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Abstract

The ability to accurately detect and understand human emotions is crucial for various
applications, from enhancing human-computer interaction to advancing mental health
monitoring and neurorehabilitation. This thesis presents a multimodal emotion detec-
tion model that integrates Facial Emotion Recognition (FER), pupil size, and Galvanic
Skin Response (GSR) to provide a continuous and subtle analysis of emotional states.
Unlike conventional emotion detection systems that rely on single-modality approaches,
this research overcomes key limitations by combining physiological signals that capture
emotions’ arousal and valence.

A key contribution of this study is a robust multimodal emotion detection framework
that enhances pupil-based emotion prediction by isolating emotional signals from lu-
minosity effects, improving feature reliability. Across 32 emotionally varied video clips
shown to 47 participants, our corrected model achieved strong predictive performance
(mean correlation of 0.65 4 0.12, an R2 — score of 0.43 + 0.12, and Normalised Root
Mean Square Error (NRMSE)) of 0.27 + 0.036), significantly outperforming models
using uncorrected pupil size. These results highlight the importance of addressing en-
vironmental confounds and the model’s potential for real-world applications in affective
computing.

After obtaining pupil size corrected for luminosity, we also extracted features from Fa-
cial Emotion Recognition (FER) and Galvanic Skin Response (GSR). We integrated them
at a feature-level fusion. We then trained and evaluated an emotion detection machine
learning model on the same 47 participants. The model employs a regression-based
approach using the Extreme Gradient Boosting (XGBoost) algorithm, a powerful ma-
chine learning technique, to fuse these multimodal features. The model achieves higher
accuracy than model trained on single physiological features, with a correlation of 0.91
+ 0.041, an R2 of 0.710 + 0.098, and an NRM SFE of 0.183 4 0.030 for valence and
correlation of 0.86 + 0.061, an k2 of 0.665 4 0.359, and an NRM SFE of 0.187 4+ 0.070

for arousal, showcasing its ability to predict emotional states continuously.



The model was evaluated on a diverse set of participants, showing robustness to inter-
subject variability, and was designed with a lightweight architecture suitable for real-
time use on wearable and mobile platforms. By addressing challenges such as sig-
nal fusion, temporal misalignment, and computational efficiency, this work advances
the deployment of multimodal emotion detection systems. It lays the groundwork for
emotion-aware technologies in clinical care, neurorehabilitation, and human—-computer

interaction, enabling continuous and personalised monitoring of emotional states.
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Chapter 1
Introduction

In this introductory section, I have outlined the aim and significance of this research,
providing relevant background information. Additionally, I have presented the research
questions guiding this study, highlighted its contributions, described the thesis structure,
and listed related publications.

1.1  Motivation and background

Our study aims to develop a machine-learning model that utilises various biomark-
ers derived from physiological signals to track and assess emotional states in real-time.
By adopting a regression-based approach, we aim to capture subtle emotional changes
rather than confining detection to specific categories. This approach fosters a more com-
prehensive and nuanced understanding of emotional dynamics, enhancing the model’s

effectiveness across various emotional experiences, particularly in clinical settings.

1.1.1 Emotion

“Emotions help keep us on the right track by ensuring that we are led by more than
cognition” This insightful quote by Maurice Elias encapsulates the crucial role emotions
play in guiding human behaviour and decision-making. Far from being mere irrational
impulses, emotions serve as sophisticated adaptive mechanisms that work in tandem
with our cognitive processes [1], [2].

Emotions serve as an evolutionary compass, guiding us through the complexities
of our environment and social interactions. They provide rapid, intuitive responses
to situations, often before our slower, deliberative cognitive processes can thoroughly
analyse the circumstances [3]. This emotional guidance system has been honed over

millennia to promote survival and well-being.



The Significance of Self-Awareness and Understanding Others’ Emotions

The interplay between emotion and cognition is complex and bidirectional. While
cognitive processing is essential for eliciting emotional responses, emotions, in turn,
shape and guide our cognitive functions [4]. This dynamic relationship enables us to
adapt to our surroundings by integrating rational analysis and intuitive feelings, res-
ulting in well-rounded decision-making. Emotions enhance our cognitive abilities by
helping us prioritise information, invest experiences with meaning, and provide valu-
able insights that pure logic might overlook [5]. Beyond influencing thought processes,
emotions play a crucial role in psychological and social functioning, making emotional
awareness a vital skill for achieving personal and interpersonal success.

Recognising one’s emotions is fundamental to self-awareness, emotional regulation,
and well-being. Understanding personal emotions enables individuals to make more
informed decisions by striking a balance between logic and intuition [6]. It also plays a
crucial role in emotional regulation [7], helping individuals manage stress [8], frustra-
tion [9], and impulsive reactions effectively [10]. By being aware of their emotions, in-
dividuals gain a deeper understanding of their values, triggers, and motivations, which
fosters personal growth and resilience [11]. Furthermore, emotional self-awareness
supports goal achievement by maintaining motivation and perseverance, even in chal-
lenging situations [12].

Equally important is the ability to recognise emotions in others, which is essential
for building strong relationships and effective communication. Understanding the feel-
ings of those around us fosters empathy and compassion, enabling more supportive
and meaningful interactions. This skill is particularly valuable in conflict resolution, al-
lowing individuals to navigate sensitive disagreements and find constructive solutions.
Recognising emotions enhances teamwork, leadership, and workplace harmony in pro-
fessional settings by fostering emotional intelligence [13]. Additionally, in clinical and
caregiving contexts, the ability to identify emotions plays a vital role in diagnosing and
treating emotional or mental health conditions, ensuring appropriate support and inter-
vention [14].

Self-awareness and the ability to perceive others’ emotions are crucial for maintain-
ing psychological well-being, achieving social success, and making effective decisions.
Developing emotional intelligence enables individuals to foster healthier relationships,
promote personal growth, and navigate life’s challenges more effectively. By integrating
emotional awareness into daily interactions, individuals can enhance their communica-
tion, strengthen their resilience, and contribute to a more empathetic and understand-
ing society.



Impact of Emotion Recognition on Individuals with Clinical Conditions

People with mental health conditions like anxiety, depression, personality disorders
(PD), and alexithymia [15]-[18] often have trouble recognising emotions in themselves
or others. This difficulty is a result of their condition, not its cause. However, having
difficulty understanding emotions can make life even more complicated, affecting their
relationships, daily life, and overall well-being.

For example, individuals with PDs like borderline or antisocial PD may experience
heightened emotional sensitivity or a lack of empathy, which impairs their social interac-
tions and impulse control [19]. Those with anxiety disorders often misinterpret neutral
expressions as threatening, exacerbating their distress and avoidance behaviours [20].
People with schizoid personality traits typically struggle with recognising or responding
to emotions in others, resulting in social detachment and isolation [21].

In depression, deficits in emotional recognition can lead to negative biases, caus-
ing individuals to perceive neutral or positive expressions as unfavourable, reinforcing
feelings of worthlessness and hopelessness [20], [22]. Individuals with alexithymia,
often linked to brain injuries or trauma, face challenges in identifying and articulating
their own emotions, which complicates emotional regulation and interpersonal rela-
tionships [15], [19].

Understanding how these conditions affect emotion detection is crucial for devel-
oping targeted interventions. Enhancing emotional awareness through therapy [23],
training [24], or assistive technologies [25] can improve social functioning, reduce
distress, and promote healthier emotional regulation [26], [27]. However, these in-
terventions depend on accurately identifying and categorising emotions [28], a process
known as emotion labelling. Performed by individuals, psychologists, researchers, and
Al systems, emotion labelling is essential for effective emotion recognition and tailoring
appropriate support strategies.

Emotion Labelling

Emotion labelling involves identifying and categorising emotions in text, speech,
facial expressions, or physiological signals [29]. It plays a key role in understanding
human affective states and is widely applied in psychology, human-computer interac-
tion (HCI), and affective computing. Accurate labelling requires careful interpretation
of contextual cues, as emotions are complex and can vary across individuals and cul-
tures [30].

The labelling process typically involves human annotators who assign emotional
categories based on predefined classification systems, such as Ekman’s six basic emo-
tions—happiness, sadness, fear, anger, surprise, and disgust—or dimensional models
like the valence-arousal framework [31], [32]. Multiple annotators often review the



same data to maintain uniformity, and their assessments are validated through inter-
rater agreement methods [33].

High-Arousal

Tensed Excited

Delighted

Frustrated Happy

Negative-Valence Positive-Valence

Depressed Content

Low-Arousal

Figure 1.1: Emotion labelling in two-dimensional space [31]

While the valence—arousal model remains widely used due to its simplicity, recent
research has questioned its ability to capture the full complexity of human emotions.
For example, Cowen and Keltner [34] identified 27 distinct emotion categories that
exist on a continuous spectrum, challenging the notion that emotions can be reduced to
just two dimensions. Alternative frameworks, such as basic emotion theory or semantic
space models, offer more granular representations, though they may be more complex
to implement. Choosing the appropriate framework depends on the specific goals of the
study and the desired level of emotional nuance.

Emotion labelling helps researchers analyse patterns in human emotional responses,
providing insights into behaviour, decision-making, and mental health [35]. In physiolo-
gical signals studies, labelled emotional data enables the correlation of bodily reactions,
such as changes in pupil size or heart rate, with specific affective states.

In this thesis, emotion labelling (see Fig. 1.1) forms the basis for analysing parti-
cipants’ affective states through survey responses. This approach provides deeper in-
sights into emotional dynamics and their impact on cognition and behaviour by system-

atically mapping emotions. Moreover, precise emotion labelling is crucial for advancing



emotion detection technologies, which are increasingly integrated into various fields,
particularly clinical settings.

Building on this foundation, the following section examines how physiological sig-
nals can be utilised for emotion detection, offering an objective and continuous method
for assessing emotional states beyond self-reported data.

1.1.2 Emotion detection using Physiological signals

Physiological signals are measurable indicators of the body’s internal processes,
providing valuable insights into health and emotional states [36], [37]. These signals
are captured using sensors and devices that track changes in biological parameters [38].

Emotions influence physiological processes through the autonomic nervous system
(ANS), which regulates involuntary functions. The ANS consists of the sympathetic
nervous system (SNS), responsible for arousal and “fight-or-flight” responses, and the
parasympathetic nervous system (PNS), which governs relaxation and “rest-and-digest”
states [39]. Emotional states trigger unique physiological changes, detectable through
bio-signals such as pupil size, heart rate (HR), respiration, electrodermal activity (EDA)
or galvanic skin response (GSR), and Facial Emotion®.

Pupil Size

Pupil size, or pupillary diameter, refers to the width of the central opening of the
iris [40]. Typically measured in millimetres (mm), it fluctuates due to lighting condi-
tions, emotional states, and cognitive load [41]. Manual pupillometers, automated eye
trackers, and digital cameras capture baseline and dynamic changes.

The ANS regulates pupil size, with pupils constricting in bright light to protect the
retina and dilating in low light to enhance vision [42]. Beyond these reflexive responses,
pupil size changes in reaction to emotional and cognitive states [43]. Dilation occurs
during heightened arousal, stress, excitement, or increased mental effort, while con-
striction is associated with relaxation or focused attention [44].

Pupil size measurements are widely applied in psychology, HCI, and medical dia-
gnostics. In psychology, they help assess emotional responses and cognitive load [45],
[46]. In HCI, pupil size data informs user engagement and workload evaluation [47].
In medical settings, abnormal pupil responses can indicate neurological disorders or
drug effects [48], [49].

Eye trackers are used to precisely measure eye movement and pupil size, for ex-
ample, through infrared light and high-resolution cameras [50], [51]. They can provide
real-time data for research, education, and medical applications [52], [53]. Algorithms

Here we mentioned everywhere facial emotions/expressions as physiological signals, but to be pre-
cise, it’s a behavioural expression.



analyse the reflections to detect pupil boundaries and calculate the diameter.

Eye tracking technology is widely used in psychological and cognitive research,
where pupil dilation is a marker for arousal and mental effort [54]-[56]. In HCI, adapt-
ive interfaces adjust content complexity based on pupil size variations [47]. In medi-
cine, eye trackers assist in diagnosing neurological disorders [57], [58]. In education,
they evaluate student engagement and cognitive responses for personalised learning
strategies [59], [60].

Galvanic Skin Response

Galvanic Skin Response (GSR), or EDA or skin conductance, measures the skin’s elec-
trical conductivity in response to stimuli [61], [62]. The principle behind GSR is that
skin conductivity changes with moisture levels, influenced by sweat gland activity [63].
Emotional arousal triggers subtle sweating, increasing electrical conductivity [64]. Un-
like voluntary responses like eye movements or facial expressions, sweat gland activity
is autonomic, making GSR a reliable indicator of arousal without requiring conscious
self-reporting [65], [66].

GSR is measured by applying a small electrical current and recording skin resistance
across two electrodes (see Figure 1.2) [63]. The GSR signal has two components:

* Skin Conductance Level (SCL) — slow, long-term changes (tonic response) used

for baseline analysis [67].
* Skin Conductance Response (SCR) - rapid, event-driven fluctuations (phasic re-
sponse) indicating arousal events [68].

Figure 1.2: Data collection using GSR (Shimmer).



Photoplethysmography-based heart rate

Photoplethysmography (PPG) is a non-invasive optical technique that measures blood
volume changes by detecting light absorption or reflection variations [69]. A light
source and photodetector placed on the skin (e.g., fingertip, earlobe, or wrist) cap-
ture HR and blood oxygen levels (SpO,) [70].

PPG operates in two modes:

* Transmission mode — light passes through translucent tissue, with a sensor on the

opposite side.

* Reflectance mode - light reflects off the skin, with both sensor components on the

same side [71].

Widely used in cardiovascular monitoring, pulse oximetry, and wearable devices,
PPG is gaining attention in emotion detection, detecting physiological responses to
stress, excitement, and relaxation [72], [73]. Unlike self-reports, PPG provides real-
time, objective emotional tracking, benefiting mental health, HCI, and affective com-
puting [74]. However, motion distortions and skin pigmentation can affect accuracy,
though advancements in signal processing and ML are improving reliability [75].

Facial Emotion Recognition

Facial expressions are one of the most natural and intuitive ways humans communic-
ate their feelings, often reflecting emotional states even when verbal communication is
absent. By analysing facial movements, such as eyebrow raises, lip curvature, and eye-
widening, researchers can identify key emotional markers associated with happiness,
sadness, anger, surprise, fear, and disgust [76], [77]. Like physiological signals, auto-
matic Facial Emotion Recognition (FER) can also detect emotion. It plays a crucial role
in affective computing, a field dedicated to processing emotional information through
computational means [78]. Facial expressions are a powerful non-verbal communica-
tion, often conveying emotions more effectively than words [79]. It enables real-time
emotion detection in applications such as virtual assistants, adaptive learning environ-
ments, and customer experience analysis [80].

In psychological research, FER offers objective evaluations of emotional reactions,
minimising dependence on self-reported data, which could be biased or inaccurate. Ad-
ditionally, combining facial expression analysis with physiological signals can enhance
emotion detection accuracy, offering a more comprehensive understanding of an indi-
vidual’s affective state [36].



Use of Emotion Detection in Clinical Applications

Emotion detection is increasingly recognised as a valuable tool in clinical settings,
offering new opportunities for diagnosing, monitoring, and treating various psycholo-
gical and neurological conditions [81], [82], [83]. Traditional methods of assessing
emotional states, such as self-reports and clinician observations, can be biased or in-
consistent [84], [85]. Automated emotion detection, primarily through physiological
signals, provides an objective and continuous measure of emotional states, improving
the accuracy and reliability of emotional assessments [36], [86].

In clinical psychology, emotion detection aids in the early detection of mood dis-
orders such as depression and anxiety by identifying subtle physiological changes linked
to emotional dysregulation [87]. For individuals with alexithymia, borderline personal-
ity disorder (BPD), or schizophrenia, who may struggle with verbal emotional expres-
sion, emotion detection systems that analyse facial expressions, physiological responses,
and other biometrics can provide valuable insights [88].

Emotion detection technologies also have applications in personalised mental health
interventions, such as biofeedback therapy, where real-time emotional monitoring can
help patients develop better emotional regulation strategies [89]. In neurorehabilita-
tion, emotion detection can track emotional responses in individuals recovering from
brain injuries, allowing for adjustments to therapeutic approaches [90].

By integrating emotion recognition into clinical practice, healthcare professionals
can better understand a patient’s emotional well-being, leading to more precise dia-
gnoses and personalised treatment plans [91]. The advancement of Machine learning
(ML) models trained on multimodal physiological signals further expands the potential
of emotion detection in revolutionising mental health care and HCI.

1.1.3 Machine Learning

ML has emerged as a dominant approach in emotion detection due to its ability to
automatically learn patterns from large datasets. Unlike traditional methods that rely
on predefined rules, ML algorithms—intense learning models—can identify complex
relationships and subtle features within data, such as facial expressions, speech, and
physiological signals. ML models can detect emotions through feature extraction by
training on labelled datasets, gradually improving their accuracy as they are exposed to
more data [92]-[94].

The training process typically begins with collecting diverse datasets containing la-
belled emotional expressions across various modalities, including facial images, voice
recordings, and physiological data. These labelled datasets serve as the ground truth,
allowing the model to learn associations between patterns in the data and correspond-
ing emotional states.
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Various ML techniques are employed in the training process. Supervised learning is
commonly used, where models are trained on labelled data to classify emotional states
or predict emotional intensity. Convolutional Neural Networks (CNNs) are often applied
for FER, as they excel at identifying spatial patterns in image data. Recurrent Neural
Networks (RNNs) and Long Short-Term Memory (LSTM) networks are well-suited for
analysing sequential data like speech, as they capture temporal dependencies in vocal
tone and rhythm, critical for emotion detection [95], [96].

After training, the model is evaluated on a separate dataset to assess its generalisab-
ility and ensure it can accurately predict emotions in new, unseen data. The evaluation
process allows continuous refinement, with the model becoming more precise as it is
exposed to a broader range of emotional expressions. Model performance is then evalu-
ated using accuracy, precision, recall, F'1—score, R2— Score, NRM SFE, and correlation
metrics, which measure how well the model predicts emotional states and handles dis-
crepancies between expected and actual labels [97], [98].

In clinical applications, such as emotion-aware therapy or mental health monitor-
ing [93], [94], these trained models have the potential to offer real-time feedback on
a patient’s emotional state [99]. This, in turn, can enable clinicians to adjust interven-
tions dynamically, enhancing patient engagement and the effectiveness of therapeutic
sessions [100], [101]. Furthermore, emotion detection models can be particularly bene-
ficial for individuals with conditions like acquired alexithymia, where patients struggle
to recognise or express emotions. By analysing physiological signals or facial expres-
sions, these models can help individuals become more aware of their feelings, promot-
ing emotional regulation and better social functioning [102], [103].

However, using ML for automatic emotion detection presents several challenges.
One of the primary difficulties is the variability in emotional expression across individu-
als and cultures, making it hard to develop models that generalise well across diverse
populations [104], [105]. Additionally, emotions are inherently complex and often am-
biguous [106], as they can manifest through subtle facial expressions, vocal intonations,
physiological signals, or a combination of these modalities [107]. This necessitates ro-
bust feature extraction and fusion techniques to effectively capture relevant emotional
cues.

Another significant challenge is data quality and availability; emotion detection
models require large, labelled datasets, yet accurate and consistent labelling remains
subjective and prone to bias [108]. Furthermore, ML models must handle real-world
conditions, including variations in lighting [109], background noise [110]-[112], and
occlusions in video or audio recordings [113]. Utilising these models in clinical settings
introduces additional difficulties, as medical and psychological contexts require high
reliability, explainability, and regulatory compliance. Clinical applications must ensure
that emotion detection models do not misinterpret psychological states, leading to po-
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tential misdiagnoses or inappropriate interventions [114]. Moreover, integrating ML-
based emotion detection into healthcare workflows requires careful validation [115],
alignment with clinical standards [116], and consideration of patient privacy and eth-
ical concerns [117].

Finally, ensuring understandability and fairness in emotion detection models is cru-
cial, as biased or opaque systems can lead to ethical concerns, particularly in applica-
tions involving mental health assessments [118], hiring processes, or HCI [119]. Ad-
dressing these challenges requires advancements in data collection, model robustness,
and ethical Al practices to improve the reliability and applicability of ML-based emotion
detection.

Thus, developing and refining ML algorithms for emotion detection—including large
labelled datasets, noise-free signals, and continuous model updates—holds transform-
ative potential in healthcare, education, and beyond. Automatic emotion detection can
enable personalised, real-time interventions across various fields, particularly in clinical
settings where timely and accurate emotional assessment can enhance patient care and
mental health support.

1.2 Problem Statement

Automatic emotion detection through physiological signals, such as pupil size, GSR,
PPG-based heart rate, and facial expressions, presents several key challenges. One ma-
jor issue is the significant variability in physiological responses across individuals, where
emotional responses may vary widely, making it difficult to generalise results. These sig-
nals are not solely affected by emotional states but are also influenced by genetics, en-
vironmental conditions, and cognitive processes, making it difficult to generalise across
users.

Pupil size, for instance, is a commonly used indicator of emotional arousal, with
dilation often associated with heightened emotions such as excitement or fear. How-
ever, significant variability exists due to baseline differences across individuals, which
are influenced by age and neurological factors. Additionally, external factors such as
changes in ambient luminosity can independently alter pupil size, regardless of emo-
tions. Cognitive load, including concentration and mental effort, can also impact pupil
dilation, making it challenging to isolate emotional responses accurately.

Similarly, GSR, which measures changes in skin conductance due to sweat gland
activity, is widely used for detecting emotional arousal. However, individual physiolo-
gical differences mean some people exhibit stronger GSR responses than others, leading
to inconsistent readings. Environmental conditions such as temperature and humidity
further affect skin conductivity, potentially resulting in misleading interpretations. Ad-

ditionally, habituation effects can cause a decline in GSR responsiveness over time when
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individuals are repeatedly exposed to emotional stimuli, reducing its reliability in con-
tinuous emotion detection.

PPG-based heart rate (HR) and heart rate variability (HRV) are also commonly used
physiological markers for emotion detection. However, these signals vary significantly
among individuals due to differences in baseline heart rate, fitness levels, and age. Non-
emotional influences, such as caffeine intake, stress, and physical activity, can also cause
fluctuations in heart rate, making it difficult to attribute changes solely to emotional
states. Furthermore, heart rate responses to emotions often exhibit a delay, complicating
real-time emotion detection applications.

Facial expressions remain one of the most widely studied indicators of emotion,
but they, too, present challenges in variability. Cultural differences influence emotions,
with some individuals exhibiting more subtle facial expressions than others. Social
norms and personal disposition may lead individuals to mask or exaggerate their facial
expressions, introducing inconsistencies in emotion detection. Additionally, variations
in facial features, including ageing effects, facial hair, and occlusions, can impact the
accuracy of facial expression analysis.

Tackling these challenges means creating more substantial and personalised systems
for detecting emotions. This research delves further into combining different physiolo-
gical signals using multimodal fusion techniques to enhance accuracy and address the
limitations of individual methods. Plus, adaptive learning models that can adjust to a
user’s baseline physiological state could significantly enhance the reliability of emotion
detection. Additionally, context-aware systems that take into account external factors
such as lighting, temperature, and social settings can make emotion recognition models
more adaptable in diverse situations. Addressing these hurdles can make emotion de-
tection systems more precise, trustworthy, and valuable in many real-world scenarios.

Traditional emotion detection methods rely on classification models, which may not
always effectively handle multimodal data’s inherent noise and variability. To overcome
these challenges, this thesis employs an ML approach with a regression model, rather
than a classification approach, enabling more continuous and nuanced predictions of
emotional states. By analysing multimodal physiological signals in conjunction with
facial expressions, the model aims to provide more accurate emotional insights.

Furthermore, this research aims to eliminate the impact of luminosity on pupil size
data to improve the accuracy of emotion detection. Another major hurdle is the integ-
ration of multiple physiological markers; ensuring reliable emotion detection through
the combination of these different modalities remains a challenging task.

Overall, this research aims to enhance the reliability and robustness of emotion de-
tection systems, providing more accurate real-time feedback for applications such as
neurorehabilitation, emotion-aware therapy, and other fields of affective computing.
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1.3  Research questions

1. How can we construct individualised ground truth labels for affective states that
take into account the individual differences?

2. How can external factors, such as luminosity changes and environmental noise, be
controlled or compensated for to improve the accuracy and reliability of emotion
detection from pupil size?

3. How can regression-based models improve emotion detection by handling con-
tinuous emotional states and individual variations more effectively than tradi-
tional classification approaches?

4. How can multimodal data (e.g., pupil size, GSR, FER) be effectively integrated
into machine learning models to improve the accuracy and robustness of emotion
detection, and what are this approach’s key challenges and benefits?

5. What techniques can optimise ML models for real-time emotion detection using
simultaneous physiological signals, and what performance metrics are best suited
for evaluating their effectiveness?

1.4 Contributions

This thesis makes several novel contributions to the field of multimodal emotion

recognition, which can be summarised as follows:

1. Novel multimodal configuration: We propose a multimodal emotion recogni-
tion pipeline that integrates pupil size, GSR, and FER derived from 20 action units
(AUs). Unlike most prior studies that rely on ECG/EDA or audio-visual signals,
this unique combination leverages ocular dynamics, physiological activity, and fa-
cial behaviour, representing a multimodal configuration not previously reported
for dimensional affect prediction.

2. Vectorial mapping from FER to Russell’s circumplex: We introduce a vectorial
transformation method with the help of students that projects basic emotions into
Russell’s circumplex space, where emotion categories define angular positions and
intensity defines vector magnitude. Unlike traditional approaches that map dir-
ectly from AUs or categorical FER outputs to valence-arousal, this method pro-
duces interpretable, continuous affective coordinates and allows mixtures of emo-
tions to be represented simultaneously.

3. Temporal aggregation at the vector level: We propose a temporal averaging
strategy that aggregates emotion vectors across time, yielding a stable circumplex
trajectory for each stimulus. This approach preserves co-occurring emotions and
avoids collapsing data into a dominant label, in contrast with frame-by-frame or
regressor smoothing techniques commonly used in FER studies.
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4. Robust participant-level evaluation: We employ leave-one-participant-out (LOO)
cross-validation to explicitly address heterogeneity across participants. This en-
sures robust generalisation and avoids overfitting to individual-specific patterns, a
methodological consideration often overlooked in previous multimodal affect re-
cognition work.

5. State-of-the-art performance within selected modalities: Our experiments demon-
strate that pupil size-only, GSR-only models, and FER +GSR+pupil fusion achieve
concordance correlation coefficients (CCCs) superior to those previously reported
for these modalities. While some studies using ECG/EDA with deep networks re-
port higher absolute performance, our results establish a new benchmark within
the studied modality set.

6. Psychological interpretability: Our framework grounds predictions in Russell’s
circumplex model, ensuring that outputs are not only accurate but also psycholo-
gically meaningful. Each dimension corresponds directly to valence and arousal,
providing scientific transparency and practical relevance. This balance of perform-
ance and interpretability is rarely addressed in prior multimodal affect recognition
research.

To the best of our knowledge, this thesis is the first to combine corrected pupil size,
GSR, and FER-based vectorial mapping into Russell’s circumplex for continuous emotion
recognition. The framework offers a robust and interpretable approach to multimodal
affect prediction, advancing emotion detection research in clinical and mental health
contexts and supporting the development of more accurate and reliable emotion-aware
Al systems.

1.5 Structure of thesis

Here’s a brief overview of my thesis structure, summarising the key chapters:

* Chapter 1: Introduction This chapter introduces the primary focus of the re-
search, which is the development of a novel machine-learning model for emo-
tion detection using multimodal biomarkers. It outlines the research’s motivation,
objectives, and significance, highlighting potential applications in mental health
and clinical settings. The research questions and the thesis contributions are also
presented.

* Chapter 2: Literature Review The literature review chapter explores the existing
body of research on emotion detection techniques, mainly focusing on physiolo-
gical signals (such as pupil size, GSR, PPG-based HR) and FER. It covers tradi-
tional methods, challenges in multimodal emotion detection, and the application
of ML in emotion detection. Additionally, the chapter reviews related work on the

clinical use of emotion detection, especially in mental health monitoring.
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* Chapter 3: Development of Methodology for Emotion Detection Model This
chapter details the research methodology, including the techniques and algorithms
used to develop the ML model. It explains the process of collecting and prepro-
cessing multimodal data, like the luminosity-isolation technique for pupil size cor-
rection, and integrating them with FER and GSR features. The ML model training,
including regression-based approaches, is also discussed.

* Chapter 4: Results The results chapter presents the experiments’ outcomes using
the proposed model. It includes performance metrics, comparisons with baseline
methods, and evaluations of the model’s ability to predict emotions based on mul-
timodal physiological data. The chapter also covers the results from analysing the
impact of luminosity isolation on pupil-based emotion detection.

* Chapter 5: Discussion and Future Work This chapter discusses the implications
of the results, highlighting the strengths and limitations of the developed emo-
tion detection model. It addresses the challenges faced when integrating multiple
physiological signals, such as variability across individuals and the influence of ex-
ternal factors. The chapter also compares the model’s performance with other ex-
isting approaches, discusses the clinical applications in mental health and neurore-
habilitation, and works for future research.

* Chapter 6: Conclusion The final chapter summarises the key findings of the re-
search and outlines the contributions of the thesis. It reflects on the potential clin-
ical applications, particularly in mental health monitoring and discusses areas for
future research. The chapter concludes by emphasising the broader implications
of emotion-aware Al systems for improving patient care and therapy outcomes.

This structure provides a clear and logical flow of information, guiding the reader from
the background and theoretical foundations to the research’s practical contributions and
future directions.

1.6 Publications
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No.

Title of Publication

Journal/Conference/Year

Status

Towards an  Accurate
Measure of Emotional
Pupil Dilation Responses:
A Model for Removing the
Effect of Luminosity

IEEE Metroxraine, 2024

Published

Quantifying Emotional
Arousal through Pupil-
lary Response: A Novel
Approach for Isolating
the Luminosity Effect and
Predicting Affective States

IEEE Transactions on Affective

Computing, 2025

Submitted

Table 1.2: List of Publications



Chapter 2
Literature Review

In this section, I have provided a comprehensive review of relevant studies related
to the key topics addressed in my thesis, including emotion theory and classification,
the role of physiological signals in emotion detection, the application of ML techniques
for emotion detection, and the use of multi-modal approaches in emotion detection
systems.

2.1 Emotions and Emotion Classification

Emotions are fundamental to human experience [120], influencing thoughts [121],
behaviours [122], and interactions [122]. They are complex states involving physiolo-
gical arousal, subjective experiences, and expressive behaviours. The concept of emo-
tion is multifaceted, with diverse interpretations across psychology, neuroscience, and
philosophy. Historically, emotions were often viewed as irrational forces needing con-
trol [123]. Over time, theories evolved from physiological explanations (James-Lange
theory) to cognitive approaches and modern neuroscientific studies [124], [125]. Cul-
tural and social contexts also shape emotional experiences and interpretations [126].

Aristotle defined emotions as involving pain, pleasure, or both. Modern dictionaries
describe them as strong feelings like love, anger, or fear [127], [128]. The study of
emotions continues to evolve, reflecting the complexity of human experience and the
interplay of biological, psychological, and social factors.

Philosophers debate the nature of emotions, questioning their origins and authen-
ticity. Charles Darwin’s pioneering work proposed that emotions are universal, evolu-
tionary adaptations crucial for communication and survival [129]. Darwin revealed
their innate, shared characteristics by comparing human and animal emotional expres-
sions [129]. His research continues to influence the contemporary understanding of
emotions across psychology, anthropology, and neuroscience, highlighting emotions as

fundamental biological and social mechanisms.
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Schachter-Singer’s Two-Factor Theory of Emotion proposes that emotions result from
a two-step process: physiological arousal followed by cognitive labelling [130]. When
confronted with an emotional stimulus, such as a snarling dog, the body first reacts
physiologically (e.g., increased heart rate), and the resulting emotion (e.g., fear) de-
pends on how this arousal is interpreted in context. This theory underscores the dy-
namic interplay between bodily responses and cognitive processes in shaping emotional
experiences.

Emotions remain a continuously evolving topic across scientific [120], cultural [131],
technological, and personal domains [132]. Their recognition and understanding are
fundamental not only for emotional regulation [133] but also for supporting mental
health by reducing stress and anxiety, and enhancing self-awareness [134]. In applied
contexts, such as leadership, teamwork [135], and emotion-aware systems [136], ac-
curate emotion detection supports better decision-making by addressing emotional in-
fluences and biases [137]. Furthermore, understanding how cognitive appraisal shapes
emotions, as illustrated by the Schachter-Singer model, highlights the need for emotion
detection frameworks to incorporate both physiological signals and individual cognitive
interpretations.

Given the importance of emotion detection, various classification methods and frame-
works have been developed to categorise and understand the complexity of human
emotions.

Some prominent emotion classification methods include:

Basic Emotion Models. These models attempt to identify a limited set of fundamental
and universal emotions biologically ingrained and consistently recognisable across cul-
tures. They categorise emotional experiences into core affective states, often based on
evolutionary or behavioural evidence. Some of the best-known models include:

e Paul Ekman’s Six Basic Emotions [138]: Ekman identified six universal emo-
tions—happiness, sadness, anger, fear, disgust, and surprise—based on facial ex-
pressions observed across diverse cultures.

* Robert Plutchik’s Wheel of Emotions [139]: Plutchik proposed eight primary
emotions—fear, sadness, anger, joy, surprise, disgust, anticipation, and trust—arranged
in a wheel-like structure to illustrate the relationships between emotions, includ-
ing their intensities and opposites.

Dimensional Models. In contrast to categorical approaches, dimensional models rep-
resent emotions within a continuous affective space. These models are particularly
valuable in computational modelling and affective computing, where emotional states
are better captured along gradations rather than as discrete labels. Two widely cited
dimensional models are:
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* Russell’s Circumplex Model [32]: Emotions are mapped within a two-dimensional
circular space defined by:
— Valence: the degree of pleasantness (positive vs. negative emotions).
— Arousal: the level of activation or intensity (high vs. low).
Conceptually similar emotions appear close together in this space, while opposites
are positioned across.

Surprise
/ ACTIVATION
tense alert
Fear
nervous :
Anger excited
/ stressed elated
Disgust
upset happy Happiness
UNPLEASANT PLEASANT
sad contented
Sadness
depressed serene
lethargic relaxed

fatigued

DEACTIVATION

Figure 2.1: Russell’s Circumplex Model of Affect.

* Lovheim’s Cube Model [140]: A three-dimensional model incorporating:
— Valence (pleasure—displeasure)
— Arousal (activation—non-activation)
— Dominance (control-submission)
This framework is particularly relevant in physiological and neurochemical studies
of emotion, as it enables the modelling of emotional states in terms of neurotrans-

mitter influences.

Critical Evaluation of Dimensional Models. Dimensional approaches address some
of the limitations of categorical models by representing emotions on a continuous spec-
trum, which better reflects the gradations and overlaps observed in real emotional ex-
periences [141]. For computational modelling, this flexibility is especially advantage-
ous, as it enables algorithms to capture subtle variations in affect rather than forcing
discrete categories. However, dimensional models are not without limitations. Their
abstraction into broad axes such as valence and arousal can sometimes oversimplify the
richness of emotional phenomena, neglecting discrete emotions that carry unique social
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or evolutionary significance (e.g., disgust or pride) [141]. Furthermore, dimensional
spaces can vary depending on the methodology used to derive them, raising questions
about their universality and comparability across studies [34]. The reliance on self-
reported ratings for positioning emotions in these spaces also introduces subjectivity,
which may affect the reliability of ground-truth labels.

Rationale for Using Russell’s Circumplex Model. Among dimensional models, Rus-
sell’s Circumplex Model is particularly influential and widely adopted because of its bal-
ance between parsimony and explanatory power. The two axes of valence and arousal
capture the majority of variance in affective experience and align closely with under-
lying neurophysiological processes [32]. Compared to more complex frameworks such
as Lovheim’s Cube Model, the circumplex offers an intuitive and empirically validated
structure that is easier to implement in computational settings and more accessible for
participants in self-report surveys. This simplicity makes it especially effective in exper-
imental contexts where participants are repeatedly rating stimuli, as cognitive load is
minimised.

Moreover, the circumplex framework facilitates the integration of multimodal data.
Physiological signals such as GSR and HRV strongly correlate with arousal, while EEG
markers and facial expressions contribute to valence estimation, making the two-dimensional
structure well-suited for multimodal fusion in affective computing [142]. While the
omission of a dominance/control dimension (as included in models such as Lovheim’s)
may limit granularity in some applications, the circumplex strikes a practical balance
between interpretability, computational efficiency, and empirical robustness. For these
reasons, Russell’s model was selected as the foundation for emotion labelling in this
study. Its broad applicability, empirical support, and efficiency make it a powerful tool
in psychological and computational applications. However, when studying emotions in
controlled environments, such as laboratories, several challenges arise, particularly in
eliciting authentic emotional responses from participants.

In laboratory settings, researchers often face the issue of eliciting and labelling emo-
tions in a way that accurately represents genuine emotional experiences. The challenge
lies in triggering genuine and consistent emotions across participants while reliably cat-
egorising them. These complexities become especially important when utilising emotion
models like Russell’s, as accurately labelling emotional states in real-time becomes cru-
cial for understanding the affective responses to various stimuli. This section delves into
the techniques and challenges in eliciting and labelling emotions within the lab envir-
onment, providing a foundation for understanding the subsequent model development
and evaluation.
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2.2  Eliciting and Labelling Emotions

Studying emotions in laboratory settings presents several challenges, including how
to trigger genuine emotional responses. While emotions are natural reactions to vari-
ous situations and often occur beyond conscious control, researchers in controlled en-
vironments must induce or trigger specific emotional states for study. This is typic-
ally achieved through emotional stimuli such as audio [143], video [144], and im-
ages [145]. These stimuli are carefully selected to elicit targeted emotional responses,
allowing researchers to study how individuals react to specific emotions in a controlled
setting. However, the artificial nature of the lab environment, combined with parti-
cipants’ awareness of being observed, can compromise ecological validity and influence
emotional authenticity.

Pan et al. found that audio-only stimuli did not necessarily induce stronger emo-
tional responses than visual or audiovisual stimuli [146]. Their research revealed no
significant difference between audiovisual and audio-only presentations in terms of
emotional response, with visual-only stimuli occasionally being more effective. This sug-
gests that audio stimuli alone may not be as powerful as visual or combined audiovisual
stimuli in eliciting emotions. Further supporting this, research on tracking accuracy
tasks found visual cues more effective than auditory cues, indicating that visual inform-
ation can often have a more substantial impact than audio in specific contexts [146].

Similarly, Meike K. Uhrig et al. compared the effectiveness of pictures and film
clips in eliciting emotional responses, challenging the belief that films are inherently
more effective [147]. They found that pictures, particularly sequences of three con-
gruent images, were more effective in generating stronger emotional responses and
arousal [147]. This highlights the importance of carefully selecting emotion-research
stimuli for reliable emotion induction.

Other studies have explored the effectiveness of various stimuli for emotion induc-
tion. McGinley and Friedman compared imagery, recall, and film clip viewing, finding
that film clips were the best-performing technique in predicting emotion-specific pat-
terns of ANS activation [148]. A meta-analysis by Westermann et al. also confirmed
that film clips outperformed other emotion induction techniques in eliciting positive
and negative emotional states [149].

A study comparing slides and video clips for emotion elicitation revealed that video
clips were more effective in inducing arousal, particularly for erotic and fear-inducing
content [150]. Participants reported greater self-perceived arousal after viewing fear
and erotic video clips compared to slides of the same categories. Additionally, Laroche
et al. found that animated images (similar to short video clips) induced higher levels of
pleasure than static images in an online context [151].

These findings suggest that dynamic stimuli like videos, due to their multimodal
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nature (visual and auditory) and ecological validity, are often more effective than static
images in eliciting emotions. However, some studies also indicate that videos may
not always be more effective for emotion induction. For example, a survey by Bar-
tolini investigated the impact of film clip duration on emotion elicitation, revealing that
longer clips were more effective in evoking positively valenced emotions. In compar-
ison, shorter clips had a more substantial impact on negative emotions [152]. This
emphasises the importance of stimulus duration in shaping emotional responses.

Complementing this, research on standardised Chinese emotional short videos showed
that clips between 60 to 240 seconds effectively elicit specific emotions, with a mean
clip duration of 148.69 seconds [153], [154]. This research also highlighted the im-
portance of considering demographic factors, such as age and gender, when selecting
video stimuli.

Critically, while a substantial body of evidence supports the effectiveness of
certain stimulus types (e.g., videos, film clips) in eliciting emotions, generalising
these findings across populations and contexts remains a challenge. Emotional
responses are shaped not only by stimulus features but also by individual differ-
ences, cultural norms, and situational contexts. Furthermore, studies relying on
self-reports of arousal or valence may not capture more subtle or mixed emotions.
Thus, while multimedia stimuli offer strong potential for emotion elicitation, they
require careful design, cultural calibration, and complementary validation through
physiological or behavioural measures.

As emotion elicitation is already challenging, determining the ground truth emo-
tional state adds a layer of complexity to emotion research. The most common approach
to determining ground truth in emotion research is through self-assessment question-
naires. Nevertheless, this approach may not consistently provide accurate results be-
cause it depends on people’s subjective interpretations of their emotional conditions,
which can be affected by factors such as mood, level of self-awareness, and a tendency
for social desirability bias and cognitive bias. Cognitive bias is a systematic pattern of
deviation from rational judgment, where individuals perceive, interpret, or remember
information in a way that is influenced by their beliefs, emotions, or past experiences
rather than by objective evidence [155]. While often helpful for quick decision-making,
these mental shortcuts can introduce perception, memory, and emotional interpretation
errors. Considering cognitive biases during emotional labelling helps account for these
distortions, thereby improving the accuracy and robustness of the model by aligning it
more closely with how humans process emotional information [156]. Despite its lim-
itations, self-assessment remains a widely used choice due to its simplicity and ease of
implementation.

Several types of questionnaires have been used for the emotional detection study.
The PANAS (Positive and Negative Affect Schedule), developed by Watson, Clark, and
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Tellegen [157], is a psychometric tool designed to measure two independent dimensions
of affect: Positive Affect (PA) and Negative Affect (NA). It consists of 20 items, with 10
each for PA (e.g., enthusiasm, alertness) and NA (e.g., distress, fear), rated on a 5-
point Likert scale. Scores for PA and NA are calculated separately, with higher scores
indicating greater intensity of the respective effect. The PANAS is validated for high
internal consistency (Cronbach’s alpha: 0.86-0.90 for PA and 0.84-0.87 for NA) and
test-retest reliability. Its brevity, reliability, and flexibility across time frames make it
widely used in research to assess emotional states.

A study by Bradley and Lang [158] compares two tools for assessing emotional re-
sponses: the Self-Assessment Manikin (SAM) and the Semantic Differential (SD) scale.
SAM is a non-verbal, pictorial tool that uses simple graphic figures to measure three
dimensions of emotion: pleasure, arousal, and dominance. It requires only three judg-
ments, making it efficient and suitable for diverse populations, including non-English
speakers and children. In contrast, the SD scale, developed by Mehrabian and Rus-
sell [159], uses 18 bipolar adjective pairs (e.g., "happy-sad") to assess similar emotional
dimensions. The study found high correlations between SAM and SD ratings for pleas-
ure and arousal. Still, differences in the dominance dimension were noted, where SAM
appeared to better capture personal responses to stimuli. SAM was highlighted as a
quicker, more accessible method for measuring affective responses across various con-
texts.

The Cognitive Emotion Regulation Questionnaire (CERQ), developed by Garnefski
et al. [160], is a widely used self-report tool designed to assess individuals’ cognitive
strategies to regulate emotions after experiencing stressful or adverse events. The CERQ
consists of 36 items divided into nine subscales, representing both adaptive strategies
(e.g., acceptance, positive refocusing, positive reappraisal, putting into perspective, and
refocus on planning) and maladaptive strategies (e.g., rumination, catastrophizing, self-
blame, and blaming others). Each item is rated on a 5-point Likert scale, with higher
scores indicating more significant use of the corresponding strategy.

The CERQ has been extensively validated across various populations and languages,
demonstrating strong psychometric properties such as internal consistency, reliability,
and construct validity. A shorter 18-item version (CERQ-short) has also been developed
for quicker assessments while preserving the original nine-factor structure. The CERQ
is particularly useful in clinical and research settings for understanding how cognit-
ive emotion regulation strategies influence mental health outcomes, such as anxiety,
depression, and overall well-being. Its ability to distinguish between adaptive and mal-
adaptive strategies makes it an effective tool for identifying emotion regulation patterns
and informing interventions.

Izard’s Differential Emotions Scale (DES) is a self-report tool designed to measure
ten fundamental emotions (e.g., joy, anger, fear, guilt) using 30 items rated on a 5-point
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Likert scale [161]. While the DES has been widely used and shows stability in measuring
emotional factors, its reliability and validity have mixed findings. Studies demonstrate
that the DES generally maintains high intercorrelations and aligns with theoretically
defined emotional factors, supporting its construct validity. However, criticisms include
low internal consistency for some sub-scales due to the limited number of items per
emotion and potential response biases inherent in self-report measures. Factor analyses
have supported many of the proposed emotions, but suggest unclear construct validity
for certain sub-scales. Additionally, the DES has been criticised for overemphasising
negative emotions and excluding low-energy states like serenity, which limits its com-
prehensiveness. Despite these limitations, it remains helpful in research on emotional
states and their relationship to behaviours and psychological conditions.

It is important to critically recognise that while self-report instruments like
PANAS, SAM, CERQ, and DES provide accessible means of capturing emotional
states, they inherently rely on participants’ self-awareness, introspection, and will-
ingness to respond truthfully. As such, they may fail to capture transient, un-
conscious, or socially masked emotions. Additionally, questionnaire fatigue and
interpretation variability can undermine data quality. To overcome these limita-
tions, self-reports should ideally be complemented by physiological, behavioural,
or multimodal data sources that can offer more objective or continuous emotion
indicators.

These self-assessment tools are essential in emotion research, offering insight into
individuals’ emotional states. However, their accuracy can vary depending on indi-
vidual differences and context, making it necessary to scale their ground truth indi-
vidually [162]. This highlights the importance of multidimensional emotional ratings,
which account for the complexity of emotional experiences and provide a more nuanced
understanding of emotion detection.

A study by E. David et al. exemplifies this approach with the Multidimensional
Emotional Questionnaire (MEQ), a self-report tool designed to comprehensively assess
emotional experiences [163]. By evaluating two overarching dimensions of emotional
reactivity (positive and negative), three components of reactivity (frequency, intensity,
and persistence), and ten discrete emotions, the MEQ captures the richness of indi-
vidual emotional variation. Additionally, its assessment of emotion regulation abilities
ensures a complete analysis of emotional responses. Validated through multiple stud-
ies with strong psychometric properties, the MEQ demonstrates how multidimensional
emotional ratings enhance the accuracy and reliability of self-assessment tools, ulti-
mately improving individual survey computation in emotion research.

Building on this scaling approach and the reference study by Jongwan Kim et al.,
we incorporated a multidimensional assessment methodology. In their research, parti-
cipants watched a series of video stimuli and rated their emotional responses along six
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dimensions: excitement, positivity, calmness, anxiety, negativity, and sadness [164].

After each video, participants provided ratings on these six emotional dimensions,
creating a comprehensive emotional profile for each stimulus. The researchers construc-
ted a correlation matrix for each participant to analyse this data, encompassing the 32
stimuli across all six emotional ratings.

Based on these insights, we decided to use multidimensional emotional question-
naires for our study, ensuring a more detailed and reliable assessment of emotional
responses.

Ultimately, combining rigorous stimulus selection with multidimensional and
individualised emotion labelling strategies allows researchers to move beyond
oversimplified emotion models. This approach increases ecological validity, cap-
tures the depth of emotional experience, and facilitates more accurate emotion
detection across diverse individuals and contexts.

2.3  Overview of Emotion Detection Using

Physiological Signals

Physiological signals are widely used in emotion detection to enhance accuracy and
objectivity, complementing self-reported emotional ratings. These signals include meas-
ures like Electroencephalogram (EEG) for brain activity, Electrocardiogram (ECG) and
photoplethysmogram (PPG) for heart-related metrics such as HRV, GSR for emotional
arousal (see Figure 2.2), Electromyogram (EMG) for muscle activity, respiration amp-
litude, and Facial Emotion Recognition (FER), all of which provide real-time insights
into emotional states and regulation [165], [166].

Emotion detection methods aim to decode human emotions by examining physiolo-
gical changes in the central nervous system (CNS) and ANS. Various signals reflect
underlying emotional states, such as pupil dilation, GSR, HRV, respiration, and brain
activity, all driven by the CNS and ANS. These physiological responses offer valuable
insights into the connection between emotional experiences and bodily processes.

According to the literature, pupil dilation, GSR, and HRV are strong indicators of
emotional arousal [167] (see Figure 2.2), while facial expressions are markers of emo-
tional valence [168]. Brain activity, measured through EEG, provides insights into
arousal and valence [169]. Integrating these physiological signals enhances the ac-
curacy of emotion detection.

FER enhances emotion detection by analysing facial expressions to classify emotions
such as happiness, sadness, anger, and fear [170]. It improves user experience by en-
abling adaptive interactions [171], monitors engagement in educational settings [172],
enhances surveillance through behavioural analysis [173], [174], and aids businesses
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Figure 2.2: GSR response on different emotions [167].

in assessing customer reactions [172], [174].

FER systems can be categorised into static image FER and dynamic sequence FER
based on feature representation. Static-based methods focus on extracting spatial fea-
tures from individual images, encoding only the information in a single frame. These
methods are more straightforward and computationally efficient but lack temporal con-
text, making them suitable for tasks where expressions are analysed in isolation [175].
In contrast, dynamic-based methods consider the temporal relationships among con-
tiguous frames in a sequence, capturing the evolution of facial expressions over time.
These approaches leverage temporal models, such as Hidden Markov Models (HMMs)
or RNNs, to analyse motion and intensity variations in expressions, providing richer
emotional context [176], [177]. Dynamic FER is particularly effective in real-world
applications where emotions are expressed as continuous sequences, such as video-
based interactions or behavioural analysis. Both approaches have their strengths and
limitations, with static FER excelling in simplicity and dynamic FER offering greater
contextual accuracy.

Traditional methods for FER primarily relied on handcrafted features and shallow
learning techniques, such as Local Binary Patterns (LBP) [178], LBP on Three Ortho-
gonal Planes (LBP-TOP) [179], Non-Negative Matrix Factorisation (NMF) [180], and
sparse learning [181]. These approaches focused on extracting spatial and texture-
based features from controlled environments, often limiting their generalisability to
real-world scenarios [171], [182]. However, since 2013, the emergence of large-scale
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datasets like FER2013 [183] and Emotion detection in the Wild (EmotiW) [184] has
facilitated the transition of FER systems from lab-controlled settings to "in-the-wild"
conditions. These datasets provide diverse and challenging real-world facial data, en-
abling the development of deep learning-based methods that leverage CNNs and other
advanced architectures to improve recognition accuracy under varying lighting, occlu-
sions, and head poses [185]. This shift has significantly enhanced FER’s applicability in
real-world scenarios like HCI and behavioural analysis.

Despite its potential, FER faces challenges such as cultural variability, occlusions
(e.g., masks), and privacy concerns. However, integrating physiological signals en-
hances accuracy and expands applications [186]. Physiological measures like HRV, pu-
pil dilation, and GSR/skin conductance (SC) are involuntary, making them less suscept-
ible to conscious control and providing unbiased emotional assessments [187]. Studies
show that physiological responses occur even when emotional stimuli are processed
unconsciously, highlighting their reliability in emotion detection [188]. As these sig-
nals are less susceptible to conscious control, they offer a reliable means of continu-
ously monitoring emotions, particularly in clinical settings and long-term studies [189],
[190]. Additionally, unlike facial expression analysis, physiological measures are not
influenced by cultural variability, conscious control, occlusions, and limited emotional
granularity, making them a valuable tool for emotion detection [187]. These signals
capture distinct emotional dimensions like arousal, valence, and dominance [191]. In
a study by S. Jerritta et al., physiological signals are highlighted as essential tools for
emotion detection due to their involuntary and reliable nature, reflecting the underly-
ing ANS and CNS responses to emotions [191].

Physiological signals can be detected through various sensors, which are either wear-
able or mounted on computer screens. Wearable sensors, such as wristbands, chest
straps, or adhesive patches, are commonly used for monitoring signals like HR, GSR,
aka EDA, aka SC, respiration, and EMG in real time. These devices are compact, non-
invasive, and suitable for continuous monitoring in real-world scenarios, enabling ap-
plications like stress detection and emotion detection [192]. For example, wearable
systems have been developed to monitor HR and SC during activities like driving or
exercise, offering robust data collection while allowing free movement [192], [193].
Mounted sensors on computer screens or other fixed devices are less common but can
capture physiological signals like gaze patterns or facial expressions for emotion detec-
tion in controlled environments. Both wearable and mounted sensors play a vital role in
capturing physiological signals for applications in healthcare, sports performance mon-
itoring, and emotion detection [194].

Pupil size, often measured using eye-tracking devices placed on or near the com-
puter screen, plays a crucial role in emotion detection as it reflects both autonomic and
cognitive processes associated with emotional states [195], [196]. Eye-trackers can
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capture various data, including pupil dilation, gaze direction, blink rates, and fixation
points [197]. These provide valuable insights into a person’s emotional and cognitive
responses during stimulus exposure. Emotionally arousing auditory or visual stimuli
consistently result in more significant pupil dilation than neutral stimuli. For example,
pupil size begins to dilate within 200 milliseconds following the release of noradren-
aline (a neurotransmitter and hormone) in response to emotional arousal [198], [199].
This rapid response makes pupil size an effective physiological marker for assessing
emotional reactions. The ANS controls pupil dilation in response to emotional stim-
uli through the interplay of its two branches [200]. The SNS triggers pupil dilation
(mydriasis) via norepinephrine, enhancing vision during arousal or stress [201]. The
PNS regulates pupil constriction (miosis) by acting through the oculomotor nerve and
the neurotransmitter acetylcholine. This function is most active during calm or restful
states, helping to adjust the eyes for near vision and reduce light intake [202]. How-
ever, research on the valence-specific effects of emotional stimuli shows mixed results.
While some studies suggest that negative stimuli (e.g., crying or fear-inducing images)
elicit larger pupil dilations than positive stimuli (e.g., laughter or joyful expressions),
possibly due to the survival-related importance of negative emotions [203], others re-
port similar pupil responses to both positive and negative stimuli when arousal levels
are comparable [204].

Pupil dilation is generally considered an autonomic response to emotional arousal
rather than a direct indicator of cognitive-emotional processing [205]. Its strong cor-
relation with arousal levels makes it a reliable measure for assessing the intensity of
emotional experiences, regardless of their valence. This characteristic has made pupil
size an invaluable tool in emotion detection research and applications, particularly in
contexts requiring non-invasive and real-time measurements. A study by Nicola et al.
further explores the significance of pupil size as a metric for understanding brain states,
emphasising its utility in assessing arousal, cognition, and neural function [206]. Pu-
pil size, influenced by both light-driven [207] and brain-driven processes [208]-[210],
fluctuates in response to ongoing brain activity and serves as a widely recognised meas-
ure of arousal and autonomic function. The study highlights the role of pupil-linked
arousal in neural and cognitive processes, linking it to neuro-modulators like norad-
renaline and orexin [211]. These fluctuations are proposed to reflect interconnected
feedback loops within the brain, offering insights into arousal mechanisms. The authors
stress the importance of well-defined tasks, neuro-computational models, and physiolo-
gical probing to refine interpretations of pupil size as an indicator of brain activity. This
work underscores pupil size as a low-cost yet powerful tool for basic research, clinical
applications, and home monitoring.

GSR and PPG, commonly measured by wearable devices, are two other physiological
signals critical for emotion detection.



29

Galvanic Skin Response (GSR) reflects changes in sweat gland activity regulated
exclusively by the sympathetic branch of the ANS [212], [213]. GSR responses can
be decomposed into two components: a tonic (slow-varying) component that reflects
baseline arousal levels and a phasic (rapid) component that corresponds to discrete
stimulus-evoked responses [214]. Phasic responses typically occur with a latency of
1-5 seconds following an emotional stimulus and last several seconds, providing a tem-
porally precise measure of arousal [215]. While GSR is highly sensitive to emotional
intensity and reliably differentiates high- versus low-arousal states (e.g., stress, excite-
ment, or fear) [216], it cannot on its own distinguish between positive and negative
valence [217]. Nonetheless, its strong temporal sensitivity makes it one of the most
widely used autonomic markers in emotion research.

Photoplethysmography (PPG) measures blood volume changes in peripheral vas-
culature using light absorption, and it is strongly influenced by both sympathetic and
parasympathetic branches of the ANS. From PPG, several cardiovascular indices can
be extracted. Heart rate (HR) reflects overall arousal levels, while heart rate variab-
ility (HRV) captures the balance between sympathetic activation and parasympathetic
regulation, making it informative for both arousal and valence dimensions [218]. For
example, reduced HRV has been linked to stress, anxiety, and negative affect, whereas
higher HRV is associated with relaxation, positive affect, and greater emotional regula-
tion capacity [219]. Pulse rate variability (PRV), derived from PPG as an alternative to
HRYV, provides similar insights with high temporal resolution and is particularly suitable
for wearable applications [220].

Together, GSR and PPG provide complementary perspectives on emotion: GSR deliv-
ers rapid, stimulus-locked markers of arousal, while PPG-derived HRV and PRV indices
add information about both arousal and valence through autonomic balance. Their non-
invasive, wearable nature enables continuous monitoring in naturalistic environments,
making them highly practical for emotion detection in real-world applications such as
stress monitoring, adaptive human—computer interaction, and affective healthcare.

EEG measures electrical activity in the brain with high temporal resolution (on the
order of milliseconds), making it especially suitable for capturing the fast dynamics
of emotional processing [192]. Emotion-related EEG features are typically extracted
from both the temporal characteristics of neural oscillations and their spatial distribu-
tion across cortical regions. Frequency-domain analysis focuses on the power of dif-
ferent bands: increased alpha (8-12 Hz) suppression in frontal regions is associated
with higher arousal, while frontal alpha asymmetry (greater left vs. right activity) is a
well-established marker of positive versus negative valence [221], [222]. Elevated beta
(13-30 Hz) and gamma (>30 Hz) power often correspond to heightened arousal, anxi-
ety, or stress, whereas increased theta (4-7 Hz) activity has been linked to emotional
memory and regulation [223].
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Spatially, EEG allows localisation of emotion-sensitive activity: the prefrontal cor-
tex is strongly implicated in valence processing, with left-hemispheric dominance for
approach-related positive emotions and right-hemispheric dominance for withdrawal-
related negative emotions [224]. The parietal cortex contributes to attentional and
arousal-related modulation, while temporal regions are associated with affective aud-
itory and visual processing [222], [225], [226]. These spatial-temporal markers enable
EEG to disentangle dimensions of valence and arousal in real time, complementing
slower autonomic measures such as HRV or GSR.

Moreover, event-related potentials (ERPs) derived from EEG provide temporally pre-
cise indices of emotion processing. Components such as the late positive potential
(LPP) are enhanced for emotionally salient stimuli regardless of valence, reflecting sus-
tained attentional engagement [227]. Other components, such as the N170, are sens-
itive to emotional facial expressions, while early components (e.g., P1, N1) can reflect
rapid automatic differentiation of emotional versus neutral stimuli. These ERP signa-
tures highlight the fine-grained temporal unfolding of emotional responses, from early
perception to sustained evaluation.

EEG’s millisecond-scale temporal resolution and sensitivity to both frequency-based
and spatially distributed markers make it a uniquely powerful tool for studying the
neural underpinnings of emotion. When combined with slower but robust autonomic
measures such as GSR, HRV, and pupil size, EEG provides a complementary perspective
that captures both the rapid and sustained aspects of emotional processing.

Challenges such as intersubject variability and noise in physiological data can af-
fect detection accuracy, which researchers address using advanced techniques like mul-
timodal fusion and domain adaptation algorithms [189]. Combining physiological
signals with self-reported ratings or continuous annotations, as seen in datasets like
CASE [228], allows for a more comprehensive understanding of emotions by integrat-
ing objective measures with subjective experiences.

Researchers increasingly rely on ML approaches to effectively interpret these com-
plex physiological signals in emotion detection [192], [229]. These methods, some of
which will be discussed in the next section, enable the extraction of meaningful pat-
terns from high-dimensional physiological data, improving classification accuracy and
robustness across individuals [230].

2.4  Machine Learning Approaches in Emotion

Detection

Machine learning for emotion detection has become a significant and key area of
research, with notable advancements that leverage various data modalities, including
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text, physiological signals, and facial expressions, to classify emotions accurately [217].
The flow of emotion detection using ML consists of data collection from physiological
signals, data pre-processing to remove the noise or distortions from the signals, feature
extraction relevant to emotion detection from physiological signals, and model training
and evaluation (see Figure 2.3). The principal methodologies can be broadly categor-
ised into traditional ML and deep learning approaches.
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Figure 2.3: Flow of machine learning techniques used in the emotion detection
model [231].

Traditional ML Approaches. Traditional methods rely on hand-crafted features ex-
tracted from physiological signals, such as time-domain, frequency-domain, and non-
linear features. These features are optimised and fed into classifiers like Support Vector
Machine (SVM) [232], K-Nearest Neighbors (KNN) [233], Decision Trees (DT) [234],
Extreme Gradient Boosting (XGBoost) [235] and Random Forests (RF) [236]. For ex-
ample, studies using the DEAP dataset [237] have demonstrated the effectiveness of
classifiers, such as SVM and boosting algorithms, in recognising emotions from single
and multimodal signals, including EEG, GSR, and PPG. Single-modal approaches ana-
lyse one signal type at a time (e.g., GSR for arousal), while multimodal approaches
combine multiple signals to improve accuracy by capturing complementary emotional
information [192], [217].

Deep Learning Approaches. Deep learning eliminates the need for manual feature
extraction by automatically learning features from raw data. Techniques such as CNNs [238],
Long Short-Term Memory (LSTM) networks [239], and hybrid models [240] are widely
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used. Multimodal systems often employ deep learning to fuse feature or decision-level
signals. For instance, attention-based LSTM models have been used to integrate EEG,
GSR, respiration (RSP), and PPG data for improved classification accuracy [189], [241].
Transfer learning techniques, such as Joint Probability Domain Adaptation (JPDA),
have also been proposed to address challenges like intersubject variability and noise
in physiological signals [189].

Multimodal Emotion Detection Systems. Combining multiple physiological signals
enhances emotion detection by leveraging the strengths of each modality. For example,
integrating PPG-based HR with GSR has shown improved accuracy in mental stress pre-
diction compared to single-modal systems [192], [217], [242]. Studies using wearable
devices like smartwatches have demonstrated the feasibility of real-time emotion detec-
tion in everyday life by combining peripheral signals such as HRV and SC [243]

This research focuses on multimodal emotion detection using physiological signals,
offering significant advantages over single-modal approaches. Multimodal systems in-
tegrate data from multiple channels, such as EEG, GSR, ECG, and PPG, to provide
a more comprehensive and accurate understanding of emotional states [35], [36],
[189], [191], [192], [217], [242], [244], [245]. Single-modality methods often suf-
fer from limitations like susceptibility to noise and incomplete emotional information.
For instance, EEG alone may capture brain activity patterns but might miss peripheral
physiological cues like HRV (ECG) or SC (GSR). By combining modalities, multimodal
systems leverage complementary information, improving robustness and accuracy in
emotion detection.

2.4.1 Multimodal Approaches to Emotion Detection

Research has consistently shown that multimodal emotion detection outperforms
single-modal approaches. Studies demonstrate that multimodal systems achieve higher
accuracy by integrating diverse signals to extract informative features while mitigating
the weaknesses of individual modalities [246], [247]. Data fusion techniques, such as
feature-level and decision-level fusion (see Figure 2.4), further enhance performance
by synchronising emotional cues effectively, enabling the detection of subtle or complex
emotions [248]-[250].

The multimodal approach is particularly valuable in real-world applications such as
healthcare, HCI, and mental health monitoring, as it enables better diagnosis and treat-
ment by providing deeper insights into emotional states through the integration of brain
activity with peripheral signals [246]. A key advantage of multimodal systems is their
resilience to environmental noise and variability across subjects. Different physiological
signals (such as EEG, GSR, and facial expressions) capture distinct aspects of emotional
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responses; combining them reduces errors caused by noise in any single modality. For
example, EEG may be sensitive to artifacts from eye movements or muscle tension, while
GSR can be influenced by environmental factors such as temperature or humidity. By
fusing these signals, the system can offset weaknesses in one modality using reliable in-
formation from another, leading to more accurate and robust emotion detection [251].
Additionally, multimodal systems account for inter-subject variability, supporting more
generalised and adaptable performance across diverse populations and settings [107].

By adopting this multimodal framework in this study, we aim to develop a robust
emotion detection system that leverages the strengths of various physiological signals
to achieve superior performance and real-world applicability.

Feature Level (Early) Fusion

Decision Level (Late) Fusion

ECG EDA ECG EDA
Representation Representation Representation Representation
| Classifier | | Classifier |
Fused
Representation

Classification Classification
Probability Prabability

Classifier Muli-layer

Perceptron

Arousal Arousal

Figure 2.4: Comparison of Multiple Fusion Techniques.

Zhang et al. [252] introduced the CorrFeat algorithm, which extracts correlation-
based features between skin conductance (SC) and pupil diameter (PD). Using the
MAHNOB-HCI dataset, they performed both binary (high vs. low) and ternary (low,
neutral, high) emotion classification for arousal and valence. CorrFeat achieved up to
82.9% (arousal) and 82.1% (valence) in three-class classification, clearly outperform-
ing single-modality baselines. These results demonstrate the complementary nature of
SC and PD in capturing autonomic emotional responses, while remaining non-intrusive
and wearable-friendly.

Soleymani et al.[250] combined EEG and eye-tracking (including gaze and pupil-
lary responses) for binary arousal-valence classification. While feature-level fusion did
not outperform individual modalities, decision-level fusion significantly improved per-
formance, achieving 76.4% for arousal and 68.5% for valence. This highlights that
multimodal systems are not only more accurate but also more flexible, as decision-
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level fusion provides resilience against missing or noisy data streams. Similarly, Zheng
et al.[253] evaluated EEG and eye-tracking fusion. In unimodal settings, EEG achieved
71.77%, while eye-tracking achieved 58.90%. Fusion improved classification to 73.59%
(feature-level) and 72.98% (decision-level), confirming that combining neural and ocu-
lar signals enhances emotion recognition beyond single-channel performance. More
recently, Jacono and Khan [254] further demonstrated this benefit, reporting a mean ac-
curacy of 0.935 = 0.038 using EEG and eye-tracking fusion for binary arousal-valence
detection.

Other two-modal systems have also reported high performance. Bulagang et al. [255]
showed that combining ECG and electrodermography (EDG) achieved 95.7% accuracy
in binary classification, outperforming unimodal setups and reinforcing the effective-
ness of autonomic signal fusion.

The advantages become even more pronounced in three-modal systems. Kumar et
al.[256] integrated EEG, ECG, and GSR, comparing multiple machine learning classifi-
ers. Their multimodal approach outperformed unimodal and two-modal baselines, con-
firming that capturing distinct neural and autonomic features improves classification.
Alam et al.[257] achieved near-perfect accuracy with the same three modalities using
Random Forest and SVM to predict seven emotional states, showing the strong com-
plementarity between these signals. Ramadan et al. [247] reported one of the highest
performances to date by fusing EEG, EMG, and EOG, reaching 95.7% for arousal and
96.41% for valence (two classes). Including muscle activity and eye movements along-
side EEG enabled a more holistic representation of emotional states, significantly boost-
ing recognition accuracy, which is clearly higher than the accuracy achieved by Iacono
and Khan [254] for two-class prediction using two modalities, which indicates a clear
progression emerges across studies: Single-modality systems typically achieve 60-72%
accuracy. Two-modal systems improve this to 73-93%, depending on the fusion method
and signals used. Three-modal systems consistently reach 95%+, with some reporting
near-perfect accuracy.

This trend underscores that multimodal systems provide a more comprehensive view
of emotional states by integrating diverse physiological responses. By capturing both
neural activity and autonomic dynamics, they mitigate the weaknesses of individual
signals, reduce susceptibility to noise, and offer robustness essential for real-world ap-
plications.

Despite these advantages, multimodal emotion detection faces several challenges.
Inter-subject variability in physiological responses hinders generalisation across users [36],
[258]. Real-time processing of multiple signals demands high computational resources,
limiting mobile and wearable deployment [252], [259]. Data synchronisation across
heterogeneous sensors is another critical challenge, as misalignment can degrade clas-
sification accuracy [107], [253]. Furthermore, motion artifacts, lighting variability, and
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environmental conditions reduce system reliability outside controlled lab settings [258],
[260]. Most studies also focus on basic emotions, neglecting more complex or mixed
affective states [254], [261]. Finally, ethical considerations such as privacy, consent,
and data security remain a major concern in using physiological signals for emotion
recognition [36], [259].

Building on these insights, our study integrates facial expression recognition (FER),
galvanic skin response (GSR), and pupil size in a multimodal system. Data were col-
lected from 47 healthy participants using the iMotions platform, which ensured pre-
cise synchronisation between stimulus presentation and physiological recording. To
address lighting variability, we implemented a pupil-size preprocessing pipeline with
cross-participant calibration. We applied feature-level fusion and trained models using
XGBoost, enabling robust multimodal emotion regression beyond basic categorical clas-
sification. By combining behavioural (FER) and physiological (GSR, pupil) signals, our
system provides a more reliable and ecologically valid method for detecting emotional
states, addressing long-standing challenges of variability, temporal alignment, and prac-
tical feasibility.

2.4.2 Data Pre-processing Techniques

Data pre-processing plays a crucial role in enhancing the quality of physiological
signals, ensuring that they can be effectively utilised for emotion detection in affective
computing systems. This process involves several key stages: noise removal, distortion
correction, normalisation, and segmentation. Different physiological signals, such as
pupil size, GSR, and PPG, have distinct preprocessing challenges, and researchers have
proposed various methods to address these issues, ensuring more accurate and reliable
data for analysis.

FER Data Pre-processing. FER has long been employed in affective computing, tra-
ditionally focusing on the six or seven “basic emotions” identified by Ekman and col-
leagues. Modern FER systems, such as AFFDEX, OpenFace, and Affectiva, typically rely
on convolutional neural networks or action unit (AU) activation patterns to detect cat-
egorical emotional states on a frame-by-frame basis. These categorical predictions are
widely used in human—computer interaction, driver monitoring, and behavioural ana-
lytics.

However, there is growing recognition that categorical FER has important limita-
tions. First, facial expressions often encode mixtures of emotions, making discrete labels
insufficient for capturing nuanced affective states. Second, categorical outputs do not
directly map onto dimensional frameworks of affect, such as Russell’s circumplex model,
which describe emotions along valence (pleasantness-unpleasantness) and arousal (activation-



36

deactivation) axes. To address this, several studies have attempted to link facial ex-
pressions to dimensional measures. For instance, Cowen and Keltner [262] mapped
human-annotated facial expressions into valence-arousal space, showing that expres-
sions cluster in line with circumplex predictions. The AffectNet dataset (Mollahosseini
et al., [263]) provides both discrete emotion categories and continuous valence/arousal
annotations, enabling models to learn direct regressions from facial images to dimen-
sional affect. Similarly, the Emotional Trace approach (Ayoub et al., [264]) proposed
mapping basic expressions into continuous coordinates to visualise trajectories of affect-
ive change.

While these studies demonstrate the feasibility of bridging FER with dimensional
affect models, most rely either on normative ratings (assigning each discrete emotion a
fixed position in the circumplex) or on supervised regression trained on datasets annot-
ated with both labels. In practice, categorical FER outputs are still frequently treated in
isolation, limiting their usefulness in multimodal pipelines where dimensional ground
truth is required.

Pupil Size Data Pre-processing. Pupil size measurements are influenced by both am-
bient lighting and emotional arousal [206], [207], [209], [265], introducing an addi-
tional layer of complexity when using pupillometry for emotion detection [266]. Pupils
typically constrict in bright conditions and dilate in darker environments [267], with
size varying by up to 50% [268], complicating the interpretation of emotional responses
[207], [269]. This is also the case for our increasingly digital world, where the bright-
ness and contrast of device displays can considerably affect pupil size [270]. Therefore,
it is crucial to effectively isolate the changes in pupil size resulting from authentic emo-
tional responses from those influenced by ambient light conditions [271], and literature
suggests that subtracting luminosity-induced pupil size changes can effectively isolate
the emotional responses [41].

Previous research suggests that accounting for luminosity-induced pupil size changes
can help to isolate the emotional responses with varying levels of success [41]. Earlier
research used grey screens to measure baseline pupil diameter [205], [272], [273].
Still, this method has proven insufficient for complex stimuli such as videos with dy-
namic visual elements [207], where changing luminosity and visual elements continu-
ally affect pupil responses. In the case of a video, an ideal baseline would be a set of
emotionally neutral stimuli of the same luminosity as each video frame, which is chal-
lenging to engineer.

In our thesis, we propose a more realistic and scalable approach: we directly pre-
dict the component of pupil size influenced by luminosity for each emotional frame,
rather than including an emotionally neutral frame with the same luminosity repeated
throughout the entire video. This is not the first attempt to use such an approach;
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previous studies have attempted to disentangle the effects of emotional arousal and
light exposure on pupil size for dynamic stimuli, such as videos. Our research builds
upon previous attempts to employ this approach, while addressing some of its short-
comings. For example, Nakayama et al. [274] developed a hyperbolic model to predict
pupil size as a function of the luminosity of the computer screen in a dark laborat-
ory. Other researchers have used simpler models. For example, Tarnowski et al. [275]
hypothesised a linear relationship between luminosity and pupil size. However, the
relationship between pupil size and luminosity is exponentially decreasing [265]. Pre-
vious work, including our pupil-luminosity modelling study, demonstrated the potential
of exponential models to separate pupil size changes due to luminosity from those due
to emotional arousal [109]. The detailed methodology and experimental validation
of this approach are described in Chapter 3 in the pupil size analysis section 3.2.6.
Nakayama and colleagues [274] also sought to separate pupil dilation related to emo-
tional arousal from luminosity-induced changes in video content. They also applied
their method to emotional images and demonstrated a luminosity and arousal effect
on pupil size using analysis of variance (ANOVA). We wanted to go one step further:
predicting self-reported arousal using pupil size, which was not addressed in Nakayama
and colleagues’ work.

Raiturkar et al. [276] developed a linear model to predict pupil size based on light
intensity, allowing for the isolation of emotional arousal by subtracting the effects of
light from actual pupil measurements, and applied it to the analysis of emotional videos.
However, they did not record self-reported arousal while watching the movie clips.

Where possible, we have applied the existing models mentioned above to our data,
with the advantage that we included a comparatively large sample of 47 participants
(compared to a maximum of 10 in the studies above), a relatively rich video collection
of 32 emotional video clips, and the fact that we had recorded self-reported arousal for
each participant and each video.

In some cases, it was not possible to apply methods from previous studies to our data
due to insufficient details regarding the corresponding models. For example, Asano et
al. [277], [278] developed models that considered the temporal evolution of pupil size,
which we did not do. Their first model consisted of a linear model, and the second of
a neural network. We were only able to evaluate the first model, but we were unable
to assess the neural network model since we did not have access to its trained neural
network. Asano and colleagues [277] wrote that the second method performed better
than the first one, and they tested both methods with emotional video clips but did not
detect self-reported arousal. A more detailed analysis of the differences between our
method and those of the other researchers is reported in the Discussion section 5.

Our research directly addresses these challenges by developing advanced methods
for isolating emotional arousal-related pupil dilation from the confounding effects of
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ambient light. By implementing more sophisticated baseline correction techniques and
accounting for individual variability in pupil reactivity, we aim to improve the reliability
of pupil size measurements as a marker of emotional responses, thereby enhancing the
accuracy of emotion detection systems.

GSR and PPG Data Pre-Processing. GSR and PPG signals are crucial for emotion de-
tection, reflecting physiological responses to emotional arousal. However, raw signals
from both modalities are often contaminated by noise, motion noise, and baseline drift,
which can undermine their usefulness in emotion analysis. A significant challenge in
preprocessing these signals is removing noise and distortions introduced by body move-
ments, muscle contractions, and environmental factors [279].

For GSR, common approaches include filtering techniques such as low-pass, high-
pass, and bandpass filters to remove unwanted frequency components [280], [281].
Wavelet transforms have also been explored to decompose GSR signals into different
frequency bands, aiding noise suppression while retaining critical data related to emo-
tional arousal [282]. Similarly, PPG preprocessing employs low-pass, high-pass, and
bandpass filters to eliminate noise and baseline drift, with bandpass filters typically
used to retain the primary frequency components of the PPG signal (0.5-5 Hz) [72],
[283], [284].

Normalisation techniques, such as Z-score normalisation and Min-Max scaling, are
commonly applied to standardise both GSR and PPG data, making it easier to com-
pare responses across different individuals [285], [286]. Noise removal methods, such
as Independent Component Analysis (ICA) and adaptive filtering, are particularly use-
ful for separating noise from meaningful signals and reducing the impact of motion
artifacts [287], [288]. Advanced signal decomposition methods like Wavelet Trans-
form (WT) and Empirical Mode Decomposition (EMD) further enhance signal clarity by
breaking down the signals into Intrinsic Mode Functions (IMFs)[289]. More recently,
deep learning approaches, such as CNNs and LSTM networks, have shown promise in
denoising both GSR and PPG signals. However, they require large datasets for effective
training[290].

Furthermore, fixed windowing and event-related segmentation techniques are cru-
cial for organising GSR and PPG data into meaningful intervals, aligning the signals
with emotional responses triggered by specific stimuli [213]. These preprocessing tech-
niques collectively enhance the reliability and accuracy of GSR and PPG signals for
emotion detection studies.

In conclusion, data preprocessing is critical in enhancing the quality and reliabil-
ity of physiological signals, including pupil size, GSR, and PPG, for emotion detection.
Although various methods, such as filtering, noise removal, and signal normalisation,
have been widely explored, challenges remain in dealing with the complex nature of
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real-world data, including dynamic visual stimuli, motion noise, and individual differ-
ences.

Following preprocessing, the next essential step is feature extraction, where mean-
ingful patterns are derived from the cleaned physiological signals.

2.4.3 Feature Extraction and Selection Techniques

Emotion detection models rely heavily on the quality of the features extracted from
physiological signals. No model can perform optimally if the features provided are
inaccurate or unreliable; hence, feature extraction and selection become crucial for
training any ML model. Feature extraction involves identifying and isolating the most
relevant characteristics of physiological signals that correlate with emotional states. In
contrast, feature selection focuses on reducing dimensionality by choosing only the most
informative features to improve model performance.

Various techniques are employed to extract meaningful features of physiological sig-
nals such as EEG, GSR, and PPG-based HR. These include time-domain analysis (e.g.,
mean, standard deviation, root mean square), frequency-domain analysis (e.g., power
spectral density, Fourier transforms), and non-linear dynamics measures (e.g., entropy,
fractal dimensions). For example, EEG signals are often analysed for power in specific
frequency bands (alpha, beta, theta) to detect emotional arousal or valence. Similarly,
GSR and PPG-based HR signals are processed to extract features like SC peaks or HRV,
which reflect emotional arousal.

As mentioned in the "Overview of Emotion Detection Using Physiological Signals"
section 2.3, pupil size data are typically collected using an eye-tracking device that
records ocular metrics, such as gaze position, eye movements, fixation patterns, and
pupil dilation. These measurements provide rich information that can be used to ex-
tract features relevant to emotion detection, as has been demonstrated in numerous
studies. One of the most commonly used features is pupil dilation, which is strongly
associated with emotional arousal. Both positive and negative emotions can induce sig-
nificant changes in pupil size, with negative stimuli often leading to more prolonged
dilation [197], [203], [252], [254], [275], [291]-[293]. Another essential feature
is fixation duration, which reflects attentional engagement and varies depending on
the emotional intensity or valence of the stimulus [197], [275], [291], [293], [294].
In addition, pupil area and position provide spatial and dimensional insights into pu-
pil dynamics during emotional exposure [197], [291]. The researchers have also ex-
tracted statistical features from the pupil responses - including minimum, maximum,
mean, median, standard deviation, variance and quartile values - to comprehensively
describe the distribution and variability of the pupil signal [197], [292], [293]. In ad-
dition, saccadic movements and their speed have been used to analyse how the eyes
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move across visual scenes, providing cues to cognitive and emotional processing [197],
[275], [291], [293]. Finally, dynamic changes in pupil size over time serve as a valuable
metric for tracking emotional responses in real time, highlighting the temporal aspect
of emotional engagement [295], [296]. These features contribute to a nuanced and
multi-dimensional understanding of how pupil behaviour reflects underlying emotional
states.

However, our research focuses on pupil size as a key physiological marker of emo-
tional arousal.

Pupil Size as a Stand-alone Feature for Emotion Detection. Several studies have
focused on pupil size for emotion detection, confirming its reliability as a physiological
marker. In particular, pupil dilation has been shown to correlate strongly with emotional
arousal, making it a key feature in emotion recognition systems.

A study by Aracena et al. [199] used the temporal evolution of pupil dilation and
gaze coordinates during a fixed time window as input features. The researchers trained
machine learning models, including neural networks and decision trees, and achieved a
best accuracy of 74.5% for a single subject. However, accuracy dropped to 53.6% when
data from multiple subjects were aggregated, highlighting the challenge of individual
variability in pupil size responses. This study highlights the importance of gaze position
and pupil dilation as they provide complementary information about visual attention
during emotional stimulus presentation.

Pupil dilation has also been associated with emotional arousal in various contexts.
For example, Oliva et al. [297] found that peak pupil dilation occurred during emo-
tional arousal when participants were exposed to human nonverbal vocalisations, thus
correlating pupil size with emotional valence perception.

Another study by Lee et al. [292] extracted 16 statistical features from pupil re-
sponses, including minimum, maximum, first quartile (q1), median (q2), third quartile
(g3), mean, standard deviation and variance. These features were collected from 30
participants exposed to emotionally evocative content, and the model achieved a clas-
sification accuracy of 76% for emotions such as fear, anger and surprise using logistic
regression. This demonstrated the value of statistical features in capturing nuanced
emotional responses.

Arias et al. [296] further investigated pupil dilation in response to audiovisual emo-
tional speech, showing that pupil responses indicated an emotional mismatch between
the visual and auditory stimuli. This pupil dilation occurred as participants searched
for emotional cues, particularly in the first fixation on mismatched areas. This suggests
that pupil size may reflect attentional shifts in response to emotional stimuli.

In clinical applications, pupil dilation has been used to assess impairments in emo-
tion recognition in stroke patients [298], further supporting its utility in healthy and



41

impaired populations. In addition, changes in pupil dilation have been shown to occur
in response to happy, sad and surprised emotions [299], further emphasising its role in
capturing emotional states across a range of affective experiences.

Together, these studies highlight the strong relationship between pupil dilation and
emotional arousal, demonstrating its effectiveness as a stand-alone feature for emotion
detection. Furthermore, combining pupil size data with other physiological and beha-
vioural signals has improved emotion classification accuracy [291], [292].

Galvanic Skin Response. GSR has been widely studied in the context of emotion de-
tection. GSR reflects changes in the skin’s electrical conductance due to variations in
sweat gland activity, which are influenced by ANS responses. As a result, it serves as
a valuable physiological indicator of emotional arousal and has become a key compon-
ent in affective computing research. GSR signals consist of two primary components:
the tonic component (slow-varying SCL) and the phasic component (rapid fluctuations
known as skin conductance responses (SCR) [300]. Properly decomposing these com-
ponents is essential for effective feature extraction and emotion classification.
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Figure 2.5: GSR Features [167].

Several methods have been employed for feature extraction from GSR signals to sup-
port emotion detection. Time-domain features are the most widely used and provide
statistical insights into the overall shape and variability of the signal. These include
metrics such as the mean, standard deviation, skewness, kurtosis, root mean square
(RMS), and higher-order derivatives [301]-[305]. These features help capture fluctu-
ations in skin conductance associated with emotional arousal. The GSR signal is also
decomposed into phasic and tonic components to isolate fast, stimulus-driven responses
from the underlying baseline activity [301], [305], [306]. Techniques such as high-pass
filtering (e.g., with a cutoff frequency of 0.05 Hz)[307] and detrending methods based
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on regularised least-squares have been used to achieve this separation[308]. More re-
cently, methods like cvxEDA have gained popularity for decomposing the signal into a
smooth tonic component and a sparse phasic component [309], with studies recom-
mending a downsampling rate of 20 Hz for efficient processing [310].

In the frequency domain, features such as Power Spectral Density (PSD)[305] and
the Fractional Fourier Transform (FrFT)[311] are used to assess how signal power is
distributed across frequencies, capturing oscillatory characteristics linked to emotional
states.

Time-frequency methods such as the Short-Time Fourier Transform (STFT) and
Wavelet Transform offer multi-resolution analyses that track how frequency content
evolves, making them suitable for analysing non-stationary signals like GSR [301],
[305]. Decomposition-based approaches, notably EMD, break the GSR signal into IMFs,
allowing for adaptive analysis of its complex, non-linear structure [301].

Lastly, event-based features focus on specific responses such as SCR peaks (see Fig-
ure 2.5), including their amplitude, latency, rise time, and frequency of occurrence.
These measures are crucial for identifying emotionally salient events [192], [252],
[305], [306]. Together, these features represent GSR dynamics comprehensively, en-
abling emotion recognition models to capture spontaneous fluctuations and stimulus-
specific reactions across various timescales.

Recent studies have further expanded our understanding of GSR-based emotion
detection: A study revealed distinct physiological signatures for different emotional
states [312]. Fear responses showed the most extended duration, family bonding
emotions displayed slower responses, and humour triggered quick but temporary re-
actions [312]. Combining SC measurements with other physiological indicators, such
as HR, EMG, and brain activity, has enhanced the accuracy of emotion detection sys-
tems [312]. As research advances, integrating GSR-based emotion detection with other
physiological signals and Al technologies promises to create more sophisticated and ac-
curate emotion-sensitive systems.

Photoplethysmography. PPG signals are widely utilised in emotion detection, with
extracted features categorised into time-domain, frequency-domain, geometric indices,
and other statistical measures. These features provide insights into HRV, signal morpho-
logy, and complex physiological patterns associated with emotional states. However,
throughout the research, we focused on PPG-based heart-related features.

Rakshit et al. [72] explored a novel approach to emotion detection using HRV fea-
tures extracted from PPG signals. Their study demonstrated that PPG-derived features
could effectively classify emotional states, often achieving comparable or slightly higher
accuracy than ECG-based methods. The research compared PPG with ECG in detecting
psychophysical and affective states and found that Pulse Rate Variability (PRV) features
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extracted from PPG provided slightly better emotion prediction than traditional HRV
features from ECG. The study further highlighted that PPG shape parameters could
achieve accuracy levels similar to HRV and PRV features. This suggests that ANS re-
sponses to emotional stimuli influence beat duration and PPG waveform shape. ML
models such as KNN and SVM were also applied to classify emotional states, demon-
strating that PPG technology could be a viable alternative to ECG detection.

Goshvarpour et al. introduced a novel geometric approach by extracting ten features
from Poincaré’s section analysis of PPG-based interbeat interval (IBI) signals [313].
These features were derived from a 2D phase space reconstruction of PPG-IBI data and
included geometric indices, basin geometry characteristics, angular-based features, and
quantitative measures from phase-space sections. The geometric indices quantified the
spread and distribution of points in the reconstructed phase space. At the same time,
the basin geometry characteristics analysed changes in the structure of PPG-IBI phase
states under different emotional conditions. Poincaré’s sections formed at various angles
were also used to capture trajectory variations, and structural properties were extrac-
ted to reflect non-linear heart dynamics during emotional responses. Unlike traditional
time-domain and frequency-domain features, this approach captured PPG-IBI traject-
ories’ non-linear and dynamic behaviour, making it a promising method for emotion
detection. When these features were used in an SVM classifier, the study achieved high
classification accuracy, with 96.67% for binary emotion classification and 91.11% for
multi-class classification, reinforcing the potential of geometric feature extraction for
improving emotion detection.

Additionally, other studies have explored complementary methods, such as entropy-
based features [314] and spectral analysis of HRV [260]. However, we focus on integ-
rating the feature extraction approaches established by Rakshit et al. and Goshvarpour
et al. to develop a more robust emotion detection model.

Table 2.1 summarises the key PPG-based heart-related features utilised in our study
and their corresponding references. By leveraging these well-established methodolo-
gies, we aim to refine feature selection and improve the classification accuracy of our
emotion detection model.

Feature Selection

Feature selection is an essential step in ML model development, as it helps improve
model interpretability, reduce overfitting, and enhance computational efficiency. Select-
ing the most relevant features can improve the model’s predictive performance. Various
feature selection techniques exist, ranging from traditional methods to more advanced
approaches, each offering distinct advantages depending on the data and the model
used.
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Table 2.1: PPG-based heart-related Feature Extraction for emotion detection.

Feature Category

Parameters

Description

Citations

Time-Domain Features

Statistical Parameters

HRV

Interbeat Interval

(IBI)

Mean, median,
standard deviation,
maximum, minimum,
range

meanRR, medianRR,
SDNN, SDANN,
pNN50, NN50,
RMSSD, SDNN;,
meanHR, stdHR

Mean interbeat in-
terval extracted from
PPG

[260]

[72],
[315],
[316]

[313]

Frequency-Domain Features

Power Spectral Dens-
ity (PSD)

Spectral Analysis of
HRV

HR Estimation

Distribution of power
across frequency
components of PPG
signals

VLF, LF, HF, peakVLF,
peakLF, peakHF,
aVLF, aLF, aHF,
aTotal, pVLF, PpLF,
pHF, nLF, nHF, LFHF
ratio

FFT-based frequency
analysis to derive HR

[260]

[72]

[260]

Geometric Indices

Poincaré Plot Meas-
ures

Basin Geometry

Geometric patterns of
IBI signal in phase
space

Structural  changes
in IBI phase states
across emotions

[313]

[313]

Other Features

Normalised
Features

Signal

Entropy Measures

Mean of norm-
alised signals
(data_mean), me-
dian of 25-mean data
(25_mean_median)

Information entropy
(data_entropy) to as-
sess signal complexity

[314]

[314]
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In general, feature selection methods can be grouped into three broad categories:
filter, wrapper, and embedded. Filter methods assess the relevance of features inde-
pendently of the model and include techniques such as correlation analysis, mutual in-
formation, and variance thresholds. These methods are often used for high-dimensional
datasets, where feature redundancy or weak relationships can lead to poor model per-
formance. For instance, the Pearson correlation is widely employed to measure the
linear relationship between features and the dependent variable, identifying features
with strong predictive power and discarding irrelevant ones [317]. This method is par-
ticularly useful for reducing dimensionality in regression models, as it helps identify
multicollinearity, which can be addressed through techniques like variance inflation
factor (VIF) analysis [318].

Wrapper methods, in contrast, evaluate feature subsets based on model perform-
ance, using techniques like forward selection, backwards elimination, and recursive
feature elimination (RFE) [319]. These computationally intensive methods can yield
highly accurate feature subsets for specific models. Embedded methods, such as LASSO
(Least Absolute Shrinkage and Selection Operator), Ridge Regression, and Elastic Net,
integrate feature selection directly into the model training process, offering both effi-
ciency and accuracy in feature selection [320], [321].

Recent advancements in feature selection, especially for regression models, emphas-
ise hybrid approaches, machine learning-based techniques, and domain-specific optim-
isations. Hybrid methods combine the strengths of filter, wrapper, and embedded ap-
proaches to improve the accuracy and efficiency of feature selection. For example,
combining correlation-based filtering with RFE can lead to more refined and practical
feature subsets [322]. Machine learning-based techniques, such as Random Forest fea-
ture importance [323], SHAP (Shapley Additive Explanations) values [324], and deep
learning methods like autoencoders and neural network pruning [325] offer sophistic-
ated ways to identify and prioritise the most significant features. Additionally, domain-
specific feature selection methods tailored to genomics, finance, and healthcare fields
help enhance model performance and relevance [326].

Several studies have compared the effectiveness of different feature selection tech-
niques. Guyon and Elisseeff demonstrated the efficiency of SVM-based feature selec-
tion in regression tasks [327], while Tibshirani highlighted the sparsity-inducing prop-
erties of LASSO for high-dimensional data [320]. Kuhn and Johnson examined the
trade-offs between RFE and embedded methods, particularly regarding interpretab-
ility versus computational cost [328]. Despite its simplicity, the Pearson correlation
remains a strong baseline method for feature selection, especially for continuous nu-
merical data [329], [330].

However, feature selection still has challenges, especially when dealing with high-
dimensional datasets and ensuring scalability and robustness across different data dis-
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tributions. Recent research has focused on automating feature selection processes that
can adapt to varying data characteristics. Future work in this area may explore in-
corporating deep learning and reinforcement learning techniques and developing more
interpretable models to further improve the applicability and performance of feature
selection in real-world scenarios.

In the context of regression-based models, feature selection plays a critical role in de-
termining the accuracy and efficiency of the model. Whether using traditional methods,
advanced approaches or hybrid strategies, the goal remains to identify the most relevant
features that improve predictive performance while reducing computational complexity.
The choice of method depends on the dataset’s characteristics and the specific applica-
tion, with future developments focusing on automation, scalability and adaptability.

Feature selection becomes even more critical in multimodal emotion recognition
systems that combine data from different physiological signals. These systems require
careful feature extraction and selection to capture complementary information from
different modalities, such as pupil size, GSR and PPG. Poorly selected features can in-
troduce noise and reduce model accuracy, highlighting the importance of effective fea-
ture selection in improving model robustness and performance. By refining the features
extracted from physiological data, ML models can more accurately detect and interpret
emotional responses, improving regression performance and making these models more
applicable to real-world emotion recognition systems.

2.4.4 Datasets and Experimental Protocols

Several benchmark datasets are commonly used to train and evaluate models in
emotion detection, each with unique characteristics, challenges, and opportunities. For
example, the DEAP dataset [237] includes multimodal signals such as EEG, GSR, PPG,
and facial expressions, but it is limited by its relatively small sample size and limited
emotional diversity as it mainly elicits common emotions within valence—arousal space
and lacks coverage of subtle or complex states. Similarly, the DREAMER dataset [331]
provides audiovisual stimuli with multimodal recordings (EEG, GSR, PPG, and video),
though it also suffers from a small participant pool and limited coverage of emotional
states.

The AMIGOS dataset [332] is another multimodal benchmark containing EEG, GSR,
PPG, and video recordings. While it encompasses multiple emotional states, such as
happy, sad, and neutral, its emotional diversity is limited, and the dataset may not
fully capture subtle or mixed emotions. The EmoReact dataset [333] offers multimodal
signals, including EEG, GSR, ECG, and video, but is restricted by its small sample size
of 32 participants and a narrow range of emotions. In contrast, AffectNet [263] is a
large-scale dataset with facial expression labels across millions of images. However, it
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lacks physiological signals and is limited to basic emotional categories.

Other datasets also face similar trade-offs. For instance, SAVEE [334] includes au-
diovisual recordings of emotional speech and facial expressions but only from male
speakers, limiting participant diversity. MELD [335] focuses on multimodal emotional
dialogues from movies and TV shows, which, while naturalistic, introduce noise from
uncontrolled conversational dynamics. Similarly, Affectiva [336] combines facial ex-
pression and physiological data but is restricted in terms of the breadth and depth of
physiological signals, with a stronger emphasis on facial recognition.

Across these datasets, common limitations include small sample sizes, limited di-
versity of emotional stimuli, lack of subtle or complex emotional states, restricted par-
ticipant demographics, and the absence of psychiatric screening to ensure emotionally
healthy participants. To overcome these issues, we designed and conducted our own
data collection, using a participant pool of 47 individuals. This enabled us to ensure
a broader and more representative set of emotional stimuli, as well as have an exper-
imental protocol that directly addressed our initial research questions. However, one
limitation of our dataset is that we did not apply pre-screening to exclude participants
with potential emotional or psychological conditions, meaning that individual variabil-
ity in emotional health could influence responses. Despite this, our dataset addresses
many of the constraints of existing benchmarks by improving emotional diversity, in-
creasing the participant base, and combining multimodal data sources in a controlled
setting, thereby enhancing both quality and relevance for emotion detection research.

2.4.5 Evaluation Metrics and Performance Analysis

Evaluation metrics play a crucial role in emotion detection systems by objectively
measuring how well a model can interpret human emotions’ complex and context-
dependent nature. These metrics help ensure that models are reliable in real-world
applications by connecting subjective emotional experiences with measurable Al per-
formance. Since emotion detection is a continuous process, the selected metrics must
effectively reflect alignment with the actual valence (positivity) and arousal (intensity)
scores. Since our study uses a regression-based approach for emotion detection, we
concentrate on evaluation metrics that are appropriate for regression models, such as
R2, NRMSE, Pearson’s r, and Concordance correlation coefficient CCC. These are
summarised in Table 2.2.

These metrics allow for an accurate quantification of the relationship between pre-
dicted and actual emotional states over time.

Key Findings in Performance Analysis. Preprocessing techniques, such as normalisa-
tion and filtering, are essential to improve the quality of physiological signals, such as
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Metric Formula Purpose Example Perform-
ance
R2 (R-squared) | R2=1— %ﬂ Measures variance | 0.892
explained by the | (arousal), 0.759
model. Higher values | (valence) [337]
indicate a better fit.
NRMSE % Normalised RMSE for | 0.035
scale-independent er- | (arousal), 0.078
ror comparison. (valence) [337]
Pearson’s r r= % Measures linear | 0.88 for valence in
o correlation between | EMER (Multi) data-
predicted and true | set [338]
scores.

Table 2.2: Evaluation metrics, formulas, purpose, and example performance results.

ECG and EDA, increase model robustness, and reduce noise. These preprocessing steps
have improved N RM SE values, indicative of model performance [339].

When comparing models, RF significantly outperforms linear models in predicting
emotional valence. For example, in valence prediction tasks, RF achieves a higher
R2 value (0.7) compared to linear models (0.27), highlighting the superior predict-
ive power of RF models [337].

Finally, using NRMSE allows for more reliable model performance comparisons
across different datasets. As datasets can have different scales, NRMSE standardises
the evaluation, making it easier to assess and compare the effectiveness of different
models in different contexts [337].

2.4.6 Impairment of Emotion Recognition in Mental Health

Emotion recognition is essential for effective social interaction, but people with a
range of mental disorders face significant challenges in accurately interpreting emo-
tional cues. Emotion recognition impairment (ERI) is seen in a variety of psychiatric
and neurological conditions, including depression, schizophrenia, autism spectrum dis-
order (ASD), acquired alexithymia, traumatic brain injury (TBI) and anxiety disorders.

People with depression tend to misinterpret facial expressions, particularly negat-
ive emotions, which can increase feelings of sadness or hopelessness [340], [341]. This
impairment has been linked to dysfunction in brain regions such as the amygdala [342].
Emotion recognition deficits are particularly common in schizophrenia, where people
struggle to interpret both facial expressions and vocal emotions. These difficulties con-
tribute to social dysfunction and communication problems [18]. People with autism
spectrum disorder often find it difficult to understand non-verbal emotional cues, such
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as facial expressions, which can hinder their social interactions [343]. People with
anxiety disorders may misinterpret neutral or ambiguous facial expressions as threaten-
ing, leading to increased stress and avoidance behaviour [344]. Acquired alexithymia,
which often results from neurological conditions such as brain injury or trauma, affects
the ability to recognise and process emotional experiences. People with acquired alexi-
thymia may have difficulty identifying their emotions and interpreting the emotional
expressions of others, which can negatively affect their relationships and psychological
well-being [345]. TBI can lead to changes in emotional processing, often affecting the
ability to recognise facial expressions. TBI patients may exhibit poor social interaction
due to difficulties in emotional recognition, which is particularly important in rehabilit-
ation and social reintegration [346].

Psychological assessment using standardised scales is essential to effectively assess
and identify these impairments in clinical settings. For example, scales such as the
TAS-20 (Toronto Alexithymia Scale) are used to assess alexithymia [347], while the
PHQ-9 (Patient Health Questionnaire) is commonly used to assess the severity of de-
pression [348]. The GAD-7 (Generalised Anxiety Disorder-7) scale helps to measure
anxiety levels [349], and the IPDE (International Personality Disorder Examination) is
used to diagnose PDs [350]. These scales provide a quantitative measure of psycholo-
gical conditions, crucial for screening individuals in clinical trials or treatment protocols.

These standardised scales allow clinicians to categorise and assess different mental
health conditions, contributing to more accurate diagnosis and treatment. For example,
people diagnosed with depression or anxiety disorders often show impairments in emo-
tion recognition that distort their responses to emotional cues [18], [351]. Using these
scales with advanced emotion recognition technologies makes it possible to better un-
derstand how emotional impairments manifest and tailor interventions accordingly.

2.4.7 The Role of ML in Advancing an Emotion Detection

ML holds great promise for addressing impairments in emotion recognition. ML
models can provide accurate, real-time assessments of emotion by analysing multimodal
data such as facial expressions, vocal tone and physiological signals (e.g. HR, SC). These
systems can significantly benefit clinical settings in the following ways

1. Objective Measurement: ML models provide objective emotion detection, redu-
cing reliance on subjective self-report, which can be inconsistent or biased. This
improves the accuracy of emotional assessments, particularly in individuals with
mental health disorders [352].

2. Personalised Treatment: ML can help tailor treatment plans based on an indi-
vidual’s unique emotional responses. Emotion recognition systems can monitor
responses during therapy or medication trials, allowing clinicians to adjust inter-



50

ventions as needed, improving treatment outcomes [353].

3. Early Detection and Intervention: ML can detect subtle emotional changes that
may signal the worsening of conditions such as depression, schizophrenia or TBI.
This early detection allows for timely intervention, potentially preventing further
deterioration in emotional health [354].

4. Support for Individuals with ASD: ML-powered emotion recognition systems can
help people with autism spectrum disorders recognise and interpret emotions,
improving their social interactions and emotional empathy [355].

5. Support for Acquired Alexithymia and TBI: ML-based emotion recognition sys-
tems can help identify and interpret emotional cues for individuals with acquired
alexithymia and TBI. These tools can help individuals become more aware of their
emotional states and improve their empathy, facilitating better social and thera-
peutic interactions [356].

6. Long-Term Monitoring: ML-based emotion recognition systems can be integrated
into remote monitoring tools to provide ongoing emotional support for individuals
with limited access to face-to-face care. This particularly benefits patients with
chronic conditions or those living in remote areas, providing an accessible and
consistent monitoring mechanism for emotional well-being [357].

Impairments in emotion recognition are prevalent in a wide range of mental health
and neurological conditions, including depression, schizophrenia, ASD, anxiety dis-
orders, acquired alexithymia and TBI. ML-based emotion recognition systems provide
an effective and objective means of assessing and tracking emotional states. These
systems enhance clinical diagnosis and treatment and support personalised care, early
intervention and long-term monitoring. By integrating these technologies into clinical
practice, the accuracy of emotion recognition can be significantly improved, ultimately
contributing to better mental health outcomes and improved emotional well-being.

2.5 Systematic Literature Review: Multimodal
Continuous Emotion Prediction Using

Physiological and Visual Signals

2.5.1 Introduction

Emotion recognition technologies are increasingly critical in affective computing,
mental health monitoring, and human-computer interaction. The ability to detect and
interpret human emotions has broad applications, from enhancing user experience in
human-computer interfaces to supporting clinical diagnosis and mental health inter-

ventions [23]-[25]. Traditionally, emotion recognition approaches have focused on
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categorical models classifying emotions such as happiness, sadness, or anger. How-
ever, these models often fail to capture the continuous and dynamic nature of human
emotions. The valence-arousal model, also known as Russell’s circumplex model of
emotion, provides a dimensional approach that represents emotions along two continu-
ous axes: valence (the degree of pleasantness) and arousal (the intensity of emotion)
[358]. Continuous emotion prediction using this model enables a more refined un-
derstanding of affective states and their temporal variations. Recent advancements in
machine learning, particularly regression-based approaches, have facilitated continu-
ous emotion prediction using diverse input modalities. Among these, FER, GSR, and
pupillometry have emerged as prominent physiological and visual signals indicative of
affective states [238], [258], [301]. The integration of these modalities into multimodal
models holds the potential to improve prediction accuracy by capturing complementary
aspects of emotional responses. Despite these advances, effective fusion of physiolo-
gical and visual signals remains a significant challenge. Various techniques, including
feature-level fusion, decision-level fusion, and hybrid approaches, have been proposed
to integrate data from different modalities. However, a systematic evaluation of these
fusion strategies in the context of continuous emotion prediction is lacking. This system-
atic literature review aims to identify and assess the most effective techniques for fus-
ing FER, GSR, and pupillometry to enhance continuous emotion recognition accuracy.
Particular attention is given to regression-based approaches, since continuous emotion
prediction is inherently a regression problem rather than a classification task. Regres-
sion models are capable of capturing gradual fluctuations in valence and arousal over
time, providing finer temporal resolution and greater ecological validity compared to
categorical methods that reduce emotions to discrete labels. By focusing on regression
strategies, this review addresses the methodological requirements for modelling emo-
tions as dynamic, continuous processes. Additionally, it explores the existing limitations
and challenges in this field, providing directions for future research.

2.5.2 Research Questions

What are the most effective techniques for fusing facial expression data, GSR, and
pupillometry to improve emotion recognition accuracy, and what limitations remain?

2.5.3 Methodology

The idea is to do state-of-the-art studies that have built an emotion detection model
using audiovisual stimuli using physiological signals, by a fusion model.

Search Strategy. A comprehensive literature search was conducted across four ma-
jor scientific databases: PubMed, Web of Science, Scopus, and IEEE Xplore. Keywords
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non

included combinations of "continuous emotion prediction," "valence and arousal," "re-

nn

gression," "multimodal," "physiological signals," "facial expression recognition," "GSR,"
and "pupil size." The search covered studies published from 2009 to 2025.
Google Scholar was not used due to its inclusion of grey literature, limited filtering

capabilities, and lack of reproducibility compared to structured academic databases.

Inclusion Criteria.
* Studies published in English between 2009 and 2025.
* Peer-reviewed journal and conference papers.
* Continuous prediction of valence and arousal using regression models.
* Use of at least one of FER, GSR, or pupil size as input modalities.
* Presentation of audiovisual stimuli to participants.
* Reporting of quantitative evaluation metrics (e.g., RMSE, Pearson’s r, CCC).

Exclusion Criteria.
* Non-English papers.
* Reviews, theses, books.

Classification-only models.
 Studies using only EEG, speech, or unrelated modalities.

Studies using only visual, only audio, or image stimuli.

Rationale for Inclusion and Exclusion Criteria. Inclusion and exclusion criteria were
defined to focus the review on studies directly relevant to the research question. Con-
tinuous prediction using regression models was prioritised to align with the circumplex
model of emotion. Studies using at least one of FER, GSR, or pupil size were selected to
explore the most effective physiological and visual modalities for fusion techniques. Au-
diovisual stimuli were required to ensure multimodal emotional elicitation, comparable
to real-world applications. Studies focusing solely on EEG or speech modalities, non-
peer-reviewed papers, and those using discrete classification methods were excluded to
maintain relevance and methodological consistency.

Study Selection. From 213 records identified, 57 duplicates were removed, leaving
156 unique papers. Titles and abstracts of these papers were screened, resulting in the
exclusion of 123 records. Full-text assessment was conducted on 33 papers. Following
strict application of inclusion and exclusion criteria, 7 studies were included in the final
synthesis.

Data Extraction. Key data were extracted from the included studies, focusing on data-
sets used, input modalities, machine learning models, fusion techniques, target outputs
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(arousal and valence), performance metrics, and primary findings. The study selection
process is summarised in the PRISMA flow diagram presented in Figure 2.6.

| Identification of studies vwia databases and registers |

Records remowved before
'E ECrEEmng:
m Records identified from® Dupfloste records ramoved {n
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Figure 2.6: PRISMA Flow-diagram.

2.5.4 Results

The details of the included studies, including the data sets, modalities used, fusion
techniques, models applied, and performance results, are summarised in Table 2.3.



54

Table 2.3: Summary of the studies included in the literature review.

Citation Dataset(s) Modalities Method / | Metric(s) Results Notes
Model
ODwyer et al. | RECOLA Eye gaze, Pupil- | LSTM-based re- | CCC Valence 0.212, | Early work on continu-
(2017) [359] lometry gression Arousal 0.154 ous affect prediction
from gaze/pupil.
Raju et al. | RECOLA FER + Speech RNN  variants | CCC Valence 0.689, | Multimodal fusion,
(2021) [360] with attention Arousal 0.638 higher CCC than unim-
odal baselines.
Brady et al. | AVEC 2016 Video + GSR + | Feature fusion | CCC Valence 0.220, | Benchmark study;
(2016) [361] Physiological with regression Arousal 0.120 lower CCC due to noisy
physiological features.
Patania et al. | RECOLA Audio, Video, | Fusion CCC Valence 0.424 = | Compared multiple fu-
(2022) [362] Physiological strategies (deep 0.203, Arousal | sion strategies; stronger
+ shallow) 0.585 + 0.114 than unimodal.
Joudeh et al. | RECOLA Video + EDA + | Deep learning | CCC Valence 0.998, | State-of-the-art;  very
(2023) [339] ECG multimodal Arousal 0.996 high CCC due to optim-
fusion ised pipeline.
Abhilash et al. | MOOCs dataset | FER CNN + XGBoost | Accuracy| NA Did not perform regres-
(2020) [363] sion.
Zhang et al. | Aff-Wild2, Visual, Audio, | MAE features | CCC, Strong ABAW | Multimodal, in-the-
(2024) [364] Hume- Transcripts + Transformer | F1, Acc. | 2024 results | wild; high compute;
Vidmimic2, fusion + En- across VA, | not directly comparable
C-EXPR-DB semble EXPR, AU to physiology-based
methods

Study Characteristics.

All 7 included studies used audiovisual stimuli to trigger emo-

tions and aimed to predict continuous valence and arousal. FER was the most common
modality (6/7 studies), followed by GSR (3/7) and pupillometry (1/7). Five studies
employed multimodal fusion strategies combining visual, audio, and/or physiological
signals.
Fusion Techniques and Machine Learning Models. A diverse set of regression-based
models and fusion techniques was employed:
* Feature-level fusion: Used in four studies, this technique combines extracted fea-
tures from different modalities into a single feature vector before model training.
* Decision-level fusion: Two studies adopted this approach, combining predictions
from unimodal models.
* Hybrid fusion: One study utilised sequential or hierarchical fusion techniques.
Machine learning models used included: Support Vector Regression (SVR), Ex-
treme Gradient Boosting (XGBoost), Ensemble models, Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), Multimodal Transformers
Quantitative Performance. Unimodal approaches reported modest performance. In
pupillometry, O’'Dwyer et al. [359] achieved CCCs of 0.212 for valence and 0.154 for
[361]
reported low GSR-only baselines (CCC = 0.220 valence, 0.120 arousal), illustrating the

arousal, reflecting the influence of luminance and task context. Brady et al.

limited predictive power of single biosignals. FER was more effective: Raju et al. [360]
obtained CCCs of 0.689 (valence) and 0.638 (arousal) using RNNs with attention.
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Multimodal approaches consistently surpassed unimodal baselines, with perform-
ance strongly influenced by fusion strategies. Brady et al. [361] demonstrated early fu-
sion of audiovisual and physiological features, but CCCs remained low (0.220 valence,
0.120 arousal). Patania et al. [362] systematically compared late fusion, early fu-
sion, and hybrid fusion schemes, achieving improved CCCs of 0.424 (valence) and
0.585 (arousal), showing that the choice of fusion method materially affects outcomes.
Joudeh et al. [339] employed deep fusion of video, EDA, and ECG in an end-to-end
learning pipeline, achieving near-perfect CCCs of 0.998 (valence) and 0.996 (arousal)
on RECOLA, representing the strongest reported physiological multimodal benchmark.
Finally, Zhang et al. [364] advanced ensemble-level fusion by integrating masked au-
toencoder features with transformer-based fusion across audio, video, and transcripts.
Their system achieved state-of-the-art results across valence-arousal, expression recog-
nition, and action unit detection tasks in the ABAW 2024 competition.

Taken together, the literature demonstrates that unimodal biosignals such as pupil
size or GSR provide limited predictive power, whereas multimodal fusion approaches
yield substantial gains. The performance gap across studies underscores the critical role
of fusion strategies: from early and late fusion to deep learning and transformer-based
ensembles, progressively more sophisticated fusion frameworks have driven the field
toward state-of-the-art affective behaviour analysis.

Datasets and Stimuli. Most studies used the RECOLA dataset, with a minority em-
ploying proprietary datasets collected under controlled audiovisual stimulation condi-
tions. All studies were evaluated offline using continuous annotation of valence and
arousal.

2.5.5 Discussion

This systematic literature review explored fusion techniques for FER, GSR, and pupil-
lometry data to enhance continuous prediction of emotional states, specifically valence
and arousal, using regression models. By focusing on studies employing audiovisual
stimuli and reporting quantitative performance metrics, the review highlights trends
and limitations relevant to emotion recognition systems designed around continuous,

dimensional modelling.

Effectiveness of Fusion Strategies. Across the included studies, multimodal fu-
sion consistently improved continuous emotion prediction compared to unimodal ap-
proaches. Feature-level fusion, where preprocessed data streams are combined before
input into the regression model, emerged as particularly effective. Studies using this ap-
proach (e.g., Brady et al. [361], Zhang et al. [364], Patania et al. [362]) demonstrated
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that combining features from FER, GSR, and pupillometry at an early stage allowed ma-
chine learning models to capture complementary aspects of affective responses, enhan-
cing the prediction of both valence and arousal. Decision-level fusion, in which predic-
tions from separate unimodal models are combined at the output stage, was also used
effectively, particularly in scenarios involving asynchronous data or variable-quality in-
put streams (e.g., O'Dwyer et al. [359], Joudeh et al. [339]). However, decision-level
fusion typically limits interaction between modalities during modelling, potentially re-
stricting its ability to fully exploit inter-modal relationships.

More recently, transformer-based architectures and attention mechanisms (as used
by Zhang et al. [364] and Raju et al. [360]) showed strong potential in managing com-
plex, time-dependent emotion signals. These models dynamically weighted modality
contributions based on temporal relevance, which is particularly important in continu-
ous prediction tasks where the salience of each modality can fluctuate over time. Hybrid
fusion strategies, combining feature- and decision-level approaches, remain underex-
plored but offer potential benefits in balancing model complexity with interpretability.

Role of FER, GSR, and Pupillometry. Facial expression features were consistently
found to contribute most strongly to valence prediction, reflecting their clear links to
observable emotional expressions. GSR, by contrast, played a more significant role in
predicting arousal due to its sensitivity to autonomic nervous system responses during
emotional stimulation. However, pupillometry remains significantly underutilised. Des-
pite its potential to capture subtle, dynamic indicators of affective arousal, pupil size
was rarely incorporated as a primary modality. Where pupil-related features were used
(notably in O’Dwyer et al.), they were often treated statically rather than as a dynamic
time-series signal. This represents a notable gap in current fusion strategies. Effective
preprocessing, such as z-score normalisation and temporal segmentation, was crucial
for integrating modalities with different data structures and sampling rates. Without
these steps, modalities like FER, with high-dimensional visual data, risked overwhelm-
ing physiological signals like GSR or pupil size during fusion.

Limitations of Current Research. Despite promising advances, several limitations re-
main across the studies included in this review, such as most studies used controlled
datasets, such as RECOLA, recorded under laboratory conditions. This restricts the
generalizability of findings to real-world applications, where emotional responses are
less constrained and sensor quality may vary. Dynamic pupillometry remains an un-
derused modality. Few studies incorporated pupil size as a continuous, time-resolved
signal alongside FER and GSR, limiting understanding of its potential contribution to
valence and arousal prediction. All reviewed models were evaluated offline. No study
implemented real-time continuous emotion prediction combining FER, GSR, and pupil-
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lometry during audiovisual stimulation. Explainability was rarely addressed. While
deep learning and transformer-based fusion methods improved prediction accuracy,
most models functioned as black boxes, providing limited insight into how each modal-
ity contributed over time. Robustness to missing or degraded modality streams was not
systematically evaluated, despite the likelihood of such issues in real-world settings.

Implications and Future Directions. Future research should prioritise developing fu-
sion models that integrate FER, GSR, and dynamic pupillometry signals using attention-
based or transformer architectures, allowing models to adaptively focus on the most in-
formative modalities over time. Expanding the use of temporal modelling for pupillary
signals represents an important research opportunity, given the known affective relev-
ance of pupil dynamics. Additionally, future systems should incorporate explainable
Al techniques to improve interpretability. Methodologies should also address modal-
ity dropout, ensuring robust emotion recognition even when one or more data streams
are unavailable or unreliable. Finally, the development and adoption of standardised,
multimodal datasets collected in naturalistic environments with continuous annotation
of valence and arousal will be critical for advancing the field and enabling meaningful
comparison across models.

2.5.6 Conclusion

This systematic review confirms that multimodal regression-based models using au-
diovisual stimuli and physiological or visual inputs provide reliable continuous arousal
and valence predictions. Feature-level fusion of FER, GSR, and pupillometry features ap-
pears most effective for improving emotion recognition accuracy. Further development
of hybrid fusion techniques and exploration of underused physiological modalities are
recommended.

2.6 Limitations and Future Directions

Emotion detection using physiological signals has significant potential, but several
limitations must be addressed for reliable real-world use. Many challenges are common
and systemic across modalities, such as pupil dilation, GSR and PPG-based HR, while
others are modality-specific. This section first outlines the common limitations across
modalities and the specific challenges associated with pupil dilation and GSR. Our ana-
lysis focuses on these two modalities due to their increasing prominence in emotion
research and inclusion in our empirical investigations.
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Common Limitations Across Physiological Modalities

A primary standard limitation is the over-reliance on data collected in tightly con-
trolled laboratory settings. Such settings often fail to reflect the complexity and variab-
ility of real-world contexts, reducing ecological validity and limiting the generalizability
of findings [192], [217], [292]. In addition, small, homogeneous or biased samples fur-
ther hinder the development of robust models applicable to diverse populations [36],
[258].

Another common problem is the susceptibility of physiological signals to noise and
distortions. Wearable sensors such as GSR and PPG are highly sensitive to motion,
environmental conditions (e.g., temperature, lighting), and sensor placement [258],
[260]. These noises can distort signal quality, making emotion inference difficult in
real-world scenarios. Furthermore, most current systems rely on classifying discrete
emotional states, even though emotional experiences are inherently continuous and
context-dependent. This simplification reduces the ability of systems to capture complex
or mixed emotional states [254], [365].

Multimodal ML approaches introduce their own set of complications. Synchronisa-
tion and fusion of multiple data streams (e.g. GSR, PPG, EEG) pose technical chal-
lenges. Feature-level fusion may introduce redundancy or noise, while deep learning
models require large datasets that are often unavailable [217], [252]. Furthermore, the
lack of standardised protocols and consistent emotion elicitation methods makes cross-
study comparisons difficult [192], [366]. Finally, ethical considerations - user privacy,
consent and misuse of emotion data - remain under-addressed despite their growing
importance [36], [259].

Modality-Specific Limitations

Pupil Size. Emotion detection by pupil size is particularly sensitive to ambient
light conditions, which strongly influence pupil size and can confound emotional sig-
nals [274], [297]. In addition, pupil responses vary significantly between individuals
due to cognitive load, personality traits, health conditions and genetics [367], [368].
These inter-individual differences challenge the development of generalisable models.
Most studies of pupil dilation focus on basic emotional states and are conducted in con-
trolled environments, limiting their applicability to dynamic, real-world settings [203],
[292].

Galvanic Skin Response and PPG-Based HR. GSR-based systems often emphasise
static features and discrete emotion labels, neglecting the temporal evolution of arousal
and the continuous nature of emotions [365], [369]. Furthermore, the GSR is limited
in its emotional specificity. While it can reliably indicate arousal, it struggles to dis-
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criminate between emotions with similar levels of arousal but different valence, such
as fear and excitement [370]. Similar problems apply to PPG-based heart rate signals,
which primarily reflect autonomic arousal and are prone to motion noise. External con-
ditions such as temperature, skin colour and physiological delays further reduce the
reliability of PPG signals. Inconsistencies in dataset formats and measurement practices
compound these challenges, making cross-study validation difficult [302].

Focus and Contributions of This Work

This paper explores the limitations and potential of pupil dilation and GSR-based
emotion detection, which are gaining attention for their use in wearable and mobile
applications due to their non-intrusive nature and suitability for real-time monitoring.
These physiological modalities provide complementary insights into emotional states -
while GSR reflects autonomic arousal, pupil dilation is linked to cognitive and affective
processing, providing a multidimensional view of emotion.

In our research, we collected data from healthy participants, carefully screening for
individuals without mental health conditions such as alexithymia, autism, PDs, anxiety
or depression. We used a comprehensive set of sensors, including GSR, PPG, FER, an
eye tracker for pupil size, and EEG. The aim was to address several key challenges in
emotion recognition. A novel aspect of our study was the development of a method to
remove the influence of ambient luminosity on pupil size, allowing us to more accur-
ately isolate the emotional component of pupil dilation.

Following existing methods, we extracted time- and frequency-domain features from
the GSR signals and performed min-max normalisation for each stimulus and parti-
cipant to reduce variability. We converted basic emotions into a continuous arousal-
valence representation for facial expression data, allowing for a finer understanding of
emotional responses.

Our study also focused on multimodal integration, combining complementary mod-
alities to enhance emotional specificity. By fusing signals such as GSR and pupil dila-
tion with FER data, we aimed to build a more robust emotion detection model. This
approach addresses the limitations of using single modality data and improves the ac-
curacy and applicability of emotion detection systems.

This research addresses several critical limitations in emotion detection using
physiological signals. By incorporating dynamic modelling, advanced pre-processing
techniques and multimodal fusion, we have laid the foundations for future develop-
ments in real-time emotion detection. Future work should continue to validate these
models in real-world contexts, improve their ecological validity, and explore context-
aware systems to enhance the practical use of emotion detection technologies.
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2.7  Generalisation and Transfer Learning

The challenge of generalising emotion recognition models across different subjects,
environments and scenarios is a key hurdle in emotion recognition research. The effect-
iveness of emotion detection models relies heavily on their ability to adapt and perform
well across different populations, contexts, and changing environmental conditions.
However, this generalisation is not always straightforward, especially with multimodal
data (e.g. physiological signals, facial expressions, voice), which can vary significantly
between individuals or settings [187].

The model can capture the continuous nature of emotions by using regression rather
than classification to detect emotional states. Unlike classification, which restricts emo-
tions to a limited set of discrete labels (such as happy, sad, or angry), regression predicts
the intensity of emotions continuously, such as arousal and valence levels [371]. This
has several advantages:

* Avoid bias towards a few dominant emotions: In a classification model, emotions
such as happiness or anger may dominate due to their over-representation in the
data sets, leading to biased predictions [372]. Regression, however, can ensure
that all emotional variation, including less frequent or subtle emotions, is con-
sidered, resulting in a more balanced representation [373].

* Capture subtle emotional differences: Emotions are often complex and nuanced,
and small changes in emotional intensity can be significant. Regression models
can capture these fine-grained differences, making them more suitable for nu-
anced applications that require sensitivity to emotional variations, such as mental
health assessments or personalised user experiences in HCI [374].

* Better reflect real-world emotional experiences: Unlike classification, which forces
emotions into predefined categories, regression models recognise that emotions
exist on a spectrum [375]. For example, a person’s emotional state may not be
strictly ’happy’ or ’sad’, but may vary between moderate happiness and extreme
joy or between mild sadness and deep grief. By modelling emotions as continuous
variables, regression more accurately represents these fluid emotional transitions
and more closely matches real-world emotional dynamics.

This makes regression particularly useful for applications where gradual emotional
changes are critical. Regression provides a more accurate analysis tool in affective com-
puting, where systems need to detect and respond to continuous emotional states in real
time, and mental health monitoring, where emotional changes over time can indicate
changes in well-being or mental health. It is also essential in HCI, where continuous
feedback on emotional states can improve user engagement and system responsiveness.

Furthermore, transfer learning can improve the generalisation of regression models
across different subjects or environments. By fine-tuning a model trained on a large,
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diverse dataset (e.g., capturing emotional data from a wide range of individuals and
settings), it can be adapted to new users or specific contexts with minimal retraining,
overcoming the limitations of traditional model generalisation.

Regression approaches offer a more flexible and accurate representation of emo-
tional states, particularly suitable for applications requiring sensitivity to emotional
intensity and gradual change. These models can be even more robust and adaptable
when combined with transfer learning, ensuring that emotion recognition systems per-
form well in diverse scenarios and subject populations.

2.7.1 General Strategies to Address Challenges

* Data enhancement: In addition to resampling and generating synthetic data,
augmenting the data set with different noise patterns and variability can improve
generalisation in real-world scenarios.

* Multimodal Fusion: Combining data from multiple sources (e.g., physiological
signals, facial expressions, and speech data) can help overcome noise-related
problems in individual modalities. A robust multimodal fusion approach allows
the system to exploit the complementary strengths of each signal type, making the
emotion recognition system more accurate and robust.

* Real-time monitoring and adaptation: Implementing adaptive learning tech-
niques, where the model continuously improves as more data is collected in real
time, can help mitigate the problems of noise and imbalance over time, especially
in clinical or dynamic environments.

* Cross Validation: Applying cross-validation techniques to different subsets of the
data ensures that the model does not over-fit to noisy or imbalanced parts of the
dataset, providing more generalisable results.

Addressing these challenges can significantly improve the robustness and accuracy of
emotion detection models using physiological signals.

2.8 Conclusion

This literature review highlights the critical role of ML models in advancing emo-
tion detection by leveraging physiological signals and facial expressions. Integrating
multimodal data has shown promising improvements in accuracy; however, challenges
remain in identifying the most relevant features for robust and real-time emotion de-
tection. A key research direction is the development of optimised feature extraction
techniques that enhance regression models for detecting continuous emotional states.
Future work should improve feature selection methods, refine fusion strategies for mul-
timodal data, and develop computationally efficient models that maintain high predict-



62

ive performance. Addressing these aspects will provide more reliable, interpretable, and
real-world-applicable emotion detection systems.



Chapter 3

Development of Methodology for
Emotion Detection Model

This chapter outlines the methodology used to develop an emotion detection model,
structured around two sequential studies and the application of advanced machine
learning techniques. It begins with a pilot study that helped us establish effective data
collection and analysis protocols using physiological signals. The pilot study’s find-
ings informed the design of the main study, in which we implemented refined data
collection and processing procedures. Manual pre-processing of physiological signals
was performed to improve data quality and ensure compatibility with machine learn-
ing algorithms. Finally, we applied advanced machine learning techniques to train and
evaluate the emotion detection model.

3.1 Pilot Study

This pilot study examines participants’ emotional responses to audiovisual stimuli
using facial expression analysis, eye-tracking, GSR, and PPG-based HR. The goal is to
assess whether these bio-signals capture emotional arousal and valence variations, aid-
ing the development of a machine-learning emotion detection model.

Unlike traditional self-reported methods, which can be biased, physiological signals
offer objective, real-time measures of emotional states. Markers such as Pupil dila-
tion, GSR, and PPG-based HR reflect ANS activity and provide reliable indicators of
emotional arousal. Integrating these with facial emotion detection data can create a
comprehensive emotion detection system.

3.1.1 Significance and Objectives of the Pilot Study

The pilot study played a crucial role in evaluating the methodology and ensuring the
reliability of the data collection process before the main study. Its primary aim was to
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assess the feasibility of using multimodal physiological signals, such as pupil size, GSR,
PPG, and FER, for emotion detection.
The specific objectives of the pilot study were as follows:
1. To assess the feasibility of using multimodal physiological signals for detecting
emotions.
2. To evaluate the consistency of participants’ physiological responses to emotional
audiovisual stimuli across different modalities.
3. To investigate how stimulus-induced emotion affects each signal type (pupil size,
GSR, PPG, FER).
4. To test the effectiveness of different biosensors and data recording techniques.
5. To identify potential distortions or noise in the data (e.g., motion-induced noise
in GSR, lighting effects on pupil size).
6. To optimise the timing of stimulus presentation for enhancing emotional engage-
ment.
7. To evaluate participant compliance and refine task instructions.
8. To identify technical challenges and inform refinements in data collection, pre-
processing, feature extraction, and model training strategies.
The outcomes of this pilot study laid the groundwork for effectively integrating
physiological signal features with machine learning algorithms, ultimately improving
the efficiency and reliability of automated emotion detection systems.

3.1.2 Experimental Approach

To examine participants’ emotional responses, we designed an experiment expos-
ing them to carefully curated audiovisual stimuli that evoke different emotional states.
These audiovisual clips were selected based on validated emotion elicitation databases
to ensure diverse emotions [376], [377], including happiness, sadness, fear, and neut-
rality. During the experiment, simultaneous recording of facial expressions, eye move-
ments, pupil size, GSR, and PPG data was performed to capture real-time physiological
changes associated with emotional arousal and valence.

A critical aspect of this study was to analyse the correlations between these physiolo-
gical signals and self-reported emotional experiences. By comparing participants’ sub-
jective ratings with their recorded physiological responses, we aimed to assess each
modality’s reliability and predictive power in emotion detection.

3.1.3 Participants

A total of 45 participants (20 males, 25 females) were recruited for this study, con-
sisting of students and staff at the University of Essex who voluntarily agreed to particip-
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ate. Before the experiment, all participants provided signed informed consent, ensuring
their awareness of the study’s objectives, procedures, and data usage. Ethical approval
for this study was obtained under application number ETH2223-0088 following the
institutional research guidelines of the University of Essex.

There were no strict screening criteria apart from age; participants must be between
18 and 65 to ensure a diverse representation of adult emotional responses. The re-
search complied with ethical guidelines, ensuring voluntary involvement, safeguarding
confidentiality, and allowing participants to withdraw without repercussions.

3.1.4 Experimental Setup

The study was conducted in a well-lit laboratory at the University of Essex, School
of Computer Science and Electronic Engineering (CSEE). The experimental setup con-
sisted of two screens: an experimenter screen for monitoring the study, an experiment
screen for presenting emotional stimuli to the participants, and a mouse for responding

to the survey questionnaires.

. TR

Figure 3.1: Tobii Pro Nano eye tracker used in the study.

A high-resolution camera (Intel RealSense Module D430 + RGB Camera, 1920
X 1080 resolution, 30 fps) (https://www.intelrealsense.com/depth-camera-d435i/)
was mounted on the experiment screen to capture participants’ facial expres-
sions throughout the study. Below the screen, a Tobii Pro Nano eye-tracker (ht-
tps://connect.tobii.com) was installed to record pupil size and the gaze value of eye
movements (see Figure 3.1). Participants were required to sit within a 65 cm range
from the screen to ensure accurate eye-tracking measurements, as presented in Figure
3.2.

Additionally, GSR and PPG sensors from Shimmer were used to monitor physiolo-
gical responses. Two GSR electrodes were attached to the index and middle fingers,
while a PPG electrode was placed on the ring finger of one hand. These physiological
signals and facial emotion detection provided a comprehensive dataset for assessing
emotional responses.
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Figure 3.2: Collecting pupil data using an eye tracker [378].

3.1.5 Procedure

The data collection process was conducted using iMotions Software [379], which
controlled the presentation of stimuli and synchronised data recording across various
sensors. The procedure began with an initial in-built Tobii Pro Nano eye-tracker calib-
ration to ensure accurate tracking, proper alignment, and reliable data capture of the
participant’s pupil size and gaze positions.

After calibration, participants were shown an instruction screen outlining the exper-
imental procedure. Following the instructions, participants were shown a 60-second
grey screen with a black cross at the centre to capture their physiological responses in
a neutral emotional state. This phase allowed for measuring their physiological and
baseline responses before exposure to emotional stimuli.

The experiment’s central part involved presenting 20 audiovisual clips, with an aver-
age duration of 35 seconds and a maximum duration of 58 seconds, randomly ordered
for each participant (see Figure 3.3). The clips were selected to represent five distinct
emotional categories based on Russell’s circumplex 2D emotional model [32] (four au-
diovisual clips per category): high arousal with positive valence, high arousal with
negative valence, low arousal with positive valence, low arousal with negative valence,
and neutral clips [380]. These categories were designed to capture various emotional
states and elicit diverse physiological and subjective responses 1.

ILink to audiovisual clips: https://essexuniversity.box.com/s/
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It is important to note that iMotions software was employed solely for stimulus
presentation and multimodal data acquisition. All subsequent stages of this study, in-
cluding preprocessing, feature extraction, and the development of machine learning
pipelines, were designed and implemented independently by the candidate. This en-
sured that the original technical contributions of this work lie beyond data collection
and focus on the bespoke analytical framework developed.

& Coolcam

— Context A — moving_clouds_10s = =

Figure 3.3: The presentation flow of each audiovisual clip.

Before each clip, we provided contextual information to establish a foundation for
understanding the scene. Since some audiovisual clips were excerpts from movies, it
was necessary to explain the background to elicit the intended emotions effectively.
To minimise emotional transfer from contextual information to audiovisual clips, a 5-
second neutral video, featuring a cloud-moving animation, was shown between each
emotional clip. This neutral stimulus aimed to reset participants’ emotional states be-
fore presenting the following video clip. After viewing each clip, participants were asked
to complete a survey that assessed their emotional responses to the clips. As mentioned
in the literature review chapter (2), we used a multidimensional emotional question-
naire to create the survey. The survey consisted of 12 emotion-related questions (12
dimensions), adapted from prior work [35], [164], [381] and extended from [164] to
cover a broader range of affective states. Specifically, the questionnaire included the
following emotions: positive, excitement, happiness, amusement, calmness, con-
tentment, negative, anger, fear, anxiety, sadness, and boredom. Participants rated
each of these 12 items on a scale from 0 to 9, where 0 indicated the absence of the emo-
tion and 9 represented the highest intensity. After each audiovisual clip, participants
were asked to complete the 12-item survey. The items were presented in a fixed or-
der for consistency, and each rating was recorded through the iMotions interface (see
Figure 3.4). This procedure allowed for a comprehensive assessment of the emotional
intensity elicited by each stimulus, providing a multi-dimensional self-report comple-
ment to the physiological signals.

For transparency and reproducibility, the full text of the survey items and their rating

fovxpkm7k932p85wymsrk84c2c46md8f
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Surve Back

Please rate how you feel right now on each one of the adjectives below. Make your rating from 0 to 9, where 0 means "not at all" and 9 means "extremely high".
* means you must answer this question.

0 1 2 3 4 5 [ 7 ] 9

Positive* O O @) O (@] (0] 0 O 0 O

Excited* O 9] O O O (0] O O O )

Happy* O O O O (0] (0] O O O O

Amused* @) O @) O @] @] 0O O O C

Calm* o} o) o} o} e} o) 0 O O O

Content* @) 0O ®) @) (9] o] O O O C

0 1 2 3 4 5 6 7 8 9
Negative* O @] O (@) O O O O O O
Bored* O O @] (%) @] O O O Q O
Sad* O @] O ) O D] O @ O @]
Anxious* O (@] O O (@] O ) O Q @]
Angry* 0O O O O (@] O 0O O O O
Fearful* O O O O O O O

Next =p

Survey Questionnaires for Pilot Study.

Figure 3.4
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format are provided in Appendix 6.1.

3.1.6 Emotion Labelling

After completing the experiments, the survey data collected from iMotions were used
to compute the emotion labels. Unlike prior studies that directly average or categorise
participant ratings, we employed Russell’s Circumplex Model of emotion classification,
where emotions are organised along two continuous dimensions: valence (pleasantness
vs. unpleasantness) and arousal (activation vs. deactivation) [32]. This framework al-
lows emotions to be mapped within a circular space, preserving their theoretical struc-
ture.

To derive individualised valence-arousal values from participants’ responses, we
applied the Individual Differences Scaling (INDSCAL) multidimensional scaling tech-
nique [164]. This method projected the original 12-dimensional (12D) ratings (12
emotion-related questions per audiovisual clip) into a two-dimensional (2D) circumplex
space, while also capturing individual weighting factors. In doing so, INDSCAL provided
both a shared group-level perceptual space and participant-specific variations, thereby
addressing the limitations of conventional approaches that rely on categorical labels or
aggregated averages. This projection of 12D space to 2D space not only ensured consist-
ency with established psychological theory but also offered a mathematically coherent
and interpretable framework for emotion labelling, marking an important contribution
in the context of multimodal affect recognition.

Importantly, this labelling strategy provided more reliable ground-truth data for
model training, ensuring that the subsequent multimodal integration (pupil size, GSR,
and FER) was guided by labels that preserved both common emotion structure and in-
dividual differences. This strengthened the robustness and ecological validity of our
emotion recognition pipeline.

As mentioned above, INDSCAL decomposes the aggregated group similarity matrix
into:

* a common group configuration X, representing the positions of the stimuli in a

shared k-dimensional space, and

* individual subject weights W, which rescale the dimensions for each subject s.

Formally, given a set of dissimilarity matrices {A()} for subjects s = 1,...,S, IND-
SCAL solves:

E 1/2
52(;) ~ <Z w5d<$id — xjd)2> s (31)
d=1

where 62.(;) is the perceived dissimilarity between stimuli ¢ and j for subject s, x; =
(s, ..., x;) are the coordinates of stimulus 7 in the group space, and wy, is the weight
of subject s on dimension d.
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The subject weights W, = (wg;, ws) indicate how strongly each participant used
the valence (dimension 1) and arousal (dimension 2) axes. These weights are estimated
through least-squares minimisation of the stress function:

Stress — ZZ (5 —dP(X, W )) , (3.2)

s=1 i<y

where dg’) is the model-predicted distance.

Distance Metrics. To quantify the similarity between 20 audiovisual clip stimuli, we
tested multiple distance metrics, including Manhattan and Euclidean distance. Both
produced interpretable structures, but the Euclidean distance provided the best fit with
the INDSCAL stress function and yielded a more coherent 2D representation consistent
with Russell’s circumplex model. The results using the Manhattan metric are included
in the Appendix for comparison.

Equation for Distance Matrix Calculation. For a set of N stimuli (where N = 20)
and M scales (where M = 12), let:
* S; = (s, S,---,8n) be the vector representation of stimulus i across M scales,
* S; = (sj1,5j2,--.,5;m) be the vector representation of stimulus j.
The Euclidean distance D(i, j) between two stimuli S; and 5} is:

M

D(i,5) = | D> _(sik — sju)*. (3.3)

k=1

This produced a 20 x 20 symmetric distance matrix for each participant (see Fig-
ure 3.5), which was then input into INDSCAL.

Implementation. Since Python does not include a direct implementation of INDSCAL,
we used the Statistical Package for the Social Sciences (SPSS) to compute the model.
SPSS generated the 2D group configuration and individual subject weights automatic-
ally. The output included:

* 2D group space - the shared valence-arousal coordinates of stimuli,

* subject weights - rescaling factors showing how strongly each subject relied on

each dimension.
These subject weights enabled personalised interpretations, ensuring each parti-

cipant’s responses were preserved within the common dimensional structure.
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A1 1P A2IP A3 1P AAIP|/AHBN | BHN  CIN|FHN GHP |HHP | JNe | KNe | MIN |  NL OIN | PHP [ QHP | UNe | V Ne | W HN

0] 1.41421] 5.83095| 4.24264| 6.9282| 10.4403| 5.83095| 9.48683| 3.87298 6| 4.69042| 4.24264 7] 7.68115] 9.16515] 7.2111| 7.07107| 5.56776| 6.9282| 7.81025
1.41421 0] 5.47723| 3.4641| 7.07107| 10.5357 6] 9.59166| 2.64575| 5.09902| 4.89898| 4.47214| 7.14143| 7.81025| 9.27362| 6.16441 6| 4.79583| 7.07107| 7.93725
5.83095| 5.47723 0] 5.83095 8| 11.1803] 7.07107| 10.2956 5[ 5.83095| 4.69042| 5.83095| 8.06226| 8.66025 10| 6.16441| 6.48074| 5.91608| 6.9282| 8.77496
4.24264| 3.4641| 5.83095 0| 8.83176| 11.789§ 8| 10.9545| 3.60555| 6.48074) 7.2111| 6.9282| 8.88819| 9.43398| 10.6771)| 6.48074| 6.9282| 6.7082| 8.83176| 9.53939
6.9282| 7.07107 8| 8.83176 0| 5.91608] 5.47723| 6.48074| 7.14143| 6.9282| 5.83095| 5.47723| 3.31662| 4.3589| 6.32456 8| 7.87401| 6.55744| 3.74166| 2.64575
10.4403| 10.5357] 11.1803| 11.7898| 5.91608 0] 8.18535| 7.4162| 10.583| 10.4403| 9.74679| 9.53939 4] 4.69042 5/ 11.1803| 11.0905| 10.19§ 5| 5.83095
5.83095 6] 7.07107 8| 5.47723| 8.18535 0| 9.38083| 6.08276| 5.83095| 4.47214 4| 4.79583 5[ 6.48074| 7.07107| 6.9282| 5.38516| 5.47723| 5.91608
9.48683| 9.59166| 10.2956| 10.9545| 6.48074| 7.4162| 9.38083 0] 9.64365| 9.48683| 8.7178| 8.48528| 6.55744 | 8.06226| 9.48683| 10.2956| 10.198| 9.21954| 6.48074| 8.18535
3.87298| 2.64575 5] 3.60555| 7.14143| 10.583] 6.08276| 9.64365 0 3 5[ 4.58258] 7.2111| 7.87401| 9.32738| 3.60555| 3.60555| 3.16228| 7.14143 8

6] 5.09902| 5.83095| 6.48074| 6.9282| 10.4403| 5.83095| 9.48683 3 0] 4.69042| 4.24264 7] 7.68115| 9.16515 2[ 1.41421 1| 6.9282| 7.81025
4.69042| 4.89898| 4.69042| 7.2111| 5.83095| 9.74679| 4.47214| 8.7178 5] 4.69042 0 2| 5.91608| 6.7082| 8.3666| 6.16441 6| 4.12311| 5.09902| 6.85565
4.24264| 4.47214| 5.83095| 6.9282| 5.47723| 9.53939 4| 8.48528| 4.58258| 4.24264 2 0| 5.56776| 6.40312| 8.12404| 5.83095| 5.65685| 3.60555| 5.47723| 6.55744

7] 7.14143] 8.06226| 8.88819| 3.31662 4] 4.79583] 6.55744| 7.2111 7] 5.91608| 5.56776 0] 2.44949| 4.58258] 8.06226| 7.93725| 6.63325| 2.23607| 3.74166
7.68115| 7.81025| 8.66025| 9.43398| 4.3589| 4.69042 5[ 8.06226| 7.87401| 7.68115| 6.7082| 6.40312| 2.44949 0] 6.08276| 8.66025| 8.544) 7.34847| 3.60555| 3.16228
9.16515| 9.27362 10] 10.6771] 6.32456 5] 6.48074| 9.48683| 9.32738| 9.16515| 8.3666| 8.12404| 4.58258| 6.08276 0 10| 9.89949| §.88819| 5.47723 7
7.2111] 6.16441] 6.16441] 6.48074 8| 11.1803] 7.07107] 10.2956| 3.60555 2| 6.16441| 5.83095| 8.06226| 8.66025 10 0] 1.41421 3 8| 8.77496
7.07107 6| 6.48074| 6.9282| 7.87401| 11.0905| 6.9282| 10.198| 3.60555| 1.41421 6] 5.65685| 7.93725|  8.544| 9.89949| 1.41421 0] 2.23607| 7.87401| 8.66025
5.56776| 4.79583| 5.91608| 6.7082| 6.55744| 10.198] 5.38516| 9.21954| 3.16228 1] 4.12311] 3.60555| 6.63325] 7.34847| 8.88819 3| 2.23607 0| 6.55744| 7.48331
6.9282| 7.07107| 6.9282| 8.83176| 3.74166 51 5.47723| 6.48074| 7.14143| 6.9282| 5.09902| 5.47723| 2.23607| 3.60555| 5.47723 8| 7.87401| 6.55744 0| 4.3589
7.81025| 7.93725| 8.77496| 9.53939| 2.64575| 5.83095| 5.91608| 8.18535 8| 7.81025| 6.85565| 6.55744| 3.74166| 3.16228 7] 8.77496| 8.66025| 7.48331| 4.3589 0
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Outcome. Through this process, the original 12D responses were projected into a
2D space, with the z-axis corresponding to valence and the y-axis to arousal. These
derived labels formed the continuous ground truth used for subsequent model training
and analysis (see Section 4.2.1).

3.1.7 Data Pre-processing and Analysis of Physiological Signals

Physiological signals were recorded using specialised sensors while participants were
exposed to emotional stimuli during the experiment. GSR sensors measured skin con-
ductance changes, a facial camera captured facial expressions, and an eye-tracking sys-
tem recorded pupil diameter to track visual attention and arousal levels. Each physiolo-
gical signal requires specific preprocessing steps to ensure data quality and minimise
noise. For GSR data, a band-pass Butterworth filter of second order with a cutoff fre-
quency of 5 Hz was applied to remove high-frequency noise and baseline drift. For
pupil dilation data, eye blinks, which introduce sudden missing values, were identified
using the blink detection algorithm implemented in the iMotions eye-tracking module.
In this approach, blinks were flagged when both eyes showed consistent missing data
for a short interval, distinguishing them from random tracking noise. These blink events
were then replaced with null values to prevent distortions in the signal.

Our study used iMotions software (https://imotions.com/) to collect data for FER
and physiological data. iMotions integrates Affectiva’s AFFDEX [382] and Realeyes al-
gorithms to detect seven core emotions (joy, anger, fear, surprise, sadness, contempt,
and disgust) by analysing facial movements. It captures 20 facial action units (e.g.,
cheek raiser, lip corner puller), head movements, blinks, and valence, providing a com-
prehensive emotional profile. Additionally, it synchronises FER with physiological sig-
nals like GSR and EEG for multimodal emotion analysis, making it valuable in research,
UX testing, and mental health assessment [77].

After initial preprocessing, all physiological data underwent a null imputation pro-
cess using interpolation to handle missing values. Interpolation is a technique used to
estimate values between known data points, ensuring a continuous dataset representa-
tion. Specifically, we applied linear interpolation, which assumes a linear relationship
between neighbouring data points to estimate missing values. This method computes
values at regular intervals between two adjacent known points, preserving the overall
trend and structure of the data. For example, if two data points are "1" and "2," and two
intermediate values are missing, linear interpolation would estimate them as "1.33" and
"1.66" by following a linear trend. This approach was beneficial for handling missing
data in our time-series dataset, ensuring that essential patterns and trends remained
intact while minimising information loss.
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FER Analysis

Facial expressions were analysed using the iMotions software equipped with the AFF-
DEX 2.0 toolkit. This toolkit applies a deep learning-based facial expression recognition
model to each video frame and outputs intensity scores (continuous values ranging from
0 to 100) for seven basic emotions: anger, fear, disgust, sadness, contempt, joy, and sur-
prise. These emotion intensity values were the only outputs taken from the proprietary
software, serving as raw input features for our subsequent analysis. Unlike many studies
that either use categorical outputs directly (e.g., majority voting across frames) or train
black-box regressors from AU activations to valence-arousal values, we, with the help of
students, developed a novel pipeline to transform these discrete intensities into a con-
tinuous, interpretable representation within a theoretically grounded affective space.

To achieve this, we mapped the seven basic emotions into Russell’s Circumplex
Model of Affect [32]. Each emotion was assigned an angular position within the cir-
cumplex space based on established associations of affective words and prior empirical
mappings (see Table 3.1). In this formulation, each emotion contributes both a direction
(its circumplex angle) and a magnitude (its intensity value from iMotions). By decom-
posing the emotion intensities into Cartesian coordinates, summing contributions across
emotions, and averaging across time, we obtained a continuous trajectory in valence-
arousal space.

This vectorial mapping framework is novel in three respects: (i) it respects the geo-
metry of Russell’s circumplex by treating emotions as vectors rather than independent
categories, (ii) it allows co-occurring emotions to be naturally combined into a single af-
fective state rather than forcing a dominant label, and (iii) it provides a psychologically
interpretable bridge between categorical FER outputs and dimensional affect modeling.
To the best of our knowledge, no previous FER-based study has integrated emotion in-
tensities into a circumplex representation in this vectorial form, making our approach
both theoretically motivated and practically distinctive within the affective computing
literature.

Formally, we represented each emotion as a vector in polar coordinates, where the
angle was derived from Russell’s model and the magnitude was the iMotions intensity
score. These were then converted into Cartesian coordinates as follows:

x; = M; cos(6;) (3.4)
y; = M;sin(6;) (3.5)

where:
* M; = intensity of the i** emotion (from iMotions),
* ¢; = circumplex angle assigned to that emotion (Table 3.1),
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Figure 3.6: Mapping of iMotions’ seven basic emotions into Russell’s Circumplex Model,
with angular positions assigned to each emotion.

* 1; = valence contribution,
* y; = arousal contribution.
This transformation generated seven emotion vectors per frame of the video recording.

Emotion | Angle (°)
Anger 99.16°
Fear 117.73°
Disgust 138.70°
Sadness | 207.70°
Contempt | 328.49°
Joy 24.50°
Surprise 73.08°

Table 3.1: Emotion angles on Russell’s Circumplex Model

At each timestamp, we then performed a vectorial average of the seven emo-
tion vectors to obtain a single resultant vector. This resultant represented the net
valence-arousal position of the participant’s face at that time, combining both intensity
and direction of multiple emotions into one interpretable affective state.

Because iMotions intensities are unbounded in relation to the circumplex unit circle,
some resultant vectors exceeded a magnitude of 1. In these cases, we normalised the
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Figure 3.7: Conversion of emotion magnitudes into Cartesian vectors, followed by vec-
torial averaging across the seven basic emotions at each timestamp.

vector back to unit length, preserving its direction but constraining it within the cir-
cumplex. This ensured comparability across participants and stimuli.

After producing time-resolved valence-arousal coordinates for each frame, we com-
puted a second vectorial average across all timestamps within a given audiovisual clip.
This yielded one aggregate valence—arousal vector per stimulus per participant, repres-
enting the overall facial emotional response to that clip.

From the time series of valence-arousal values, we also extracted descriptive stat-
istical features (mean, minimum, maximum, standard deviation, and kurtosis). These
features summarised the dynamics of participants’ facial responses and were later used
for multimodal analysis.

Finally, to assess the validity of this mapping, we compared FER-derived valence-
arousal measures with self-reported ratings obtained through the INDSCAL method
(Section 3.1.6). Pearson correlation coefficients quantified the degree of alignment
between facially expressed emotions and participants’ subjective experiences, thereby
linking observable behaviour with internal affective states. Find the clear flowchart of
the process in the Figure 3.9.
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a given stimulus.

Pupil Size Analysis

We utilised pupil diameter as a key feature for analysis from the eye-tracker data re-
corded through iMotions software, which provides information on pupil diameter, gaze
points, fixation points, and saccades. We mainly used pupil diameter (pupil size) data
from this information in the emotion detection model. Specifically, we calculated the
average pupil diameter across the right and left eyes to obtain a more stable meas-
urement. Using these pupil diameter values, we extracted various statistical features,
including the mean, minimum, maximum, standard deviation, skewness, and kurtosis,
to capture fluctuations in pupil size over time.

We normalised these features using a 60-second grey screen baseline pupil diameter
measured while participants watched a grey screen to ensure consistency and account
for individual differences. This baseline normalisation reduced variability caused by
lighting conditions [205], individual physiological differences, and spontaneous pupil
fluctuations, allowing for a more reliable comparison across participants and stimuli.

Using these extracted features, we found the Pearson correlation of these features
before and after baseline normalisation with self-reported arousal and valence to gain
insights into the significance of each feature in predicting emotional states.
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iMotions AFFDEX 2.0
(Facial Expression Recognition)
Output: 7 basic emotion intensities

Step 1: Map each emotion intensity to
Russell’s Circumplex Model
(assign angle, keep intensity as magnitude)

¥
Step 2: Convert polar to Cartesian
(x = valence, y = arousal)

!

[Step 3: Vectorial average across 7 emotions]

— One resultant vector per timestamp

!

Step 4: Vectorial average across timestamps
— Aggregate clip-level vector

!

Feature Extraction
(mean, min, max, std, kurtosis)

Figure 3.9: FER Processing Pipeline. iMotions AFFDEX 2.0 was only used to output
seven basic emotion intensities (grey block). All subsequent stages—including cir-

cumplex mapping, vectorial averaging, feature extraction, and validation—were de-
veloped in this research (blue, green, and purple blocks).

GSR Analysis

The GSR signal consists of two primary components: the tonic (slowly changing
baseline) and phasic (rapid changes in response to stimuli). This document outlines the
key feature extraction techniques applied to raw GSR, phasic, and tonic signals using
data from iMotions software (https://imotions.com/).

iMotions employs a multi-stage signal processing methodology to decompose raw
GSR signals into tonic and phasic components, combining established physiological
principles with modern optimisation techniques. The process begins with a median fil-
ter (8,000 ms window) applied to the raw signal to isolate the tonic component (SCL),
representing slow baseline variations [383], [384]. The phasic component (SCRs) is
then derived through convex optimisation, where the raw signal is modelled as the
sum of tonic (low-frequency) and phasic (rapid fluctuations) elements, constrained by
physiological priors about SCR dynamics [384], [385]. A low-pass Butterworth filter
(5Hz cutoff) removes high-frequency noise before peak detection [383]. Event-related
SCR identification uses amplitude thresholds (>0.01 uS for onsets, >0.005 uS peak
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amplitude) and temporal constraints (minimum 500ms between onset-offset pairs) to
distinguish accurate sympathetic responses from distortions [383], [386]. This decom-
position aligns with a few studies showing strong phasic-arousal correlations (p<0.01)
in IAPS emotional stimuli experiments [384]. The pipeline is implemented via R Note-
book integrations that automate signal processing while allowing parameter customisa-
tion for specific research needs [383].

We first conducted statistical analyses to analyse GSR data to understand its beha-
viour, particularly the differences between emotionally aroused and non-aroused data.
We also examined the significance of variations between high-arousal and low-arousal
stimulus responses. These are described in the following section.

Comparing Stimuli and Baseline (60-second Grey Screen). For statistical analysis,
we focused on average peak amplitude (APA) as the primary measure of emotional
arousal. The average peak amplitude in GSR is calculated by identifying the peaks in
the phasic GSR signal, measuring the difference between each peak and its baseline,
and then averaging these values over a given period. This measure is essential because
it reflects the intensity of emotional arousal, with larger peak amplitudes indicating
stronger emotional responses.

GSR signals were continuously recorded throughout the experimental task, and indi-
vidual peaks in the phasic response were identified for analysis. Peak amplitudes were
identified within a defined time window corresponding to stimulus presentation, and
the average peak amplitude was computed separately for each participant, which en-
sured that individual variations in physiological responses were accounted for.

To assess the differences between emotionally aroused and non-aroused data, we
first performed Wilcoxon signed-rank tests. In this analysis, we compared the APA ag-
gregated across all participants for each stimulus to the APA of the grey screen stimulus,
which we refer to as the baseline stimulus. Based on this analysis, we used the baseline
APA to normalise the APA of emotional stimuli for each participant, as follows:

APAcmotional stimulus — APAbaseline

Normalised APA = (3.6)
APAbaseline

This normalisation allowed a more accurate comparison of participants’ emotional

responses to stimuli. The normalised APA from different stimuli was then used for
further statistical analysis.

Post hoc Friedman Analysis: High vs. Low Arousal Groups. After performing the
Wilcoxon signed-rank tests to assess the differences between emotional stimuli and the
baseline, we conducted a post hoc Friedman analysis to investigate the differences in
GSR responses across two distinct arousal groups: high and low. Grouping was based on
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participants’ self-reported arousal ratings, where values greater than 0.5 were classified
as high arousal (indicating stronger emotional responses), and values less than or equal
to 0.5 were classified as low arousal (indicating lower emotional intensity).

For each stimulus, we extracted the average peak amplitude (APA) of the GSR sig-
nal across timestamps, since peak amplitude provides a more sensitive indicator of
arousal than mean levels, which may smooth out transient but meaningful emotional
responses. We then assumed that GSR reactivity would align with participants’ self-
reported arousal and divided the physiological responses accordingly.

The Friedman test was applied to compare the APA values across different emotional
stimuli within each arousal group. This analysis highlighted clear distinctions in APA
responses between high and low arousal conditions, providing insights into how sub-
jective arousal levels correspond to physiological activation.

All statistical analyses were conducted in Python, with a significance threshold of p
< 0.05.

Finally, we proceeded to the feature extraction and analysis phase, where we iden-
tified features suitable for training the emotion detection model and examined their
reliability by assessing their relationship with self-reported valence and arousal.

GSR Feature Extraction. We used phasic and tonic data provided by iMotions to ana-
lyse GSR responses and extracted key statistical features.

We computed both components’ mean, minimum, maximum, standard deviation,
kurtosis, variance, skewness, mean energy, peak per minute, peak average, and average
peak amplitude. To ensure consistency across participants, we applied a 60-second
baseline correction, similar to the normalisation process used for APA mentioned in
Equation 3.6.

Finally, we integrated all the extracted features with and without normalisation and
calculated the Pearson correlation of each feature. We did this to assess the impact of
normalisation on feature relationships and ensure that individual differences or vari-
ations in scale did not bias the results. First, correlations were computed individually
for each participant within their individual space. The results of these analyses are
presented in Section 4.

Following the pilot study and other literature review, we recognised the import-
ance of including emotionally healthy participants to establish a reliable baseline of
emotional responses that would support a more accurate interpretation of physiolo-
gical patterns associated with typical emotion regulation. The pilot study also provided
valuable insights into the strengths and limitations of our data collection, analysis and
feature extraction methods. For example, we found that correcting for pupil size using
a grey screen baseline was ineffective. Instead, it is crucial to isolate and remove the
effect of luminance to accurately capture the emotional influence on pupil size, and
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the development of a method to do that became a significant part of this project (see
3.2.6 and 4.1.3). In addition, we found that relying solely on basic statistical features of
the GSR was insufficient, as these features often fail to capture the temporal dynamics
and phasic responses that are crucial for detecting short-term emotional arousal. More
advanced features, such as peak detection, response latency and signal decomposition,
are needed to better represent the nuanced physiological changes associated with emo-
tional states. Further discussion is presented in the results and discussion chapter.

Correlation and Mutual Information Analysis

To quantify the relationship between physiological and facial expression features and
participants’ self-reported emotional states, we computed three complementary metrics:
Pearson correlation, Spearman rank correlation, and mutual information. Pearson cor-
relation was used to assess linear associations, while Spearman correlation captured
monotonic relationships independent of linearity. Mutual information was employed
to evaluate potential non-linear dependencies between features and emotional targets
(Valence and Arousal). For each participant, correlations were computed between indi-
vidual features and the corresponding emotional ratings, and the results were aggreg-
ated across participants to calculate the mean and standard deviation. Heatmaps were
generated separately for each metric to provide a visual summary of the relationships
across modalities (FER, GSR, Pupil) and emotional targets. These allowed us to refine
and enhance our approach, which we leveraged as advantages in the main study. The
improvements made are discussed in the next section.

3.2 Main Study

The pilot study provided important insights into the complexities of emotion detec-
tion using physiological signals and facial expressions. It highlighted the limitations of
facial expressions as stand-alone biomarkers, the significant influence of luminosity on
pupil size measurements, and the importance of integrating multiple biomarkers to im-
prove detection accuracy. It also revealed technical and methodological challenges, such
as the need for calibration processes to remove the effect of luminosity from pupil size,
the necessity of more advanced feature extraction from GSR signals, and the import-
ance of participant screening to ensure consistent physiological baselines. As previous
research has shown, underlying mental health conditions such as anxiety, depression,
or alexithymia can significantly alter autonomic and emotional responses, introducing
variability that can confound interpretation of physiological signals [387], [388].

Building on these findings, the main study incorporates several methodological re-
finements that constitute novel contributions to multimodal emotion detection. First,
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participant screening was systematically implemented to exclude individuals with de-
pression, anxiety, personality disorders, and alexithymia, thereby minimising confounds
associated with clinical heterogeneity, an aspect often overlooked in affective computing
studies. Second, we developed a new luminosity isolation model for pupil size, introdu-
cing a calibration procedure based on three primary colours and grayscale references.
This is, to our knowledge, the first systematic attempt to correct for lighting effects in
pupil-based emotion research, enabling more accurate measurement of pupil-driven
emotional responses. Third, our GSR processing pipeline was expanded to include
time-, frequency-, and time-frequency-domain features, moving beyond basic statist-
ical descriptors and capturing a richer set of autonomic dynamics. Finally, advanced
machine learning models were trained on physiological signals both individually and
in integrated multimodal configurations, enabling direct assessment of the benefits of
feature-level fusion.

Although EEG data were also collected in the main study, their analysis is beyond
the scope of the present work. They will be explored in future research to extend the
multimodal framework and further improve the robustness of emotion detection.

Taken together, these methodological advances represent a novel integration of cor-
rected pupil size, enhanced GSR features, and rigorous participant screening into a
unified multimodal system, setting a new benchmark for interpretable and clinically in-
formed emotion-aware Al.

3.2.1 Participants

Initially, we screened 103 participants for this study. To recruit participants, we
distributed pamphlets, and upon receiving inquiries via email, we provided a screen-
ing survey. As part of the screening process, all participants underwent a psychological
assessment using four standardised scales to evaluate the potential mental health condi-
tions, such as alexithymia, depression, anxiety, and PDs [387], [388], and the selection
criteria of the study.

The purpose of the screening process was to identify participants eligible to take
part in the study. The screening survey collected basic demographic information and
included psychological scales, applying the following inclusion criteria:

* Age between 18 and 65 years.

* Sufficient proficiency in English to provide informed consent and complete ques-

tionnaires.

* No recent neurological disorders (e.g., epilepsy, stroke, traumatic brain injury, or

ASD within the past year).

Applying these criteria led to the exclusion of several individuals from the initial pool

of 103 screened participants. The remaining participants were then further evaluated



82

based on their scores on the psychological scale, as detailed in the following section.

Screening Process and Psychological Scales

After applying the inclusion criteria, 55 of the 103 screened participants were re-
tained for the main experiment. These individuals completed all screening procedures
and were not at high risk of psychiatric conditions known to affect emotion recogni-
tion, such as schizophrenia, anxiety etc.. The selection criteria were explicitly designed
to exclude individuals with significant difficulties in emotion recognition and percep-
tion, as such impairments could compromise the reliability of physiological and be-
havioural responses. This resulted in a carefully curated cohort, referred to here as
the Emotionally Healthy group, representing participants with typical emotional
processing abilities and thereby enabling more accurate modelling of normative emo-
tion—physiology associations.

In addition, data were collected from 17 participants identified as being at risk for
anxiety, depression, or personality disorders, forming a separate Clinical group. In-
cluding this group not only increases the ecological validity of our dataset but also
provides a unique opportunity to explore how deviations in psychological health may
alter emotion recognition and physiological responses.

To the best of our knowledge, very few affective computing studies systematic-
ally screen participants for psychiatric risk factors before model training. Our ap-
proach is novel in that it explicitly integrates psychological assessment into the data
collection pipeline, reducing confounding variance and creating two parallel data-
sets (Emotionally Healthy vs. Clinical). This design provides both a cleaner
baseline for developing robust multimodal emotion detection models and a pathway to-
ward future investigation of how clinical conditions modulate emotional processing. To
assess emotion recognition ability and potential risk factors, the following standardised
psychological assessments were administered:

* Toronto Alexithymia Scale (TAS-20) — A 20-item self-report questionnaire that
measures difficulties in identifying and describing emotions and externally ori-
ented thinking. Scores range from 20 to 100, with higher scores indicating greater
alexithymia [347]. The cut-off scores are:

- < 51 - Non-alexithymic
— 52-60 - Borderline alexithymia
— > 61 - High alexithymia

* Patient Health Questionnaire (PHQ-9) — A 9-item scale used to assess depressive
symptoms based on DSM-IV criteria [348]. The total score ranges from O to 27,
with severity levels categorised as:

— 0-4 — Minimal or no depression
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5-9 — Mild depression
10-14 — Moderate depression

15-19 — Moderately severe depression
— 20-27 — Severe depression
* Generalised Anxiety Disorder Scale (GAD-7) — A 7-item questionnaire designed
to assess the severity of generalised anxiety symptoms [349]. Scores range from
0 to 21, categorised as follows:
— 0-4 — Minimal anxiety
- 5-9 — Mild anxiety
— 10-14 - Moderate anxiety
— 15-21 - Severe anxiety
* International Personality Disorder Examination (IPDE) — A diagnostic tool for
screening PDs based on DSM-IV and ICD-10 criteria [350]. It assesses traits re-
lated to various PDs, including:

Obsessive-Compulsive Personality Disorder (OCPD)

Schizoid Personality Disorder

Paranoid Personality Disorder

Histrionic Personality Disorder
Borderline Personality Disorder (BPD)
Dependent Personality Disorder

Each disorder is assessed through a structured questionnaire, with scoring
thresholds indicating the likelihood of a clinical diagnosis.
Participants were classified based on their results:

* 55 participants (26 males, 29 females) participants were selected as
Emotionally Healthy Group. They had no severe psychiatric diagnoses af-
fecting emotional recognition (e.g., schizophrenia, bipolar disorder, or autism
spectrum disorder), though mild anxiety, depression, or alexithymia was permit-
ted. Specifically, they did not meet the criteria for high alexithymia (TAS-20 <
61), moderate to severe anxiety (GAD-7 < 5), or moderate to severe depression
(PHQ-9 < 5). Participants had no diagnosed intellectual disability or signific-
ant cognitive impairment, no recent neurological disorders (e.g., epilepsy, stroke,
ASD, or TBI in the past year), and were proficient in the language of the question-
naires. They provided informed consent and were able to complete all required
questionnaires and bio-signal recording tasks.

* 17 participants were recorded under the Clinical Group, as they met the
criteria for the risk of having psychiatric conditions such as OCPD, schizoid per-
sonality disorder, generalised anxiety disorder, depression, and alexithymia.

Among the Clinical Group, several participants exhibited the risk of comorbid condi-

tions, with the most frequent being alexithymia, obsessive-compulsive PD, schizoid PD,
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anxiety, and depression. A small subset also had the risk of PDs such as histrionic, para-
noid, and borderline PD. This classification allowed us to conduct preliminary analyses
on how these conditions influenced emotional recognition, perception, and physiolo-
gical responses to emotions.

After selecting participants from each group, we invited them to the laboratory to
perform the experiment with their consent and ethical approval.

Ethical Considerations

All participants provided informed consent. Under application numbers
ETH2324-0962, ETH2324-1491, ETH2425-0176, where the ethical approval from the
pilot study were updated by modifying the changes, granted in compliance with insti-
tutional research guidelines.

To ensure diverse representation, participants aged 18 to 65 were recruited. The
study adhered to the ethical principles of voluntary participation, confidentiality, and
the right to withdraw at any stage without consequences. Following ethical considera-
tions, we performed the final experiment described in the following sections.

3.2.2 Experimental Setup

We used the same experiment setup as in the pilot study section 3.1.4. We conduc-
ted all the experiments in the well-lit laboratory at the University of Essex, using the
same high-resolution camera, Tobii Pro Nano eye-tracker, GSR, and PPG sensors from
Shimmer 3.10.

Additionally, EEG data were recorded using the g. Nautilus system with a 32-channel
cap, providing standard scalp coverage and high-density monitoring of brain activity.
Electrode impedances were maintained within acceptable ranges to ensure reliable sig-
nal quality. Although EEG offers rich information about neural responses to emotional
stimuli, it was not included in the subsequent analysis. The primary aim of this study
was to develop a practical and easily deployable emotion detection model using signals
that are simple to collect, such as facial recordings, eye-tracking, and GSR. This design
prioritises ease of use for clinical or therapeutic applications, enabling a less complex
yet accurate system suitable for real-world deployment.

This comprehensive approach combined physiological signals, FER, and EEG data to

provide a rich dataset for understanding participants’ emotional reactions.

3.2.3 Procedure

Data was collected using iMotions Software [379], which enabled the presentation
of stimuli and synchronised data recording across various sensors. The process began
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Figure 3.10: Experiment set-up.

with calibrating the Tobii Pro Nano eye-tracker to accurately track participants’ pupil
size and gaze position. This calibration was crucial for obtaining reliable and precise
data throughout the experiment, as it ensured the eye-tracker was aligned with the
participants’ eyes.

Once the calibration was complete, participants saw an instruction screen that
provided an overview of the experimental procedure and what to expect. They then
listened to a meditation audio track while viewing a black screen, designed to help
them relax and establish a baseline for low-arousal data. To verify their relaxation, a
questionnaire slide was presented, asking them to rate their level of relaxation after the
meditation.

Following this, participants viewed a 27-point calibration video designed explicitly
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for pupil size analysis (more details on pupil size analysis can be found in the relev-
ant section 3.2.6). This was succeeded by a series of monochrome and multicoloured,
emotionally neutral test images to further evaluate pupil size responses. After the cal-
ibration phase, the main experiment began (see Figure 3.11). Given the experiment’s
length, a short break was provided midway, allowing participants to rest before continu-
ing. After the break, participants watched another 27-point calibration video, identical
to the one shown at the start, before resuming the remaining audiovisual clips from the
main experiment.

The experiment’s first phase randomly presented 32 audiovisual clips to each parti-
cipant 2. As highlighted in the literature, self-assessment is influenced by various factors,
including cognitive bias. Our approach aims to develop a multimodal model that takes
into account self-assessment and cognitive bias. Instead of standardising the clips, we
selected them based on insights from previous studies and a preliminary survey on well-
known clips capable of eliciting the desired emotions. Cognitive biases were considered
during the emotional labelling to enhance the model’s robustness. Compared to the
pilot study, this study included additional clips and replaced a few that were assessed
by participants in contradictory ways.

The selected clips were carefully chosen to represent four distinct emotional cat-
egories: high arousal with positive valence, high arousal with negative valence, low
arousal with positive valence, and low arousal with negative valence. Each category
contained eight audiovisual clips designed to evoke diverse emotional states and elicit
physiological and subjective responses [32]. A 5-second grey screen featuring a black
cross in the centre was displayed between audiovisual clips to reduce emotional carry
over between audiovisual clips. This neutral stimulus aimed to reset the participants’
emotional state before introducing the next emotional stimulus. In a pilot study, we
used a cloud video that appeared to elicit low arousal and mildly positive valence, con-
sistent with other findings in the literature. We initially selected such stimuli based
on prior studies that had categorised them as neutral. However, based on our pilot
observations and participants’ responses, we recognised this potential bias. Therefore,
in the main study, we removed the cloud videos and replaced them with a uniformly
grey screen to minimise unintended emotional influence. After watching each audi-
ovisual clip, participants were asked to complete a survey evaluating their emotional
reactions and familiarity with the clips. As outlined in the literature review chapter
(2), we employed the multidimensional emotional questionnaire, which consisted of 12
questions related to emotions extended from [164] (see Figure 3.12). These questions
evaluated emotions such as positivity, excitement, happiness, amusement, calmness,
contentment, negativity, anger, fear, disgust, sadness, and boredom (more inform-

2Link to audiovisual clips: https://essexuniversity.box.com/s/
Tbquteyzf5geagud8uzat2fglntmgu3f
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Figure 3.11: Experiment Presentation flow chart.

ation about survey questionnaire selection is in the pilot study experiment procedure
section 3.1.5) Each of the 12 emotional questions was rated on a scale from 0 to 9, with
0 signifying no emotion and 9 indicating the highest level of emotion (see Figure 3.12).
This scale allowed for a comprehensive assessment of the emotional intensity felt by
participants while watching each audiovisual clip. Integrating physiological measure-
ments and self-reported emotional responses created a substantial dataset for examining
emotional reactions among participants.

Criteria to discard participants after the experiments. In addition to the initial
screening, participants were excluded for several reasons following the experiment.
Some exhibited poor Tobii calibration, which compromised the accuracy of gaze and
pupil size measurements. Others demonstrated insufficient engagement, such as con-
sistently failing to look at the screen or falling asleep during the task. Additionally,
some participants provided unreliable responses, such as giving identical ratings to all
questions or providing random responses. Additionally, some individuals appeared dis-
engaged during the experiment, such as not looking at the screen or being distracted
by their surroundings. We also observed low inter-rater reliability, with Spearman’s
correlation coefficients below 0.4, indicating significant inconsistency in participants’
responses. This correlation, calculated as described in the following section, helped us
to identify and address these issues. As discussed in the literature review, survey ques-
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tionnaires can lack reliability, complicating the assessment of participant attentiveness.
It was essential to remove those participants with stated issues.

While it was relatively easy to identify participants who provided identical responses
throughout or were visibly inattentive, detecting those who answered insincerely or
selected responses randomly was more challenging. To address this, we applied a few
inter-rater reliability assessment techniques, including Krippendorff’s alpha, Cronbach’s
alpha, and Spearman’s correlation, with the help of a collaborating student. Among
these methods, Krippendorff’s alpha and Spearman’s correlation gave similar results,
but Spearman’s correlation required significantly less computation. We therefore used
Spearman’s correlation to measure the consistency of one participant’s responses with
those of others.

To compute Spearman’s correlation, we used the survey questionnaire responses
from each participant for each audiovisual clip after discarding the noticeably unreli-
able participants, as described earlier. Each questionnaire consisted of 12 emotion-
related questions, and we calculated the correlation between each participant’s re-
sponses across all audiovisual clips for each emotion separately.

Let:

* M be the total number of participants

* K be the total number of clips

* [ =12 be the number of emotions

For each emotion, we computed an M x M correlation matrix representing the
Spearman correlation coefficients between all participants for all clips. This resulted in
a total of 12 correlation matrices (one for each emotion), denoted as:

C,e RM*M o =12 . ...12

Next, we stacked these 12 matrices and computed the average across all emotions
to obtain a single overall correlation matrix:

112

_ MxM
0_12206, CeR

e=1
To determine each participant’s reliability, we computed the average correlation of
each participant with all other participants, resulting in a final M x 1 correlation vector:

1
M-1

Y Cl,j), Viefl,... M}

j=1,j#i

Cﬁnal (Z) =

If any participant’s average correlation value was below 40% (i.e., Cfna (i) < 0.40),
we removed that participant and recomputed the correlations iteratively until all re-
maining participants had correlation values above the threshold.
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This iterative process ensured that only participants with consistent and meaningful
responses were retained for further analysis.

After identifying participants with low correlation scores, we reviewed their experi-
mental recordings for signs of drowsiness or inattention, including prolonged eye clos-
ures, frequent blinking, and consistently low pupil activity. Participants exhibiting both
low correlation and sustained indicators of drowsiness or inattention were removed
from the dataset.

Ultimately, we retained 47 participants (26 males, 21 females) (Average age: 27.79
+ 10.36), data in the Emotionally Healthy Group.IntheClinical Group, we
retained 14 participants (9 males, 5 females) (Average age: 26 + 4.47), data.

All participants were asked to complete survey questionnaires after each video clip
to assess their emotional and arousal responses, without being prompted to identify
specific moments within the video. We conducted an additional brief survey to better
identify emotionally salient intervals that could inform our analysis.

3.2.4 Identifying Emotionally Salient Intervals

Based on initial survey responses, it became evident that different audiovisual clips
elicited varying levels of emotional arousal across participants. A major challenge in
analysing these responses was the variability in the proportion of emotional content
across clips: some maintained a uniform emotional tone, while others featured emo-
tional peaks only in specific segments. For example, a scary clip might begin with a
calm or neutral tone and build up to a sudden, intense climax. In such cases, one would
reasonably expect a corresponding physiological reaction, such as a noticeable pupil
dilation, only at the climax rather than throughout the entire clip.

Given these natural variations in emotional pacing and arousal levels, we delib-
erately chose not to strictly control all variables. The goal was to develop an emo-
tion detection system that could be robust enough to be used in real-world settings,
where emotional stimuli are rarely uniform and fluctuate dynamically. Additionally, the
clips varied in length (ranging from 10 to 100 seconds) and emotional pacing. Some
were monotonously boring, others consistently engaging, and some presented emo-
tional highs at particular moments. This variability made it difficult to associate a single
arousal label with the entire clip, prompting the need for a more granular analysis.

To better understand these dynamic emotional transitions and to capture changes
in arousal over time, we conducted a targeted follow-up study called the Emotion-
Induced Interval Study (EIIS). Ten participants from the original group of 55 Emotion-
ally Healthy participants were selected for consistency. In this study, participants were
asked to rewatch the complete set of audiovisual clips and mark specific time intervals
during which they experienced noticeable changes in arousal, whether increases (high
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arousal) or decreases (low arousal). These user-defined periods were termed Emotion-
Induced Intervals (EII).

The goal was to capture the temporal dynamics of emotional arousal and allow par-
ticipants to break down their emotional experiences into finer segments within each
clip. This helped reveal fluctuations in arousal that might otherwise be lost in a single
post-clip rating. Analysis of the EIIS data confirmed that many audiovisual clips exhib-
ited clear internal emotional transitions.

These observed transitions allowed us to divide certain audiovisual clips into two
distinct segments, low-arousal and high-arousal portions, based on the reported ElIls.
As a result, six clips were split, increasing the total number of analysable segments from
32 to 38. Each segment could be treated as a separate entity, better aligned with its
evoked emotional response. This segmentation was particularly beneficial for analysing
physiological signals that respond rapidly and spontaneously to stimuli, such as pupil
size.

We identified salient intervals for each clip to determine which time intervals most
represented emotionally salient moments. A salient interval was defined as the period
with the highest level of agreement among the ten participants. On average, the overlap
between the participant-indicated intervals and the final selected interval was 74% =+
15%, indicating a strong level of consensus. For emotionally flat clips (e.g., boring), the
entire duration was often chosen as the salient interval. In contrast, emotionally intense
clips (e.g., scary or suspenseful) typically had shorter, well-defined salient segments.

This interval-based approach also helped address a limitation in the main study. As
noted in the Procedure 3.2.3, participants were asked to report their emotional state at
the end of each clip but were not required to specify when they felt those emotions dur-
ing the clip. Therefore, using the EIIS framework allowed us to retrospectively annotate
and segment clips based on emotionally significant periods, improving the precision of
arousal labelling and subsequent model training.

The outcome of this segmentation process forms the basis for more accurate emo-
tion labelling, which is discussed in the following section. By associating physiological
signals with specific, participant-validated emotional intervals, we enhanced the reliab-
ility of emotion detection and built models that better reflected the temporal nature of
emotional experience.

3.2.5 Emotion Labelling

The data labelling process followed the same approach described in the pilot study’s
Data Labelling section (3.1.6). Audiovisual clips were categorised into emotional quad-
rants according to arousal (high/low) and valence (positive/negative). For instance,
a high-arousal positive clip was labelled as H Pclip number, where “HP” indicates the
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category and the number identifies the specific clip within that category.

We used INDSCAL [164], a multidimensional scaling method that accounts for indi-
vidual differences, to project the 12-dimensional (12D) self-report ratings (12 emotional
questions per clip) into a two-dimensional (2D) valence-arousal space. In addition to
INDSCAL, we also evaluated Factor Analysis (FA) as an alternative dimensionality re-
duction technique for mapping the 12-dimensional emotional questionnaire responses
into a two-dimensional valence-arousal space. For both methods, we first computed
pairwise dissimilarity matrices using Euclidean distance between stimuli. INDSCAL
was implemented in SPSS to generate a group configuration and individual sub-
ject weights, while FA was applied using standard factor extraction methods. The
resulting two-dimensional representations from both methods were subsequently
compared using clustering quality metrics (silhouette score, Davies-Bouldin index)
and within-stimulus variance, as detailed in Section 4.2.1.

The INDSCAL approach, aligned with Russell’s Circumplex Model of Affect, pro-
duced a balanced mapping of the clips across the four quadrants of the affective space.
In constructing the similarity matrices required for INDSCAL, we explored multiple dis-
tance metrics to measure dissimilarities between stimuli. Both Euclidean and Manhat-
tan distances were tested, with Euclidean ultimately selected as it produced the most
consistent and interpretable results in the 2D valence-arousal space. For completeness,
a comparison of Euclidean and Manhattan outcomes is presented in the Appendix 6.1.1.

Initially, 32 audiovisual clips were included in the study. However, after applying
the EIIS method (3.2.4), several clips were split into two segments when they exhib-
ited distinct arousal shifts (e.g., transitioning from low to high arousal within the same
clip). This segmentation increased the total number of labelled stimuli to 38. While
the second segment of these split clips did not always have a neutral baseline, we re-
tained them because the goal was to capture naturalistic emotional transitions. These
transitions are important for analysing how physiological signals respond dynamically
to shifts in arousal, which better reflects real-world emotional experiences.

As a result, the final dataset contained (N = 38) stimuli, each represented in a
(38 x 38) distance matrix constructed from the 12D self-reports ((M = 12) scales). The
INDSCAL projection then yielded individualised and group-level coordinates in the 2D
space, with the x-axis interpreted as valence and the y-axis as arousal. These derived
labels formed the ground truth for subsequent model training and analysis.

3.2.6 Data Pre-processing and Analysis

Before analysing the data, we took several steps to ensure its quality and reliability.
This involved cleaning and normalising the data to remove any noise and outliers, and
converting it into a format suitable for analysis. Once the pre-processing was complete,
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we used various analytical techniques to explore the relationships between physiological
signals and emotional responses, measured in valence and arousal for each participant
and across the group. This process included extracting key features from the data, ap-
plying mathematical models, and conducting correlations to reveal patterns and insights
essential for emotion detection.

Pupil Size Analysis

We developed a non-linear exponential model to predict pupil size as a function
of luminosity, aiming to separate the confounding effects of ambient light from pupil
responses to emotional arousal. The study progressed through the following steps:

1. We first validated the exponential model introduced in [109] under controlled

dark-laboratory conditions with 10 participants.

2. Next, we evaluated the model’s robustness in a well-lit laboratory, testing its ability
to generalise across varying luminosity levels.

3. We then quantified the pupil size attributable to emotional arousal by subtracting
the predicted luminosity-driven component from the total pupil size. For this,
participants viewed 32 video clips with varying emotional content and reported
their arousal level for each.

4. Finally, we compared the exponential model against hyperbolic and linear altern-
atives, demonstrating that the exponential model provided a superior fit for de-
scribing the relationship between pupil size and luminosity.

This approach effectively removes luminosity-induced co-founders in pupil-based
emotion research, particularly in low-light conditions, filling a significant gap in existing
methodologies.

As discussed in the literature, pupil size reflects emotional arousal but is strongly
influenced by ambient luminosity [268]. Because this relationship is inherently non-
linear [265], simple corrections are insufficient. Our exponential modelling framework
enables accurate separation of emotional and luminosity effects [109].

In practice, we first constructed a predictive model of pupil size as a function of
luminosity. We then applied this model to remove luminosity effects from the raw
pupil data, which contained both emotional and light-driven components. The resulting
arousal-isolated pupil size signals were subsequently used to train a machine learning
model for emotion detection, initially relying exclusively on pupil-based features.

Here, we divided this approach into two study phases:

1. Development of the Luminosity Effect Prediction Model (LEPM): In this study
phase, we developed a model to predict pupil size changes purely caused by lumin-
osity. By subtracting the predicted pupil size from the observed one, we isolated
the pupillary response attributable to emotional stimuli.
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2. Development of the Arousal Detection Model (ADM): To prove that the LEPM
developed in the previous study phase was accurate and had ecological validity,
we trained a simple linear model on participants’ pupil size data while watching
emotional audiovisual clips and used it to predict arousal with and without the
LEPM algorithm.

Development of the Luminosity Effect Prediction Model. We developed a
luminosity-based pupil size prediction model to isolate emotional pupil responses and
subtracted its predictions from the observed pupil sizes.

In this study, the model predicts pupil size based on the stimulus’s luminosity and
subtracts this expected value from the actual pupil measurements taken during emo-
tional stimuli. This method improves the accuracy of pupil-based emotion assessments
and enhances the reliability of emotion detection systems by providing a clearer picture
of emotional arousal.

The development process involved several phases:

1. The first phase is to predict the intensity of the luminosity stimulus reaching the

eye as a function of screen luminosity, such as when someone is watching a video.

2. The second phase consists of determining the size of the pupil as a function of the
intensity of the light stimulus.

3. The third phase consists of combining the predictive models developed in the
first two steps to obtain a single model that can predict pupil size as a function
of screen luminosity in an unlit laboratory using monochrome images or video
frames (red, green, blue, and grey) with varying luminosities. The model was
tested on monochrome and non-monochrome emotionally neutral images or video
frames. Third, we tested the model in a well-lit laboratory environment.

Finally, in the second part of our study, we developed the emotion detection model

and verified that it improved emotion detection. Below, we describe the three phases in
more detail.

Prediction of light intensity. Each pixel of an image consists of three pixels, one red,
one green, and one blue (RGB system), and is characterised by three RGB intensity
values, one per colour, expressed as a percentage of the maximum possible value. Here,
we will refer to a monochrome image as an image in which all pixels have only one
colour. In contrast, a non-monochrome image may contain pixels of different colours.
Additionally, here, by primary colours, we refer to red, green, and blue (RGB) colours.
We will speak, for example, of a primary-colour monochrome image to indicate an
image with all pixels only red for a red monochrome image, only green for a green
monochrome image, or only blue for a blue monochrome image. Images are commonly
non-monochrome and non-primary because the pixels can take on different colours and
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contain colours that are not necessarily the primary RGB colours. In this study, by grey,
we mean the colour resulting from combining red, green, and blue equally, e.g., 65%
red, 65% green, and 65% blue.

The brightness of a monitor is a function of the RGB values of all pixels. In the case
of a monochrome image, we can write:

L(Tvgvb):k'f(r7gvb> (37)

Where L is the luminosity value, k is a constant (scaling factor) depending on the
brightness/contrast settings of the monitor, and (r, g,b) € [0%,100%] are the RGB in-
tensity values of a monochrome image displayed on the screen[109]. In a commercial
monitor, the relationship between RGB intensity values and the luminosity values of
the screen is non-linear. For example, considering a single colour, e.g., blue, the lu-
minosity corresponding to an RGB intensity value of 60% is not twice as high as that
corresponding to a value of 30%. Instead, the increase in luminosity as a function of
RGB intensity is slower at lower intensity values and dramatically faster as the intensity
approaches maximum [109]. Furthermore, as more colours are used, this non-linear
relationship changes. Therefore, the function f cannot be easily described analytically,
and we tabulated its values in a look-up table to calculate the brightness of images or
frames displayed on a computer screen. The input of our look-up table was an RGB
value corresponding to three integers ranging from O to 100. The various brightness
values were measured empirically. We created a set of images with different RGB val-
ues. The luminosity of each image was measured in an unlit lab using an LX1010BS
digital lux meter at a 65 cm distance, following standard eye-tracking protocols [109].
If we wanted to consider all values, we would have 100? entries and would have to gen-
erate 100° images. To make the search computationally less expensive, we sub-sampled
this space, producing 1330 images of different colours and luminosities and measured
with a professional lux meter. The set of images was composed as follows: the first
image of the set was utterly black and each pixel had an RGB value of 0%, 0%, 0% (all
colours off); the last image was white with maximum luminosity and each pixel had
an RGB value of 100%, 100%, 100% (all colours at maximum intensity); all the other
images had intermediate values uniformly distributed in the range [0%, 100%].

When querying the table, if the input matched a point, the corresponding brightness
value was returned; otherwise, a weighted average of the eight nearest points was
calculated, with weights inversely proportional to their distances. In the case of images
composed of only one of the fundamental colours, instead of eight nearest neighbours,
we used only two [109].

We calculated the values in the lookup table using a Dell Precision M6500
(1920x1080) monitor set to 100% brightness and 100% contrast, which we will refer to
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as the "reference monitor" [109]. When the contrast and brightness values are changed,
the equation 3.7 remains valid, apart from the scaling factor k£, which must be recalcu-
lated each time (see calibration procedure below).

Different monitor models have different brightness capabilities. However, when test-
ing five monitors of various sizes and brands, we consistently observed the same non-
linear relationship in equation 3.7), which remained valid. In contrast, we had to recal-
culate the scaling factor & only for each monitor, with a maximum error of 3 lux [109].
This suggests that regardless of monitor manufacturer and model, the non-linearity in
the relationship between luminosity and RGB intensity values is a common character-
istic of different monitors. Therefore, the calibration procedure described later allowed
us to compensate for differences between possible monitor settings and between differ-
ent monitors, provided the monitor settings did not change during the experiment. For
the reference monitor, the value of k¥ was 1 [109].

Figure 3.13: Example of original multi-colour image (A) and its corresponding mono-
chrome image (B).

When an image or video frame is not monochrome, one can calculate the brightness
of each pixel and average the values obtained. However, we observed that the luminos-
ity of an image is similar to that of a monochrome image with the average RGB value
of the original image, calculated by averaging the RGB values of all its pixels. To verify
this, we selected 100 images: 50 taken from the internet and 50 generated by assigning
a random RGB value to each pixel. We then generated the corresponding monochrome
images using the average RGB value of each original image, as shown in Figure 3.13.
The luminosity of the original images differed from the luminosity of the corresponding
monochrome images by 1.5 lux on average, with a maximum difference of 3 lux, which
is tolerable for our purpose. For computational reasons, using monochrome images is
preferred as it is much faster than calculating the luminosity for each pixel and then
averaging.

The predicted luminosity value was then used to predict pupil size, as described in
the next phase below.
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Determining the pupil size. The second step consisted of developing a model to pre-
dict the pupil size of a subject looking at a monochrome image on the screen. This
model incorporated the function f, defined in the previous step, which transforms RGB
values into luminosity. This luminosity function then served as an input to another func-

tion responsible for mapping luminosity to pupil size. Notably, this second function is
highly non-linear and exhibits a decreasing trend [265].
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Figure 3.14: Pupil size as a function of luminosity for red, green, blue, and grey (dotted
line for experimental data and continuous line for the fitted curve).

To determine the pupil size for different luminosities, we recorded the pupil size of
ten participants while watching four monochrome videos, with each video only show-
ing one fundamental colour (red, green, blue) and grey. Keeping the colour constant in
each video, only luminosity could change from frame to frame. Our goal was to assess
the pupil response either to one of the fundamental wavelengths (red, green, blue) or to
their uniform combination (grey). We started from the lowest intensity (0%, 0%, 0%)
to the highest intensity (e.g., for red 100%, 0%, 0%, green 0%, 100%, 0%, blue 0%, 0%,
100%, and for grey 100%, 100%, 100%), increasing the brightness by 1% every second.
Each of the four videos lasted 101 seconds and was presented on a full screen on the
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reference monitor (1920x1080). We measured pupil size for each frame at a distance
of 65 cm between the screen and the participant using a Tobii Pro Nano eye tracker
in an unlit laboratory. At the same time, we measured luminosity during each video
using a lux meter [109]. For frames displaying an eye blink (indicated as -1 in the data-
set), the pupil size was substituted with the median pupil size value for that particular
frame. Subsequently, we calculated the average pupil size data across all participants
for each level of luminosity. Figure 3.14 displays the average pupil size (aggregated
across participants) plotted against luminosity for each colour (scattered points). The
dotted lines represent the fitted models. As is evident, pupil size diminished exponen-
tially with rising luminosity [109], [265]. It does not take 101 measurements to fit a
model with four coefficients, but using 101 points allowed us to evaluate whether the
model of the equation 3.8 was the most appropriate. Figure 3.14 shows that the chosen
model appropriately describes the data (R2 > 0.98).

To model the relationship between pupil size (PS) and luminosity (L) for each col-
our (red, green, blue, and grey), we use different equations based on the relationship
between them and apply Bayesian Information Criteria (BIC) to obtain the best model
with the lowest BIC. The result shows (see in Figure 3.2) that, across all four colours,
the Mixed model (Exponential + Linear) gives the lowest BIC, meaning it best balances
fit quality and complexity. The Exponential-only model is consistently the second-best,
performing reasonably well but not as good as Mixed. The Linear and Gaussian mod-
els perform poorly in all cases, with much higher BIC values. For Grey, the Gaussian
model failed to converge, confirming it’s not an appropriate choice for monotonic pupil
responses. Therefore, we finalised the following equation:

PS=ua;-e "t ¢ - L+d;, icred, green,blue, grey (3.8)

where PS represents the predicted pupil size, L is the luminosity value, and
a;, b;, c;, d; are the coefficients defining the curve for each colour. The term e~%* models
the exponential decay of pupil size in response to increasing luminosity, ¢; - L captures
the linear response of pupil size, and d; represents the baseline pupil size when L = 0.

The calculation process begins with the initialisation of coefficient values (7)) set to
[1,0,0,1], where ag = 1, by = 0, ¢ = 0, and dy = 1. This serves as a starting point for
optimisation. These initial values were determined based on the overall shape of the
pupil size-luminosity curve across all colours. Pupil size measurements are recorded
for different luminosity levels across the four colours, and the data is preprocessed to
remove noise and inconsistencies.

Next, non-linear least squares regression is used to fit Equation (3.8) to the recorded
pupil size data, minimising the difference between observed and predicted pupil sizes.
The fitted coefficients (a;, b;, ¢;, d;) for each colour are obtained and stored in Table 3.3.
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Table 3.2: Model fitting results across colours. RSS = residual sum of squares, BIC =
Bayesian Information Criterion.

Colour Model Parameters RSS BIC
. a = 3.54, b= 1.44,
Blue Exponential d— 246 1.324  -434.6
Linear c=—0.101, d = 3.54 50.515 -64.1
. ar —2.0x 104, 4 =11.0,
Gaussian o = 776, d ~ 2.0 x 10* 33.664 -96.6
Mixed (Exp+Lin) @~ >4 0 ;_1'226330 = 0019 9787 4835
. a=2.70, b= 122,
Red Exponential J— 304 0.970 -466.6
Linear c=—0.142, d =4.11 29.221 -120.5
. a~ —2.25x 10 p=6.97,
Gaussian o= 524, d ~ 2.25 x 101 13.692 -189.3
Mixed (Exp+Lin) @~ 2030 ;_1'?11’5‘3 =00, 5887 4711
. a=3.16, b = 1.10,
Green Exponential J— 239 1.816  -402.0
Linear c=—0.049, d = 3.30 43.561 -79.4
. am —1.67 x 104, p = 17.15,
Gaussian o = 1159, d ~ 1.67 x 10* 26.557 -121.1
Mixed (Exp+Lin) ¢~ o130 ;_1'33506 =007 1502 41009
. a=2.65, b=0.24,

Gray  Exponential d— 9275 5.568 5.68
Linear c=—0.0378, d = 4.18 29977 174.4
Gaussian — (did not converge) — —
Mixed (Exp+Lin) 244, 6 =056, ¢==0018, 4 435 _163.0

d=3.41

Once the optimal coefficients are determined, Equation (3.8) is used to predict pupil

size at any given luminosity L. The calculation follows these steps: computing the
exponential term e~%’, multiplying by a; to obtain the non-linear decay component,
computing the linear response ¢; - L, adding the baseline pupil size d;, and summing all
terms to obtain the predicted pupil size.

This mathematical model is applied in further analyses, including emotion detection
and individual calibration procedures. It ensures accurate pupil size estimation by com-
bining exponential and linear components while adapting to colour-specific variations.

Table 3.3 shows the coefficient values of the model presented in Figure 3.14 [109].
It was necessary to recalibrate this first estimate of the coefficients for each new par-
ticipant. In a real-world scenario, it is essential to redetermine the coefficients before



Table 3.3: Values of the four coefficients in Equation 3.8, for each colour.

colour

Q;

bi

&

d;

Red

2.631718881

1.337185719

-0.015263019

3.150067507

Green | 3.125971983 | 1.232499771 | -0.007369488 | 2.503629301
Blue | 3.443025449 | 1.616759396 | -0.019305937 | 2.62718504
Grey | 2.446582212 | 0.563893338 | -0.018479723 | 3.414006057

100

starting an experiment and tailoring them to the individual experimental participant.
To achieve this, each participant must complete a calibration procedure before any ex-
periment by watching a video of 27 monochrome frames [109]. These frames consisted
of red, blue, green, and grey colours, each displayed for 4 seconds, resulting in a total
duration of 108 seconds. The images were created using all possible combinations of
three RGB intensity levels (0%, 50%, and 100%), ranging from the darkest (0%, 0%,
0%) to the brightest (100%, 100%, 100%). Out of 27 monochrome frames, nine frames
with primary colours—red, blue, green, and grey (three per colour but considering that
only one image is needed 0%, 0%, 0%, being common to all colours, for red two more
frames were - 50%, 0%, 0% and 100%, 0%, 0%, for green two more frames were - 0%,
50%, 0% and 0%, 100%, 0%, for blue two more frames were - 0%, 0%, 50% and 0%,
0%, 100%, for grey two more frames were - 50%, 50%, 50% and 100%, 100%, 100%)
were used to calibrate the pupil size prediction model for each participant. In contrast,
the remaining frames were utilised as test frames. During calibration, the coefficients
presented in table 3.3 serve as initial values and were then varied until, for each colour,
the curve described by equation 3.8 passes as close as possible to the three detected
points. We tried other methods, but this is the one that gave the best results during the
test. This calibration process accounts for individual variations in pupillary responses
to colour and luminosity and the difference between different monitors simultaneously
(described in the following paragraph), establishing a reliable baseline for accurate sub-
sequent measurements.

Recalculation of the Fitted Model using Calibration data. To improve our model
for predicting individual pupil sizes, we recalibrate a general model—defined by Equa-
tion (3.8) with the coefficients in Table 3.3—using participant-specific calibration meas-
urements. Although the general model serves as a baseline, it does not capture in-
dividual variations in pupil response. Therefore, we use calibration data collected at
three standard intensity levels (0%, 50%, and 100%) for each colour (red, green, blue,
and grey) and interpolate additional points to refine the model.

Step 1: Generating Additional Calibration Points. Since our calibration data are
originally available at only three intensity levels, we divide the calibration range into
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two intervals:

e Interval 1: 0% (minimum) to 50% (maximum)

e Interval 2: 50% (minimum) to 100% (maximum)

Within each interval, we select nine additional intensity levels equidistant in terms
of luminosity between the two endpoints. This results in 21 intensity levels per colour,
including the original 0%, 50%, and 100% intensities. These additional points ensure a
more structured and precise interpolation, enhancing curve-fitting accuracy.

Step 2: Predicting Pupil Size Using the General Model. Using Equation (3.8) (here-
after referred to as the general model), we compute the predicted pupil size at all 21
intensity levels.

For the first interval (0% to 50%), the overall predicted difference is:

Ageneral = Pupil Sizey, — Pupil Size;, (3.9

For any intermediate intensity % within this interval:

Ageneral(z) = Pupil Sizeyy, — Pupil Size,,,, Vz € (0%,50%) (3.10)

This step is then repeated for the second interval (50% to 100%).

Step 3: Rescaling Using Participant-Specific Data. For each participant, measured
pupil sizes are available at 0%, 50%, and 100%. In the first interval, the measured
difference is:

Aparticipant = Measured Pupil Size,, — Measured Pupil Size; (3.11)

To adapt the predictions to the subject, we rescale the intermediate differences. For
any intensity z%:

A x
Arescaled(x) = Aparticipant X (XLal()) 5 Vo € (0%, 50%) (312)
general
The rescaled pupil size at 2% is:
Rescaled Pupil Size,,, = Measured Pupil Size;;, — Arescated () (3.13)

The same procedure is applied to the second interval (50% to 100%), using the
measured pupil size at 50% as the new reference point.

Step 4: Recalibrating the Model. Once rescaled pupil sizes are computed for all
21 intensity levels, these new data points are used to refit Equation (3.8) for each



102

participant. This recalibrated model now incorporates both the structure of the general
model and individual variations in pupil response.

By applying this recalibration process separately for each participant and each col-
our, the final emotion detection model is refined to achieve more accurate and custom-
ised pupil size estimations.

Determining pupil size from RGB values. Finally, to compute pupil size from RGB
values, the two models, luminosity prediction and pupil size prediction, were combined
according to the following Equation:

PS=aq-e tFfab ok f(r,g,0)+d

(3.19)
=q-e 9fab) L. f(r,g,b)+d

where the pupil size is expressed as a function of the RGB (see equation 3.7) intensity
valuek,g=0b-kand h =c- k.

To fit the model, we need to compute four coefficients: a, d, g, and h. These coeffi-
cients need to be computed for each participant and each experiment using the calibra-
tion procedure mentioned in 3.2.6, given that each participant has a different response
to light, each monitor is different, and each experimental setting is different (e.g. dis-
tance of the participant from the screen, monitor’s settings, etc.).

The model described by equation 3.8 enabled us to predict the pupil size of an indi-
vidual observing a primary colour or a grey image with brightness levels ranging from
0 to 100. Our subsequent objective was to expand this capability to predict pupil size in
response to monochrome non-primary colour images of any arbitrary colour and lumin-
osity. For example, an image with RGB values (100, 75, 80) represents a dark pink hue,
with red being the dominant component. We pursued this goal with two approaches,
which later turned out to be partially complementary. The first approach, which we
called “grey-based,” consisted of considering the pupil variation dependent only on the
total brightness of the image and not on the particular colour. The second approach,
called “colour-based,” on the other hand, consisted of considering the brightness of each
primary colour in the image differently. We expected that the first approach would work
best for figures where the three primary colours were relatively balanced and that the
second approach would work best for images in which one of the three primary colours
was prevalent.

In our first approach, which we called the "grey-based" approach, we considered the
pupil size variation independent of the specific colour, and we used Equation 3.14 only
for the grey colour:

PSgrey = Qgrey ° 6_ggrey'f(r’g’b)'f’hgrey : f(?”, g, b)+dgrey (315)
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where PS is the pupil size, agrey, Ggrey, Rgrey, dgrey are the coefficients for grey colour,
and f(r,g,b) is the function of luminosity for RGB value. The “grey-based” approach
calculated the image’s luminosity on the screen as a weighted average of the luminosity
of the eight nearest images in our look-up table, as explained above. We then calcu-
lated the relative pupil size as if the image were composed equally of the three primary
colours (grey image, according to the definition of grey used in this paper). In practice,
we used equation 3.8 with i= grey (see equation 3.15). To evaluate the "grey-based"
approach and the calibration procedure, we considered only the three grey-scale im-
ages of the calibration video: (0, 0, 0), (50, 50, 50), and (100, 100, 100). The other
images were used to try alternative methods. We tested 20 subjects across five different
monitor screens with varying resolutions, ranging from a minimum of 1920x1080 to
a maximum of 3840x2160. The test measurements included 18 (27 — 9 = 18) images
from the calibration video and nine additional monochrome test images.

We performed all experiments in the unlit laboratory, and the maximum luminosity
reaching the eyes of our participants was 57 lux, which is the maximum luminosity
of our reference screen (see also Figure 3.14). Since we did not have measurements
taken at the highest luminosity level, we assumed that the pupil size at 100 lux, which
corresponds to typical daylight conditions, was 80% of the pupil size recorded at the
maximum screen luminosity in the calibration video [265].

In the "colour-based" approach, we fitted the model represented by the Equa-
tion 3.14 independently for each colour to obtain the contribution to the pupil size
given by the luminosity at each colour:

PSred = Gred - efgred-f(r,0,0) + Nred - f(h 0, 0) + dred
PSgreen = agreen * e~ fmeen 10.90) 1 hgreen - f(0,9,0) + dgreen (3.16)
PSbie = apiue - €O L B - £(0,0,0) + doiue

where PS is the pupil size, ared, gred> Nred, dred are the coefficients for the red colour,
Qgreen, Jgreen> Ngreen, (green are the coefficients for the green colour, apiue, Gblues Pblues blue
are the coefficients for the blue colour.

To find all the coefficients we fitted the three independent models described by Equa-
tions 3.16 using the pupil sizes recorded during calibration, and corresponding RGB
intensity values of the following images: one black image (0, 0, 0), two red images (50,
0, 0), (100, 0, 0), two green images (0, 50, 0), (0, 100, 0), two blue images (0, 0, 50),
(0, 0, 100). Then, we used the same procedure described in the 3.2.6.

We fitted the three models for each participant and related monitor. Then, we pre-
dicted the pupil size for each test image as if presenting one colour per time: given a
monochrome test image with RGB intensity values (1, g, b), we considered three dif-
ferent monochrome images, with RGB intensities (r, 0, 0), (0, g, 0), (0, O, b), in three
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different moments. The idea was to disentangle the effect of each wavelength (colour)
on pupil size. For example, for the test picture with RGB intensity (64, 86, 45), we
pretended to have only the red component (64, 0, 0), then the green one (0, 86, 0),
and then the blue one (0, 0, 45). Using the Equations 3.16 we obtained three different
predicted pupil sizes PS;cq, PSgreen, and PSy,.. We computed the final pupil size as a
weighted average of these three contributions:

r
r+g+b

g
+ (r—l—g—i—b> PSgreen (3.17)
+ (

b
where PS is predicted pupil size. For example, for a picture with RGB values (64, 86,

PS:( )'PSred

- .PS’ ue
r+g+b) bl

45), we have:

64 86 45
PS = (757) - PSreat(752) - PSgreen""(ﬁ)

P
195 195 Sbiue

The “colour-based” approach was tested simultaneously with the “grey-based” ap-
proach (on the same 20 subjects, on the same five different screens with different res-
olutions, etc.).

Since the "grey-based" method performed more accurately on images where the
three primary colours had similar intensities, while the "colour-based" method excelled
when one colour was dominant, we combined both approaches to leverage their re-
spective strengths. Consequently, the pupil size was calculated as a linear combination
of the values obtained with the “grey-based” approach and those obtained with the
“colour-based” approach:

PS=K- (agrey : PSgrey + Gred + PSted
+agreen : PSgreen + Qblye PSblue) +C

(3.18)

with the constraint

Qgrey + Qred 1+ Qgreen + Ablue = 1 (3.19)

We named this approach the "combined" approach (see Figure 3.15). Given the con-
straint in Equation 3.19, it is expected that, after fitting, the value of the multiplicative
coefficient K is close to 1 and that of the intercept C' is close to 0. This would mean that
the value of the pupil size PS is given by the values PSgey, PSred, PSgreen, and P Spiye
added together in different percentages.

The “combined” approach was tested simultaneously with the “grey-based” and
the "colour-based" approaches (with the same 18 participants, the same five different
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screens with different resolutions, the same images, etc.).

For each participant, first, we calculated the values P Sgrey, PSred, PSgreen, and P Spiue
using the nine images of the calibration procedure, as described above. Then, we
trained and tested the model in Equation 3.18 (see Figure 3.15).

9 Primary Colour
Monochrome
Frames from 27
Frames

Calibration
Procedure

27 Monochrome
Frames

| I
Colour-based | I Grey-based

18 Non-primary
Colour
Monochrome
Frames from 27
Frames

Predicted Pupil
size

‘:ﬂ:' Linear Combination

9 New Non-
primary Colour
Monochrome
Frames

Figure 3.15: Testing the combined approach.

Since the best results were obtained with the “combined” method, we used only this
approach from then on and throughout this paper.

Testing the Luminosity Effect Prediction Model in a well-lit laboratory and with
non-monochrome images. Finally, we tested our LEPM model on non-monochrome
images in both dark and light environments. We recruited an additional 10 participants
and used the 27 monochrome test images mentioned above, plus 46 non-monochrome
emotionally neutral images (see Figure 3.16). Each image was displayed for 4 seconds,
resulting in a video of 4 minutes and 52 seconds plus 36 seconds for the calibration
procedure (9 images). All images were displayed for 4 seconds, and to process them,
we calculated the mean pupil size over these 4 seconds. In the case of test images, we
trimmed the first half-second to eliminate any potential influence from the preceding
image. However, we did not apply this trimming to calibration frames because they were
created with a gradual increase in luminosity. Conversely, test images are presented
randomly, allowing for sequences where a high-luminosity image may follow a low-
luminosity image or vice versa. We used five different Dell monitors and Dell laptops
with varying brightness levels and a resolution of 1920 x 1080. Pupil size was measured
using a Tobii Pro Nano eye-tracker. The results obtained with the non-monochrome
images were not as promising as those obtained with monochrome images. In particular,
images that contained a very bright region within a dark figure yielded much worse
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Figure 3.16: Experiment flow of LPEM validation including Pupil Size Calibration Pro-
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Figure 3.17: Visualisation of a video frame from an emotional audiovisual clip with a
300-pixel radius circle (green circle) indicating the participant’s gaze location (red dot).

results than monochrome images. Considering that the average colour and brightness

of the image were not effective strategies in these cases, an image could be dark on

average while the participant was looking at a bright region, potentially inducing a

more pronounced pupillary constriction than that elicited by an image with an average

brightness level. Therefore, it was necessary to determine where participants were

looking, as indicated by the recorded eye-tracking data. Specifically, we analysed a

region with a 300-pixel radius centred on the point where the gaze was directed at each

instant. If the average brightness of the specific region exceeded that of the overall



107

image, we used the region’s average instead. For example, in the Figure shown in 3.17,
the participant is not looking far from the bright light source (the red dot represents the
eye-gaze location). As a result, the brightness affects pupil size. Therefore, calculating
the average luminosity of that specific region is more reliable than averaging over the
entire frame, as the overall image is relatively dark and would result in a lower average
luminosity. This method provided a more accurate representation of the subjective
luminance and led to improved results, which we present in the Results Section 4.2.2.
All the code related to the models presented in this section was written in Python.

Development of Arousal Detection Model. The second part of the study aimed to
demonstrate that the pupil size value discounted from the luminosity part was immedi-
ately usable for detecting the level of emotional arousal without the need to use complex
pre-processing, advanced ML or even deep learning models. We used the pupil size data
measured during the data collection process for 32 audiovisual clips, split the data for
those clips due to EIIS, and did data pre-processing, as explained in the following.

Pupil Data Pre-process. To preprocess the recorded pupil size data, we implemented
a robust data imputation process that ensures the dataset’s reliability and accuracy.
The first step involved identifying and marking blink-related distortions. Data points
identified as blinks by the eye tracker were substituted with null values. To account
for the potential pre- and post-blink effects on pupil size measurements, an additional
window of two milliseconds before and after each blink was also marked as null. This
precaution minimises the influence of abrupt changes associated with blinking on the
subsequent analysis.

Following this, we performed data imputation to fill the null values. The missing
data points were replaced using a gradual interpolation method. Specifically, we em-
ployed a linear interpolation approach that considers the trends in the data immediately
before and after the null segments. By interpolating in this way, we maintained the nat-
ural trajectory of pupil size changes over time, preserving the physiological relevance of
the data while mitigating noise introduced by blinking.

This pre-processing step is critical as blinks and their associated distortions can sig-
nificantly distort pupil size measurements, potentially leading to inaccurate conclusions
about emotional arousal. The careful handling of missing data ensures the integrity of
the dataset, enabling the extraction of meaningful emotional responses from the pro-
cessed pupil size data.

Arousal Effect Prediction. After pre-processing the pupil size data, we applied the
LEPM to predict the pupil size for each video frame across all video clips without influ-
encing ambient and screen luminosity.
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We trained the model described by the Equations 3.18 and 3.19 by calculating PS ey,
PSted, PSgreen, and PSyie frame by frame and the coefficients agrey, ared, @greens blues
K, and C for each video clip. We hypothesised that since there was also an arousal
component (in addition to the light component), the fitting would be worse and that
the error in the fitting would be due specifically to the effect of arousal, given that the
model was designed to capture only the component due to luminosity. In other words,
we hypothesised that the measured pupil size would be equal to the pupil size predicted
by the LEPM model as an effect of luminosity plus a residual:

PSmeasured - [K : (agrey : PSgrey + Qreq - PSred

(3.20)
+ agreen : PSgreen + Ablue * PSblue) + C] + Residual
where
PSluminosity = [K : (agrey : PSgrey + Ared + PS'red (3.21)
+agreen : PSgreen + Gblye PSblue) + C]
so that
PS measured = F)luminosity + Residual. (3.22)

The Residual was the portion of pupil size that cannot be explained by luminosity,
i.e., the portion due to arousal:

Residual = PS arousal- (3.23)

Hence, to extract arousal-related information for each video, we subtracted the pre-
dicted pupil size due to luminosity from the pre-processed measured pupil size:

PS arousal — PS measured — PS luminosity - (324)

The resulting difference represents the emotional arousal level of participants watching
the video clips, as measured by pupil size.

ADM Testing. To test the model, we compared its predictions of a participant’s arousal
while watching audiovisual clips, based on the measured pupil size, against the arousal
ground truth. For each clip and each participant, we had the self-reported arousal
value (ground truth) Arousalsitreporred, the recorded pupil size value PSmpeasured, and
the pupil size value corrected for luminosity and due only to arousal PSousa- We then
calculated the Pearson correlation between the pupil size corrected and not corrected for
luminosity, and the self-reported arousal value (see results section). Then, we computed
the average pupil size for each clip and participant across the salient intervals (EII)
obtained during EIIS (see section 3.2.4, with and without our luminosity correction.
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While our results demonstrated the potential of pupil size as a reliable indicator of
emotional arousal, we wanted to prove that PSousa, derived from our model, can be
used without further processing or the use of complex machine learning techniques, be-
coming accessible to the entire scientific community, while still obtaining robust results.
For this purpose, we used the following procedure. We used a leave-one-participant-out
(LOPO) cross-validation approach, temporarily eliminating one participant from our
dataset as if they were a new participant.

We then calculated the pupil size corrected for luminosity PS,.ousa and self-reported
arousal Arousalseitreporrea fOr €ach video and each participant remaining in our dataset.
We then assumed a simple linear relationship between the size of the pupil corrected
for luminosity (component due to arousal) and self-reported arousal:

PSarousal =a- Arousalself—reported +0 (325)

We fitted the model 3.25 to all the videos and all the participants (except one). We
obtained a good fit (see Results).
By inverting Equation 3.25, we obtained an estimate of self-reported arousal

—

Arousaleif.reported as a function of pupil size corrected for luminosity:

- PSarousal — b

Arousalself—reported = (3 . 26)

a

We then repeated the same procedure for pupil size, which was not corrected for
luminosity. In this case, in Equations 3.25 and 3.26, PSausa must be replaced with
PS measured- We predicted the self-reported arousal value for the eliminated participant
starting from the pupil size, using Equation 3.26, and for all the videos. We compared
the obtained values with the ground truth for the luminosity-corrected and uncorrected
pupil size. We repeated this procedure, eliminating one participant at a time, and finally
calculated the average results for our sample.

This method shows that pupil size, isolated from luminosity, directly plays an in-
tegral part in the emotion detection model without any complex or advanced machine
learning model. Instead, we couldn’t use this kind of simple feature directly to train a
simple machine learning model for FER and GSR, so we used advanced machine learn-
ing techniques described in the following sections.

3.3 Advanced Machine Learning Techniques for FER,
Pupil Size, and GSR

In this section, we present the training and evaluation of our multimodal emotion
detection models using advanced machine learning techniques. Unlike many existing
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studies that either focus on a single modality or rely on basic statistical descriptors, our
framework integrates FER, luminosity-corrected pupil size, and GSR within a unified
pipeline. This multimodal configuration is itself novel, as it combines complementary
information channels: FER captures expressive behaviour, pupil size reflects cognitive
and affective arousal once corrected for lighting effects, and GSR indexes autonomic
activation. To the best of our knowledge, this is the first systematic study to jointly
model these three signals for continuous valence-arousal prediction.

The pipeline begins with extensive feature engineering tailored to each modal-
ity For FER, we introduced a vectorial mapping of raw emotion intensity outputs
into valence—arousal coordinates, grounded in Russell’s circumplex model (see Sec-
tion 3.1.7). This approach preserves psychological interpretability while producing
continuous features that can accommodate multi-emotion mixtures. For pupil size, we
developed a novel luminosity-isolation model based on calibration with primary and
grayscale colours, effectively disentangling ambient light effects from genuine affect-
ive changes. For GSR, we extracted a comprehensive set of features spanning time,
frequency, and time—frequency domains, going beyond the simple statistical measures
typically reported in the literature. Together, these diverse features enabled the model
to capture both fast-changing and longer-term dynamics of autonomic activity, provid-
ing a richer representation of emotional processes.

For this analysis, feature-level fusion was employed to integrate multiple data mod-
alities, followed by supervised learning using robust algorithms like gradient boosting
regressors. While tree-based models like XGBoost are generally more resilient to het-
eroscedasticity [389], the non-constant variance in error residuals, than traditional lin-
ear models, significant variations in physiological responses between participants could
still affect model stability and potentially lead to overfitting. To mitigate this, a leave-
one-participant-out (LOPO) cross-validation regime was used. This robust evaluation
strategy ensures subject-independent generalisation by training the model on data from
all participants except one, and then validating on the held-out participant’s data [390].
This approach accounts for inter-participant variability and provides a more reliable as-
sessment of performance across diverse populations, which is particularly crucial for
real-world clinical and applied contexts where consistency is essential. The synergistic
combination of gradient boosting’s inherent strength in handling varying error distri-
butions and the LOPO cross-validation’s ability to provide a less-biased generalisation
estimate strengthens the reliability of the reported outcomes.

Our approach makes three key novel contributions: (i) it introduces a previously
unexplored multimodal signal configuration that integrates FER, luminosity-corrected
pupil size, and GSR; (ii) it advances preprocessing with innovations such as a vectorial
FER-to-circumplex mapping and a calibration-based luminosity correction model for
pupil data; and (iii) it employs rigorous subject-independent evaluation to establish
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reliable and generalisable benchmarks. Collectively, these contributions yield a frame-
work that is not only more accurate but also psychologically interpretable and broadly
applicable, thereby laying the groundwork for future multimodal affect-aware systems.

3.3.1 FER, Pupil Size and GSR Feature Extraction

First, we extracted a comprehensive feature from FER, pupil size and GSR. For FER,
we used the basic emotion detected by the iMotions software, and for pupil size, we
used corrected and non-corrected luminance. For GSR, we used the pre-processed GSR
from iMotions. Once the features were extracted and cleaned, we trained machine
learning models to predict emotional dimensions, specifically, arousal and valence. This
pipeline allowed us to assess the predictive power of each modality individually and in

combination.

FER Features Extraction

To extract features using FER features for predicting arousal and valence, we fol-
lowed the approach outlined in the pilot study (see Section 3.1.7). We first generated
a vector representation of the seven basic emotions detected by iMotions software on
the valence-arousal plane for each video segment, where (z, y) corresponds to (valence,
arousal). We extracted statistical features from these vectors, such as mean, maximum,
minimum, and standard deviation, for the full video and emotionally salient intervals
(EID), as defined in EIIS 3.2.4.

Analysing features from the entire video alongside those from emotionally signi-
ficant intervals provides a deeper understanding of emotional expression. While the
whole video captures broader emotional trends and baseline states, salient intervals fo-
cus on moments of heightened emotion. This comparison enables us to evaluate which
temporal scope offers more precise emotional predictions. Later, we trained a machine
learning model using features from the entire video and salient interval, which is de-
scribed in the model training section 3.3.2

Pupil Size Feature Extraction

Pupil size signals were corrected for luminosity variations to isolate emotion-related
changes. Building on findings by Celniak et al. [293], highlighting pupil dynamics’
emotional significance, we extracted higher-order statistical features from both correc-
ted and uncorrected signals for the emotionally salient intervals (EII) mentioned in
the EIIS 3.2.4. Since pupil responses are spontaneous and involuntary, focusing on seg-
ments where emotional content is present rather than analysing the entire video is more
meaningful. This targeted approach enables a more accurate and relevant representa-
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tion of features, thereby enhancing the effectiveness of subsequent emotion prediction
models.

Similar to a pilot study, Such characteristics are crucial for reflecting the subtle pupil
size changes associated with different emotional states. Using these features, we trained
an emotion detection model in the model training section 3.3.2.

GSR Features Extraction

As detailed in the pilot study on GSR analysis section 3.1.7, we utilised GSR data
recorded and pre-processed using iMotions software. While iMotions provides various
features, including phasic, tonic components and peak detection, we focused specific-
ally on the phasic, tonic, and calibrated (noise-free) GSR signals for feature extrac-
tion [383], [391]. This selection ensured the reliability and relevance of the extracted
features in our analysis. Using the GSR data, we extracted emotion-related features
for each participant across all audiovisual stimuli. Unlike pupil size, GSR responses
are slower due to the nature of sweat gland activity [212], [258], [392], making it
unsuitable to analyse only specific intervals corresponding to elicited emotions in the
audiovisual clip. Instead, we utilised GSR data from the entire duration of each audi-
ovisual clip to extract relevant features.

To enhance the accuracy of emotion detection, various physiological signal features
were extracted across multiple domains. Time-domain features capture baseline and
momentary fluctuations in skin conductance, providing insights into general arousal
and variability. Peak analysis features help quantify response intensity and speed by
examining specific SCR characteristics. Signal dynamics track changes in response pat-
terns over time, while temporal decomposition focuses on variations in the latter phase
of physiological signals. Spectral analysis examines the complexity and frequency power
of signals, particularly in low- and very-low-frequency bands associated with emotional
and cognitive processing. Additionally, advanced statistical features offer non-linear
variability and stability measures, further refining the emotional characterisation. Fi-
nally, Mel-Frequency Cepstral Coefficients (MFCC) features capture the signal’s textural
properties, contributing to a more robust emotion detection framework.

Relying solely on statistical features for GSR emotion detection can be limiting, as
it may overlook the complex, non-linear patterns inherent in emotional responses. By
incorporating a broader range of features, including spectral, temporal, and dynamic
properties, we capture the full complexity of physiological reactions, allowing for a
more accurate and holistic model for emotion detection. These diverse features com-
prehensively represent emotional responses, which are crucial for training robust and
effective ML models.
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Time-Domain Features.

* Tonic Mean: Average baseline SCL, reflecting general arousal [305], [391].

* Tonic Standard Deviation: Variability in the baseline skin conductance [305],
[391].

* Phasic Mean: Average magnitude of momentary skin conductance responses
(SCRs) [305], [391].

* Phasic Standard Deviation: Variation in the magnitude of SCRs [305], [391].

* Phasic Skewness: Asymmetry of the SCR distribution [305], [391].

* Phasic Kurtosis: "Peakedness" of the SCR distribution [305], [391].

Peak Analysis Features.

* SCR Rise Time: Average time between SCR onset and peak, indicating response
speed [305], [391].

* SCR Recovery Time: Time for 63% return to baseline (skin conductance half-
life) [305], [391].

* SCR Area Under Curve (AUC): Total phasic activity, representing response intens-
ity [305], [391].

* Non-Specific SCR Rate: Number of non-specific SCRs per minute, indicating
arousal frequency [305], [391].

Signal Dynamics
* Phasic Gradient Mean: Average rate of change in SCRs [305], [386].
* Tonic Gradient Standard Deviation: Variability in baseline conductance
changes [305], [386].

Temporal Decomposition.
* Second Half Mean: Average of later-phase responses [305], [386].
* Second Half Standard Deviation: Variability in later-phase responses [305], [386].
* Second Half Peak Rate: Frequency of peaks in the latter half of the signal [305],
[386].

Spectral Analysis.
* Spectral Entropy: Measure of signal complexity [305], [393].
* Power VLF (0.04-0.15Hz): Power in a very low-frequency band, related to ther-
moregulation [305], [393].
* Power LF (0.15-0.4Hz): Power in the low-frequency band, associated with cognit-
ive/emotional processing [305], [393].

Advanced Statistical Features.
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* Phasic Entropy: non-linear complexity measure of SCRs [305], [386].
* Phasic 90th Percentile: Threshold for extreme responses [305], [386].
* Tonic Quantile Difference: Measure of baseline stability [305], [386].

MEFCC Features.

* MFCC 0-12: Mel-frequency cepstral coefficients, capturing signal "texture" [386].
These features comprehensively analyse GSR signals, encompassing various skin con-
ductance changes related to emotional and cognitive processes [305], [386], [391],
[393].

Before feeding the features into the model, we apply Min-Max scaling to normalise
them. This step ensures that all features are on the same scale (0 to 1), preventing
models from being biased toward features with larger numerical ranges. The formula
used for min-max normalisation is:

x' = X = Xoin (3.27)
Xmax — Xmin

where, X is the original feature value, Xy, is the minimum value of the feature,
Xmax 1S the maximum value of the feature, X’ is the normalised value.

This normalisation reduces the influence of different feature scales, making the data
more suitable for ML models and statistical analysis. Before integrating GSR with other
physiological signals, we wanted to assess its effectiveness in detecting emotions. To
do this, we trained a regression model using only GSR features described in the model
training section 3.3.2.

After feature extractions, we moved forward to do machine learning model train-
ing, where we experimented with several machine learning models, including SVR and
XGBoost. Based on comparative performance and feature analysis, we adopted XG-
Boost as the core regression model for its ability to model complex, non-linear feature
interactions and robustness against multicollinearity, manage feature interactions, and
avoid overfitting. The objective was to predict continuous emotional states- arousal and
valence- using extracted physiological features.

3.3.2 Model Training Methodology

We developed and evaluated ML models using both unimodal (individual signals)
and multimodal (combined signals) input. The training process was divided into three
main stages. First, we trained separate models using features from FER, pupil size,
and GSR to assess signal effectiveness. Then, we combined all three signals into a
unified feature set to train a multimodal model. Finally, we assessed model performance
using standard metrics across LOPO cross-validation and nested K-Fold validation for
hyperparameter tuning.
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Model Initialisation

We initialised the XGBoost Regressor with the following hyperparameters:

* Objective: 'reg : squarederror’ — This objective function is used for regression
tasks, minimising the squared error between the predicted and actual values.

* colsample bytree: 0.3 — This parameter controls the fraction of features to sample
when building each tree, helping prevent over-fitting and improving model gen-
eralisation.

* learning rate: 0.1 — The learning rate shrinks the weight of each tree. A smaller
value makes the model more robust but requires more converging trees.

* max_depth: 5 - The maximum depth of the trees. A value of 5 allows for sufficient
complexity while avoiding over-fitting.

* alpha: 10 — L2 regularisation term on weights helps reduce over-fitting by penal-
ising significant coefficients.

e n_estimators: 100 — The number of trees to train in the model, balancing between
model complexity and computational efficiency.

This configuration is commonly used to control overfitting while maintaining a
powerful, flexible model capable of capturing non-linear relationships in the data.
We implemented a two-level cross-validation strategy, LOPO and Nested 5-fold Cross-
validation, to ensure generalisability across participants and avoid overfitting.

LOPO Cross-Validation. We adopted an LOPO approach to account for participant
variability. In this approach, for each iteration, data from all participants except one are
used for training, and the data from the left-out participant is used for validation. The
model is trained on the training set (comprising data from all participants except the
one left out), allowing it to learn the relationships between the features and the target
variable (Arousal or Valence). After training, the model predicts the Arousal values for
the left-out participant, and performance metrics are evaluated using the actual values
of that participant. This procedure is repeated for each participant, ensuring that every
individual is used as a training and validation data point. This provides a comprehensive
evaluation of the model’s generalizability.

Cross-Validation within Each Fold. For each iteration of the LOPO method, we fur-
ther employed K-Fold Cross-Validation with 5 folds to optimise the model’s hyperpara-
meters and reduce over-fitting. The K-Fold Cross-Validation was performed using the
following configuration:
* n_splits: 5 — The training data is divided into 5 subsets (or folds). The model
is trained on 4 out of the 5 folds and validated on the remaining fold, ensuring
robust performance evaluation.
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» shuffle: True — This ensures that the data is randomly shuffled before splitting

into folds, which helps mitigate any potential bias in the fold divisions.

* random_state: 42 — This random seed ensures the reproducibility of the results

by maintaining the same random splits across multiple runs.

During the cross-validation process, the XGBoost model is trained on 4 of the 5
folds; the remaining fold is used for validation. Cross-validation helps select the model’s
optimal hyperparameters. Performing multiple iterations on different subsets of the
data ensures that the model does not overfit any particular fold or set of features.

Performance Evaluation. After each iteration of the LOPO method, the following
performance metrics were computed to assess the model’s predictive accuracy for par-
ticipants who were left out:

* Coefficient of Determination (R2): Measures how well the model explains the
variance in the target variable.

e normalised RMSE (NRMSFE): Provides an error measure normalised by the
range of the target values, making it easier to compare results across different
datasets or variables. If NRMSE is low, that means there is a tiny difference
between the predicted and actual value.

* Pearson Correlation (r): Measures the linear relationship between predicted and
actual values. A higher value indicates stronger predictive performance.

These metrics were computed for each LOPO cross-validation and averaged across

all iterations (across all participants) to obtain the overall model performance.

Model Performance and Hyper-parameter Selection. We employed a nested valid-
ation strategy combining LOPO cross-validation with internal 5-fold cross-validation to
ensure reliable and universal predictions. Hyperparameters were optimised based on
performance across all folds, and the best configuration was used to train the XGBoost
model on all participants except the one left out in each LOPO iteration. This approach
comprehensively evaluated model performance and supported robust generalisation, as
discussed in the literature review under generalisation and transfer learning 2.7.1.

3.3.3 Unimodal Training

We applied a consistent modelling pipeline across different feature sets, using the
specified model training parameters to predict arousal and valence. Specifically, we
trained separate models on FER features extracted from the full video and salient in-
tervals, pupil size features corrected and uncorrected for luminance, and GSR features
extracted from the full video. For each emotional dimension (arousal and valence),
an XGBoost regression model was trained using LOPO cross-validation across parti-
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cipants and internal fivefold cross-validation to ensure training stability and generalis-
ability. Model performance was assessed using 22, Pearson correlation coefficient r and
NRMSE. The results, presented in section 4, highlight the contributions of FER, pupil
size, and GSR features to emotion recognition.

Having established the individual predictive power of FER, pupil size, and GSR
through unimodal models, we explored whether combining these signals could enhance

emotion recognition performance.

3.3.4 Multimodal Feature Fusion: Integrating FER, Pupil Size, and
GSR for Machine Learning Models

To investigate the synergistic effect of multimodal physiological signals on emotion
prediction, we adopted a feature fusion approach, as outlined in the literature (see
Chapter 2). This technique integrated all extracted features—specifically from full-
video FER analysis, pupil size data corrected for luminosity, and GSR—into a single
unified feature set, based on their performance in unimodal evaluations. This integra-
tion captures a richer representation of physiological responses, allowing the model to
learn complementary patterns across modalities that may not be evident when each is
analysed independently.

The same XGBoost regression model architecture used for unimodal training (FER,
pupil size, and GSR separately) was applied to this fused dataset (see Figure 3.18.
This consistency allowed for direct performance comparison between unimodal and
multimodal models.

Correlation Analysis

Before model training, we computed correlation matrices using Pearson and Spear-
man coefficients to examine linear and non-linear relationships among the integrated
features and their correlation with the target variables (Valence and Arousal). This ana-
lysis provided valuable insights into inter-feature dependencies and highlighted which
features exhibited the strongest associations with emotional dimensions. While tradi-
tional feature selection methods often exclude highly correlated features, we retained
all features to preserve the multimodal dataset’s full expressive power. Correlation ana-
lysis was used purely for interpretability rather than dimensionality reduction.

Model Training and Over-fitting Prevention

We used XGBoost, a gradient-boosted decision tree algorithm, due to its ability to
model complex, non-linear interactions and its robustness to feature multicollinearity.
To ensure the model generalised well and did not over-fit the training data, several over-



118

FER Data Pupil Size Data GSR Data
Ir l v 1
FER Valence FER Arousal Pupil Size (?orrgcted Preprocessmg
for Luminosity (e.g., Smoothing)
Feature Extraction
(e.g., Stats, FTT)
Feature

Feature-Level Fusion

Concatenation

!

XGBoost Regressor

Pearson Correlation

R2-Score NRMSE
(p-value)

NV I N N S N

Figure 3.18: Flow Chart of Training the ML Model using Feature-Level Fusion Tech-
nique.

fitting prevention strategies were employed, like early stopping, where during training,
we implemented early stopping based on validation loss, halting the process when the
performance did not improve for 10 consecutive rounds. This helped prevent unneces-
sary boosting rounds that could lead to over-fitting. Regularisation, where we applied
L1 (alpha) and L2 (lambda) regularisation penalties to control model complexity and
reduce the risk of over-fitting due to high-dimensional feature fusion. We employed
LOPO cross-validation at the participant level, where each participant’s data was held
out once as a test set while the model was trained on the remainder. A five-fold cross-
validation was conducted within each training set to tune the model and validate its
internal consistency.
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Prediction and Evaluation

We trained the model separately using the fused feature set to predict self-reported
arousal and valence. For each LOPO iteration, predictions were generated for the ex-
cluded participant using the trained model. Evaluation metrics included R2-score, Pear-
son correlation, and NRM SE. The final performance results and comparative analysis
with unimodal models and other existing literature are detailed in Section 4. This mul-
timodal approach provides insight into how integrating various physiological signals
enhances emotion detection and supports the hypothesis that feature fusion leads to
more robust and generalisable models.



Chapter 4
Results

This section clearly and comprehensively lays out all the analysis results from the
pilot and main studies. It provides a detailed comparison and interpretation of the find-
ings, delving into the data collected, the statistical outcomes, the trends observed, and
any significant patterns that emerged during the research. We discuss how the results
from the pilot study influenced the design and execution of the main study, highlighting
the key adjustments and methodological tweaks we made to enhance the reliability and
validity of our findings. Additionally, this section provides a closer examination of the
similarities and differences between the two studies, addressing any discrepancies that
may have arisen. We critically analyse the insights gained to provide a well-rounded un-
derstanding of their implications, limitations, and how they contribute to the broader
research goals.

4.1 Results of the Pilot study

This section presents a comprehensive analysis of the results obtained from various
study angles, utilising data from 45 participants. It covers the outcomes of emotion la-
belling for the INDSCAL group space and examines selected individual spaces, shedding
light on how emotions are mapped across participants. We also detail the findings of
FER feature extraction and analysis, highlighting significant patterns in facial emotions.
Additionally, we examine the results of pupil size feature extraction, which helps us
understand the physiological responses associated with cognitive and emotional states.
The section continues with the extraction and analysis of GSR features, which play a
crucial role in assessing the activity of the autonomic nervous system. To further en-
rich our understanding, a correlation matrix is presented to examine the relationships
among all extracted features for a subset of participants in the pilot study. This enables
a more nuanced understanding of how multimodal data interact. Finally, we conclude
this section with reflections on the lessons learned from the pilot study, highlighting

120
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key takeaways and methodological improvements that informed the design of the main
study.

4.1.1 Emotion Labelling

This section presents the results of our emotion labelling analysis for 20 audiovisual
clips (stimuli), evaluated using both the INDSCAL group space and selected individual
spaces. The analysis provides insight into how emotions are organised within a shared
perceptual space and how consistently participants’ subjective experiences align with
this representation.

The INDSCAL group space revealed distinct clusters corresponding to the expected
quadrants of Russell’s circumplex, with stimuli clearly separating along valence and
arousal axes. This validates the suitability of our labelling framework, as the emer-
gent spatial structure reflected theoretically grounded emotion dimensions rather than
arbitrary statistical groupings. Beyond the group-level findings, individual INDSCAL
spaces uncovered meaningful variability in how participants positioned the same stim-
uli, demonstrating that while a common perceptual structure exists, individual differ-
ences remain important in shaping emotional experience.

To assess the reliability of these mappings, we also analysed the variance of rat-
ings across participants for each stimulus. Stimuli with low variance indicated strong
consensus in emotional interpretation, whereas higher variance highlighted clips that
elicited divergent reactions, often reflecting more ambiguous or mixed affective con-
tent. This dual analysis, linking group-level consensus with individual-level variation,
provides a richer picture of emotion labelling than traditional averaging approaches.
By combining dimensional mapping with individual weighting, our framework offers a
unique and interpretable ground truth for training and evaluating emotion recognition
models.

The image in 4.1 represents the INDSCAL group space for emotion labelling across
all participants, where each coloured dot corresponds to a specific labelled emotion.
The x-axis (valence) measures the positivity or negativity of an emotion, with negative
values indicating unpleasant emotions and positive values representing pleasant emo-
tions. The y-axis (arousal) measures emotional intensity, where higher values indicate
highly aroused emotions (e.g., excitement or fear), while lower values correspond to
calmer emotional states (e.g., sadness or relaxation). The annotations next to each
point indicate stimulus names.

As illustrated in Figure 4.1, the stimulus names include category representations fol-
lowing an underscore for their belonging categories. As mentioned in the methodology
of the pilot study, we selected audiovisual clips based on five categories using Russell’s
circumplex model. For instance, “HP” denotes high arousal with positive valence (rep-
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Figure 4.1: Plot of group space across all the participants for labelled emotion for HP
(red), HN (orange), LP (green), LN (blue), and neutral (violet) stimuli. The plotted
positions represent the mean ratings across participants for each stimulus.

resented by red-coloured circles), “HN” represents high arousal with negative valence
(orange-coloured circles), “LP” stands for low arousal with positive valence (green-
coloured circles), “LN” corresponds to low arousal with negative valence (blue-coloured
circles), and “Ne” signifies neutral (violet-coloured circles). This naming convention
was essential for accurately categorising and labelling the stimuli during the analysis
process.

Examining the distribution of points, distinct clusters emerge based on emotional
characteristics. In the top-right quadrant (positive valence, high arousal), labels such as
P_HP, O_HP, and G_HP (red) appear, suggesting emotions that are both positive and
highly energetic, such as excitement or joy. In contrast, the top-left quadrant (negat-
ive valence, high arousal) includes labels like B_HN, A_HN and W_HN (orange), which
likely represent high-arousal but unpleasant emotions, such as anger or fear. Moving
to the bottom-left quadrant (negative valence, low arousal), we observe labels such as
N_LN, M_LN, O_LN, and C_LN (blue), which likely correspond to emotions like sad-
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ness or fatigue. Meanwhile, the bottom-right quadrant (positive valence, low arousal)
includes points like A1_1.p, A2_LP and A4_1P (green), which represent emotions that
are positive but calming, such as contentment or relaxation.

A key observation from this visualisation is that emotions appear well-structured
within the valence-arousal space, with clear separations between high-energy and low-
energy emotions, as well as between positive and negative affective states. Some emo-
tions, such as F_HN (orange) and A3_LP (green), are positioned at extreme values,
indicating vigorous emotional intensity. Additionally, neutral emotions U_Ne, J_Ne,
V_Ne and K_Ne (violet) are clustered near the centre of the graph, confirming their
balanced nature in both valence and arousal dimensions.

Table 4.1: Variance of Valence and Arousal Ratings across Participants for Each Stimulus

Stimulus Valence Variance Arousal Variance

Al LP 0.017224 0.004890
A2 1P 0.024564 0.000485
A3 1P 0.012465 0.007959
A4 1P 0.025127 0.000589
A HN 0.046391 0.001572
B _HN 0.060410 0.005354
C LN 0.012164 0.011501
F HN 0.011371 0.014568
G_HP 0.016224 0.013243
H HP 0.020777 0.016688
J Ne 0.002492 0.011042
K Ne 0.001276 0.014479
M LN 0.021637 0.004444
N LN 0.029047 0.002109
O LN 0.015633 0.010818
P _HP 0.016028 0.016136
Q HP 0.022601 0.015807
U Ne 0.006399 0.008328
V_Ne 0.002988 0.009572
W_HN 0.042534 0.001212

The INDSCAL group space organises emotions into distinct regions, aligning with
well-established emotional models. The clustering of emotions suggests that the extrac-
ted labels successfully capture variations in emotional perception across participants.
Importantly, by incorporating both mean positions and variance measures, we can assess
not only where stimuli are placed in the emotion space, but also the level of agreement
or disagreement among participants (see Table 4.1). The analysis revealed that valence
ratings showed greater variability than arousal ratings, indicating less consensus in how
pleasant or unpleasant stimuli were perceived. For example, B_HN exhibited the highest
variance in valence, suggesting mixed perceptions among participants, while neutral
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clips such as K_Ne and J_Ne showed the lowest variance, reflecting stronger agree-
ment. In contrast, arousal ratings remained relatively stable across all stimuli, with
only minor differences in variance. This highlights that while participants generally
agreed on the arousal level of the clips, their interpretations of valence were more sub-
jective and varied across stimuli.

These findings underscore the importance of considering both group-level patterns
and individual variations when studying emotion processing, especially for training
emotion detection models that account for such diversity, where we referred to this
as self-reported arousal and self-reported valence. This variability can be partly attrib-
uted to differences in participants’ emotional health, as noted in the literature review
(Chapter 2), and could potentially be reduced by restricting the analysis to emotionally
healthy participants.

To train an emotion detection model, it is essential to consider labelled emotions
and physiological responses. As mentioned in previous chapters, physiological signals
indicate emotional reactions. Incorporating these signals alongside labelled emotions
would enhance the reliability of the emotion detection model.

To use physiological signals in an emotion detection model, we need to clean the
data, extract relevant features, and analyse them to obtain reliable features. The follow-
ing section presents the processing, feature extraction, and analysis results for physiolo-
gical signals, including FER, pupil size, and GSR.

4.1.2 Results of FER Analysis

FER proved to be a valuable modality for characterising emotional responses in our
study. While the raw outputs from iMotions (AFFDEX 2.0) provided reliable detection
of the seven basic emotions, the strength of our approach lies in how these signals were
subsequently utilised. Rather than treating the basic categories as isolated outcomes,
we transformed them into continuous valence-arousal trajectories, enabling a more fine-
grained representation of emotional dynamics across time.

The results demonstrate that this transformation produces interpretable emotional
trajectories that capture subtle shifts in affective state, which would be obscured by
categorical labels alone. In particular, the FER-derived valence and arousal coordinates
aligned with expected quadrant distributions from Russell’s circumplex model, support-
ing both the validity of the mapping and its capacity to represent co-occurring or mixed
emotional states. This outcome highlights the advantage of our approach: by embed-
ding FER outputs into a dimensional space, we bridge categorical recognition with con-
tinuous affect modelling, offering richer and more flexible input for multimodal fusion.

The results presented here show the vectorial representations of the basic emotions
identified by FER. We analysed 20 audiovisual clips, each lasting between 30 and 58
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seconds, during which FER data for basic emotions were recorded at each timestamp.
Figures 4.2 and 4.3 illustrate the valence-arousal space representations of these emo-
tions for participant ITA04, first at each timestamp and then as the final average vec-
torial result, which reflects the levels of arousal and valence for the respective stimuli.
Figure 4.2 illustrates stimuli that belong to the high arousal, negative valence category

Emeoticn Vector Visualization - HN_1-1 - High arcusal negative valance Plot for HN_1-1
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Figure 4.2: FER vectorial representations (VR) for participant ITA04 and one clip for
high arousal negative valence (HN). (a) VR at each timestamps of the clip, (b) average
VR across timestamps.

for participant ITA04. As shown in the first part of the figure, the participant’s fa-
cial expressions predominantly remained within the HN quadrant for most of the clip
timestamps. Additionally, the average value at the end of the clip also falls within
the HN quadrant, further validating the reliability of the vectorial representations pro-
duced by our method. Similarly, Figure 4.3 illustrates high-arousal, positive-valence
stimuli for participant ITA04. As shown in the first part of the figure, the participant’s
facial expressions predominantly remain within the HP quadrant for most of the clip
timestamps. Additionally, the average value at the end of the clip also falls within the
HP quadrant, further validating the reliability of the vectorial representations produced
by our method.

Next, we extracted statistical features of FER arousal and valence, including the
mean, maximum, minimum, and standard deviation. We then analysed the Pearson cor-
relation between these extracted features and the self-reported arousal and valence to
examine the linear relationship between the features and the self-reported values. The
correlation analysis between FER-derived features and self-reported emotional states
(arousal and valence) was conducted for all 45 participants.
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Figure 4.3: FER vectorial representations (VR) for participant ITA04 and one clip for
high arousal positive valence (HP). (a) VR at each timestamps of the clip, (b) average
VR across timestamps.

FER Features Correlation with Valence and Arousal

The top 10 FER features, ranked by mean Pearson correlation across participants,
are shown in Figure 4.4. For Valence, the strongest positive correlations were ob-
served for FER_Mean_Arousal (r = 0.253+£0.231), FER_Min_Arousal (r = 0.188 &+
0.236), and FER_Max_Arousal (r = 0.179 4+ 0.251), indicating that features associ-
ated with arousal-related expressions contributed more to perceived valence than the
valence-specific features themselves. Conversely, some valence-related features, such as
FER_Kurtosis_Valence (r = —0.139 + 0.236), showed small negative correlations,
suggesting limited predictive value for valence in isolation.

For Arousal, the highest correlations were found in FER_Std_Arousal (r =
0.191£0.245) and FER_Max_Arousal (r = 0.156 £0.265), highlighting that variability
and peak intensity in arousal-related facial expressions are moderately associated with
participants’ reported arousal. Interestingly, certain valence-related features, such as
FER_Kurtosis_Valence (r = —0.128 £ 0.247), also contributed weakly, suggesting
some cross-over influence between valence and arousal features.

The correlations are moderate at best, with many features showing low or near-zero
mean correlations across participants. The error bars in Figure 4.4 indicate substan-
tial inter-participant variability, highlighting that the relationship between FER features
and subjective emotional ratings is not consistent across all participants. These find-
ings suggest that while FER features provide some information about emotional state,
single features alone are insufficient for accurate prediction of valence or arousal, and
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a combination of multiple features or modalities may be necessary for robust emotion

estimation.
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Figure 4.4: Top 10 FER features with the highest mean Pearson correlation (r) with
Valence (top) and Arousal (bottom) across participants. Bars represent the mean cor-
relation for each feature, and error bars indicate the standard deviation across parti-
cipants. Features related to arousal tend to dominate the Valence correlations, while
both arousal- and valence-related features contribute to Arousal correlations.

Key Observations and Next Steps.

* Facial expressions provide better predictive potential for arousal than valence,
which can be because of less reactive participants or emotionally unhealthy parti-
cipants, which can be solved by taking only emotionally healthy participants.

* Individual differences contribute to high variability, limiting the generalisability of
the results.

* Further refinement, including multimodal integration (e.g., combining FER with
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GSR), may enhance emotion detection performance.
The following section will explore methods to improve these correlations through
feature selection, normalisation techniques, and the inclusion of additional physiolo-
gical signals.

4.1.3 Results of Pupil Size analysis

Our study extracted statistical features from the pupil size data for each stimulus
and the baseline (i.e., the grey screen). By normalising the pupil size relative to the
baseline measurement, we could effectively isolate the impact of emotional arousal on
pupil dilation.

Pearson correlations were calculated between various pupil size features and self-
reported arousal and valence to investigate the relationship between pupil size dynam-
ics and emotional states. These features included statistical descriptors (mean, min-
imum, maximum, skewness, kurtosis, standard deviation) computed separately for the
pre- and post-normalisation periods.

Pupil Size Features Correlation with Valence and Arousal

The top 10 pupil size features, ranked by mean Pearson correlation across
participants, are shown in Figure 4.5. For Valence, the strongest neg-
ative correlations were observed for Pupil_before_mean_normalize (r =
—0.583 £ 0.150), Pupil_after_mean_normalize (r = -—0.583 + 0.150), and
Pupil_after_max_normalize (r = —0.581 + 0.131), indicating that larger pu-
pil sizes were associated with lower reported valence. Positive correlations were
observed for Pupil_before_kurtosis_normalize (r = 0.393 £+ 0.157) and
Pupil_after_kurtosis_normalize (r = 0.3934+0.157), suggesting that the shape
of the pupil distribution (kurtosis) may also carry relevant information about valence.

For Arousal, the highest correlations were more moderate. The top fea-
tures included Pupil_before_kurtosis_normalize (r = 0.153 £ 0.200) and
Pupil_after_kurtosis_normalize (r = 0.153 £ 0.200). Most other features
showed weak negative correlations, such as Pupil_before_mean_normalize (r =
—0.116 + 0.182), indicating that mean pupil size is slightly inversely associated with
arousal. The magnitude of correlations for arousal is smaller than for valence, suggest-
ing that pupil size features are more strongly related to valence than to arousal.

The error bars in Figure 4.5 indicate considerable inter-participant variability. These
results imply that pupil size features provide meaningful but variable information about
participants’ emotional states, particularly for valence.

However, the overall correlations with arousal were weak, and even the valence-
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Figure 4.5: Top 10 pupil size features with the highest mean Pearson correlation (r)
with Valence (top) and Arousal (bottom) across participants. Bars represent the mean
correlation for each feature, and error bars indicate the standard deviation across par-
ticipants. Features related to mean and maximum pupil size show strong negative cor-
relations with Valence, while kurtosis-related features show positive correlations. Cor-
relations with Arousal are generally smaller in magnitude.
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related associations, though stronger, should be interpreted with caution. It is less likely
that these effects are purely due to changes in luminance, as experimental conditions
were controlled for light variability. Nonetheless, some residual influence of ambient
or stimulus-related luminosity on pupil size cannot be ruled out entirely by subtracting
grey screen pupil size. Therefore, it is essential to properly account for the effect of
luminosity to understand the impact of emotion on pupil size.

In the following study, we aim to further minimise the confounding effects of lighting
by incorporating real-time luminosity tracking. This can help refine the accuracy of
pupil-based features in emotion detection models.

4.1.4 Results of GSR analysis

To evaluate the role of GSR in emotion detection, we conducted a series of statistical
analyses on the extracted features.

Comparing Stimuli vs. Baseline

We began our analysis with a Wilcoxon signed-rank test to assess the APA of the
phasic signal. APA is frequently utilised to measure short-term GSR responses to emo-
tional stimuli across various stimuli in contrast to the baseline condition, which was
represented by the grey screen, for all participants. This analysis aimed to determine
whether the GSR responses to emotional stimuli differed significantly from those recor-
ded during the neutral baseline condition. The Figure 4.6 shows the bar graphs of the
mean APA comparisons of a few stimuli with the same baseline. A statistically significant
increase in mean APA values was observed in the high-arousal negative-valence condi-
tions—A_HN and W_HN. For A_HN, the APA mean rose from 0.08 during the baseline to
0.17 during the clip, with a p of 0.0015. Similarly, in the W_HN condition, the mean in-
creased from 0.08 to 0.14 (p = 0.0018). These results indicate that these high-arousal,
emotionally intense clips elicited a strong physiological response, consistent with the ac-
tivation of the ANS typically associated with emotional arousal (e.g., fear, anger, stress).

In contrast, the C_LN condition (characterized by low-arousal negative valence
such as sadness) and the J_Ne condition (neutral content) showed increases in GSR
means—from 0.08 to 0.11 and 0.08 to 0.10, respectively—but these changes were not
statistically significant (p = 0.1172 for C_LN; p = 0.2029 for J_Ne). This suggests that
while there may be some physiological engagement, the GSR signal is less responsive
to low-arousal or emotionally neutral stimuli.

These findings highlight GSR’s sensitivity to high-arousal emotional stimuli, sup-
porting its utility in detecting intense emotional states. However, they also point to a
limitation in distinguishing more subtle or low-intensity emotions, indicating that GSR
may be most effective when combined with other physiological or behavioural measures
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Figure 4.6: GSR Wilcoxon statistics results for few clips across participants.

in emotion detection systems.

Post-hoc Friedman Analysis: High vs. Low Arousal Groups

Next, we ran a post hoc Friedman test to see how the APA stacked between the high-
arousal and low-arousal clip groups. We sorted the clips according to their self-reported
arousal ratings, and the analysis looked into whether the GSR responses showed any
significant differences between these two conditions. Based on the box plot of the
statistical analysis for high- and low-arousal groups, shown in Figure 4.7, p = 0.0311,
which is less than 0.05, suggests a significant difference between the APA values from
high- and low-arousal data across all participants.



132

Boxplot of Group 1 and Group 2

= 0.0311
10 - e P @
0.8 -
L]
o
06 a =
)
i @ E
3 04 A
: ) H
0.2 -
0.0 -
~0.2
7 -

high I

Figure 4.7: One-hoc Friedman statistics results for GSR average peak amplitude for
arousal and valence groups.

GSR Features Correlation with Self-Reported Valence and Arousal

After verifying data using statistical analysis, we computed the average Pearson cor-
relation and standard deviation across 45 participants to assess the relationship between
GSR features and self-reported emotions. This correlation analysis aimed to understand
the linear relationship between features derived from GSR and individuals’ emotional
responses.

The top 10 galvanic skin response (GSR) features, ranked by
mean Pearson correlation across participants, are shown in Figure 4.8.
For Valence, the strongest negative correlations were observed for
phasic_signal_before_peak_per_min_normalize (r = —0.448 + 0.083) and
phasic_signal_after_peak_per_minute_normalize (r = —0.448 4 0.083),
indicating that higher phasic peak rates are associated with lower valence ratings.
Positive correlations were observed for phasic_signal_before_min_normalize
(r = 0.124 4+ 0.267) and tonic_signal_after_ kurtosis_normalize
(r = 0.094 £ 0.242), suggesting that minimum or shape-related features of the
GSR signal also carry some information about valence. Overall, the magnitude of cor-
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relations varies, with substantial inter-participant variability reflected in the standard
deviations.

For Arousal, the highest negative correlations were also seen in the phasic peak
rate features, phasic_signal_before_peak_per_min_normalize (r = —0.296+
0.031) and phasic_signal_after_peak_per minute_normalize (r = —0.296+
0.031). Other features showed smaller correlations, both positive and negative, with lar-
ger standard deviations, indicating weaker and more variable associations with arousal.
These results suggest that GSR features are moderately informative for valence and
somewhat less so for arousal.

The error bars in Figure 4.8 illustrate the variability across participants, emphasising
that individual differences are substantial, particularly for features beyond the peak
phasic responses.

Based on the analysis of 45 participants, the results indicate weak and inconsistent
correlations between GSR features and self-reported emotions. While some phasic post-
stimulus features, particularly peak-related measures, showed stronger associations
with arousal, the overall predictive power remains low, with high inter-individual vari-
ability. Valence detection exhibited weaker correlations, with no apparent pattern or ad-
vantage of specific GSR features. These findings suggest that GSR alone may not be suf-
ficient for robust emotion detection, highlighting the need for multimodal approaches
and refined feature selection in affective computing. Moreover, the basic statistical fea-
tures from GSR are insufficient to provide reliable emotional information. Therefore,
more elaborate features are required.

Key Observations and Next Steps.
* Weak Correlations: GSR signals alone may not be sufficient for reliable emotion
prediction.
* High Variability Across Participants: Standard deviations suggest strong indi-
vidual differences in GSR-emotion relationships.
* Phasic vs. Tonic Features: Phasic features generally showed stronger associations
with arousal, while valence correlations remained weak.
Given these findings, the next section will focus on improving predictive perform-
ance through feature engineering, normalisation strategies, and multimodal data integ-
ration to enhance emotion detection accuracy.

Comparison of Pearson, Spearman, and Mutual Information Across
Modalities

To investigate the relationships between physiological and facial expression features
and emotional dimensions, we computed three different metrics: Pearson correlation,
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GSR Top 10 Features vs Valence (Mean £ SD across participants)
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Figure 4.8: Top 10 GSR features with the highest mean Pearson correlation (r) with
Valence (top) and Arousal (bottom) across participants. Bars represent the mean cor-
relation for each feature, and error bars indicate the standard deviation across parti-
cipants. Phasic peak rate features are strongly negatively correlated with both Valence
and Arousal, while other features show weaker and more variable correlations.
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Spearman rank correlation, and mutual information. Separate heatmaps were gener-
ated for each metric to visualise these associations across modalities (FER, GSR, Pupil)
and targets (Valence and Arousal).

FER Features. For FER features, Pearson correlations revealed small but significant
associations with Valence (Mean » = 0.060 &+ 0.267, p < 0.001) and weaker correla-
tions with Arousal (r = 0.024 + 0.273, p = 0.076). Spearman correlations were smaller
and mostly non-significant (r = 0.017 + 0.284 for Valence). Mutual information indic-
ated the presence of non-linear associations (MI = 0.067 for valence, MI = 0.038 for
arousal), which can coexist with linear relationships. This suggests that both linear and
non-linear dependencies can be present, going beyond what linear or rank-based cor-

relations alone can capture.

GSR Features. GSR features displayed small negative linear correlations with Valence
(r = —0.090 + 0.276, p < 0.001) and Arousal (r = —0.030 + 0.278, p = 0.001).
Spearman correlations were weaker, with Valence showing a non-significant trend
(r = —0.01440.250) and Arousal showing a weak positive correlation (r = 0.02140.268,
p = 0.035). Mutual information values were higher (MI = 0.106 for valence, MI = 0.078
for arousal), indicating the presence of both linear and non-linear associations that were
not fully captured by linear correlations.

Pupil Size Features. For Pupil features, Pearson correlations indicated moderate neg-
ative associations with Valence (r = —0.239 4+ 0.418, p < 1073!) and weak correlations
with Arousal (r = —0.015 4+ 0.215, p = 0.114). Spearman correlations were mostly non-
significant. Mutual information showed slightly higher values (MI = 0.087 for Valence,
MI = 0.062 for Arousal), confirming that pupil size contains information about emo-
tional state, particularly Valence, that may be linear or non-linear.

Pearson and Spearman correlations were generally small, with Spearman correla-
tions being weaker, indicating limited monotonic relationships. Mutual information
consistently yielded higher values, underscoring the presence of statistical dependen-
cies between features and self-reported ground truth. These dependencies may include
both linear and non-linear components, which would require further analyses to disen-
tangle.

Figures 4.9, 4.10, and 4.11 show the heatmaps for Pearson, Spearman, and mu-
tual information, respectively. These heatmaps illustrate that some features exhibit
stronger non-linear relationships that are not captured by Pearson or Spearman correl-
ation alone.

Across all three modalities (FER, GSR, and Pupil), and across multiple correlation
metrics (Pearson, Spearman, and mutual information), the associations between in-
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Mean Correlation of Modalities with Valence and Arousal
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Figure 4.9: Heatmap of Pearson correlation coefficients between features and emotional
targets (Valence and Arousal) for FER, GSR, and Pupil. HR is excluded.
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Figure 4.10: Heatmap of Spearman rank correlation coefficients between features and
emotional targets (Valence and Arousal) for FER, GSR, and Pupil. HR is excluded.
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Figure 4.11: Heatmap of mutual information between features and emotional targets
(Valence and Arousal) for FER, GSR, and Pupil. HR is excluded.

dividual features and emotional targets (Valence and Arousal) were generally weak
or inconsistent across participants. While mutual information revealed moderate de-
pendencies, these did not translate into robust predictive power. This underscores
the limitations of relying on single features for emotion estimation and motivated the
design of our main study, which integrates multiple features and modalities within a
machine learning framework capable of capturing both linear and non-linear relation-

ships between predictors and self-reported affective states.

4.1.5 Lessons Learned from Pilot Study and Modifications for Main
Study

Several challenges from the pilot study informed critical methodological improve-
ments for the main study. To ensure accurate emotion detection, participants with psy-
chological conditions like anxiety, depression, or alexithymia were excluded through a
screening process, as we noticed high variability between individual emotion labelling.
Facial expressions were found unreliable due to inexpressiveness, prompting a shift
toward more dependable physiological signals. Pupil size data were corrected for stim-
ulus luminosity using a custom isolation model, ensuring that lighting did not confound
emotional changes. Basic statistical features and generic baseline correction proved in-
sufficient for GSR, leading to more refined feature extraction methods. Additionally, we
integrated FER, GSR, and pupil size to improve the robustness of emotion detection.
These refinements strengthened the foundation of our main study, leading to a more
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accurate and reliable emotion detection model.

4.2  Results of the Main Study

This chapter presents the findings from the main study, which aimed to predict self-
reported emotional states—arousal and valence—using features extracted from mul-
tiple physiological modalities: FER, pupil size, and GSR.

The results are organised to reflect both unimodal and multimodal analysis. We
first report the model performance for each modality independently, followed by the
outcomes from feature-level fusion, where all extracted features were integrated into
a unified representation. Each model was evaluated using LOPO cross-validation com-
bined with five-fold internal validation to ensure robust estimation and generalisability.

Model performance was assessed using standard regression evaluation metrics, in-
cluding R2-score, Pearson correlation coefficient, and NRM SE. These results offer in-
sights into the predictive capacity of each modality and the effectiveness of multimodal

integration for emotion detection.

4.2.1 Results of Emotion Labelling

As mentioned in the methodology chapter, to categorise emotional responses, each
audiovisual clip was mapped into a two-dimensional Valence-Arousal space, where
valence indicates the positivity or negativity of the emotion and arousal reflects the
intensity (from calm to excited). Based on this mapping, clips were classified into four
quadrants:

* High Arousal Positive Valence (HP)

* High Arousal Negative Valence (HN)

* Low Arousal Positive Valence (LP)

* Low Arousal Negative Valence (LN)

This classification is visualised in two comparative plots—one based on INDSCAL
and the other using FA.

Comparison Between INDSCAL and FA.

1. INDSCAL - Group Space As shown in the Figure 4.12, INDSCAL provided a more
balanced and circular distribution of clips across the Valence-Arousal space. This
structure aligns with Russell’s Circumplex Model of Affect, which proposes that
emotions are arranged circularly around the valence-arousal axes. Each quad-
rant—HP (yellow dots), HN (red dots), LP (green dots), and LN (blue dots)—is
well-represented with a relatively even spread, supporting the intended design of
the stimulus set.
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Figure 4.12: Aggregate ground truth responses across all participants using INDSCAL,
categorised by stimulus arousal and valence: H = High Arousal, L = Low Arousal, P
= Positive Valence, N = Negative Valence. Each point on the graph corresponds to a
stimulus, i.e., a video clip. The valence and arousal values are rescaled in the range [-2,
2], where 0 indicates a neutral, average value.

2. FA — Group Space In contrast, the Figure 4.13 shows the distribution derived from
FA, which appears more distorted and clustered, particularly around certain re-
gions. The clip separation in terms of arousal and valence was less distinct, and
the circular pattern of emotional mapping was less pronounced. This lack of clarity
in quadrant separation indicates that FA was less effective for our goal of affective
space representation

The comparison between the two methods supports the use of INDSCAL over FA for
emotion labelling. INDSCAL not only preserved the individual differences in responses
but also resulted in a more interpretable and theoretically sound emotional space, align-
ing with the circumplex model.

Additionally, to evaluate the effectiveness of INDSCAL versus Factor Analysis (FA)

for deriving valence-arousal representations, we performed statistical comparisons on
the participant-level data (see Table 4.2). The results indicate that INDSCAL provided
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a clearer separation of stimuli into the four quadrants of Russell’s circumplex model.
Specifically, INDSCAL achieved a higher silhouette score (0.455 vs. 0.402) and a lower
Davies-Bouldin index (0.766 vs. 0.802), demonstrating superior cluster separability.

Furthermore, INDSCAL yielded substantially lower within-stimulus variance across par-
ticipants, both for valence (0.021 vs. 0.271) and arousal (0.004 vs. 0.690). This
highlights its ability to map stimuli more consistently across individuals. Overall, these

findings show that INDSCAL offers a more robust and stable two-dimensional emotional

representation compared to FA, justifying its selection as the primary labelling method

in this study.
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Metric INDSCAL | FA

Silhouette Score (1) 0.455 0.402
Davies-Bouldin Index () 0.766 0.802
Valence Variance (J) 0.021 0.271
Arousal Variance (J) 0.004 0.690

Table 4.2: Comparison of clustering quality and consistency metrics between INDSCAL
and FA. Higher silhouette scores and lower Davies-Bouldin and variance values indicate
superior performance.

Following the emotional labelling process, we proceeded with data pre-processing,
feature extraction, model training, and evaluation for each modality (FER, pupil size,
and GSR). The results of these analyses are presented in the subsequent subsections.

4.2.2 Results of Pupil Size Analysis for the Luminosity Effect
Prediction Model (LEPM)

The model illustrated in the section “A. Development of Luminosity Effect Prediction
Model” effectively predicts pupil size based on the RGB intensity values of the images on
the screen in both dark and bright environments. The calibration procedure described
above ensures that the method is flexible and adapted to inter-subjective differences
and the settings and type of screen used. As explained in section 3.2.6, we initially used
two different approaches, named “grey-based” and “colour-based”, and then we used a
method consisting of combining both approaches, called the “combined” approach. We
assessed each approach using leave-one-image-out cross-validation, i.e., training the
model on 27 images, eliminating one image at a time, and predicting the pupil size
measured when the eliminated image was shown.

The results obtained from the 18 participants in the dark laboratory are summarised
in Table 4.3. These include the mean Pearson correlation coefficient, the mean and max-
imum p-values (derived from significance tests comparing predicted and actual values),
the mean R?, the mean NRMSE, and the mean percentage error. The mean p represents
the average statistical significance across all participants, while the maximum p high-
lights the least significant case, demonstrating that the results remain highly significant
even in the weakest instance.

Table 4.4, on the other hand, shows the results obtained by aggregating the data
across 18 participants.

The results for the “combined” method were better than when using only the “grey-
based” method or only the “colour-based” method, as shown in tables 4.3 and 4.4,
demonstrating that the two methods contribute synergistically to the evaluation of pupil
size. Since the best results were achieved with the “combined” method, we used this
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Table 4.3: Results of all methods on monochrome images in a dark laboratory - aver-
age across participants. (mean p and max p = mean p-value and maximum p-value,

respectively.)
Method Correlation R2-score NRMSE Average Er-
ror
Colour-Based 0.62 4+ 0.124 (mean | 0.40 £+ 0.153 | 0.23 £ 0.048 | 6.52 + 0.221
p = 0.0038, max p = %
0.0214)
Grey-Based 0.72 + 0.150 (mean | 0.55 + 0.193 | 0.21 £+ 0.055 | 8.76 + 0.290
p = 0.0056, max p = %
0.086)
Combination of | 0.84 £ 0.070 (mean | 0.70 & 0.114 | 0.13 & 0.028 | 6.75 4 0.266
colour and grey- | p = < 1077, max p = %
based approach | 0.00001)

Table 4.4: Results of all methods on monochrome images in a dark laboratory - aggreg-

ating the data from all the participants

Method Correlation R2-score NRMSE Average Error
Colour-Based | 0.82 (p < 1077) 0.67 0.10 8.62 + 0.79 %
Grey-Based 0.85(p <1077 0.73 0.09 7.89 + 0.80 %
Combination | 0.94 (p < 1077) 0.88 0.06 4.62 + 0.62 %
of colour and

grey-based

approach
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method exclusively from that point forward, and all subsequent results were obtained
using this approach.

As explained in the paragraph Testing the Luminosity Effect
Prediction Model (LEPM) in a well-1lit laboratory and with
non-monochrome images, we finally tested the LEPM and calibration proced-
ure on non-monochrome, non-primary colour images and in both a dark and a lit
environment. The test was conducted with 10 participants using a video composed of
27 monochrome images and 46 non-monochrome, emotionally neutral images with
different colours and brightness.

Figures 4.14 and 4.16 show the results for the participant IFL3 in a dark and a
well-lit laboratory, respectively. The average results across participants, obtained in the
dark and well-lit laboratories, are shown in Table 4.5.

Figures 4.15 and 4.17 and Table 4.6 show the results obtained by aggregating the
data from all participants.

oy
=}

w
w

uw
o

N
[

Predicted pupil size (mm)

2.5 3.0 3.5 4.0 4.5
Measured pupil size (mm)

Figure 4.14: Relationship between measured and predicted pupil size in a dark laborat-
ory for Participant TFL3, with correlation: 0.91 (p < 10~7), R2-score: 0.83.

Table 4.5: Validation results of LPEM in dark light and well-light laboratory across all
participants.

Method Correlation R2-score NRMSE Average Er-
ror

Dark light | 0.84 +0.061 (meanp | 0.70 + 0.101 | 0.12 + 0.020 | 7.58% +

laboratory <1077, maxp < 1077 1.61%

Well-light 0.76 £ 0.045 (meanp | 0.58 £ 0.680 | 0.14 + 0.014 | 7.72% +

laboratory <1077, maxp < 1077 1.66%

The average error between the two conditions is about 0.2%, and the difference in
RMSE is about 0.02, highlighting the model’s effectiveness across dark and well-lit set-
tings. Additionally, the model performs consistently across various monitor brightness
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Figure 4.15: Measured and predicted pupil size in a dark laboratory for all the parti-
cipants, with correlation: 0.87 (p < 10~7), R2-score: 0.76.
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Figure 4.16: Measured and Predicted pupil size in a well-lit laboratory for the Parti-
cipant IFL3, with correlation: 0.78 (p < 10~7), R2-score: 0.61.

Table 4.6: Validation results of LPEM in dark light and well-light laboratory by aggreg-
ating data from all participants.

Method Correlation R2-score | NRMSE | Average Er-
ror

Dark light labor- | 0.87 (mean p < 1077, | 0.76 0.09 7.28% +

atory max p < 1077 0.82%

Well-light labor- | 0.82 (mean p < 1077, | 0.68 0.11 7.50% +

atory max p < 1077 0.83%

and contrast settings, as well as under different ambient lighting levels. Therefore, there
was no need to modify the model to account for changes in environmental luminosity,
as our calibration procedure effectively takes this into account. However, we repeated
the calibration every 20 minutes for very long experiments.
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Figure 4.17: Measured and Predicted pupil size in a well-lit laboratory for all the parti-
cipants, with correlation: 0.82 (p < 10~7), R2-score: 0.68.

4.2.3 Results of Pupil Size Analysis for the Arousal Detection
Model (ADM)

To test the ADM, we predicted the arousal of a participant watching audiovisual
clips based on the measured pupil size and compared it with the ground truth. For each
participant and each audiovisual clip, we plotted the value of the measured pupil size
PS measured throughout the audiovisual clip. This is shown in Figure 4.18 (green line)
for a particular participant, and a clip with increasingly high emotional intensity (Fig-
ure 4.18(a), and one with low intensity (Figure 4.18(b)). In the figure, we show the
average RGB value frame by frame, representing the luminous intensity of the clip (red
line). We then calculated the pupil size component due to luminosity PSiuminosity USing
the LEPM (see Figure 4.18, blue line). Finally, we calculated the pupil size component
due to arousal PSrousal Dy subtracting PSiuminosity from PSmeasured, according to Equa-
tion 3.24 (see the black line in Figure 4.18).

Our analysis revealed a clear distinction in the arousal responses between high-
arousal and low-arousal video clips, as shown in the example illustrated in Figure 4.18.
In fact, in the left panel (high arousal), the pupil size component due to arousal PS sousal
(black line) assumes higher values than in the right panel (low arousal). This dif-
ference validates the model’s ability to separate the arousal component of pupil size
changes from luminosity effects, supporting its application in accurately identifying
arousal levels across different emotional stimuli.

We then calculated the average of the PSg.ousa (black line in Figure 4.18) in the
salient intervals, as explained in the paragraph Model Testing of section 3.2.6. For
example, for the videos represented in Figure 4.18, the salient intervals were [0s, 20s]
for video clip (a) and [0s, 10s] for video clip (b). Finally, we plotted the pupil size cor-
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Figure 4.18: Plot of participant XPI3pA’s response for selected high-arousal (a) and
low-arousal (b) videos, showing measured pupil size (green), predicted pupil size
(blue), average RGB intensity (red), and arousal-induced pupil size (black).

rected for luminosity PSaousal Versus the self-reported arousal Arousalsei.reported for all
video clips and each participant, which is shown in Figure 4.19 for participant XP I 3pA,
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where the red circles correspond to each video clip (see figure 4.19 for more inform-
ation). For that participant, we obtained a correlation of 0.71 (p = 1.684e-06); see
the red line. For the measured pupil size, non-corrected for luminosity PSpeasured, the
correlation with the ground truth arousal was much worse, e.g., see for participant
XPI3pA in Figure 4.19, where the blue dots correspond to each video clip. We obtained
a correlation of 0.01 (p = 0.971) for that participant (see the blue line in Figure 4.19).
Table 4.7 shows all participants’ average results. Correcting for luminosity dramat-
ically increased the correlation compared to the non-corrected pupil size. The most
surprising result, however, is that pupil size had no predictive power for
arousal without correcting for luminosity since its correlation with self-
reported arousal was not significantly different from zero (mean p = 0.2283).

Correlation for Corrected Data: 0.71 (p=1.684e-06)
Correlation for Non-Corrected Data: 0.01 (p=0.971)

1.00 e Pupil Size Corrected for Luminosity A ®
4 Pupil Size Non-Corrected for Luminosity .
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Figure 4.19: Pupil size comparison with and without luminosity correction versus self-
reported arousal for Participant XPI3pA. The red circles represent pupil size corrected
for luminosity with the red linear regression (LR) line, while the blue triangles indicate
non-corrected pupil size with the blue LR line.

To further test the model’s performance, we computed the predicted arousal
Arousalgeitreporrea Utilizing the equations 3.25 and 3.26 and using a leave-one-participant
out cross-validation as explained in the paragraph ADM Testing. We plotted the pre-

dicted arousal against the ground truth one Arousalgtreporrea Doth with and without
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Table 4.7: Relationship between Self-Reported Arousal and Pupil Size with and without
Correction for Luminosity

Metrics Corrected for Luminosity | Non-Corrected for Lumin-
osity
0.65 £ 0.106 (mean p = | 0.26 + 0.150 (mean p =

Correlation

0.0025, max p = 0.096) 0.2283, max p = 0.971)
| NMRSE | 0.27 +0.036 | 0.42 £ 0.054 |
| R2 | 0.436 £ 0.125 | 0.09 +0.089 |

correction for luminosity, as shown in Figure 4.20 for the participant XP I 3pA.

Correlation for Corrected Data = 0.70 (p=2.406e-06), Rz = 0.50
Correlation for Non-Corrected Data= 0.01 (p=0.971), Rz = -5.82
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0.75

0.50

0.25

0.00

-0.25

-0.50 ut 4 . i

Predicted Self Reported Arousal

-0.75 A

-1.00 o 4

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Self Reported Arousal

Figure 4.20: Predicted arousal versus self-reported arousal with and without the use of
correction for the luminosity for Participant XPI3pA.

The average results across all the participants are shown in the left panel in Table 4.8.
Again, correcting for luminosity yields a significant increase in correlation compared to
the uncorrected pupil size. While the left panel displays the results obtained by calcu-
lating self-reported arousal using individual scaling, the right panel presents the results
obtained by calculating self-reported arousal using FA. As mentioned in the paragraph
Development of Arousal Detection Model, INDSCAL works much better than
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FA in this case.

Table 4.8: Relationship between predicted and self-reported arousal with and without
correction for luminosity using INSCAL and FA.

\ INDSCAL | FA \
Metrics Corrected for Lu- | Non-Corrected Metrics Corrected for Lu- | Non-Corrected
minosity for Luminosity minosity for Luminosity

Correlation | 0.65 £ 0.12 (mean | 0.26 + 0.15 (mean | Correlation | 0.33 £+ 0.12 (mean | 0.11 &+ 0.15 (mean
p = 0.0025, max p | p = 0.2283, max p p = 0.1397, max p | p = 0.3466, max p
= 0.096) = 0.971) = 0.367) = 0.567)
| R2-score | 0.43 +0.12 | 0.09 + 0.089 | R2-score | 0.11 £ 0.12 | 0.07 +0.09 \
| NMRSE | 0.50 + 0.21 | 2.15 + 1.11 | NMRSE | 1.12+0.73 | 1.75 £ 0.95 \

Finally, we noticed that, in the case of pupil size corrected for luminosity, the average
values of the coefficients of Equation 3.25 were ¢ = 0.3463 + 0.0551, b = -0.0126
+ 0.00038 and the fit was quite good R2 = 0.567 + 0.073). The variance of the
coefficients and R2 is since leaving one participant out at a time changes the slope
and the intercept of the regression line. However, this variation is minuscule, as the
standard deviation is significantly smaller than the mean, indicating that our sample
was sufficiently large. In the case of pupil size non-corrected for luminosity, the average
values of the coefficients were a = 0.36723 4+ 0.06341, b = 3.8296 + 0.0120, and the
fit was inferior R2 = 0.023 + 0.007).

This initial categorisation allowed us to explore a series of emotional responses
among the participants, even if not all of them agreed with our initial categorisation.
For example, given the subjectivity of emotional responses, some participants may have
considered a clip intended to arouse fear boring. What was important was that parti-
cipants answered honestly so that the machine could learn to associate specific values
of the bio signals with the corresponding emotional states.

4.3 Testing models developed by other researchers
with our data

4.3.1 Testing Nakayama’s Hyperbolic Model with our data

Nakayama and colleagues [274] found a hyperbolic relationship between luminos-
ity and pupil size, which they called standardised pupil size:

219.04

flx) = T 17531 + 12 (4.1)

where z is the luminosity.
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The function f should predict the variation in pupil size with luminosity to within
a constant multiplicative factor. The authors, therefore, hypothesised that if they use
emotionally neutral images, dividing the measured pupil size by the function f should
yield a constant factor that they called the “compensated pupil size”. If, on the other
hand, images with emotional content are used, a variation is observed in the constant
value, and this variation is attributed to arousal. We have tested this model on our
73 emotionally neutral test images and obtained a coefficient of variation of 0.09 +
0.025. Our exponential model works better, obtaining a coefficient of variation of 0.03
+ 0.006.

We then used Nakayama’s Hyperbolic Model with our emotional video clips. We used
the calibration procedure to calculate the only coefficient of the model, consisting of the
ratio between the measured pupil size and the standardised pupil size. The comparison
with our method is presented in the table 4.9. Nakayama’s method worked less well
than ours. For example, there is a worsening of the NRM SE of 51.8%.

4.3.2 Testing Linear Models with our data

Both Raiturkar et al. [276] and Asano et al. [277], [278] have developed dynamic
linear models that take into account the temporal response of pupil dilation. We did not
develop dynamic models because we took the average pupil size over relatively long
intervals (at least 5 seconds). However, we wanted to test linear models with our data
and obtained very poor results, as shown in the table 4.9.

4.3.3 Testing our model without self-reported arousal

As mentioned, where possible, we applied to our data the methods developed by
other researchers to exploit the fact that we had recorded the self-reported arousal for
each participant and each video, something that, to the best of our knowledge, no other
research on the effect of luminosity on pupil size measurement has done. We investig-
ated the importance of including self-reported arousal. To achieve this, we employed
the approach adopted by other researchers: asking 10 independent judges (new par-
ticipants) to assign an arousal value to each video (e.g., Raiturkar et al. [276]). For
each clip, we took the average value. We then used that arousal value in our method,
rather than the self-reported one, to observe how much the average arousal of the in-
dependent judges could be predicted by pupil size, corrected for the luminosity of our
47 participants. The comparison between the results obtained with our model using
the self-reported arousal values of the 47 participants, as described so far, and the res-
ults obtained with our model using the arousal values provided by the 10 independent
judges, is shown in Table 4.9. The model trained on the arousal reported by the 10
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independent judges provides worse results than the one trained on the arousal reported
by the 47 participants. For example, a worsening in N RM SFE of 188%. This is because
when training a model, one must use a ground truth recorded from the same subjects
from which the predictors are recorded, in this case, the self-reported arousal and pupil
size of the 47 participants in the study.

Table 4.9: Comparison of the relationship between predicted and self-reported arousal
in our model versus other researchers’ models.

Metric Our Model Hyperbolic Linear Model | Our Model
Model [274] [276], [277] (without
self-reported

arousal) [276]
Correlation| 0.65 =+ 0.106 | 0.26 + 0.150 | 0.26 £+ 0.146 | 0.38 + 0.074

(mean p =|(mean p = |(mean p = |(mean p =
0.0025, max p | 0.1953, max p | 0.2260, max p | 0.0346, max p
= 0.096) = 0.9566) = 0.9892) = 0.2886)
| NRMSE | 0.27 £0.036 | 0.41+£0.055 |0.42+0.052 |0.78+0.283 |
| R2 | 0.436 +£0.125 | 0.10£0.087 | 0.07 +£0.086 | 0.153 +0.054 |

After confirming the positive results of the corrected pupil size for luminosity, we
utilised that pupil size to extract additional statistical features. We used them to train
a machine learning model for emotion detection using only pupil size, GSR, and FER
features. We then combined all these features and trained the model. The following
section presents the results of all model evaluations.

4.4  Results of Advanced Machine Learning

Techniques

This section presents the evaluation results of emotion detection models trained on
data from 47 participants in the Emotionally Healthy group. The analysis includes un-
imodal models based on individual physiological signals—FER, pupil size, and GSR—as
well as a multimodal approach that utilises feature fusion to combine all three signals.

4.4.1 Results of Model Training with FER

This section presents the performance of ML models trained using FER features for
predicting self-reported arousal and valence. Two types of features were used:
* Interval-Based FER Features: Extracted from emotionally salient segments (EII)
identified using EIIS (see Section 3.2.4).



152

* Entire-Clip FER Features: Extracted from the entire duration of each audiovisual
clip.
Table 4.10 shows the comparison of emotion prediction results using interval-based
and entire-clip-based FER features.

Table 4.10: Comparison of Emotion Prediction Using FER Interval vs. Full-clip Statistical
Features

| FER Feature Type | Target | R2-Score | NRMSE | Pearson r (p)

Arousal | 0.056 £+ 0.610 | 0.919 + 0.073 | 0.278 + 0.169 (mean
p = 0.218, max p =
0.459)
Valence | 0.052 £+ 0.610 | 0.919 + 0.073 | 0.430 4+ 0.180 (mean
p = 0.088, max p =
0.120)

Interval-Based

Arousal | 0.097 £ 0.090 | 0.767 + 0.016 | 0.353 4+ 0.159 (mean
p = 0.134, max p =
0.278)
Valence | 0.065 + 0.274 | 0.732 &+ 0.040 | 0.370 & 0.174 (mean
p = 0.088, max p =
0.106)

Entire-Clip

Interval-Based FER Features

Model performance using interval-based FER features was weak. For arousal, the
model explained minimal variance (R2 = 0.056 + 0.610), with a high NRMSFE =
0.919 + 0.073 and a weak, non-significant correlation (r = 0.278 + 0.169 (mean p =
0.218, max p = 0.459)), indicating low predictive ability. For valence, the correlation
was slightly stronger (r = 0.430 + 0.180 (p = 0.088, mean p = 0.120)), but the R2
remained low (0.052 + 0.610), and prediction error was consistently high.

This suggests that limited facial dynamics during short intervals may lack sufficient
variability to train reliable models. These results are illustrated in the following figures:
Figure 4.21 and Figure 4.23: Pearson correlation histograms for arousal and valence
prediction.

Figure 4.22 and Figure 4.24: Boxplots of R2-scores across participants.

Entire-Clip FER Features

Using features extracted from the entire clip led to a slight improvement in model
performance. For arousal, R2 increased to 0.097 + 0.090, the correlation rose to 0.353
+ 0.159 (mean p = 0.134, max p = 0.278), and NRM SFE decreased to 0.767 + 0.016.
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Figure 4.21: Histogram of Pearson Correlation for Arousal Prediction using Interval-
Based FER Across all Participants.
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Figure 4.22: Boxplot of R2-Scores for Arousal using Interval-Based FER Across all Parti-
cipants.
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Figure 4.23: Histogram of Pearson Correlation for Valence Prediction using Interval-
Based FER Across all Participants.

While still moderate, this represents a noticeable improvement over interval-based fea-
tures. For valence, performance remained similar, with B2 = 0.065 4 0.274, correlation
r = 0.370 £ 0.174 (p = 0.088, max p = 0.106), and a slightly improved NRMSE =
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Figure 4.24: Boxplot of R2-Scores for Valence using Interval-Based FER Across all Par-

ticipants.

0.732 + 0.040.
These results are illustrated in the following figures:
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Figure 4.25: Histogram of Pearson Correlation for Arousal Prediction using Entire-Clip
FER Across all Participants.
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Figure 4.26: Boxplot of R2-Scores for Arousal using Entire-Clip FER Across all Parti-
cipants.
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Figure 4.27: Histogram of Pearson Correlation for Valence Prediction using Entire-Clip

FER Across all Participants.
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Figure 4.28: Boxplot of R2-Scores for Valence using Entire-Clip FER Across all Parti-

cipants.

Figure 4.25 and Figure 4.27: Pearson correlation histograms for arousal and valence

prediction.

Figure 4.26 and Figure 4.28: Boxplots of R2-scores across participants.

The comparison shows that while emotional intervals were hypothesised to provide

stronger emotional signals, their shorter duration and reduced data volume might have

limited their utility for regression modelling. Thus, utilising the entire video segment is

a more reliable strategy for FER-based emotion detection.

Interpretation. These results show that:

* Entire-clip FER features provide more temporal information, which may explain

the moderate gains in arousal prediction.

* Valence prediction does not consistently improve with either approach, likely be-

cause facial expressions alone are limited in conveying internal emotional evalu-

ations, especially when subtle.

* The low R2-score values and moderate-to-high NRM SE's in both methods high-
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light that FER alone is not sufficiently robust for accurate emotion prediction and
may need to be combined with other modalities (e.g., GSR, pupil size) for more
reliable performance.
Therefore, we processed other physiological signals, such as pupil size and GSR, the
results of which are mentioned in the following sections.

4.4.2 Results of Model Training with Pupil Size

This section presents the results of training the emotion detection model using pupil
size features, comparing the performance between models trained on data corrected for
luminance and those using uncorrected features. Table 4.11 summarizes the key evalu-
ation metrics, while Figures 4.29, 4.30, 4.31, and 4.32 visually depict the performance

distributions across participants.

Arousal Prediction from pupil size. Correcting pupil size for luminance significantly
enhanced model performance. The model trained on corrected features achieved a
strong R2 of 0.556 + 0.085, a high Pearson correlation of 0.765 + 0.047, and a low
NRMSE of 0.229 + 0.022, with mean p < 1077 and max p < 1077 across the parti-
cipants, indicating high statistical significance. These results suggest that the corrected
pupil size features provided a reliable basis for predicting arousal. In contrast, the

Table 4.11: Comparison of Emotion Prediction Performance Using Corrected vs. Non-
Corrected Pupil Size Features

| Correction | Target | R2Score | NRMSE | Pearsonr (p) |

Arousal | 0.556 4+ 0.085 | 0.229 + 0.022 | 0.765 4 0.047 (mean
p < 107" max p <
1077)

Valence | 0.259 4+ 0.251 | 0.295 + 0.041 | 0.595 + 0.082 (mean
p = 0.0012, max p =
0.075)

Arousal | 0.235 + 0.097 | 0.301 £ 0.020 | 0.521 4+ 0.116 (mean
p = 0.345, max p =
0.863)
Valence | 0.205 £ 0.242 | 0.306 £ 0.039 | 0.566 + 0.065 (mean
p = 0.0020, max p =
0.013)

Corrected

Non-Corrected

model trained on non-corrected features showed much weaker performance across all
participants: an R2 of 0.235 + 0.097, a correlation of 0.521 + 0.116, and a higher
NRMSE of 0.301 4+ 0.020. Moreover, the statistical significance was not met (mean
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p = 0.345, max p = 0.863), further emphasising the degradation in model accuracy
when luminance is not accounted for.

Figures 4.29 and 4.31 illustrate the improved consistency and higher performance
scores across participants when applying luminosity correction.

[=)]
]

Frequency
N
7

N

—q..00—0.75—0.50—0.25 0.00 0.25 0.50 0.75 1.00
Pearson Correlation

Figure 4.29: Histogram of Pearson Correlation for Arousal Prediction using Luminosity-
Corrected Pupil Size Across all Participants.
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Figure 4.30: Histogram of Pearson Correlation for Valence Prediction using Luminosity-
Corrected Pupil Size Across all Participants.

Valence Prediction from pupil size. For valence, the benefit of luminance correction
was present but less pronounced. The corrected model achieved an R2 of 0.259 + 0.251
and a correlation of 0.595 + 0.082 (mean p = 0.0012, max p = 0.075) compared to
0.205 + 0.242 and 0.566 + 0.065 (mean p = 0.0020, max p = 0.013) for the non-
corrected model across all participants. The N RM SE also slightly improved from 0.306
+ 0.039 to 0.295 + 0.041.

Figures 4.30 and 4.32 show that the corrected features generally led to better pre-
dictions, although the difference was not as substantial as for arousal.
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Figure 4.31: Boxplot of R2-scores for Arousal Prediction using Luminosity-Corrected
Pupil Size Across all Participants.
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Figure 4.32: Boxplot of R2-scores for Valence Prediction using Luminosity-Corrected
Pupil Size Across all Participants.

These findings highlight the importance of accounting for ambient luminance when
utilising pupil size as a physiological marker in emotion detection. Failing to consider
this factor significantly compromises the model’s accuracy, particularly in predicting
arousal.

4.4.3 Results of Model Training with GSR

We trained an XGBoost regression model using features extracted from GSR signals
to predict self-reported emotional dimensions, specifically arousal and Valence. The
model was evaluated using LOPO Cross-Validation, ensuring each participant was used
once as a test subject while the others were used for training. Additionally, 5-fold cross-
validation was applied within the training data to avoid overfitting and optimise model
generalisation.
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Arousal Prediction from GSR. The model demonstrated a moderate ability to predict
arousal based on GSR features. The average R2-score across all participants was 0.469
+ 0.006, indicating that the model could explain approximately 47% of self-reported
arousal variance. The average Pearson correlation between predicted and actual arousal
values was 0.720 4 0.006, with mean p < 1077 and max p < 1077, confirming strong
and statistically significant linear relationships.

Moreover, the NRM SE was 0.251 £ 0.001, suggesting a reasonably good prediction
performance relative to the range of observed arousal values.

Valence Prediction from GSR. For valence prediction, the model performed more
effectively. The mean R2 reached 0.573 + 0.009, indicating a firmer fit than arousal.
The correlation coefficient was 0.828 + 0.006, again statistically significant with mean p
< 1077 and max p < 10~7. This reflects a high level of agreement between the predicted
and actual valence scores across participants.

The NRMSFE for valence was 0.218 + 0.002, slightly lower than that for arousal.
This further supports the model’s higher precision in predicting valence using GSR fea-
tures.

To better understand how performance varied across participants, we plotted the
distribution of Pearson correlation and R2-scores:

Figure 4.33 shows that most participants had correlation values between 0.70 and
0.80, with a right-skewed distribution. This suggests that while most participants had
high correlation, a few had notably lower values, potentially due to individual variability
in physiological responses.
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Figure 4.33: Histogram of Pearson Correlation for Arousal Prediction using GSR Across
all Participants.

Figure 4.34 illustrates a more potent and more concentrated distribution of cor-
relation values, with most values ranging between 0.80 and 0.90. This confirms the
model’s superior performance in predicting valence from GSR features compared to
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Figure 4.34: Histogram of Pearson Correlation for Valence Prediction using GSR Across
all Participants.

arousal. In Figure 4.35, the box plot reveals a moderate spread of R2, with a few
outliers on the lower end. Despite some participants’ low predictive performance, the
median R2 remains close to 0.50, supporting the model’s general efficacy. Figure 4.36
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Figure 4.35: Boxplot of R2-Scores for Arousal using GSR Across all Participants.

highlights a tighter and higher R2-score distribution for valence predictions, with most
participants achieving scores above 0.50 and a median exceeding 0.60. A few outliers
on the lower end may reflect cases where GSR signals were less informative due to
participant-specific variance or noise.

These findings confirm that GSR signals are valuable predictors of emotional states,
especially valence. The model’s stronger performance in predicting valence compared
to arousal could be attributed to the steadier nature of GSR changes linked to emotional
valence, whereas arousal may involve more rapid physiological fluctuations.

In subsequent sections, we compare these findings with results from models trained
on pupil size, FER features, and integrated multimodal models.



161

—1.00 -0.75 -0.50 —-0.25 0.00 0.25 050 0.75 1.00
R2 Score

Figure 4.36: Boxplot of R2-Scores for Valence using GSR Across all Participants.

4.4.4 Results of multimodal Feature Fusion: Integrating FER, Pupil
Size, and GSR

This section presents the results of ML. models trained to predict self-reported arousal
and valence using three physiological signal sources—Entire-Clip based FER, pupil size
(corrected for luminance), and GSR—evaluated independently and jointly through mul-
timodal feature fusion. Model performance is assessed using the R2 score, Pearson
correlation r, and N RM SFE, with all metrics reported as means + standard deviations
across 47 participants (presented in Table 4.12).

FER. Models trained on Entire-Clip FER features demonstrated limited predictive abil-
ity. For arousal prediction, the model yielded a low R2 score of 0.097 + 0.090, a weak
Pearson correlation ofr = 0.353 + 0.159 (mean p = 0.134, max p = 0.278), and a high
NRMSE of 0.767 + 0.016. Valence prediction showed slightly better results, withr =
0.370 + 0.174 and R2 = 0.065 + 0.274 (mean p = 0.088, max p = 0.106), though
NRMSE remained high at 0.732 + 0.040. These outcomes suggest that FER is not
sufficiently robust for reliable emotion prediction when used in isolation, likely due to
variability in facial expressiveness and context loss in short intervals.

Pupil Size (Corrected for Luminance). Correcting for luminance yielded a substan-
tial performance improvement. For arousal, the model achieved an R2 of 0.556 + 0.085,
a high correlation of r = 0.765 & 0.047 (p < 10™7), and a low NRMSE of 0.229 +
0.022. Valence prediction improved similarly, with R2 = 0.259 + 0.251, » = 0.595 +
0.082 (p = 0.0012), and NRMSE = 0.295 + 0.041. These results confirm that pupil
dilation is a reliable emotional indicator when corrected for ambient light conditions.

GSR. GSR-based models demonstrated consistent and high performance for both di-
mensions. Arousal prediction reached an R2 of 0.469 + 0.006 and correlation of r
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Table 4.12: Comparison of Model Performance Using Different Feature Sets for Emotion
Prediction Across all Participants

Feature Target | R2 Score NRMSE Pearson’s r (p) | CCC
Set

FER Arousal | 0.097 £+ |0.767 £ | 0.353 4+ 0.159 | 0.150 +
0.090 0.016 (mean p = |0.102
0.134, max p =
0.278)
Valence | 0.065 + | 0.732 4| 0.370 + 0.174 | 0.207 =+
0.274 0.040 (mean p = |0.140
0.088, max p =
0.106)
Corrected | Arousal | 0.556 4+ | 0.229 4 | 0.765 + 0.047 | 0.758 =+
Pupil Size 0.085 0.022 (mean p < 1077, | 0.080

max p < 1077)
Valence | 0.259 + | 0.295 + | 0.595 + 0.082 | 0.600 =+

0.251 0.041 (mean p = |0.105
0.0012, max p
= 0.075)
GSR Arousal | 0.469 + | 0.251 + |0.720 + 0.006 | 0.579 +
0.006 0.001 (mean p < 1077, | 0.147

max p < 1077)
Valence | 0.573 + | 0.218 + | 0.828 + 0.006 | 0.719 =+

0.009 0.002 (meanp < 1077, | 0.109
max p < 1077)
Final Arousal | 0.710 + | 0.183 + | 0.865 + 0.061 | 0.814 +
Model 0.098 0.030 (meanp < 1077, | 0.084
(AlD) max p < 1077)
Valence | 0.665 =+ | 0.187 4+ | 0.913 £ 0.041 | 0.822 &+
0.359 0.070 (mean p < 1077, | 0.090

max p < 1077)

= 0.720 £ 0.006 (mean p < 107, max p < 10~7), with NRMSE = 0.251 + 0.001.
Valence prediction performed even better: R2 = 0.573 + 0.009, r = 0.828 4+ 0.006
(mean p < 1077, max p < 1077), and NRMSE = 0.218 4 0.002. These findings
highlight GSR as a strong stand-alone modality, effectively capturing both emotional

intensity and evaluative tone.

Multimodal Integration- FER + Pupil Size + GSR. The fusion of all three modalities
produced the highest prediction accuracy across all evaluation metrics, reinforcing the
value of multimodal emotion recognition. For arousal, the model achieved an R2 of
0.710 +£ 0.098, a correlation of r = 0.865 + 0.061 (mean p < 10~7, max p < 10~7), and
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an NRMSFE of 0.183 4+ 0.030. For valence, performance remained strong, with an R2
of 0.665 £ 0.359, a correlation of r = 0.913 £ 0.041 (mean p < 1077, max p < 1077),
and an NRM SE of 0.187 + 0.070.

These outcomes, visualised in Figures 4.37-4.40, illustrate a dramatic reduction in
error and near-perfect correlation between predicted and actual values.
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Figure 4.37: Histogram of Pearson Correlation for Arousal (Multimodal Model) Across
all Participants.
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Figure 4.38: Histogram of Pearson Correlation for Valence (Multimodal Model) Across
all Participants.

Interpretation. These results collectively highlight the importance of combining com-
plementary physiological signals for accurate emotion prediction:
* Pupil size and GSR are individually strong predictors, particularly for arousal.
* FER, while weak in isolation, enhances performance when integrated with other
modalities.
* The multimodal approach captures diverse emotional cues (physiological, cognit-
ive, expressive), offering significant predictive advantages and better generalisa-
tion across individuals.
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Figure 4.39: Boxplot of R2 Scores for Arousal (Multimodal Model) Across all Parti-
cipants.
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Figure 4.40: Boxplot of R2 Scores for Valence (Multimodal Model) Across all Parti-
cipants.

These findings support the feasibility of real-time, multimodal emotion detection
systems for affective computing and personalised human-machine interaction.

4.4.5 Comparative Analysis with Existing Literature

In this subsection, I have done statistic comparison of the existing unimodal literat-
ure that has used a regression model to predict continuous emotional states.

Table 4.13 summarises the Fisher-z comparisons between our models and published
benchmarks. For FER, our CCCs were substantially lower than those reported by Raju et
al. [360], with significant differences for both arousal (z = —3.30, p < 0.01) and valence
(z = —3.48, p < 0.001), however they used video and audio instead we have only used
video without considering audio, therefore the results are not directly comparable. In
contrast, our pupil-based models achieved markedly higher performance than O’'Dwyer
et al. [359], showing significant improvements in both arousal (z = 4.87, p < 0.001)
and valence (z = 2.78, p < 0.01). Similarly, our GSR-based models outperformed



165

Table 4.13: Comparison between our CCC results and literature benchmarks. Fisher-
z tests were performed only when a literature CCC and a comparable independent

sample.
Model/Target Our CCC Lit. CCC  no. of participants =z P1 P2
FER-Arousal  0.150 + 0.102 0.638 [360] 96 -3.30 0.0005 0.0010
FER-Valence  0.207 + 0.140 0.689 [360] 96 -3.48 0.0003 0.0005
Pupil-Arousal 0.758 + 0.080 0.154 [359] 150 487 <1077 <1077
Pupil-Valence 0.600 + 0.105 0.212 [359] 150 2.78 0.0027 0.0054
GSR-Arousal  0.579 £ 0.147 0.082 [361] 27 2.28 0.0113 0.0226
GSR-Valence  0.719 £ 0.109 0.177 [361] 27 2.86 0.0021 0.0042

Brady et al. [361], with statistically significant gains in arousal (z = 2.28, p < 0.05)
and valence (z = 2.86, p < 0.01). Both O’Dwyer et al. [359] and Brady et al. [361]
tried to enhance performance by integrating additional modalities such as speech, ECG,

video, and audio. However, none of these studies employed the specific combination of

corrected pupil size, FER, and GSR used in our fusion model, making their results not

directly comparable.

These results highlight that unimodal FER in our dataset still has room for improve-

ment, but confirm strong and statistically significant improvements for pupil and GSR

modalities compared to prior studies.



Chapter 5
Discussion and Future Work

This chapter presents the key findings, methodological developments, and implic-
ations of the work outlined in this thesis, which focused on developing a multimodal
emotion detection model utilising facial expression recognition (FER), pupil size, and
galvanic skin response (GSR) signals. The main study introduced refined preprocessing
pipelines, improved feature extraction techniques, and regression-based machine learn-
ing models, building on a pilot study. A significant contribution was the development of
a novel pupil size correction model that removed the influence of luminosity, addressing
a longstanding challenge in affective computing.

5.1 Insights and Challenges from the Pilot Study

The pilot study served as a foundational phase, revealing several limitations in data
acquisition, preprocessing, and model design that directly informed the refinements
introduced in the main study. While the methods used for emotion labelling and FER
analysis followed established approaches in the literature, the pilot was crucial in identi-
fying practical challenges that shaped the novelty of our subsequent framework.

A key finding concerned the variability in emotion labels across participants. Around
15 participants provided minimal emotional responses, while others gave overly broad
or inconsistent labels. This inconsistency highlighted the difficulty of obtaining stable
emotion ground truth without careful participant management and reinforced the im-
portance of developing stricter inclusion criteria in later phases of the project. Although
the ground truth construction itself was based on prior work, our pilot confirmed its
applicability and clarified the conditions under which it produces reliable outputs.

Another insight was the limited expressiveness observed in FER. Out of the 47 par-
ticipants, only about 10 displayed clear and consistent facial responses, with the re-
mainder showing weak or flat FER signals. This was partly attributable to the low-

resolution facial camera setup used in the pilot. In some cases, participants also ap-
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peared overly self-conscious of being recorded, as suggested by FER-derived emotion
plots showing little or no variation across all stimuli. These findings directly motivated
methodological changes in the main study, including the use of higher-resolution cam-
eras, improved camera placement, and procedural adjustments to reduce participant
awareness of recording.

Finally, the pilot demonstrated that FER contributed more strongly to arousal detec-
tion than to valence, consistent with prior observations in affective computing. While
this confirmed that FER can play a useful role in multimodal emotion recognition, it
also highlighted the need to integrate additional physiological signals, such as pupil
size and GSR, to improve valence prediction. Thus, although the pilot did not produce
novel methodological contributions in itself, it provided critical evidence for the weak-
nesses of FER as a stand-alone signal and justified the multimodal, methodologically
refined approach adopted in the main study.

Pupil size, though physiologically tied to emotional arousal, showed a weak correl-
ation with self-reported emotions in the pilot dataset. Uncontrolled lighting, which
introduced noise and masked emotional signals, was blamed for this [207], [274],
[297]. Baseline correction using a grey screen was insufficient [109], [205], [292].
Consequently, the pilot study demonstrated that pupil size without luminosity correc-
tion is not a reliable stand-alone emotional indicator, prompting the development of a
luminosity isolation model for the main study.

In the pilot, only basic statistical features were extracted from GSR signals, limiting
emotional resolution. Additionally, using a fixed baseline across participants was found
to be inappropriate, given natural individual variation. The signal-to-noise ratio (SNR)
was challenging to establish without an actual ground truth. This highlighted the need
for more prosperous feature extraction (e.g., phasic response latency, rise time) and
individualised baseline correction, which we incorporated into the main study.

These challenges highlighted areas for improvement and motivated a shift towards
a more sophisticated modelling approach, specifically, the adoption of regression tech-
niques to handle the increased complexity of emotion detection in real-world settings.

5.1.1 Modelling Challenges and Motivation for Regression

During the pilot study, we did not apply classification models. However, our obser-
vations and initial data analysis revealed several challenges commonly associated with
classification, which informed the design of the main study. These included the limited
ability of rigid class labels to capture continuous emotional states, poor generalisation
across participants, and issues with class imbalance.

* Rigid Class Labels: Predefined categories (e.g., high vs. low arousal) failed to

capture the nuanced and continuous nature of emotions. To overcome this, we
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adopted regression-based modelling, which represents emotional responses on a
continuous scale and provides greater granularity.

Generalisation Issues: Using Leave-One-Participant-Out (LOPO) cross-
validation, we found that models trained with categorical labels often failed to
generalise to unseen participants due to inter-individual variability. Regression
helps mitigate this by focusing on continuous emotional dimensions rather than
discrete classes, offering more consistent predictions across users.

Class Imbalance: The pilot study dataset showed an unequal distribution of emo-
tional states (e.g., fewer high-arousal or negative-valence samples). While we ad-
dressed this by selecting balanced stimuli using Russell’s Circumplex Model [32],
regression further reduces reliance on categorical boundaries, minimising bias to-
wards dominant states.

These limitations highlighted the need for a more flexible modelling framework.

Regression approaches are particularly well-suited for emotion detection because they:

(i) capture the full spectrum of emotional fluctuations, (ii) offer better generalisation

across participants, and (iii) support real-time tracking of emotions, an essential re-

quirement in practical applications such as affective computing, clinical monitoring,

and neurorehabilitation.

This transition to regression thus provided a more sophisticated, accurate, and

context-appropriate solution for emotion detection in the main study:.

5.1.2 Methodological Refinements in the Main Study

Several refinements have been made based on the findings of the pilot:

5.2

Psychological screening excluded participants with conditions like anxiety or alexi-
thymia, improving emotional data consistency.

Luminosity correction in pupil size removed ambient confounds, enhancing signal
fidelity.

Expanded GSR features, then just using basic statistical features.

Regression modelling replaced classification, allowing smoother prediction and
better generalisation.

The LOPO Cross-Validation ensured robustness across individuals.

Feature fusion enabled effective multimodal integration.

Main Study: Improvements and Findings

This section presents the key findings derived from the methodologies employed

in this study, including luminosity correction for pupil size, the extraction of a com-

prehensive set of GSR features, the development of a FER-to-vector mapping method,
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and multimodal integration of physiological and behavioural signals. It also highlights
how our approach addresses limitations identified in prior research related to pupil size
confounding by luminosity, GSR signal variability, and the limited use of feature-level
fusion in emotion detection.

We began by collecting multimodal physiological data while ensuring that parti-
cipants did not have underlying mental health conditions that could affect emotional
responses. As part of the selection process, we applied psychological screening to ex-
clude individuals with alexithymia, anxiety, depression, or personality disorders. This
ensured that the dataset reflected emotionally healthy, non-clinical populations and re-
duced potential variability and noise in both physiological signals and ground-truth
labels. Prior literature has shown that such conditions affect emotional awareness, per-
ception, and self-report accuracy [16]-[18]. By excluding these cases, we improved
the consistency and interpretability of the dataset, providing a stronger foundation for
training emotion detection models.

A central contribution of this work is the generation of individualised ground truth,
rather than relying solely on aggregated averages across participants. Given that each
individual may perceive stimuli differently due to cognitive biases, emotional sensitiv-
ity, or personal experience, averaging can obscure meaningful variations in perception.
To address this, we employed the INDSCAL multidimensional scaling technique, which
enabled us to model a shared two-dimensional emotional space while simultaneously
capturing individual perceptual weights. This approach preserved the circular structure
of emotions central to Russell’s Circumplex Model [32], ensuring that both common
trends and individual differences in emotion perception were retained. Although we
explored factor analysis as an alternative [394], it failed to reproduce this circular struc-
ture, confirming INDSCAL as the more appropriate choice. In doing so, we established
a psychologically meaningful and mathematically coherent framework for emotion la-
belling that directly responds to the challenges of defining ground truth in affective
computing.

Beyond pupillometry, our contributions extend to other modalities. For FER, we in-
troduced a novel vectorial mapping approach that projects the seven basic emotions
detected by iMotions’ AFFDEX toolkit into continuous two-dimensional valence—arousal
coordinates. This transformation allowed FER to be meaningfully integrated with other
modalities in a unified affective space. For GSR, we extracted 40 features spanning time-
domain, frequency-domain, and time—frequency characteristics, following the frame-
work outlined in Shukla et al. [305]. These features provided a rich representation of
emotional arousal and valence dynamics.

Most importantly, we integrated features from GSR, corrected pupil size, and FER
within a unified machine learning framework. To the best of our knowledge, no prior
study has combined exactly these modalities at the feature level for training emotion
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detection models. This multimodal approach yielded superior predictive performance
compared to single-modality models, while also maintaining practicality and ease of use
for clinical applications, where lightweight and non-invasive measurement systems are
essential.

5.2.1 FER: challenges and Novelty

Our study builds on this literature, introducing a distinctive and interpretable ap-
proach. Unlike prior work that either (i) relies on normative mappings of basic emo-
tions to valence-arousal coordinates [262] or (ii) trains black-box regressors from FER
embeddings to continuous affect labels [263], we implemented a vectorial transforma-
tion that integrates both the direction (circumplex angle) and magnitude (AU-derived
intensity) of each basic emotion. In this research, our goal wasn’t to compute emotions
from facial recording; our clear goal was to map the emotions recorded by iMotions
affectiva (see chapter 3, section 3.1.7) into 2-dimensional space based on Russell’s cir-
cumplex model, so that we can use it aa a comparable feature with self-reported arousal
and valence to train the machine learning.

By treating emotion categories as vectors in the circumplex, our method allows mul-
tiple emotions to co-occur and combine into a single continuous valence-arousal co-
ordinate. This contrasts with categorical FER pipelines that force a single dominant
label, thereby losing information about mixed states.

The results from our main study confirmed that this transformation yields psycho-
logically interpretable emotional trajectories, with FER-derived valence and arousal
points clustering in expected quadrants. More importantly, when combined with GSR
and corrected pupil size, FER added complementary behavioural information that im-
proved multimodal performance despite being the weakest unimodal predictor. This
demonstrates that our FER pipeline is not merely a stand-alone classifier but a bridge
between categorical recognition and dimensional modelling. This contribution fills a
methodological gap in the literature.

In summary, our approach to FER is novel in two key respects:

* Vectorial mapping of basic emotion intensities into circumplex space - preserving
co-occurrence and intensity rather than collapsing expressions into single categor-
ies.

* Integration into a multimodal framework with corrected pupil size and GSR - an
unexplored signal combination that leverages FER’s behavioural cues alongside
autonomic and ocular measures.

Together, these contributions extend prior FER research by demonstrating how discrete
facial signals can be systematically transformed into dimensional affective coordinates,
enabling richer and more interpretable multimodal emotion recognition.
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5.2.2 Pupil Size and Luminosity Correction: A Novel Contribution

One of this thesis’s most critical methodological contributions was developing a
novel mathematical model to isolate emotional arousal from pupil size data by remov-
ing the effects of stimulus and ambient luminosity [207], [274], [297].

Pupil dilation is known to reflect emotional arousal, but is highly sensitive to lighting
conditions, which can confound interpretation. Traditional approaches, such as linear
regression, isoluminant stimuli, and baseline correction, have attempted to address this
issue, albeit with limited success in terms of universality and accuracy [205], [275],
[276], [278].

We developed an exponential calibration model to calibrate pupil response to lu-
minosity across subjects. Adjusts for individual differences in pupillary reactivity and
removes luminosity effects at ambient and stimulus levels.

Compared to Nakayama’s isoluminant model and Raiturkar’s linear model [274],
[276], our model showed lower variance (coefficient of variation: 0.03 vs. 0.09) and
higher emotion prediction accuracy (R2 increased from 0.10 to 0.436 for arousal). Un-
like prior work, our model generalises across participants and varying ambient lumin-
osity conditions through a calibration process that adapts to both individual baselines
and environmental lighting. Empirically, we observed a difference of less than 3% in
prediction accuracy (difference between correlation of the prediction and ground truth)
when comparing dark and well-lit laboratory conditions, demonstrating robustness to
real-world variability. This makes the approach suitable for deployment beyond con-
trolled environments [203], [292], [297], [367], [368].

The model’s first stage, which involves correction, utilises mathematical calibration;
the second stage, which requires emotion prediction, employs simple linear regression.
This balance of rigour and usability means it can be deployed in systems without re-
quiring ML or psychophysiology expertise.

Our evaluation predicted self-reported arousal with substantial accuracy, without
requiring complex feature extraction, by directly using pupil size. When tested using
arousal labels from independent judges, prediction performance dropped substantially,
highlighting the importance of subjective emotional self-reports in modelling. This
evaluation confirms that individual perception must be considered in conjunction with
physiological responses.

In future work, we can incorporate the temporal dynamics of the pupil response, for
example, by using sequence modelling approaches such as recurrent neural networks
(RNNs) or temporal convolutional networks. While our current model relies on ag-
gregated or static features, it does not capture how pupil size evolves in response to
emotional stimuli. This temporal information may contain valuable cues about the on-
set, intensity, and duration of emotional reactions, which are essential for distinguishing
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between subtle affective states. Modelling these dynamics could enhance the model’s
sensitivity to complex or mixed emotions, providing a more nuanced understanding of
emotion processing over time.

In future studies, we will make our model dynamic, extend it to extreme lighting
conditions, such as those encountered when wearing eye-tracker glasses outside a labor-
atory on a sunny day, and adapt it to experiments without eye-trackers and with regular
webcams in online settings.

Due to its ease of implementation, our model has practical applications, particularly
in mental health monitoring and consumer research. It requires only existing human
insights software, such as iMotions, and basic eye-tracking hardware [395]. No ad-
vanced skills are required to detect emotional arousal from pupil size, even without
using more complex bio signals to analyse, such as GSR, EEG, and ECG in the mental
health field, where a shortage of trained counsellors persists [396]. Our model offers
an accessible Al-driven solution for emotion detection, benefitting underserved popula-
tions. In consumer research, pupillometry has been used to assess emotional responses
to advertisements; however, it has not gained much popularity among marketers due to
its low reliability [397]. By eliminating luminosity effects, our model enables marketers
to gauge the emotional arousal elicited by their advertisements with greater accuracy.
Extensive trials in real-world settings will be essential to improve generalisability, and
models should be tested across diverse populations and stimuli. Building on this, the
following section examines the role of GSR features in modelling emotional arousal,
further contributing to the multimodal framework employed in this study.

5.2.3 GSR-Based Emotion Detection

The use of the GSR for emotion detection has received considerable attention due to
its sensitivity to autonomic arousal, a key physiological marker of emotional intensity.
However, several limitations affect the stand-alone reliability of GSR in practical applic-
ations, such as signal variability and susceptibility to noise. We extended our feature
extraction approach beyond the pilot study to address these challenges. Specifically, we
included broader features from the time, frequency and time-frequency domains. This
enriched feature space enables the model to more effectively capture the complex and
dynamic patterns of GSR signals, including both short-term fluctuations and longer-
term trends. As a result, our approach improves the model’s ability to detect emotional
responses more accurately and robustly from GSR alone.

Traditional GSR-based systems typically classify emotions into discrete categories,
such as happy or sad. However, emotions are more accurately represented along con-
tinuous valence and arousal dimensions. To tackle this, our model was crafted us-
ing GSR through a regression-based method, which attains an 83% correlation with
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valence and a 72% correlation with arousal. This provides a nuanced and authentic
interpretation of emotional states, as opposed to the rigidity of discrete classification
systems [365].

In our model, GSR demonstrated the highest predictive power, particularly for
valence (R2 = 0.573), possibly due to its strong association with sustained autonomic
arousal. GSR is directly influenced by SNS activity and reflects changes in sweat gland
activity, particularly in response to emotionally salient or arousing stimuli [212]. While
GSR has traditionally been associated with arousal rather than valence, some studies
suggest that the duration and context of the emotional stimulus may lead to stronger
correlations with valence, especially when valence is operationalised along an affective
arousal continuum [398]. Thus, the high predictive power of the GSR in this context
may reflect its sensitivity not only to momentary spikes in arousal but also to more
sustained, affectively charged states that tend to co-vary with valence in naturalistic or
continuous emotional experiences (e.g., positive high-arousal vs. negative high-arousal
states).

Furthermore, a standard limitation in GSR research is its focus on static features,
which fail to capture the dynamic and evolving nature of emotional responses. Our ap-
proach improves upon this by analysing the entire stimulus period, allowing the model
to track the gradual and dynamic shifts in arousal that occur over time [369].

GSR is also typically limited in distinguishing between emotions that share similar
arousal levels but differ in valence, such as fear and excitement. To overcome this, we
integrated FER and pupil size data, which offer complementary insights into emotional
valence. This multimodal fusion significantly improves the system’s ability to differen-
tiate emotional states with higher precision [370].

External factors, such as motion distortions and environmental conditions like tem-
perature, can distort GSR signals, making real-world applications challenging. We mit-
igated these issues using robust preprocessing techniques and standardised data collec-
tion protocols to ensure consistency and reliability across participants [302].

Processing multimodal data in real time is often computationally demanding. Our
model utilises the XGBoost regression algorithm to ensure scalability and efficiency,
enabling real-time emotion prediction on mobile or wearable platforms with minimal
computational overhead [252].

Future work should focus on refining dynamic GSR feature extraction, incorporating
contextual information such as environmental and social cues, and establishing stand-
ardised protocols to improve comparability and generalisability across studies.

While GSR remains a valuable signal for arousal detection, its predictive capabilities
are significantly enhanced when combined with other modalities. The following section
examines how multimodal integration can improve the accuracy and reliability of emo-
tion detection systems.
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5.2.4 Multimodal Modelling Enhances Emotion Prediction

Each unimodal signal offered distinct contributions to emotion prediction. GSR
demonstrated the highest predictive power, particularly for valence (R?* = 0.573). This
likely reflects the fact that skin conductance captures both short-term arousal spikes
and sustained autonomic states that often correspond to how pleasant or unpleasant an
experience feels. Corrected pupil size effectively tracked rapid fluctuations in arousal
(R? = 0.556) once luminosity effects were removed, highlighting the value of our cal-
ibration procedure in isolating genuine emotional responses from environmental noise.
FER, although the weakest stand-alone predictor, provided behavioural information that
was not available in the physiological channels and therefore carried complementary
value in multimodal integration.

The multimodal fusion of FER, GSR, and pupil size substantially outperformed any
individual modality, with average R? = 0.710 and » = 0.865 for arousal, and average
R? = 0.665 and r = 0.913 for valence (see Table 4.12). These results confirm the com-
plementary nature of the three modalities, but more importantly, they highlight the
novelty of our framework. To the best of our knowledge, this is the first study to integ-
rate corrected pupil size, GSR, and vectorially mapped FER into a unified regression-
based model of continuous valence and arousal. Prior multimodal work has typically
focused on combinations such as audio-video or ECG-EDA [339], [362], whereas our
configuration explores a new space of ocular, autonomic, and facial behavioural signals.
This unique signal mix, combined with feature-level fusion and participant-independent
cross-validation, allowed us to achieve robust and interpretable predictions that set a
new benchmark for non-invasive, camera- and sensor-based emotion recognition.

5.2.5 Comparative Analysis with Existing Literature

While previous studies used classification methods using XGBoost and hybrid CNN-
XGBoost architectures, for binary or multi-class sentiment and valence/arousal detec-
tion [399], [400], our approach focuses on a regression problem, aiming to predict
continuous emotional states rather than discrete categories. Regression works on con-
tinuous scales rather than classes, so performance cannot be directly compared with
classification studies. In addition, our dataset was multimodal, incorporating FER, pu-
pil size (corrected for screen luminosity), and GSR features, in contrast to previous
works that often rely on high-density EEG or hybrid deep learning pipelines.

A one-to-one statistical comparison was performed between the present study’s res-
ults and the best-reported literature benchmarks for each modality, using the concord-
ance correlation coefficient (CCC) as the primary evaluation metric. Where a literature
paper reported both a CCC and a comparable sample count for independent recordings,
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Our multimodal (FER + GSR + corrected pupil) results were:
Valence = 0.913 +0.041

Arousal = 0.865 4+ 0.061

For comparison, Patania et al. [362], using RECOLA with late fusion on the evalu-
ation set, reported substantially lower CCCs (valence = 0.424 + 0.203, arousal = 0.585
+ 0.114). Joudeh et al. [339] reported extremely high physiological CCCs on RECOLA
(valence = 0.996, arousal = 0.998), but these results were obtained from a restricted
subset of 18 recordings and with a different bio-signals integration. Therefore, while
their values are not directly comparable to our pipeline, they highlight the methodolo-
gical diversity in the field.

Additionally, the comparative analysis of unimodal performance against existing lit-
erature highlights important patterns. FER alone underperformed relative to the bench-
marks reported by Raju et al. [360], likely because their study combined video and
audio modalities, whereas our approach relied solely on facial video data. In contrast,
both pupil-based and GSR-based models achieved substantially higher CCCs than those
previously reported in similar unimodal studies by O’'Dwyer et al. [359] and Brady
et al. [361], with differences confirmed as statistically significant. This suggests that
physiological measures provide more stable and reliable indicators of affective states
than facial expressions alone, which are often influenced by individual variability and
cultural modulation. Importantly, these findings validate our decision to integrate FER,
corrected pupil size and GSR into the multimodal framework, as their robustness com-
plements the weaker performance of FER. By combining these modalities within a uni-
fied machine learning pipeline, our approach not only addresses the limitations of un-
imodal FER but also establishes a novel configuration that yields interpretable, general-
isable, and state-of-the-art performance in continuous valence-arousal prediction.

Moreover, our system design incorporates practical considerations to address key
limitations in multimodal emotion recognition research. We selected audiovisual stim-
uli based on Russell’s Circumplex model of affect [32], ensuring an equal distribution
of videos across all four quadrants (high/low arousal and positive/negative valence)
to mitigate the data imbalance problem discussed earlier. The video clips were pre-
screened through a survey, which helped to guide the selection process by establishing
a general emotional label for each clip. However, our aim was not to elicit a specific
target emotion but rather to identify the actual emotional response evoked in each parti-
cipant, which may differ from the intended emotion of the clip (e.g., a fearful video may
elicit happiness in some individuals, or a happy video may elicit sadness). To account
for this subjectivity, we used INDSCAL, which provides an individual-level scaling of
emotional perception. At the same time, the survey served as a general baseline for the
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expected emotional category of each clip. To enhance robustness against inter-subject
variability, we applied LOPO Cross-Validation. We relied on physiological signals, such
as pupil size and GSR, which are less influenced by cultural factors, thereby improv-
ing generalizability, as discussed in "Modelling Challenges and Motivation for Regres-
sion" [36], [258]. Instead of using heuristic fusion approaches, we adopted XGBoost for
feature-level fusion, allowing the model to effectively manage feature interactions, re-
dundancy, and importance [250], [401]. The computational efficiency of XGBoost also
ensures suitability for real-time deployment on mobile or wearable devices, supporting
seamless integration into practical applications [252], [259]. We implemented frame-
synchronised data acquisition to reduce cross-modal misalignment and treated pre- and
post-stimulus intervals separately, maintaining temporal consistency [107], [253].

Our study also advances reproducibility in emotion detection research by implement-
ing a validated emotion elicitation protocol supported by participant self-reports and
conducting data collection within a controlled, multimodal framework. These practices
directly address persistent concerns in affective computing related to data consistency
and replicability [192], [366].

Future work should explore hybrid models that combine structured feature learners
(e.g., XGBoost) with temporal or deep learning architectures (e.g., LSTMs or CNNs), al-
lowing for efficient feature selection and dynamic sequence modeling [402]. Extending
validation to ecologically valid, real-world environments (e.g., everyday settings, mo-
bile or wearable devices) is essential for assessing the generalisability and robustness
of affective models outside controlled laboratory conditions. These directions aim to
enhance the accuracy and practical utility of emotion recognition systems.

Developing diverse datasets and addressing challenges such as signal synchronisa-
tion and noise is crucial to building universal and explainable affective computing sys-
tems for real-time use, such as in clinical settings. Different modalities (e.g., GSR, FER,
pupil size) often operate on various time scales, making alignment difficult. In addition,
real-world environments introduce significant noise from motion, lighting, and sensor
variability. Future systems must be designed to address these issues through improved
pre-processing and robust model architectures that perform reliably in uncontrolled

laboratory conditions.

5.2.6 Exploring the Impact of Multimodal Emotion Detection in

Clinical Settings

The integrated emotion detection model, which combines FER, pupil size, and GSR,
presents a promising solution for monitoring emotional states in clinical and rehab-
ilitation settings. Each of these modalities offers unique insights that, when com-
bined, provide a more complete and accurate understanding of a patient’s emotional
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experience during therapy [403]. The integration of these systems enables continuous,
real-time observation of physiological responses, thereby enhancing clinical assessment
without interrupting the therapeutic process.

The real-time data collected from FER, pupil size, and GSR provides an objective,
data-driven basis for understanding emotional responses that may not be readily ex-
pressed through verbal or visible cues alone. For instance, FER helps identify subtle
facial expressions that may reveal suppressed emotions. At the same time, pupil dila-
tion and GSR provide insights into emotional arousal and stress that patients may find
difficult to articulate. These tools are particularly valuable in psychotherapy, where pa-
tients might mask their true feelings or experience difficulties in emotional expression,
as seen in conditions like Post-Traumatic Stress Disorder (PTSD), depression, and aut-
ism spectrum disorders [343], [351].

The multimodal approach also shows great promise for neurorehabilitation, espe-
cially in tracking emotional recovery following events like stroke or TBI [354]. Ther-
apists can better assess progress and adjust real-time interventions by monitoring emo-
tional reactivity. Furthermore, the model’s passive nature ensures minimal patient com-
pliance burden, making it well-suited for routine monitoring and long-term emotional
tracking [357].

As the technology evolves, its applications could expand beyond in-clinic settings.
For example, remote emotional monitoring via telehealth platforms could help patients
manage their emotional states during therapy sessions. In the future, integrating this
emotion-aware system with Al-driven therapeutic assistants could allow for adaptive
interventions based on real-time emotional data, offering personalised therapy adjust-
ments or biofeedback [101], [404]. Moreover, this system could be integrated into
neurofeedback-based rehabilitation programs, further improving the personalisation of
treatment plans.

Our model also has some limitations, listed in the following section, which can be
addressed to improve it in the future.

5.3 Limitations and Future Work

Although this research addresses several key challenges, some areas can be further
improved to enhance the model’s performance and applicability.

Adding More Physiological Signals like PPG-Based HR and EEG. Incorporating ad-
ditional physiological signals, such as PPG-based HR and EEG, is a promising direction
to further enhance the robustness and accuracy of the multimodal emotion detection
model. PPG can provide valuable information on HRV, which reflects sympathetic and
parasympathetic nervous system activity, closely linked to emotional arousal. HRV met-
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rics such as Root Mean Square of Successive Differences (RMSSD), Low Frequency
(LF)/High Frequency (HF) ratio, and Standard Deviation of Normal-to-Normal inter-
vals (SDNN) can help distinguish between stress, calmness, and other affective states.
We performed a preliminary analysis of PPG-based heart rate (HR) by decomposing
the signal into three frequency bands-very low frequency (VLF: 0-0.04 Hz), low fre-
quency (LF: 0.04-0.15 Hz), and high frequency (HF: 0.15-0.5 Hz)-for each stimulus and
participant. Following Rakshit et al. [72], who demonstrated that LF and HF compon-
ents are indicative of sympathetic and parasympathetic nervous system activity during
emotional responses, we examined patterns of HR variability to assess their relation-
ship with different emotional states. Detailed results are presented in the Appendices
chapter 6. Although preliminary PPG-based HR analysis has been conducted, further
work is needed to extract relevant emotion-related features from the PPG signal and
integrate them into the existing multimodal framework for improved emotion detec-
tion. Meanwhile, EEG captures cortical brain activity and can provide real-time insights
into emotional valence and arousal through frequency-domain features, such as alpha
asymmetry and frontal theta power. Integrating these modalities with signals such as
GSR, FER, and pupil size may improve model generalisability and resilience to noise
or signal loss from any source. Additionally, combining central (EEG) and peripheral
(GSR, PPG) physiological signals enables a more comprehensive understanding of the
emotional response, making the system more suitable for sensitive applications such as

clinical diagnostics, therapy monitoring, and adaptive HCI.

Enhancing GSR Feature Extraction for Emotion Detection. To improve the contri-
bution of GSR signals in multimodal emotion detection, several advanced signal pro-
cessing and feature extraction techniques can be explored in future work. Instead of
relying solely on preprocessed or downsampled GSR signals, raw GSR data can be util-
ised alongside custom noise filtering methods tailored to preserve emotionally relevant
signal components [405]. A custom approach to isolating the phasic component of the
GSR signal can improve temporal precision, particularly for detecting stimulus-locked
arousal changes [406].

Further enhancement could improve event-related GSR feature extraction by im-
plementing customised peak detection algorithms that adapt to individual variabil-
ity through dynamic, data-driven thresholds. These adaptive methods promise to
identify genuine arousal-related responses more accurately while reducing false detec-
tions caused by noise or baseline fluctuations.

Moreover, incorporating time—frequency analysis on stimulus-locked windows, es-
pecially around emotionally salient peaks, may help uncover transient spectral patterns
associated with autonomic arousal [407], [408]. An auspicious direction is the com-
putation of phasic signal power within the 0-30 Hz range, segmented into 4 Hz bands.
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Although this spectral decomposition is more commonly used in EEG-based emotion re-
cognition [154], [192], its adaptation to GSR could provide new insights into frequency-
specific signatures of sympathetic nervous system activity. This approach may reveal nu-
anced temporal features that are often overlooked by traditional time-domain analysis,
thereby enhancing the model’s ability to detect subtle patterns of emotional arousal.

Given the delayed nature of GSR responses, it is also essential to account for carry-
over effects by extending the analysis window a few seconds beyond the stimulus off-
set [212], [258], [392]. This adjustment helps to capture late GSR responses, particu-
larly in cases where emotional peaks occur toward the end of a clip.

Beyond time-domain and frequency-domain features, additional feature types, such
as Hjorth parameters, higher-order crossings, spectral power features, and signal en-
ergy, can offer richer representations of GSR dynamics [305]. These features may
provide greater sensitivity to subtle emotional shifts, thereby enhancing model per-
formance in distinguishing between arousal levels.

These enhancements could maximise the utility of GSR signals by capturing both
global and transient emotional patterns, improving the temporal resolution of arousal
detection and enabling more robust multimodal fusion in emotion recognition systems.

Exploring Hybrid Fusion Models for Enhanced Emotion Detection. While XGBoost-
based models have demonstrated strong performance in emotion detection due to their
efficiency, scalability, and ability to handle non-linear relationships, they may still fail to
capture complex temporal dynamics and higher-order feature interactions in physiolo-
gical signals [409]. Future work could focus on developing hybrid fusion models that
combine the structured decision-making power of XGBoost with the deep feature rep-
resentation capabilities of neural networks, such as LSTM networks or CNNs. These
models are well-suited for time-series data and can learn temporal dependencies in
emotional responses, which is particularly significant for signals such as GSR or pupil
dynamics. Additionally, integrating transfer learning techniques can improve general-
isation by leveraging pre-trained models on similar affective datasets, reducing the need
for large-scale emotion-specific data collection. Such hybrid models could significantly
enhance multimodal emotion detection systems’ robustness, accuracy, and adaptability,
especially in real-time or clinical applications where subtle emotional cues must be de-
tected reliably.

Enhancing FER Feature Extraction for Emotion Detection. Although FER did not
significantly contribute to our current analysis, incorporating a broader range of emo-
tional indicators beyond basic emotions may enhance performance. In this study,
we used seven basic emotions—anger, fear, disgust, sadness, contempt, joy, and sur-
prise—extracted via iMotions software. However, iMotions also provides access to de-
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tailed facial landmark data, including metrics such as lip movement, eyebrow position,
and eye openness. These granular features can compute additional affective indicators
or construct continuous, vector-based representations of facial expressions. Incorporat-
ing enriched feature sets could provide more nuanced information for emotion detection
and potentially improve model accuracy in future work.

Checking Applicability in Clinical Settings. Testing the model with Clinical
group participants will help us understand the behaviour of people with mental health
problems regarding emotion recognition. Evaluating the model in naturalistic settings
will further validate its real-world applicability, particularly in mental health screening
and monitoring, clinical neurorehabilitation, and the development of protocols for emo-
tional regulation.



Chapter 6
Conclusion

This thesis presents the development of a highly accurate, multimodal regression
model for continuous emotion detection, integrating FER, pupil size, and GSR to en-
hance the robustness of emotion arousal detection. Supported by methodologically rig-
orous preprocessing and signal correction strategies, this approach overcomes several
existing limitations in emotion detection. A significant innovation in this work is the
introduction of a novel, user-friendly pupil size correction model, which outperforms
existing solutions and demonstrates considerable potential for widespread application
in real-world systems.

Our model’s performance demonstrates strong accuracy, with a 91% correlation for
valence and 78% for arousal. This validates the effectiveness of our multimodal ap-
proach, which captures a broader range of emotional responses than traditional unim-
odal systems. This integration addresses the limitations of modality-specific approaches,
providing a more nuanced and reliable emotion detection solution. Our approach has
established a solid foundation for more accurate and versatile emotion detection sys-
tems. The ability to separate emotional signals from extraneous factors, such as light-
ing changes, and to integrate diverse modalities offers exciting potential for real-world
applications.

The potential for further refinement and expansion of this integrated technology is
vast. As our understanding of human emotions continues to deepen, the applications
of such emotion-aware systems are poised to extend into fields like mental health mon-
itoring, HCI, adaptive technologies, and neurorehabilitation. This technology offers a
valuable tool for real-time emotional monitoring in clinical settings, supporting person-
alised treatments for emotional disorders and aiding in more accurate assessments. By
combining FER, pupil size measurement, and GSR, the system functions as a passive,
non-invasive clinical assistant during psychotherapy and other therapeutic sessions. It
unobtrusively tracks emotional responses, capturing subtle facial expressions, shifts in
arousal via pupil dilation, and physiological changes through GSR. After each session,
therapists receive a comprehensive visual timeline that maps the patient’s emotional
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intensity and fluctuations, helping identify key moments of suppressed emotions, emo-
tional disengagement, or stress spikes. This data-driven approach can significantly en-
hance diagnosis accuracy, provide deeper insights into emotional states, and enable
tailored therapeutic interventions, ultimately improving patient care and outcomes.
As the system evolves, integrating Al-driven therapeutic tools and remote monitoring
platforms will enhance its potential for personalised, adaptive care. With minimal pa-
tient compliance required, it promises to revolutionise both psychological therapy and
neurorehabilitation, offering new avenues for precision psychiatry and emotion-aware
rehabilitation.

By addressing both the technical and human-centred challenges in emotion detec-
tion, this research lays the groundwork for the next generation of emotion-aware sys-
tems that are highly accurate but also user-friendly, accessible, and adaptable to a wide
range of use cases. The promising results of this work hold great potential for future
advancements in emotion detection, particularly in neurorehabilitation, clinical applic-
ations, and other domains of affective computing.
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Appendices

6.1 Emotion Survey Questionnaire

The survey administered after each audiovisual clip consisted of 12 questions, each
designed to measure the self-reported intensity of a specific emotion. The exact wording
used in the study is listed below. Participants responded on a 10-point Likert-type scale
ranging from O (not at all) to 9 (extremely).

1. To what extent did you feel positive while watching the clip?

To what extent did you feel excited?
To what extent did you feel happy?
To what extent did you feel amused?
To what extent did you feel calm?

To what extent did you feel content?
To what extent did you feel negative?
To what extent did you feel angry?

XN R WD

To what extent did you feel afraid?

[
e

To what extent did you feel anxious?
11. To what extent did you feel sad?
12. To what extent did you feel bored?
Each response was recorded on a 0-9 scale using the iMotions interface, where 0
indicated not at all and 9 indicated extremely.

PPG-Based HR Frequency Band Patterns

To explore the relationship between emotional arousal and heart rate variability, we
analysed PPG-based HR signals for each participant and each stimulus. The HR data
were decomposed into three standard frequency bands: VLF (0-0.04 Hz), LF (0.04-0.15
Hz), and HF (0.15-0.5 Hz).

We plotted the PSD across these bands for all participants and stimuli. Below, we
present a selection of representative plots from a few participants that clearly illustrate
the differences between high- and low-arousal stimuli.

To begin the analysis, first, we check the relaxation pattern in the meditation audio
and the 5-second neutral grey screen stimulus (baseline) presented before each audi-
ovisual clip.

Figure 6.1 shows that, in the baseline stimulus (see Figure 6.1b), the LF band exhib-
its moderate power, reflecting baseline sympathetic activity. In contrast, the HF band
is dominant, indicating strong parasympathetic influence typical of a resting state. The
VLF band shows a slight but noticeable contribution, consistent with long-term physiolo-
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(a) Meditation Audio
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Figure 6.1: The PSD plots for PPG-based heart rate data from Participant 6GSd4 under
meditation audio stimulus (a) and the 5-second neutral grey screen (presented before
one emotional stimulus) (b) conditions reveal distinct differences in ANS activity across
the standard frequency bands: VLF, LF, and HF, indicated by red dashed lines.

gical regulation under non-stimulated conditions.

In contrast, the Meditation Audio stimulus (see figure 6.1a) exhibits reduced power
in the LF band and an increase in the HF band, suggesting a shift toward enhanced
parasympathetic activity and reduced sympathetic drive. The VLF band is nearly absent,
which is expected in short-term recordings during relaxation-focused tasks. The gradual
rise in power across the HF range further supports a calming physiological response
associated with meditative audio.

The observed shift in spectral power from LF to HF between the baseline and medit-
ation conditions suggests increased relaxation and parasympathetic dominance during
meditation, consistent with the expected physiological outcomes of mindfulness prac-
tice. The meditation audio appears to induce greater relaxation than the baseline, likely
due to its calming nature and the relatively short duration of the baseline, which may
not have allowed participants to reach an actual resting state. This highlights the im-
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portance of selecting appropriate baseline conditions when using them to normalise
emotional data. If the baseline does not accurately reflect a resting physiological state,
due to factors such as insufficient duration or anticipatory effects, it may distort compar-
isons and affect interpretation. Future studies should evaluate different baseline types
(e.g., prolonged rest, neutral content, or guided relaxation) to determine which most
reliably represents an individual’s physiological baseline, thereby increasing the validity
of emotion recognition models.

PSD for HN_2_H - Participant 6GSd4
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0.0 0.1 0.2 0.3 0.4 0.5 0.6
Frequency (Hz)

(a) High Arousal Stimulus
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Frequency (Hz)

(b) Low Arousal Stimulus

Figure 6.2: The PSD plots for PPG-based heart rate data from Participant 6GSd4 under
high arousal Stimulus (a) and low arousal stimulus (b) reveal distinct differences across
the standard frequency bands: VLF, LF, and HF, as indicated by the red dashed lines.

The Figure 6.2 shows that, in the high arousal condition, the Figure 6.2b, the LF
band (shaded cyan) shows a substantial increase in power, suggesting heightened sym-
pathetic nervous system activity typically associated with increased arousal. The HF
band (shaded yellow) also contributes significantly but less dominantly than LF, indic-
ating some parasympathetic modulation. The VLF band (shaded grey) shows minimal
contribution, as is common in short-duration recordings.

In contrast, the low arousal condition, the Figure 6.2b presents a different spectral
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profile. The LF band exhibits significantly lower power compared to the high arousal
condition, while the HF band maintains a relatively stronger presence, indicating in-
creased parasympathetic influence. Interestingly, the VLF band exhibits higher power
in the low arousal condition, which may reflect baseline regulatory processes that are
more prominent during rest or low engagement.

The shift in spectral power distribution between these two conditions aligns with ex-
pected physiological responses to different arousal states. High arousal is characterised
by dominant LF activity, while low arousal shows a more balanced or parasympathetic-
dominant pattern with elevated VLF contribution. This supports the effectiveness of
frequency domain analysis of PPG signals for distinguishing emotional arousal levels.

Similarly, we extended this analysis to data from 47 participants, and the results
consistently showed a clear distinction between low- and high-arousal stimuli in terms
of ANS activity, particularly as reflected in PPG-based frequency domain features. These
consistent patterns support the reliability of using physiological signals to differentiate
emotional arousal levels. Building on these findings, the next step is to systematically
extract the most relevant and discriminative features from these physiological signals
across time, frequency, and time-frequency domains to train a robust emotion detec-
tion model. Emphasis will also be placed on selecting features that generalise well
across participants while maintaining sensitivity to individual differences in emotional
responses.

6.1.1 Result of Ground Truth computation using Euclidean and
Manhattan Distance Metrics
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Figure 6.3: Ground Truth using Manhattan.
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When comparing the two INDSCAL group space plots, the version in Figure 6.4
provides a more reliable ground truth for emotion recognition than the version in Fig-
ure 6.3. In the plot with Euclidean distance, the stimuli are more evenly distributed
across the four quadrants of Russell’s Circumplex Model, with High Arousal Positive
Valence (HP), High Arousal Negative Valence (HN), Low Arousal Positive Valence (LP),
and Low Arousal Negative Valence (LN) clearly separated. The wider range of valence
and arousal values (approximately —2 to +2) enhances the bipolar structure of the
model and reduces overlap between categories. By contrast, the plot with Manhattan
distance compresses the axes (-1 to +1), causing stimuli to cluster near the centre
and along the upper band, which blurs the quadrant boundaries and increases category
overlap. Consequently, the PDF representation aligns more closely with the theoret-
ical circular structure of the circumplex, providing cleaner quadrant separation and a
stronger ground truth for training emotion recognition models.
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Figure 6.4: Ground Truth using Euclidean Distance Metrics.
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