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3-manifold spine cyclic presentations with
seldom seen Whitehead graphs

Gerald Williams

Abstract. We consider a family of cyclic presentations and show that, subject to certain conditions
on the defining parameters, they are spines of closed 3-manifolds. These are new examples where the
reduced Whitehead graphs are of the same type as those of the Fractional Fibonacci presentations;
here the corresponding manifolds are often (but not always) hyperbolic. We also express a lens space
construction in terms of a class of positive cyclic presentations that are spines of closed 3-manifolds.
These presentations then furnish examples where the Whitehead graphs are of the same type as those
of the positive cyclic presentations of type Z, as considered by McDermott.

1 Introduction

The cyclically presented group Gn(w) is the group defined by the cyclic presentation

Gn(w) = ⟨x0 , . . . , xn−1 ∣ w , θ(w), . . . , θn−1(w)⟩,
where w(x0 , . . . , xn−1) is a word in the free group Fn with generators x0 , . . . , xn−1 and
θ ∶ Fn → Fn is the shift automorphism of Fn given by θ(x i) = x i+1 for each 0 ≤ i < n
(subscripts mod n, n > 0). Cyclic presentations that are spines of 3-manifolds have
been widely researched, with notable early studies by Dunwoody [18], Sieradski [50],
Helling, Kim, Mennicke [22], and Cavicchioli and Spaggiari [16].

A necessary condition for a presentation to be a spine of a closed 3-manifold is
that its Whitehead graph is planar (see, for example, [25, p. 33], [4, Documentation,
Section 11]). The planar, reduced, Whitehead graphs of cyclic presentations were
classified in [27], whose labeling (I.j),(II.j),(III.j) we now adopt. (Types (I.5) and
(II.6) are precisely the graphs that correspond to positive or negative cyclic presenta-
tions.) In the overwhelming majority of studies of cyclic presentations as spines of
3-manifolds (for example [1, 2, 7–13, 15, 18, 20, 21, 26, 33–38, 42, 44, 48, 50–53])
the reduced Whitehead graph is of one of the types (I.1), (I.3) or (I.5), which
correspond to the graphs given by Dunwoody in [18, Figure 1] and, as such, provide
examples of so-called Dunwoody manifolds. By [8] and [21] the class of Dunwoody
manifolds is exactly the class of strongly-cyclic branched covers of (1, 1)-knots. Strictly
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2 G. Williams

speaking, the hypothesis ab ≠ 0 of [18], which is removed in many later references
(including [8, 21]), excludes Whitehead graphs of type (I.5) and for this reason
no positive presentations appear in [18, Table 1]. However, an explicit family of
cyclic presentations that are spines of 3-manifolds and where the reduced Whitehead
graph is of this type are given by the positive presentations of type Z considered in
[42, Theorem 8] (that is, those with s < 0). Cyclic presentations that are spines of
3-manifolds where the reduced Whitehead graph is of a different type to (I.1), (I.3),
(I.5) are few and far between. We are only aware of the following families of such
presentations. The non-cyclically reduced cyclic presentation Gn(x0x1x−1

1 ) is a spine
of S3 for all n ≥ 1 [26, Lemma 9]. Its Whitehead graph contains loops, but once
these are removed the graph is of type (I.4). Helling, Kim, and Mennicke [22] and
Cavicchioli and Spaggiari [16, Theorem 3] showed that, for even n, the Fibonacci pre-
sentations F(n) = Gn(x0x1x−1

2 ) are spines of closed, oriented 3-manifolds; here (for
n ≥ 4) the Whitehead graph is of type (II.11). A special case of [47, Theorem 6] gives
that, for coprime integers k, l ≥ 1 and even n, the cyclic presentations Gn(x l

0xk
1 x−l

2 )
are spines of closed, oriented 3-manifolds. These presentations are the Fractional
Fibonacci presentations Fk/l(n) of [55, 56] (or of [40, 41] in the case l = 1) and if
(k, l) ≠ (1, 1) their reduced Whitehead graph is of type (II.7). Jeong and Wang [28, 29]
showed that, for l ≥ 2 and even n the cyclic presentations Gn(x1(x−1

2 x0)l) are spines
of closed, oriented 3-manifolds; here the reduced Whitehead graph is of type (II.14).

In Section 3, we present a family of cyclic presentations that are spines of closed
3-manifolds where the Whitehead graphs are of type (I.5) and show that the manifolds
are cyclic branched covers of a lens space. This construction is essentially well known
(see, for example [49, p. 217], [43, p. 4], or [39, Section 3]), but the connection to the
planar Whitehead graph classification of [27] has not previously been observed. In
Section 4, we present a new family of cyclic presentations that are spines of closed
3-manifolds where the reduced Whitehead graphs are of type (II.7) (i.e., the same
type as those of the Fractional Fibonacci presentations) and show that many, but
not all, of the manifolds are hyperbolic. Experiments in Heegaard [4] were used
in formulating these results.

2 Presentation complexes as spines of closed 3-manifolds

The presentation complex (or cellular model) K = KP of a group presentation
P = ⟨X ∣ R⟩ is the 2-complex with one 0-cell O, a loop at O for each generator x ∈ X
and a 2-cell for each relator (the boundary of that 2-cell spelling the relator). If N
is a regular neighborhood of O then K ∩ ∂N is a 1-dimensional cell complex called
the Whitehead graph or link graph of P. Thus the Whitehead graph of P is the graph
with 2∣X∣ vertices vx , v′x (x ∈ X) and an edge (vx , vy) (resp. (v′x , v′y), (vx , v′y)) for
each occurrence of a cyclic subword x y−1 (resp. x−1 y, (x y)±1) in a relator r ∈ R.
The reduced Whitehead graph is the graph obtained from the Whitehead graph by
replacing all multiedges between two vertices by a single edge. We say that a group
presentation P is the spine of a closed 3-manifold M if there exists a 3-ball B3 ⊂ M
such that M − B̊3 collapses onto KP (where B̊3 denotes the interior of B3). Since KP

is connected, the manifold M is necessarily connected.
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3-manifold spine cyclic presentations with seldom seen Whitehead graphs 3

Suppose that a group presentation P = ⟨X ∣ R⟩with an equal number of generators
and relators is a spine of a closed, oriented 3-manifold. Then (see [49, Chapter 9],
[45], [50, p. 125]) there is a 3-complex C whose set of faces consists of precisely
one pair of oppositely oriented faces F+r , F−r for each relator r ∈ R, whose boundaries
spell r. Let M0 denote the 3-complex obtained from C by identifying the faces F+r , F−r
(r ∈ R). Then M0 is a closed, connected, oriented pseudo-manifold. The Seifert–
Threlfall condition for M0 to be a manifold M is that its Euler characteristic is zero
[49, Theorem I, Section 60]. In this case the cell structure on M = M0 has one vertex,
one 3-cell, and 2-skeleton homeomorphic to the presentation complex KP of P. The
Whitehead graph � of P is the link of the single vertex of KP, and so embeds in the
link of the single vertex of M. The link of the vertex of M is the 2-sphere, and so
� has a planar embedding on this sphere. When � is connected the 3-complex C is a
polyhedron π bounding a 3-ball. Given a planar embedding of � there is a one-to-one
correspondence between the faces F of this embedding and the vertices uF of π. This
correspondence maps a face of degree d to a vertex of degree d of π. Moreover, if
the vertices in the face read cyclically around the face are w1 , . . . , wd where w i ∈
{vx , v′x (x ∈ X)} then the arcs e1 , . . . , ed incident to uF , read cyclically, are directed
toward uF if w i = vx and away from uF if w i = v′x , and the arc e j , corresponding to
vertex w j = vx or v′x , is labeled x.

3 Cyclic presentations H(r, n) as spines of type (I.5)

For n > 1, r ≥ 1 let

H(r, n) = Gn(x0x1 . . . xr−1)

and let H(r, n) be the group it defines. By [54, Theorems 2 and 3], H(r, n) is finite if
and only if (n, r) = 1, in which case H(r, n) ≅ Zr . The Whitehead graph of H(r, n) is
connected if and only if r > 1 and (n, r) = 1, and in this case it is of type (I.5), as shown
in Figure 1, where (as also in Figure 5) the edge labels denote their multiplicities, a
vertex label i denotes vx i , and a vertex label i denotes v′x i

.
As a warm up to our main result, Theorem A, in this section we show that,

when the Whitehead graph is connected (that is, if n, r > 1 and (n, r) = 1), then
H(r, n) is a spine of a closed, oriented 3-manifold M. The positive presentations of
type Z, considered in [42], also have Whitehead graphs of type (I.5) and, subject to

� � � �

� � � �

n − r 0 r 2r

−2r + 1 −r + 1 1 r + 1

⋯ ⋯1 r − 1 1 r − 1 1 r − 1 1

Figure 1: Whitehead graph for H(r, n) (where (r, n) = 1).
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4 G. Williams
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Figure 2: Face pairing polyhedron for H(r, n).

certain hypotheses, they are spines of closed, oriented manifolds N [42, Theorem 8].
The manifolds M can often be distinguished from the manifolds N by compar-
ing their fundamental groups π1(M) = H(r, n) ≅ Zr and π1(N). For example, by
[42, Proposition 6], π1(N) is often infinite and [42, Table 1] provides computational
evidence that many of the finite groups π1(N) are non-cyclic.

Consider the polyhedron in Figure 2 with face pairing given by identifying the
faces F+i , F−i (0 ≤ i < n). We shall show that the identification of faces results in a
3-complex M whose 2-skeleton is the presentation complex of H(r, n), so M has
one 0-cell, n 1-cells, n 2-cells, and one 3-cell, so is a manifold by [49, Theorem I,
Section 60].

Let [S , N]i denote the arc of the face F+i with initial vertex S and terminal vertex
N. All the arcs labeled x0 are contained in the following cycle (of length r):
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r 2
1

r 2
1

r 2
1

1 123 123 123

⋯ ⋯ ⋯

F+n−r F+0 F+r F+2r

F−−2r+1 F−−r+1 F−1 F−r+1

⋯ ⋯

Figure 3: Heegaard diagram for the manifold M(r, n).

1 r

3 2
2 1

⋮ F+F−

Figure 4: Heegaard diagram for the manifold M(r, n)/ρ.

[S , N]0
Fn−(r−1)�→ [w2

n−(r−1), w1
n−(r−1)]

Fn−(r−2)�→ [w3
n−(r−2), w2

n−(r−2)]
Fn−(r−3)�→ [w4

n−(r−3), w3
n−(r−3)]

Fn−(r−4)�→ ⋯ Fn−2�→ [wr−1
n−2 , wr−2

n−2]
Fn−1�→ [N , wr−1

n−1]
F0�→ [S , N]0 .

All the vertices that are a vertex (either initial or terminal) of an arc labeled x0
are contained in the (induced) cycle of the initial vertices in the arcs above, so in the
resulting complex M these vertices are identified. In particular, vertices N , S are iden-
tified, and (by comparing initial vertices) for 1 < j < r vertices wr− j+1

n− j are identified
with S. Therefore, for each 0 ≤ i < n, 1 < j < r the vertex w j

i = θ i+r− j+1(w j
n−(r− j+1)) is

identified with S. Therefore all the vertices of the polyhedron are identified. Thus the
quotient M has one 3-cell, n 2-cells, n 1-cells, and one 0-cell, and since the boundaries
of the 2-cells spell the relators of H(r, n), it follows that M is a closed, oriented
3-manifold, and H(r, n) is a spine of M.

As in (for example) [57, proof of Proposition 2], a Heegaard diagram for M arising
from the face pairing polyhedron is given in Figure 3. This diagram has a rotational
symmetry ρ of order n cyclically permuting the faces F+i → F+i+r and F−i → F−i+r . The
quotient of M by ρ is a 3-orbifold in which the image of the rotation axis is a singular
set. This yields the Heegaard diagram for M/ρ in Figure 4, which is the canonical
diagram of the lens space L(r, 1). Hence the manifold M is an n-fold cyclic branched
cover of L(r, 1).
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6 G. Williams

4 Cyclic presentations Gk/l(n, f ) as spines of type (II.7)

For n ≥ 2, k, l ≥ 1, 0 ≤ f < n, let Gk/l(n, f ) be the cyclic presentation

Gn((y0 y f . . . y(l−1) f )(y l f+1 y(l+1) f+1 . . . y(l+(k−1)) f+1)(y2 y2+ f . . . y2+(l−1) f )−1)

and let Gk/l(n, f ) be the group it defines. When n ≥ 4, the Whitehead graph of
Gk/l(n, f ) is planar if and only if n is even and either f k ≡ 0 mod n or f k ≡ 2 mod n,
in which case it is of type (II.7) if (k, l) ≠ (1, 1) and is of type (II.11) if k = l = 1; see
Figure 5. Our main result is the following.

Theorem A Let n ≥ 4, f k /≡ 2 mod n, and (k, l) ∈ {(k, 1), (1, l), (5, 2), (2, 5)}. Then
Gk/l(n, f ) is a spine of a closed, oriented 3-manifold Mk/l(n, f ) if and only if n and f
are even and f k ≡ 0 mod n.

Our motivation for studying these presentations (and, in particular, under the
condition f k ≡ 0 mod n but not under the condition f k ≡ 2 mod n) stems from the
following connection to the Fractional Fibonacci groups. The presentationsGk/l(n, 0)
are the Fractional Fibonacci group presentations

Fk/l(n) = Gn(x l
0xk

1 x−l
2 )

introduced in [40, 41, 55, 56], generalizing the Fibonacci group presentationsF1/1(n).
For even n and coprime integers k, l ≥ 1, the Fractional Fibonacci group F k/l(n) is a
3-manifold group [40, Theorem 4.1], [41, Section 4], [55, Section 2], [56, Section 2]. If
n ≥ 2 is even then F1/1(n) was shown to be a spine of a closed, oriented, 3-manifold
in [16],[22],[23],[24]. More generally, if k, l ≥ 1 are coprime and n is even, then setting
s i = q i = l , p i = −r i = k in [47, Theorem 6] gives that Fk/l(n) is a spine of a closed,
oriented, 3-manifold. If n is odd then Fk/l(n) is not a spine, since its Whitehead
graph is non-planar. The question as to when, for odd n, F k/l(n) is a 3-manifold
group is considered in [26, Theorem 3] for the case k = l = 1, and in [17, Theorem 6.2]
for the case l = 1 and the case n = 3. The abelianization F k/1(n)ab is obtained in
[41, Lemma 1], [46, Corollary 4.3].

� � � �

� � � � � � � � �

� � � � �

λ λ λ λ λ

λ λ λ λ

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

f − 4 f − 2 f f + 2 f + 4

−4
−3

−2
−1

0
1

2
3

4

f − 3 f − 1 f + 1 f + 3

⋯

⋯

⋯

⋯

Figure 5: Whitehead graph forGk/l(n, f ) (where λ = 2l + k − 3, n even and f k ≡ 0 or 2 mod n).
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3-manifold spine cyclic presentations with seldom seen Whitehead graphs 7

The shift extension Ek/l(n) = F k/l(n) ⋊θ Zn of F k/l(n) by Zn = ⟨t ∣ tn⟩ has the
presentation

Ek/l(n) = ⟨x , t ∣ tn , x l txk tx−l t−2⟩,(1)

where the second relator is obtained by rewriting the relators of F k/l(n) in terms
of the substitutions x i = t i xt−i (see, for example, [31, Theorem 4]). As set out in
[5, Section 2], for 0 ≤ f < n such that f k ≡ 0 mod n, there is a retraction ν f ∶
Ek/l(n) → Zn = ⟨t ∣ tn⟩ given by ν f (t) = t, ν f (x) = t f . The kernel, ker(ν f ), has a
presentation with generators y i = t i xt−(i+ f ) (0 ≤ i < n) and relators that are rewrites
of conjugates of the second relator of Ek/l(n) by powers of t, and so has the cyclic
presentation Gk/l(n, f ). In particular (under the condition f k ≡ 0 mod n),

Gk/1(n, 0) = Gn(y0 yk
1 y−1

2 ) = Fk/1(n),
G1/l(n, f ) = G1/l(n, 0) = Gn(y l

0 y1 y−l
2 ) = F1/l(n),

G5/2(n, f ) = Gn((y0 y f )(y2 f+1 y3 f+1 y4 f+1 y1 y f+1)(y2 y2+ f )−1),
G2/5(n, f ) = Gn((y0 y f y0 y f y0)(y f+1 y1)(y2 y2+ f y2 y2+ f y2)−1).

The shift extension

Gk/l(n, f ) ⋊θ Zn = ⟨y, t ∣ tn , (yt f )l t(yt f )k t− f k+1(yt f )−l t−2⟩
= ⟨x , t ∣ tn , x l txk t− f k+1x−l t−2⟩

(by setting x = yt f and eliminating y). In the case f k ≡ 0 mod n, this coincides with
Ek/l(n), which is independent of the value of f. This implies, for example, that the
order of Gk/l(n, f ) is independent of f, the shift dynamics of Gk/l(n, f ) are identical
for all values of f [5, Lemma 2.2], and that Gk/l(n, f ) is (non-elementary) word
hyperbolic if and only if F k/l(n) is (non-elementary) word hyperbolic. In Theorem 4.5
we similarly show that, for fixed k, l , n, if two groups Gk/l(n, f1), Gk/l(n, f2) sharing a
shift extension are fundamental groups of closed, connected, orientable 3-manifolds
then either both manifolds are hyperbolic, or neither are. Observe that (under the
hypothesis f k ≡ 0 mod n), as in Figure 5, the Whitehead graph of Gk/l(n, f ) has
vertices vy i , v′y i

and edges (vy i , vy i+1), (v′y i
, v′y i+2

), (vy i , v′y i+ f
) (of multiplicity 2l +

k − 3), and so the Whitehead graph of Gk/l(n, f ) is obtained from that of Fk/l(n) =
Gk/l(n, 0) by replacing each edge (vy i , v′y j

) by the edge (vy i , v′y j+ f
).

Remark 4.1 In the general setting of [5], if ν f ∶ ⟨x , t ∣ tn , W(x , t)⟩ → ⟨t ∣ tn⟩ (n ≥ 2)
is a retraction given by ν f (t) = t and ν f (x) = t f then ker(ν f )has a cyclic presentation
Gn(ρ f (W(x , t))) where ρ f (W(x , t)) is as defined in [5, p. 159]. Analysis of the
length two subwords x ε ι

u(ι)x
ε ι+1
u(ι+1) of ρ f (W(x , t)) (where ει = ±1, ει+1 = ±1) provides

a description of the edge set of the Whitehead graph of Gn(ρ f (W(x , t))). Given
two such retractions ν f1 , ν f2 this description yields that the Whitehead graph of
P2 = Gn(ρ f2(W(x , t))) is obtained from that of P1 = Gn(ρ f1(W(x , t))) by replacing
each edge (vx i , v′x j

) by the edge (vx i , v′x j+( f2− f1)
), leaving all other edges unchanged.

In particular, if the Whitehead graph of P1 is one of the types in the planarity
classification of [27] then the Whitehead graph of P2 is of the same type.
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8 G. Williams

In contrast, for fixed k, l , n, two groups Gk/l(n, f1), Gk/l(n, f2) sharing a shift
extension will typically be non-isomorphic. We give examples of this in Example 4.2
and Lemma 4.3. Further, in the case f k ≡ 0 mod n, we also have that the presentation
Gk/l(n, f ) has a planar Whitehead graph. Since the group Gk/l(n, f ) shares its shift
extension with that of F k/l(n), these properties combined suggest that the geometric
properties of F k/l(n) and Fk/l(n) may be inherited by Gk/l(n, f ) and Gk/l(n, f ).
However, while [47, Theorem 6] implies that Fk/l(n) is a spine for all coprime k, l
and even n ≥ 2, Lemma 4.4 will show that, additionally, f must be even for Gk/l(n, f )
to be a spine of a closed, oriented, 3-manifold. This demonstrates that, generally,
given two retractions ν f1 , ν f2 ∶ ⟨x , t ∣ tn , W(x , t)⟩ → ⟨t ∣ tn⟩whose kernels have cyclic
presentations P1 ,P2, as in Remark 4.1, it is not the case that P1 is a spine of a
closed, oriented 3-manifold if and only if P2 is such a spine. In the other planar case,
f k ≡ 2 mod n, the groups Gk/l(n, f ) do not share a shift extension with F k/l(n), so
there is no apriori reason to expect similar geometric properties to hold.

Example 4.2 (Non-cyclic finite groups.) The groups G3/1(3, 0), G3/1(3, 1), are solv-
able of order 3528, and derived lengths 3, and 4, respectively ([30, p. 282], [41,
Remark 1]) and hence are non-isomorphic. The groups G3/2(3, 0), G3/2(3, 1), are
solvable of order 504, and derived lengths 2 and 3, respectively (using [19]) and hence
are non-isomorphic.

In Lemma 4.3, we use the fact that the order of the abelianization Gk/l(n, f )ab is
given by ∣Res(p f (t), tn − 1)∣, if this is non-zero, and is infinite otherwise, where

p f (t) = (1 − t2)(1 + t f +⋯+ t(l−1) f ) + t l f+1(1 + t f +⋯+ t(k−1) f )

is the representer polynomial of Gk/l(n, f ), and Res(⋅, ⋅) denotes the resultant
[32, p. 82]. As we will only be interested in the absolute values of resultants (and
not the sign), to avoid repetitive use of modulus signs we will take Res(⋅, ⋅) to mean
∣Res(⋅, ⋅)∣.

Lemma 4.3 Let n, k, l ≥ 1 where n, k are even and gcd(k, l) = 1 then F k/l(n) =
Gk/l(n, 0) /≅ Gk/l(n, n/2).

Proof For any 0 ≤ f < n

Res(p f (t), tn − 1) = Res(p f (t), tn/2 − 1) ⋅ Res(p f (t), tn/2 + 1).(2)

The hypotheses imply that l is odd so we have

Res(pn/2(t), tn/2 − 1) = Res(l(1 − t2) + kt, tn/2 − 1)
= Res(p0(t), tn/2 − 1),

and, setting α, ᾱ = (k ±
√

k2 + 4l 2)/(2l),

Res(p0(t), tn/2 + 1) = Res (l(t − α)(t − ᾱ), tn/2 + 1)
= l n/2(αn/2 + 1)(ᾱn/2 + 1)
= l n/2 ((−1)n/2 + 1 + (αn/2 + ᾱn/2)) .

Downloaded from https://www.cambridge.org/core. 07 Oct 2025 at 15:20:57, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


3-manifold spine cyclic presentations with seldom seen Whitehead graphs 9

On the other hand,

Res(pn/2(t), tn/2 + 1) = Res (l(1 − t2) + kt(1 + tn/2)/2, tn/2 + 1)
= l n/2 ⋅ 2(1 + (−1)n/2).

Therefore Res(p0(t), tn/2 + 1) ≠ Res(pn/2(t), tn/2 + 1) so, by equation (2), Res(p0(t),
tn − 1) ≠ Res(pn/2(t), tn − 1). Hence ∣Gk/l(n, 0)ab∣ ≠ ∣Gk/l(n, n/2)ab∣, and the result
follows. ∎

Lemma 4.4 Suppose n ≥ 4, k, l ≥ 1, 0 ≤ f < n where n is even, f k ≡ 0 mod n, and
gcd(k, l) = 1. If f is odd then Gk/l(n, f ) is not a spine of a closed, oriented 3-manifold.

Proof First note that if f is odd, then the hypotheses imply that l is odd. The
Whitehead graph of Gk/l(n, f ) has a planar embedding, as shown in Figure 5.
It has two n/2-gons v′y0

− v′y2
−⋯− v′yn−2

− v′y0
and v′y1

− v′y3
−⋯− v′yn−1

− v′y1
,

n 3-gons vy i − vy i+1 − v′y i+ f+1
− vy i , n 4-gons vy i − vy i+1 − v′y i+ f+2

− v′y i+ f
− vy i , and λn

2-gons vy i − v′y i+ f+1
− vy i , where λ = 2l + k − 3. It follows that the reduced Whitehead

graph is unique up to self homeomorphism of S2.
If Gk/l(n, f ) is a spine of a closed, oriented, 3-manifold then in a putative corre-

sponding face-pairing polyhedron, there are two degree n/2 source vertices, N , S, say,
where N has outgoing arcs in cyclic order y0 , y2 , y4 , . . . , yn−2 and S has outgoing arcs
in cyclic order y1 , y3 , y5 , . . . , yn−1. The 2-cells incident to N are therefore, in cyclic
order, F−0 , F−2 , F−4 , . . . , F−n−2, where the boundary of F−i reads, anticlockwise, the i’th
relator of Gk/l(n, f ). The arc labeled y2, with initial vertex N, is the first of a path
y2 − y2+ f −⋯− y2+(l−1) f . Let v denote the terminal vertex of the last arc in this path.
Then v has two incoming arcs labeled y(l−1) f+1 , y(l−1) f+2, and an outgoing arc labeled
y l f+3. Therefore v is a degree 4 vertex, and its remaining arc is outgoing, and labeled
y l f+1. The outgoing arcs y l f+1 , y l f+3 then bound the F−l f+1 face. Since l , f are odd,
l f + 1 is even, so the face pairing contains two F−l f+1 faces, a contradiction. ∎

In Figures 6, 7, 8, and 9, we present face-pairing polyhedra with n pairs of faces
F+i , F−i (0 ≤ i < n) of opposite orientation whose boundaries spell the defining relators
of the relevant presentation Gk/l(n, f ). In the proof of Theorem A, we show that the
identification of faces F+i , F−i results in a 3-complex that satisfies the Seifert–Threlfall
condition, and so is a manifold whose spine is the presentation complex ofGk/l(n, f ).
(Note that, in these figures, the condition that f is even is necessary for each relator
to appear as the label of a pair of oppositely oriented faces.) The diagrams have
different forms depending on whether l > k or k > l . The figures should provide the
enthusiastic reader with sufficient information to construct face-pairing polyhedra
in the general cases. The values {k, l} = {2, 5} were selected so that k, l , ∣k − l ∣ are
distinct, to make it straightforward to infer paths of lengths k, l , and ∣k − l ∣. (For
example, in Figure 7 the path from v2 f to u2 has length 3 = k − l , and in Figure 9 the
path from w f to v f−1 has length 3 = l − k.) We expect the Seifert–Threlfall condition to
hold in the general case for coprime k, l ; however, the corresponding analysis to check
this would be highly technical. Since our goal is to exhibit new cyclic presentations
that arise as spines of closed 3-manifolds, whose Whitehead graphs are of type (II.7),
rather than to be exhaustive, we have not sought to do this.
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F−f−1 F+f F−f+1 F+f+2 F−f+3 F+f+4 F−f+5 F+f+6

F+−1 F+1 F+3 F+5 F+7

Figure 6: Face pairing polyhedron for Gk/1(n, f ).

Proof of Theorem A We may assume n is even and f k ≡ 0, for otherwise the
Whitehead graph of Gk/l(n, f ) is not planar [27] (noting that f k /≡ 2 mod n, by
hypothesis). Moreover, by Lemma 4.4 we may assume f is even.

Case 1: (k, l) = (k, 1). Consider the face pairing polyhedron depicted in Figure 6
(where the arc labels can be deduced from the position of the unique source in the
boundary of each face) with face pairing given by identifying the faces F+i , F−i (0 ≤
i < n). We shall show that the identification of faces results in a 3-complex M whose
2-skeleton is the presentation complex of Gk/l(n, f ), so M has one 0-cell, n 1-cells, n
2-cells, and one 3-cell, so is a manifold by [49, Theorem I, Section 60].

All the arcs labeled x0 are contained in the following cycle:

[N , u0]
F0�→ [u1− f , v0]

F−1�→ [wk−2
f , u1]

F f−1�→ [wk−3
2 f , wk−2

2 f ]
F2 f−1�→ [wk−4

3 f , wk−3
3 f ]

F3 f−1�→ ⋯
F(k−3) f−1�→ [w1

(k−2) f , w2
(k−2) f ]

F(k−2) f−1�→ [v(k−1) f−2 , w1
(k−1) f ]

F(k−1) f−1�→ [v(k−1) f−3 , w1
0]

F−2�→ [N , u0].
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Figure 7: Face pairing polyhedron for G5/2(n, f ).

Therefore, in the resulting complex M all the arcs labeled x0 are identified. Moreover,
all the vertices that are a vertex (either initial or terminal) of an arc labeled x0 are
contained in the (induced) cycle of the initial vertices in the arcs above, so these
vertices are identified in M. By applying the shift θ2 j (0 ≤ j < n/2) to the above, all
the arcs labeled x2 j are identified and all the vertices of such arcs are identified. That
is, the vertices N , u2 j+(1− f ) , wk−2

2 j+ f , wk−3
2 j+2 f , . . . , w1

2 j+(k−2) f , v2 j+(k−1) f−2 are identified;
equivalently, N, u2 j+1 , w1

2 j , . . . wk−2
2 j , v2 j (0 ≤ j < n/2) are identified.

All the arcs labeled x1 are contained in the following cycle:

[S , u1]
F1�→ [u2− f , v1]

F0�→ [wk−2
f+1 , u2]

F f�→ [wk−3
2 f+1 , wk−2

2 f+1]
F2 f�→ [wk−4

3 f+1 , wk−3
3 f+1]

F3 f�→⋯
F(k−3) f�→ [w1

(k−2) f+1 , w2
(k−2) f+1]

F(k−2) f�→ [v(k−1) f−1 , w1
(k−1) f+1]

F(k−1) f�→ [v(k−1) f−2 , w1
1]

F−2�→ [S , u1].

Therefore, in M all the arcs labeled x1 are identified. Moreover, all the vertices that
are a vertex (either initial or terminal) of an arc labeled x1 are contained in the
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Figure 8: Face pairing polyhedron for G1/l(n, 0) = F1/l(n).
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Figure 9: Face pairing polyhedron for G2/5(n, f ).
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14 G. Williams

(induced) cycle of the initial vertices in the arcs above, so these vertices are identified
in M. By applying the shift θ2 j (0 ≤ j < n/2) to the above, all the arcs labeled x2 j+1
are identified and all the vertices of such arcs are identified. That is, the vertices
S , u2 j+(2− f ) , wk−2

2 j+ f+1 , wk−3
2 j+2 f+1 , . . . , w1

2 j+(k−2) f+1 , v2 j+(k−1) f−1 are identified; that is S,
u2 j , w1

2 j+1 , . . . wk−2
2 j+1 , v2 j+1 (0 ≤ j < n/2) are identified. Moreover, examining the termi-

nal vertices of the first cycle above we see that u0 and u1 are identified. Therefore the
vertices induced from the first cycle are identified with the vertices from the second
cycle, so all vertices of the polyhedron are identified. Thus M has one 3-cell, n 2-cells,
n 1-cells, and one 0-cell, and since the boundaries of the 2-cells spell the relators of
G1/l(n, 0), it follows that G1/l(n, 0) is a spine of a closed 3-manifold, as required.

Case 2: (k, l) = (5, 2). Consider the face pairing polyhedron depicted in Figure 7
(where the arc labels can be deduced from the position of the unique source in the
boundary of each face) with face pairing given by identifying the faces F+i , F−i (0 ≤
i < n). All the arcs labeled x0 are contained in the following cycle:

[N , s0]
F0�→ [u1−2 f , t0]

F−1�→ [w1
2 f−1 , w2

2 f−1]
F2 f−1�→ [r2 f−1 , v4 f−1]

F4 f−2�→ [s4 f , u4 f ]
F4 f�→ [t4 f , v4 f ]

F4 f−1�→ [w2
f−1 , u− f+1]

F f−1�→ [v3 f−1 , w1
3 f−1]

F3 f−1�→ [u3 f−1 , r3 f−1]
F−2�→ [N , s0],

and all the arcs labeled x1 are contained in the following cycle:

[S , s1]
F1�→ [u2−2 f , t1]

F0�→ [w1
2 f , w2

2 f ]
F2 f�→ [r2 f , v4 f ]

F4 f−1�→ [s4 f+1 , u4 f+1]
F4 f+1�→ [t4 f+1 , v4 f+1]

F4 f�→ [w2
f , u− f+2]

F f�→ [v3 f , w1
3 f ]

F3 f�→ [u3 f , r3 f ]
F−1�→ [S , s1].

The proof then proceeds as in Case 1.
Case 3: (k, l) = (1, l). Consider the face pairing polyhedron depicted in Figure 8.

All the arcs labeled x0 are contained in the following cycle:

[N , u1
0]

F0�→ [w0 , t1
0]

F−2�→ [u1
0 , u2

0]
F0�→ [t1

0 , t2
0]

F−2�→ [u2
0 , u3

0]
F0�→ [t2

0 , t3
0] �→ ⋯

F−2�→ [u l−2
0 , u l−1

0 ]
F0�→ [t l−2

0 , v−1]
F−2�→ [u l−1

0 , w−1]
F0�→ [v−1 , v0]

F−1�→ [w−2 , w0]
F−2�→ [N , u1

0],

and all the arcs labeled x1 are contained in the following cycle:

[S , u1
1]

F1�→ [w1 , t1
1]

F−1�→ [u1
1 , u2

1 ]
F1�→ [t1

1 , t2
1 ]

F−1�→ [u2
1 , u3

1 ]
F1�→ [t2

1 , t3
1 ] �→ ⋯

F−1�→ [u l−2
1 , u l−1

1 ]
F1�→ [t l−2

1 , v0]
F−1�→ [u l−1

1 , w0]
F1�→ [v0 , v1]

F0�→ [w−1 , w1]
F−1�→ [S , u1

1].

The proof then proceeds as in Case 1.
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Case 4: (k, l) = (2, 5). Consider the face pairing polyhedron depicted in Figure 9.
All the arcs labeled x0 are contained in the following cycle:

[N , u1
0]

F0�→ [w0 , t1
0]

F−2�→ [u2
0 , u3

0]
F0�→ [t2

0 , v−1]
F−2�→ [u4

0 , w f−1]
F0�→ [s−1 , v0]

F−1�→ [r f−2 , w f ]
F f−2�→ [u1

f , u2
f ]

F f�→ [t1
f , t2

f ]
F f−2�→ [u3

f , u4
f ]

F f�→ [v f−1 , s f−1]
F f−1�→ [w2 f−2 , r2 f−2]

F2 f−2�→ [N , u1
2 f ],

and all the arcs labeled x1 are contained in the following cycle:

[S , u1
1]

F1�→ [w1 , t1
1]

F−1�→ [u2
1 , u3

1 ]
F1�→ [t2

1 , v0]
F−1�→ [u4

1 , w f ]
F1�→ [s0 , v1]

F0�→ [r f−1 , w f+1]
F f−1�→ [u1

f+1 , u2
f+1]

F f+1�→ [t1
f+1 , t2

f+1]
F f−1�→ [u3

f+1 , u4
f+1]

F f+1�→ [v f , s f ]
F f�→ [w2 f−1 , r2 f−1]

F2 f−1�→ [S , u1
2 f+1].

The proof then proceeds as in Case 1. ∎

We now consider the structures of the manifolds Mk/l(n, f ) of Theorem A.

Theorem 4.5 Let n ≥ 2, k, l ≥ 1, 0 ≤ f < n, and f k ≡ 0 mod n, where n, f are even,
and suppose (k, l) ∈ {(k, 1), (1, l), (5, 2), (2, 5)}. Then Mk/l(n, f ) is hyperbolic if and
only if Mk/l(n, 0) is hyperbolic.

Proof By [17, Corollary 3.3] the shift θG k/l (n ,0) has order n, and hence the shift
θG k/l (n , f ) also has order n. Suppose Mk/l(n, 0) is hyperbolic. Then since, by The-
orem A, Mk/l(n, 0) is a closed, connected, orientable 3-manifold, Gk/l(n, 0) is a
subgroup of Isom+(H3) ≅ PSL(2,C). As in the proof of [40, Theorem 3.1] (see also
[12, Theorem 3.1], [14, Theorem 3.1], [3, Theorem 3.1]) Mostow rigidity implies that
Ek/l(n) is a subgroup of PSL(2,C). Hence Gk/l(n, f ) is a subgroup of PSL(2,C),
and so Mk/l(n, f ) is hyperbolic. Repeating the argument with the roles of Gk/l(n, 0)
and Gk/l(n, f ) interchanged and the roles of Mk/l(n, 0) and Mk/l(n, f ) inter-
changed proves the converse. ∎

Remark 4.6 The argument of the proof of Theorem 4.5 holds in the more general
setting of [5]. Namely, if ν f1 , ν f2 ∶ ⟨x , t ∣ tn , W(x , t)⟩ → ⟨t ∣ tn⟩ (n ≥ 2) are retractions
given by ν f1(t) = ν f2(t) = t and ν f1(x) = t f1 , ν f2(x) = t f2 then K1 = ker(ν f1), K2 =
ker(ν f2)have cyclic presentationsGn(ρ f1(W(x , t))),Gn(ρ f2(W(x , t))), respectively
(as defined in [5, p. 159]). Suppose that the shift automorphism has order n for
either (and hence both) of these groups, and that K1 , K2 are fundamental groups
of closed, connected, orientable 3-manifolds M1 , M2, respectively. Then M1 is
hyperbolic if and only if M2 is hyperbolic. (Theorem 4.5 corresponds to the case
W(x , t) = x l txk tx−l t−2, as in (1), where (k, l) ∈ {(k, 1), (1, l), (5, 2), (2, 5)}.) We
record that, since K1 is finite if and only if K2 is finite, it is also the case that M1 is
spherical if and only if M2 is spherical.
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The significance of Theorem 4.5 is that the manifolds Mk/l(n, 0) are known to be
hyperbolic in many cases, as we now describe. By [56, Corollary 2.1], if n ≥ 6 is even
then Mk/l(n, 0) is hyperbolic for all but finitely many pairs of coprime integers k, l ,
and it is conjectured [56, p. 658] that n = 6 and k = l = 1 is the only non-hyperbolic
case (which is an affine Riemannian manifold by [22, Proposition 6]). Moreover,
Mk/l(n, 0) is hyperbolic in each of the following cases: k ≥ 2, l = 1, n ≥ 6 and even
[41, Theorem 3]; k = 1, l ≥ 2, n ≥ 6 and even [56, Corollary 3.5]; k = l = 1, n ≥ 8 and
even [22, Theorem C]. If n = 4 and k = 1 then Mk/l(n, 0) = M1/l(4, 0) is the lens space
L(4l 2 + 1, 2l) and G1/l(4, 0) ≅ Z4 l 2+1 by [56, Corollary 3.4]. For k ≥ 2 the manifolds
Mk/1(4, 0) are not hyperbolic and are described in [41, pp. 170–171]. In the next
theorem we consider the manifolds Mk/l(4, f ) where k ≥ 2.

Theorem 4.7 Let k ≥ 2, l ≥ 1, where gcd(k, l) = 1 and suppose f k ≡ 0 mod 4. Then
Gk/l(4, f ) contains a Z⊕Z subgroup and hence Mk/l(4, f ) is not hyperbolic.

Proof We show that the subgroup A of E = Ek/l(4) generated by xk , txk t−1 is free
abelian of rank 2. Then, since ν f (xk) = 1 and ν f (txk t−1) = 1, A = Z⊕Z is a subgroup
of ker(ν f ) = Gk/l(4, f ), and hence Mk/l(4, f ) is not hyperbolic by [6, Theorem 3.3].

Let G = ker(ν0), so G = F k/l(4) and is generated by x i = t i xt−i , and let G1 =
⟨x0 , x2 ∣ xk

0 xk
2 ⟩, G2 = ⟨x1 , x3 ∣ xk

1 xk
3 ⟩, H = ⟨a, b ∣ ab = ba⟩ ≅ Z2. Let ϕ1 ∶ H → G1,

ϕ2 ∶ H → G2, be given by ϕ1(a) = xk
0 , ϕ1(b) = x−l

0 x l
2, ϕ2(a) = x−l

3 x l
1 , ϕ2(b) = xk

1 . We
shall show that ϕ1 , ϕ2 are injections. This implies that G can be expressed as an
amalgamated free product G = G1 ∗H G2, and ϕ1(a) = xk

0 , ϕ1(b) = x−l
0 x l

2 generate a
free abelian subgroup of G (compare [41, p. 171], which deals with the case l = 1). That
is, xk

0 and xk
1 generate a free abelian subgroup of G and so xk and txk t−1 generate a

free abelian subgroup of E, as required.
We show that ϕ1 is an injection, the argument for ϕ2 being similar. Let α ∶ G1 →

Zk be given by α(x0) = 1, α(x2) = 1 ∈ Zk . Then K = ker(α) is generated by z = xk
0 ,

g i = x i
0x2x−(i+1)

0 (0 ≤ i ≤ k − 2), gk−1 = xk−1
0 x2, and has a presentation

⟨z, g0 , . . . , gk−1 ∣ zg0 g1 . . . gk−2 gk−1 , zg1 g2 . . . gk−1 g0 , . . . , zgk−1 g0 . . . gk−3 gk−2⟩.

Now let θ ∶ K → Z
k be an epimorphism given by θ(g0) = (1, 0, . . . , 0), θ(g1) =

(0, 1, . . . , 0), . . . , θ(gk−1) = (0, 0, . . . , 1), and θ(z) = (−1,−1, . . . ,−1). Let l = qk + r
where q ≥ 0, 0 ≤ r < k and note that r ≠ 0, since gcd(k, l) = 1. Then x−l

0 x l
2 =

(xk
0 )−q x−r

0 (xk
2 )q x r

2 = (xk
0 )−q x−r

0 (x−k
0 )q x r

2 = z−2q−1 gk−r gk−(r−1) . . . gk−1 and xk
2 = z.

Therefore

θ(x−l
0 x l

2) = (2q + 1)(1, 1, . . . , 1) + (0, . . . , 0, 1, . . . , 1)
= (2q + 1, . . . , 2q + 1, 2q + 2, . . . , 2q + 2)

and θ(xk
2 ) = (−1,−1, . . . ,−1) so θ(x−l

0 x l
2), θ(xk

2 ) generate a free abelian subgroup of
rank 2 in Z

k . Moreover, in G1, x−l
0 x l

2 and xk
2 commute and so generate a free abelian

subgroup of G1, and hence ϕ1 is injective. ∎
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