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ABSTRACT

This paper introduces an innovative approach to predict VVIX (Volatility of VIX) values using a
combined image and recurrent pathway model. The dataset spans 2006 to 2023, providing insights
into market volatility expectations for S&P 500 options. VVIX is crucial for risk management,
portfolio allocation, and trading strategies. The model integrates spatial patterns and temporal
dependencies through two pathways. The image pathway converts VVIX data into spatial images
using Gramian Angular Fields and Markov Transition Fields and is processed through pre-trained
ResNet-18 and convolutional layers. These transformations are suitable for VVIX forecasting as
they effectively capture nonlinear temporal dependencies and transition dynamics in volatility data,
enabling robust feature extraction for deep learning models. The recurrent pathway captures temporal
trends with recurrent layers. Data is preprocessed with varying sliding windows for short-term,
mid-term, and long-term sequences. The model is optimised with MSE loss and Adam optimiser,
employing a decaying learning rate. Results show mid-term predictions yield balanced accuracy
and training time. The proposed ResNet-LSTM model achieves a high coefficient of determination
R? of 0.93, demonstrating robust accuracy in predicting VVIX. Further rescarch should explore
diverse model architectures, representations, and optimisation strategies, and assess generalisability to
varying market conditions and external factors. In conclusion, the proposed model enhances predictive
analytics for financial markets, aiding risk management and decision-making with improved VVIX
forecasts.
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1 Introduction

Volatility, due to its non-observable nature, is often described as latent [15]. Challenges in quantifying volatility have
directed researchers to propose multiple definitions [14]. Volatility in financial markets is defined as the degree of
variation in the prices of financial assets, including stocks, bonds, currencies, and commodities. It aims to measure the
associated risk of an investment, which is critical to market professionals. It affects all aspects of investment returns,
portfolio construction, risk management, and trading strategies. High levels of financial volatility can complicate price
prediction and therefore increase the investment risk. Different events, such as market sentiment and economic and
political turmoil, have the power to adversely impact companies’ financial performances [10].

VIX, or the Chicago Board Options Exchange Volatility Index, is a recognised measure of expected volatility. It
represents the expected level of uncertainty in the market. Technically, the VIX index quantifies the 30-day expected



implied volatility of options in S&P 500 index (SPX). Due to its tendency to rise during market downturns, it is
interpreted as the market “fear gauge” reflecting heightened investor anxiety, and it presents valuable information about
the market’s expectations of future volatility. By utilising this metric, investors and traders can make more informed
financial decisions. VVIX, or the volatility of VIX, on the other hand, measures the implied volatility of the VIX
index. It is calculated using the prices of a range of options on the VIX with different strike prices and expiration dates.
Therefore, it shows the expectations of VIX volatility. VVIX has multiple applications in the financial industry. It can
be applied in portfolio risk management, emphasising the need to adjust positions. It can also assist in determining
potential trading opportunities. For instance, a significant rise in VVIX may signal mispricing in options and provide an
opportunity to capitalise on market inefficiencies. Another application is helping traders to take positions that offset
losses caused by market volatility.

There are several methods to measure volatility. Statistical measures, option pricing models, and implied volatility
arc the main approaches. The standard deviation of returns, which measures the dispersion of returns around the
mean, a widely used measure, is in the category of statistical methods. Historical volatility is another metric, which
is calculated as the standard deviation of previous returns. The Black-Scholes model is an option pricing model that
utilises implied volatility that is implied by the market price of an option. Generalised Autoregressive Conditional
Heteroscedasticity (GARCH) is one of the earliest statistical models for volatility forecasting [1]. The GARCH model
is a time series model that captures the conditional heteroscedasticity of financial returns. This term refers to the
time-varying characteristic of the returns’ volatility. In a study by Brailsford and Faff [2], a GARCH model was used to
forecast realised volatilitics based on daily prices.

Machine and deep learning models have recently gained popularity, parting ways from traditional techniques in
quantitative finance [4]. Machine and deep learning capacities have tackled many of the problems in this domain,
including return forecasting, risk modelling, and portfolio construction [12]. These innovative approaches are capable of
looking into large amounts of data, extracting complex patterns, and delivering accurate predictions. Long Short-Term
Memory (LSTM), a type of recurrent neural network, has been broadly used to predict price and volatility. Fischer
and Krauss [6] employed the S&P 500 index daily prices over 23 years with a 240-day sequence to predict market
movement using the LSTM network. They concluded that LSTM provides a more accurate prediction compared to
Random Forest and can be used to create profitable trading strategies. In another study, Sagheer and Kotb [19], utilised
a deep LSTM to model time series effectively. The proposed model was compared with ARIMA (AutoRegressive
Integrated Moving Average), demonstrating its strength. Zang et al. [28] introduced a double-jump stochastic volatility
model based on the general parametric affine model. They then derived a linear relationship between the stochastic
volatility factor and the VVIX index.

This study addresses a significant gap in the existing literature on VVIX forecasting by utilising deep learning techniques,
particularly pre-trained vision and recurrent networks, to develop a forecasting model. VVIX plays an important
role in market volatility and investment decision-making, yet few studies have explored the applications of deep
learning models in VVIX forecasting. This research introduces a novel hybrid model that combines a ResNet model for
image-based spatial feature extraction with LSTMs as temporal modelling. It is designed to create a reliable tool for
forecasting volatility by integrating recent advancements in computer vision and recurrent neural networks, supporting
better risk management and decision-making.

2 Related Works

Market volatility is a key concern in financial markets, as it can significantly impact investment decisions. In the
literature, there are a vast number of models to predict volatility. GARCH-based models are considered to be the most
extensively used models for volatility forecasting [16]. Kroner et al. [11] explored the applicability of the combination
of the GARCH-ISD (Implied Standard Deviation) model to forecast the price volatility of different commodities. Triick
and Liang [22] investigated the GARCH, TARCH, TGARCH, and ARMA model’s predictive capabilities in gold
volatility forecasting. They concluded that the TARCH model produced the best results. Stochastic volatility models
are another way to express volatility, as they assume that volatility has a stochastic process.

The aforementioned models are used in parallel with the Black-Scholes formula for derivatives pricing. The model
used in [8] is the most important process, assuming that volatility follows a Cox-Ingersoll-Ross process and stock
return is a Brownian motion. Machine learning and deep learning approaches represent another group of solutions to
predicting volatility. Paiva et al. [13] applied Support Vector Machine and Hidden Markov Models to forecast financial
time series. Deep learning approaches iteratively learn the non-linear internal correlation between data and can make
precise predictions for complex systems like the stock market [23].

In another study [5], authors utilised deep neural networks to forecast the price changes and futures of multiple
commodities within a 5-minute window. In their study, a 42% accuracy was the result of using the Back-propagation



(BP) algorithm. Xiong et al. [27] predicted the S&P 500 volatility using an LSTM-based model, concentrating on
the effect of the input set on the forecasting results. A 60% increase in accuracy was reported and compared to other
baseline models. Rostamian and O’Hara [18, 17] utilised one-dimensional CNN-LSTM to predict directional changes
for four major currency pairs and reported high prediction accuracy of their proposed model. Selvin et al. [20] employed
RNN, LSTM, and CNN to predict minute-by-minute prices. They determined the contribution of the CNN algorithm to
the performance.

GARCH-based models stand out in capturing volatility clustering during stable market conditions; however, they are
dependent on parametric assumptions and struggle with nonlinear patterns in dynamic markets, with studies like [22]
reporting mean squared errors around 0.05 for gold volatility forecasting under volatile conditions. Similarly, CNN
and LSTM models, as explored in [5, 6, 20], were effective in capturing short-term patterns or temporal dependencies;
however, they failed to integrate both spatial and sequential features fully. For instance, [5] achieved only 42% accuracy
in commodity price forecasting, while [6] reported daily returns of 0.46% for S&P 500 predictions, limited by the lack
of spatial feature integration. In contrast, the proposed hybrid ResNet-LSTM model achieves an R? up to 0.93 (see
Table 3), leveraging pre-trained ResNet-18 for robust spatial feature extraction and LSTM for temporal modeling to
address these limitations and capture the complex, nonlinear dynamics of VVIX.

Recent studies emphasise the expanding role of advanced modelling in the financial domain and support the imperative
for innovative approaches in VVIX forecasting. For instance, Zhang et al. [30] developed an interpretable deep learning
framework to model complex interactions in time series data. They stressed the capacity of deep learning approaches
to capture nonlinear dynamics in volatile systems. Similarly, Zeng et al. [29] employed quartile-based techniques to
explore tail risk spillovers in financial markets, highlighting the need for models to address extreme market behaviours
essential for volatility forecasting. In addition, Wu et al. [26] utilised statistical techniques to evaluate policy impacts.
They illustrated the importance of integrating diverse data representations to enhance predictive accuracy. These studies
support the motivation rationale for proposing the hybrid ResNet-LSTM model to effectively capture the intricate
dynamics of VVIX.

3 Methodology

The proposed methodology uses supervised learning to predict VVIX values. It merges image-based and recurrent
pathways. Time series data are transformed into Gramian Angular Fields and Markov Transition Fields as described in
subsections 3.2 and 3.3 to detect nonlinear temporal patterns suitable for convolutional processing. The ResNet-18 is
the model for the image pathway architecture due to the balance of depth and computational efficiency. It leverages
pre-trained weights from ImageNet to extract spatial features while avoiding the complexity of deeper models such as
ResNet-50. This hybrid strategy incorporates spatial feature extraction with temporal modelling to enhance predictive
accuracy.

Deep learning techniques have deeply impacted many areas of artificial intelligence, such as natural language processing,
speech recognition, and computer vision. One of Computer Vision’s successful deep learning architectures is convolu-
tional neural networks. CNN architecture takes advantage of translational invariance by extracting features through
receptive fields and learning with weight sharing. Convolutional neural networks have become the go-to approach in
various computer vision and image recognition problems. Accomplishments of supervised and unsupervised learning
techniques in computer vision inspired [25] to consider the problem of encoding time series as images to enable
machines to recognise and learn patterns and structures visually. Redefining time-series features as visual clues have
raised attention in computer science and physics.

Researchers have built different network structures from time series for visual inspection or designing distance measures.
Silva et al. [21] utilised the compression distance to expand the recurrence plot paradigm for time series classification.
Another approach to construct a weighted adjacency matrix is extracting transition dynamics from the first-order Markov
matrix; see [3]. Despite demonstrating distinct topological properties amongst different time series, these maps are
unclear about how they relate to the original time series since they lack exact inverse operations.

3.1 VVIX Index

The CBOE VVIX functions as an index that assesses the volatility of volatility. Its core objective is to gauge the
anticipated volatility of the VIX’s 30-day forward price. The forward price, in this context, alludes to the hypothetical
value of a VIX futures contract, which would expire in 30 days. The VVIX, while not precisely identical to the expected
volatility of the VIX itself, shares a close relationship with the latter due to the tracking of nearby VIX futures to the
VIX. The oscillation of VVIX between 2019 and 2023, as shown in Figure 1, illustrates its dynamic behaviour, with
peaks corresponding to periods of heightened market uncertainty, such as 2020 pandemic. The methodology used to
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Figure 1: Volatility of Volatility Index

compute VVIX is analogous to that of VIX. It is obtained from the price of a portfolio of liquid at and out-of-money
VIX options.

This portfolio can be utilised to manage volatility risk linked to exposures to VIX and to exploit the risk premium
between the expected and realised volatility of VIX forward prices. Although the availability of VIX options with a
30-day expiration is generally limited, the computation of VVIX-like values can be achieved by utilising VIX options
that expire at two distinct dates within a 30-day time frame. The determination of VVIX is subsequently performed
through interpolation founded on said values. Following is the calculation of VVIX from VIX options prices at each
expiration using the VIX formula. The VVIX is computed using Equation (1), which adapts the VIX formula to VIX
options prices.

2
VVIX = %Z %ERT Q(k;) — 1 {ﬂ - 1}

where:

T Time to expiration

F' Forward index level 0
Ky First strike below the forward index level F
K; Strike price of i"out-of-money option
AK; Interval between strike prices
R Risk-free rate to expiration
Q(k;) Spread midpoint for option with strike k;

3.2 Time Series Image Encoding

Gramian Angular Fields (GAF) imaging proposed by [25, 24] is a technique to encode time series into images. As
detailed in their paper, the goal of this transformation is to generate an image that will be part of the time series. Images
will be constructed for each time period t as an RGB image where each channel is a feature matrix. To generate GAF
images, time series observations require to be re-scaled. Let X = {x1,x2,- - ,x,} be the considered time-series with
n observations, re-scaling to the [—1, 1] interval is done using the following equation:

i (z; —max(X)) + (x; — min(X))
' maz(X) — min(X)

@)

Hence, the re-scaled series is denoted by X . The re-scaled time series is transformed into a polar coordinates system by
calculating the angular cosine of every single component of the scaled time series:

X:{f17f27“. ,an} (3)
¢; = arccos(i;), —1<i; <1, €X
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Here, 7 is the time stamp and N is a constant factor to regularise the span of the polar coordinate system. r represents
the angular relationship between data points in the time series. Contrary to the Cartesian coordinates, polar coordinates
preserve temporal relations. In the GAF transformation, the time series X = {x1, z2,..., 2, } is first normalised to the
interval [—1, 1], resulting in X = {Z1, &2, ..., &}, using Equation (2). The normalised values are then converted to
polar coordinates, where each element is mapped to an angle ¢; = arccos(Z;). In this representation, #; corresponds
to cos(¢;), and sin(¢;) = /1 — &7 is computed element-wise. These trigonometric terms are used in the Gramian
Angular Summation Field (GASF) and Gramian Angular Difference Field (GADF) as shown in Equations (5) and (6).
The resulting matrices ingrain both the magnitude and relative temporal order of the original time series, thereby
preserving temporal dependencies in the image representation.

Gramian Angular Summation Field (GASF) and Gramian Angular Difference Field (GADF) can be obtained by
calculating the sum or difference between the points of the time series. I in Equations 5 and 6 is the unit row vector
[117 71]

-

GASF:[cos(qbi—qu)]:)fT-X—\/I—XQ .\/1_)52 )
T

GADF = [sin(¢; — ¢;)] =\ I - X2 - X - X' \/T-X? (6)

3.3 Markov Transition Field

Quantile bins @ of a given time series X are identified, and then each is assigned z; to its corresponding bin g;
(j € [1,Q)])- Therefore, a @ x Q weighted adjacency matrix W is constructed by counting transitions between quantile
bins in the same manner as the first-order Markov chain along the time axis. w; ; is provided by the frequency with
which a point in quantile ¢; is followed by a point in g;. Subsequent to normalisation ¥jw;; = 1,Vi € [1, Q]. Given W
as the Markov transition matrix, the Markov Transition Field is defined as:

(M1 My -+ My,
Moy Myy -+ My,
M = . . .
_Mnl Mn2 e Mn'n (7)
Wijlzi€qi,mieq; *°°  Wijlzi€qi,znEq;
Wijlzo€qi,zi€q; *°°  Wijlza€gi,xnEq;
LWij|lz,€qixi€q; " Wijlz,€qimncq;

The M;; value in the transition probability matrix represents the probability of transitioning from state g; to state g; in
one time step.

3.4 Long Short-Term Memory

The Long Short-Term Memory (LSTM) neural network [9] is an extension of Recurrent Neural Networks (RNNs)
designed to address the vanishing gradient problem. It achieves this by utilising interconnected nodes within the same
hidden layer. At each time step, the input to the hidden layer comprises not only the output from the previous layer but
also the output of the same hidden layer from the preceding time step. LSTM models consist of four key components:
memory units, input gate, output gate, and forget gate. The memory unit is responsible for storing the temporal state of
the network. The input gate modulates the input activations of the cell, while the output gate performs a similar function
for the cell’s output. Finally, the forget gate adaptively resets the cell’s memory.

LSTM has emerged as a widely used tool across various domains within the finance industry, including price prediction
and trend analysis. Its ability to effectively capture long-term dependencies in sequential data renders it particularly
valuable for these applications. By utilising historical financial data, LSTM models can analyse patterns and trends to
make predictions about future prices and market movements. These predictions assist traders, investors, and financial
institutions in making informed decisions regarding buying, selling, and timing their investments. Furthermore, LSTM’s
capability to process and analyse large volumes of data makes it well-suited for handling the complex and dynamic
nature of financial markets. Consequently, LSTM has become an essential tool in financial forecasting, risk management,
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Figure 3: Residual Learning Block

and decision-making processes. In the following equations, i;, f;, and o; represent the input gate, forget gate, and
output gate activations, respectively. ¢; denotes the memory cell input activation, ¢; is the cell state, and h; is the
hidden state output at time step j. The design of LSTM is based on the following equations:

ij = o(Wi-[zj,hj1] +bi)
fi=oWy - [x;,hj—1] + by)

0j =o(Wo - [2j,hj—1] + bo)

éj = tanh(Wc . [mj, hj—l] + bc)
¢ =fiOcj—1+i;O¢

h; = 0; ® tanh(c;)

®)

where x5, 75, fj. 05, and ¢; represent the input vector, input gate’s activation, forget gate’s activation, output gate’s
activation, and memory cell input activation, respectively. ¢; is the cell state vector at step j, while h; is the LSTM unit
output vector. The symbol ® denotes an element-wise dot product. W and b are the weight and bias matrices to be
optimised, and ¢ is the sigmoid function.
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3.5 Residual Networks

Residual networks have been introduced by [7] to address the challenge of vanishing gradients in deep neural networks.
ResNets contain residual blocks, which enable the formation of deeper networks by introducing skip or shortcut
connections. Residual blocks illustrated in Figure 3 are the building blocks of ResNets. Within each block, there exist a
series of convolutional layers followed by an element-wise operation called a skip connection. This connection bypasses
one or more convolutional layers. The sole purpose of the skip connection is to propagate the input to the block’s output,
creating a residual path. The residual path contributes to learning the residual mappings, thus capturing the difference
between the input and output. Identity mapping is a common form of residual block although various configurations
are available. The skip connection is crucial to the training of deep neural networks. It allows the gradients to easily
flow from later layers to earlier ones, making it easier for the network to learn hence facilitating the training of deeper
architectures without performance degradation. ResNet-18 is a specific variant of residual networks, designed for image
classification tasks which consist of 18 layers.The ResNet-18 architecture comprises multiple stages and layers.

Initially, the input of a fixed-sized image, typically 224 x 224 pixels undergoes a convolutional layer with 64 filters
with a spatial size of 7 x 7, following a batch normalisation layer and Rectified Linear Unit (ReLU) activation resulting
in dimension reduction of the input image. Subsequently, a 3 X 3 max-pooling layer is employed which reduces the
spatial dimension by a factor of two. From here onwards there exist four sets of layers each containing two residual
blocks with convolutional layers with respective 64, 128, 256, and 512 filters.

Following a global average pooling layer is applied to aggregate spatial information across the entire feature map
leading to a fixed-size representation. Ultimately, the output of the global average pooling layer is passed to a fully



connected layer. As for ResNet-18, the fully connected layer consists of 1000 units corresponding to the number of
classes in the ImageNet dataset. The final classification probabilities are obtained through the application of a soft-max
activation function at the exit of this layer.

4 Experiments and Results

4.1 Dataset Description

The dataset used in this study comprises VVIX time series data spanning from 2006 to 2023, obtained from the
Chicago Board Options Exchange website. The volatility of VIX (VVIX) measures the expected volatility for the
S&P 500 options. It is a crucial indicator for market participants, including investors and traders, as it reflects the
market’s expectations of future volatility. High VVIX values signify increased market uncertainty and potential price
fluctuations, while low VVIX values suggest market stability and reduced volatility. Accurate VVIX predictions are of
great importance in making informed decisions related to risk management, portfolio allocation, and trading strategies.
To ensure data quality, we handled outliers and missing values. Outliers were defined as values that exceeded three
standard deviations from the mean. These outliers were capped at the 99" percentile to reduce their impact on model
training. CBOE is continuous in nature; thus, missing values were minimal. However, we used linear interpolation for
imputation. This method helped maintain temporal continuity and ensured robustness in the time series analysis.

4.2 Proposed Hybrid Model

The proposed ResNet-LSTM model combines an image-based pathway for spatial feature extraction with a recurrent
pathway to capture temporal dependencics (Figure 5).

¢ Image Pathway: Converts time series data into three distinct visual representations utilising the Gramian
Angular Difference Field (GADF), the Gramian Angular Summation Field (GASF), and the Markov Transition
Field (MTF). These visualizations elucidate the intrinsic temporal structures and interdependencices, thereby
converting the data into spatial formats amenable to efficient processing by convolutional neural networks
(CNNs). In our study, we utilise a pre-trained ResNet-18 model to extract high-level features, subsequently
incorporating three additional convolutional layers to enhance the spatial representations. Conventional
approaches, such as feature engineering within long short-term memory networks (LSTMs), necessitate
specialized domain knowledge to construct meaningful features. Conversely, our methodology capitalizes
on deep convolutional neural networks to autonomously acquire hierarchical representations of features. In
comparison to Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models, which are
predicated on parametric assumptions regarding the dynamics of volatility, our image-based pathway possesses
the capability to capture intricate, nonlinear interdependencies and latent patterns.

* Recurrent Pathway: Employs two Long Short-Term Memory (LSTM) layers to analyse sequences of VVIX
values, thereby effectively capturing temporal dependencies and emerging trends. We conduct experiments
utilizing three distinct window lengths—10, 21, and 41 days—to appropriately model short-term, mid-term,
and long-term dynamics. Although the LSTM architecture is capable of modelling sequential dependencies
independently, our hybrid methodology enhances this temporal information with spatial patterns that are
derived from the image-based pathway, ultimately facilitating a more comprehensive understanding of volatility
behaviour.

Table 1: Image Pathway kernel dimensions.

Image Pathway Kernel

Convolutional Layer 1 128
Convolutional Layer 2 64
Convolutional Layer 3 32

4.3 Model Training

The model’s parameters were optimised using the mean squared error (MSE) loss function and the Adam optimiser. To
enhance the model’s performance during training and avoid convergence to sub-optimal solutions, a decaying learning
rate was applied to reduce the initial learning rate 0.01 if the loss plateaued after three consecutive epochs. Experimented
with sizes of 16, 32, and 64 a batch size of 32 provided a balance between convergence speed and model stability. We
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Table 2: Recurrent Pathway LSTM dimensions.
Recurrent Pathway  Input Dim  Hidden Dim

LSTM Layer 1 1 32
LSTM Layer 2 32 32

implemented early stopping based on validation loss to prevent over-fitting. Compared to simpler baselines, the hybrid
model required more computational time but achieved substantial performance gains. The CNN model trained fastest
but often failed to capture long-term dependencies, while the GARCH model trained efficiently but struggled to adapt
to complex, non-linear patterns.

4.4 Baseline Models and Comparative Analysis

We formulated three foundational models—LSTM, CNN, and GARCH—to assess the efficacy of our proposed hybrid
methodology in predicting VVIX. The Long Short-Term Memory (LSTM) model represents a category of recurrent
neural networks that proficiently addresses temporal dependencies by preserving pertinent historical data through
memory cells. This attribute is imperative for time series prediction, as it facilitates the identification of patterns across
diverse temporal intervals.

The Convolutional Neural Network (CNN), commonly used for image processing, was applied to the VVIX time
series data to capture localised patterns and short-term dependencies. By employing convolutional layers, the CNN
architecture acquired characteristics that are conventionally feature-engineered in conventional approaches, offering
an effective methodology to retrieve information. Nonetheless, due to the fact that CNNs predominantly emphasise
local interactions, they may overlook longer-term dependencies that are pivotal in financial time series forecasting,
constraining their predictive efficacy in comparison to more intricate architectures.

The GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model, a well-known econometric approach
for volatility modelling, served as our classical baseline. GARCH is particularly effective in capturing volatility
clustering and adapting to changes in variance over time. Its interpretability and computational efficiency make it a
popular choice for financial applications. However, GARCH models operate under strict parametric assumptions and
often struggle to adapt to nonlinear, complex volatility patterns present in financial markets. Thus, while GARCH
models excel in stable market conditions, they may underperform in more dynamic environments.

We used paired t-tests to compare model performance across 100 test predictions for each forecasting horizon (short-
term, mid-term, long-term). These predictions came from an 80/20 split of the VVIX dataset into training and testing
sets. Before running the t-tests, we used the Shapiro—Wilk test to check that the differences in prediction errors were
normally distributed, confirming that the t-test was suitable.

5 Discussion of Findings

The comparative results in 3 highlight how well the suggested ResNet-LSTM hybrid model performs when compared
to baseline methods, proving its capacity to accurately forecast VVIX over a range of time horizons. Metrics such as
Mean Squared Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R?) show that the hybrid
model outperforms the GARCH, CNN, and LSTM models in terms of explanatory power and error rates. The statistical
significance of these improvements is confirmed by its consistently lower p-values, which are obtained from paired
t-tests, especially in the short- and mid-term horizons. The paired t-tests employed a sample size of approximately
4,000 daily observations (2006-2023), and standard statistical techniques were employed to validate the assumption of
normality.

Although the forecasting errors of the ResNet-LSTM model are lower than those of baseline models, sudden market
shocks or macroeconomic events may still have an effect. High VVIX values, for instance, which usually coincide with
shifts in interest rates, financial crises, or world events, can introduce noise that reduces the accuracy of the model,
particularly for long-term horizons. In their investigation of volatility spillovers, Zeng et al. [29] noted that these errors
could be a result of the model’s vulnerability to abrupt changes in market sentiment or external factors not present in
the input data, suggesting the potential benefit of including macroeconomic indicators to increase robustness.

The observed drop in performance for longer time horizons for all models is consistent with the inherent difficulties
of long-term financial volatility forecasting. Long-term forecasts are more vulnerable to external shocks and market
uncertainties, which increase noise and decrease predictability. This problem is somewhat mitigated by the hybrid
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Table 3: Performance Comparison by MSE, MAE, and R? Across Time Horizons
(a) Mean Squared Error (MSE)

Model MSE p-value 95% C1
Short Mid Long Short Mid Long Short Mid Long

GARCH 0.045 0.055 0.087 0.015 0.020 0.035 [0.010. [0.015, [0.030,
0.030] 0.035] 0.060]

CNN 0.039 0.047 0.060 0.012 0.018 0.025 [0.008, [0.012, [0.015,
0.025] 0.030] 0.040]

LST™M 0.033 0.035 0.050 0.010 0.015 0.025 [0.005, [0.008, [0.010,
0.020] 0.025] 0.035]

ResNet-LSTM 0.023 0.020 0.042 0.005 0.008 0.015 [0.003, [0.004, [0.008,
0.015] 0.016] 0.030]

(b) Mean Absolute Error (MAE)
Model MAE p-value 95% CI
Short Mid Long Short Mid Long Short Mid Long

GARCH 0.110 0.130 0.160 0.020 0.025 0.035 [0.020, [0.030, [0.040,
0.050] 0.060] 0.080]

CNN 0.102 0.115 0.125 0.020 0.030 0.040 [0.015, [0.020, [0.025,
0.040] 0.050] 0.060]

LSTM 0.095 0.100 0.110 0.018 0.025 0.035 [0.010. [0.015, [0.020,
0.035] 0.040] 0.050]

ResNet-LSTM 0.075 0.070 0.090 0.008 0.010 0.020 [0.005, [0.008, [0.015,
0.025] 0.030] 0.040]

(c) Coefficient of Determination (R?)

R? p-value
Model Short Mid Long | Short Mid  Long
GARCH 075 070 065 | 0.010 0025 0.035
CNN 078 076 072 | 0.020 0.025 0.030
LSTM 082 081 078 | 0.015 0020 0025

ResNet-LSTM 091 0.93  0.85 | 0.003 0.004 0.008

model’s adaptability across different window lengths (10, 21, and 41 days), which allows it to maintain predictive
accuracy above the baselines. This capability emphasises how crucial it is to combine temporal dynamics and spatially
rich representations in order to handle the complexity of financial markets.

5.1 Economic Implications of VVIX Predictions

The predictive power of the ResNet-LSTM model for VVIX has significant economic implications for regulators and
market participants alike. Accurate VVIX forecasts can show shifts in market participants’ expectations for future
volatility, enabling investors to proactively modify their portfolios and potentially minimising losses during erratic
periods. For instance, a rising VVIX may indicate anticipated market stress, prompting traders to hedge positions or
exploit options mispricing, according to Zeng et al. [29]. By providing early warning indicators of systemic risks,
such as those caused by extreme market conditions, the model’s ability to detect nonlinear patterns may also assist
financial regulators in creating proactive stabilisation policies. Additionally, Wu et al. [26] demonstrated how external
factors, such as green finance policies, can affect market dynamics, indicating that adding such factors could improve
the model’s relevance to actual investment and regulatory decisions.

Although computational trade-offs were not specifically examined, the hybrid model’s more complex architecture
suggests that it will require more time and resources to train than stand-alone LSTMs or more straightforward models
like GARCH. Nonetheless, the proven performance improvements make this extra computational work worthwhile,
especially for applications where accuracy is crucial. Future research might concentrate on optimising the hybrid
approach’s computational effectiveness for real-time deployment.

Lastly, it is unknown how resilient the suggested model would be in the face of severe market circumstances, like
financial crises or spikes in volatility brought on by pandemics. Further testing under stress scenarios is required to
ensure generalisability, even though its capacity to capture nonlinear patterns and temporal dependencies suggests
potential resilience. Notwithstanding these drawbacks, the hybrid model sets a new standard for VVIX prediction and
provides a strong, statistically supported framework for dealing with volatility forecasting difficulties.
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6 Conclusion

The importance of this study lies in its objective to fill the gap in the literature regarding VVIX forecasting, building
on previous research in volatility modelling [15, 6] and the need for accurate volatility predictions to help with risk
management as well as support informed investment decisions in financial markets. In this study, we proposed and
evaluated a hybrid ResNet-LSTM model for predicting VVIX values by integrating spatial feature extraction through
ResNet with temporal dependency modelling via LSTMs. The VVIX dataset, spanning from 2006 to 2023, served as
the foundation for our investigation into accurately forecasting market volatility. This research addresses the critical
need for reliable VVIX predictions, enabling market participants, such as investors and traders, to make informed
decisions regarding risk management, portfolio allocation, and trading strategies. The proposed model leverages the
strengths of both image and recurrent pathways, capturing spatial patterns and temporal dependencics present in the
VVIX time series data.

In the image pathway, spatial features were extracted by converting raw VVIX data into images using techniques
such as Gramian Angular Difference Field, Gramian Angular Summation Field, and Markov Transition Field. These
representations were processed through a pre-trained ResNet-18 to harness valuable feature representations while
optimizing computational efficiency. Meanwhile, the recurrent pathway utilized LSTMs to model sequential information,
discerning underlying trends and temporal dynamics in the VVIX time series. By combining these pathways, the
hybrid model demonstrated a robust capability to capture complex, non-linear patterns, resulting in improved predictive
performance over baseline approaches such as GARCH, CNN, and standalone LSTM models.

The experimental results highlighted superior predictive accuracy across short-term, mid-term, and long-term horizons,
as evidenced by better MSE, MAE, and R? metrics compared to baseline methods. Notably, the model exhibited
statistically significant improvements in performance, confirmed through paired t-tests, which underscored its ability
to integrate spatial and temporal information effectively. However, the model’s declining accuracy for long-term
predictions reflects the inherent challenges of increased market uncertainty and noise in financial time series forecasting.

Overall, the hybrid ResNet-LSTM model showcased potential advantages for accurate VVIX value predictions, offering
practical applications in risk management, portfolio allocation, and trading strategies. Its ability to adapt to diverse
time-window lengths emphasizes its suitability for varying prediction horizons, although computational trade-offs and
robustness under extreme market conditions warrant further exploration. The limitations of our study include the lack
of explicit evaluation under stress scenarios and the need for optimisation strategies to enhance real-time deployment.
To further advance the predictive capability of the proposed hybrid model, several directions for future work can be
considered:

* Investigating the model’s performance under extreme market conditions, such as financial crises or sudden
volatility spikes, to assess its robustness and reliability during periods of heightened uncertainty.

* Incorporating additional data sources, such as macroeconomic indicators, sentiment analysis of financial news,
or options market data, to enrich the model’s input features and further enhance predictive accuracy.

 Evaluating the model’s transferability to other volatility indices or asset classes and examining its generalis-
ability across different market regimes and economic cycles.

In conclusion, this study contributes to the growing body of knowledge in financial market forecasting, specifically in
the context of VVIX value prediction. The proposed hybrid model represents a significant step forward in volatility
forecasting methodologies, providing meaningful insights for market participants and opening new avenues for future
research. As the financial landscape evolves, the ResNet-LSTM hybrid model offers a robust framework for advancing
predictive analytics, helping stakeholders navigate the complexities of modern financial markets.
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