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Abstract ~

Objective. Neural encoding of visual stimuli aims to predict brain responses.n the visual cortex to
different external inputs. Deep neural networks (DNNs) trained on relatively simple tasks such as image
classification have been widely applied in neural encoding studies of early visual areas. However, due to
the complex and abstract nature of semantic representations in high-level visual certices, their encoding
performance and interpretability remain limited. Approach. We propoese.a novel neural encoding model
guided by the image captioning task (ICT). During image captioning, an attention module is employed
to focus on key visual objects. In the neural encoding stage, a flexible receptive field (RF) module is
designed to simulate voxel-level visual fields. To bridge the'domain gap between these two processes,
we introduce the Atten-RF module, which effectively alignsattention-guided visual representations with
voxel-wise brain activity patterns. Main results. Experiments on the large-scale Natural Scenes Dataset
(NSD) demonstrate that our method achieves superior average encoding performance across seven high-
level visual cortices, with a mean squared error (MSE) of 0.765,Pearson correlation coefficient (PCC)
of 0.443, and coefficient of determination (R?) of 0.245. Significance. By leveraging the guidance and
alignment provided by a complex vision-language, taskyour model enhances the prediction of voxel
activity in high-level visual cortex, offering a new perspective on the neural encoding problem.
Furthermore, various visualization techniquessprovide deeper insights into the neural mechanisms
underlying visual information processing.

1. Introduction

Modeling the neural encoding of visual stimuli is a critical research paradigm aimed at uncovering
how the human brain processes_andiinterprets visual information [1, 2]. By examining the relationship
between visual stimuli and brain eﬁivity, neural encoding models not only help uncover fundamental
principles of cognitive neuroscience butalso provide innovative insights and approaches for applications
in medical diagnosis, human-computer interaction, and related fields. Compared to other neuroimaging
techniques, such as electroencephalogram (EEG) [3, 4] and magnetoencephalography (MEG) [5, 6],
functional magnetic resonance imaging (fMRI) offers richer and spatially precise information about brain
activity [7-10], making ituniquely advantageous for building neural encoding models.

In recent years, with the rapid advancement of deep learning technologies, neural encoding models
based on deep neural networks (DNN5s) have steadily emerged as a research hotspot [11-13]. Previous
studies haveproposed several traditional encoding models based on handcrafted features. Ahonen et al.
[14] proposed an’efficient facial image representation by extracting local binary pattern (LBP) texture
features. Nishimoto et al. [15] employed Gabor wavelets and motion energy features to predict voxel
responses in thewisual cortex. Huth et al. [16] used 1705 words to annotate video data and encoded high-
level'visual regions based on semantic annotation features. Compared to traditional methods, DNN-based
encoding models leverage the hierarchical structure of neural networks to progressively extract and
encode visualdnformation, which has been validated from multiple perspectives for better simulating the
hierarchical information processing patterns of the human visual cortex [17-19]. Such as St-Yves et al.
[20] achieved neural encoding by extracting Gabor features or deep network features from visual stimuli,
andithen'constructed a mapping between visual features and voxel activity. Wen et al. [12] utilized deep
residual networks to extract features for visual encoding, achieving better prediction performance than
AlexNet. Seeliger et al. [21] proposed a neural information flow (NIF) model, which represents neural
information processing through a network of coupled tensors, each encoding the representation of the
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sensory input contained in a region of interest (ROI). Wang et al. [22] introduced a framework based on
a spiking convolutional neural network (SCNN) to achieve neural encoding in a more biologically
plausible manner. Ma et al. [23] proposed a large-scale parameters framework with a sizable
convolutional kernel for encoding visual fMRI activity. With the emergence of pre-trained large models;
some studies have begun to rely on their powerful semantic representations, demonstrating remarkable
advantages in semantic encoding tasks of high-level visual cortices [24]. However, such approaches
overlook the structural feature processing mechanisms of low-level visual areas, which limits their ability.
to explain the hierarchical processing of visual information. This disconnection not only weakens model
interpretability but also restricts its potential applications in neuroscience research.

Existing research clearly shows that DNNs, driven by simple tasks like image classification, can
extract structural representations of images, such as edges and textures, through low-level networks [25,
26], thereby ensuring effective encoding of low-level visual cortices. However, these simple tasksionly
require identifying key targets in natural image scenes, which may cause the network to overlook smaller
targets, backgrounds, and their relationships. This limitation makes it difficult for/dDNNs to capture the
global semantics of visual scenes, resulting in restricted encoding performance for highélevel visual
cortices. In contrast, the Human Visual System (HVS) captures all key elements in a visual scene, not
just the main target. It forms representations of the relationships between different fargets, develops a
global understanding of the scene, and subsequently focuses on specific/regions or, targets based on
attention mechanisms and the requirements of corresponding visualstasks. Therefore, we propose
introducing high-level visual tasks to guide DNNs in constructing image representations that emphasize
advanced semantics. Specifically, the image captioning task (ICT) [27, 28]rinvolves generating a
sentence or paragraph to describe the image content, effectively "speaking from the picture".

In this paper, we propose a novel end-to-end neural network framework formodeling neural encoding
in the high-level visual cortex. The rich visual representations provided by the ICT module ensure high
voxel encoding performance. Conversely, the voxel encoding facilitates the prediction of brain activity
and enhances the biological interpretability of ICT. To bridgeithe gap between ICT (machine) and voxel
encoding process (mind) during model training, we further design amyinnovative attention-constrained
receptive field (RF) module, termed "Atten-RF". The'contributions of this paper are summarized as
follows:

i) By incorporating the hierarchical representationiof visual processing and integrating more complex
computer vision tasks, our method significantly improvesithe neural encoding performance in high-level
visual cortices.

ii) A novel attention-based RF module is‘introduced to bridge the domain gap between visual images
and brain responses, which in turn enhances the biological interpretability of computer vision models.

iii) Various visualization techniques are employed to investigate the RF distributions and semantic
encoding characteristics of high-level visual cortices, contributing to a deeper understanding of the
brain's information processing mechanisms.

2. Related work

2.1. Visual neural encoding N

Early studies on visual neural encoding have demonstrated that mapping deep neural network (DNN)
image representations to, cortical activity through sparse linear regression can effectively reveal the
correspondence between, artificial features and the hierarchical processing of the visual cortex. For
example, Wang et al. [26] and Seeliger et al. [29] showed that the shallow and deep layers of standard
convolutional neural networks (CNNs) exhibit stable correspondences with the primary and higher visual
cortices, respectively. However, due to the abstract and complex nature of representations in higher visual
areas, these modelsistill face limitations in encoding performance. With the emergence of pre-trained
large models, researchers have attempted to leverage more expressive features to improve neural
encoding. For instance, Wang et al. [24] employed Contrastive Language-Image Pretraining (CLIP)
features to  enhance /prediction performance in higher visual areas. Moreover, Transformer-based
architectures such'as the Vision Transformer (ViT) [30] have recently demonstrated strong
representational power, capable of learning diverse feature types through different pre-training objectives,
including cross-modal alignment as in CLIP and structural reconstruction as in Masked Autoencoders
(MAE). This‘provides new opportunities to examine how pre-training strategies influence encoding
performafnice. Nevertheless, it should be noted that methods such as CLIP and ViT are more oriented
toward global modeling in terms of training objectives and feature organization, and their hierarchical
features'do not strictly correspond to the stepwise processing in the biological visual system, thereby
limiting their interpretability in neuroscience research. In contrast, architectures with explicit hierarchical
structures, such as AlexNet and Residual Networks (ResNet), offer clearer layer-wise gradients, which
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are more conducive to analyzing the correspondence between artificial features and cortical hierarchy,
and thus provide higher analytical value for the study of higher visual areas [11].

2.2. ICT and attention

ICT aims to generate semantically rich, human-readable natural language descriptions for a given
image. As a key intersection of computer vision (CV) and natural language processing (NLP), this task
has widespread applications in image understanding, intelligent search engines, and automated
translation systems [31]. Traditional approaches, which often rely on template matching or handcrafted
feature extraction, offer some interpretability but are significantly limited in terms of flexibility and
semantic depth. With the rapid advancement of deep learning, neural network-based methods have
become mainstream. State-of-the-art image captioning models typically employ an "encoder-decoder"
architecture. CNNs are widely used to extract image features, while Recurrent Neural Networks (RNNs),
such as Long Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs);.are employed
to generate natural language descriptions [32]. This end-to-end learning paradigm facilitates the
automatic capture of semantic associations between images and text directly from data,sresulting in
significant improvements in the quality and diversity of generated descriptions.

Drawing inspiration from human attention patterns, recent studies shave integrated attention
mechanisms to improve models' ability to focus on specific regions of an image. For\lhstance, Xu et al.
[33] proposed a soft attention-based image captioning model that dynamically focuses on the image
regions most relevant to the word being generated. This approach enabled acloser.ifitegration of visual
and textual information. Anderson et al. [34] further developed this concept by introducing a Bottom-Up
and Top-Down Attention model, which leverages object detectors toidentify salient regions of an image.
This method significantly enhanced the accuracy of generated captions and the ability to express fine-
grained details. Yao et al. [35] incorporated graph structures to tackle the relational challenges between
visual and textual modalities, using the attention mechanismdo align critical information across both.

2.3. RF modeling

The RF models aim to characterize the spatial extent and functional properties of neural units in
response to stimuli within their visual or auditory environment [36]. By studying RF models, we can
gain valuable insights into how neurons process and.encode external information during perceptual tasks
such as vision and audition. Kay et al. [37] utilized a linear combination of Gabor basis functions with
different spatial frequencies, orientations, and positions toypredict voxel responses in the early visual
areas, achieving promising encoding results. St-Yves et al. [20] proposed an encoding model based on
the feature-weighted receptive field (fwREF), whichrassumes that each voxel has a fixed RF associated
with the processing of features from a specificregion of the image stimulus. By weighting and combining
features from the fixed RF across all feature maps. of the DNNSs, this model outperformed previous
methods and revealed that different voxels in the visual cortex have distinct RFs. In contrast to the rigid
prior assumptions about RF described above, Wang et al. [25] proposed an RF estimation method with
weaker prior constraints, enhancing the expressiveness and interpretability of the encoding model.

RF models describe the local sensitivity of each voxel to input stimuli by defining the range of
information it receives. This appr(ﬁth enables a more intuitive understanding of how different voxels
encode specific stimuli, thereby delving deeper into the functional organization structure of the brain.
Xue et al. [38] introduced the fwRF framework to train high-performing encoding models for the ventral
visual pathway. However, these voxel-wise encoding methods treat each voxel as an independent unit,
overlooking the interactions,and information exchange between different voxels. This simple encoding
approach not only suffers from' low efficiency but also fails to capture the information processing
mechanisms of the entire brain. In recent years, ROI-wise encoding methods have emerged, where voxels
within different functional regions of the brain are encoded simultaneously. Qiao et al. [39] designed an
end-to-end ROI-wise ‘convolution regression model, achieving more effective and efficient visual
encoding compared to.existing voxel-wise methods.

3. Method

To enhance the prediction of voxel activity in high-level visual cortices and to explore the encoding
mechanisms of the HVS, we propose a novel end-to-end neural encoding network. The schematic
diagram of the proposed framework is presented in Figure 1A. In the following, each component and the
training process of the proposed model will be explained in detail.
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Figure 1. Schematic diagram of the proposed model. (A) The schematic diagram of the proposed neural network
framework, comprising an ICT and a neural encoding progress. The “Atten-RF” module is designed to enhance
consistency between the two during model training:(B) The feature map extraction module consists of ResNet101
without a classification head and an adaptive pooling layer.

3.1. Notations

Let N pairs of neural encoding/data be tepresented as {(x™,t",y™) | x" € RP,t" € RK y" € ]RV}n -

where x denotes the stimulus image, £ represents the corresponding text, and y is the evoked fMRI
activity. P, K, and V represent the dimensions of image pixels, text length, and the number of fMRI
voxels, respectively. For a/given{image x", the extracted feature maps are FM™ € R¢XS, where C
represents the channel dimension and /'S denotes the spatial resolution. The matched spatial RFs of all
voxels are defined as w'f = [rfl, 7fv] € RV*S, Ultimately, the predicted d-th word and v-th voxel’s
brain response are Ly andyJ%, respectively. Without loss of generality, we omit the sample annotation
n in subsequent explanations and illustrate the process using a single sample.

3.2.Feature map extraction

Existing frameworks for neural encoding of visual stimuli universally rely on learning image
representations, which transform visual stimuli into low-dimensional feature spaces to facilitate a deeper
understanding and efficient processing of visual information. Over the years, numerous models have
been built.and pre-trained many models that are extraordinarily good at classifying an image into one of
a thousand categories. Among these models, CNNs remain the mainstream framework, with their
convolution, pooling, and related modules effectively capturing the spatial structural representations of
image data. They progressively generate increasingly compact representations of the original image, with
each subsequent layer producing more abstract features represented by a greater number of channels. We
opted for the 101-layer Residual Network (ResNet101) [40], pre-trained on the ImageNet classification
task, to extract feature maps and fine-tune them during model training, as this strategy typically achieves
better performance than training a new model from scratch. The network is readily available in Pytorch,
with its architecture illustrated in Figure 1B. As the last two layers are linear layers paired with a softmax
activation for classification, we strip them away. In addition, to obtain a fine-grained spatial resolution,
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which facilitates the generation of more detailed spatial attention maps and RF visualizations while
maintaining computational efficiency, we further applied an adaptive average pooling layer to increase
the resolution from 8x8 to 14x14. This operation essentially performs resolution upsampling in the
spatial domain without introducing any new information beyond what is already present in the,8x8
features. Ultimately, our feature map extractor, based on ResNet101, generates feature maps FM with
dimensions 14 X 14 and 2,048 channels.

3.3.Image captioning

Since the ICT involves generating a sequence, it requires an RNN. We employ an,LSTM network,
which effectively handles sequential data and long-term dependencies. Once generate the feature maps;
we can simply average and transform them to initialize the hidden state hy and cell state ¢g;enabling
the LSTM to produce the word sequence. Each predicted word is used to generate the next one. Instead
of the simple average, we want the LSTM to focus on different parts of the image at different timesteps
in the sequence. For example, while generating the word “airplane” in the sentence“an airplane sits at
the airport waiting to be loaded”, the LSTM would learn to focus on the image reégion corresponding to
the “airplane”. It considers the sequence generated so far and focuses on the part of the image that needs
to be described next, which is exactly what the attention mechanism doest Speciﬁ\cally, we use soft
Attention, where the pixel weights sum to 1. For feature maps with a spatial resolution of S, the attention
weight a at timestep § satisfies the followit;g equation:

> ags=1(1)

s=1
At each generation step, the feature maps and the previous hiddensstate areused to compute the attention
weights for each pixel in the Attention network. The previously generated word and the attention-
weighted feature maps are fed into the LSTM to generate the next word. Specifically, the output h of
the LSTM at the current timestep is used as the semantic.feature, for word prediction. The prediction
score for each word in the dictionary is calculated using the following.equation:
z=wg" (h®r)+ b4q(2)

where 7~Bernoulli(p) is the dropout mask with p = 0.5;and /@ represents the Hadamard product
of matrices. wy € R™P denotes the weight, and by, is a scaldr bias. Finally, we obtain the prediction
scores z = [z1,Z2,*,Zp], representing the scores for thenD words in the dictionary.

3.4. Activity prediction

Attention plays a crucial role in the HVS and has:been successfully applied to DNNs [41, 42]. In
Section 3.3 Image captioning, attention is used to.assist the LSTM in determining which specific feature
maps should be focused on for word prediction. Hereywe employ channel attention to prioritize important
feature maps. Given the global information Fm = AvgPool(FM) € R™C of all channels, it is further
formulated as follows:

ca=0Wc,-Fm+by)(3)
where W.q € REXC and bqq € RXC are/the learned weight matrix and bias term, respectively. &
denotes the sigmoid function. Finally, the channel attention ca € R™C is applied to the original feature
map, ca @ FM, where @ denotes the Hadamard product.

Furthermore, the population activity of a single voxel encodes features within limited and contiguous
regions of the visual field [43, 44]. For the flexible RF, each value is a randomly initialized, learnable
independent parameter. As the REs of the high-level visual cortices expand, the positional sensitivity of
voxels to visual stimuli gradually decreases, with increasing focus on global features and semantic
information. It may not learn a meaningful spatial representation through the traditional RF model. In
biological visual systems, RFs not only receive visual information, but are also modulated by attention,
emphasizing visual areas relevant to the current cognitive task. To address this, we have innovatively
designed an RF module constrained by visual attention, termed “Atten-RF”:

rfy=a' Q@rfy(4)
where(rf,, istheflexible RF of voxel v, a' € RS represents the mean of the attention a across all
timesteps, and{ @ denotes the Hadamard product. Attention is used as the weight of the RF, allowing
it to both encode the original spatial representation and capture the visual semantic information relevant
to the ICT. The feature maps are mapped to low-dimensional feature representations through the Atten-
RF as follows:

fo = Gour(gin(FM) ® rf,)(5)

Additionally, following previous research [11], a fully differentiable nonlinearity is applied before and
after’spatial pooling:
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gin(*) = Gour(+) = tanh(-) log (1 +[-1)(6)

In terms of mapping from feature space to voxel activity space, nonlinear transformation is more
appropriate than linear transformation. However, when only a small amount of high-dimensional fMRI
data is available for training, there is a risk of overfitting [45]. Previous research has demonstrated the
excellent performance of linear models in neural encoding [46, 47], where the activity pattern of the v-
th voxel, denoted as ¥y, is predicted through a linear combination of joint features f:

Yo =wy - fy +by(7)
where w, € R™XK denotes the weight, and b,, is a scalar bias specific to the voxel.

3.5. Multi-domain joint optimization

To achieve accurate encoding of voxel activities and ensure rapid convergence ©f the model, 'we
designed a multi-domain joint loss to train our model, as illustrated in Figure 2.

____________ 1
| Predicted caption True caption |
I ~
— | |
| hn acroplane flying in an airg@aying in |
Attention : | he, ,Sk" over  thef X _* the sky at sunset I
buildings at sunset |
—
[ I
L Image captioning loss |
____________ 1
| Predicted activity Measured activity |
| I
| \/\M\/\/\/ XA ﬂ[\/\/\ |
Feature maps [ |
—hL Activity predicting loss |
ro oo Y > - I
|leoeoe uide ..... uide [
'®_’ soee e® oo »
% I
oo 0 .k\‘_‘_—:__—_/
| Atten-RF I
I @ Sparsityrloss @ Smoothness loss |
| I

Atten-RE constraint loss

Figure 2. The schematic diagram of the multi-domain loss, which comprises the image captioning loss, activity
predicting loss, and RF constraint loss{(indicated by the dashed rectangle).

Image captioning loss. The prediction /score for each word in each sample is denoted as z =

[21,Z2,+,Zp], which is converted int6 theprobability distribution 4 as follows:
: exp(zad) @

Yo exp(z)
The predicted probability eorresponding to the true label t4 is selected, and the negative log-likelihood
loss is computed asfollows:
Lic = — log (fata) (9)

Finally, we average the losses across the batch of samples to obtain the image captioning loss L.

Activity predicting loss. The traditional voxel-wise encoding approach involves training a separate
model for each voxel, leading to low encoding efficiency, particularly when the number of voxels ranges
from 10 to 105/ The mean squared error (MSE) loss between the predicted and true voxel activities in a
specific:ROT, which is the most commonly used loss function for encoding model training, is defined as
follows:

14
1 Y
Lap =5 ) (v = 90)(10)
v=1

Finally, the activity prediction loss Lap is obtained by averaging across the batch of samples.

Atten-RF constraint loss. The general RF rf is weighted by attention to produce the Atten-RF rf’.
L1 regularization is applied to enforce sparsity in the Atten-RF, while L2 regularization on the Laplacian
operator ensures smoothness, enhancing the local structure and interpretability of the Atten-RF. The loss
1s defined as follows:

Page 6 of 25
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S S
1 , 1 .
Lee =5 ) lIrfells +5 ). llaplaciany (1)
s=1 s=1

where S is the spatial resolution of the Atten-RF. The Laplacian operator, applied to the Atten-RF, is
computed via a convolution operation as follows:

0 -1 0
laplacian, s = rf * [—1 4 —1](12
Tfs f S 0 1 0 )

Finally, the Atten-RF constraint loss Lyr is obtained by averaging across all voxels.
The multi-domain joint loss integrates L;c, Lap, and Lpp:

L=Lic+ Lap + Lrr(13)

During training, the image captioning task and voxel encoding process are jointly optimized to learned
shared visual representations and patterns. This collaborative learning approach helpsipreventoverfitting
in single task/process and promotes the development of more generalized and robust representations. The
complete pseudocode for training the proposed model is presented in Algorithm 1.

Algorithm 1: Pseudocode for training the parameters of our model =

Input: training dataset {X,T,Y}; feature map extractor ¢; image caption génerator, ¥,
activity prediction generator ¢; tunable parameters 0, 6y, 8g;optimizet Adam;
epochs; number of batches ng.

Randomly initialize model parameters 8¢, Oy, 0.

For ¢ in epochs:

// Training

Randomly shuffle the dataset {X,T,Y}

For i =1, ng:
Take a batch set {X;,T;Y;}
Feature map extraction: FM;<¢(X;) 2
Image captioning: f‘lx—t[)(F M;)

Image captioning loss: LIC&loss(f'i,Ti)
Activity predicting: f’i<—(p(FMi)
Activity predicting loss: £AP<—loss(f’i,Yi)
Joint loss: &L, + Lip+ Lrr
Update 8¢, Oy, 9¢<—Adam(£:9¢, Oy) 9(,;)
// Validation
Repeat the above steps using the validation set
Multi-domain joint 10ssin8,,4;
While £,,; increasesfor 3 consecutive times:
Break
Output: Optimal network parameters 8, 0y, 0.
N

4. Experiments

4.1. Dataset and preprocessing

Natural Scenes Dataset (NSD). It collected fMRI data from eight subjects as they viewed images
captured from natural scenes [48]. In our study, we utilized data from 4 subjects (subl, sub2, sub5, sub7)
who completed all trials [49]. During the training phase, 8,859 unique images were presented to each
subject, with each 1mage displayed for 3 seconds, resulting in 24,980 fMRI trials (with up to 3 repetitions
per image). During the testing phase, 982 images were presented, yielding 2,770 fMRI trials. These 982
testing images were shared.across subjects, ensuring consistency in cross-subject comparisons. All fMRI
data underwent two preprocessing steps: temporal and spatial interpolation to correct slice timing
differences and headmotion, and generation of Z-score normalized single-trial beta estimates using the
GLMSingle method, as detailed in [48]. To enhance the signal-to-noise ratio, multiple fMRI trails of
repeated images were averaged. The NSD dataset delineates multiple ROIs. For this experiment, we
selected 7. high-level visual ROIs: Occipital Face Area (OFA), Fusiform Face Area (FFA), Occipital
Word Form Area (OWFA), Visual Word Form Area (VWFA), Occipital Place Area (OPA), Extrastriate
Body Area (EBA), and Fusiform Body Area (FBA). The number of voxels for each selected ROI is
presented in Table 1 (The schematic diagram is shown in Figure 3A). For the visual stimuli, we
downsampled the natural images from a size 0of 425x425 to 256%256 to reduce computational complexity.
Since the stimulus images in the NSD dataset are derived from the COCO dataset, which includes
descriptive text for each image provided by 5 annotators, we randomly select one text description for
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each image as its corresponding label. Additionally, we used 10% of the training samples as validation
data to monitor the training progress of our model.

Stability selection of voxels. Due to individual differences in brain representation, brain activity
patterns can vary from trial to trial, even for the same visual stimulus. To enhance the stability of neural
encoding, we used a stability selection strategy for the NSD dataset [50]. We selected voxels with high
consistency in activation patterns across trials of the same visual stimulus. Specifically, the Pearson
correlation coefficient (PCC) was used to assess the consistency of activation patterns across trials:

Lo

VIO-9*VI0 =77

where y and y' represent the fMRI signals from two different trials under the samevisual stimulus.

The diagram illustrating the stability selection process is shown in Figure 3B. Since each subject had 1-

3 trials for each stimulus image, we uniformly selected images with 3 trials for statistical analysis. Instead

of applying a fixed PCC threshold, voxels were ranked by PCC values, and the top N voxels were

selected per ROI, with N determined by the ROI with the fewest voxels in each subject. This ranking-

based selection achieves a similar effect to applying a PCC threshold, but avoidsinconsistencies in voxel

counts caused by differences in brain regions. Specifically, the number of yoxels seleeted for each ROI
of subjects 1, 2, 5, and 7 was 355, 441, 438, and 316, respectively.

Construction of dictionary. Captions serve as both the target and the input for the' LSTM, with each
generated word used to predict the next one. To generate the first word, we introduce a special token
<start>, as the zeroth word. The last word is predicted as <end>jiindicating to' the LSTM when to
terminate the ICT. Since captions vary in length, we pad them with <pad> tokens to ensure they are all
the same fixed size when passed through the model. In summary, we constructed a dictionary that maps
each word in the corpus to an index, including the special tokens <start>, <end>, and <pad>.

14)

Table 1. For each subject, voxel counts were obtained across seéven high-level visual regions (OFA, FFA, OWFA,
VWFA, OPA, EBA, and FBA). The region with the fewest voxels is highlighted in bold and used as the subject-
specific threshold for voxel stability selection.

Subs OFA FFA OWFA VWFA OPA EBA FBA

Subl 355 794 464 1083 1611 2971 826

Sub2 441 869 519 821 1381 3439 1217

Sub5 782 907 438 941 1332 4587 968

Sub7 316 484 628 465 1083 3062 552
N
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Figure 3. Data and preprocessing diagram. e schematic diagram of the selected ROIs in the NSD dataset. (B)
The voxel stability map on the flat surface of the brain for subject 1. The stability score of each voxel is quantified
as the average PCC across all pz se combinations of the three trials.

4.2. Performance.e trics

To quantitatively ate.encoding performance based on different properties, we used three standard
similarity metri , and coefficient of determination R?. While MSE focuses on point-to-
point predicti C and R? capture variations in texture and the overall goodness of fit,
ificant in neuroscience [25]. The MSE,, PCC, and R% for the v-th voxel are
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where Yy, and 5’1; are the mean measured and predicted values of the entire test set for the v-th vokels

In addition, we also use the top-5 classification accuracy (Top5-ACC) metric to further evaluate/the
performance of our model in the ICT.

R} = 17)

4.3. Performance comparison

We propose an end-to-end neural encoding model based on the ICT. The following five advanced
methods are used for comparison:

1) Gabor-fwRF (2018). It first extracts Gabor wavelet feature maps and calculates the weighted sum
within the spatial extent of a 2-D Gaussian RF (for details, refer to [20]). Finally, it regresses all features
simultaneously to predict the brain response with high accuracy.

2) AlexNet-gpf (2022). It first extracts feature maps from a pre-trained AlexNet, and then a 2-D
Gaussian RF is applied to further extract features. A voxel-wise regression model is subsequently
constructed to predict brain activity [48].

3) GNet-fpf (2023). It extracts feature maps from GNet, which are then passed-through a flexible
pooling field for further feature extraction. Linear layers are used for predicting voxel activity [11].

4) AlexNet-fpf (2023). It initially extracts feature maps from pre-trained AlexNet; followed using a
flexible pooling field for further feature extraction. A voxel-wise regression medelis'then built to predict
brain activity [11].

5) ResNet101-fpf. Unlike AlexNet-fpf, this method extracts feature maps from a pre-trained
ResNet101 and fine-tunes its final residual block during end-to-end trainingn contrast to our approach,
it does not incorporate the ICT component.

To ensure fair comparison, all competing methods followed the hyperparameter settings recommended
in their original papers. Additionally, key hyperparameters,such, as learning rate, batch size, and
regularization coefficients were further tuned on the validation sctaising a grid search strategy. All
models were trained and evaluated under the same training, validation, and test splits, where the
validation set was solely used for hyperparameter selection and the test set was strictly reserved for
performance reporting. This procedure guarantees that.each competing model operates under its optimal
and unbiased performance.

4.4. Implementation details

During the training phase, the parameters of the pre-trained ResNetl01 are either kept frozen or
selectively fine-tuned. In particular, we fine-tune.only the final residual block due to its closer relevance
to semantic encoding, while the rest of the model’s parameters are learned during training. The
dimensions of the word embeddings, attention linear layers, and LSTM are set to 512, with the maximum
caption length for image captioning set to 40. The number of epochs and batch size were set to 50 and
128, respectively. The Adam optimizer with anvinitial learning rate of 0.001 was used. When the loss on
the validation set increases, the-learning rate is decayed by a factor of 0.8. If the loss increases for 3
consecutive epochs, early stopping is applied. Gradient clipping is performed during backpropagation to
prevent gradient explosion./ To minimize the effect of randomness, we repeated the experiment 5 times
and calculated the average for €ach subject. All experiments were conducted on a workstation equipped
with a 12th Gen Intel (R) Core (TM) 17-12700K CPU and an NVIDIA GeForce RTX 3090 GPU. The
neural network models wereiimplemented using the publicly available Pytorch framework.

4.5. Experimental results

1) Quantitative analysis of encoding performance. Table 2 presents the quantitative comparison
between thedproposed :model and the advanced methods discussed. The results are reported as the
mean + std deyiation across five random seeds and four subjects, with the best performance in each
ROI highlighted. Overall, except for slightly inferior MSE and PCC values in the OWFA region
compared to ResNet101-fpf, our model consistently outperforms existing advanced methods in neural
encoding performance. Specifically, in terms of the average MSE (lower is better) across seven high-
level'visual ROIs, our model surpasses all other methods: 0.122 lower than Gabor-fwRF, 0.080 lower
than AlexNet<gpf, 0.047 lower than GNet-fpf, 0.031 lower than AlexNet-fpf, and 0.025 lower than
ResNet101-fpf. Regarding the average PCC metric (higher is better) over the same ROIs, our model also
outperforms the others: 0.178 higher than Gabor-fwRF, 0.141 higher than AlexNet-gpf, 0.052 higher
thannGNet-fpf, 0.032 higher than AlexNet-fpf, and 0.024 higher than ResNet101-fpf. As for the average
R? metric (higher is better), our model again outperforms the others: 0.155 higher than Gabor-fwRF,
0:148 higher than AlexNet-gpf, 0.091 higher than GNet-fpf, 0.065 higher than AlexNet-fpf, and 0.055
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higher than ResNet101-fpf. For statistical analysis, we employed paired two-tailed t-tests to compare the
performance of our model with each advanced method under the same subject and ROI conditions. The
significance threshold was set to p < 0.05, where * indicates significant improvement (p < 0.05), **
indicates highly significant improvement (p < 0.005), and - indicates no significant difference«(p 2>
0.05). All tests were conducted across five random seeds and four subjects to ensure robustness of the
statistical conclusions. The statistical analysis results of our method and the comparative methods-are
also shown in Table 2.

The methods that rely on the strong assumption of Gaussian RF (-fwRF, -gpf) are less effective at
fitting the encoding range and size of voxels in the high-level visual cortices. In contrast, the improved
methods based on weaker assumptions and learnable flexible RF (-fpf) significantly/improve the
encoding performance of the voxels. Furthermore, the brain-optimized network [11] (GNet-fpf).exhibits
inferior performance compared to the task-optimized network [11] (AlexNet-fpf). We attribute this to
the scarcity of {fMRI, image} sample pairs, which poses a major challenge for trainingsmodels from
scratch to directly predict voxel responses, particularly in high-level visual areas responsible forencoding
complex and abstract visual features. Compared to a standalone neural encoding process, our model
significantly improves encoding performance across high-level visual brain regions by integrating the
ICT. ~

2) Comparison of encoding performance PCC. For a single voxel, a PCCwalue greater than 0.27
between the predicted and measured response is statistically significantempared to its null hypothesis
distribution (p < 0.001) [39, 51]. Taking subject 1 as an example, we conducted a'statistical analysis of
the PCC values across all voxels within each ROI and compared the results with,those obtained using
the ResNet101-fpf method. As shown in Figure 4A, our model outperforms ResNet101-fpf across all
seven ROIs, with comparable performance observed only in the OFA and @WFA. On the other hand,
the PCC values of all voxels exhibit a clear linear relationship between the two methods, indicating that
the integration of ICT and joint training consistently improves, prediction performance of voxel-wise
responses. Furthermore, the results in Figure 4B demonstrate that for ROIs with strong encoding
capabilities, which contain fewer voxels with PCC < 0:27, such as the FFA, VWFA, OPA, EBA, and
FBA, our model achieves significant performance gains.In contrast, even for ROIs with weaker encoding
capabilities, which are those containing more voxels with PCC < 0.27, such as the OFA and OWFA, our
model still achieves noticeable improvements. innencoding performance. These findings clearly
demonstrate the strong generalization ability and robustness of our model in predicting voxel responses
across ROIs of different encoding abilities.

To assess the consistency of encodability across.subjects, we projected the PCC of all voxels from the
four subjects onto the flat surface space for visualization and calculated the average PCC for each region,
as shown in Figure 5. The distribution of encoding performance across each ROI is relatively consistent
among subjects, highlighting the generalization and robustness of our model. On the other hand,
neuroscience research indicates that the, functions and information encoding mechanisms of specific
ROIs exhibit high consistency deross subjects. For instance, the EBA is sensitive to body shape
information in images, while the OPA excels at encoding global scene and spatial relationships. This
demonstrates that our model effectively captures the functional patterns of each ROL

3) Comparison of explainable unique variances. To compare the independent contributions of visual
features extracted by our proposéd model (A) and ResNet101-fpf model (B) to voxel activity prediction,
we first trained voxél-wise ridge regression mappings from the visual features of models A and B to
voxel responses, yielding, explained variances R and R%, respectively. Subsequently, a ridge
regression mappingswas,trained using the concatenated visual features from both models, resulting in a
combined explairnled varianée R%p. Based on these values, the unique variance contributions of models
A and B can be‘expressed as: , ,

Unique(4A) = R — R
UnigueEB% — gL, _pi(18)

This metric quantifies the unique contribution of each model to the explained variance [29], isolating
the propertion of variance accounted for by one model after removing the influence of the other. By
computing these unique variance values, we aim to assess the relative effectiveness of our model and
ResNet101-fpfiin modeling the neural encoding process, and indirectly evaluate the comprehensiveness
and-accuracy of the visual information extracted by each model. As shown in Figure 6A and Figure 6B,
the comparison results reveal a clear difference in the unique contribution of the two models. To provide
a more intuitive visualization, we computed the difference AU = Unique(A) —Unique(B), and
projected the results onto the corresponding 3D and flattened cortical coordinates, as illustrated in Figure
6C. These findings consistently indicate that the visual features learned by our model contribute more
significantly to voxel activity prediction compared to those extracted by ResNet101-fpf. We attribute
this ‘improvement to the guidance and alignment provided by the ICT, which not only enhances the

11
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model's ability to learn more comprehensive semantic representations but also improves the alignment
between these representations and brain activity in high-level visual cortex.
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11 Table 2. Comparison of the encoding performance between our model and advanced methods. The results are shown in the form of the mean + std of five random seeds and four subjects, with

12 the best performance in each ROI highlighted in bold. A paired two-tailed t-test was employed to compare the performance of our model with each advanced method under the same subject and

13 ROI conditions. The significance threshold was set to p < 0.05; where * indicates significant improvement (p < 0.05), ** indicates highly significant improvement (p < 0.005), and — indicates no

significant difference (p > 0.05).

14

15 Metrics  Algorithms OFA FFA OWFA VWFA OPA EBA FBA

16 Gabor-fwRF 962£003**  .897+.002%*  .966+.003**  .902+.003**  .895+.002** . 711+£.003**  .879+.003**

17 AlexNet-gpf 931+.005%*  .859+.004**  .934+.006%*  .868+.003**  853+£.002**  .631+.004**  .836+.002**

18 MSEL GNet-fpf .887£.004**  807+.004**  919+.005—  .814+.003**  .790+.002**  .664+.005**  .805+.002**

19 AlexNet-fpf .894+.004**  798+.003**  .923+.003**  .803+.001** .771+£.003**  .591+.004** . 794+.003**

20 ResNet101-fpf,  .889+.006**  .780+.003** . 918+.003—  .791+.003**  .762+.005** .607+.002** .782+.001**

21 Ours™ .875+.003 .764+.001 .920+.006 777+.002 .749+.002 .501+.003 .769+.003

2 Gabor-fwRF A86+.003%*  2344+.002%*  .147+.001**  262+.003**  339+.001**  .423+£.005%* .268+.005**

AlexNet-gpf 203+.003**%  266+.003*%*  185+.002**  .299+.001**  379+.003**  .461+.004**  324+.001**

23 pCCt GNet-fpf 284+.005**  389+.001**  249+.004**  385+.002**  464+.001**  577+.007**  .392+.004**

24 AlexNet-fpf 286+.002%*  405+.004**  254+.003**  405+.002**  487+.002**  .631£.003**  410+.002**

25 ResNetl101-fpf .292+.004**  405+.003** .271+.002—  411+.003**  488+.005** .645+.003**  .426+.003**

26 Ours .308+.001 .439+.002 .270+.004 .437+.002 .513+.002 .696:+.002 .441+.002

27 Gabor-fwRF .053+.004** .061+.004**  .044+.004** .077+.001**  .108+.003**  211+.005** .076+.003**

28 AlexNet-gpf 055+.001**  .075+.001**  .0524.003**  .103+£.003** .122+.005**  .251+.001** .023+£.005**
Rt GNet-fpf 096+.003**  1124+.002**  .065+.005**  .124+.005**  251£.003**  .302+.003**  .132+.004**

29 AlexNet-fpf .096+.004%*  [147+.004**  .069+.001**  .148+.004**  270+.001**  .376+.002** .154+.001**

30 ResNetl101-fpf .101£.005**  .147+.005%*  .083+.002—  .156+.004** .269+.002** .399+.004** .175+.003**

31 Ours .114+.001 .219+.002 .083+.003 .218+.005 .387+.002 .474+.005 .221+.002

32

33

34

35

36

37

38

39

40

41 13

42

43

44

45
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Figure 6. Comparison of the independent contributions of visual features extracted by our proposed model and Res-
Net101-fpf to voxel activity prediction. (A) Scatter densityplot of the unique variance for the two neural encoding
models: the x-axis represents the unique variance of ResNet101-fpf, and the y-axis represents that of ours. (B) Scatter
plot of the unique variance distribution across different brain regions. (C) Projection of AU onto the visual cortex,
visualized on flattened, lateral, posterior and bottom views.

4) Visualization of attention and RF. Towerify our model’s ability to learn attention, we intuitively
visualized the attention changes in the EBA of subject 1 in response to the image description. We resized
the 14x14 sparse attention map to 256x256 and overlaid it on the original stimulus image, as shown in
Figure 7A. We observed that the area of attention shifted from the “table” to the “chair”, and then to the
“portrait” and “fireplace” ‘as. the image description progressed. This clearly demonstrates that the
attention mechanism dynamically..captures the correspondence between visual information and its
linguistic description{At the same time, this shift in attention highlights the model’s ability to focus on
key areas relevant to the current'semantics, further validating its interpretability in semantic decoding
tasks. This also supports the enhancement of neural encoding performance by integrating the ICT,
providing a solid foundation for its efficacy.

It is an interesting open question whether the features learned by task-optimized networks like AlexNet
are similarto or diverge from those learned by brain-optimized networks like GNet [48]. To bridge the
domain gap between the ICT (task-optimized network) and the visual neural encoding process (brain-
optimizedinetwork), we incorporated an Atten-RF module to enhance the effectiveness of multi-domain
jointtraining. Specifically, the ICT utilizes the attention mechanism to focus on key areas of the input
image, capturing representations related to the semantic description. Meanwhile, the visual neural
encoding,process models the spatial representation of the visual cortex using the RF module, revealing
how the brain processes and encodes visual information. The Atten-RF we designed not only offers a
novel perspective on understanding visual encoding but also contributes to advancing the development
of 'morebiologically inspired models for visual information processing. We compared the roles and
performances of the “Attention” module and the “RF” module at different voxels from distinct brain
regions, as shown in Figure 7B. Attention reflects the salient areas that the model focuses on in the ICT,
typically corresponding to the key objects or semantics in the image. The highlighted areas of the average
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attention (second column) are concentrated on key objects or regions with high semantic information in
the image, such as people, furniture, streetlights, etc. This demonstrates that the attention mechanism
effectively captures the salient features relevant to the task. Subsequently, for each brain region, we
selected the voxel with the highest PCC, extracted its 14x14 RF weight map, interpolated it to 256%256;
and overlaid it onto the original image to visualize the spatial distribution of RFs across regions (third to
ninth columns). We found that the RFs of the most predictive voxels across all regions are spatially close
and highly consistent with the hotspot areas in the averaged attention maps. This observation suggests
that high-level visual areas may share partially similar spatial attention patterns when processing
semantic information, which is consistent with prior cognitive neuroscience studies proposing common
feature extraction mechanisms in higher visual cortex [53]. At the same time, the similarity observed
across ROIs could also reflect the convergence of distributed global feature representations thatyield the
highest predictive performance. Such convergence has also been reported in deep visual networks, where
later-layer features often become highly similar and encode global patterns rather thaniexplicit local
selectivity, as noted in DINO v2 [54]. We therefore consider that RF visualizations may not solely
indicate shared attention mechanisms but could also reflect the dominance of global representations in
high-level areas. For example, in the OFA region, for the third-row human stimuli, the RF hotspot nearly
coincides with the high-response area of the averaged attention map, supporting the egntral role of OFA
in face and body feature processing and suggesting its potential coupling«with global attention
mechanisms. These interpretations are not mutually exclusive and together point to the complexity of
semantic processing in high-level visual cortex. While convergence toward global feature representations
may explain the overall similarity observed across ROls, it does not preclude the.existence of category-
specific preferences in certain regions. Indeed, some brain regions exhibit more focused RF distributions
for specific categories of stimuli, such as the FFA for person-related:stimuli-and the EBA for furniture-
related stimuli, which may reflect category-specific preferences in semantic perception processing. This
finding also indicates that the spatial attention patterns learned by ICT partially guide the RF-based neural
encoding process.

5) Visualization of semantic encoding in different ROIs. Thiough the ICT, we analyzed the
differences in how various high-level visual cortices represent visual stimuli. We used semantic
vocabulary to describe and explain the functional.characteristics of these cortices. We counted the word
frequencies of the predicted texts for all test images and normalized them relative to the word frequencies
of the real texts (Figure 8(a)). Using a word visualization tool (Wordcloud), we then illustrated the
semantic word distribution of specific ROIs. The more frequently a semantic word appears, the larger
the area it occupies in the image space. Different words are represented in different colors. We show the
semantic word distribution for three representative ROIs: EBA, OPA, and OWFA, which are shown in
Figure 8(b), (c), and (d), respectively. Cognitive neuroscience research indicates that the EBA is a
specific ROI associated with the‘visual perception of body shapes and body parts. As shown in Figure
8(b), it encodes semantics related to actions such as 'walking', 'sitting', and others. The OPA, a ROI linked
to spatial navigation and locationgprocessing, encodes semantics such as 'on', 'in', and 'of, as illustrated
in Figure 8(c). The OWFA, which is associated with visual word recognition and text processing, is
shown in Figure 8(d). Howeverywedid not observe similar results for OWFA, likely because the training
data consisted mainly of images of natural scenes, with very few related words or text.
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Figure 7. Visualization analysis of attention and RE: (A) Visualization of attention changes in the EBA for subject
1 during the image description process. The 14x14 sparse attention map is resized to 256x256 and overlaid on the
original stimulus image. (B) Comparison between the averaged attention map and the RFs of the most predictive
voxels across different brain regionsfor Subject 1. The first column shows the original images, the second column

presents the averaged attention maps, and the third to ninth columns display the RF distributions of the most
predictive voxels in eachibrain region:
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Figure 8. Interpretation of typical ROIs based on related words. Different words are shown in different colors, and
the size of each word is proportional to its frequency of occurrence. This, visualization reveals the statistical
characteristics of words associated with different ROIs. (a) shows the word frequencies of the real texts, while (b),
(c), and (d) display the semantic encoding results for EBA, OPA, and OWFA, respectively.

6) Ablation study. The proposed neural network framework comprises three key components: an
“Atten” module, which enhances critical semantic regions within, ICT; an “RF” module, which models
the RF characteristics of each voxel in the neural encoding proeess; and an “Atten-RF” module, which
bridges the representational gap between the two and enables cross=démain information alignment and
integration. To evaluate the effectiveness of each component, we conducted an ablation study on the
EBA region of Subject 1, who achieved the best overall performance. Specifically, the “w/o Atten + w/
RF + w/o Atten-RF”, “w/ Atten + w/o RF + w/o Atten-RF” and “w/ Atten + w/ RF + w/o Atten-RF”
refer to simplified versions of the model, where the corresponding modules were removed. In the “w/o
RF” configuration, ridge regression is used.in place of the RF module to map the feature representations
to individual voxel responses, enabling the prediction of brain activity. This method remains one of the
most widely adopted and effective strategies inithe field of neural encoding. The results of the ablation
experiments with different module combinations are presented in Table 3, reported as mean + std
across five random seeds. The best performance for each metric is highlighted. For statistical analysis,
we employed paired two-tailed t-tests to compare the performance differences among models with and
without specific modules under the same experimental conditions. The significance threshold was set to
p < 0.05, where * indicates a significant improvement (p < 0.05), ** indicates a highly significant
improvement (p < 0.005), and — indieatesno significant difference (p > 0.05). All tests were conducted
across five random seeds to ensutre robustness. The statistical analysis results of different methods are
also shown in Table 3, The attention module plays a crucial role in significantly improving the
performance of the ICT, which inturh enhances neural encoding to some extent. The RF module design
is particularly dominant in this framework. The incorporation of a flexible and learnable RF substantially
boosts the neural €ncoding performance, and surprisingly, it also leads to improvements in image
captioning performance. Inyour opinion, during the neural encoding process, the learnable RF can
effectively capture rich semantic features, significantly enhancing the representational power of brain
activity. Thes€ improved.répresentations offer more accurate and comprehensive semantic information
for the ICT when shared across tasks, thereby improving the performance of image captioning. The
proposed Atten-RF module further enhances the neural encoding performance without compromising
image description accuracy, while also exploring the adaptive adjustment and optimization of the RF
through the attention mechanism. In addition, the use of channel attention slightly improves neural
encoding performance, though the result is not statistically significant. This may be due to the fact that
the'feature. maps from the low-level visual cortices come from different layers of the neural network,
leading to significant feature diversity between channels. In contrast, the feature maps used for neural
encoding|in the high-level visual cortices in this study are taken from the final feature layer, where the
feature diversity between channels is relatively low. As a result, the effect of channel attention is limited.

7) The training of the model. We compared the performance of the feature map extraction module
using both frozen and fine-tuned ResNet101, as shown in Figure 9A. It can be observed that the image
captioning performance of the fine-tuned model is approximately 4.8% lower than that of the frozen
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model in terms of the average Top5-accuracy across all ROIs. However, the neural encoding performance
has improved, with the MSE decreasing by about 0.005 and the PCC increasing by about 0.034. The
weight parameters of the fine-tuned model are also adjusted to better fit the brain's neural activities,
which may compromise some of the captioning generalization capabilities of the ICT. This phenomenon
also reflects the trade-off between neural encoding and task optimization.

Taking the EBA of subject 1 as an example, we also present the changes in training loss.and
performance metrics over different stages of training, as shown in Figure 9B and Figure 9C. It‘can be
observed that the multi-domain joint loss in our model enables fast and stable convergence,with the
corresponding Top5-ACC for image description, as well as the MSE and PCC for meural encoding,
reaching their peak values.

Table 3. The results of the ablation experiments with different module combinations on the EBA region of Subject
1. The results are shown in the form of the mean + std of five random seeds, with the best performance highlighted
in bold. A paired two-tailed t-test was employed to compare the performance differences among models with and
without specific modules under the same experimental conditions. The significance threshold was set ta p < 0.05,
where * indicates significant improvement (p < 0.05), ** indicates highly significant improvement (p < 0.005), and
- indicates no significant difference (p > 0.05).

Neural Encoding Image Captioning
Perf
eriormance MSEL pCCt R2T Top5-ACCT
w/o Atten, w/ RF, w/o Atten-RF ~ .512+.002%*%* .682+.004** 413+.002%* .608+.131*
w/ Atten, w/o RF, w/o Atten-RF  .601+.005%* 587+.003%* .352+.004%* .645+.147—
w/ Atten, w/ RF, w/o Atten-RF 511+.004%* .690+.003** 418+.007** .643+.113—
Ours .501+.003 .696+.002 474,005 .646+.126
B :
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Figure 9. Results, of ablation ‘and comparation experiments. (A) Performance comparison of the frozen and fine-
tuned feature map extraction modules using ResNet101 for subject 1. (B) During the training process of EBA voxel
activity encoding in subject.ds the training loss and Top5-ACC of image captioning performance on the validation
set varies with the number of epochs. (C) During the training process of EBA voxel activity encoding in subject 1,
the encoding performance (MSE and PCC) of our model on the validation set varies with the number of epochs.

5. Discussion

5.1. Relationship between DNN layers and brain ROIs

Previous neuroscience studies [55, 56] have demonstrated that the ventral and dorsal visual streams
are hieratchically organized, with early visual areas responsible for processing low-level features (e.g.,
edges) and downstream areas encoding increasingly complex features (e.g., shapes). Motivated by this
hierarchical organization, we analyzed the contributions of neural network layers at different depths to
predicting brain activity across distinct ROIs. We selected three high-level visual regions, namely OPA,
EBA, and FFA, as well as four low-level visual regions, including V1, V2, V3, and hV4, all derived from
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the ROIs defined in the NSD dataset. This selection established a hierarchical gradient from the early
visual cortex to high-level visual areas. V1 through hV4 are located in the occipital cortex and correspond
to the early stages of visual processing, where representations progress from basic edge and orientation
detection to more complex features such as color and shape. OPA, situated in the occipital lobe, is mainly
involved in scene and spatial layout processing and is considered an important transitional region from
low-level features to scene semantics. EBA selectively responds to visual information related to bodies
and body parts, providing category-specific object representations. FFA, located in the mid-fusiform
gyrus, is highly sensitive to facial identity and holistic face representations, reflecting a deeper and more
specialized stage of visual processing. By arranging ROIs from low-level to high-level areas, we
constructed a biologically grounded hierarchical reference framework. This frameworksallows us to
examine whether features from artificial neural networks of different depths correspondsto the'stepwise
processing in the human visual cortex, and to compare ResNetl01 and ResNet-CLIP in terms, of
hierarchical monotonicity and neuroscientific interpretability. ResNetl01, with its explicit layered
convolutional structure, provides a clear progression of hierarchical features. In contrast, ResNet-CLIP
is trained with a cross-modal alignment objective, and its features exhibit stronger abstraction at the
semantic level. For a fair comparison, we selected eight representative layers from beth models, covering
shallow, intermediate, and deep stages. The selected layers include convl, layerl-blogkdy(I1bl), layer1-
block3 (11b3), layer2-block1 (12b1), layer2-block3 (12b3), layer3-block1 (13b1), layer3-block22 (13b22),
and layer4-block3 (14b3). This choice ensured comprehensive and uniform.coverage ofthe network depth,
while aligning with the hierarchical ordering of brain regions from V1 to FFA.

In our analysis, features from different network layers were linearly mapped towoxel responses within
each ROI. The PCC between the predicted and actual responses was then calculated, and the attribution
method was applied to quantify the relative contribution of each netwerk layerto the prediction accuracy
across different ROIs. This approach allowed us to examine the extent to which features at varying depths
of artificial networks correspond to the hierarchical representations of the human visual cortex. The layer-
wise contributions across network depth are illustrated in Figure 105The results show that in ResNet101,
the contribution in early visual areas (V1-hV4) decreases progtessiyely with increasing layer depth,
whereas in high-level visual areas (OPA, EBA, FFA) it increases, forming a clear monotonic hierarchical
trend. In contrast, ResNet-CLIP exhibits weakerinonotonicity andless pronounced hierarchical gradients.
A possible explanation is that the CLIP model incorporates global text-image alignment constraints
during training, which disperses the layer-wise features across different visual regions. Although Wang
et al. [24] demonstrated that ResNet-CLIP achieves higher encoding performance in high-level visual
cortices compared to ResNet101, it lacks therexplicit hierarchical structure of ResNet101, which more
faithfully reflects the bottom-up hierarchical processing of the visual cortex. This interpretability is
crucial for analyzing the neural mechanisms underlying human cognition, and it is also the primary
reason why we chose ResNet101“asithe backbone network in our study.

ResNet101 ResNet-CLIP
-2 V1
0.25 0.25 .
- V3
0.20 0.20 P == hV4
? : /== oma

55
&
w

- EBA
s = FFA
‘\‘77* . =
0.10 :'_/,':; A‘%

0.05

(averaged over voxels in ROI)

Layer contribution to prediction accuracy

convl 11bd 11b3 12bl 12b3 13b1 13b22 lab3 convl I1b1 11b3 12b1 12b3 13b1 13b22 14b3
Layer Layer

Figure 10. Contributions of different network layers (convl, 11bl, 11b3, 12bl, 12b3, 13b1, 13b22, and 14b3) in
ResNet101 and ResNet-CLIP to predicting voxel responses across ROIs. Left: ResNet101 shows a clear monotonic
hierarchicalitrend, with‘contributions decreasing in early visual areas (V1-hV4) as the layer depth increases, while
contributions in high-level visual areas (OPA, EBA, FFA) increase accordingly. Right: ResNet-CLIP exhibits
weaker monotonicity, with no evident hierarchical gradient.

5:2. Extension for multi-task learning

Multi-Task Learning (MTL) seeks to enhance model performance by simultaneously learning multiple
related tasks. MTL has been successfully applied in various fields, including speech recognition,
computer vision, and natural language processing. For example, Kokkinos et al. [57] proposed a method
that jointly trains multiple visual tasks, including object detection, semantic segmentation, and pose
estimation, thereby improving the performance of each individual task. In the field of neural encoding
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and decoding, MTL has also been applied and developed. For instance, Huang et al. [58] proposed a
novel Visual Language Decoding Model (VLDM) that can simultaneously decode the main categories,
semantic labels, and textual descriptions of visual stimuli from visual activity. In this section, we add an
image classification task to the original ICT and explore how MTL can improve the model’s encodi
performance. We obtain the main categories of each stimulus image from the COCO dataset as label

fully connected layers to classify the 12 categories. To facilitate statistical analysis, we

and FFA, which exhibited a larger variance in voxel encoding performance in sﬁe
experiment. The comparisons are shown in Figure 11. In the FFA with better encodi
there are 333 significant voxels in the MTL model, in contrast to 331 significant vo

suggest that joint encoding based on MTL may help rescue voxels with poo
However, the improvement in encoding performance is not significant. This co

multiple labels, and the learning of their relationships. More complex
Question Answering (VQA), will be considered in the feature.

This paper combines ICT to improve the neural encoding performanc ,
Strictly speaking, this represents a cross-domain MTL that must account ta heterogeneity and

encoding ability, higher generalization performance, an natory power, marking a
significant extension and innovation in the field of MTL.
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EES Ours
=== PCC=0.27

30

25

PCCrmutitasks > 0.27 = 333

20 1 PCCouyrs>0.27=331

Count

10

0.3 0.4 0.5 0.6
Prediction accuracy (PCC)

OFA
[ Multitasks

I Ours
===_PCC=0.27

PCCrmuttitasks > 0.27 = 188
[ PCCours > 0.27 = 164

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Prediction accuracy (PCC)

Q u
Figure 11. Comparison of encoding performance between the multitask model and our model on the FFA and OFA
ject 1.
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5.3. Advantages and disadvantages of our model

There are several possible reasons why our model outperforms the other methods. One key factor is
the incorporation of high-level visual tasks, along with the introduction of the attention mechanism,
which enhances both performance and interpretability in visual tasks. Another possible reason is théuse
of flexible RFs. While traditional RFs often rely on strong assumptions, such as a Gaussian distribution,
our model enhances flexibility and learnability by making minimal assumptions about the spatial
characteristics of RFs. Since high-level visual ROIs process complex and abstract semantic information,
our model avoids pre-defining the shape of the RFs. Instead, it leverages the distribution of training data
to automatically learn the optimal RF for each voxel, thereby identifying the most relevant spatial
locations and ranges for visual features. The third possibility lies in the design of theAttention-RF
module, which bridges the gap between two distinct tasks or domains. This not only enhanees the:model's
ability to handle complex tasks, but also enables finer-grained information alignment,between images
and brain activities at the semantic level.

While our model achieves strong encoding performance, there are still drawbacks worth consideration.
The ROI-wise encoding mode greatly improves encoding efficiency by building a unified model to
encode all voxels within a given ROI simultaneously. Although we perform preliminary voxel selection
during the pre-processing stage, some invalid voxels may still interfere with/ihe encoding process within
the same ROL. In the future, the impact of invalid voxels can be further minimized by incorporating more
advanced voxel screening methods, such as voxel importance scores based on task relevance or sparsity
regularization techniques. In addition, since voxels within the same small-scalé’brain region tend to
perform similar calculations, this suggests the potential to incorporate. Graph Neural Networks (GNN) to
model the spatial and functional correlations between voxels. This multi-voxel-wise encoding approach
may allow for the retention of voxels with poor signal-to-noise ratios, without sacrificing the model’s
computational efficiency.

6. Conclusion

DNN:s trained on image classification tasks have achieved Suceess in neural encoding studies of the
early visual cortex. However, their performance in high-level visual areas remains suboptimal due to the
complexity and abstract nature of semantic featuresiencoding insthese regions. To address this challenge,
we propose a novel end-to-end neural encoding model based on Image Captioning Tasks (ICT) to
enhance the encoding performance of the high-level visual cortex. Our method incorporates an attention
module to focus on key image pixes and amRE module to model voxel-specific visual fields. Additionally,
we introduce the Atten-RF module to bridge.the domain gap between visual stimuli and brain responses,
facilitating joint optimization of the visual and neural components. Experimental results demonstrate that
the proposed model outperforms gxisting state-of-the-art approaches, achieving superior neural encoding
performance in high-level visual areas. Furthermore, visualization analyses of RF distributions and
semantic encoding characteristics highlight the biological interpretability of our approach.

However, it is important to note that the ICT in this study was trained exclusively on visual stimuli
from the NSD dataset, which may censtrain its generalizability to broader contexts. Future work could
consider incorporating large langu@e models such as GPT-4 [59] and LLaMA [60]. These models
provide rich multimodal representations that may help extract more fine-grained perceptual features. By
combining them with limited brain activity data, it may be possible to further enhance neural encoding
performance and improve the robustness and generalization of brain—-machine models.

CRediT authorship contribution statement

Xu Yin: Software, Methodology, Writing — original draft. Jiuchuan Jiang: Conceptualization,
Methodology. Sheng Ge: Methodology, Writing — review & editing. John Q. Gan: Validation, Writing
—review & editing. Haixian Wang: Writing — review & editing, Formal analysis, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

Data availability statement

Data is derived from an NSD (https://cvnlab.slite.page/p/dC~rBTjqjb/How-to-get-the-data). Code will
be made public soon (https://github.com/yinxul996/Neural-encoding-for-high-level-visual-cortices).

23


https://cvnlab.slite.page/p/dC~rBTjqjb/How-to-get-the-data
https://github.com/yinxu1996/Neural-encoding-for-high-level-visual-cortices

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - JNE-109029.R2

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants 92270113
and 62176054.

References

(1]

Naselaris T, Kay KN, Nishimoto S, Gallant JL. Encoding and decoding in fMRI. Neurolmage 2011;56(2):400~
10.

Poldrack RA, Farah MJ. Progress and challenges in probing the human brain. Nature 2015;526(7573):371-9.
Qian D, Zeng H, Cheng W, Liu Y, Bikki T, Pan J. NeuroDM: Decoding and visualizing human brain activity
with EEG-guided diffusion model. Comput Methods Programs Biomed 2024;251:108213.

LiD, Wei C, Li S, Zou J, Qin H, Liu Q. Visual decoding and reconstruction via EEG embeddings with guided
diffusion. In: Proc. Annual Conference on Neural Information Processing Systems (NeurlPS); 2024.

Stokes MG, Wolff MJ, Spaak E. Decoding rich spatial information with high temporal reselution. Trends
Cogn Sci 2015;19(11):636-8.

Benchetrit Y, Banville H, King JR. Brain decoding: Toward real-time reconstruction of visual perception. In:
Proc. International Conference on Learning Representations (ICLR); 2024.

Zhang YJ, Yu ZF, Liu JK, Huang TJ. Neural decoding of visual information across different neural recording
modalities and approaches. Mach Intell Res 2022;19(5):350-65. ~

Li R, Li J, Wang C, Liu H, Liu T, Wang X, et al. Multi-semantic decoding 'of.visual perception with graph
neural networks. Int J Neural Syst 2024;34(4):2450016.

Ferrante M, Boccato T, Passamonti L, Toschi N. Retrieving and reconstructing.conceptually similar images
from fMRI with latent diffusion models and a neuro-inspired brain decoding,model. J Neural Eng
2024;21(4):046001.

Luo J, Cui W, LiuJ, Li Y, Guo Y, Xu S. Visual image decoding of brain activities using a dual attention
hierarchical latent generative network with multiscale feature fusion. IEEE Trans Cogn Dev Syst
2023;15(2):761-73.

St-Yves G, Allen EJ, Wu Y, Kay K, Naselaris T. Brain-optimized deep neural network models of human visual
areas learn non-hierarchical representations. Nat Commun 2023;14(1):3329.

Wen H, Shi J, Chen W, Liu Z. Deep residual network predicts cortical representation and organization of
visual features for rapid categorization. Sci Rep 2018;8(1):3752.

Shi J, Wen H, Zhang Y, Han K, Liu Z. Deep récurrent neural network reveals a hierarchy of process memory
during dynamic natural vision. Hum Brain Mapp2018;39(5):2269-82.

Ahonen T, Hadid A, Pietikainen M. Face description with local binary patterns: Application to face recognition.
IEEE Trans Pattern Anal Mach Intell 2006;28(12):2037-41.

Nishimoto S, Vu AT, Naselaris T, Benjamini. Y, Yu B, Gallant JL. Reconstructing visual experiences from
brain activity evoked by natural movies. Curr Biol 2011;21(19):1641-6.

Huth AG, Nishimoto S, Vu AT, Gallant JL. A continuous semantic space describes the representation of
thousands of object and actioncategories across the;human brain. Neuron 2012;76(6):1210-24.

Cichy RM, Khosla A, Pantazis Dy Torralba A, Oliva A. Comparison of deep neural networks to spatio-
temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Sci Rep
2016;6:27755.

Richards BA, Lillicrap TP, Beaudoin P, Bengio Y, Bogacz R, Christensen A, et al. A deep learning framework
for neuroscience. Nat Neurosei2019;22:1761-70.

Himberger KD, Chien HY, Honey CJ. Principles of temporal processing across the cortical hierarchy.
Neurosci 2018;389:161-74.

St-Yves G, Naselaris,T. The feature-weighted receptive field: An interpretable encoding model for complex
feature spaces. Neurolmage 2018;180:188-202.

Seeliger K, Ambrogioni, L, Giigliitirk Y, Bulk LM, Giiglii U, Gerven MJ. End-to-end neural system
identification with neural information flow. PLoS Comput Biol 2021;17(2):e1008558.

Wang C, Yan H, Huang W, Sheng W, Wang Y, Fan YS, et al. Neural encoding with unsupervised spiking
convolutional neural network. Commun Biol 2023;6(1):880.

Ma S, Wang L, Hou S, Zhang C, Yan B. Large-scale parameters framework with large convolutional kernel
for encoding visual fMRI activity information. Cereb Cortex 2024;34(7):bhae257.

Wang AY, Kay Ky Naselaris T, Michael JT, Leila W. Better models of human high-level visual cortex emerge
from natural language supervision with a large and diverse dataset. Nat Mach Intell 2023;5:1415-26.

Li J, Zhang €y Wang L, Ding P, Hu L, Yan B, et al. A visual encoding model based on contrastive self-
superviseddearning for human brain activity along the ventral visual stream. Brain Sci 2021;11(8):1004.
Wang H, Huang L, Du C, Li D, Wang B, He H. Neural encoding for human visual cortex with deep neural
networks learning ‘What’ and ‘Where’. IEEE Trans Cogn Dev Syst 2021;13(4):827-40.

Kulkarni G, Premraj V, Ordonez V, Dhar S, Li S, Choi Y. BabyTalk: Understanding and generating simple
image descriptions. IEEE Trans Pattern Anal Mach Intell 2013;35(12):2891-903.

Lu J, Xiong C, Parikh D, Socher R. Knowing when to look: Adaptive attention via a visual sentinel for image
captioning. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017.

Seeliger K, Ambrogioni L, Gigliitiirk Y, Bulk LM, Giiclii U, Gerven MAJ. End-to-end neural system
identification with neural information flow. PLoS Comput Biol 2021; 17(2):e1008558.

24

Page 24 of 25



Page 25 of 25

1
2
3 [30]
4
5
6 [31]
7
8
9 [32]
10 [33]
11
12 [34]
13
14
. (35]
16 [36]
17
18 (37]
19
20 (38]
21

39
29 [39]
23
24 [40]
25
27
58 [42]
29 [43]
30
31 [44]
32
33 [45]
34 [46]
35
36 [47]
37
38 (48]
39
20 [49]
41 [50]
42
43 [51]
44
45 [52]
46

53
47 3
48 [54]
49
50 [55]
51
52 [56]
33 [57]
54
55
56 [58]
57
53 (59]
>9 [60]
60

AUTHOR SUBMITTED MANUSCRIPT - JNE-109029.R2

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, et al. An image is worth 16x16
words: Transformers for image recognition at scale. In: Proc. International Conference on Learning
Representations (ICLR); 2021.

Al-Shamayleh AS, Adwan O, Alsharaiah MA, Hussein AH, Kharma QM, Eke CI. A comprehensive literature
review on image captioning methods and metrics based on deep learning technique. Multimed Tools Appl
2024;83:34219-68.

Vinyals O, Toshev A, Bengio S, Erhan D. Show and tell: A neural image caption generator. in Procs IEEE
Conference on Computer Vision and Pattern Recognition (CVPR); 2015.

Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhutdinov R, et al. Show, attend and tell: Neural image caption
generation with visual attention. in: Proc. International Conference on Machine Learning (ICML); 2016:
Anderson P, He X, Buehler C, Teney D, Johnson M, Gould S, et al. Bottom-up and top-down, attention for
image captioning and visual question answering. in: Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR); 2018.

Yao T,PanY, Li Y, Mei T. Exploring visual relationship for image captioning. In: Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR); 2018.

Ma S, Wang L, Chen P, Qin R, Hou L, Yan B. A mixed visual encoding model based on the larger-scale
receptive field for human brain activity. Brain Sci 2022;12(12):1633.

Kay KN, Naselaris T, Prenger RJ, Gallant JL. Identifying natural images from human brain activity. Nature
2008;452(7185):352-5. ~

Xue M, Wu X, LiJ, Li X, Yang G. A convolutional neural network interpretable framework for human ventral
visual pathway representation. In: Proc. AAAI Conference on Artificial Intelligence; 2024.

Qiao K, Zhang C, Chen J, Wang L, Tong L, Yan B. Effective and efficient ROI-wisewvisual encoding using
an end-to-end CNN regression model and selective optimization. In: Proc. Conference on Human Brain and
Artificial Intelligence (HBAI); 2021.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR); 2015.

Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans
Pattern Anal Mach Intell 1998;20(11):1254-9.

Corbetta M, Shulman GL. Control of goal-directed and’stimulus-driven attention in the brain. Nat Rev
Neurosci 2002;3(3):201-15. &

Klink PC, Chen X, Vanduffel W, Roelfsema PR. Population receptive fields in nonhuman primates from
whole-brain fMRI and large-scale neurophysiolegy in visual cortex. eLife 2021;10:¢67304.

Kriegeskorte N. Deep neural networks: A new framework for modeling biological vision and brain information
processing. Annu Rev Vis Sci 2015;1:417-46.

Du C, Du C, Huang L, He H. Reconstructing perceived images from human brain activities with Bayesian
deep multiview learning. IEEE Trans Neural Netw Learn Syst 2019;30(8):2310-23.

Wu H, Zhu Z, Wang J, Zheng N, Chen B. An encoding framework with brain inner state for natural image
identification. IEEE Trans Cogn Dev Syst 2021;13(3):453-64.

Wu H, Zheng N, Chen B. Feature-Specific Denoising of Neural Activity for Natural Image Identification.
IEEE Trans Cogn Dev Syst 2022;14(2):629-38.

Allen EJ, St-Yves G, Wu Y, Breedlove JL, Prince JS, Dowdle LT, et al. A massive 7T fMRI dataset to bridge
cognitive neuroscience and artificial intelligence. Nat Neurosci 2022;25(1):116-26.

LuY, Du C, Wang D, He H. MindDiffuser: Controlled image reconstruction from human brain activity with
semantic and structural diffusion. In: Proc,/ACM International Conference on Multimedia (ACMMM); 2023.
Du C, Fu K, Li J, He H¢ DeC(I)]HH\g visual neural representations by multimodal learning of brain-visual-
linguistic features. IEEE TransPattern Anal Mach Intell 2023;45(9):10760-77.

Shelhamer E, Long J, Darrell'T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern
Anal Mach Intell 2017;39(4):640-51.

Gao JS, Huth AG, Lescroart MD, Gallant JL. Pycortex: An interactive surface visualizer for fMRI. Front
Neuroinform 201:5;9:23-35:

Cohen MR, Maunsell JHR. Using neuronal populations to study the mechanisms underlying spatial and feature
attention. Neuron 2011;70(6):1192-204.

Darcet T, Oquab M, Mairal J, Bojanowski P. Vision transformers need registers. In: Proc. International
Conference on Learning Representations (ICLR); 2024.

Giiclii' U, Gerven MA. Deep neural networks reveal a gradient in the complexity of neural representations
across the yentral stream. J Neurosci 2015;35(27):10005-14.

Giigliv U, Gerven MA. Increasingly complex representations of natural movies across the dorsal stream are
shared between subjects. Neuroimage 2017;145:329-36.

Kokkinos T. Ubernet: training a universal convolutional neural network for low-, mid-, and high-level vision
using diverse datasets and limited memory. In: Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR); 2017.

Huang W, Yang P, Tang Y, Qin F, Li H, Wu D, et al. From sight to insight: A multi-task approach with the
visual language decoding model. Inf Fusion 2024;112:102573.

Zhu D, Chen J, Shen X, Li X, Elhoseiny M. MiniGPT-4: Enhancing vision-language understanding with
advanced large language models. 2023;arXiv preprint arXiv:2304.10592.

Touvron H, Lavril T, Izacard G, Martinet X, Lachaux M, Lacroix T, et al. LLaMA: Open and efficient
foundation language models. 2023;arXiv preprint arXiv:2302.13971.

25



