 𝐿, 𝑀 ≫ 𝑅, and

Table 2
Experimental set-up

Processor parameters
𝑣𝑙 (V) 0.65 0.7 0.75 0.8 0.85

𝑓𝑙 (GHz) 1.01 1.26 1.53 1.81 2.10
𝑃𝑙 (mW) 184.9 266.7 370.4 498.9 655.5
𝑃 𝑠
𝑙 (mW) 246 290.1 340.3 397.6 462.7
𝑃 𝑠
0 (𝜇W) 80

Task parameters
𝑊𝑖 ∈ [4 × 107, 6 × 108] 𝑠𝑖𝑗 = 1

Reliability parameters
𝜆 = 10−6 𝑑 = 5 𝑅𝑡ℎ = 0.998

Energy and Time Parameters
𝐸𝑖𝑛𝑖

𝑘 = 𝐸𝑐𝑜𝑚𝑚
𝑘,𝑡𝑒𝑚𝑝 + 𝐸𝑐𝑜𝑚𝑝

𝑘,𝑡𝑒𝑚𝑝

𝐸𝑐𝑜𝑚𝑚
𝑘,𝑡𝑒𝑚𝑝 = 2𝑀 max∀𝛽,𝛾,𝜌{𝑒𝛽𝛾𝑘𝜌} 𝐸𝑐𝑜𝑚𝑝

𝑘,𝑡𝑒𝑚𝑝 = 2𝑀 max∀𝑖,𝑙
{

𝑊𝑖
𝑓𝑙
𝑃𝑙

}

𝐷𝑖 = 𝛼 × 𝑡𝑐𝑜𝑚𝑝𝑖,𝑡𝑒𝑚𝑝
𝐻 =

∑

𝑖∈𝐶𝑃𝑇 (𝑡𝑐𝑜𝑚𝑚𝑖,𝑡𝑒𝑚𝑝 + 𝑡𝑐𝑜𝑚𝑝𝑖,𝑡𝑒𝑚𝑝)
𝑡𝑐𝑜𝑚𝑚𝑖,𝑡𝑒𝑚𝑝 = (𝑡𝑐𝑜𝑚𝑚𝑖,min + 𝑡𝑐𝑜𝑚𝑚𝑖,max)∕2 𝑡𝑐𝑜𝑚𝑝𝑖,𝑡𝑒𝑚𝑝 = (𝑡𝑐𝑜𝑚𝑝𝑖,min + 𝑡𝑐𝑜𝑚𝑝𝑖,max)∕2
𝑡𝑐𝑜𝑚𝑚𝑖,min = min∀𝛽,𝛾,𝜌{𝑡𝛽𝛾𝜌} 𝑡𝑐𝑜𝑚𝑚𝑖,max = max∀𝛽,𝛾,𝜌{𝑡𝛽𝛾𝜌}

𝑡𝑐𝑜𝑚𝑝𝑖,min = min∀𝑙
{

𝑊𝑖
𝑓𝑙

}

𝑡𝑐𝑜𝑚𝑝𝑖,max = max∀𝑙
{

𝑊𝑖
𝑓𝑙

}

𝑀 ≫ 𝐶 . Without Algorithm 3, the total time complexity of
our method is 𝑂(𝑀𝐿+𝑀𝑙𝑜𝑔(𝑀) +𝑀2𝑁𝑅𝐶), and can be
simplified as 𝑂(𝑀𝑙𝑜𝑔(𝑀) +𝑀2𝑁). With Algorithm 3, the
total time complexity is 𝑂(𝑀𝐿+𝑀𝑙𝑜𝑔(𝑀)+𝑀3𝐿𝑁𝑅𝐶),
and can be simplified as 𝑂(𝑀𝑙𝑜𝑔(𝑀) +𝑀3𝑁).

5. Experimental Evaluation
5.1. Simulation Setup

We perform extensive experiments to evaluate the per-
formance and effectiveness of the proposed task mapping
method. For the experimental setup, the processor power
parameters (e.g., 𝑣𝑙, 𝑓𝑙, and 𝑃𝑙) are adopted from [26, 23].
The DAG task parameters (e.g., 𝑊𝑖 and 𝑠𝑖𝑗) and the reliabil-
ity parameters (e.g., 𝜆, 𝑑, and 𝑅𝑡ℎ) are adopted from [35,
33]. Table 2 summarizes the time and energy constraints
settings. For node energy supply, we introduce a temporary
communication energy𝐸𝑐𝑜𝑚𝑚

𝑘,𝑡𝑒𝑚𝑝 and a temporary computation
energy 𝐸𝑐𝑜𝑚𝑝

𝑘,𝑡𝑒𝑚𝑝, and set 𝐸𝑖𝑛𝑖
𝑘 = 𝐸𝑐𝑜𝑚𝑚

𝑘,𝑡𝑒𝑚𝑝 + 𝐸𝑐𝑜𝑚𝑝
𝑘,𝑡𝑒𝑚𝑝, where

𝐸𝑐𝑜𝑚𝑚
𝑘,𝑡𝑒𝑚𝑝 and 𝐸𝑐𝑜𝑚𝑝

𝑘,𝑡𝑒𝑚𝑝 are the maximum energy required to
transmit the data for all the tasks {𝜏1,… , 𝜏2𝑀} and execute
these tasks, respectively. Similarly, we introduce a tempo-
rary computation time 𝑡𝑐𝑜𝑚𝑝𝑖,𝑡𝑒𝑚𝑝 for the relative deadline 𝐷𝑖 =
𝛼 × 𝑡𝑐𝑜𝑚𝑝𝑖,𝑡𝑒𝑚𝑝, where 𝑡𝑐𝑜𝑚𝑝𝑖,min and 𝑡𝑐𝑜𝑚𝑝𝑖,max in 𝑡𝑐𝑜𝑚𝑝𝑖,𝑡𝑒𝑚𝑝 are the minimum
and maximum time required to execute 𝜏𝑖, respectively, and
𝛼 is a turned parameters. Since the tasks are dependent, to
have a schedulable task set, the scheduling horizon is set
to 𝐻 =

∑

𝑖∈𝐶𝑃𝑇

(

𝑡𝑐𝑜𝑚𝑚𝑖,𝑡𝑒𝑚𝑝 + 𝑡𝑐𝑜𝑚𝑝𝑖,𝑡𝑒𝑚𝑝

)

, where 𝐶𝑃𝑇 is the set
of the tasks on the critical path, 𝑡𝑐𝑜𝑚𝑚𝑖,𝑡𝑒𝑚𝑝 is the temporary
communication time for task 𝜏𝑖, 𝑡𝑐𝑜𝑚𝑚𝑖,min and 𝑡𝑐𝑜𝑚𝑚𝑖,max are the
minimum and maximum data communication time for 𝜏𝑖,
respectively. Note that different platforms and applications

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 11 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

(a) Energy consumption. (b) Computation time.

Figure 4: The solution and the time of PP with OPT and HEU
methods.

lead to different parameter values for the task mapping prob-
lem (12). However, the problem structure under different
parameter values is the same; thus, the proposed methods
are still applicable.

For the evaluation metrics, we compare the solution
quality and computation time of PP (12) achieved by the
optimal method (OPT) and the heuristic method (HEU)
under different realistic applications, i.e., LU decomposi-
tion (LU), Gaussian elimination (GE), fast Fourier trans-
form (FFT), Laplace equation (LE), and Montage work-
flows (MW) [30, 2, 9]. Furthermore, we compare the results
with different task reliability schemes: 1) the combination
of DVFS and task duplication (DVFS+TD), 2) only us-
ing DVFS (DVFS) [1], and 3) only using task duplication
(TD) [5]. On this basis, we compare the results with single-
path (SP) [20] and multi-path (MP) data routing. Finally, we
evaluate the behavior of the methods under different node
parameters, e.g., communication and computing energy ra-
tios and processor V/F level intervals. The simulations are
carried out on a 32-core CPU and 64 GB RAM server, and
the algorithms are implemented through MATLAB 2021a
and Gurobi 9.5.1.

5.2. Performance Evaluation
Fig. 4 compares the solution quality and the computation

time achieved by the OPT and HEU methods, where the
task numbers of LU, GE, FFT, LE, and MW are 𝑀 = 9,
14, 15, 16, and 24, respectively. The results show that as
the task number 𝑀 increases, the computation time of OPT
and HEU increases since more variables and constraints
are involved in the task mapping problem. However, HEU
can reduce 99.9% computation time compared with OPT;
the computation time of HEU is negligible, as it is usually
within 0.5 𝑠. The results also show that HEU has a 24.3%
performance loss compared with OPT.

Note that FATD is an INLP problem, and TAPS is a
MINLP problem. These nonlinear subproblems can be lin-
earized through Lemma 3.2 and then optimally solved by the
Gurobi solver. Fig. 5 and Fig. 6 compare the solution quality
and the computation time achieved by the optimal methods
and our design methods summarized in Algorithm 1 and
Algorithm 2, when linearization takes place for FATD and
TAPS. The results show that our methods can find feasible
solutions to FATD and TAPS quickly with 12.7% and 24.1%

(a) Energy consumption. (b) Computation time.

Figure 5: The solution and the time of FATD with OPT and
HEU methods.

(a) Energy consumption. (b) Computation time.

Figure 6: The solution and the time of TAPS with OPT and
HEU methods.

higher energy consumption than the optimal solutions. The
complexity of an optimization problem is highly related to
the problem size. The proposed heuristic decomposes the
joint optimization problem into two subproblems, FATD
and TAPS, with fewer variables, constraints, and coupled
nonlinear items, and then solves them in sequence with low
computational complexity algorithms. Since our heuristics
can largely reduce computation time with an acceptable
performance loss, it is suitable for large-scale networked
systems.

Fig. 7 shows the influence of different task reliability
schemes (i.e., DVFS, TD, and DVFS+TD) on energy con-
sumption (objective function of PP), where the task number
𝑀 ∈ [5, 200] and the time parameter 𝛼 ∈ [0.6, 2.2]. Note
that the task relative deadline 𝐷𝑖 is controlled by 𝛼; the
smaller 𝛼, the shorter 𝐷𝑖. The results show that with the
time parameter 𝛼 increasing, the energy consumptions of
DVFS, TD, and DVFS+TD decrease. This is because the
task mapping aims to reduce the energy consumption of the
nodes. With the time constraint relaxed, the lower V/F level
and fewer replicas can be used to satisfy the reliability con-
straint. However, compared with DVFS and TD, DVFS+TD
has a lower energy consumption. To meet the task reliability
constraint, DVFS will use a higher V/F level to execute the
tasks, while TD will generate more replicas, thus leading to
more energy consumption during task computation and data
transmission processes. However, with the introduction of
constraint (6), DVFS+TD combines the benefits of DVFS
and task duplication, i.e., it can optimize the variables 𝑦𝑖𝑙
and ℎ𝑖 at the same time, to reduce energy consumption by

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 12 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

(a) Change of Φ with parameter 𝛼. (b) Change of Φ with parameter 𝑀 .

Figure 7: Energy consumption comparison with different task
reliability schemes and time parameters.

(a) Change of Φ with parameter 𝛼. (b) Change of Φ with parameter 𝑀 .

Figure 8: Energy consumption comparison with different time
parameters and data routing schemes.

using lower V/F levels and fewer replicas. Therefore, com-
bining DVFS and task duplication enhances task reliability
in network environments.

Fig. 8 compares the energy consumption with SP and
MP data routing schemes, where SPE and SPT represent
the single-path data routing with the energy-oriented and
time-oriented data paths, respectively. The results show that
compared with SP, MP has a lower energy consumption.
This is because SP is a particular case of MP, i.e., the variable
𝑐𝛽𝛾𝜌 is fixed in MP. As another dimension of variables is
introduced by MP, it has a larger feasible region, and thus, it
has a lower energy consumption for a minimization problem.
The result also shows that the task mapping problem with
MP is more feasible. When the time parameter 𝛼 is small,
the time constraint (10) becomes stricter. The task mapping
problem may be infeasible for SP when 𝛼 = 0.6. However,
the problem is feasible with MP. Therefore, MP is suitable
for the task mapping problem with multiple constraints. In
fact, DVFS+TD also plays a similar role as MP since DVFS
and TD can be treated as the special cases of DVFS+TD
with ℎ𝑖 = 0 and ℎ𝑖 = 1 (𝑀 ≤ 𝑖 ≤ 2𝑀), respectively. By
jointly considering DVFS, task duplication, and multipath
data routing during task mapping, we can better use system
resources to improve energy efficiency.

Fig. 9(a) evaluates the influence of communication and
computation energy on task-to-node allocation. To describe
the relationship between the communication and computa-
tion energy consumption, we introduce two parameters 𝜇 =
𝐸𝑐𝑜𝑚𝑚
𝑘 ∕𝐸𝑐𝑜𝑚𝑝

𝑘 and Δ = 𝑀max∕𝑀𝑡𝑜𝑡𝑎𝑙. In 𝜇, we set 𝐸𝑐𝑜𝑚𝑚
𝑘 =

max∀𝛽,𝛾,𝜌
{

𝐸𝛽𝛾𝑘𝜌
}

and 𝐸𝑐𝑜𝑚𝑝
𝑘 = max∀𝑖,𝑙

{

𝑊𝑖
𝑓𝑙
𝑃𝑙

}

. Hence,

(a) Influence of energy ratio 𝜇 on
task allocation.

(b) Influence of V/F level interval 𝜖
on task duplication.

Figure 9: The influence of system communication and compu-
tation parameters on task allocation and duplication.

for a node 𝜃𝑘, the larger the value of 𝜇 is, the more energy
is consumed to transmit data, compared with task execution.
Let 𝑀𝑘 denote the total number of tasks allocated to 𝜃𝑘. In
Δ, 𝑀max = max∀𝑘{𝑀𝑘} is the maximum number of tasks
that are allocated to a node, and 𝑀𝑡𝑜𝑡𝑎𝑙 =

∑

∀𝑘𝑀𝑘 is the
total number of allocated tasks. Thus, Δ represents the rate
of task distribution among the nodes. The higher the value
of Δ, the more concentrated of tasks allocated to the nodes.
Fig. 9(a) shows that Δ increases with 𝜇. This is because
when the value of 𝜇 is small, the communication energy is
smaller than the computation energy. To balance the energy
consumption among the nodes, the tasks are prone to be
distributed to different nodes and thus lead to a smallΔ. With
𝜇 increasing, the dependent tasks are prone to be allocated
to the same nodes to reduce the communication energy,
leading to the increase of Δ. Therefore, the communication
and computation characteristics of the nodes will affect the
task allocation results.

Fig. 9(b) evaluates the influence of the voltage/frequency
interval on the task duplication decision. Since

∑

𝑙∈ 𝑦𝑖𝑙
𝑊𝑖
𝑓𝑙
𝑃𝑙

is the energy required to execute task 𝜏𝑖, the parameter
𝜖 = max∀𝑙

{

𝑃𝑙∕𝑓𝑙
}

∕min∀𝑙
{

𝑃𝑙∕𝑓𝑙
}

represents the range
of V/F level gap. The larger 𝜖, the difference between
the V/F levels is more apparent. On the other hand, we
introduce a parameter 𝛿 = 𝑀𝑑∕𝑀 to represent the rate of
task duplication, as 𝑀𝑑 is the number of duplicated tasks,
and 𝑀 is the number of original tasks. Fig. 9(b) shows
that 𝛿 increases with 𝜖. This is because when 𝜖 is small,
the gap between different V/F levels is small. To satisfy
the reliability constraint (7) and the time constraints (10)
and (11), executing two tasks (the original and duplicated
tasks) with low frequency will consume more energy than
executing one task (the original task) with high frequency.
Tasks are prone to being executed with a high V/F level
without task duplication and thus lead to a small 𝛿. However,
with 𝜖 increasing, task duplication is more energy efficient
to satisfy multiple constraints, increasing the duplicated task
number 𝑀𝑑 . Therefore, the processor parameters will influ-
ence the V/F selection and replica number of the DVFS+TD
scheme.

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 13 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

6. Related Work
This section discusses the related work regarding task

mapping inside a platform with multiple cores and among
multiple nodes in networked systems, targeting energy under
multiple constraints.

Regarding the approaches focusing on multicore map-
ping inside a single platform, approaches exist that apply
DVFS to reduce energy consumption. For instance, frame-
based independent tasks are considered in [14], and depen-
dent tasks with DVFS and Dynamic Power Management
(DPM) are studied in [6]. The task allocation problem is
formulated as an Integer Linear Programming (ILP) and
solved by a decomposition-based heuristic method [14],
while the task mapping problem is formulated as a MILP and
solved by the CPLEX solver [6]. Task migration mechanism
is employed in [28] to improve task execution efficiency of
ARM big.LITTLE platforms, where one task is divided into
several subtasks executed on the cores with heterogeneous
characteristics to balance task execution time and energy.
These works consider the influence of DVFS on energy
efficiency, neglecting the impact on task reliability due to
low voltage/frequency levels.

Other works focus on fault-tolerant techniques, which
incur significant time and energy overheads to the multicore
platforms. For instance, task reliability is optimized through
DVFS during task mapping [22] because task reliability
follows a Poisson distribution regarding working frequency
and supply voltage. Usually, higher task reliability requires
a higher voltage/frequency level. Task replication is used
to enhance task reliability, such as task duplication [36].
Since it is unlikely that the execution of task replicas on
different cores fails, task reliability increases with the num-
ber of replicas. For instance, many real applications, e.g.,
AGV and UAG [24], use more than two replicas to satisfy
the given reliability threshold based on safety standards.
However, it introduces more tasks for execution. DVFS and
task duplication are combined to reduce computation energy
under the reliability constraints for the data bus-based [7, 11]
and NoC-based [19] multicore platforms, as it optimizes
the number of tasks that require duplication, i.e., from full
duplication to partial duplication. The above studies mainly
focus on a single multicore platform without considering the
communication between different multicore platforms; thus,
task mapping will not influence the communication costs
between multicore platforms.

Regarding the mapping approaches focusing on multiple
nodes of the networked systems, they consider computation
and communication costs [8, 32], where the nodes with
embedded systems as process units, and the nodes are con-
nected to form networked systems. For instance, task alloca-
tion mechanisms with and without DVFS are considered and
compared to reduce computation and communication energy
under timing constraints [21]. DVFS and multipath data
routing are used to optimize the mapping process of depen-
dent tasks on the nodes to balance the energy consumption of
the nodes under time and energy constraints [17]. However,
task reliability issues are not considered in [21, 17]. The

problems of allocating and scheduling dependent tasks on
the nodes of the networked system are studied in [18, 37],
where task allocation and duplication [18] and task schedul-
ing and routing [37] are jointly optimized to enhance task
reliability. The target platforms of the above studies are
single-core. The nodes with multicore platforms collaborate
with the cloud to execute IoT applications [16], e.g., feder-
ated learning [34], where task mapping and offloading are
performed on the nodes and the cloud, respectively, so as
to reduce the computation and communication energy of
nodes under timing constraints. Task reliability issues are not
considered in [34, 16] since the cloud is assumed to have rich
computation resources. Compared with the above works,
we consider mapping dependent and real-time tasks on
the networked system nodes with a multicore architecture.
During the task mapping process, DVFS, task duplication,
and multipath data routing are jointly optimized to improve
energy efficiency under time, reliability, and dependency
constraints.

7. Conclusion
This work studies the MINLP-based mapping problem

of dependent tasks over a networked system, whose nodes
are realized with multicore embedded platforms enhanced
with DVFS. To balance the system’s energy consumption
under real-time response, task dependency and reliability
constraints, task allocation, frequency assignment, task du-
plication, and path selection decisions are jointly optimized.
We find the optimal solution through a linearization method
and design a decomposition-based heuristic method with
reduced computation time. The results show that our task
mapping method can optimize the system’s computation and
communication energy consumption under multiple con-
straints and outperform other methods regarding energy
efficiency, task reliability, and schedulability.

References
[1] Ali, H., Tariq, U.U., Liu, L., Panneerselvam, J., Zhai, X., 2019. Energy

optimization of streaming applications in IoT on NoC-based hetero-
geneous MPSoCs using retiming and DVFS, in: IEEE SmartWorld,
pp. 1297–1304.

[2] Arabnejad, H., Barbosa, J.G., 2013. List scheduling algorithm for
heterogeneous systems by an optimistic cost table. IEEE Trans.
Parallel Distrib. Syst. 25, 682–694.

[3] Billet, B., Issarny, V., 2014. From task graphs to concrete actions: a
new task mapping algorithm for the future Internet of things, in: IEEE
International Conference on Mobile Ad Hoc and Sensor Systems, pp.
470–478.

[4] Burer, S., Letchford, A.N., 2012. Non-convex mixed-integer nonlin-
ear programming: a survey. Surveys in Oper. Res. Manag. Sci. 17,
97–106.

[5] Chatterjee, N., Paul, S., Chattopadhyay, S., 2017. Fault-tolerant
dynamic task mapping and scheduling for network-on-chip-based
multicore platform. ACM Trans. Embed. Comput. Syst. 16, 1–24.

[6] Chen, G., Huang, K., Knoll, A., 2014. Energy optimization for real-
time multiprocessor system-on-chip with optimal DVFS and DPM
combination. ACM Trans. Embed. Comput. Syst. 13, 1–21.

[7] Cui, M., Kritikakou, A., Mo, L., Casseau, E., 2021. Fault-tolerant
mapping of real-time parallel applications under multiple DVFS

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 14 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

schemes, in: Proc. IEEE Real-Time and Embedded Technology and
Applications Symposium, pp. 387–399.

[8] Dai, X., Burns, A., 2020. Period adaptation of real-time control tasks
with fixed-priority scheduling in cyber-physical systems. Journal of
Syst. Architect. 103, 101691.

[9] Deelman, E., Singh, G., 2005. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems. Sci. Prog. 13,
219–237.

[10] Dey, S., Isuwa, S., Saha, S., Singh, A.K., McDonald-Maier, K., 2022.
CPU-GPU-memory DVFS for power-efficient MPSoC in mobile cy-
ber physical systems. Future Internet 14.

[11] Gou, C., Benoit, A., Chen, M., Marchal, L., Wei, T., 2018. Reliability-
aware energy optimization for throughput-constrained applications
on MPSoC, in: IEEE International Conference on Parallel and Dis-
tributed Systems, pp. 1–10.

[12] He, J., Xiao, Y., Bogdan, C., Nazarian, S., Bogdan, P., 2021. A
design methodology for energy-aware processing in unmanned aerial
vehicles. ACM Trans. Des. Autom. Electron. Syst. 27, 1–20.

[13] He, O., Dong, S., Jang, W., Bian, J., Pan, D.Z., 2012. UNISM: Unified
scheduling and mapping for general networks on chip. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 20, 1496–1509.

[14] Li, D., Wu, J., 2015. Minimizing energy consumption for frame-
based tasks on heterogeneous multiprocessor platforms. IEEE Trans.
Parallel Distrib. Syst. 26, 810–823.

[15] Lin, X., Wang, Y., Xie, Q., Pedram, M., 2015. Task scheduling with
dynamic voltage and frequency scaling for energy minimization in the
mobile cloud computing environment. IEEE Trans. Serv. Comput. 8,
175–186.

[16] Liu, J., Liu, C., Wang, B., Gao, G., Wang, S., 2022. Optimized
task allocation for IoT application in mobile-edge computing. IEEE
Internet Things J. 9, 10370–10381.

[17] Mo, L., Kritikakou, A., Sentieys, O., Cao, X., 2021. Real-time
imprecise computation tasks mapping for DVFS-enabled networked
systems. IEEE Internet Things J. 8, 8246–8258.

[18] Mo, L., Zhou, Q., Kritikakou, A., Cao, X., 2023. Energy optimized
task mapping for reliable and real-time networked systems. ACM
Trans. Sen. Netw. 19.

[19] Mo, L., Zhou, Q., Kritikakou, A., Liu, J., 2022. Energy efficient,
real-time and reliable task deployment on NoC-based multicores with
DVFS, in: Proc. Design, Automation & Test in Europe Conference &
Exhibition, pp. 1347–1352.

[20] Namazi, A., Abdollahi, M., Safari, S., Mohammadi, S., 2017. A
majority-based reliability-aware task mapping in high-performance
homogenous NoC architectures. ACM Trans. Embed. Comput. Syst.
17, 1–31.

[21] Pathak, A., Prasanna, V., 2010. Energy-efficient task mapping for
data-driven sensor network macroprogramming. IEEE Trans. Com-
put. 59, 955–968.

[22] Peng, J., Li, K., Chen, J., Li, K., 2022. Reliability/performance-
aware scheduling for parallel applications with energy constraints on
heterogeneous computing systems. IEEE Trans. Sustain. Comput. 7,
681–695.

[23] Qin, Y., Zeng, G., Kurachi, R., Matsubara, Y., Takada, H., 2019.
Execution-variance-aware task allocation for energy minimization on
the big.LITTLE architecture. Sustainable Computing: Informatics
and Systems 22, 155–166.

[24] Rice, L., Cheng, A., 1999. Timing analysis of the X-38 space station
crew return vehicle avionics, in: Proc. IEEE Real-Time Technology
and Applications Symposium, pp. 255–264.

[25] Schönhage, A., 1982. The fundamental theorem of algebra in terms of
computational complexity. Manuscript. Univ. of Tübingen, Germany
.

[26] Singh, J., Mangipudi, B., 2012. Restricted duplication based MILP
formulation for scheduling task graphs on unrelated parallel ma-
chines, in: IEEE International Symposium on Parallel Architectures,
Algorithms and Programming, pp. 202–209.

[27] Tariq, U.U., Ali, H., Liu, L., Hardy, J., Kazim, M., Ahmed, W., 2021.
Energy-aware scheduling of streaming applications on edge-devices

in IoT-based healthcare. IEEE Trans. Green Commun. Networking 5,
803–815.

[28] Thammawichai, M., Kerrigan, E., 2018. Energy-efficient real-time
scheduling for two-type heterogeneous multiprocessors. Real-Time
Syst. 54, 132–165.

[29] Tong, E., Niu, W., Tian, Y., Liu, J., Baker, T., Verma, S., Liu, Z.,
2021. A hierarchical energy-efficient service selection approach with
QoS constraints for Internet of things. IEEE Trans. Green Commun.
Netw. 5, 645–657.

[30] Topcuoglu, H., Hariri, S., Wu, M., 2002. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE
Trans. Parallel Distrib. Syst. 13, 260–274.

[31] Wei, T., Zhou, J., Cao, K., Cong, P., Chen, M., Zhang, G., Hu, X.,
Yan, J., 2018. Cost-constrained QoS optimization for approximate
computation real-time tasks in heterogeneous MPSoCs. IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst. 37, 1733–1746.

[32] Wu, P., Fu, C., Wang, T., Li, M., Zhao, Y., Xue, C., Han, S., 2021.
Composite resource scheduling for networked control systems, in:
IEEE Real-Time Systems Symposium, pp. 162–175.

[33] Xie, G., Chen, Y., Xiao, X., Xu, C., Li, R., Li, K., 2017. Energy-
efficient fault-tolerant scheduling of reliable parallel applications on
heterogeneous distributed embedded systems. IEEE Trans. Sustain
Comput. 3, 167–181.

[34] Yao, J., Ansari, N., 2021. Enhancing federated learning in fog-aided
IoT by CPU frequency and wireless power control. IEEE Internet
Things J. 8, 3438–3445.

[35] Yu, H., Ha, Y., Veeravalli, B., 2013. Quality-driven dynamic schedul-
ing for real-time adaptive applications on multiprocessor systems.
IEEE Trans. Computers 62, 2026–2040.

[36] Zhou, J., Sun, J., Zhou, X., Wei, T., Chen, M., Hu, S., Hu, X., 2019.
Resource management for improving soft-error and lifetime reliability
of real-time MPSoCs. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 38, 2215–2228.

[37] Zhou, Y., Samii, S., Eles, P., Peng, Z., 2021. Reliability-aware
scheduling and routing for messages in time-sensitive networking.
ACM Trans. Embed. Comput. Syst. 20, 1–24.

Lei Mo is an associate professor with the School of Automation, Southeast
University, Nanjing, China. He received the B.S. degree from the College
of Telecom Engineering and Information Engineering, Lanzhou University
of Technology, Lanzhou, China, in 2007, and the Ph.D. degree from the
College of Automation Science and Engineering, South China University
of Technology, Guangzhou, China, in 2013. From 2013 to 2015, he was a
research fellow with the Department of Control Science and Engineering,
Zhejiang University, China. From 2015 to 2017, he was a research fellow
with INRIA Nancy–Grand Est, France. From 2017 to 2019, he was a
research fellow with INRIA Rennes–Bretagne Atlantique, France. His
research interests include networked estimation and control in wireless
sensor and actuator networks, cyber-physical systems, task mapping and
resource allocation in embedded systems.

Jingyi Zhang received her B.S. degree in automation engineering from
Nanjing University of Aeronautics and Astronautics, Nanjing, China, in
2022. She is currently working towards the M.S. degree in Control Science
and Engineering at Southeast University, Nanjing, China. Her current re-
search interests include embedded and real-time systems, mixed-criticality
systems, and networked systems.

Minyu Cui is a research fellow with the Department of Computer Science
and Engineering, Chalmers University of Technology, Gothenburg, Swe-
den. She received the B.E. degree in optical information science and tech-
nology and the M.S. degree in electronics and communication engineering
from Shandong University in 2013 and 2018, respectively, and the Ph.D.
degree from École Normale Supérieure de Rennes at IRISA/Inria Rennes
in 2022. Her research interests include algorithm design, resource opti-
mization, task mapping, multicore architecture, fault-tolerance, computing
systems, and real-time systems.

Xiaoyong Yan received the PhD degree in computer science and technology
from the Nanjing University of Science and Technology, Nanjing, China,

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 15 of 16

Energy-Aware Task Mapping Combining DVFS and Task Duplication

in 2013. He is currently an associate professor with the Nanjing University
of Posts and Telecommunications. His research interests include wireless
networks and Internet of Things.

Shuang Wang received the BSc from the College of Sciences from Nanjing
Agricultural University in 2015 and the PhD degree from the School of
Computer Science and Engineering, Southeast University, Nanjing, China
in 2020. She was a visiting PhD student with the School of Computing,
Macquarie University, Sydney, Australia, from 2019 to 2020, and a post-
doctoral research fellow from 2020 to 2021. She is currently a lecturer
with Southeast University. Her main research interests focus on service
computing, big data analytics, and truth discovery.

Xiaojun Zhai is a Reader in the Embedded Intelligent Systems Laboratory
at the University of Essex. His research interests include the design and
implementation of digital image and signal processing algorithms, custom
computing using FPGAs, embedded systems, and hardware/software co-
design.

Lei Mo, Jingyi Zhang et al.: Preprint submitted to Elsevier Page 16 of 16

	cover.pdf
	Research Repository

	Energy-Aware Task Mapping Combining DVFS and Task Duplication for Multicore Networked Systems.pdf

