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Abstract—Ensuring the security of next-generation network
infrastructures, including 5G/6G, the Internet of Things, and
software-defined networks, necessitates the precise detection and
identification of malware families. While existing methodologies,
for malware identification, have demonstrated higher accuracy,
their effectiveness has predominantly been validated on a limited
subset of malware families or samples. These analyses often focus
on malware families with a higher number of samples, potentially
leading to biased and unrepresentative classification results. This
leads to unreliable detection in real-world heterogeneous network
environments. To bridge this gap, our study aims to enhance the
accuracy and robustness of malware identification systems by
investigating the impact of dataset size, and class balance, using
temporal data augmentation technique, on classifier performance.
The study demonstrates that maintaining balanced sample sizes
across various malware families significantly improves classifier
accuracy by mitigating bias towards majority classes. Precisely,
our approach employs state-of-the-art classifiers and two data
augmentation schemes, Synthetic Data Vault and Synthetic Mi-
nority Over-sampling Technique, to further improve the malware
classification into malware families, particularly in settings like
edge networks and Internet of Things devices that are susceptible
to hostile attacks.

Index Terms—Malware Detection, Generative Adversarial Net-
works, Deep Neural Network, Convolutional Neural Network

I. INTRODUCTION

In today’s interconnected world, the security of modern net-
work infrastructures—including next-generation technologies
such as 5G/6G networks and the Internet of Things (IoT)—is
of paramount importance for protecting sensitive information
and ensuring the continuity of digital operations. These envi-
ronments, due to their distributed nature and massive scale, are
increasingly vulnerable to sophisticated malware attacks that
can exploit network and device-level weaknesses [1]. Malware,
encompassing a wide array of malicious software, pose signif-
icant threats to network security by exploiting vulnerabilities
and compromising systems [2]. As cyber threats continue to
evolve in complexity and sophistication, it has become a dire
need to develop and refine malware classification systems that
can effectively identify and mitigate these threats [3].

Traditional malware analysis methods, e.g., signature-
based [4] or behavior-based [5], rely on predefined patterns
or manual analysis of malware characteristics or behaviors.

This work was supported by the Open Access Publishing Fund of the Free
University of Bozen-Bolzano.

However, these methods have proven ineffective against new
or unknown malware, as they are unable to recognize malware
that does not match the existing patterns or profiles.

Machine Learning (ML) methods offer a powerful alterna-
tive to traditional malware detection techniques by detecting
malware through data-driven approaches that can identify
complex patterns without requiring prior knowledge or human
intervention [6]. These methods can be classified into super-
vised, unsupervised, and semi-supervised approaches, depend-
ing on the availability and quality of labeled data [7]. One of
the key advantages of ML techniques is their adaptability to
the evolving nature of malware, allowing them to continuously
improve their performance by learning from new data and
feedback [8]. However, the effectiveness of ML models can
be significantly influenced by the quality and balance of
the training data. Imbalanced datasets, where certain classes
are underrepresented, often lead to biased classifiers that
disproportionately favor the majority classes [9]. To address
this challenge, it is crucial to balance class distributions,
which enhances the system’s ability to accurately identify and
categorize malware. This is essential for developing robust
defense mechanisms [10].

In this paper, we propose a ML-based framwork to enhance
the reliability of malware categorization systems consider-
ing higly skewed malware classes. Technically speaking, we
demonstrate the efficacy of balanced class distributions and
effective data augmentation using SDV and SMOTE, towards
the development of a reliable and accurate malware classifica-
tion systems. This study exploits maximum malware families
(49, in total) taken from Lu et al. [11], containing at least 100
training samples in each family and reports highest accuracy
of 92.54%, 93.26% and 95.21%, attained by RF classifier.

In summary, the major contributions of this study are the
following:

• Comprehensive analysis of how class balance using SDV
and SMOTE-based affect the performance of malware
classification systems.

• Demonstration of significant improvement in classifier
accuracy by equalizing the number of samples across
different malware families.

• We used temporal data splitting mechanism, with the
first 80% of the data used for training the classifier and
remaining 20% of unseen data for its evaluation. It is
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Fig. 1: Our approach of enhancing malware categorization accuracy.

worth mentioning that we used only training data for
feature selection, parameter optimization, and synthetic
data generation.

• Statistical analysis confirming that RF yields significantly
better results on SMOTE-augmented data compared to the
original imbalanced dataset.

The rest of the paper is organized as follows. Section II
provides a review of most relevant papers. Section III outlines
our adapted approach to improve performance of malware
classification. Section IV details the methodology of our
approach, including data pre-processing, feature extraction and
selection, data augmentation, and classification algorithms.
Section V presents the experimental results of our approach.
Finally, Section VI concludes the paper and suggests some
directions for future research.

II. LITERATURE REVIEW

The impact of class balance on the accuracy of classifiers in
malware analysis has been extensively studied, particularly in
the context of modern, real-time network environments such
as IoT and 5G/6G infrastructures. Wang et al. [12] found that
the classification error decreased as the size of the training data
increased, with the prediction accuracy of malware detection
reaching up to 98.7%. This study highlights the importance of
having a balanced dataset to improve classifier performance.
Similarly, Alzammam et al. [13] demonstrated that methods
such as oversampling can positively affect classification per-
formance. Author’s comparative analysis on imbalanced multi-
class classification for malware samples using Convolutional
Neural Networks (CNN) showed significant improvements
in accuracy when class balance was achieved. Extending
these insights to next-generation networks, recent research
has adapted balancing techniques for the real-time constraints
and heterogeneity of IoT and 5G/6G systems. For instance,
Chen and Ye [14] utilized hybrid resampling with ensemble
models like gcForest on the highly imbalanced IoT-23 dataset,
significantly boosting malware detection accuracy in edge
environments.

Class imbalance, where some classes have significantly
more samples than others, can lead to biased classifiers that
favor the majority class. Equalizing the number of samples
across classes helps mitigate the bias towards the majority
class. Techniques such as oversampling (e.g., SMOTE [15])
and data augmentation (e.g., GANs) generate synthetic sam-
ples for minority classes, providing a more balanced dataset.
This balance allows classifiers to learn more effectively from
all classes, leading to improved accuracy and reliability in
malware detection.

The effectiveness of various data augmentation and over-
sampling techniques in malware classification has been ex-
tensively studied. Burks et al. [16] found that adding syn-
thetic malware samples generated by Variational Autoencoders
(VAE) to the training data improved the accuracy of the
ResNet-18 classifier by 2%. This study highlights the potential
of generative models in enhancing classifier performance by
providing additional training samples that mimic real malware.

III. OUR APPROACH

The proposed malware categorization process begins with
acquiring Portable Executable (PE) files from the BODMAS
dataset, which includes both benign and malicious files, i.e.,
malware. Our approach involves extracting features using the
Library to Instrument Executable Formats1 (LIEF) library,
followed by feature selection to reduce the initial feature
vector from 2381 features to a more manageable 25-feature
vector. Subsequently, we perform oversampling to enhance
samples from minority classes, ensuring that the classifier’s
decisions are not biased towards majority classes. The opti-
mized classifiers are then tested on the same extracted and
selected features from unseen malware samples to determine
the malware family the query sample belongs to (see Figure
1). The performance of the classifier is evaluated both before
and after oversampling to assess the effectiveness of synthetic
data generation using SDV and SMOTE.

1https://github.com/lief-project/LIEF
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(a) (b) (c)

Fig. 2: t-SNE representation and classification boundaries of different classifiers (a) Original, (b) KNN & (c) RF.

(a)

(b)

Fig. 3: Visual representation of SMOTE-based data augmen-
tation for some classes (a) Wacatac and (b) upatre. Due to
space limitations, we show these illustrations for two selected
classes only.

IV. METHODOLOGY

A. Dataset

We utilized the Blue Hexagon Open Dataset for Malware
AnalysiS (BODMAS) [17] to evaluate our methodology. This
dataset encompasses a substantial collection of 57,293 mal-
ware samples from 581 distinct families and 77,142 benign
files, compiled between August 2019 and September 2020.
The dataset includes disarmed malware binaries, feature vec-
tors, and metadata. Each sample or observation is represented
by a 2381-feature vector, which is labeled as either benign
or malicious, with additional metadata detailing the specific
malware family. We employed the LIEF Library to extract fea-
tures from executable files in our study. The same feature set,
originally extracted by the creators of the datasets in [17] [18].

B. Feature Subset Selection
Feature subset selection involves identifying the most effec-

tive subset of features that potentially yield higher accuracy
from the entire set of features and simplify the learning process
for the classifier [19]. To perform transparent evaluation, we
chose to exploit Sequential Forward Selection2 (SFS) features
earlier computed in the study [20]. Table I depicts the features
chosen for malware categorization (multi-class classification).

C. Classifiers Selection

Classifiers are essential ML models or algorithms that are
designed to learn from data and assign labels to new samples.
The efficacy of the classifiers can vary significantly depending
on the dataset and the specific task, making the selection of
an appropriate classifier a critical step in the ML workflow.

In our research, we selected two simple yet state-of-the-art
machine learning classifiers, i.e., K-Nearest Neighbor (KNN)
and Random Forest (RF) due to their demonstrated efficacy in
prior studies [20].

t-Distributed Stochastic Neighbor Embedding (t-SNE), in-
troduced by van der Maaten and Hinton in 2008 [21], is a
powerful technique for visualizing high-dimensional data in a

2https://scikit-learn.org/stable/modules/generated/sklearn.feature selection.SequentialFeatureSelector.html

3



sf
on

e
w

ac
at

ac
up

at
re

w
ab

ot
sm

al
l

ga
ne

lp
di

nw
od

m
ir

a
be

rb
ew

si
lly

p2
p

ce
ei

nj
ec

t
ge

py
s

be
nj

am
in

m
us

ec
ad

or
au

to
it

ga
nd

cr
ab

dr
ol

nu
x

sm
ok

el
oa

de
r

un
ru

y
qu

ka
rt

de
lf

pa
do

do
r

au
to

ru
n

ur
el

as
m

in
tlu

ks
pi

cs
ys

fa
ke

av
bl

ad
ab

in
di

zb
ot

vfl
oo

de
r

lu
na

m
to

fs
ee

sy
tr

o
m

yd
oo

m
py

ks
pa

ag
en

t
so

lte
rn

qq
pa

ss
bl

oc
ke

r
ir

cb
ot

co
in

m
in

er
sa

lg
or

ea
st

or
m

se
r

fa
so

ng
st

ra
tio

n
eg

gn
og

oc
ca

m
y

ba
nl

oa
d

gl
up

te
ba

0

2,000

4,000 3,
78
3

3
,7
83

3
,7
83

3,
78
3

3,
7
83

3
,7
83

3,
78
3

3,
78
3

3,
78
3

3
,7
8
3

3,
78
3

3,
78
3

3,
78
3

3
,7
83

3,
78
3

3,
7
83

3
,7
83

3
,7
83

3,
78
3

3,
78
3

3
,7
83

3,
78
3

3,
78
3

3,
78
3

3
,7
83

3,
78
3

3,
78
3

3,
78
3

3
,7
83

3,
78
3

3,
78
3

3
,7
83

3
,7
83

3,
78
3

3,
78
3

3
,7
83

3,
78
3

3,
78
3

3,
78
3

3
,7
83

3,
78
3

3,
78
3

3,
78
3

3
,7
8
3

3,
7
8
3

3,
7
8
3

3
,7
8
3

3
,7
8
3

3,
7
8
3

3,
78
3

3
,7
55

3
,1
20

2,
93
8

2,
6
71

1
,7
85

1,
64
5

1,
5
6
8

1,
39
9

1
,2
9
2

93
5

89
9

8
56

84
3

7
75

7
65

7
36

6
94

69
2

6
58

65
3

5
72

56
9

54
1

53
6

4
60

4
07

39
2

37
8

35
0

3
03

28
9

25
5

2
42

2
42

24
0

23
6

2
33

2
28

2
16

19
9

19
2

16
9

1
5
8

1
2
6

1
2
5

1
2
4

1
2
1

1
0
5

C
ou

nt
of

Sa
m

pl
es

by
Fa

m
ily Original samples Augmented samples

Fig. 4: The distribution of original and generated samples for 49 families (having more than 100 samples).

TABLE I: Selected SFSS features for malware categorization [20].

Settings F#1F#2F#3F#4F#5F#6F#7F#8F#9F#10F#11F#12F#13F#14F#15F#16F#17F#18F#19F#20F#21F#22F#23F#24F#25
Categorization 323 339 617 626 672 685 722 734 742 745 836 866 1031 1060 1168 1282 1329 1412 1608 1653 1720 2083 2119 2251 2354

lower-dimensional space, typically in two dimensions. Unlike
linear methods such as PCA, t-SNE is nonlinear, enabling it to
capture complex relationships and structures within the data.

The decision boundaries depicted in the t-SNE plots (see
Figure 2) provide valuable insights into how our classifier
interprets the users’ data. The distribution and clustering of
data points in the t-SNE space give a clear indication of
our classifier’s confidence and ability to discern the nuances
within the dataset. The presence of distinct boundaries between
different clusters suggests that the classifier has successfully
identified meaningful patterns, allowing it to distinguish be-
tween different classes with reliability.

D. Analysis

Temporal data splitting plays a crucial role in the evaluation
of machine learning models, especially in the context of
heterogeneous networks, cybersecurity, and malware analysis.
By dividing the data based on time, we can better simulate
real-world scenarios where a model must deal with evolving
threats and previously unseen malware. This approach enables
the model to identify novel threats, avoid overly optimistic
performance estimates, and enhance generalizability.

In this study, we focused on the top 49 malware classes,
each comprising at least 100 samples, to ensure that our
dataset was sufficiently diverse and representative of signif-
icant threats. For model training, we used the first 80% of
the data chronologically, reserving the remaining 20% as a
test set. This test set remained completely unseen during
feature selection, parameter optimization, and synthetic data
generation, ensuring that the model’s performance metrics are
a true reflection of its capability to handle new, previously
unseen malware. By adopting this temporal data split, we not
only safeguard the integrity of our model evaluation but also

enhance the model’s relevance and applicability to real-world
scenarios.

E. Synthetic Minority Over-sampling Technique (SMOTE)

SMOTE is a powerful data augmentation method designed
to tackle class imbalance in machine learning datasets. In-
troduced by Chawla et al [15], it addresses the challenge of
imbalanced classification datasets, where the minority class
has too few samples for effective learning. The goal is to
improve classifier performance on the minority class(es). This
process involves identifying minority class samples, selecting
their nearest neighbors, and creating new synthetic samples
along the line segments connecting the samples and their
neighbors.

As shown in Figure 4, we used sfone as a reference to
standardize the sample sizes across different classes. Specifi-
cally, we aimed to equalize the number of samples for each
class to match the total number of sfone samples, which is
3783. This approach was employed to enhance the repre-
sentativeness of the data. The figure illustrates this process:
the blue bars denote the actual number of samples available
for each class, while the red portions represent the additional
samples generated to bring each class’s total up to 3783. This
visualization highlights the disparity in sample sizes before
and after augmentation, effectively demonstrating the effort to
balance the dataset and achieve more equitable representation
of all classes.

Our synthetic data generated using SMOTE closely resem-
bles the original samples, highlighting the effectiveness of the
augmentation process. As shown in Figure 3, the similarities
between the original and synthetic data are evident. The
distribution patterns of both types of samples appear nearly
identical, suggesting that SMOTE has successfully captured
and replicated the underlying structure of the original data.

4



Due to space limitations, we present these illustrations for
only two classes, but similar trends were observed across other
classes as well.

F. Synthetic Data Vault (SDV)
SDV [22] is an advanced data generation framework de-

signed to create synthetic data that closely resembles real-
world datasets. Developed by the MIT Data To AI Lab, SDV
aims to address various challenges in data science, including
data privacy, data sharing, and class imbalance. By generat-
ing high-quality synthetic data, SDV enables researchers and
practitioners to perform robust analyses without compromising
sensitive information.

The process involves training generative models on real
datasets to learn their underlying patterns and distributions.
Once trained, these models can generate new synthetic samples
that mimic the statistical properties of the original data. This
approach is particularly useful in scenarios where access to
real data is limited or restricted due to privacy concerns.

V. RESULTS

In the context of malware categorization, where the goal is
to classify samples into specific malware categories, several
important metrics are used to evaluate classifier performance.
The True Positive Rate (TPR), also known as the True Accept
Rate (TAR), measures the proportion of samples that are
correctly identified as belonging to their respective malware
category. Conversely, the False Negative Rate (FNR), or False
Reject Rate (FRR), represents the proportion of samples
that are incorrectly classified as not belonging to their true
category. Similarly, the False Positive Rate (FPR), or False
Accept Rate (FAR), measures the proportion of samples that
are incorrectly classified into a malware category that they do
not belong to. The True Negative Rate (TNR), or True Reject
Rate (TRR), captures the proportion of samples correctly
identified as not belonging to a specific malware category.

For our analysis, we focus on reporting the TAR and FAR,
overall accuracy and F1 score obtained by the classifier. By
presenting these metrics, we provide a concise and relevant
evaluation of the classifier’s ability to accurately categorize
malware samples. The results, detailed in Figure 5, highlight
the effectiveness of our chosen classifiers in distinguishing
between different malware categories. We do not report FRR
(as FRR = 1 - TAR) and TRR (TRR = 1 - FAR) to avoid
redundancy.

Figures 5a, 5b and 5c summarise our average results for
49 malware families. Recall that 49 classes contained ≥ 100.
It is worth noting that our original data, which is highly
skewed (containing as many as 3783 samples and as few
as 105) resulted in comparatively lower accuracy, i.e., we
report 84.98% and 85.45% TAR at just 0.4% and 0.37% FAR
yielding an overall accuracy of 92.29% and 92.54% for KNN
and RF, respectively. Figure 5 also depicts the F1 score, which
seems quite acceptable given the data skewness.

Our results also demonstrate the efficacy of our SMOTE-
based synthetic data augmentation scheme. For example, com-
pared to the classifiers performance on original (see figure 5a),

(a) Original data (≥ 100 samples)

(b) SDV data (≥ 100 samples)

(c) SMOTE augmented data (≥ 100 samples)

Fig. 5: Comparison of classifiers performance on Original (5a),
SMOTE augmented (5b, samples for 49 malware families,
respectively.

and SDV augmented train set (see Figure 5b), SMOTE aug-
mented (see Figure 5c), dataset yielded significantly higher
accuracy. Generally speaking we observed an upward trend
in all the success parameters, TAR, accuracy, F1 score and
downword trend in FRR and FAR. We report a TAR of
86.75% and 90.6%, at just 0.22% and 0.17% FAR, and overall
accuracy of 93.26% and 95.21% for KNN and RF classifiers,
respectively.

In summary, the accuracy rose to 93.26% for KNN and to
95.21% for RF when data balancing schemes are employed
to substantiate the statement that classification is best with
balanced data. SMOTE outperformed SDV by effectively
managing class unbalance with targeted synthetic sample
construction to yield stabler and more accurate outputs.
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To statistically compare the performance of classifiers across
different settings, we perform T-Test. A T-Test is a statis-
tical test used to determine whether there is a significant
difference between the means of two groups, helping to
assess if observed differences are likely due to chance or are
statistically significant. It calculates a p-value, which reflects
the probability that the difference between groups occurred
by chance, with a lower p-value (typically less than 0.05)
indicating statistical significance. Applying this method to
compare the performance of KNN and RF classifiers on
the original, SDV-augmented and SMOTE-augmented datasets
reveals important insights. The T-Test results for the original
and SDV dataset indicated no statistically significant differ-
ence between the two classifiers, suggesting that KNN and
RF performed similarly on these two datasets. However, the
results shift when evaluating the SMOTE-augmented data: RF
significantly outperformed KNN, as highlighted by a P-value
of 0.00569182127359239.

This superior performance of RF can be attributed to its
ensemble nature, which enables it to capture and model
complex patterns in the data more effectively. In contrast,
KNN’s reliance on distance metrics may hinder its ability
to align with the data’s underlying structure, particularly in
the original dataset, leading to its relatively weaker perfor-
mance. However, when comparing the performance of RF
across different datasets, we found no statistical difference
between the original and SDV-augmented datasets. In con-
trast, there was a statistically significant difference between
the original and SMOTE-augmented datasets (P-value of
0.000677719669731569) and between the SDV and SMOTE-
augmented datasets (P-value of 0.0006749946171746531).
This suggests that RF achieved significantly better results
when trained on the SMOTE-augmented dataset.

VI. CONCLUSIONS AND FUTURE WORK

This work proposes a real-time system for deep-learning-
based IoT malware detection with a focus on class balance and
precision. Data augmentation strategies such as SMOTE and
SDV improve balance in the BODMAS data set with 95.21%
precision using Random Forest. These strategies handle class
imbalance and develop robust models for various malware,
with quality data playing a significant role in network security.

Future work will involve the integration of advanced deep
learning models and hybrid approaches to further enhance
malware detection accuracy. Additionally, investigating the
impact of real-time data streams and concept drift on classifier
performance could provide valuable insights. Expanding the
dataset with more diverse and recent malware samples, along
with exploring novel data augmentation techniques, would
also be beneficial for improving the robustness of malware
detection systems.
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