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Abstract
This paper develops a model combining adaptive
expectations with noisy signals, and derives three coef-
ficients and one impulse response function (IRF):
the Coibion–Gorodnichenko (CG) coefficient cap-
turing consensus under-reaction to information, the
Bordalo–Gennaioli–Ma–Shleifer coefficient capturing
individual over-reaction, the Kohlhas–Walther coefficient
capturing extrapolation, and the Angeletos–Huo–Sastry
IRF capturing delayed overshooting. There exists a
parameter region in which the model reconciles all four
moments with the data simultaneously. The model also
delivers a testable prediction linking the CG coefficient to
variable persistence, distinguishing adaptive expectations
from Kalman-filter updating, and I present supporting
evidence for adaptive expectations. The model’s fit to
survey data is evaluated.

1 INTRODUCTION

The rational expectations hypothesis has long dominated the modelling of macroeconomic expec-
tations. Yet recent survey evidence consistently rejects its validity: forecast errors are predictable
across a wide range of surveys (Mankiw et al. 2003; Coibion and Gorodnichenko 2012, 2015;
Adam et al. 2017; Fuhrer 2018; Bordalo et al. 2020; Kohlhas and Walther 2021; Angeletos
et al. 2021; Wang 2021; d’Arienzo 2020; de Silva and Thesmar 2023; Kucinskas and Peters 2024).
This empirical challenge has spurred a wave of alternative models designed to account for
systematic deviations from rational expectations, including diagnostic expectations (Bordalo
et al. 2018, 2019, 2020), extrapolative or behavioural models (Gennaioli et al. 2016; Angeletos
et al. 2021; Reis 2020), cognitive discounting, and level-k thinking (Farhi and Werning 2019;
Gabaix 2020).

Before the rational expectations revolution, adaptive expectations provided the standard
framework for modelling expectations (Cagan 1956; Friedman 1957). In this framework, fore-
casts are formed as a weighted average of past forecasts and current observations, with the weight
on new information termed the adjustment parameter. While widely used in the 1950s–1970s,
adaptive expectations was criticized for its inability to adapt to regime shifts—Lucas (1976)
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2 ECONOMICA

emphasized that expectations should adjust immediately to policy changes. As a result, adap-
tive expectations was displaced by rational expectations during the rational expectations
revolution.

This paper revisits adaptive expectations. I show that once combined with noisy signals,
this simple framework can account for four influential empirical findings: (a) consensus fore-
casts under-react to new information (the Coibion–Gorodnichenko (CG) coefficient is posi-
tive); (b) individual forecasts over-react (the Bordalo–Gennaioli–Ma–Shleifer (BGMS) coef-
ficient is negative); (c) forecasts extrapolate from recent observations (the Kohlhas–Walther
(KW) coefficient is negative); and (d) forecasts display delayed overshooting relative to
outcomes (the Angeletos–Huo–Sastry (AHS) impulse response function (IRF)). The model
yields closed-form expressions for these moments and simple parameter conditions under
which all four can be reconciled simultaneously. Moreover, adaptive expectations and the
canonical noisy information model make opposite predictions about how the CG coeffi-
cient relates to persistence. Using US survey data, I find evidence in favour of adaptive
expectations.

The model features a continuum of forecasters who receive noisy signals about a fundamental
variable, assumed to follow an AR(1) process. Rather than applying a Kalman filter, forecast-
ers update adaptively, weighting their signal and past forecast. Since the benchmark adaptive
expectations does not generate a term structure of forecasts, I impose an iterated law of forecasts
assumption—analogous to the iterated law of expectations under rational expectations—which
yields a flat term structure. At the consensus level, idiosyncratic noise cancels out, so the con-
sensus forecast is equivalent to that of a representative agent who observes the true variable with
adaptive expectations updating.

As a first step, the model implies a division between moments driven by adaptive updating and
those shaped by noise. Specifically, the consensus-level moments—the CG and KW coefficients,
and the AHS IRF—depend only on the adaptive expectations mechanism, since individual noise
cancels out in the aggregate. By contrast, the BGMS coefficient is jointly determined by adaptive
expectations and the noisy information component.

Fixing persistence, there exists a threshold for the adjustment parameter below which fore-
casts exhibit under-reaction, yielding a positive CG coefficient: the less forecasts adjust to current
observations, the stronger the under-reaction. Similarly, there exists a threshold above which fore-
casts extrapolate from recent events, producing a negative KW coefficient: the more forecasts tilt
towards current observations, the greater the extrapolation. Crucially, the extrapolation thresh-
old is lower than the under-reaction threshold, implying that under adaptive expectations there
exists a parameter region where under-reaction (positive CG coefficient) and extrapolation (neg-
ative KW coefficient) coexist—a result that the literature had considered unattainable in simple
models (Kohlhas and Walther 2021).

Adaptive expectations yield a simple condition for the AHS pattern of delayed overshoot-
ing: the adjustment parameter must be smaller than the persistence of the underlying variable.
When this condition holds, forecasts initially lag behind actual outcomes, then overshoot as
they continue adjusting. If instead the adjustment parameter exceeds persistence, then fore-
casts overshoot immediately after a shock, with no initial under-reaction. In the long run,
forecasts always overshoot because they are backward-looking on the initial spike of the
outcome.

Combining this condition with the thresholds derived above shows that the observed signs of
the CG and KW coefficients and the AHS IRF can be jointly reconciled under adaptive expec-
tations by a single inequality linking the adjustment parameter to persistence. By contrast, the
BGMS coefficient arises from the noisy information element. In the BGMS regression, the cur-
rent forecast enters both sides with opposite signs, and noise in individual forecasts pushes the
coefficient negative. Since this noise cancels out in the aggregate, it affects only BGMS and not
CG. If noise were absent, then the CG and BGMS coefficients would coincide.
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ADAPTIVE EXPECTATIONS 3

I then conduct a quantitative estimation exercise to assess the model’s fit to survey data,
using Consumer Price Index (CPI) and gross domestic product (GDP) price index forecasts
from the Philadelphia Fed’s Survey of Professional Forecasters. First, I estimate the AR(1) pro-
cess for inflation. Second, given the persistence estimates, I back out the adjustment parameter
by matching either the CG or KW coefficient between model and data. Third, I estimate the
variance of noisy signals by matching the variance of individual forecast revisions. A good
fit requires the adjustment parameters obtained from CG and KW coefficients to overlap,
and the model-implied BGMS coefficient and AHS IRF to align with their empirical coun-
terparts. The results show that the model performs reasonably well, though not perfectly:
for the CPI, it nearly always reconciles all four moments simultaneously; for the GDP Price
Index, it fits CG and BGMS coefficients, and AHS IRF, but not when including the KW
coefficient.

In further analysis, I first follow Kohlhas and Walther (2021) by decomposing inflation
into different components, each assigned distinct adjustment parameters (i.e. different degrees
of attention). Although reconciling the CG and KW coefficients under adaptive expectations
does not require such decomposition, this exercise reinforces the intuition in Kohlhas and
Walther (2021): forecasters should assign higher adjustment parameters to more procyclical com-
ponents. Second, to address the concern that my adjustment parameter estimates may be driven
by the specific targeted moments, I re-estimate the parameter using a model-implied regression
that does not target any moment. The resulting estimates are somewhat smaller but remain of
the same order of magnitude as the benchmark estimates.

Finally, I test the model prediction on which adaptive expectations and rational
noisy-information models diverge: the relationship between the CG coefficient and persistence.
Under adaptive expectations, for a given adjustment parameter, greater persistence implies
stronger under-reaction and thus a larger CG coefficient. In contrast, under the canonical
noisy-information model, greater persistence leads agents to place more weight on current sig-
nals, implying a smaller CG coefficient. This difference arises because adaptive expectations
takes the adjustment parameter as exogenous, whereas in the noisy information model, the
Kalman gain depends endogenously on persistence. Using rolling window estimates of the
CG coefficient and persistence, I find time series evidence in support of adaptive expecta-
tions, in contrast to the cross-sectional evidence favouring noisy information in Coibion and
Gorodnichenko (2015).

The contribution of this paper is both theoretical and empirical.
Theoretically, the paper derives closed-form solutions for four moments of central inter-

est, and establishes parameter conditions under which all moments can be reconciled
simultaneously. It demonstrates that adaptive expectations can jointly match the CG and
KW coefficients—previously thought unattainable by simple extrapolation models (Kohlhas
and Walther 2021)—and shows that adaptive expectations alone can reconcile the three
consensus-level moments (CG, KW and AHS IRF), which under Kalman-filter updating require
additional modelling elements (Angeletos et al. 2021). Finally, it delivers a testable prediction
linking the CG coefficient to persistence, on which adaptive expectations and Kalman-filter
updating diverge.

Empirically, the paper provides new estimates of the adjustment parameter, directly related to
the learning rate in the constant gain learning literature (Marcet and Nicolini 2003; Orphanides
and Williams 2005, 2006; Branch and Evans 2006; Milani 2007, 2008; Eusepi and Preston 2011).
It also presents time series evidence favouring adaptive expectations over rational Kalman-filter
updating, complementing the cross-sectional evidence in support of noisy information in Coibion
and Gorodnichenko (2015).

The structure of the paper is as follows. Section 2 provides a brief introduction to adaptive
expectations. Section 3 presents the four moments of interest from the literature, develops the
model framework, and derives the analytical results. Section 4 reports the estimation exercises,
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4 ECONOMICA

and evaluates the model’s fit to survey data. Section 5 discusses three additional exercises, with
particular emphasis on testing the model’s key prediction. Section 6 concludes.

2 AN INTRODUCTION TO ADAPTIVE EXPECTATIONS

The adaptive expectations hypothesis dates back to the 1930s and was formally introduced in the
1950s (see Cagan 1956; Friedman 1957). It became widely used in macroeconomics during the
1960s and 1970s. A common application was the modelling of inflation expectations as adaptive
expectations. Let wt denote the variable of interest, and let twt+1 denote the period-t forecast of
wt+1. Under adaptive expectations, the forecast is given by

twt+1 = 𝛾wt + (1 − 𝛾)t−1wt, (1)

where the forecast of wt+1 formed in period t, twt+1, is a weighted average of the current real-
ization wt and the previous forecast t−1wt. The adjustment parameter 𝛾 determines the weight
placed on the most recent observation. Under adaptive expectations, agents form forecasts using
current information and past expectations. Because past expectations themselves are based on
earlier realizations, current expectations ultimately reflect the entire history of observations. This
relationship can be expressed as an iterated sum:

twt+1 = 𝛾

∞∑
i=0

(1 − 𝛾)iwt−1−i. (2)

Mathematically, the adjustment parameter 𝛾 must lie in (0, 2) to ensure that twt+1 does not
diverge. When 𝛾 is between 1 and 2, the model generates a form of ‘extrapolation’. According to
equation (2), the current expectation is a weighted average of past observations, with progressively
smaller weights placed on more distant observations.

The noisy information model is an important framework in the study of expectations for-
mation. In these models, agents update forecasts using the Kalman filter, which resembles
equation (1). However, two key differences arise. First, the Kalman filter implies rational updat-
ing: agents recognize how forecasts relate across horizons. By contrast, adaptive expectations
make no assumption about the term structure, updating only forecasts of the same horizon
across periods. Second, in the Kalman filter, the update rate is determined endogenously by the
noise-to-signal ratio and the persistence of the underlying variable. In adaptive expectations, the
adjustment parameter 𝛾 is specified exogenously. In Subsection 5.3, I show that the rational noisy
information model and the adaptive expectations model generate opposite predictions, which can
be tested in the data.

The backward-looking feature of adaptive expectations may partially capture how people
form expectations, but it is subject to the famous Lucas critique (Lucas 1976). People’s expec-
tations should adapt to policy changes. When considering the future, humans are far more
sophisticated than the simple rule described above. This critique led to the rational expectations
revolution, initiated by Muth (1961). Under rational expectations, agents fully comprehend the
environment in which they operate, effectively acting as the smartest economists.

Over the past two decades, rational expectations has been extensively challenged in the lit-
erature, from various perspectives. Numerous biases in people’s expectations formation have
been documented (Mankiw et al. 2003; Coibion and Gorodnichenko 2015; Bordalo et al. 2020;
Kohlhas and Walther 2021; Giglio et al. 2021; Angeletos et al. 2021). In response, many alter-
native models of expectations formation have emerged, deviating from rational expectations to
better align with empirical findings from forecast surveys. The literature also shows that these
models help to explain other empirical puzzles beyond forecast surveys.
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ADAPTIVE EXPECTATIONS 5

3 THEORETICAL INSIGHTS FROM ADAPTIVE EXPECTATIONS

In this section, I show how adaptive expectations help to explain a set of recent empirical
findings from forecast surveys. Subsection 3.1 introduces three regression coefficients and an
IRF that capture how forecasters react to new information. Subsection 3.2 then develops a
framework that combines noisy information with adaptive expectations, derives closed-form
expressions for the coefficients and the IRF, and identifies the parameter conditions under
which the model can match the data. Finally, I compare this framework with the existing
literature.

3.1 Three regression coefficients and one IRF

In a seminal contribution, Coibion and Gorodnichenko (2015) propose a regression of con-
sensus forecast errors on consensus forecast revisions to test for aggregate over-reaction or
under-reaction to new information in survey forecasts. Building on this approach, Bordalo
et al. (2020) evaluate the same regression at the level of individual forecasts. Let wt denote a
macroeconomic variable, such as inflation. The following two equations present the ‘forecast
errors on forecast revisions’ regressions at the consensus and individual levels, henceforth referred
to as the CG and BGMS regressions:

wt+h −  twt+h = 𝛽0 + 𝛽CG( twt+h −  t−1wt+h) + ut,t+h, (3)

wt+h − i,twt+h = 𝛽0 + 𝛽BGMS(i,twt+h − i,t−1wt+h) + ui,t,t+h. (4)

A key distinction between the two regressions is that in equation (3),  twt+h denotes the mean
forecast across all forecasters, while in equation (4), i,twt+h denotes an individual forecast. In the
literature, a positive 𝛽CG is interpreted as under-reaction: when revisions occur, forecast revisions
are too small relative to actual realizations. Conversely, a negative 𝛽CG indicates over-reaction:
revisions are excessively large relative to realizations. The same interpretation applies at the indi-
vidual level, with 𝛽BGMS > 0 corresponding to under-reaction, and 𝛽BGMS < 0 to over-reaction.
Empirical studies typically find 𝛽CG > 0 and 𝛽BGMS < 0 (Coibion and Gorodnichenko 2015;
Bordalo et al. 2020; Fuhrer 2018).

In a closely related article, Kohlhas and Walther (2021) show that macroeconomic fore-
casts both extrapolate from recent events and under-react to new information. The evidence for
under-reaction comes from the same regression in Coibion and Gorodnichenko (2015), namely
𝛽CG > 0. Extrapolation is identified through the regression

wt+h −  twt+h = 𝛽0 + 𝛽KW wt + ut,t+h.

On the left-hand side, the dependent variable is the consensus forecast error, as in the CG regres-
sion. On the right-hand side, the explanatory variable is the current realization wt. Kohlhas and
Walther (2021) find 𝛽KW < 0. In this case, an increase in wt is associated with negative forecast
errors, indicating that forecasts place too much weight on the rise in wt—that is, they extrapolate.

Angeletos et al. (2021) move beyond linear regressions to characterize forecast errors
in a more dynamic setting. They study responses to two key shocks: one that drives most
business-cycle variation in unemployment and other macroeconomic variables, and another that
primarily explains business-cycle variation in inflation. They find that the IRFs of average unem-
ployment and inflation forecasts initially display under-reaction, but subsequently overshoot
relative to actual realizations. They formally define the IRF of forecast errors as {𝜁k}+∞k=1

in
Definition 1.
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6 ECONOMICA

Definition 1. Let {𝜁k}+∞k=1
be the IRF of the average, one-step-ahead forecast error.

For all k ≥ 1,

𝜁k ≡
𝜕(wt+k −  t+k−1wt+k)

𝜕et

is the kth coefficient in the moving-average representation of the average forecast
error, where et is the shock at period t.

Forecasts exhibit initial under-reaction and subsequent overshoot if and only if
for some kIRF ∈ (1,+∞), 𝜁k > 0 for 1 ≤ k < kIRF , and 𝜁k < 0 for kIRF < k.

As shown in Definition 1, the initial under-reaction and subsequent overshoot of forecasts
relative to actual realizations correspond to an IRF {𝜁k}+∞k=1

of forecast errors that starts positive
and later turns negative.

In the next subsection, I develop a framework that combines noisy information with adap-
tive expectations, and derive analytical expressions for three coefficients and one IRF. I then
introduce the parameter conditions under which the signs of these coefficients can be reconciled
simultaneously.

3.2 A model of adaptive expectations and noisy signals

3.2.1 The model environment

To compute forecast revisions in the CG regressions, forecasts at different horizons,  twt+h and
 t−1wt+h, are needed. Adaptive expectations, however, do not impose an explicit structure across
horizons. This limitation has kept the literature from assessing the ability of adaptive expectations
to account for the empirical patterns documented in the CG and BGMS regressions (see Afrouzi
et al. 2023).

With a lenient assumption—the ‘law of iterated forecasts’ in Assumption 1 below—it is pos-
sible to derive a term structure for adaptive expectations. The law of iterated forecasts mirrors the
form of the law of iterated expectations, which holds under rational expectations. In the adap-
tive expectations framework, agents update beliefs using past data. The law of iterated forecasts
captures the idea that if forecasts are formed consistently under the same rule (e.g. a weighted
average of past outcomes), then forecasts at different horizons should be internally consistent.

Assumption 1. Assume the following form of the law of iterated forecasts:

twt+h = t(t+swt+h),

for integers 0 ≤ s ≤ h.

With Assumption 1 and when forecasts follow adaptive expectations, the term structure of
forecasts is as follows.

Lemma 1. The term structure of forecasts under adaptive expectations is flat:

twt+1 = twt+i, i ≥ 2.

The proof of Lemma 1 is provided in the Appendix. Lemma 1 shows that adaptive expecta-
tions yield identical forecasts across horizons. This result is unsurprising: if forecasts are always
formed as weighted averages of past observations, and different horizons do not assign different
weights to these observations, then forecasts must coincide across horizons.

 14680335, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecca.70026 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [19/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ADAPTIVE EXPECTATIONS 7

After deriving the term structure of forecasts, assumptions are needed about the process
governing the underlying variable. Following Coibion and Gorodnichenko (2015), Bordalo
et al. (2020), Angeletos et al. (2021) and Kohlhas and Walther (2021), I assume that the variable
follows an AR(1) process.

Assumption 2. The underlying variable follows an AR(1) process:

wt = 𝜌wt−1 + et,

where et is independent and identically distributed, and follows a normal distribution,
et ∼ N(0, 𝜎2

e ), with 0 < 𝜌 < 1.

The AR(1) assumption is standard in the literature. Nonetheless, Subsection A.0.2 of the
Appendix shows with a numerical example that the ability of the model to explain the empirical
findings does not rely on this assumption. The result also holds under an AR(2) process.

To generate dispersed individual forecasts, I assume that forecasters disagree because they
receive heterogeneous signals (Sims 2003; Woodford 2001). Each forecaster then forms expecta-
tions adaptively, weighting both observed signals and past forecasts.

Assumption 3. There is a continuum of forecasters. In each period, each forecaster
receives a noisy signal about the underlying variable:

wi,t = wt + 𝜀i,t,

where 𝜀i,t follows a normal distribution 𝜀i,t ∼ N(0, 𝜎2
𝜀 ), and is independent and

identically distributed across forecasters and time. Forecasters form forecasts using
adaptive expectations:

i,twt+h = 𝛾wi,t + (1 − 𝛾)i,t−1wt+h−1, (5)

where 0 < 𝛾 < 2.

Allowing 𝛾 to lie in (1, 2)—beyond the usual (0, 1) range—introduces a form of
over-extrapolation. However, as shown analytically below, reconciling the empirical patterns
requires 𝛾 to fall within (0, 1).

Under the benchmark noisy information framework (Sims 2003; Woodford 2001), forecasters
update rationally using the Kalman filter, where the update speed depends on the noise-to-signal
ratio and the persistence of the variable 𝜌. By contrast, in the naive adaptive expectations model,
the adjustment parameter 𝛾 is specified exogenously. Subsection 5.3 shows that the two frame-
works yield opposite predictions for the relationship between 𝛽CG and persistence 𝜌, which can
be tested in the data.

By definition, the consensus forecast is given by

 twt+h = lim
N→+∞

∑N
i=1i,twt+h

N
.

The number of forecasters is large enough that noisy individual signals get averaged out for each t,
that is,

lim
N→+∞

∑N
i=1𝜀i,t

N
= 0.

As a result, when N is large enough,

 twt+h = 𝛾wt + (1 − 𝛾) t−1wt+h−1. (6)
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8 ECONOMICA

Individual noisy signals affect individual forecasts. In contrast, consensus forecasts are unaffected
because averaging over forecasters eliminates the noise.

3.2.2 Model-implied coefficients and IRF

In the environment described above, the three regression coefficients can be derived analytically,
as stated in Proposition 1. The proof is provided in the Appendix.

Proposition 1. Under Assumptions 1, 2 and 3, coefficients 𝛽CG, 𝛽BGMS and 𝛽KW are
given as follows:

𝛽CG = 𝜌h

[
1
𝛾
− 1

2

]
− 1

2
, (7)

𝛽BGMS =
𝜌h ((2∕𝛾) − 1) − 1 − 𝜅𝜎2

𝜀∕𝜎2
e

2 + 2𝜅𝜎2
𝜀∕𝜎2

e

, (8)

𝛽KW = 𝜌h − 𝛾

1 − (1 − 𝛾)𝜌
, (9)

where 𝜅 = [1 − 𝜌(1 − 𝛾)](1 + 𝜌) > 0.

Fixing the forecast horizon h, 𝛽CG and 𝛽KW are jointly determined by persistence 𝜌 and
the adjustment parameter 𝛾. Importantly, because individual signals average out at the consen-
sus level, the noisy information component does not affect 𝛽CG or 𝛽KW . These coefficients are
determined solely by the benchmark adaptive expectations model.

The noisy information component plays an important role in determining 𝛽BGMS. The
noise-to-signal ratio 𝜎2

𝜀∕𝜎2
e governs the gap between 𝛽CG and 𝛽BGMS. Before turning to discussing

each coefficient in detail, Corollary 1 summarizes several key relationships between coefficients
and parameters. The proof is provided in the Appendix.

Corollary 1. For 𝜌 ∈ (0, 1) and 𝛾 ∈ (0, 2), the following inequalities hold:

𝜕𝛽CG

𝜕𝛾
< 0,

𝜕𝛽KW

𝜕𝛾
< 0,

𝜕𝛽BGMS

𝜕(𝜎2
𝜀∕𝜎2

e )
< 0,

𝜕𝛽CG

𝜕𝜌
> 0.

Here, 𝛽CG increases with 𝜌, and decreases with 𝛾. Holding 𝛾 fixed, a higher 𝜌 implies greater
under-reaction: shocks to the variable persist further into the future than adaptive expectations
incorporate. Holding 𝜌 fixed, a higher 𝛾 implies greater over-reaction: adaptive expectations
update forecasts too strongly relative to the true persistence of the variable. The model-implied
relationship between 𝛽CG and 𝜌 is the opposite of the prediction from the rational noisy informa-
tion model in Coibion and Gorodnichenko (2015), a point developed further in Subsection 5.3
and tested formally.

Also, 𝛽KW decreases with 𝛾. A larger adjustment parameter implies stronger extrapolation.
As shown in the corollary below, there exists a range of 𝛾 for which under-reaction to new
information (𝛽CG > 0) and extrapolation from recent events (𝛽KW < 0) hold simultaneously.

The ratio 𝜎2
𝜀∕𝜎2

e enters the numerator of 𝛽BGMS with a negative sign, pushing 𝛽BGMS down-
wards. When the noisy signal vanishes, 𝛽CG and 𝛽BGMS coincide. This highlights the mechanical
source of their difference: in the CG and BGMS regressions, current forecasts appear on both
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ADAPTIVE EXPECTATIONS 9

F I G U R E 1 𝛽CG and 𝛽KW over the domain of 𝛾. Notes: This figure shows how 𝛽CG and 𝛽KW change sign over the
domain of 𝛾. There exists an interval [𝛾1, 𝛾2] in which 𝛽CG > 0 and 𝛽KW < 0 hold simultaneously, where
𝛾1 = 𝜌h(1 − 𝜌)∕(1 − 𝜌h+1) and 𝛾2 = 2𝜌h∕(1 + 𝜌h).

sides of the equation but with opposite signs. At the individual level, idiosyncratic signals push
the coefficient downwards, while at the consensus level, these signals average out and have no
effect. This point has been noted in the literature (de Silva and Thesmar 2023; Liao 2024).
Liao (2024) shows that in a parsimonious model of expectations formation, the gap between 𝛽CG

and 𝛽BGMS can be reconciled quantitatively when forecast disagreement is modelled as individual
heterogeneity and general measurement error.

For a given h, there exists a range of values for 𝛾, 𝜌 and 𝜎2
𝜀∕𝜎2

e such that 𝛽CG > 0, 𝛽BGMS < 0
and 𝛽KW < 0 hold simultaneously, as stated in Corollary 2. The proof is provided in the Appendix.

Corollary 2. 𝛽CG > 0, 𝛽BGMS < 0 and 𝛽KW < 0 hold simultaneously if and only if

𝜌h(1 − 𝜌)
1 − 𝜌h+1

< 𝛾 <
2𝜌h

1 + 𝜌h
< 1,

𝜌h ((2∕𝛾) − 1) − 1
𝜅

<
𝜎2
𝜀

𝜎2
e

.

According to the corollary, the noise-to-signal ratio must be sufficiently large for 𝛽BGMS < 0.
The adjustment parameter 𝛾 must also lie within a range where under-reaction to new informa-
tion, in the sense of Coibion and Gorodnichenko (2015), overlaps with extrapolation from recent
events, in the sense of Kohlhas and Walther (2021), as illustrated in Figure 1.

After analysing the three regression coefficients under the model framework, I now turn to
the IRF. The proposition below states the parameter conditions under which forecasts initially
under-react and later overshoot.

Proposition 2. Under Assumptions 2 and 3, 𝜁k, as defined in Definition 1, is given by

𝜁k = (𝜌 − 1)𝜌k + 𝛾(1 − 𝛾)k

𝜌 + 𝛾 − 1
.

The necessary and sufficient condition for forecasts to display initial under-reaction
followed by overshooting is

𝛾 ∈ (0, 𝜌).

The condition for initial under-reaction followed by overshooting is intuitive: the adjustment
parameter must be smaller than 𝜌. When 𝛾 > 𝜌, forecasters revise too aggressively relative to the
decay of the initial shock, so no initial under-reaction occurs. Under adaptive expectations, how-
ever, forecasts always overshoot in the long run. This arises from the backward-looking nature
of the model: forecasts are based on the earlier path of higher realizations. Moreover, the smaller
𝛾, the longer it takes for overshooting to appear.
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10 ECONOMICA

F I G U R E 2 IRF of the variable and forecasts under adaptive expectations. Notes: This figure shows the IRFs of
the variable and its forecasts under adaptive expectations to an unexpected shock at period 0. I set 𝜌 = 0.7. From left to
right, 𝛾 is set to 0.9, 0.5 and 0.1.

Because the IRF is defined on the consensus forecast, the model’s ability to reconcile the
documented delayed overshooting of forecasts stems from the adaptive expectations component,
unrelated to the noisy information part.

Figure 2 presents a numerical example of the IRFs of both the variable and the forecasts
in response to an unexpected shock at period 0. I set 𝜌 = 0.7 and illustrate three cases with 𝛾 =
0.9, 0.5, 0.1. Consistent with Proposition 2, when 𝛾 = 0.9 > 𝜌, forecasts overshoot immediately
from t = 1, with no initial under-reaction. When 𝜌 > 𝛾 = 0.5 or 0.1, forecasts initially under-react
and later overshoot. The smaller 𝛾, the longer the period of under-reaction before overshooting
occurs.

For the three sets of empirical findings on consensus forecasts to hold, the restrictions on 𝜌
and 𝛾 are summarized in the following corollary.

Corollary 3. 𝛽CG > 0, 𝛽KW < 0, and the IRF of forecast errors exhibits initial
under-reaction and subsequent overshoot if and only if

𝜌h(1 − 𝜌)
1 − 𝜌h+1

< 𝛾 < min
{

2𝜌h

1 + 𝜌h
, 𝜌

}
. (10)

The lower bound in inequality (10) ensures extrapolation from recent events. The upper bound
ensures under-reaction to new information and initial under-reaction in the forecast IRF.

We summarize how the model can theoretically reconcile the four sets of empirical findings.

• Findings on consensus forecasts: 𝛽CG > 0, 𝛽KW < 0, and an IRF of forecast errors that displays
initial under-reaction followed by overshooting are dictated by the parameters of the adaptive
expectations model—specifically, the relative magnitudes of 𝛾 and 𝜌—as stated in Corollary 3.
The noisy information component does not affect these three moments.

• Findings on individual forecasts: 𝛽BGMS < 0 arises from the large magnitude of idiosyncratic
noise, as shown in equation (8). The noisy information component is what drives the difference
between 𝛽CG and 𝛽BGMS.

3.2.3 Relation to existing literature

Before relating the model to the existing literature, it is important to emphasize that 𝛽CG > 0,
𝛽KW < 0 and the sign of the IRF are determined solely by the adaptive expectations component,
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ADAPTIVE EXPECTATIONS 11

and are unaffected by the noisy information component. The noisy information component mat-
ters only for the distinction between 𝛽CG and 𝛽BGMS. For this reason, I sometimes refer below
only to the adaptive expectations model when discussing the first three moments.

Coibion and Gorodnichenko (2015) explain 𝛽CG using both the sticky-information and
noisy-information models. In both frameworks, under-reaction to new information arises from
the slow diffusion of information. Kohlhas and Walther (2021), Bordalo et al. (2020) and
Angeletos et al. (2021), discussed below, also incorporate the noisy-information model, in
which forecasters update rationally using the Kalman filter. In my framework, by contrast, the
noisy-information component serves only to generate dispersed individual forecasts; there is no
rational updating with the Kalman filter. More importantly, the noisy-information model and
adaptive expectations yield opposite predictions for the relationship between 𝛽CG and 𝜌, a point
examined in Subsection 5.3.

Building on the noisy-information framework, Kohlhas and Walther (2021) propose a
rational model in which asymmetric attention to different components of the variable can simul-
taneously account for 𝛽CG > 0 and 𝛽KW < 0. I show that the adaptive expectations model can
reconcile both findings within a certain range of the adjustment parameter 𝛾, without decom-
posing the variable. This reflects an implicit overlap between under-reaction to new information
and extrapolation from recent events. In Subsection 5.1, I extend the benchmark adaptive expec-
tations model to allow for a decomposition of the variable into multiple components, following
Kohlhas and Walther (2021), and derive 𝛽KW . I then discuss the role of variable decomposition
under adaptive expectations.

Bordalo et al. (2020) reconcile 𝛽CG > 0 and 𝛽BGMS < 0 by combining the noisy-information
model with diagnostic expectations. In their framework, diagnostic forecasters over-react to indi-
vidual signals, generating 𝛽BGMS < 0, while 𝛽CG > 0 arises from the slow diffusion of information
at the aggregate level due to noisy information. In my framework, by contrast, agents’ reac-
tions to information are governed solely by the adjustment parameter 𝛾, and the gap between
𝛽CG > 0 and 𝛽BGMS < 0 is largely mechanical, stemming from noisy signals at the individual
level.

Angeletos et al. (2021) propose a model that reconciles the signs of the three coefficients
as well as the initial under-reaction and subsequent overshooting of the forecast IRF. Their
framework relies on three assumptions: (a) a noisy-information environment; (b) perceived noise
precision that differs from true precision; and (c) perceived persistence of the variable that dif-
fers from true persistence. They show that (b) and (c) are necessary to reconcile 𝛽CG > 0 and
𝛽KW < 0. Together with (a), these assumptions also reconcile 𝛽BGMS < 0. Explaining the forecast
IRF requires the full set of (a), (b) and (c). By contrast, adaptive expectations provide an alterna-
tive and to some extent simpler explanation of 𝛽CG > 0, 𝛽KW < 0 and the IRF, through the single
inequality (10).

Given the proliferation of models that depart from full information rational expectations, it is
important to ask whether existing frameworks can already reconcile the empirical puzzles before
proposing new ones. The adaptive expectations model, although no longer at the centre of the
literature, remains a useful benchmark that can deliver sharp insights.

In next section, I fit the model to the data to assess the extent to which it matches the empirical
moments quantitatively.

4 ASSESSING THE MODEL’S FIT TO THE DATA

4.1 Data

The dataset used in this article is the Survey of Professional Forecasters (SPF) conducted by
the Federal Reserve Bank of Philadelphia. Initiated in 1968, the SPF collects quarterly forecasts
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12 ECONOMICA

T A B L E 1 Summary statistics.

Count Mean S.D. Min 25% 50% 75% Max

Individual level

CPI FE 5834 −0.02 1.56 −10.86 −0.82 −0.18 0.60 9.05

FR 5438 −0.09 0.82 −10.90 −0.38 −0.02 0.25 8.00

PGDP FE 8279 0.19 1.66 −22.43 −0.73 −0.13 0.74 11.42

FR 7527 0.04 1.15 −22.57 −0.31 0.00 0.31 24.72

Consensus level

CPI FE 168 −0.01 1.35 −4.07 −0.62 −0.19 0.47 5.43

FR 168 −0.09 0.49 −1.94 −0.26 −0.04 0.12 1.64

PGDP FE 219 0.07 1.28 −1.98 −0.66 −0.25 0.47 5.30

FR 219 0.05 0.51 −1.30 −0.17 −0.03 0.20 3.12

Notes: This table reports the summary statistics of forecast errors (FE) and forecast revisions (FR) at the individual level and consensus
level. S.D. is the standard deviation when pooling all observations. All forecast errors and revisions are calculated at horizon t + 3. CPI
forecast data span from 1981Q3 to 2024Q3, while PGDP data span from 1968Q4 to 2024Q3.

of US macroeconomic indicators from professional forecasters. Historical realizations are taken
from vintage data, the real-time dataset provided by the Federal Reserve Bank of Philadelphia,
which ensures that realizations align with the information available to forecasters. To illustrate
how adaptive expectations can quantitatively account for the empirical patterns, I focus on
inflation forecasts from the SPF.

The SPF reports the CPI as a growth rate—the CPI inflation rate—but reports the GDP
Price Index (PGDP) in levels. This study uses a one-year forecast horizon. The forecasted
one-year PGDP inflation rate is computed as the annual growth rate between the realization
in quarter t − 1 and the forecasted PGDP level in quarter t + 3. The forecasted one-year CPI
inflation rate is computed as the average of the CPI inflation rates in quarters t, t + 1, t + 2 and
t + 3.

I use CPI forecast data from 1981Q3 to 2024Q3, and PGDP forecast data from 1968Q4 to
2024Q3. On average, each survey wave includes 35 forecasters for the PGDP, and 32 for the
CPI. Summary statistics for forecast errors and forecast revisions at horizon t + 3 are reported in
Table 1.

In Table 1, the standard deviations are computed by pooling across quarters and forecasters.
The number of observations is larger for forecast errors than for forecast revisions because cal-
culating a revision requires both the t + 3 forecast and the lagged t + 4 forecast, and some t + 4
forecasts are missing.

Forecast errors and revisions are consistently indistinguishable from zero, indicating no sys-
tematic bias in forecasts or asymmetry in revisions. Extreme observations are not winsorized,
since forecasters may have received genuinely extreme private signals.

The three regression results are reported in Table 2. The forecast horizon is one year ahead.
For consensus time series regressions, standard errors are computed using the Newey–West esti-
mator with a lag of four quarters. For individual-level panel regressions, standard errors are
clustered by time.

Here, 𝛽BGMS is consistently negative, although not statistically significant; 𝛽CG is significantly
positive. Including forecaster fixed effects does not materially change the individual coefficients.
The two coefficients reported here are broadly consistent with Bordalo et al. (2020), with slight
differences in magnitude. By contrast, 𝛽KW < 0 does not hold consistently in this empirical
application, with one estimate negative, and another positive.
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ADAPTIVE EXPECTATIONS 13

T A B L E 2 Three regression coefficients.

Regression BGMS Regression CG Regression KW

CPI PGDP CPI PGDP CPI PGDP

FR −0.13 −0.02 −0.14 −0.09 0.72 1.07

(0.10) (0.10) (0.08) (0.09) (0.36) (0.34)

Actual observations −0.05 0.12

(0.12) (0.07)

Constant −0.01 0.004 0.15 0.14 0.06 0.02 0.12 −0.36

(0.11) (0.12) (0.09) (0.1) (0.19) (0.13) (0.31) (0.21)

Individual fixed effect Yes No Yes No

R2 0.01 0.00 0.01 0.02 0.07 0.19 0.004 0.06

Observations 5312 5312 7436 7436 168 220 169 219

Notes: This table reports 𝛽CG , 𝛽BGMS and 𝛽KW . For consensus time series regressions, standard errors (in parentheses) are calculated
using the Newey–West method with bandwidth 4 quarters. For individual-level panel regressions, standard errors (in parentheses) are
clustered by time. CPI forecast data span from 1981Q3 to 2024Q3, while PGDP data span from 1968Q4 to 2024Q3.

4.2 Estimation

The goal of this estimation exercise is to recover the parameters 𝛾, 𝜌 and 𝜎2
𝜀∕𝜎2

e for both measures
of inflation, and assess the extent to which the adaptive expectations model can reconcile the four
sets of empirical findings simultaneously.

4.2.1 Estimation strategy

The estimation strategies follow three steps, as below.

1. Fit an AR(1) process to the historical time series to estimate 𝜌 and 𝜎e for the two measures of
inflation.

2. After obtaining the estimates for 𝜌 and 𝜎e, coefficients 𝛽CG and 𝛽KW are matched between the
data and the model (equations (7) and (9)) to estimate 𝛾. Denote the estimates as 𝛾̂CG and
𝛾̂KW , respectively. Standard errors are computed using the delta method. If the model is the
true data-generating process, then 𝛾̂CG and 𝛾̂KW should be similar. Comparing 𝛾̂CG and 𝛾̂KW

therefore provides one dimension of the model’s ability to fit the data.
3. Finally, the average cross-sectional forecast variance is matched between the data and the

model to estimate 𝜎𝜀. In the data, forecast dispersion is computed in two steps: first, calculate
the variance of forecasts within each quarter; second, average these variances across quar-
ters. Denote the estimate as V̂ari(i,t). I now derive the corresponding cross-sectional forecast
variance in the model:

Vari(i,t) = Vari

(+∞∑
s=0

(1 − 𝛾)s𝛾(wt−s + 𝜀i,t−s)

)

= Vari

(+∞∑
s=0

(1 − 𝛾)s𝛾𝜀i,t−s

)

 14680335, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecca.70026 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [19/01/2026]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 ECONOMICA

T A B L E 3 Estimation results from matching 𝛽CG.

CPI PGDP

1981Q3–

2024Q2

1981Q3–

2019Q4

1981Q3–

2007Q4

1968Q4–

2024Q3

1968Q4–

2019Q4

1968Q4–

2007Q4

𝛾̂CG 0.52 0.68 0.58 0.47 0.5 0.49

(0.11) (0.11) (0.07) (0.08) (0.09) (0.09)

𝜎CG
𝜀 ∕𝜎e 1.61 1.40 1.96 3.25 3.35 3.41

Notes: The first row reports 𝛾 estimates from matching 𝛽CG between the model and data. Standard errors are reported in parentheses.
The second row reports the noise-to-signal ratio 𝜎CG

𝜀 ∕𝜎e estimates using 𝜎e estimates from Table A2.

T A B L E 4 Estimation results from matching 𝛽KW .

CPI PGDP

1981Q3–

2024Q2

1981Q3–

2019Q4

1981Q3–

2007Q4

1968Q4–

2024Q3

1968Q4–

2019Q4

1968Q4–

2007Q4

𝛾̂KW 0.33 1.01 — 0.05 0.05 0.05

(0.32) (1.19) (0.03) (0.03) (0.03)

𝜎KW
𝜀 ∕𝜎e 2.14 0.99 — 11.27 12.07 12.13

Notes: The first row reports 𝛾 estimates from matching 𝛽KW between the model and data. Standard errors are reported in parentheses.
The second row reports the noise-to-signal ratio 𝜎KW

𝜀 ∕𝜎e estimates using 𝜎e estimates from Table A2.

= 𝛾2
+∞∑
s=0

(1 − 𝛾)2s𝜎2
𝜀

= 𝛾

2 − 𝛾
𝜎2
𝜀 . (11)

The second equality follows from the fact that wt is common to all forecasters. Since there
are two estimates of 𝛾, 𝛾̂CG and 𝛾̂KW , there are correspondingly two variance estimates, 𝜎CG

𝜀

and 𝜎KW
𝜀 .

4.2.2 Estimation results

To assess the robustness of parameter estimates across time, I repeat the estimation procedure
for three subsamples: from the beginning of the sample to the end of 2007, to the end of 2019,
and to early 2024. This allows me to test whether the 2008 financial crisis and the 2020 pandemic
had significant effects on the estimates. The three empirical coefficients across these periods are
reported in Appendix Table A3.

Tables 3 and 4 report the estimation results for the adjustment parameter 𝛾 and the
noise-to-signal ratio 𝜎𝜀∕𝜎e across the three sample periods. Table 3 is based on targeting 𝛽CG, while
Table 4 is based on targeting 𝛽KW . Parameter estimates obtained from targeting different coeffi-
cients are denoted with the subscripts CG or KW. Estimates of 𝜌 and 𝜎e are reported separately
in Appendix Table A2.

First, consider the 𝛾 estimates in Tables 3 and 4. In Table 3, 𝛾̂CG is stable across sample periods
for both measures of inflation. For the PGDP, 𝛾̂CG is consistently slightly below 0.5, while for
the CPI, it is somewhat larger but still below 0.7. In Table 4, by contrast, the 𝛾̂KW estimates are
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ADAPTIVE EXPECTATIONS 15

mixed. The empty cell for the CPI in the pre-2008 subsample arises because, given the 𝜌 estimate
and h = 3, equation (9) cannot match its empirical counterpart within the range 𝛾 ∈ [0, 2] in
this specific case. This failure to match indicates that the model is not always flexible enough to
capture 𝛽KW in the data for a fixed 𝜌. Appendix Figure A3 illustrates this case: the minimum value
of equation (9) remains above the empirical 𝛽KW for the CPI during 1981Q3–2007Q4. Where the
model does succeed in matching the data, the magnitude of 𝛾̂KW varies widely, from 0.05 to 1.01.
The dispersion in 𝛾̂KW reflects the dispersion in the empirical estimates of 𝛽KW . As shown in
Appendix Table A3, point estimates of 𝛽KW are positive and insignificant for the PGDP, while
for the CPI they are negative, with two cases significant. This evidence suggests that the empirical
finding 𝛽KW < 0 is not always robust.

There is a large literature on constant-gain learning (CGL), where the estimated gain param-
eter is analogous to the adjustment parameter 𝛾 in this paper (see Orphanides and Williams 2005;
Branch and Evans 2006; Milani 2007, 2008; Marcet and Nicolini 2003). In these studies, the
calibrated gain typically ranges from 0.01 to 0.05, an order of magnitude smaller than most 𝛾 esti-
mates here. Only the 𝛾KW estimates for the PGDP are comparable. One reason is the difference in
model specification. The simple benchmark adaptive expectations model used here differs from
the CGL models in those studies. Many papers assume that agents estimate an econometric model
to learn the coefficients of structural models (Orphanides and Williams 2005, 2006; Milani 2007,
2008; Eusepi and Preston 2011), which contrasts with the setup in this paper. Another reason
is the choice of moments and estimation methods. This paper estimates 𝛾 by targeting two new
moments, 𝛽CG and 𝛽KW , which the CGL literature has not considered. Previous studies have used
different approaches, including Bayesian estimation within structural dynamic stochastic gen-
eral equilibrium models (Milani 2007, 2008), targeting root mean square errors (Orphanides and
Williams 2005), and targeting forecast errors (Eusepi and Preston 2011).

In Subsection 5.2, I estimate 𝛾 using a regression directly implied by equation (1). This
approach yields a more natural estimate in the sense that it does not target specific moments. The
estimates range from 0.15 to 0.24, smaller than but of the same order of magnitude as most results
in Tables 3 and 4. They remain, however, an order of magnitude larger than the learning rates
typically found in the CGL literature. In the next subsubsection, I examine model performance,
and show that 𝛾 = 0.05 fits poorly, failing to match two other untargeted moments.

Second, consider the noise-to-signal ratio estimates. For the CPI, the ratio ranges from 0.99
to 2.14, and for the PGDP, it ranges from 3.25 to 12.07. In Table 4, the high ratios reflect the
low values of 𝛾̂KW . From equation (11), holding constant the cross-sectional variance of forecasts
in the data, a smaller 𝛾 requires a larger 𝜎2

𝜀 to match the observed dispersion. Estimates of the
noise-to-signal ratio in the literature also span a wide range. In Bordalo et al. (2020), the ratio
ranges from 0.06 to 1.57 for the CPI, and from 0.73 to 9.26 for the PGDP, across different specifi-
cations. The estimates reported here are broadly comparable, though somewhat higher. Bordalo
et al. (2020) emphasize that in their noisy-information framework, individual noise exceeding
fundamental innovations is consistent with rigidity in consensus forecasts.

4.2.3 Model performance

By construction, the estimation procedure matches empirical 𝛽CG (or 𝛽KW ) and forecast dis-
persion exactly, since these moments are directly targeted. This subsubsection evaluates model
performance using moments that are not targeted.

First, comparing 𝛾̂CG and 𝛾̂KW provides a test of whether the model can simultaneously match
empirical 𝛽CG and 𝛽KW . If the model succeeds, then the confidence intervals of 𝛾̂CG and 𝛾̂KW

should align closely. In Tables 3 and 4, the 95% confidence intervals overlap for the CPI but not
for the PGDP, indicating that model performance on this dimension varies across variables.
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16 ECONOMICA

Second, I test whether the model can also match 𝛽BGMS in the data, which is not directly
targeted. The model-implied 𝛽BGMS is computed using the estimated parameters and equation (9).
Figure 3 compares the model-implied and empirical values. Figure 3(a) uses the parameter set
obtained by targeting 𝛽CG, while Figure 3(b) uses the set estimated through targeting 𝛽KW . The
model-implied 𝛽BGMS is shown as blue dots; 95% confidence intervals of the empirical estimates of
𝛽BGMS are in red. As Figure 3 shows, empirical 𝛽BGMS is matched well when 𝛽CG is targeted. When
𝛽KW is targeted, the model matches 𝛽BGMS only for the CPI, and performs poorly for the PGDP.

To assess quantitatively whether adaptive expectations can fit the dynamic overshooting pat-
tern documented in Angeletos et al. (2021), Figure 4 shows the dynamic responses of the inflation
outcome, actual forecasts, and forecasts based on adaptive expectations. The IRFs of the inflation
outcome and actual aggregate forecasts are taken from Angeletos et al. (2021). They estimate the
IRFs using two methods: instrumental variable ARMA and local projection. Shocks are taken
from Angeletos et al. (2020). Standard errors are heteroscedasticity- and autocorrelation-robust,
computed using a Bartlett kernel with four lags. Forecasts under adaptive expectations are calcu-
lated from equation (1), using the IRF path of the inflation outcome as inputs. Consistent with
Angeletos et al. (2020), the plotted forecasts are those made three quarters earlier, t−3[𝜋t,t−4].
Figure 4(a) uses 𝛾 = 0.47, based on the 𝛾CG estimates, while Figure 4(b) uses 𝛾 = 0.05, based on
the 𝛾KW estimates.

Figure 4(a) shows that with 𝛾 = 0.47, forecasts under adaptive expectations fit the actual
forecasts reasonably well. The adaptive expectations forecasts display a similar pattern: initial
undershooting followed by overshooting. Quantitatively, the adaptive forecasts overshoot slightly
more than the actual forecasts early on, though the difference is not significant. In Figure 4(b),
with 𝛾 = 0.05, the model-implied forecasts fit much less well. In this case, forecasts under adaptive
expectations respond too weakly to the shock.

The two exercises above shed light on the 𝛾 estimates in Tables 3 and 4. Although 𝛾̂KW values
around 0.05 are closer to the learning rates found in the CGL literature, they perform poorly in
matching 𝛽BGMS and the delayed overshooting pattern. By contrast, 𝛾̂CG ∈ [0.47, 0.68] fits these
two untargeted moments much better.

In summary, the model fits the data reasonably well, though not perfectly. Performance
varies by variable. For the CPI, the model can nearly reconcile all four sets of empirical findings
simultaneously. For the PGDP, it performs less well in reconciling the findings quantitatively.
Nonetheless, the exercise highlights the considerable quantitative potential of the model.

5 FURTHER DISCUSSION

In this section, I conduct three additional analyses. First, I extend the benchmark adaptive expec-
tations model to allow for asymmetric adjustment parameters across components of the variable.
Second, I run a model-implied regression to estimate the adjustment parameter 𝛾. Third, I test
a key prediction on which the canonical noisy-information model and adaptive expectations
diverge.

5.1 Asymmetric adjustment parameters to variable components

Kohlhas and Walther (2021) document the coexistence of extrapolation from recent events and
under-reaction to new information in the SPF. To reconcile 𝛽CG > 0 and 𝛽KW < 0 simultane-
ously, they develop a noisy-information model in which agents update forecasts rationally. The
key feature of their framework is that agents observe noisy signals from different components
of a variable, with the precision of each signal determining the attention paid to that compo-
nent. They show that as long as agents place more weight on procyclical components relative
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ADAPTIVE EXPECTATIONS 17

F I G U R E 3 Model-implied and empirical 𝛽BGMS. Notes: These graphs plot the model-implied 𝛽BGMS as blue dots,
and the 95% confidence intervals for the empirically estimated 𝛽BGMS as red lines, for (a) parameters estimated by
matching 𝛽CG between the model and data, and (b) parameters estimated by matching 𝛽KW between the model and data.
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18 ECONOMICA

F I G U R E 4 Dynamic responses of outcomes and forecasts. Notes: These graphs plot the IRFs of the inflation
outcome and forecasts from Angeletos et al. (2021), shown as blue and orange lines, respectively. The shaded areas
represent 68% confidence intervals. The sample period is 1968Q1–2017Q4. The red line represents the adaptive forecasts
based on the IRF of the inflation outcome, calculated using (a) 𝛾 = 0.47, (b) 𝛾 = 0.05. The horizontal axis denotes the
number of quarters since the shock.

to countercyclical components, the model can generate both 𝛽CG > 0 and 𝛽KW < 0. Intuitively,
under-reaction to new information (𝛽CG > 0) arises from the noisy-information structure, as
rational agents gradually update beliefs. Extrapolation from recent events, in turn, ‘can be viewed
as an outcome of underreactions to countercyclical components’.

I have already shown analytically that the benchmark adaptive expectations model can simul-
taneously account for 𝛽CG > 0 and 𝛽KW < 0. To shed further light on the role of decomposing
the variable into different components, I extend the benchmark model in a direction similar to
that of Kohlhas and Walther (2021): each component with its own adjustment parameter in the
adaptive expectations framework. This extension provides a deeper interpretation of 𝛽KW < 0.

In the following framework, I focus on a representative forecaster rather than distinguishing
between individual and consensus forecasts. This assumption is innocuous for 𝛽KW . Following
Kohlhas and Walther (2021), suppose that the variable of interest is comprised of N structural
components:

yt =
N∑

j=1

xj,t. (12)
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ADAPTIVE EXPECTATIONS 19

The forecaster directly observes the components xj,t for j ∈ {1, 2, … ,N}, and attaches different
adjustment parameters 𝛾j to different components in her expectations:

txj,t+h = 𝛾jxj,t + (1 − 𝛾j)t−1xj,t+h−1. (13)

Her forecast of yt is the sum of forecasts of each component:

tyt+h =
N∑

j=1

txj,t+h. (14)

Each component is correlated with a latent factor 𝜃t, which follows an AR(1) process:

xj,t = aj𝜃t for each i ∈ {1, 2, … ,N}, (15)

𝜃t = 𝜌𝜃t−1 + 𝜂t, 𝜂t ∼ N(0, 𝜎2
𝜂 ), (16)

where aj measures the correlation between component j and the latent factor 𝜃t. Without loss
of generality, I assume

∑N
j=1aj > 0. In such an environment, I provide the following result. The

proof is provided in the Appendix.

Proposition 3. Under the framework setup from equations (12)–16, the expression for
𝛽KW is given as

𝛽KW =

∑N
j=1aj

(
𝜌h −

𝛾j

1 − (1 − 𝛾j)𝜌

)
∑N

j=1aj

. (17)

Unsurprisingly, equation (9) is a special case of equation (17). When the adjustment param-
eters are homogeneous across components, 𝛾j = 𝛾 for all j, the two equations coincide. More
generally, equation (17) can be viewed as a weighted-average version of equation (9), with
weights given by aj∕

∑N
j=1aj. When adjustment parameters 𝛾j are heterogeneous across compo-

nents, 𝛽KW < 0 requires assigning larger weights aj to components with larger 𝛾j. Recall that the
expression 𝜌h − 𝛾∕ (1 − (1 − 𝛾)𝜌) is decreasing in 𝛾. Interpreting aj as a measure of component
cyclicality, and 𝛾j as a measure of ‘attention’, the mechanism parallels the asymmetric attention
highlighted in Kohlhas and Walther (2021): forecasters must place greater attention (larger 𝛾j) on
procyclical components (larger aj).

5.2 Model-implied regression

If adaptive expectations is the true data-generating process, then 𝛾 can be estimated by fitting the
adaptive expectations model in equation (6) to the data. Equation (6) can be rearranged as

 twt+h −  t−1wt+h−1 = 𝛾(wt −  t−1wt+h−1)

for h = 0, 1, 2, 3. Now the regression of interest turns into

 twt+h −  t−1wt+h−1 = 𝛾0
h + 𝛾1

h (wt −  t−1wt+h−1) + 𝜀t. (18)

The subscript h in the coefficients 𝛾1
h

and 𝛾0
h

denotes potential variation in 𝛾 across forecast hori-
zons. I use the rearranged regression model (18) rather than the original specification (6), since
forecast differences are far more stationary than the forecasts themselves, which may trend with
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20 ECONOMICA

the underlying variable. This choice mitigates concerns about spurious regression. I also estimate
the regression at the consensus level rather than the individual level, since in the individual-level
adaptive expectations model in equation (5), the individual signal wi,t is unobserved by the
econometrician. As above, I focus on the one-year horizon t + 3, or h = 3.

The estimates of 𝛾1 range from 0.15 to 0.24 across different inflation measures and time peri-
ods, with larger values for earlier subsamples. This implies that forecasters place progressively
less weight on current observations and more weight on past forecasts.

These estimates are generally smaller than the 𝛾 estimates in Subsubsection 4.2.2. The dis-
crepancy between the 𝛾1 estimates here and those in Subsubsection 4.2.2 is not surprising. One
reason is that the simple regression (18) cannot be the true data-generating process for fore-
casts, given how complicated humans are. The benchmark adaptive expectations model captures
key features of expectations formation and can match certain empirical patterns, but it is not a
complete representation of the process.

This exercise tests the external validity of the 𝛾 estimates in Tables 3 and 4, since those ear-
lier estimates are an order of magnitude larger than the learning rates in the CGL literature. To
address the concern that large 𝛾 estimates might be driven by the specific targeted moments, this
section estimates 𝛾 without targeting any moments. The resulting estimates are of the same order
of magnitude as those in Tables 3 and 4.

5.3 A key model prediction

The model implies predictions about the relationship between coefficients and parameters, as
summarized in Corollary 1. The relationship between 𝛽CG and 𝜌 is the key prediction on which
adaptive expectations and the rational noisy-information model diverge. In adaptive expecta-
tions, for a given adjustment parameter 𝛾, greater persistence implies more under-reaction, as
reflected in a larger 𝛽CG. By contrast, the canonical noisy-information model predicts the oppo-
site relationship. In that framework, 𝛽CG should decline with 𝜌, since more persistent processes
lead agents to place greater weight on current signals, reducing information rigidity (Coibion and
Gorodnichenko 2015). The root of this difference is that adaptive expectations treat the adjust-
ment parameter as exogenous, whereas in the rational noisy-information model, the Kalman filter
endogenously depends on the persistence of the variable.

The empirical relationship between 𝛽CG and 𝜌 thus provides a way to distinguish the model in
this paper from the canonical noisy-information framework. Coibion and Gorodnichenko (2015)
conduct a cross-country, cross-variable test that supports the noisy-information model. By
contrast, I present evidence below in favour of adaptive expectations.

Empirically I study a regression

𝛽CG,t = 𝜙0 + 𝜙1𝜌t + 𝜙2𝛾t + 𝜀t. (19)

I obtain 𝛽CG,t, 𝜌t and 𝛾t through running 20-year rolling window regressions. Corollary 1 predicts
that 𝜙1 > 0 and 𝜙2 < 0. Table 6 reports the estimates. The time series graphs of rolling window
estimates are shown in Appendix Figures A4 and A5.

According to Table 6, the data are consistent with both sign predictions of the adaptive
expectations model. All coefficients of interest are significant except one: the coefficient on 𝛾t for
the CPI.

A natural concern with such time series regressions is spurious correlation arising
from non-stationary data. Appendix Figures A4 and A5 suggest this issue visually. I for-
mally test the stationarity of each series using the augmented Dickey–Fuller test and the
Kwiatkowski–Phillips–Schmidt–Shin test. The results, reported in Appendix Table A4, show that
none of the series passes both tests, confirming the concern. I therefore redo the empirical analysis
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ADAPTIVE EXPECTATIONS 21

T A B L E 5 Model-implied regression results.

CPI PGDP

1981Q3–

2024Q2

1981Q3–

2019Q4 1981Q3–2007Q4

1968Q4–

2024Q3

1968Q4–

2019Q4

1968Q4–

2007Q4

𝛾0 −0.05 −0.03 −0.05 −0.00 0.01 0.00

(0.04) (0.03) (0.05) (0.03) (0.03) (0.04)

𝛾1 0.15 0.18 0.24 0.17 0.20 0.20

(0.04) (0.05) (0.06) (0.04) (0.05) (0.05)

R2 0.11 0.10 0.15 0.20 0.22 0.23

Observations 171 153 105 222 203 155

Notes: This table reports the regression results from equation (18) at the consensus level. Standard errors (in parentheses) are
Newey–West with a lag of 4 quarters.

T A B L E 6 Relationship between 𝛽CG and parameters 𝜌, 𝛾.

CPI 𝛽CG,t PGDP 𝛽CG,t

𝜌t 6.68 5.36 21.64 23.59

(3.02) (2.33) (2.45) (2.88)

𝛾t −1.39 −1.94

(1.30) (0.68)

Constant −5.95 −4.91 −20.30 −22.59

(2.72) (2.21) (2.37) (2.82)

Observations 89 89 139 139

Adjusted R2 0.24 0.20 0.55 0.48

Notes: This table reports the regression results from equation (19). Standard errors (in parentheses) are Newey–West with a lag of
4 quarters.

T A B L E 7 Relationship between 𝛽CG and parameters 𝜌, 𝛾—first difference regression.

CPI Δ𝛽CG,t PGDP Δ𝛽CG,t

Δ𝜌t 2.98 2.04 10.66 10.51

(3.52) (4.13) (3.92) (4.09)

Δ𝛾t 1.14 −0.73

(0.86) (0.48)

Constant 0.01 0.01 0.01 0.01

(0.01) (0.01) (0.01) (0.01)

Observations 88 88 138 138

Adjusted R2 0.04 0.01 0.28 0.26

Notes: This table reports the regression results from equation (19), after taking the first difference of all variables. Standard errors (in
parentheses) are Newey–West with a lag of 4 quarters.
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22 ECONOMICA

after first-differencing all series. The results, reported in Table 7, continue to show strong support
for 𝜕𝛽CG∕𝜕𝜌 > 0, contradicting the prediction of the noisy-information model.

A similar test is done in Bordalo et al. (2020), but they focus on the relationship between
their individual coefficient and 𝜌. Their model provides a clear positive sign on this relationship.
Also, they use the variation across different variables, instead of the time series rolling window
variation used in this test.

6 CONCLUSION

While the rational expectations hypothesis has long been the cornerstone of modelling macroe-
conomic expectations, contemporary data consistently reject its validity. A growing set of models
has emerged to account for empirical puzzles in forecast data. This paper shows that the bench-
mark adaptive expectations model—once central but largely displaced by rational expectations
in the 1970s—combined with a noisy-information component, can account for four influential
empirical findings both quantitatively and qualitatively. With respect to the relationship between
the Coibion–Gorodnichenko coefficient and persistence, on which adaptive expectations and the
canonical noisy-information model yield opposite predictions, I find evidence at the time series
level in favour of adaptive expectations. In sum, the adaptive expectations framework remains a
valuable tool in the evolving study of macroeconomic expectations.
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APPENDIX

A.1 Proofs
A.1.1 Proof of Lemma 1
Under the assumption of the law of iterated forecasts, for a positive integer h ≥ 2, we have

twt+h = tt+h−1wt+h = t[𝛾wt+h−1 + (1 − 𝛾)t+h−2wt+h−1] = twt+h−1.

A.1.2 Proof of Proposition 1
Using Lemma 1, and after iterating backwards on equation (5), we get

i,twt+h = i,twt+1 =
+∞∑
s=0

(1 − 𝛾)s𝛾(wt−s + 𝜀i,t−s).
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24 ECONOMICA

Given the large number of forecasters, idiosyncratic noise gets averaged out for each t. The
consensus forecast is given by

 twt+h =  twt+1 =
+∞∑
s=0

(1 − 𝛾)s𝛾wt−s.

Since wt follows an AR(1) process, Cov(wt,wt+h) = 𝜌h𝜎2
e∕(1 − 𝜌2).

First, let us derive 𝛽KW . The denominator is A = Var(wt) = 𝜎2
e∕(1 − 𝜌2). The numerator is

given by

Cov(wt+h −  twt+h,wt) = Cov(wt+h,wt) − Cov

(+∞∑
s=0

(1 − 𝛾)s𝛾wt−s,wt

)

= 𝜌h 𝜎2
e

1 − 𝜌2
−

+∞∑
s=0

(1 − 𝛾)s𝛾𝜌s 𝜎2
e

1 − 𝜌2

=
𝜎2

e

1 − 𝜌2

[
𝜌h − 𝛾

1 − (1 − 𝛾)𝜌

]
.

As a result,

𝛽KW = Cov(wt+h −  twt+h,wt)
Var(wt)

= 𝜌h − 𝛾

1 − (1 − 𝛾)𝜌
.

Second, let us derive 𝛽CG. The numerator is given by

Cov(wt+h −  twt+h, twt+h −  t−1wt+h)

= Cov(wt+h, twt+h) − Cov(wt+h, t−1wt+h)

− Cov( twt+h, twt+h) + Cov( twt+h, t−1wt+h).

Let us derive each component one by one:

Cov(wt+h, twt+h) =
+∞∑
s=0

(1 − 𝛾)s𝛾 Cov(wt+h,wt−s)

=
+∞∑
s=0

(1 − 𝛾)s𝛾𝜌h+s 𝜎2
e

1 − 𝜌2

= 𝜌h𝛾
𝜎2

e

1 − 𝜌2

1
1 − (1 − 𝛾)𝜌

,

Cov(wt+h, t−1wt+h) =
+∞∑
s=0

(1 − 𝛾)s𝛾 Cov(wt+h,wt−1−s)

=
+∞∑
s=0

(1 − 𝛾)s𝛾𝜌h+s+1 𝜎2
e

1 − 𝜌2

= 𝜌h+1𝛾
𝜎2

e

1 − 𝜌2

1
1 − (1 − 𝛾)𝜌

,
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ADAPTIVE EXPECTATIONS 25

Cov( twt+h, twt+h) =
+∞∑
s=0

+∞∑
k=0

(1 − 𝛾)s𝛾(1 − 𝛾)k𝛾 Cov(wt−s,wt−k)

=
𝛾2𝜎2

e

1 − 𝜌2

+∞∑
s=0

+∞∑
k=0

(1 − 𝛾)s+k𝜌|s−k|.
Suppose that h = s − k. When h ≥ 1, s = k + h. When h ≤ −1, let m = −h, k = s − h = s + m. Then

𝛾2𝜎2
e

1 − 𝜌2

+∞∑
s=0

+∞∑
k=0

(1 − 𝛾)s+k𝜌|s−k|

=
𝛾2𝜎2

e

1 − 𝜌2

[+∞∑
h=1

𝜌h
+∞∑
k=0

(1 − 𝛾)2k+h +
+∞∑
m=1

𝜌m
+∞∑
s=0

(1 − 𝛾)2s+m +
+∞∑
s=0

(1 − 𝛾)2s

]

=
𝛾2𝜎2

e

1 − 𝜌2

[+∞∑
h=1

𝜌h(1 − 𝛾)h 2
1 − (1 − 𝛾)2

+ 1
1 − (1 − 𝛾)2

]

=
𝛾2𝜎2

e (1 + 𝜌(1 − 𝛾))
(1 − 𝜌2)(1 − (1 − 𝛾)2)(1 − 𝜌(1 − 𝛾))

and

Cov( twt+h, t−1wt+h) = 𝛾2
+∞∑
s=0

+∞∑
r=0

(1 − 𝛾)r+s Cov(wt−r,wt−1−s)

=
𝛾2𝜎2

e

1 − 𝜌2

+∞∑
s=0

+∞∑
r=0

(1 − 𝛾)r+s𝜌|s+1−r|.
Let h = s + 1 − r. When h ≥ 1, s = h + r − 1 ≥ 0; when h ≤ −1, m = −h, r = s + 1 + m ≥ 2; when
h = 0, s + 1 = r. So

𝛾2𝜎2
e

1 − 𝜌2

+∞∑
s=0

+∞∑
r=0

(1 − 𝛾)r+s𝜌|s+1−r|

=
𝛾2𝜎2

e

1 − 𝜌2

[+∞∑
h=1

𝜌h
+∞∑
r=0

(1 − 𝛾)h+2r−1 +
+∞∑
m=1

𝜌m
+∞∑
s=0

(1 − 𝛾)2s+1+m +
+∞∑
s=0

(1 − 𝛾)2s+1

]

=
𝛾2𝜎2

e (𝜌 + 1 − 𝛾)
(1 − 𝜌2)(1 − 𝜌(1 − 𝛾))(1 − (1 − 𝛾)2)

and

𝛽CG = Cov(wt+h −  twt+h, twt+h −  t−1wt+h)
Var( twt+h −  t−1wt+h)

= Cov(wt+h, twt+h) − Cov(wt+h, t−1wt+h) − Cov( twt+h, twt+h) + Cov( twt+h, t−1wt+h)
Var( twt+h) + Var( t−1wt+h) − 2 Cov( twt+h, t−1wt+h)

.

After plugging in components derived earlier, and some tedious derivation, we have

𝛽CG = 𝜌h

(
1
𝛾
− 1

2

)
− 1

2
.
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26 ECONOMICA

Third, let us derive 𝛽BGMS:

𝛽BGMS =
Cov(wt+h − i,twt+h,i,twt+h − i,t−1wt+h)

Var(i,twt+h − i,t−1wt+h)

=

Cov(wt+h,i,twt+h) − Cov(wt+h,i,t−1wt+h)
− Cov(i,twt+h,i,twt+h) + Cov(i,twt+h,i,t−1wt+h)

Var(i,twt+h) + Var(i,t−1wt+h) − 2 Cov(i,twt+h,i,t−1wt+h)
.

Let us derive each component one by one:

Cov(wt+h,i,twt+h) =
+∞∑
s=0

(1 − 𝛾)s𝛾 Cov(wt+h,wt−s + 𝜀i,t−s)

=
+∞∑
s=0

(1 − 𝛾)s𝛾 Cov(wt+h,wt−s)

= 𝜌h𝛾
1

1 − (1 − 𝛾)𝜌
𝜎2

e

1 − 𝜌2
,

and similarly,

Cov(wt+h,i,twt+h) = 𝜌h+1𝛾
1

1 − (1 − 𝛾)𝜌
𝜎2

e

1 − 𝜌2
,

Cov(i,twt+h,i,twt+h) = 𝛾2
+∞∑
s=0

+∞∑
k=0

(1 − 𝛾)k+s Cov(wt−s + 𝜀i,t−s,wt−k + 𝜀i,t−k).

Suppose that h = s − k. When h ≥ 1, s = h + k; when h ≤ −1, k = s − h. Let m = −h, k = s + m.
After substituting in the new index, and tedious derivation, we have

Cov(i,twt+h,i,twt+h)

= 2
+∞∑
h=1

+∞∑
k=0

𝛾2(1 − 𝛾)h+2k𝜌h 𝜎2
e

1 − 𝜌2
+

+∞∑
s=0

𝛾2(1 − 𝛾)2s(A + 𝜎2
𝜀 )

=
A𝛾2(1 + 𝜌(1 − 𝛾)) + 𝜎2

𝜀𝛾
2(1 − 𝜌(1 − 𝛾))

(1 − (1 − 𝛾)2)(1 − 𝜌(1 − 𝛾))

and

Cov(i,twt+h,i,t−1wt+h)

= 𝛾2
+∞∑
s=0

+∞∑
r=0

(1 − 𝛾)r+s Cov(wt−s + 𝜀i,t−s,wt−1−r + 𝜀i,t−1−r).

Let h = r − s + 1. When h ≥ 1, r = h + s − 1 ≥ 0; when h ≤ −1, m = −h, s = r + m + 1 ≥ 2; when
h = 0, s = r + 1. After substituting in the new index and tedious derivation, we have

Cov(i,twt+h,i,t−1wt+h)

= 𝛾2

(+∞∑
h=1

+∞∑
s=0

(1 − 𝛾)2s+h−1𝜌hA +
+∞∑
m=1

+∞∑
r=0

(1 − 𝛾)2r+m+1𝜌mA
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ADAPTIVE EXPECTATIONS 27

+
+∞∑
r=0

(1 − 𝛾)2r+1(A + 𝜎2
𝜀 )

)

= 𝛾2𝜎2
𝜀

1 − 𝛾

1 − (1 − 𝛾)2
+ 𝛾2A

𝜌 + 1 − 𝛾

[1 − (1 − 𝛾)2][1 − 𝜌(1 − 𝛾)]
.

After substituting in all the components, we can derive

𝛽BGMS =
𝜌h ((2∕𝛾) − 1) − 1 − (𝜎2

𝜀∕𝜎2
e )[1 − 𝜌(1 − 𝛾)](1 + 𝜌)

2 + 2(𝜎2
𝜀∕𝜎2

e )(1 − 𝜌(1 − 𝛾))(1 + 𝜌)
.

Denote 𝜅 = (1 − 𝜌(1 − 𝛾)) (1 + 𝜌).

A.1.3 Proof of Corollary 1
We have

𝜕𝛽CG

𝜕𝛾
= −𝜌h

𝛾2
< 0,

𝜕𝛽KW

𝜕𝛾
= 𝜌 − 1

(1 − (1 − 𝛾)𝜌)2
< 0,

𝜕𝛽CG

𝜕𝜌
= h𝜌h−1

(
1
𝛾
− 1

2

)
> 0,

𝜕𝛽BGMS

𝜕(𝜎2
𝜀∕𝜎2

e )
=

−2𝜅𝜌h ((2∕𝛾) − 1)
(2 + 2𝜅𝜎2

𝜀∕𝜎2
e )2

< 0.

A.1.4 Proof of Corollary 2
Let

𝛽BGMS =
𝜌h((2∕𝛾) − 1) − 1 − 𝜅𝜎2

𝜀∕𝜎2
e

2 + 2𝜅𝜎2
𝜀∕𝜎2

e

< 0, (A1)

𝛽CG = 𝜌h

(
1
𝛾
− 1

2

)
− 1

2
> 0, (A2)

𝛽KW = 𝜌h − 𝛾

1 − (1 − 𝛾)𝜌
< 0. (A3)

Inequalities (A1), (A2) and (A3) yield

𝜎2
𝜀 >

𝜎2
e

𝜅

[
𝜌h

(
2
𝛾
− 1

)
− 1

]
, 𝛾 <

2𝜌h

𝜌h + 1
, 𝛾 >

𝜌h(1 − 𝜌)
1 − 𝜌h+1

,

respectively.

A.1.5 Proof of Proposition 2
To calculate

𝜁k ≡
𝜕(wt+k −  t+k−1wt+k)

𝜕et
,
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28 ECONOMICA

first we write both wt+k and  t+k−1wt+k in the moving-average representation of et:

wt+k =
+∞∑
s=0

𝜌set+k−s,

 t+k−1wt+k =
+∞∑
s=0

(1 − 𝛾)s𝛾wt+k−1−s =
+∞∑
s=0

(1 − 𝛾)s𝛾
+∞∑
m=0

𝜌met+k−1−s−m.

To calculate 𝜕wt+k∕𝜕et, note that when s = k, et+k−s = et. As a result,

𝜕wt+k

𝜕et
= 𝜌k.

To calculate 𝜕( t+k−1wt+k)∕𝜕et, note that when s + m = k − 1, t + k − 1 − s − m = 0. Letting m =
k − 1 − s, we have

𝜕( t+k−1wt+k)
𝜕et

=
k−1∑
s=0

(1 − 𝛾)s𝛾𝜌k−1−s = 𝛾
𝜌k − (1 − 𝛾)k

𝜌 − 1 + 𝛾
.

So

𝜁k = (𝜌 − 1)𝜌k + 𝛾(1 − 𝛾)k

𝜌 − 1 + 𝛾
.

Now let us look for the parameter set such that the initial under-reaction but subsequent over-
shoot exists. Namely, for some kIRF ∈ (1,+∞), 𝜁k > 0 for 1 ≤ k < kIRF , and 𝜁k < 0 for kIRF <
k.

When 𝛾 ∈ [1, 2], 𝜁k < 0 holds for k ≥ 1, so it has to be the case that 𝛾 ∈ (0, 1).
When 𝛾 ∈ (1 − 𝜌, 1), 𝜁k > 0 holds only when (𝜌 − 1)𝜌k + 𝛾(1 − 𝛾)k > 0. Rearranging,

𝛾

1 − 𝜌
>

(
𝜌

1 − 𝛾

)k

.

Take the log of both sides and rearranging gives

k <
ln (𝛾∕(1 − 𝜌))
ln (𝜌∕(1 − 𝛾))

.

Now kIRF is the next integer greater than or equal to ln (𝛾∕(1 − 𝜌)) ∕ ln (𝜌∕(1 − 𝛾)). For kIRF to be
strictly larger than 1, the sufficient and necessary condition is

𝛾

1 − 𝜌
>

𝜌

1 − 𝛾
> 1,

or equivalently, 𝛾(1 − 𝛾) > 𝜌(1 − 𝜌).
When 𝛾 ∈ (0, 1 − 𝜌), 𝜁k > 0 holds only when (𝜌 − 1)𝜌k + 𝛾(1 − 𝛾)k < 0. Rearranging,

𝛾

1 − 𝜌
<

(
𝜌

1 − 𝛾

)k

.

Take the log of both sides and rearranging gives

k <
ln (𝛾∕(1 − 𝜌))
ln (𝜌∕(1 − 𝛾))

.
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ADAPTIVE EXPECTATIONS 29

For kIRF to be strictly larger than 1, the sufficient and necessary condition in this case is

𝛾

1 − 𝜌
<

𝜌

1 − 𝛾
< 1,

or equivalently, 𝛾(1 − 𝛾) < 𝜌(1 − 𝜌).
In summary, the condition for the existence of kIRF > 1 is as follows: when 𝛾 ∈ (1 − 𝜌, 1),

𝛾(1 − 𝛾) > 𝜌(1 − 𝜌) needs to hold; when 𝛾 ∈ (0, 1 − 𝜌), 𝛾(1 − 𝛾) < 𝜌(1 − 𝜌) needs to hold. Next, I
try to simplify this parameter condition depending on the value of 𝜌.

If 𝜌 ∈
(

1
2
, 1
)

, then the condition becomes: when 𝛾 ∈ (1 − 𝜌, 1), 𝛾 ∈ (1 − 𝜌, 𝜌) needs to

hold; when 𝛾 ∈ (0, 1 − 𝜌), 𝛾 ∈ (0, 1 − 𝜌) needs to hold. Additionally, I check that at 𝛾 = 1 − 𝜌,

ln (𝛾∕(1 − 𝜌)) ∕ ln (𝜌∕(1 − 𝛾)) > 1 holds too. So if 𝜌 ∈
(

1
2
, 1
)

, then 𝛾 ∈ (0, 𝜌).

If 𝜌 ∈
(

0, 1
2

)
, then the condition becomes: when 𝛾 ∈ (1 − 𝜌, 1), 𝛾 ∈ (𝜌, 1 − 𝜌) needs to

hold; when 𝛾 ∈ (0, 1 − 𝜌), 𝛾 ∈ (0, 𝜌) needs to hold. Additionally, I check that at 𝛾 = 𝜌,

ln (𝛾∕(1 − 𝜌)) ∕ ln (𝜌∕(1 − 𝛾)) > 1 holds too. So if 𝜌 ∈
(

0, 1
2

)
, then 𝛾 ∈ (0, 𝜌) too.

In summary, the sufficient and necessary condition for the existence of such a kIRF is 𝛾 ∈ (0, 𝜌).

A.1.6 Proof of Corollary 3
I want to find 𝛾 in the set (

𝜌h(1 − 𝜌)
1 − 𝜌h+1

,
2𝜌h

1 + 𝜌h

)
∩ (0, 𝜌).

I need to compare 𝜌 with 𝜌h(1 − 𝜌)∕(1 − 𝜌h+1) and 2𝜌h∕(1 + 𝜌h) separately.
First, let us find the value of h such that 𝜌h(1 − 𝜌)∕(1 − 𝜌h+1) < 𝜌 holds. Rearranging,

𝜌h−1 − 𝜌h + 𝜌h+1 < 1.

The left-hand side of this inequality is decreasing in h, and it holds when h = 1. So 𝜌h(1 − 𝜌)∕(1 −
𝜌h+1) < 𝜌 holds for h ≥ 1.

Second, let us find the value of h such that 2𝜌h∕(1 + 𝜌h) > 𝜌. When h = 1, this inequality holds;
when h = 2, this inequality does not hold. So the relative magnitude of 𝜌 and 2𝜌h∕(1 + 𝜌h) depends
on h. The set of 𝛾 that we are looking for is(

𝜌h(1 − 𝜌)
1 − 𝜌h+1

,min
{

2𝜌h

1 + 𝜌h
, 𝜌

})
.

A.1.7 Proof of Proposition 3
Since

𝛽KW =
Cov(yt+h − tyt+h, yt)

Var(yt)
,

we just need to derive the numerator and denominator separately. We can express yt in terms of
𝜃t as

yt =
N∑

j=1

xj,t =

(
N∑

j=1

aj

)
𝜃t.
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30 ECONOMICA

As a result,

Var(yt) =

(
N∑

j=1

aj

)2

Var(𝜃t) =

(
N∑

j=1

aj

)2
𝜎2
𝜂

1 − 𝜌2
.

By iterating backwards on the equation

txj,t+h = 𝛾jxj,t + (1 − 𝛾j)t−1xj,t+h−1,

we get

txj,t+h =
+∞∑
s=0

(1 − 𝛾j)s𝛾jxj,t−s.

And tyt+h can also be expressed in terms of 𝜃t, as

tyt+h =
N∑

j=1

txj,t+h =
N∑

j=1

+∞∑
s=0

(1 − 𝛾j)s𝛾jxj,t−s

=
N∑

j=1

+∞∑
s=0

(1 − 𝛾j)s𝛾jaj𝜃t−s.

Note that for s ≥ 0, Cov(𝜃t, 𝜃t−s) = 𝜌s𝜎2
𝜂∕(1 − 𝜌2). Now we can derive the main expression:

Cov(yt+h − tyt+h, yt) = Cov(yt+h, yt) − Cov(tyt+h, yt)

= Cov

(
N∑

j=1

aj𝜃t+h,

N∑
j=1

aj𝜃t

)
− Cov

(
N∑

j=1

+∞∑
s=0

(1 − 𝛾j)s𝛾jaj𝜃t−s,

N∑
j=1

aj𝜃t

)

=

(
N∑

j=1

aj

)2

Cov(𝜃t+h, 𝜃t) −

(
N∑

j=1

aj

)
N∑

j=1

aj𝛾j

+∞∑
s=0

(1 − 𝛾j)s Cov(𝜃t, 𝜃t−s)

=

(
N∑

j=1

aj

)2

𝜌h
𝜎2
𝜂

1 − 𝜌2
−

(
N∑

j=1

aj

)
N∑

j=1

aj𝛾j

+∞∑
s=0

(1 − 𝛾j)s𝜌s
𝜎2
𝜂

1 − 𝜌2

=

(
N∑

j=1

aj

)
𝜎2
𝜂

1 − 𝜌2

[(
N∑

j=1

aj

)
𝜌h −

N∑
j=1

aj𝛾j

1 − (1 − 𝛾j)𝜌

]

=

(
N∑

j=1

aj

)
𝜎2
𝜂

1 − 𝜌2

N∑
j=1

aj

(
𝜌h −

𝛾j

1 − (1 − 𝛾j)𝜌

)
.

After substituting in both numerator and denominator, we get the expression for 𝛽KW :

𝛽KW =
∑N

j=1aj
(
𝜌h − 𝛾j∕

(
1 − (1 − 𝛾j)𝜌

))
∑N

j=1aj

.
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ADAPTIVE EXPECTATIONS 31

A.2 When the variable follows an AR(2) process
This subsection explores whether adaptive expectations can simultaneously reconcile 𝛽CG > 0,
𝛽KW < 0 and 𝛽BGMS < 0 when the actual variable follows an AR(2) process

wt = 𝜌1wt−1 + 𝜌2wt−2 + et,

where et follows a normal distribution, et ∼ N(0, 𝜎2
e ).

I will explore in the domain 𝛾 ∈ (0, 2) whether a set of parameters {𝛾, 𝜎2
𝜀} can numerically

lead to 𝛽CG > 0, 𝛽KW < 0 and 𝛽BGMS < 0, given the estimated values for {𝜌1, 𝜌2, 𝜎
2
e}.

As an example, I use the set of values of {𝜌1, 𝜌2, 𝜎
2
e} from the CPI during the period 1981Q3

to 2024Q2. In Table A1, I report the estimates for {𝜌1, 𝜌2, 𝜎e}.

T A B L E A1 AR(2) coefficients.

CPI

𝜌1 1.27

𝜌2 −0.3

𝜎e 0.55

Notes: This table reports the AR(2) coefficients for the CPI during the period 1981Q3 to 2024Q2.

After obtaining the estimates for 𝜌1, 𝜌2 and 𝜎2
e , I simulate the CPI series and forecasts under

adaptive expectations for various values of 𝛾 and 𝜎𝜀 for T quarters, where T is large. Specifically, I
simulate one series of actual CPI and 35 series of individual forecasts. First, I plot the relationship
between 𝛾 and 𝛽CG > 0 and 𝛽KW < 0. Second, given chosen values of 𝛾, I plot the relationship
between 𝜎2

𝜀 and 𝛽BGMS.
Figure A1 shows the relationship between 𝛽CG, 𝛽KW and 𝛾. First, as in the AR(1) case, both

coefficients are decreasing in 𝛾. The larger 𝛾, the more over-reaction or extrapolation there is in
both measurements. Second, also the same as in the AR(1) case, there is a range of 𝛾 ∈ [0.25, 1.37]
where 𝛽KW < 0 and 𝛽CG > 0 hold simultaneously.

Figure A2 shows the relationship between 𝛽BGMS and 𝜎2
𝜀 . In this example, I choose 𝛾 = 0.8

from the range [0.25, 1.37] above. As in the AR(1) case, 𝛽BGMS is decreasing in 𝜎2
𝜀 . When 𝜎2

𝜀 is
larger than around 0.3, 𝛽BGMS switches its sign.

In summary, the ability of adaptive expectations to simultaneously reconcile those three
coefficients does not depend on the AR(1) assumption.
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32 ECONOMICA

F I G U R E A1 𝛽CG and 𝛽KW as functions of 𝛾 in the AR(2) case. Notes: This figure plots 𝛽CG and 𝛽KW as functions
of 𝛾 in the AR(2) case. The AR(2) persistence parameters adopt estimates from Table A1.
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ADAPTIVE EXPECTATIONS 33

F I G U R E A2 𝛽BGMS as a function of 𝜎2
𝜀 in the AR(2) case. Notes: This figure plots 𝛽BGMS as a function of 𝜎2

𝜀 in the
AR(2) case. The AR(2) persistence parameters adopt estimates from Table A1; 𝛾 = 0.8 lies in the overlap range from
Figure A1.

A.3 Extra tables and figures

T A B L E A2 Parameter estimates for AR(1) processes.

CPI PGDP

1981Q3–2024Q2 1981Q3–2019Q4 1981Q3–2007Q4 1968Q4–2024Q3 1968Q4–2019Q4 1968Q4–2007Q4

𝜌 0.95 0.94 0.95 0.99 0.99 0.99

𝜎e 0.75 0.69 0.58 0.52 0.48 0.52

Notes: This table reports the parameter estimates for the AR(1) process for different periods of time. Here, 𝜌 is the persistence, and 𝜎e is
the standard deviation for the innovation.

T A B L E A3 Regression coefficients over different periods.

CPI PGDP

1981Q3–2024Q2 1981Q3–2019Q4 1981Q3–2007Q4 1968Q4–2024Q3 1968Q4–2019Q4 1968Q4–2007Q4

𝛽CG 0.72 0.31 0.56 1.07 0.97 0.98

(0.36) (0.19) (0.19) (0.34) (0.35) (0.35)

𝛽BGMS −0.13 −0.28 −0.26 −0.14 −0.15 −0.13

(0.10) (0.09) (0.06) (0.08) (0.09) (0.09)

𝛽KW −0.05 −0.17 −0.22 0.12 0.12 0.12

(0.12) (0.07) (0.08) (0.07) (0.08) (0.08)

Notes: This table reports the consensus regression results for different sample periods. Standard errors (in parentheses) are Newey–West
with a lag of 4 quarters.
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34 ECONOMICA

T A B L E A4 Stationarity test.

CPI PGDP

𝛽CG,t 𝜌t 𝛾t 𝛽CG,t 𝜌t 𝛾t

ADF p-value 0.51 0.45 0.11 0.31 0.43 0.48

KPSS p-value 0.1 0.02 0.01 0.02 0.1 0.01

Time coverage 2001Q3–2023Q3 1988Q4–2023Q4

Notes: This table reports the results from the augmented Dickey–Fuller (ADF) test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
test. An ADF test p-value less than 0.05 means rejection of unit root. A KPSS test p-value less than 0.05 means rejection of stationarity.

F I G U R E A3 𝛽KW as a function of 𝛾. Notes: This figure plots 𝛽KW in equation (9) as a function of the adaptive
learning parameter 𝛾 in its domain [0, 2]. Here, 𝜌 = 0.95 is the AR(1) persistence of the CPI during 1981Q3 to 2007Q4.
The smallest value of 𝛽KW fails to match the empirical 𝛽KW = −0.22.

A.4 Construction of variables
This subsection reports the construction of forecasts of one-year horizon from the SPF. All actual
realizations are historically latest observations at the time of making forecasts and extracted from
the real-time dataset by the Federal Reserve Bank of Philadelphia.

• PGDP inflation: in SPF, forecasters make forecasts on the level of PGDP, which need to
be converted to growth rate. The one-year ahead inflation rate is calculated as (PGDP5 −
PGDP1)∕PGDP1 ∗ 100. To calculate the forecast revision in Bordalo et al. (2020), the lagged
forecast is calculated as (PGDP6 − PGDP2)∕PGDP2 ∗ 100.

• CPI: in SPF, forecasters make forecasts on the growth of CPI. The one-year ahead CPI infla-
tion rate is calculated as (CPI2 + CPI3 + CPI4 + CPI5)∕4. To calculate the forecast revision
in Bordalo et al. (2020), the lagged forecast is calculated as (CPI3 + CPI4 + CPI5 + CPI6)∕4.
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ADAPTIVE EXPECTATIONS 35

F I G U R E A4 Rolling window estimates: 𝜌 and 𝛾. Notes: This figure plots the time series of 20-year rolling window
estimates for 𝜌 and 𝛾.
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36 ECONOMICA

F I G U R E A5 Rolling window estimates: 𝛽CG and 𝛽KW . Notes: This figure plots the time series of 20-year rolling
window estimates for 𝛽CG and 𝛽KW .
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