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Abstract
This paper proposes a novel genetic algorithm to optimize recommendations from mul-
tiple trading strategies derived from the Directional Changes (DC) paradigm. DC is an 
event-based approach that differs from the traditional physical time data, which employs 
fixed time intervals and uses a physical time scale. The DC method records price move-
ments when specific events occur instead of using fixed intervals. The determination of 
these events relies on a threshold, which captures significant changes in price of a given 
asset. This work employs eight trading strategies that are developed based on directional 
changes. These strategies were profiled using varying values of thresholds to provide 
a comprehensive analysis of their effectiveness. In order to optimize and prioritize the 
conflicting recommendations given by the different trading strategies under different DC 
thresholds, we are proposing a novel genetic algorithm (GA). To analyze the GA’s trading 
performance, we utilize 200 stocks listed on the New York Stock Exchange. Our findings 
show that it can generate highly profitable trading strategies at very low risk levels. The 
GA is also able to statistically and significantly outperform other DC-based trading strate-
gies, as well as 8 financial trading strategies that are based on technical indicators such as 
aroon, exponential moving average, and relative strength index, and also buy-and-hold. 
The proposed GA is also able to outperform the trading performance of 7 market indices, 
such as the Dow Jones Industrial Average, and the Standard & Poors (S&P) 500.

Keywords  Directional changes · Genetic algorithm · Trading strategies · Stock 
forecasting
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1  Introduction

Financial forecasting has made significant strides in stock investments in recent decades, 
particularly regarding return and risk. Modern portfolio theory, as introduced by Markow-
itz’s seminal work (Markowitz 1952), sparked research in creating profitable portfolios for 
investors while also managing risk. Henceforward, forecasting of stock returns for traders 
has heavily evolved around two major techniques, namely, Fundamental Analysis (FA), and 
Technical Analysis (TA). Among the two, companies’ financial statements serve as tools in 
the decision-making process for FA. In the fields of TA, historical prices and volume data 
are primary components. In this work, we focus on using TA, specifically from the perspec-
tive of novice traders who may lack extensive financial knowledge. This was motivated by 
the relative ease of use of the tools employed in the decision-making process.

The vast majority of research in the area of TA relies on predefined time intervals, such 
as daily, hourly, or weekly price data. However, this conventional time-based approach can 
lead to information loss, as it captures only specific snapshots of market activity while 
overlooking fluctuations occurring between those intervals. For instance, when relying on 
daily closing prices, only a single price per day is recorded, neglecting all intraday price 
movements that could provide valuable trading opportunities. This limitation affects both 
financial performance—where trading algorithms could otherwise capitalize on interme-
diate price shifts–and machine learning applications, where additional data points could 
enhance model training.

One possible solution is to incorporate higher-frequency data, such as hourly or min-
ute-level prices, to reduce gaps between observations. However, this still imposes artificial 
constraints, as price changes occurring between these intervals remain unaccounted for. 
A more comprehensive alternative is to use tick-by-tick data, which records every market 
transaction or price change in real time. While this approach offers the most granular insight 
into market dynamics, it comes with significant trade-offs, including data storage require-
ments, computational complexity, and acquisition costs, making it less practical for many 
applications.

An alternative approach to such fixed time interval sampling methods is intrinsic time 
data sampling, which involves the sampling of data based on the occurrence of significant 
events in the market. The underlying concept is to record noteworthy market events that 
represent substantial price movements which would typically go unnoticed by traditional 
physical time sampling methods. Various intrinsic time sampling techniques have been doc-
umented, including “important points” (Pratt 2001), “perceptually important points” (Chen 
and Chen 2016), “turning points” (Yin et al. 2011), “zigzag” (Özorhan et al. 2019), and 
more recently, directional changes (DC) (Glattfelder et al. 2011; Tsang et al. 2017; Rosta-
mian and O’Hara 2022; Li et al. 2022).

Despite being conceived very recently, the DC paradigm has produced innovative ideas, 
notably including scaling discoveries and indicators that are uniquely discovered through 
DC. In order to capitalize on those advancements we use DC in this work. The DC paradigm 
encompasses a sampling methodology that captures discrete instances of historical data 
solely when a price alteration surpasses a pre-determined positive threshold value. The latter 
is a critical parameter expressed as a percentage, it is denoted by θ, and is set by the trader 
based on their own perception of what constitutes a significant price change. Such changes 
can manifest as either an increase or decrease in value.
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This work presents a novel DC framework, which applies eight distinct DC-based trad-
ing strategies across ten different DC thresholds. Each threshold generates a unique even-
based series, and information from each series and strategy is combined to form a more 
informed trading approach. To achieve this aggregation, we employ a genetic algorithm 
(GA), which is a bio-inspired algorithm mimicking an evolutionary process, to optimize the 
parameters across the multi-strategy, multi-threshold recommendations. We test the frame-
work extensively on daily data from 200 stocks (datasets) listed on the New York Stock 
Exchange. This objectives of this work are: (i) to develop accessible, profitable DC-based 
strategies that require minimal financial knowledge, and (ii) to improve trading performance 
by applying GA optimization.

The remainder of this paper is structured as follows: In Sect. 2, we will provide a compre-
hensive background to DC, and in Sect. 3 we will present a detailed review of the relevant 
DC literature from an artificial intelligence and machine learning perspective. In Sect. 4, 
we will discuss the methodology employed in our experiment. In Sect. 5, we will detail the 
experimental setup. Section 6 will focus on the presentation and discussion of our results. 
Finally, in Sect. 7, we will present the conclusion of this paper.

2  Background information on directional changes

2.1  Definitions

Initially, we would like to highlight two crucial points that emerge after DC profiling the 
physical data: i) based on this threshold parameter, the entire historical data can be analyzed 
solely along two directions, namely, uptrend (UT) and downtrend (DT); (ii) in these trends, 
we can only observe two events, namely, a directional change (DC) event and an overshoot 
(OS) event.

As pointed out in the seminal work (Tsang et  al. 2017), in contrast to physical time, 
which samples data points at regular time intervals, the DC samples data points from their 
peak and trough. By employing a pre-determined threshold (percentage), it becomes pos-
sible to decompose the data using these distinct components. In a DT (resp. UT), a last 
low price (resp. high price) is continuously updated to the minimum (resp. maximum) of 
the two prices: the current price p(t) and the last minimum (resp. last maximum). The last 
minimum and maximum in these trends are naturally called extremum and are denoted by 
pextℓ  and pexth , respectively. The confirmation of a DC event in DT (resp. UT) occurs 
when the absolute price change between p(t) and the pexth  (resp. pextℓ ), denoted by 
∆p := |p(t) − pexth

| (resp. |p(t) − pextℓ
| ), is at least as high as the given threshold. The 

region between two DC events defines an OS event, which usually is of non-zero length.
Figure 1 demonstrates an example of the formation of consecutive DC and OS events for 

θ = 6%. Each data point represented on the graph corresponds to a paired combination of 
time-step (t) and price (e.g., point A = (tA, pA) = (0, 99.9)). Suppose we have a financial 
product whose price starts at 99.9$ at t = 0 and decreases to 98$ at t = 1, then to 97$ at 
t = 2, and finally, to 94$ at t = 3. Since the price change is smaller than the pre-specified 
value of θ, we do not consider the time interval 0 − 3 as a DC event. Although the price 
decrease continues, we only update pextℓ  (i.e., at t = 3, the lowest price we experienced 
is 94$). At t = 4, the price jumps to 98$, but again, due to not seeing the significant price 
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change that is defined by the θ, we still can not conclude a DC event. However, at t = 5, 
from pextℓ  to our new price, ∆p is at least as high as θ. In other words, within the interval 
from t = 3 to t = 5, a substantial price change of 6% is observed. Thus, we can conclude 
that an uptrend has occurred, and it is evident that the time duration of 3–5 qualifies as a 
DC event.

To detect the next DC event, this time we should observe a drop greater than the thresh-
old’s expected percentage. The event we are currently experiencing until this drop occurs is 
an OS event. Between t = 6 to t = 7, which is the first interval where we observe the price 
drop from t = 5 to t = 9, there is no DC event validation due to the drop being lower than 
θ (i.e., |p(7) − p(6)| < θ). Meanwhile, pexth  keeps updating to the newest high. There-
fore, when we reach t = 9, pexth  is at 110$. From that point forward, we indeed observe 
a decrease at t = 10 and t = 11. However, these drops from the pexth  (110$) are still not 
sufficient to conclude a DC event. At t = 12, we can observe that the required price change 
has occurred. Therefore, we can conclude that a DC event has taken place. Retrospectively, 
we also conclude that the OS in uptrend also occurred between t = 5 and t = 9. In this con-
text, we would like to emphasize a point within the DC events profiled with the threshold 
θ = 17% in Fig. 1 (indicated by dotted lines). While we expect that DC events are typically 
followed by OS events, it is essential to note that this pattern may not always hold true. 
DC events can occasionally be followed by another DC event in opposite trend due to data 
fluctuations.

Crucial to the definition of directional changes, are the notions of the extremum points 
(see EXTℓ, EXTh in Fig. 1), and the directional change confirmation point DCCi. As pre-
viously noted, an extremum point refers to the lowest price (resp. high price) in a DT (resp. 
UT). This point is continuously updated to reflect the minimum (resp. maximum) value 
between two prices: the current price and the last recorded minimum (resp. last maximum). 

Fig. 1  Transformation of physical time data into the DC paradigm. The solid and dashed lines represent 
a set of events defined by a threshold θ = 6%, whereas the dotted lines correspond to events defined by a 
threshold θ = 17%. The solid and dotted lines represent the DC events, while the dashed lines indicate the 
OS events. For the threshold θ = 6%, there are two DC event confirmation points, at times 3 and 10. An 
uptrend takes place between the two extreme points, EXTℓ and EXTh, which are confirmed retrospec-
tively at their subsequent confirmation points, DCCi and DCCi+1
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A confirmation point is a specific point in time at which one confirms the occurrence of a 
DC event. The interpretation of these points will be useful in our strategies’ description in 
Sect. 4. Another important observation is that ∆p can potentially be bigger than the mini-
mum price change (determined by θ) required to identify it as a DC event. To account for 
this, the concept of a theoretical confirmation point, DCC∗, is introduced. The theoretical 
confirmation point represents the hypothetical minimum or maximum price level required 
to confirm a directional change event, either a UT or a DT. It is important to note that the 
theoretical confirmation point may not actually exist or be encountered in the real market 
under most circumstances. Instead, it serves as a theoretical reference point used for analy-
sis. This can be seen in Fig. 1, where a price change of 5.64$ from 94$ to 99.64$, which is 
exactly 6% more of the price at EXTℓ (recall that θ = 6% in our example) between points 
EXTℓ and DCC∗ is sufficient to confirm a DC event. The notation PDCC∗ signifies the 
theoretical price that would be enough to conclude a DC event. Let us finally note that, as 
previously emphasized, DC paradigm encapsulates the entire given data through trends, 
namely, UT and DT. As an example from Fig. 1, the boundaries between EXTℓ and EXTh 
represent UT, and from EXTh to the upcoming EXTℓ will be DT. Algorithm 1 presents 
the pseudocode for generating DC events, which first appeared (using different notation) in 
Aloud et al. (2012b).

Algorithm 1  Pseudocode for generating DC events given threshold (θ)

Lastly, in this section, it is worth mentioning what we perceive as intersections between 
DC and TA. TA evaluates financial product movements through price trend analysis and 
graphical representation. In this work, we also rely on this point. TA indicators develop-
ment follows predefined rules, yet interpretation varies among traders. Hence, it’s important 
to bear in mind that indicators should not be regarded as inflexible, steadfast trade rules. 
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Instead, they possess a certain level of adaptability and are subject to the trader’s discretion, 
affording a freedom and flexibility in their utilization. Thus, in this paper, our goal is to 
develop TA-like, DC-based trading strategies resembling widely used TA strategies.

3  Literature review

Technical analysis is widely utilized in financial markets to identify trading opportunities 
based on price movements and historical patterns. Over the years, technical indicators have 
been integrated into machine learning models to enhance predictive accuracy in algorithmic 
trading. Since the 1980 s, artificial neural networks have been applied to financial forecast-
ing, leading to the development of more sophisticated AI-driven trading systems.

Several studies have investigated the combination of technical indicators with different 
predictive models. For example, Mostafa (2010) applied linear models alongside technical 
analysis indicators, while Nelson et al. (2017) employed long short-term memory (LSTM) 
networks to predict stock price trends. In Kamara et al. (2022), the authors introduced a 
hybrid deep learning framework incorporating technical analysis for financial forecasting, 
using two stocks as case studies. Additionally, Ghasemzadeh et al. (2024) emphasized the 
value of meta-synthesis techniques in financial systems, demonstrating how integrating tra-
ditional financial metrics with AI-based methods can improve decision-making. Similarly, 
Sharma and Verma (2024) explored the impact of technical indicators on deep learning 
models for option price prediction, reporting enhanced accuracy.

The use of evolutionary algorithms and particularly genetic algorithms also dates back 
to several decades ago (Brabazon et al. 2020). Recent works include Macedo et al. (2020), 
which demonstrated that genetic algorithms (GA) can optimize technical trading strategies 
by identifying market inefficiencies and improving profitability. In addition, Ito et al. (2020) 
used an evolutionary model that aggregates traders to predict stock returns using interpre-
table alpha factors, addressing market uncertainty and model adaptability. Further advance-
ments include de Almeida and Neves (2022), which introduced self-adaptive evolutionary 
algorithms for stock market prediction and portfolio management, achieving higher Sharpe 
ratios and lower risk. In a related study, Long et al. (2023) combined genetic programming 
with directional changes and technical indicators within a multi-objective optimization 
framework, successfully balancing return and risk in trading strategies.

While all of the above works focus on physical time to summarize data, an alternative 
is summarizing data based on events, i.e. on intrisic time. As previously mentioned, direc-
tional changes is such a technique. Its origins can be traced back to Guillaume et al. (1997), 
which aimed at analyzing trend behavior. Since then there has been many studies that have 
been using directional changes. Early works focused on studying market dynamics under 
DC, e.g. Glattfelder et al. (2011) discovered 12 scaling laws that could hold for 12 foreign 
exchange currrency pairs. Other works also looked at creating DC-based indicators, e.g. 
Tsang et al. (2017); Tsang and Chen (2018) was one of the first to propose novel indicators 
in this domain. Later on, Tao (2018) build on the previous two works, by providing a new 
set of DC-based indicators. More recently, artificial intelligence and machine learning algo-
rithms have been applied to DC to assist with the decision-making process during trading.

Early works on artificial intelligence have used agent-based modeling to simulate finan-
cial markets under the DC paradigm (Aloud et  al. 2012a; Aloud 2016). An agent-based 
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approach was also used by Bakhach et al. (2016) and Bakhach et al. (2018), the latter using 
the well-known C4.5 algorithm to predict whether future trades can be profitable.

The first work that used a machine learning algorithm in the DC framework was Gypteau 
et al. (2015), which applied genetic programming to combine trading actions under a single 
tree. Recently, DC-based trading strategies were proposed alongside reinforcement learn-
ing (Rayment and Kampouridis 2023, 2024). Meanwhile, the incorporation of DC features, 
such as trend reversals, into classification tasks has also led to the development of works 
utilizing Forex data (Adegboye et al. 2021; Adegboye and Kampouridis 2021; Adegboye 
et al. 2022; Rayment et al. 2023). Lastly, there has been works that have combined techni-
cal analysis and DC indicators, which has often resulted in improved trading performance 
when compared to only technical analysis or only directional changes (Long et al. 2022, 
2023; Long and Kampouridis 2024). Such works have included the use of NSGA-II (Deb 
et al. 2002), a well-known multi-objective optimization algorithm that is based on genetic 
algorithms.

In simple terms, a trading strategy is a plan designed to facilitate the buying, selling, or 
holding of assets such as stocks, bonds, commodities, or intellectual property, with the ulti-
mate objective of generating profit. The literature reveals that strategies based on DC, which 
can be easily implemented by traders with limited financial analysis expertise, are relatively 
scarce. Among the researches built on simple trading strategies, the first by Salman et al. 
(2022) implemented seven strategies derived from scaling discoveries and indicators from 
DC. Each strategy generated a distinct set of recommendations—Buy, Sell, or Hold—and 
the information from these individual recommendations was aggregated to produce a more 
informed overall recommendation by the use of a genetic algorithm. Subsequent work by 
Salman et  al. (2023) focused on obtaining more comprehensive insights by introducing 
multiple distinct thresholds (θs) and again optimize them by a GA.

However, in the first work, the aggregated recommendation from the seven strategies 
was conducted using only threshold (θ = 2.5%), thereby constraining each trading strat-
egy to the information provided by that specific DC threshold. This presents a significant 
challenge, as it is difficult to determine which DC threshold yields the most informative 
summary. In the second study, three strategies were aggregated using multiple thresholds, 
meaning that the overall decision was based solely on the insights from different thresh-
olds. This, in turn, limited the range of information that could be provided by the different 
strategies.

In our current work, to overcome the aforementioned limitations, we will use differ-
ent DC-based strategies, as well as multiple thresholds. As mentioned earlier, we will use 
a genetic algorithm to assist with the decision-making behind the potentially conflicting 
recommendations of the different trading strategies. The next section discusses in detail the 
methodological steps in our work.

4  Methodology

In this work, we propose a new model for optimizing trading strategies within the DC para-
digm. Specifically, we construct a more fine-grained optimization via a genetic algorithm 
(GA), which now employs chromosomes that encapsulate sub-strategies, each with its own 
threshold. We call the current model Multi-Strategy/Threshold-Genetic-Algorithm-Model 
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(MSTGAM). This is going a step further than the previous works; unlike the model pro-
posed in Salman et al. (2022) whose optimization focused only on a single threshold, or that 
proposed in Salman et al. (2023) where the optimization was applied only on thresholds, our 
current model aims to explore the GA optimization over sub-strategies.

A sub-strategy combines a trading strategy with a DC threshold θ, and we generate a set 
of sub-strategies by pairing each of our trading strategies (St1,..., St8) with corresponding 
thresholds (θ1, ..., θ10).1 Each sub-strategy is represented as a gene in a chromosome and 
assigned a weight. Regardless of their weights, the genes recommend Buy, Sell, or Hold. 
The chromosome’s decision-making process aggregates these weighted recommendations, 
with the total weight summing to 1. To resolve conflicting recommendations, we use a 
genetic algorithm (GA) to optimize the weights assigned to each sub-strategy.

The remainder of this section is structured as follows: In Sect. 4.1, we present the indi-
vidual trading strategies. In Sect. 4.2 we discuss the thresholds selection. Finally, in Sect. 4.3 
we demonstrate the GA methodology and how it is used to optimize the aforementioned 
trading strategies and thresholds.

4.1  Trading strategies

This section will explore the rationale and objectives of each trading strategy, summarized 
in Table 1. We present eight strategies, some based on indicators and others on scaling 
discoveries, all with the shared goal of applying TA-inspired methods within the DC frame-
work. These strategies fall into two categories: adaptations of pre-existing strategies from 
the literature, modified for their initial application, or entirely novel strategies. We will 
structure the strategies by their distinct characteristics. In Sect. 4.1.1, we examine strategies 

1 There are 60 combinations of St1,.., St6 with θ1, ..., θ10, and 10 combinations of St7 and St8 with θ1, ..., θ5

.

Strategy Buy action Sell action
St1 In DT, once the price change from pexth  

reaches two θ
Same signal 
in the UT

St2 In DT, once the duration of its OS event 
reaches double the duration of DC event

Same signal 
in the UT

St3 In DT, once we see the | OSVCUR | is 
equal or greater than the | OSV best |

Same signal 
in the UT

St4 In DT, once we see the | T MVCUR | is 
equal or greater than the | T MV best |

Same signal 
in the UT

St5 In DT, once the duration of OS event 
over the DC event is equal or greater 
than RD

Same signal 
in UT

St6 In DT, once the randomly generated p is 
equal or greater than the RN

PDCC  in 
upcoming 
trend

St7 3rd consecutive OS in UT PDCC  in 
DT

St8 3rd consecutive OS in DT PDCC  in 
UT

Table 1  Execution signals as buy 
and sell
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1 and 2, grounded in scaling discoveries, which describe proportional relationships between 
physical quantities over significant intervals. In DC, these relationships connect price move-
ments, duration, and frequency. Section 4.1.2 covers strategies 3 to 8, which use indicators, 
and concludes with Table 1, offering a concise summary of their execution mechanisms.

4.1.1  Strategies based on scaling discoveries

Scaling discoveries, in essence, explain the inherent connection between two physical quan-
tities that exhibit proportional changes across a substantial range. In the context of DC, these 
associations primarily aim to establish mathematical links encompassing price movements, 
duration, and frequency. Among the 12 scaling discoveries found through DC (Glattfelder 
et al. 2011), two are highly important at connecting the DC and OS events by their average 
duration, and the price changes in each event.

The first scaling law, identified by Glattfelder et al. (2011), describes a recurring pat-
tern where a directional change (DC) defined by a threshold (θ) is, on average, followed by 
an overshoot (OS) event with a price change approximately equal to that of the threshold 
θ. This relationship is captured in Eq.  (1), where the symbol “≈” denotes approximate 
equivalence.

	 ⟨∆pDC⟩ ≈ ⟨∆pOS⟩ ≈ θ� (1)

Building on the scaling law, Strategy 1 (St1) involves purchasing a stock during a downtrend 
(DT) when a price change equal to or greater than twice the threshold θ is observed from 
its extremum point (i.e., pEXTh ). It is crucial to note that if a price change of 2 · θ occurs at 
the confirmation point (DCC) from pEXTh  (or pEXTl  in the case of a sell), the buy (or sell) 
order is executed at the DCC. The same process is applied to initiate a sell order during an 
uptrend (UT). The logic behind this strategy is to capture the trend once the price change, as 
dictated by the scaling law, has occurred and to then wait for the opposite trend (i.e., UT) to 
realize a profit. Algorithm 2 provides an overview of how the trading strategy is structured.

Algorithm 2  Trading rule for St1

The second scaling law demonstrates a consistent pattern: on average, the duration of an 
OS event was approximately twice the duration of a DC event. Equation (2) highlights the 
scaling law, by aligning the notation of Glattfelder et al. (2011) let us denote by ⟨TOS⟩ and 
⟨TDC⟩ the average time of an OS and DC event, respectively. Consequently, the previously 
mentioned scaling law can be expressed as follows:
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	 ⟨TOS⟩ ≈ 2 · ⟨TDC⟩,� (2)

Equation (2) underscores the scaling law, where the symbol “≈” denotes approximate 
equivalence again.

Strategy 2 (St2) follows this rationale: Upon observing a DC event, an execution signal is 
generated by checking the time duration of the DC and holding for double that time after the 
confirmation point DCC. Following this, a Buy order is executed if the market is in a down-
trend (DT), or a Sell order is executed if the market is in an uptrend (UT) (If the position is 
already opened as a Buy). This strategy is designed to enable informed decision-making, 
based on the assumption that the scaling law holds for each distinct trend. Algorithm 3 pro-
vides an overview of the strategy’s implementation.

Algorithm 3  Trading rule for St2

We believe that leveraging the above statistical properties provided by the scaling law 
can potentially yield profitable trading strategies, particularly due to their relative obscurity 
among traders. Therefore, the area of DC analysis presents a fertile ground for research, 
offering the potential for significant improvements in trading performance.

4.1.2  Indicator based strategies

This work introduces new DC-based indicators alongside existing ones for improved finan-
cial forecasting in traders’ decisions. Note that here we only discuss the indicators used in 
the current work and in the most relevant recent work (Salman et al. 2022, 2023). For a 
more extensive exposition of indicators, we refer the reader to comprehensive sources such 
as Tao (2018).

Indicators
The indicators and their insights are as follows:

	● Duration of DC events (TDC ): Total physical time spend in DC events.
	● Duration of OS events (TOS): Total physical time spend in OS events.
	● Ratio of duration (RD): Total time spent in OS divided by total time spent in DC. 

	
RD = TOS

TDC
� (3)
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	● Number of DC events (NDC ): The total number of DC events throughout the investi-
gated period.

	● Number of Overshoot Events (NOS): The total number of OS events in the profiled data.
	● Ratio of number of events (RN): 

	
RN = NOS

NDC
� (4)

 Notice, that RN ∈ [0, 1), since in an extreme case it could be NOS = 0, and in general, it 
also holds that NDC ≥ NOS + 1, since there is at most one OS between two DCs.

	● Theoretical Confirmation Point (DCC∗): The earliest time after the extreme point (i.e., 
pextℓ  or pexth  at which a price change equals θ in the direction opposite to the current 
trend. At the uptrend: 

	 PDCC∗ = pextℓ
· (1 + θ),� (5)

 and at the downtrend: 

	 PDCC∗ = pexth
· (1 − θ).� (6)

	● Overshoot Values at Current Points (OSVCUR): The main goal of this indicator is to 
measure the magnitude of an OS event. It can be calculated as follows: 

	
OSVCUR = PCUR − PDCC∗

θ · PDCC∗
,� (7)

 where PCUR is the current price of the asset.

	● Total Moves Value at Current Points (TMVCUR): The main goal of this indicator is to 
measure total movement from the eyes of the leftmost extreme point. At uptrend,2 it can 
be calculated as follows: 

	
TMVCUR = PCUR − pextℓ

θ · pextℓ

,� (8)

 where PCUR is the current price of the asset.Strategies
The following two strategies are based on the OSVCUR (Eq. (7)) and TMVCUR (Eq. (8)) 
indicators. The core idea behind their development is the dynamic utilization of the ‘Best’ 
values observed during the training phase, employing these values as execution triggers in 
the test set.

St3 focuses on the employment of the Overshoot Values at Current Points indicator. 
Within this strategy, we verify whether |OSVCUR| ≥ |OSV bestDT | in the test set. The 

2 Due to the fact that the usage of indicators is built upon absolute values, there is no difference whether we 
are in an uptrend or a downtrend. Fundamentally, the value of an indicator is the current price is determined 
by the extreme point price that forms the trend it is currently in.
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way we determine our OSVbest which is used as threshold in their own way (a value that we 
decide upon for our trading mechanism) is as follows. Initially, we generate two distribu-
tions from the DC-profiled dataset as per Eq. (7): for every price in OS events in downtrends 
and uptrends. Therefore, if there is no OS events such that consecutive DC events occur, 
indicator values are not calculated for that part. These values are then divided into quartiles, 
each containing a median OSVCUR value, resulting in four indicator values for both trends. 
Ultimately, the most favourable OSVCUR values is identified through assessment, one for 
downtrend one for uptrend, denoted as OSVbest. This assessment conducted through testing 
these values by which of them generates the highest sharpe ratio in training set when we 
use the trading strategy that previously explained. Consequently, we identify two distinct 
OSVbest values: OSV bestDT  for downtrend and OSV bestUT  for uptrend.

In instances where this rule is satisfied, we examine the direction of the trend as a signal. 
If the trend direction is deemed as a downtrend (DT), we initiate a stock purchase and await 
to see the |OSVCUR| ≥ |OSV bestUT | in any upcoming uptrend (UT). In St3, our goal is to 
detect the trend reversal by observing when the indicator value reaches a certain magnitude. 
This approach allows us to capitalize on the uptrend shift by purchasing stocks at a lower 
price and selling them at a higher value. Algorithm 4 provides an outline of the process 
involved in constructing the trading strategy.

Algorithm 4  Trading rule for St3

St4 is founded upon the utilization of the Total Moves Value at Current Points indicator, 
as outlined by Eq. (8). In the formulation of this strategy, we once more adhere to the con-
dition of verifying whether the magnitude of |TMVCUR| exceeds that of |TMV bestDT |, 
akin to the approach in St3. The methodology for determining |TMV best| follows a simi-
lar process; however, the distinction lies in the calculation of the current value, which is 
based on Eq. (8). Again, we find two “Best” values, one for downtrend and one for uptrend, 
denoted by TMV bestDT  and TMV bestUT , respectively. In the final phase, the trend is 
assessed once again, and if it is recognized as a DT, a buy order for the stock is executed. We 
then await the UT, to execute a sell order when the condition is matched again. Similar to 
the previous strategy, our aim here is to anticipate an uptrend shift upon the indicator reach-
ing a certain magnitude. The distinction lies in the measurement of the TMVCUR indicator, 
which evaluates the trend from its initial starting point, offering a comprehensive view of 
the movement’s total trajectory. Algorithm 5 shows how trading strategy is integrated.
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Algorithm 5  Trading rule for St4

The next two strategies are constructed based on the idea of establishing a relationship 
between OS and DC within the duration of their connection, as well as considering the over-
all relationship between the number of observed OS and DC events.

Strategy 5 (St5) is based on the ratio of the total time spent in OS events divided by the 
total time spent in DC events. We buy the stock in a downtrend whenever we observe that 
the time duration of OS divided to its DC event time duration is equal or greater than our 
predefined ratio value. The calculation of this fixed ratio is based on Eq. (3). For instance, 
if the duration of any given OS event to its DC duration exceeds the specified ratio RD, we 
execute a stock purchase if the current trend is DT. Similarly, when the current trend is UT, 
we wait for the same ratio value to be observed and then sell the stock. Algorithm 6 provides 
a summary of the process involved in building the trading strategy.

Algorithm 6  Trading rule for St5

Strategy 6 (St6) follows a similar process to that of St5. In this case, we establish our pre-
defined ratio by dividing the total number of OS events by the total number of observed DC 
events, as indicated in Eq. (4). However, in this instance, the decision to buy stocks depends 
on a ratio that must consistently fall within the range of 0 to 1. The developed strategy oper-
ates based on probability, taking this ratio into account. If the randomly generated number is 
equal or greater than the predetermined ratio (RN as described in Eq. (4)) in a downtrend, a 
stock position is initiated only on DCC points of downtrends. To sell the stock, we await the 
next confirmation point during a uptrend. The underlying idea behind this strategy is based 
on the principle that sampling all the data using the DC paradigm gives us a general insight. 
By taking the number of OS events relative to DC events as a threshold, we aim to capture a 
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quick uptrend in price during downtrends, in an aim not to see OS events when this ratio is 
met. Nevertheless, the degree of randomness in this strategy depends on the number of OS 
events observed to DC events observed, with the ultimate goal of capturing the bull market.

Algorithm 7  Trading rule for St6

The final two strategies aim to emulate the important notion of TA. To explain this con-
ceptually, we first need to discuss two TA indicators. These two are support, and resistance. 
As prices decrease, they become more appealing to potential buyers who have been waiting. 
Eventually, the demand will reach a level that matches the available supply, causing prices 
to stabilize and stop declining. This is known as support (Lo et al. 2000). Resistance is the 
opposite of support. Prices rise when demand exceeds supply. As prices increase, a tipping 
point is reached where selling pressure outweighs buying interest. Building upon these two 
primary indicators, support and resistance, we have developed two strategies based on the 
sequential occurrence of OS events within the same trend. Similar to the triangle patterns 
from TA, the presence of three consecutive peaks signaling a reversal in price direction, 
since these patterns indicate a saturation in the current price. Therefore, in our strategy that 
is built upon the absence of OS events, we have also established it based on the absence of 
an equal number of OS events.

Strategy 7 (St7) is based on the following idea. In general, during a DT there is a DC 
interval followed by an OS interval, which in turn is followed by the next DC interval 
(where the latter signals a UT). Similarly for a UT. It is important to recall here that there is 
a case where there is no OS interval between the DC intervals, since the definition allows 
it. Consider now a sequence of UT-DT-UT-DT-UT. If in all of the DTs there is no OS and in 
each and all of the UTs there is an OS (i.e., three OS intervals), then St7 prescribes to buy 
the stock. Once the stock purchase occurs, we subsequently wait for a confirmation point in 
DT and then sell the stock. Algorithm 8 represents the functionality of the strategy.
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Algorithm 8  Trading rule for St7

Strategy 8 (St8) is symmetric to St7, where instead of detecting three OS intervals in UT 
we detect them in DT. In particular, consider a sequence of DT-UT-DT-UT-DT. If in all of 
the UTs there is no OS and in each and all of the DTs there is an OS (i.e., three OS intervals), 
then we buy the stock. Once the stock purchase occurs, we subsequently wait for a confir-
mation point in UT and then sell the stock. Algorithm 9 prescribes the actions of the strategy.

Algorithm 9  Trading rule for St8

In summary, these strategies were derived from a combination of scaling discoveries 
and indicators from DC. By resembling TA-like approaches in DC, they aimed to provide 
insights into potential outcomes in the financial markets for practitioners, and their results 
will be covered comprehensively in Sect. 6.

Trading Rules
There are several constraints and considerations to be aware of in the trading process, and 

these are as follows: (i) a new position (i.e., executing a buy, or sell on a stock) cannot be 
opened if a position is already open; therefore, a position must be closed3 before a new one 
can be opened, (ii) short selling4 is not permitted, meaning that all opening positions must 
involve taking a long position on a financial product, (iii) each trade is subject to a transac-
tion cost of 0.25% applied to the price of the product at the time of execution.

3 our objective was to treat each trade within a given stock as a single investment, considering the period from 
the initial purchase to the subsequent sale as a unified investment horizon.

4 For a broader perspective, the concept discussed in Davies (2021) can be examined from the recent events 
that have garnered significant public attention.
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4.2  Thresholds

It is evident that a specific value of θ determines a unique set of DC and OS events. For 
example, selecting smaller thresholds leads to more frequent events, providing the oppor-
tunity for timely actions. On the other hand, larger thresholds detect fewer events but allow 
for potential actions in response to more significant price changes.

Consequently, this study aims to capture the range of events by optimizing mul-
tiple thresholds. Thresholds selection process can be outlined as follows: Firstly, to 
ensure that the thresholds do not closely resemble each other, we divided the range 
from 0.05% to 2.75% into 10 equal intervals. These intervals are defined as fol-
lows: 0.05 for the first, 0.35 for the second, 0.65 for the third, continuing in this 
sequence up to 2.75 for the final interval (i.e., 2.75% − 0.05% = 2.70%, and 
2.70%/9 = 0.3%, with each interval incrementing by 0.30% and reaching up to 2.75%). 
Subsequently, we randomly selected the threshold values from 10 different normal distribu-
tions, each with a mean (µ) equal to the midpoint of one of these intervals and a standard 
deviation (σ) of 0.1. For example, the second threshold would be randomly selected from 
the distribution N (0.35, 0.12). By doing so, the resulting thresholds for turned out to be: 
θ1 = 0.098%, θ2 = 0.22%, θ3 = 0.48%, θ4 = 0.72%, θ5 = 0.98%, θ6 = 1.22%, θ7 = 1.55%, θ8 = 1.70%, θ9 = 2%, 
and θ10 = 2.55%.

4.3  Genetic algorithm optimization

4.3.1  Overview

Genetic algorithms are used in order to optimize complex objective functions. They do so 
by mimicking natural selection and genetics principles, and they are popular due to their 
time efficiency in generating high-quality solutions (Holland 1992).

As a short overview how the process is conducted for GA: (i) Initial population, start 
with a randomly generated potential solutions called chromosomes. Each chromosome con-
tains genes representing different solution components. (ii) Fitness evaluation, Each chro-
mosome’s effectiveness (as a solution) is measured by a fitness function. In this work, we 
have chosen Sharpe Ratio, Eq. (9), as our fitness function; it balances profit and risk, and 
is a vital metric in financial markets. (iii) Selection of chromosomes, is conducted through 
methods that favors the fittest chromosomes among the current population. In our case, we 
used tournament selection, where k chromosomes.5 are selected uniformly at random from 
the current population. Then, from the fittest of these k chromosomes, one with the high-
est fitness is picked to serve as a parent chromosome. (iv) Operators, among the possible 
two operators, we apply the operation of crossover with probability of p, where we have to 
pick a second parent by running another tournament selection of size k (with the first parent 
included in the pool of chromosomes), and create an offspring that will participate in the 
new population by replacing a strip of the first parent’s genes with that of the second parent 
(see Sect. 4.3.3 for more details on the crossover process). With a probability of 1 − p, we 
apply the operation of mutation, where this parent’s genes undergo some random changes 
to create an individual that will participate in the new population. (v) elitism, where one of 
the fittest chromosomes—in our case, the chromosome with the highest Sharpe Ratio—pre-

5 k is called tournament size.
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served to the next population. In order to ensure the survival of a certain number of the fittest 
individuals from the current generation to the next. (vi) Termination condition, we repeat 
steps ii to v until a termination condition—in our case, certain number of generations—is 
met.

In this paper, we aim to determine whether overall performance can be improved by 
simultaneously applying multiple strategies and making various thresholds accessible to all 
strategies. Using GA, we optimized the recommendations generated by each strategy and 
the DC data profiles across different thresholds. The MSTGAM model enhanced strategy 
recommendations through a nature-based evolutionary algorithm, resulting in fitter chromo-
somes and, consequently, higher profits compared to individual strategies and benchmarks. 
In the following two subsections, we will discuss the process of constructing individuals by 
incorporating the strategies and thresholds discussed earlier. Additionally, we will explore 
the fundamental components and operations of the GA employed in our research.

4.3.2  Chromosome representation and action recommendations in GA

The MSTGAM algorithm optimizes the combination of multiple trading strategies, each 
operating under different DC thresholds, using the GA. Each strategy-threshold pair (sub-
strategy) independently generates trading recommendations—Buy, Sell, or Hold– at any 
given time step. Since these sub-strategies may provide conflicting recommendations, 
MSTGAM employs a weighting mechanism to resolve these conflicts and determine the 
final action. At each time step, MSTGAM follows these steps: 

1.	 Generate Individual Strategy Recommendations: Each sub-strategy (i.e., a combination 
of a trading strategy and a DC threshold) produces a recommendation.

2.	 Weight the recommendations: The GA assigns a weight to each sub-strategy, where the 
sum of all weights equals 1. These weights are optimised during training to maximise 
the Sharpe ratio.

3.	 Aggregate weighted recommendations: The total weight assigned to each action (Buy, 
Sell, or Hold) is calculated by summing the weights of the sub-strategies that recom-
mend that action.

4.	 Execute the action with the highest weight: The action with the highest cumulative 
weight is executed in the market. To encourage trading activity, if at least two sub-strat-
egies recommend an action other than Hold, MSTGAM ignores Hold recommendations 
and chooses between Buy or Sell based on their cumulative weights.

Below, we present the representation of the chromosomes in the GA population, followed 
by how MSTGAM combines signals from the various sub-strategies to arrive at a final trad-
ing decision.

Chromosome representation
In a GA, chromosomes are typically represented as a string of numbers, each in a par-

ticular range of values depending on the problem at hand; here, their domain is [0, 1]. Table 
2 shows an example of a chromosome with only eight genes. Each cell in the string repre-

Table 2  An example of a chromosome representation with eight genes
0.045 0.001 0.450 0.102 0.130 0.050 0.015 0.207
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sents a weight and corresponds to a variable to be optimized. In the GA, the population is 
initialized with random individuals, wherein each gene is assigned an initial value sampled 
uniformly at random from [0, 1].

Action recommendations
Building upon the generic GA representation, let us now discuss how the chromosome is 

utilized in our research. Firstly, a chromosome of MSTGAM consists of 70 distinct genes. 
Out of these 70 genes, 60 genes represent the 6 strategies, namely St1, St2, St3, St4, St5, and 
St6, each combined with 10 different thresholds θ1, . . . , θ10 (see Sect. 4.2 for their values), 
and the remaining 10 genes correspond to St7, and St8, each combined with thresholds 
θ1, . . . , θ5. The reason for using only 5 thresholds in the last two strategies is that, due to 
their specific construction, these strategies may have limited—or even, no—trade opportu-
nities. A gene, i.e., a combination of trading strategy and threshold, is called a sub-strategy: 
Stiθj denotes trading strategy i ∈ {1, . . . , 8} under threshold j ∈ {1, . . . , 10}. By focusing 
on a smaller value of thresholds, we can explore the unique characteristics and behaviors of 
these strategies within a more constrained parameter space.

Since a single trading strategy can be a part of many sub-strategies, it is possible for 
different trading strategies to provide conflicting recommendations of action. For example, 
St3θ2 might recommend Buy while St3θ5 might suggest Sell at the same point in time. To 
mitigate this issue, we introduce a weighting mechanism for them. At any given time in the 
price data of the training set, our GA will work to optimize 70 genes, which represent 70 
distinct sub-strategies. For visualization purposes, in Table 3 we present a toy-example with 
a chromosome consisting of only 8 genes (sub-strategies).

From Table 3, at each point in time, sub-strategy will make a recommendation to MST-
GAM on whether to buy, sell, or hold the current position. In the particular example, the 
individual recommended actions of the sub-strategies St1θ1, St2θ1, St4θ1, St5θ1, St6θ1, 
St7θ1 are to hold the stock at that given time, while the recommendation for St3θ1 is to buy, 
and for St8θ1 is to sell. In order to decide which action we take, we sum up the weights of 
the genes that recommend the same action, i.e., the sum of buying is 0.45; the sum of sell-
ing is 0.207; the sum of holding 0.045 + 0.001 + 0.102 + 0.130 + 0.050 + 0.015 = 0.343. 
Then, the action that the entire chromosome will perform is the one that has the highest 
cumulative weight. In this example, buying the position has the highest weight sum with 
0.45, therefore, at that specific time, the decision of the chromosome would be to buy the 
position. In general, the GA process optimizes the weights associated with individual sub-
strategies to maximize the fitness function, which serves as a measure of the overall perfor-
mance of the 70 recommendations.

However, in our experiments, the above approach resulted in a problematic situation 
appearing often: the large majority of the chromosome recommendations within most of the 
generations would be Hold. Therefore, to promote responsiveness, we implement a slight 
modification of that approach, which encourages a higher frequency of trades by artificially 
assigning a higher weight to Buy or Sell actions: if at any given time slot and chromosome, 
we observe more than two genes recommending anything other than Hold, we disregard the 

Table 3  The chromosome representation includes 8 sub-strategies for θ1, their corresponding recommenda-
tions i.e. hold:0, buy:1, sell:2, and the hypothetical weights assigned to each recommendation
Sub-strategy St1θ1 St2θ1 St3θ1 St4θ1 St5θ1 St6θ1 St7θ1 St8θ1
Action 0 0 1 0 0 0 0 2
Weight 0.045 0.001 0.450 0.102 0.130 0.050 0.015 0.207
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Hold-genes, and decide the chromosome’s recommendation according to the other genes’ 
weights.

4.3.3  Operators, fitness function, and metrics

Here, we establish the operators and the fitness function employed within the GA frame-
work. We employ a two-point crossover6 operator with a probability p and a one-point 
uniform mutation operator with a probability of 1 − p. Additionally, we incorporate elitism, 
which involves preserving the best chromosome from one generation to the next.

To evaluate the fitness of chromosomes, we utilize the Sharpe ratio (SR) as our fitness 
function. The SR accounts for risk-adjusted returns and is calculated using the following 
equation:

	
SR =

Rp − Rf

σp
� (9)

where Rp is the total rate of return calculated by summing the profits and losses for the 
entire duration of a given dataset., Rf  is a risk-free asset, which is selected as 2.5% for a 
two-year dataset to preserve the resemblance of USA government bonds, and σp is the stan-
dard deviation of returns, i.e. the risk of the trading strategy.

Here, we would like to introduce the metrics that will be used in our performance analy-
sis in the upcoming Sect. 6. The first one is Rate of Return (RoR) which is used to measure 
the profitability of an investment over a specific period. RoR is expressed as a percentage 
and the formula for calculating is as follows:

	
RoR =

Pti+1 − Pti

Pti

� (10)

where, Pti+1 , and Pti , represent the prices that we sell, and buy, respectively. For the risk 
metrics, we utilize two of them. The first one is Value at Risk (VaR), and its equation is as 
follows:

	 V aRα(P ) = −F −1
P (α)� (11)

where V aRα(P ) represents the Value at Risk at a confidence level of α (i.e., 95% in our 
research) for an investment P. −F −1

P (α) represents the inverse cumulative distribution 
function (quantile function) of the investment’s return distribution evaluated at α. The nega-
tive sign is due to the fact that we are considering the lower tail of the distribution. The next 
metric is Standard Deviation and its calculation is as follows:

6 In GA, the two-point crossover operation entails the selection of two random positions along two parental 
chromosomes. Subsequently, the genetic material located between these positions is exchanged, resulting 
in the creation of one offspring. In this work, we arbitrarily pick only one of the two offspring to participate 
in the next population.
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σ =

√√√√ 1
N

N∑
i=1

(xi − µ)2� (12)

where σ is standard deviation, N is the total number of trades, xi is individual trade, and the 
µ is the average of the trades return.

Lastly, we also consider the Turnover Rate (ToR) and its calculation is as follows:

	
TurnoverRate = (Trades × SharePrice)

AveragePortfolioV alue
.� (13)

Where Trades is the average number of trades, for a specific trading strategy, SharePrice is 
the average closing price of a stock over a given period, and AveragePortfolioValue is the 
average capital invested in the portfolio over a given trading period. As we are not perform-
ing portfolio optimization in this work, we are assuming an equal weight in the portfolio 
for each stock, and an initial capital of £100,000. The denominator (AveragePortfolioValue) 
represents the capital deployed over time, ensuring turnover is normalized for portfolio 
size. This formulation captures the frequency and magnitude of trading activity within each 
strategy, offering us insights into execution intensity.

5  Experimental setup

In this study, we analyze 200 publicly traded stocks listed on the New York Stock Exchange 
over the period from November 27, 2009, to November 27, 2019. The dataset consists of 
daily closing prices for each stock, obtained from Yahoo Finance using the “yfinance” 
Python module. The selection of these stocks was performed using the “random” module 
from the broader number of tickers. The reason for selecting 200 stocks is due to time effi-
ciency considerations. Given the extensive number of tests required, a larger number stocks 
would be impractical, thus, 200 tickers were randomly chosen. The data set for each stock is 
divided into three parts: 56% for training, 24% for validation, and 20% for testing purposes. 
The validation set is utilized for parameter tuning of the GA, a topic that will be covered 
more comprehensively in the upcoming section. After tuning, the training and validation 
sets (comprising 80% of the total data) are combined to form a final training set, covering 
the first 8 years. In essence, we concatenate the validation set onto the training set to create 
the final training set, from which the results of the experiments in upcoming sections are 
derived. The selection of this specific period aims to exclude any potential distortions in the 
stock market data that could arise from the COVID-19 pandemic.

5.1  Parameter tuning

We performed a grid search to optimize the GA by fine-tuning the following parameters: 
population size, number of generations, and crossover probability p (mutation probability is 
equal to 1 − p, hence to tuning was needed). To ensure reliable and robust results, we exe-
cuted the GA 50 times for each combination of parameter values on 200 stocks. From each 
set of 50 runs, we retained the best chromosome (the one with the highest Sharpe Ratio). We 

1 3

    2   Page 20 of 36



A genetic algorithm for the optimization of multi-threshold trading…

applied the same procedure for selected parameter combinations and compared the results 
of their best chromosomes within the validation set. We also applied the Friedman non-
parametric test to identify the best performing configurations. The optimized parameters 
resulting from the aforementioned procedure can be found in Table 4.

Consequently, we fix these parameters and run the GA for another 50 times on all of the 
200 available stocks. Again, we pick one that performs the best, which is the final solu-
tion derived by our model’s experiments (see Sect. 4.3 for a detailed exposition of the GA 
methodology).

5.2  Benchmarks

The aim of this study is to showcase that by utilizing a stochastic search technique, specifi-
cally, a GA, to optimize recommendations derived from multiple thresholds and strategies, 
we can improve trading performance beyond what has already been tested and documented 
in existing literature. Therefore, in Sect.  6, we wanted to examine the benchmark com-
parisons separately, dividing them into two categories: DC-based and Non-DC-based 
benchmarks.

5.2.1  DC-based benchmarks

Sub-strategies
We consider the strategies and the trade decisions they provide under different thresholds 

as individual strategies, as we explained as sub-strategies. Since one of the main goals of 
optimization is to derive these sub-strategies performance, we will use them as benchmarks 
in this chapter.

Eight Strategies Optimization on Particular Threshold
We have employed 8 strategies on a single threshold. The benchmark will be abbreviated 

by “MSGAM” Multi-Strategy Genetic-Algorithm-Model. To assess the consistency with 
our work in terms of used thresholds, we tested five thresholds, namely, 0.098%, 0.22%, 
0.48%, 0.72%, 0.98%. To ensure the validity of the benchmark, we opted for the two best-
performing results derived from the MSGAM model applied to two specific threshold (θ1, 
and θ4), and for the table spacing, they are abbreviated as MSθ1, MSθ4.

Different Thresholds Optimization on Individual Strategies
Here, we subjected each of our eight strategies to multiple threshold optimizations within 

their own contexts. we tested each 8 strategies with thresholds that were pointed out in 
Sect. 4.3.2, St1–St6 with 10 thresholds, St7 and St8 with 5 thresholds. The benchmark will 
be abbreviated to “MTGAM”, Multi-Threshold Genetic-Algorithm-Model. To ensure the 
validity of the benchmark, we opted for the two best-performing results derived from the 
MTGAM model applied to two specific strategies, St7 and St8. In order to table spacing 
they are abbreviated by MT7 and MT8, respectively.

Executions on Confirmation Points

Population size 150
Number of generations 50
Tournament size 2
Crossover probability 0.95
Mutation probability 0.05

Table 4  Parameters 
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In this specific scenario, our trading approach involves executing trades immediately 
upon the confirmation of a directional change. Whenever we identify a trend as a down-
trend, we initiate a buy at the confirmation point for the stock and then promptly sell it at 
the subsequent uptrend confirmation point. The benchmark will be abbreviated to “DCC”. 
The primary goal of this scenario is to assess trading profitability when focusing exclusively 
on DC events.

5.2.2  Non-DC Benchmarks

Technical analysis strategies
We use seven popular technical indicators. Based on these indicators, the parameter val-

ues for the employed strategies were set to values frequently observed in the field and the 
work by Achelis (2001). Their brief descriptions along with how these indicators are utilized 
in the execution processes of trading strategies as follows:

	● Average Directional Index (ADX): ADX quantifies price trend strength. Buy when 
ADX exceeds 25 upward trend. It is highly important to emphasize that the trends elu-
cidated in the explanation of these indicators diverge from those discussed within the 
context of the DC paradigm. Sell when ADX surpasses 25 downward.

	● Aroon Indicator: Identifies trends and their strength. Buy when Aroon Oscillator is 
positive (upward trend); sell when it’s negative (downward trend)

	● Commodity Channel Index (CCI): CCI identifies market trends. Buy signals occur 
when CCI is below -100, indicating oversold conditions, and sell signals when CCI is 
above 100, indicating overbought conditions.

	● Exponential Moving Average (EMA): Computes a 20-period EMA based on closing 
prices, emphasizing recent data with a designated alpha.7 Buy when the closing price 
exceeds EMA (upward trend); sell when it falls below EMA (downward trend).

	● Moving Average Convergence Divergence (MACD): The MACD indicator is com-
puted based on the 12-period and 26-period Exponential Moving Averages (EMAs) of 
closing prices. According to the MACD histogram, buy when below zero (potential 
upward trend), and sell when above zero (potential downward trend).

	● Relative Strength Index (RSI): The RSI is calculated over 14 periods, indicating over-
bought or oversold conditions. Buy signals are generated when RSI is below 30 (over-
sold), and sell signals when RSI is above 70 (overbought).

	● Williams %R (WilliamR): The WilliamR identifies overbought/oversold conditions. 
Buy signals occur at values below -80 (oversold), and sell signals at values above -20 
(overbought).Buy-and-Hold

We also consider the BandH strategy as a benchmark, which involves purchasing and hold-
ing the product for a certain time without considering market fluctuations. In our model, the 
trader buys the product at the beginning of the test period and evaluates the performance 
monthly over the two-year period. Monthly returns are calculated after accounting for a 
transaction cost of 0.025%.

Market Indices

7 Alpha represents a smoothing factor that determines how much weight is given ti the most recent data 
points.
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To compare the performance and risk metrics of our model among the 200 stocks with 
the general movement of the stock market during our test period (November 27, 2017, to 
November 27, 2019), we used 7 market indices from the New York Stock Exchange. In our 
model, the trader buys the product at the beginning of the test period and evaluates the per-
formance monthly over the two-year span. Monthly returns are calculated after accounting 
for a transaction cost of 0.025%. The indices are:

	● Dow Jones Industrial Average (DJI): Represents 30 large, publicly-owned companies 
based in the USA.

	● S&P 500 (GSPC): A market-cap-weighted index of the top 500 publicly traded U.S. 
companies.

	● NYSE Composite Index (NYA): Encompasses all NYSE-listed common stocks.
	● Russell 1000 Index (RUI): An index monitoring around 1,000 major U.S. equity market 

companies’ performance
	● Russell 2000 Index (RUT): A small-cap stock index covering the lowest 2,000 Russell 

3000 Index stocks.
	● Russell 3000 Index (RUA): An equity index representing the entire U.S. stock market, 

encompassing the top 3,000 U.S. companies.
	● NYSE AMEX Composite Index (XAX): An index covering NYSE American-listed 

stocks, with a focus on smaller firms.

6  Results

This section of the paper showcases the outcomes of our experimental work. We start by 
presenting the DC-based and Non-DC benchmark strategies comparison to our MSTGAM 
results, followed by comparison of the market indices performances. As outlined in Sect. 5, 
we utilized daily closing prices as our data, covering a period of 10 years. Subsequently, 
the training phase encompassed the initial 8 years of data, and the results presented in this 
section are derived from the test set, covering the last 2 years of data.

We would like to remark that the goal of our work is twofold: (i) To create DC-based 
strategies that resemble technical analysis approaches, providing the reader with additional 
complementary power for making trade decisions, (ii) By optimizing these trading strate-
gies with a combination of thresholds by the GA, improve the performance metrics over the 
single strategies as well as the financial benchmarks.

6.1  Summary statistics

Table 5 presents the average results of the Sharpe Ratio (SR), Rate of Return (RoR), Stan-
dard Deviation (STD), and Value at Risk (VaR), Number of Trades (Tra) for a set of 200 
stocks across our MSTGAM (It will be abbreviated as “MST” for the table spacing) in 
comparison to DC related benchmarks. From the pool of 50 runs, the results presented in 
this section and subsequent section are based on a specific run. In this run, the chromo-
some with the highest Sharpe Ratio (SR) obtained during the training phase8 is utilized 
in the test set. Evaluating the effectiveness of multiple runs is crucial; nevertheless, it is 

8 The performance results for the SR, RoR, and STD are from specific run (e.g., 10th run’s chromosome).
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equally vital to identify the optimal chromosome for practical application in real-world sce-
narios. This approach enables us to address realistic scenarios where traders would utilize 
the chromosome with the highest SR obtained during the training phase. For the MSGAM 
and MTGAM models, we utilized the two best-performing strategies for each model, deter-
mined by the highest Sharpe Ratio (SR). These strategies will be abbreviated as MSθi and 
MTi, respectively.

As explained in Sect. 5.2.1, we consider each different strategy and its resulting action 
set at each threshold as an individual strategy (sub-strategies). However, for the purpose of 
presenting the results within a limited space, we selected 8 of them for benchmark com-
parison. The selection of these 8 strategies was based on choosing the ones with the highest 
average SR performance.

Table 5 indicates that, on average, the MSTGAM strategy achieves the highest Sharpe 
Ratio (SR) with a value of 5.59, which is approximately 3.26 times higher than that of the 
MSGAM (MSθ4) model and 1.79 times higher than the MTGAM (MT7) model. Compared 
to the DCC and individual strategies, St7θ1 ranks first. However, MSTGAM outperforms 
this strategy as well, with an SR approximately 1.65 times higher. As shown in the third 
column, MSTGAM delivers a rate of return (RoR) of 22%, adding an additional 3% over 
the next best-performing strategy, MSGAM. Additionally, risk metrics such as Value at Risk 
(VaR) and Standard Deviation (STD) were employed, alongside SR and RoR, to evaluate 
risk. From the last column, MSTGAM still maintains relatively moderate risk metrics, with 
an STD of 0.04 and a VaR of 0.09, despite executing a higher number of trades compared to 
the benchmarks. On the other hand, strategies St7θ1 and St8θ1, which are based on observ-
ing three consecutive OS events, displayed conservative VaR values at a 95% confidence 
level, driven by the lower number of trades they executed, both at 0.02. When considering 
the turnover rate (ToR), MST exhibits the highest turnover rate (4.40), suggesting that it is 
the most actively traded strategy. This aligns with its high number of trades (70.19), indi-
cating frequent position adjustments. Despite the increased trading activity, MST’s highest 
Sharpe Ratio (5.59) and Rate of Return (0.22), suggest that its frequent trades are effectively 
capturing profitable opportunities despite potential transaction costs.

In conclusion, the SR and RoR metrics demonstrate that (i) our approach is effective in 
generating profits, and (ii) the model’s practical application in real-world trading can yield 
significant returns. However, the model shows some shortcomings in terms of risk manage-
ment. Consequently, a key motivation for future research lies in enhancing the risk profile 
of these trading strategies.

Figure 2 presents a sample of the cumulative returns for MSTGAM and individual trading 
strategies across six stocks in the test set. Cumulative returns provide insight into strategy 
performance over time, enabling a clear comparison of long-term profitability and resilience 
across different market conditions. MSTGAM achieves the highest cumulative return at the 
end of the test period in four out of the six stocks presented. Notably, not all strategies exhibit 
the same trends as MSTGAM. For example, while MSTGAM shows an upward trend for 
the AAON stock, many other strategies either fail to exhibit a similar trend or do so on a 
much smaller scale. This highlights the differences in how each trading strategy adapts to 
varying market conditions. Additionally, in certain cases, some individual strategies surpass 
MSTGAM, suggesting that specific market conditions may favour alternative approaches. 
Nevertheless, the fact that MSTGAM generally achieves higher cumulative returns across 
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the stocks in this figure,9 along with its strong overall performance discussed in Table 5, 
indicates that it delivers a well-rounded, robust, and adaptable performance across different 
market conditions, reinforcing the effectiveness of its multi-threshold approach.

To assess MSTGAM’s performance in comparison to mainstream Technical Analysis 
(TA) strategies, we compare it with several TA-based strategies in Table 6. A notable obser-

9 A similar pattern is observed for other stocks as well.

Table 6  Average performance metrics based on 200 stocks in Non-DC-based benchmarks, Sharpe Ratio 
(SR), Rate of Return (RoR), Standard Deviation (STD), Value at Risk (Var), Turnover Rate (ToR), and Num-
ber of Trades (Tra). Best value for each row is shown in bold

MST ADX Ar CCI EMA MACD RSI Wr BandH
SR 5.59 −1.87 0.55 1.48 −2.64 −0.55 1.59 1.21 1.62
RoR 0.22 −0.03 0.07 0.09 0.01 −0.03 0.12 0.08 0.14
STD 0.04 0.1 0.07 0.07 0.06 0.07 0.1 0.07 0.1
VaR 0.05 0.12 0.14 0.16 0.05 0.15 0.16 0.16 0.13
ToR 4.40 6.26 1.24 0.89 2.31 1.31 0.42 0.86 1.63
Tra 70.19 5.59 17.68 12.78 31.97 17.8 6.15 12.31 24

Fig. 2  Cumulative returns of MSTGAM and the 8 individual trading strategies
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vation is that MSTGAM achieves a Sharpe Ratio (SR) of 5.59, with the next highest SR 
being 1.62 from the Buy-and-Hold (BandH) strategy. Given that BandH involves holding 
a position on a monthly basis, MSTGAM’s superior performance in terms of SR is particu-
larly striking. Furthermore, MSTGAM delivers an additional return of over 8% in the RoR 
metric, which is another advantage. Another key point is that, while MSTGAM exhibits 
relatively higher SR and RoR compared to the TA-based strategies, its risk, as measured by 
various STD and VaR, remains below the benchmark values. When considering the turnover 
rate, ADX exhibits the highest value (6.26), despite having one of the lowest number of 
trades (5.59). This suggests that ADX executes fewer trades at a higher average price and/
or operates with a lower average portfolio value, leading to a larger relative trading volume. 
However, ADX also reports negative Rate of Return (−0.03) and a negative Sharpe Ratio 
(−1.87), indicating that its high turnover does not translate into profitable performance. 
On the other hand, MST has a turnover rate of 4.40, which aligns with its high trade count 
(70.19). Unlike ADX, MST achieves the highest Sharpe Ratio (5.59) and Rate of Return 
(0.22), suggesting that its frequent trading is contributing positively to performance.

Figure 3 presents the box plot showing the distribution of values for the metrics across 
the 200 stocks. Focusing on MST’s performance in the upper left section of the figure, the 
median value of MST is slightly above 5, with an average of 5.59, as detailed in Table 5. 
The low STD density indicates that the increase in the SR could be attributed to the risk-
adjusted nature of the metric. Additionally, MST’s median SR is significantly higher than 
that of other benchmarks. Conversely, in the RoR metric, MST is closely followed by the 
BandH strategy. However, in other box plots, the BandH strategy exhibits a lower median 
SR compared to other strategies, signifying lower risk-adjusted returns. This is due to its 
moderate RoR combined with higher volatility, as depicted in the STD plot. Analyzing the 
risk metrics in the lower box plots, MST’s results are tightly clustered around a low median, 
which is distinct from other benchmarks. This suggests that MST effectively balances risk 
and return, demonstrated by its lower variance and competitive median values across these 
metrics.

To gain deeper insights into the results, we conducted the Friedman non-parametric sta-
tistical tests10 under the assumption of the null hypothesis that all algorithms come from the 
same continuous distribution. In the Tables 7, 8, 9, 10, and 11, the second column displays 
the average rank of each algorithm (i.e., GA-optimized model, DC-based benchmark, or 
sub-strategies) while the third column presents the adjusted p-value obtained from the test 
comparing the average rank of each algorithm with that of the control algorithm (i.e., the 
algorithm with the highest rank). In adjusted pvalues, we used the Post-hoc two-stage False 
Discovery Rate, abbreviated to FDR correction is employed to control the likelihood of 
making false discoveries (Type I errors) when conducting multiple pairwise comparisons.

Based on the observed results, it is evident that MSTGAM attains the highest rank and 
statistically outperforms all other algorithms at a significance level of α = 0.05 in metrics 
SR and RoR. Tables 7 for SR and 8 for RoR show that MST ranks first in both metrics. 
Additionally, MST statistically outperforms every other benchmark at the significance level 
of α = 0.05. In terms of SR, MT7 and MT8 follow in the ranks, while for RoR, the subse-
quent strategies are MSθ4 and BandH. Based on the results presented in Table 5, including 
the statistical results taht we found from these two table, we can conlude that MSTGAM 

10 These tests offer a robust and reliable means to assess differences among related groups. In this work, these 
groups are distributions from the related test metric results.
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outperforms both the DC-based and Non-DC based strategies. Importantly, MSTGAM also 
leads in performance metrics compared to strategies based on technical analysis.

In the risk metrics, STD and VaR, as shown in Tables 9 for STD and 10 for VaR, MST-
GAM ranks third in STD and fourth in VaR. The top two positions in each metric are held by 
strategies St8 and St7, which are fed with multiple thresholds. Even though it doesn’t rank 
first, it is noteworthy that MSTGAM closely follows the top strategies in the risk metrics, 
indicating its strong performance. In addition, in industry the focus is usually on aggregate 
metrics, such as Sharpe Ratio, rather than on individual metrics. Hence, it can be argued 
that significantly better performance in terms of SR compensates MSTGAM’s Risk and VaR 
performance.

Table 12 presents the performance metrics for the proposed MSTGAM strategy (MST) 
against various market indices (DJI, GSPC, NYA, RUI, RUT, RUA, and XAX). The Sharpe 
Ratio (SR) is highest for MST (5.59), indicating strong risk-adjusted returns compared to 
the other indices. The Rate of Return (RoR) follows a similar pattern, with MST achieving 

Fig. 3  Box-plots of MSTGAM (MST), preceding chapters-models, and non-DC related benchmarks re-
sults across 200 stocks on Sharpe Ratio, Rate of Return, Standard Deviation, and Value at Risk
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the highest rate of return (0.22), while XAX is the only index with a negative rate of return 
(−0.001). In terms of risk, MST exhibits the lowest standard deviation (STD, 0.036), sug-
gesting lower volatility relative to other indices. The Value at Risk (VaR) for MST (0.05) is 
also the lowest, implying lower downside risk. Regarding return distribution characteristics, 
MST has a slightly positive skewness (0.37), meaning returns have a slight rightward tilt, 
while other indices exhibit negative skewness, indicating a tendency toward larger losses. 
The kurtosis (1.42) for MST suggests a slightly fat-tailed return distribution, whereas other 
indices show lower kurtosis values, with XAX even exhibiting near-normal or platykurtic 
behaviour (−0.04). Overall, these statistics suggest that the MST algorithm delivers supe-
rior risk-adjusted returns with lower volatility and lower downside risk, distinguishing it 
from the benchmark indices.

Finally, we have examined the performance and risk metrics of the MSTGAM model 
for stocks, comparing their distribution to the performance of multiple strategies at a single 
threshold (MSGAM) and to the performance of models optimized using multiple thresholds 
(MTGAM). Specifically, we are utilizing the results from the best-averaged models, namely 
MSθ4, and MT7 for comparison.

Algorithm Rank Adjusted p-value
MST(c) 4.81 –
MSθ4 5.470 2.734e−02
BandH 6.115 2.034e−04
RSI 6.150 1.516e−04
MT7 6.340 2.120e−05
MSθ1 6.460 5.496e−06
CCI 6.775 8.568e−08
Wr 7.185 1.481e−10
Ar 7.485 7.315e−13
MT8 7.535 3.153e−13
EMA 8.570 3.297e−23
MACD 9.030 1.046e−28
ADX 9.075 5.425e−29

Table 8  The statistical test results 
for Rate of Return were obtained 
using the non-parametric Fried-
man test, followed by the two-
stage FDR correction to calculate 
adjusted p-values. Significant 
differences between the control 
algorithm (denoted with (c)) 
and the algorithms represented 
in a row at the α = 5% level are 
highlighted in boldface

 

Algorithm Rank Adjusted p-value
MST(c) 3.760 –
MT7 5.105 8.843e−05
MT8 6.035 2.210e−10
MSθ4 6.450 8.542e−14
RSI 6.760 1.236e−16
BandH 6.830 2.583e−17
CCI 6.890 7.284e−18
MSθ1 7.140 1.664e−20
Wr 7.145 1.523e−20
Ar 7.450 6.126e−24
EMA 8.860 1.400e−43
MACD 8.995 1.343e−45
ADX 9.535 1.537e−54

Table 7  The statistical test results 
for Sharpe Ratio were obtained 
using the non-parametric Fried-
man test, followed by the two-
stage FDR correction to calculate 
adjusted p-values. Significant 
differences between the control 
algorithm (denoted with (c)) 
and the algorithms represented 
in a row at the α = 5% level are 
highlighted in boldface
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Figure 4 presents the distributional characteristics of SR, RoR, STD, and VaR across dif-
ferent models. Regarding SR, MST demonstrates near symmetry (skewness: −0.039, kurto-
sis: 0.434), suggesting a balanced risk-adjusted return profile. MT7 is left-skewed (−0.459) 
with moderate kurtosis (1.878), implying frequent smaller gains but a risk of significant 
losses. MSθ4 exhibits slight right skew (0.179) and heavy tails (kurtosis: 4.527), indicating 
elevated risk. Across 200 stocks, MST tends to maintain a higher SR mean with a balanced 
risk-return trade-off. For RoR, MST exhibits mild right skewness (0.367) and moder-
ate kurtosis (1.423), suggesting occasional larger gains. MT7 shows a more pronounced 
right skew (0.735) and heavier tails (kurtosis: 5.203), indicating higher gain potential with 
increased risk. Similarly, MSθ4 has a skewness of 0.768 and kurtosis of 2.040, reinforc-
ing a right-skewed distribution. Overall, MST is centered around a higher RoR mean. For 
STD, all models—MST, MT7, and MSθ4—exhibit high skewness (2.787, 2.844, and 3.269, 
respectively) and extreme kurtosis (14.138, 12.080, and 15.110), indicating substantial right 
skewness, heavy tails, and a highly volatile risk profile. MST appears centered around a 
lower STD mean. In terms of VaR, MST has moderate right skewness (0.906) and light tails 
(kurtosis: 0.470), implying some risk of significant losses but less extreme outcomes. MT7 

Algorithm Rank Adjusted p-value
MT8(c) 2.150 –
MT7 2.400 8.831e−02
EMA 3.840 3.632e−10
MST 4.055 5.698e−13
MSθ4 7.235 2.010e−32
MSθ1 7.510 3.218e−38
ADX 8.200 5.504e−53
RSI 8.715 2.932e−66
Ar 8.900 3.866e−70
BandH 9.015 4.745e−73
CCI 9.320 5.216e−82
MACD 9.365 8.081e−83
Wr 9.510 4.772e−87

Table 10  The statistical test 
results for Value at Risk were 
obtained using the non-paramet-
ric Friedman test, followed by 
the two-stage FDR correction to 
calculate adjusted p-values. Sig-
nificant differences between the 
control algorithm (denoted with 
(c)) and the algorithms represent-
ed in a row at the α = 5% level 
are highlighted in boldface

 

Algorithm Rank Adjusted p-value
MT8(c) 1.940 –
MT7 2.875 5.506e−02
MST 2.920 5.915e−06
EMA 4.700 7.851e−14
Ar 6.730 7.910e−52
MACD 7.135 3.657e−62
CCI 7.660 8.203e−77
Wr 7.955 1.599e−85
MSθ1 8.650 1.679e−107
MSθ4 9.440 9.549e−135
ADX 9.455 2.998e−135
RSI 10.540 1.782e−175
BandH 10.940 6.141e−191

Table 9  The statistical test results 
for Standard Deviation were ob-
tained using the non-parametric 
Friedman test, followed by the 
two-stage FDR correction to 
calculate adjusted p-values. Sig-
nificant differences between the 
control algorithm (denoted with 
(c)) and the algorithms represent-
ed in a row at the α = 5% level 
are highlighted in boldface
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exhibits a pronounced right-skewed (2.484) and heavy-tailed (kurtosis: 8.951) distribution, 
signaling increased loss risk. MSθ4 is highly right-skewed (5.012) with extreme kurtosis 
(38.596), indicating a substantial risk of extreme losses. Overall, MST is associated with a 
lower mean VaR.

6.2  Discussion

One important consideration in our results is the relatively high Sharpe ratio observed in our 
proposed MSTGAM approach. While a Sharpe ratio above 5 may appear unusually high, 
it is noteworthy that this is observed only in MSTGAM, whereas the other algorithms and 
benchmarks in our study exhibit significantly lower values. This suggests that MSTGAM 
effectively optimizes the combination of trading strategies to enhance performance, rather 
than indicating that all tested approaches achieve such high returns relative to risk.

Additionally, we note that the transaction cost applied in our experiments is the same 
across all tested algorithms. While real-world trading environments may involve additional 
hidden costs, any underestimation in our model would apply equally to all methods and is 
therefore unlikely to be the sole factor contributing to MSTGAM’s superior performance.

Furthermore, although our results are based on a separate test set, ensuring that the model 
is evaluated on unseen data, we acknowledge that market dynamics evolve over time. As 
such, performance may vary when applied to different time periods. It is worth noting that 
our study used data that spans from 2017 to 2019. While this period was chosen to provide 

Table 12  Performance and Risk metric comparison between MSTGAM (MST) and market indices (% for 
RoR). Best value highlighted by bold

MST DJI GSPC NYA RUI RUT RUA XAX
SR 5.59 4.15 4.20 1.96 4.08 1.39 3.63 −1.46
RoR 0.22 0.0076 0.0077 0.0039 0.0076 0.0038 0.0069 −0.001
STD 0.036 0.039 0.041 0.038 0.042 0.051 0.041 0.043
VaR 0.05 0.06 0.07 0.07 0.07 0.09 0.07 0.08
Skewness 0.37 −0.80 −0.95 −0.79 −0.92 −0.72 −0.89 −0.14
Kurtosis 1.42 0.45 0.94 0.73 0.96 0.61 0.94 −0.04

Algorithm Rank Adjusted p-value
ADX(c) 1.000 –
MST 2.000 3.48e−135
DCC 3.000 0.00e+00
EMA 3.993 0.00e+00
St1θ2 4.993 0.00e+00
BandH 5.993 0.00e+00
MACD 6.980 0.00e+00
St6θ3 7.948 0.00e+00
Ar 8.300 0.00e+00
CCI 9.309 0.00e+00
Wr 10.180 0.00e+00
St5θ3 11.150 0.00e+00
St2θ4 12.051 0.00e+00

Table 11  The statistical test 
results for Turnover Rate were 
obtained using the non-paramet-
ric Friedman test, followed by 
the two-stage FDR correction to 
calculate adjusted p-values. Sig-
nificant differences between the 
control algorithm (denoted with 
(c)) and the algorithms represent-
ed in a row at the α = 5% level 
are highlighted in boldface

 

1 3

Page 31 of 36      2 



O. Salman et al.

a sufficiently long dataset for analysis, it avoids the extreme market conditions introduced 
by the COVID-19 pandemic. The volatility and structural shifts in financial markets during 
the pandemic were unprecedented and may not be representative of typical trading environ-
ments. While our findings remain valid for the examined period, future work could extend 
the analysis to include more recent data, particularly to assess the robustness of our pro-
posed approach under extreme market shocks.

Furthermore, while MSTGAM incorporates risk awareness through the Sharpe ratio as 
its fitness function, it primarily focuses on return volatility rather than more sophisticated 
risk measures such as maximum drawdown or tail risk. It would thus be interesting in con-
sidering other types of fitness function. We discuss this in more detail in Sect. 7.

Finally, we recognize that results may differ when applied to other U.S. equities or for-
eign markets. However, our study does not claim universal applicability across all finan-
cial instruments. Instead, we report findings based on the selected datasets and time period 

Fig. 4  Distribution of stocks performance and risk metrics, using MSTGAM (MST), MSGAM (MSθ4), 
MTGAM (MT7)
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examined in this paper. Given that our experiments include 200 different datasets, we 
believe the results demonstrate a degree of generalizability within this context. Nonetheless, 
further studies applying MSTGAM to different markets could provide additional insights 
into its adaptability.

6.3  Computational times

Table 13 shows the average computational times for MSTGAM, MSGAM, and MTGAM 
have been used in Sect. 6. As expected, due to the addition of more thresholds in the GA 
optimization phase, MSTGAM requires more computational time for the training phase 
compared to other benchmarks. Computations were conducted using the high-performance 
cluster at the University of Essex, which comprises a mix of Intel E5-2698, Intel Gold 5115, 
6152, and 6238 L processors, each equipped with between 500GB and 6TB of RAM. It 
is important to acknowledge that the learning process on the training set typically occurs 
offline, rendering a duration of 55–60 min. Once training is successfully completed, its best 
chromosome is applied to the test set, requiring a mere 15 s for execution. Furthermore, it 
is important to note that parallelization techniques can be employed to reduce the computa-
tional time required for these algorithms (Brookhouse et al. 2014).

7  Conclusion

In conclusion, this paper introduces trading strategies that are created based on the DC 
paradigm. The experiments were conducted on the 200 stocks sourced from the NYSE. 
By incorporating GA optimization across various thresholds and strategies, we enhanced 
the performance of our strategy, namely MSTGAM, to a significant extent. In the com-
parative analysis, we examined two types of benchmarks: DC-based benchmarks and Non-
DC based benchmarks (Technical Analysis strategies, BandH, and Market Indices). In the 
first scenario, MSTGAM demonstrated superior performance compared to its benchmarks, 
with the only exception being the risk metrics for MSGAM (derived from our previous 
research technique). Additionally, MSTGAM outperformed all selected Technical Analy-
sis strategies, and BandH across all performance metrics. Finally, MSTGAM shows better 
performance in both performance and risk metrics compared to market indices based on the 
NYSE.

As explained earlier, one limitation of our study was the selection of the validation 
period, which spans from 2017 to 2019. Investigating the robustness of MSTGAM across 
varying market conditions is thus an important direction for future work.

In addition, future work could explore alternative fitness functions that integrate addi-
tional risk metrics or adaptive mechanisms to dynamically adjust trading strategies in 
response to changing market conditions. In particular, incorporating metrics such as maxi-
mum drawdown, conditional value at risk (CVaR), or downside deviation could provide 

Models MSTGAM MSGAM MTGAM Benchmarks
Model training ∼ 60 mins ∼ 30 mins ∼ 30 mins –
Estimation ∼ 30 s ∼ 30 s ∼ 30 s ∼ 20 s
Trading ∼ 10 s ∼ 10 s ∼ 10 s ∼ 5 s

Table 13  Approximate computa-
tional times for models
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a more comprehensive assessment of risk beyond return volatility. Additionally, adaptive 
mechanisms, such as reinforcement learning-based dynamic portfolio allocation, could 
enable the model to adjust its strategy in real time, based on evolving market conditions, 
enhancing both robustness and practical applicability.

Lastly, in future work we would like to explore research that focuses on identifying 
optimal thresholds. To achieve this, instead of relying on a range that adequately captures 
the daily changes in stock prices, we plan to conduct a distribution analysis using a larger 
number of thresholds. By doing so, we hope to gain insights into how we can improve our 
risk metrics and enhance their effectiveness.
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