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A B S T R A C T

This paper contributes to the growing body of research on private firms, particularly private firm
accounting. We explore the economic factors that drive improvements in the default prediction
of unlisted private firms using peers’ market-based information. Specifically, we examine how
the market-based default probability of a peer firm can provide valuable insights into the often
noisy accounting data of private firms. Our analysis delves deeply into these economic issues to
uncover essential insights. To address our research question, we utilize a granular proprietary
dataset of 10,136 Italian micro-, small-, and mid-sized enterprises (MSMEs) that are required
to disclose their financial statements publicly. We propose a novel public–private firm mapping
approach to investigate whether incorporating peers’ market-based information improves the
accuracy of default predictions for private unlisted firms. Our mapping approach matches
the market information of listed firms with private firms through a data-driven clustering
technique using Neural Network Autoencoder. This method enables us to link the Merton
Probability of Default (PD) of public peers to the corresponding private firms within the
same cluster. We then apply five statistical techniques – linear models, multivariate adaptive
regression splines, support vector machines, k-nearest neighbours and random forests – to
predict corporate default among private firms, comparing model performance with and without
the inclusion of Merton’s PD estimated using peers’ market-based information. To assess the
contribution of each predictor, we employ Shapley values. Our results demonstrate a significant
improvement in default prediction for unlisted private firms when incorporating peers’ market-
based information, confirming that the noisy accounting data of private firms alone hinders
accurate default prediction. Furthermore, our findings highlight the importance for banks to
broaden the scope of information used in credit risk assessments of private firms. These results
have important policy implications for financial institutions and policymakers, providing a tool
to mitigate the challenges posed by the noisy information disclosure of MSMEs while ensuring
more accurate credit risk assessments.

1. Introduction

Evaluating the credit risk of non-listed MSMEs, which often lack transparency that hampers access to credit, presents significant
challenges. These firms experience information asymmetries, which regulators try to mitigate by requiring financial disclosures.
However, these disclosures are often unreliable, particularly in private firms, where distorted and noisy accounting data can hinder
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accurate default prediction (Beuselinck et al., 2023). This is especially important because MSMEs represent a large segment of the
corporate sector in Europe. The lack of reliable financial reporting makes it difficult for lenders to assess credit risk, which is critical
in maintaining the stability of the banking sector.

To address these challenges, this study introduces a novel approach by applying market data from comparable listed firms as a
proxy for missing market signals in MSMEs. By integrating market indicators, which are less prone to manipulation than accounting
data, this study aims to reduce information asymmetries and enhance the accuracy of creditworthiness evaluations.

Unlike larger companies, MSMEs face higher default risks and significant information opacity (Burgstahler et al., 2006). While
MSMEs rely more on soft, relationship-based information for credit access (Berger and Udell, 2002), the increasing dominance of
large banking conglomerates has limited the effectiveness of traditional relationship banking (Filomeni et al., 2021). This underscores
the need for alternative, hard information-based methodologies for assessing credit risk. Given their importance in many economies,
eveloping credit models tailored to MSMEs is critical for minimizing both expected and unexpected losses.

This paper develops a hybrid credit risk model for MSMEs that combines accounting data with market data from listed firms,
.e., peers. Using a dataset of 10,136 unlisted Italian MSMEs, we employ advanced statistical techniques (e.g., random forests,
ultivariate regression) to predict default. The novel contribution lies in estimating Merton’s Probability of Default (PD) using
arket data from matched listed companies via a data-driven clustering approach, avoiding any assumptions based on size, industry,

r number of employees.1 This novel mapping process between unlisted and listed firms contributes significantly to our methodology.
y leveraging this mapping, we gain deeper insights into private firms’ risks, not only in terms of PD but also through various market

ndicators. Our results are robust across alternative market measures, such as stock price volatility and market leverage, consistent
ith Campbell et al. (2008).

Our findings reveal a unique economic channel through which the PD of public firms can predict the default likelihood of
matched private firms. This approach uncovers the economic drivers behind improved default predictions for unlisted private firms
using market data from their peers. Market data provides insights into the noisy accounting data of private firms, and due to the
higher risk of MSMEs, it more effectively captures their corporate default risk. Market data indeed responds more quickly to changes
in borrowers’ creditworthiness than accounting measures, reflecting common risk factors between public and matched private firms
and capturing aggregate risk not accounted for in firm-specific measures.

This study makes two main contributions. First, it addresses challenges in private firm financial reporting by implementing
predictive models with enhanced explainability, overcoming the impact of noisy accounting data. Recent studies have applied

achine Learning (ML) models to economic problems (Mullainathan and Spiess, 2017; Akbari et al., 2021; Avramov et al., 2021;
Olson et al., 2021), with Kim et al. (2020) surveying ML applications in credit default prediction. Linear classification models, such
as LDA or logistic regression (Shumway, 2001; Altman and Sabato, 2007; Bauer and Agarwal, 2014; Tian et al., 2015), show lower
predictive accuracy than non-linear models like Random Forest (RF) or Boosted Trees (BT) (Zhu et al., 2019; Barbaglia et al.,
2021). However, most studies focus solely on performance improvements over linear models without exploring input variable
relevance and their effect on predictions. Moscatelli et al. (2019) attempt to explain the overall importance of input variables,

hile Albanesi and Vamossy (2019) and Barbaglia et al. (2021) emphasize explaining individual predictions. This paper extends this
ine of research (eXplainable Artificial Intelligence) by implementing both non-linear parametric and non-parametric ML algorithms,
ffering not only default predictions but also advanced techniques like Permutation Feature Importance (Fisher et al., 2018) to

evaluate variable relevance and Shapley Additive Explanations (Lundberg et al., 2020) to explain how each variable contributes to
 single observation’s predicted probability of default. Additionally, to the best of our knowledge, we are the first to introduce a novel

clustering technique using Artificial Neural Networks to map financial ratios and compare unlisted MSMEs with listed companies.
Second, our hybrid credit scoring models, combining market and accounting information, outperform models relying on only one

type of data. While previous studies have applied the Merton model to private firms (Rikkers and Thibeault, 2009; Andrikopoulos
and Khorasgani, 2018; Falkenstein et al., 2000; Filomeni et al., 2024), our study is the first to incorporate peer market information
into credit risk modelling for unlisted companies. We demonstrate that adding Merton’s PD measure to a multivariate regression
model, already incorporating accounting data, enhances corporate default prediction accuracy.

Our findings are consistent with prior research but offer key methodological improvements. Unlike Falkenstein et al. (2000)
and Rikkers and Thibeault (2009), who rely on industry-wide market averages or discounted cash flow methods to estimate the
market value of unlisted firms, we adopt a data-driven ‘‘comparable approach’’. Specifically, we estimate the market value of
nlisted firms by matching them with listed counterparts through a data-driven clustering technique. This approach overcomes
everal limitations of the KMV model for private firms (Falkenstein et al., 2000) and the cash flow-based valuation method (Rikkers

and Thibeault, 2009). Compared to Andrikopoulos and Khorasgani (2018), our study introduces a more sophisticated and
flexible methodological framework for predicting unlisted firms defaults. While their approach estimates market-informed default
probabilities using linear regression to project Merton-KMV EDFs from listed peers onto accounting ratios of unlisted SMEs, our
method employs an autoencoder-based clustering technique to match unlisted firms with listed peers in a non-linear latent space.
Additionally, our framework enhances interpretability through SHAP values and Permutation Feature Importance, whereas the prior
study relies solely on ROC-based validation with logistic models. Overall, our methodology provides stronger predictive performance,
greater model transparency, and a more robust foundation for practical credit risk assessment. Our methodology is further supported
by corporate finance literature on equity valuation of private firms (Andrikopoulos and Khorasgani, 2018; Baker and Ruback,

1 Hence, we argue that our modelling approach for evaluating the market risk of MSMEs is not prone to estimation or misspecification error. Instead, we
rgue that this is the only feasible modelling approach for capturing firms’ market risk for which no market data exists.
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1999; Alford, 1992; McCarthy, 1999). In addition, we leverage a unique dataset of 10,136 Italian MSMEs collected from 113
ooperative credit banks, rather than relying on a single financial institution as in Rikkers and Thibeault (2009), which enhances

the representativeness, robustness, and external validity of our results across both manufacturing and service sectors.
This research has important policy implications for banks, as it demonstrates that incorporating market data into hybrid credit

scoring models can improve forecasting accuracy for unlisted MSMEs, helping banks make better-informed lending decisions. These
findings contribute to forward-looking financial risk management frameworks (Breden, 2008; Rodriguez Gonzalez et al., 2018;
Bitetto et al., 2023b,a) aimed at addressing challenges related to MSMEs’ noisy financial disclosures and improving credit risk
assessment accuracy.

The remainder of this paper is organized as follows: Section 2 reviews the relevant literature, Section 3 discusses the data,
ection 4 presents the econometric methodology, Sections 5 and 6 present the empirical results and robustness tests, and Section 7

concludes.

2. Literature review

Much of the literature on corporate credit risk has historically focused on accounting-based models (Beaver, 1966; Altman,
1968; Ohlson, 1980), which use financial ratios from firm balance sheets to assess creditworthiness.2 These models are particularly
prevalent for private firms due to the lack of market data and suggest that adding relevant accounting variables improves the
forecasting ability of corporate default.3 However, limitations such as multicollinearity among ratios, heterogeneity in accounting
standards (Stickney and Weil, 1997), and increased ease of manipulation (Beuselinck et al., 2023) prompted researchers to explore
alternative or complementary approaches to improve the accuracy of creditworthiness evaluation.

More recent studies have highlighted the value of integrating non-accounting data, including legal, audit, and bank relationship
information, into default prediction frameworks (Altman et al., 2010; Bhimani et al., 2010; Dierkes et al., 2013; Fiordelisi et al.,
2014). These sources, especially those capturing soft information from bank-firm interactions (Gropp and Guettler, 2018; Liberti
and Petersen, 2017), have been shown to improve the predictive performance for private firms, which typically lack publicly traded
securities and, therefore, market data.4

In parallel, a distinct strand of literature has applied market-based models, such as Merton’s Distance to Default (DD), to
listed firms (Bharath and Shumway, 2008; Byström, 2006; Vassalou and Xing, 2004). These studies consistently find that market-
mplied measures capture forward-looking risk not always reflected in accounting data (Agarwal and Taffler, 2008; Hillegeist

et al., 2004; Doumpos et al., 2015). While such models have traditionally been applied to public firms, a growing interest exists
n extending them, or using peer market data as a proxy, to estimate the credit risk of private firms. This approach remains
nderexplored but has shown promising results in enhancing default predictive accuracy for listed companies when integrated into

hybrid frameworks (Hernandez Tinoco and Wilson, 2013; Das et al., 2009; Hernandez Tinoco et al., 2018).
Our work builds on this literature by proposing a structural market-based approach that leverages peer market data to model

redit risk for private firms, addressing the gap between purely accounting-based predictions and market-informed models. Indeed,
ost default prediction models either rely only on accounting data (e.g., financial ratios from balance sheets), or they rely only on
arket data (e.g., stock prices or CDS spreads), but very few successfully integrate the two, especially when dealing with private

irms that do not have their own market data. Our work fills this gap by proposing a way to bring market-based insights, via peer firm
arket data, into the default prediction of private firms, and thereby blending the strengths of both approaches, i.e., forward-looking
ature of market models in addition to detailed but often retrospective fundamentals from accounting models. This is important
ecause private firms typically lack direct market signals, so using peer market data as a proxy is both novel and practically valuable.

3. Data

We use two sources of information for our analysis: a proprietary one, consisting of granular information on 10,136 Italian
unlisted micro-, small-, and mid-sized enterprises (MSMEs), and a public one, comprising data on comparable publicly listed
companies, hereinafter referred to as the peers.

3.1. MSME data

We exploit a unique and disaggregated dataset on an unbalanced panel sample of 10,136 firms and 113 cooperative credit
anks for a total of 19,743 firm–year observations over the period 2012–2014. Specifically, we consider firms with fewer than
50 employees and revenue of no more than 50 million. Our sample of unlisted firms had established credit relationships with
ooperative banks with loans issued prior to 2012. We selected a subset of 22 financial ratios out of 30, removing the ones showing
 high partial correlation with many other ratios. Therefore, some ratios with only mild correlation to one other ratio are still

retained because the models we use for the predictions are robust to multicollinearity. Tables 1 and A.1 in the Appendix report the

2 For a broader overview of classic accounting-based models and their evolution, see Edminster (1972), Blum (1974), Grice and Ingram (2001), Pindado
et al. (2008), Louzada et al. (2016)

3 Additional studies on default prediction for small or private firms include Peel et al. (1986), Keasey and Watson (1987), Calabrese et al. (2016), Mselmi
et al. (2017).

4 Studies such as Foglia et al. (1998), Norden and Weber (2010), Volk (2012), Qian et al. (2015) explore relational banking data – such as loan officer
iscretion, account activity, and multi-bank relationships – as predictors of default risk.
3 
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Table 1
List of input variables for MSMEs dataset.

Variable Description Mean St.Dev. Min 5th perc Median 95th perc Max

1 - Oth Reven on Reven Other revenues on revenues 0.03 0.05 0 0 0.01 0.19 0.19
2 - Deprec on Costs Depreciation on costs 0.06 0.08 0 0 0.03 0.26 0.34
3 - Pay to Bank on Assets Payables to banks on current assets 0.83 1.5 0 0 0.47 2.73 11.25
4 - Cashflow on Reven Cash flow on revenues 0.08 0.08 0.01 0.01 0.06 0.26 0.41
5 - Fixed Asset Cov Fixed asset coverage 1.15 1.99 0.07 0.07 0.57 4.89 11.17
6 - Labour Cost on Reven Labour cost on revenues 0.56 0.32 0 0 0.61 1.03 1.03
7 - ST Pay on Due to Bank Short-term payables on amounts due to banks 2.05 2.46 0.16 0.21 1 9.49 9.49
8 - Tot Debt on ST Debt Total debt on short-term debts 2.3 2.04 1 1 1.67 5.79 13.35
9 - Tot Debt on Net Worth Total debt on net worth 7.92 10.2 0.35 0.48 3.73 36.5 41.94
10 - Pay to Suppl on Net Worth Payables to suppliers on Net worth 2.69 3.48 0.04 0.12 1.01 13.01 13.01
11 - Pay to Suppl on Tot Debt Payables to suppliers on Total debt 0.4 0.22 0.02 0.07 0.36 0.84 0.84
12 - Inventory Duration Inventory on revenues x 365 0.78 1.09 0.02 0.03 0.5 2.68 7.16
13 - Quick Ratio Current assets less inventory on current liabilities 1.41 1.1 0.04 0.22 1.18 3.42 6.54
14 - Debt Burden Index Financial interest on EBITDA 0.4 0.38 0.01 0.02 0.23 1 1
15 - Fin Int on Reven Financial interest on revenues 0.02 0.02 0 0 0.02 0.08 0.1
16 - Fin Int on Added Val Financial interest on added value 0.08 0.07 0.01 0.01 0.05 0.25 0.25
17 - Net Worth on LT Eqt/Pay Net worth on long-term equity and payables 0.49 0.31 0.05 0.06 0.48 1 1
18 - Net Worth on NW+Invent Net worth on net worth and inventories 0.64 0.3 0.07 0.1 0.7 1 1
19 - ROA Return on Assets 0.02 0.07 −0.1 −0.1 0.01 0.17 0.27
20 - ROD Return on Debt 0.03 0.01 0 0 0.02 0.05 0.05
21 - Working Cap Turnover Revenues on net working capital 2.3 2.25 0.25 0.55 1.77 5.78 18.32
22 - Turnover Revenues on total assets 1.16 0.74 0.07 0.2 1.02 2.84 3.17

Table 2
List of control variables for MSMEs dataset. Percentages refer to proportions over the entire sample.

Variable Target

FIRM SIZE Large Medium Micro Small TOTAL

0 2.4% 9.1% 54.7% 27.1% 93.2%

1 0.2% 0.8% 3.8% 2% 6.8%

TOTAL 2.6% 9.9% 58.5% 29%

DUMMY INDUSTRY Manufacturing Services TOTAL

0 33.1% 60.1% 93.2%

1 2.2% 4.6% 6.8%

TOTAL 35.3% 64.7%

INDUSTRIAL SECTOR Food &

Accommodation

Energy

supply

Entertainment Information &

communication

Manufacturing Professional, scientific

and technical

Real

estate

Trade Transportation TOTAL

0 4.5% 1.3% 1.4% 4.1% 33.1% 8.7% 6.9% 29.2% 4% 93.2%

1 0.6% 0.1% 0.1% 0.2% 2.2% 0.6% 0.7% 2.1% 0.3% 6.8%

TOTAL 5% 1.4% 1.4% 4.4% 35.3% 9.3% 7.6% 31.3% 4.3%

REGION Central Islands North-east North-west South TOTAL

0 1.4% 2.3% 52% 26.2% 11.4% 93.2%

1 0.1% 0.3% 3.6% 1.8% 0.9% 6.8%

TOTAL 1.5% 2.6% 55.6% 28% 12.3%

FIRM TYPE Enterprises SEO Small business TOTAL

0 75.7% 3.4% 14.1% 93.2%

1 5.9% 0.1% 0.8% 6.8%

TOTAL 81.6% 3.5% 14.9%

complete list of variables with descriptions and statistics and their pairwise correlations, respectively. The target variable we want
to predict is a binary flag indicating whether the firm defaulted (1) or not (0). In our context, the default flag is assigned when the
client becomes insolvent within the last 12 months following loan disbursement, with a past due of at least 180 days. Specifically,
we utilize historical financial data from the defined period to predict defaults occurring in the future. It is crucial to emphasize that
the embedding process relies exclusively on historical data available up to the point of prediction. We do not incorporate any future
efault information into the training data, thereby ensuring the integrity of our predictive model and avoiding any lookahead bias.

Moreover, we control for additional categorical variables, describing both time-invariant characteristics of our unlisted firms, such
as the region to which the firm belongs and industry and time-varying characteristics, such as the size of the firm and its level of
funding risk. Table 2 reports the list of control variables used in the analysis and their distribution across the two target classes.
4 
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.2. Peers data

We select a panel of 40 Italian listed firms, evenly distributed across the manufacturing and services sectors. The choice of the
peers follows a mapping of the most representative firms by size, industry and number of employees, to match the characteristics
of the MSMEs. We collect accounting figures from Orbis database, developed by Bureau Van Dijk (a Moody’s analytics company),
by matching the VAT5 code for each given peer firm6 The accounting figures are used to reconstruct and match or proxy the 22
financial ratios of the MSMEs dataset. Moreover, daily stock prices are collected from the Refinitiv Eikon database and are used to
compute the annual asset volatility of comparable publicly listed companies. Table A.2 in the Appendix reports the statistics for the
22 variables as well as for the volatility, total assets and total liabilities used as inputs in the Merton’s model formula, as described
in Section 4.1.

3.3. Representativeness of the sample

In order to quantitatively prove the representativeness of the selected Peers group and the adequacy of the MSMEs sample, we
start by comparing the distribution of the 22 financial ratios. Fig. A.1 in the Appendix depicts the comparison of the 22 variables
etween the two datasets, including the Kolmogorov–Smirnov 𝑝-value for testing the alternative hypothesis that the samples come

from different populations. Results show that, for most variables, distributions for MSMEs and Peers are similar showing that the
selected peers are adequately representative of our sample of unlisted micro-, small-, and mid-sized enterprises (MSMEs).

Furthermore, we conduct a validation of our matching process, examining how closely the characteristics of MSMEs align with
those of their listed Peers. This involves a more detailed analysis of the financial structure of the firms to ensure that the matched
amples are indeed comparable. Fig. A.2 represents the distribution of the bank debt level of the MSMEs compared to the Peers
roup. The density curves show how the level of debt varies between MSMEs and listed companies. Although MSMEs have a more

concentrated distribution at lower debt levels, MSMEs tend to have similar debt-to-asset ratios to the Peers group. The overlap
of the two areas shows no significant differences in debt profiles. Both MSMEs and listed companies appear to have a uniform
distribution. The Kolmogorov–Smirnov 𝑝-value (0.24852) also suggests that there are no significant differences between the two
groups. Therefore, the presence of a capital structure with similar debt levels suggests that the MSMEs in our sample exhibit the
same financial vulnerability as the peer group of listed companies.

Finally, we incorporate the credit relationship dimension into our analysis, exploring how variations in credit dependency be-
ween MSMEs and listed firms may impact default likelihood and overall risk assessment. To assess the impact of credit relationships
ith cooperative banks, particularly since our dataset predominantly consists of firms with established credit relationships and to

xplore how these relationships influence financial health and risk exposure, we run an analysis only for firms with very few banking
elationships for robustness. In particular, to test the robustness of the results, we evaluate the default prediction procedure described
n Section 4.3 on a subset of the MSMEs sample, including only the ones that have a credit relationship with a single bank, for a

total of 7,155 firms. The analysis conducted shows that our results hold because the predictive performances are comparable to the
ones on the full sample, as shown in Table C.6 in Appendix C.

4. Methodology

This paper aims to assess the impact of market information, i.e., Merton’s probability of default (PD), in predicting the corporate
default risk of unlisted firms, in addition to accounting-based measures. Our analysis can be summarized into three steps. Firstly,
we match each MSME to one or a group of peers and evaluate its firm-wise PD. Section 4.1 recalls how the PD is evaluated using
Merton’s model, and Section 4.2 describes the peers-to-firm matching procedure, consisting of a low dimensional representation of
he 22 variables space and its subsequent clustering. Secondly, we predict corporate default by calibrating different classification

models, both using financial ratios as predictors (baseline) and including the PD (extended). Section 4.3 shows the calibration of the
models and the differences in models’ performance between the baseline and extended cases. Then, we investigate which predictor
most strongly contributes to predicting corporate default using feature importance techniques. Section 4.4 reports the estimation of
the contribution of each variable to the predicted class (default or non-default) for both the baseline and extended cases. Lastly, a
set of robustness tests is performed to further confirm the stability of the results.

4.1. Estimation of the Merton model

We estimate the Merton model (Merton, 1974) of corporate default risk for our sample of MSMEs. According to the Merton
model, corporate default occurs when a company cannot pay off its debts or when the current market value of its assets falls below
the market value of its liabilities. For this reason, the market value of the MSME’s equity is treated as a call option on the asset

5 Value Added Tax
6 The database construction process played a crucial role in making such an empirical analysis possible, despite being time-consuming due to the required

manual input of proprietary micro-level data, integrated adequately with additional accounting data collected from Orbis database.
5 
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value of the MSME with a strike price equal to the market value of its debt.7 The MSME asset value process follows a Geometric
Brownian motion as shown in Eq. (1) below:

𝑑 𝐴𝑡 = 𝑟𝐴𝑡𝑑 𝑡 + 𝜎𝐴𝐴𝑡𝑑 𝑧 (1)

where 𝐴𝑡 is the firm’s market value of assets and 𝜎𝐴 is the volatility of assets. 𝑟 is the one-year maturity risk-free rate of return,
which we choose to be the yield of the 1-year maturity domestic government bond with 1-year maturity.8 Since the market value of
quity is treated as a call option, the company’s equity value 𝐸𝑡 at maturity (which is the end of each yearly period in our model)

is priced as shown below:

𝐸𝑡 = 𝑟𝐴𝑡𝛷(𝑑1) − 𝐿𝑒−𝑟𝑇𝛷(𝑑2) (2)

where 𝐴𝑡 is the firm’s assets and 𝐿 is the firm’s liabilities (assumed to be constant for each yearly period). 𝑇 is the time to maturity
which in our model is equal to one year (𝑇 = 1), 𝑟 is the risk-free interest rate with one-year maturity (the 1-year government bond
rate) and 𝛷 is the cumulative standard normal distribution function. Since default is treated as a European call option, then the
values 𝑑1 and 𝑑2 are given by the following formulas:

𝑑1 =
ln𝐴0∕𝐿 + (𝑟 + 𝜎2𝐴∕2)𝑇

𝜎𝐴
√

𝑇
(3)

𝑑2 = 𝑑1 − 𝜎𝐴
√

𝑇 (4)

According to the assumptions of the model, the value of the firm’s equity is a function of the value of the firm’s assets and time,
o it follows from Ito’s lemma that:

𝜎𝐸 = 𝐴
𝐸

(𝑑 𝐸
𝑑 𝐴

)

𝜎𝐴 (5)

where 𝜎𝐴 is the volatility of assets and 𝜎𝐸 the volatility of firms’ equity value. Solving Eqs. (3) to (5) allows to evaluate 𝐴 and 𝜎𝐴
hich are the inputs for the calculation of the Distance to Default (DD) measure, given in Eq. (6):

𝐷 𝐷 =
ln𝐴0 + (𝑟 + 𝜎2𝐴∕2)𝑇 − ln𝐿

𝜎𝐴
√

𝑇
(6)

The resulting Probability of Default (PD) is given in Eq. (7) below:

𝑃 𝐷 = 𝛷(−𝐷 𝐷) (7)

where DD is the Distance to Default measure given in Eq. (6).

4.2. Matching unlisted firms with peers

Since no market data is available for our sample of unlisted MSMEs, we proxy the market volatility of the assets of unlisted
SMEs with that of their comparable publicly-listed companies. As for the latter, the market value of assets is computed as the

daily product of their share price multiplied by the number of shares outstanding. Our implicit assumption made for the estimation
of Merton’s Probability of Default (PD) and Distance to Default (DD) is that those MSMEs which operate in the same industry sectors
and have similar balance sheet behaviour with our Italian peers share the same risk profile and belong to the same (market) risk
class of the latter.9 To render the matching procedure as accurate as possible, we opt for a novel clustering approach: the original
nput ratios are mapped into a lower dimensional space on which clustering techniques can be applied more reliably and robustly.
hen, we find the optimal number of clusters in the MSME dataset and assign each peer to the most similar cluster by minimizing
he average distance from all firms in the cluster.

Given that the high number of variables of the MSME dataset can affect the clustering algorithm, we apply several dimensionality
reduction techniques to obtain a condensed representation of the original data, hereinafter referred to as ‘‘embedding’’. The main
idea is to find a function 𝑓 ∶ R𝑝 ↦ R𝑘, with 𝑘 ≪ 𝑝, that can project the original high-dimensional data 𝑋 ∈ R𝑝, e.g., 𝑝 = 22 for
MSMEs, into a low-dimensional one 𝐸 = 𝑓 (𝑋) ∈ R𝑘 with the objective of preserving the mutual distance between points, both
locally and globally (Gracia et al., 2014). The embedding 𝐸 has the same number of observations of 𝑋 but fewer variables. The
nverse of 𝑓 , 𝑓−1 ∶ R𝑘 ↦ R𝑝 can be used to project back the embedding 𝐸 to get the reconstruction 𝑋̂ of the original 𝑋 and the
econstruction error (RE) can be defined as follows:

𝑅𝐸 = 1
𝑁 𝑝

𝑁
∑

𝑖=1

𝑝
∑

𝑗=1
(𝑥𝑖𝑗 − 𝑥̂𝑖𝑗 )2

7 For modelling issues, it is assumed that the market value of debt (or liabilities) is equal to the book value (or accounting value) of total liabilities of the
MSME. Moreover, the market value of debt (liabilities) is assumed to remain constant during each yearly period.

8 We obtain yearly time series data for the 1-year domestic government bond yield for the period covering 2009 to 2014. The yearly Italian government
ond yield data are downloaded from Thomson Reuters.

9 Our assumption on the (market) risk classes goes back to the (Modigliani and Miller, 1958) risk class assumption according to which firms with similar
characteristics and balance sheet data belong to the same ‘risk class’.
6 
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where 𝑁 is the total number of observations, and 𝑥𝑖𝑗 and 𝑥̂𝑖𝑗 are the 𝑖th row and 𝑗th column elements of 𝑋 and 𝑋̂, respectively. The
reconstruction error decreases as 𝑘 increases and can be used to find the optimal value of 𝑘, as a trade-off of keeping both RE and
𝑘 small enough. The use of reconstruction error is widely accepted in the literature as a proxy for information preservation (Bengio
et al., 2013; Hinton and Salakhutdinov, 2006). A low reconstruction error indicates that the model has effectively captured the key
atterns in the input data, thereby supporting its use for downstream tasks such as clustering.

To further validate that the local geometry and neighbourhood structure of the original data were maintained, we compute
Trustworthiness and Continuity scores (Kaski et al., 2003; Venna and Kaski, 2006) for each embedding. Trustworthiness  quantifies
the extent to which points are neighbours in the low-dimensional embedding were also neighbours in the original high-dimensional
space. It is defined as:

 (𝑛𝑏) = 1 − 2
𝑁 𝑛𝑏(2𝑁 − 3𝑛𝑏 − 1)

𝑁
∑

𝑖=1

∑

𝑗∈𝑈𝑛𝑏 (𝑖)
(𝑟(𝑖, 𝑗) − 𝑛𝑏)

where 𝑛𝑏 is the number of nearest neighbours considered, 𝑟(𝑖, 𝑗) is the rank of point 𝑗 in the list of neighbours of 𝑖 in the original
pace 𝑋, 𝑈𝑛𝑏 (𝑖) is the set of points that are among the 𝑛𝑏-nearest neighbours of 𝑖 in the embedding space 𝐸, but not in 𝑋.

Continuity  measures the extent to which the local structure of the embedding space reflects the local structure of the original
space. Specifically, it penalizes cases where points that were neighbours in the original space are not neighbours in the embedding
space. It is defined as

(𝑛𝑏) = 1 − 2
𝑁 𝑛𝑏(2𝑁 − 3𝑛𝑏 − 1)

𝑁
∑

𝑖=1

∑

𝑗∈𝑉𝑛𝑏 (𝑖)
(𝑟̂(𝑖, 𝑗) − 𝑛𝑏)

where 𝑟̂(𝑖, 𝑗) is the rank of point 𝑗 in the list of neighbours of 𝑖 in the embedded space 𝐸 and 𝑉𝑛𝑏 (𝑖) is the set of points that are
among the 𝑛𝑏-nearest neighbours of 𝑖 in 𝑋, but not in 𝐸. Both metrics range from 0 to 1, with values closer to 1 indicating better
reservation.

Given the panel structure of our MSME data, we evaluate the embedding both at the firm–year level, getting different low-
dimensional coordinates for each firm–year pair, and at the firm level, getting a single shared low-dimensional coordinate for each
firm–year pair. The former approach evaluates a time-variant embedding, whereas the latter estimates an ‘‘average’’ embedding
on the trend of each firm over the years. Thus, in the former, we have 𝑝 = 22 input variables, in the latter we have 𝑝 = 22 × 3
variables, as we reshape the dataset to have variables-year pairs as new input variables. We tested three different dimensionality
reduction techniques on both types of dataset: Robust Principal Component Analysis (RobPCA) (Candes et al., 2009), Auto-Encoder
with Multilayer Perceptron (AE) (Kramer, 1991) and Auto-Encoder with Long-Short Term Memory (AE-LSTM) (Cho et al., 2014).
RobPCA builds the embedding by creating a linear combination of the original variables, where each combination is the new
oordinate. AE is a particular architecture of Artificial Neural Networks that mixes linear combinations of variables with their

non-linear transformations to overcome the linearity hypothesis of RobPCA. AE-LSTM is an extension of AE that incorporates auto-
regressive terms to account for the time dependence of variables. In this way, AE-LSTM treats each batch of observations of the
same firm over the years as a single input. Each neural network has a set of hyper-parameters that must be defined before the
calibration, e.g., the number of layers and neurons in each layer. We find the optimal value of hyper-parameters by means of
Bayesian Optimization with a 5-fold Cross-Validation10 performance estimation.

Being the embeddings evaluated, we use them to perform the clustering of the data testing the k-means (MacQueen, 1967) and
aussian mixture model (Day, 1969) with both the Euclidean distance and Cosine Similarity. We test different numbers of clusters

and we find the optimal value based on the Davies–Bouldin index (Davies and Bouldin, 1979) and Silhouette coefficient (Rousseeuw,
1987). The lower the former and the closer to 1 the latter, the better the clustering. After selecting the best clustering, we apply the
mbedding function 𝑓 on the peers’ dataset to have the same low-dimensional representation and to assign each peer to the closest
luster. The closeness is intended to be the minimum average Euclidean distance from all observations within the cluster.

Although the optimal low dimension (𝑘 = 6) of the embedding resulted in a better performance for the clustering, data cannot
be visualized. Therefore, we use another dimensionality reduction technique that is better suited for visualization rather than for
clustering. Thus, by applying the Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018; McInnes et al.,
2018), we can visualize the clusters in a 3-dimensional space.

As the cluster evaluated in the embedding space, we explore the effects of the grouping on the original 22 variables, allowing
s to provide an explanation for the segmentation of the firms. In particular, we evaluate the differences in distribution for each

original variable, using the ANOVA test while controlling for the group defined by the cluster labels. For every variable, we perform
the one-way ANOVA test followed by the post-hoc Dunn test, controlling the family-wise error rate (FWER) as suggested in Holm
(1979). Then, we count how many times each cluster significantly differs from the others, identifying which variable accounts for
the most overall difference and which cluster shows the highest deviation from the others.

Finally, we provide each MSME observation with its respective PD. As described in Section 4.1, PD can be calculated using Eq. (7)
after evaluating DD with Eq. (6), with the total assets A, total liabilities L, and assets volatility 𝜎𝐴. We evaluate the PD with two
approaches. In the first (named average-PD), we evaluate the average 𝐴̄𝑐 𝑡, 𝐿̄𝑐 𝑡 and 𝜎𝐴𝑐 𝑡 over all peers in the same cluster 𝑐 = 1 …𝐶,
where 𝐶 is the optimal number of clusters, for each year 𝑡 and use them to evaluate the average DD. So, we have 𝐶 × 3 different DD

10 In the 𝑘-fold Cross-Validation, 𝑘 models are calibrated on 𝑘 − 1 folds and the performances on the 𝑘th fold are then averaged.
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values, one for each year-cluster pair. The DD is then matched with each MSME observation by year-cluster. In the second approach
(named pointwise-PD), we use the 𝑖th MSME firm’s 𝐴𝑖𝑡 and 𝐿𝑖𝑡 at time 𝑡 and the average year-cluster peers’ 𝜎𝐴𝑐 𝑡 to have a firm–year
evel DD.

4.3. Prediction of default

After assigning the PD to all our unlisted MSMEs, we calibrate five different models to predict the binary target: 1 for defaulted
firms and 0 otherwise. Each model is calibrated using the set of 22 variables (baseline) and with the addition of the PD (extended).
irst, we inspect the distribution of each input variable with respect to the target variable. Fig. A.3 in the Appendix shows similar

behaviour of the input variables for both subsets of defaulted and non-defaulted firms, meaning that the overall relation between
each predictor and the target is weak because there is no clear polarization in the distributions. Thus, we expect low prediction
performances when using classical linear models because they estimate coefficients that should discriminate between the 0s and
the 1s, considering the average of the distribution of input variables. Moreover, the true relationship between input and target
variables may be non-linear. Therefore, we opt for a non-linear and piecewise model, the Multivariate Adaptive Regression Spline
MARS) (Friedman et al., 2009), that estimates multiple polynomial relationships in different partition intervals of each input

variable. Therefore, the model can be seen as an ensemble of sub-models estimated in each combination of partitions into which the
input variables can be divided. For example, suppose we split the input domain into quartiles of each variable. In that case, MARS
estimates a polynomial function for observations whose input variables are in the lowest quartile of the corresponding distributions,
and so on, for all possible variable–quartile combinations. As MARS is a parametric algorithm, meaning that we have to define a
structure of each estimation function, e.g., polynomial.

To further investigate the non-linear relationships in the data, we also employ three additional non-parametric algorithms:
upport Vector Machine with a Radial Basis Function kernel (SVM-RBF), k-Nearest Neighbours (k-NN), and Random Forest (RF).
VM (Cortes and Vapnik, 1995) constructs a hyperplane or set of hyperplanes in high-dimensional space to separate classes. The RBF
ernel allows SVM to capture complex, non-linear relationships by mapping the input data into a higher-dimensional space where
lasses may become linearly separable. This makes SVM particularly effective when the decision boundary is highly non-linear,
s it can adapt to intricate patterns in the data without requiring explicit feature engineering. k-NN (Cover and Hart, 1967) is an

instance-based learning algorithm that classifies a data point based on the majority class among its 𝑘 nearest neighbours in the
feature space. Unlike parametric models, k-NN does not make assumptions about the underlying data distribution, making it highly
flexible for capturing local patterns and non-linear relationships. Random Forest (Breiman, 2001) is an ensemble of decision trees
that partition the input domain with nested binary splitting to maximize the discrimination of all target values. Each branch of the
tree contains a set of hierarchical rules, e.g., values of a certain variable greater or less than a fixed threshold, so that (possibly) all
observations satisfying each chain of rules have the same target value, i.e., 0 or 1. The estimation function of RF is then a combination
of rules that can approximate non-linear relationships between input and target variables. Nonetheless, we use a regularized linear
model, i.e., Elastic-Net, as a benchmark.

As noted in Section 3, the presence of a few variables with moderate correlation will not affect the models’ performances because
the ensemble nature of MARS and RF and the regularization feature of Elastic-Net are suitable to deal with multicollinearity.
SVM is less sensitive to multicollinearity because it focuses on maximizing the margin between classes rather than relying on the
coefficients of individual features. The RBF kernel further mitigates the impact of multicollinearity by mapping the data into a higher-
imensional space where features may become less correlated. Instead, the k-NN algorithm does not rely on feature coefficients,
aking it inherently robust to multicollinearity, as it uses distance metrics to classify data points based on their neighbours,
hich reduces the influence of correlated variables. Each model has a set of hyper-parameters that must be defined before the

alibration. For example, MARS requires the maximum degree of polynomials to be fitted, RF requires the number of decision
trees to be estimated. We find the optimal value of hyper-parameters by means of Bayesian Optimization with a 5-fold Stratified
Cross-Validation11 performance estimation. For the Bayesian Optimization, we proxy the objective function with a Random Forest
urrogate model, and for the acquisition function, used to balance exploitation and exploration, we use the Upper Confidence Bound
UCB), combining the mean and uncertainty of the surrogate model predictions. Then, for the initial space-filling, we use 5 points
or MARS and 30 points for the remaining models. The maximum number of iterations is 6 for MARS and 40 for the remaining
odels.

Given the imbalanced nature of the data (1s are 7% of all samples), as described in Section 3, we use the F1-score as a
class-specific performance metric to highlight the importance of predicting the rarest 1-labelled targets, the Matthew’s Correlation
Coefficient (MCC) as a balanced measure of classification performance and the Area Under the Precision–Recall Curve (PRAUC as
n overall performance metric. In particular, F1-score is the harmonic mean of precision and recall and emphasizes the correct
rediction of the minority class (1s in this case). The Area Under the Precision–Recall Curve provides a robust evaluation of model
erformance across different probability thresholds, especially for imbalanced datasets where the ROC-AUC can be misleading.
atthew’s Correlation Coefficient is a single metric that considers true positives, true negatives, false positives, and false negatives,

roviding a balanced classification performance evaluation. It ranges from −1 (perfect inverse prediction) to +1 (perfect prediction),
ith 0 indicating a random classifier. MCC is particularly effective for imbalanced datasets because it is less influenced by class
istribution and provides a more comprehensive assessment of model performance. Moreover, each model has been calibrated with

11 Stratification is performed with respect to both target variable and control variables when included.
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the additional constraint of weights for each observation, i.e., penalizing the prediction error on 1s more than the error on 0s. Both
F1-score and weighting help the calibration procedure to prevent overfitting to a certain extent, allowing the model to have a good
generalization power.12

We also test both undersampling and oversampling techniques, testing different percentages of balancing the minority class,
i.e., 30% and 50%. In particular, we tested the Adaptive Synthetic Sampling (ADASYN) oversampling algorithm, as it can handle
lass imbalance effectively and usually improves classifier performance by focusing on difficult classes (He et al., 2008). Results from

all models showed only a negligible improvement in the performance (no more than 1.5%), proving that the weighted calibration
can account for the class imbalance properly. For the undersampling technique, we used stratified sampling (based on Region,
Firm Size and Industry) to test the aforementioned level of balancing. Five different repetitions have also been used to account for
randomness in the sampling procedure. Results showed similar performance for all models, with up to 2% improvement. The slight
improvement compared with the oversampling technique is still due to the synthetic nature of the sample generated by the ADASYN
algorithm.

Furthermore, we include control variables in both baseline and extended cases to assess the models’ robustness to time-invariant
(static) and time-varying (dynamic) characteristics of the observations. In particular, we test the static Dummy Industry, Firm
Type, Industrial Sector and Region described in Table 2 and the dynamic Firm Size and Funding Risk from the Italian National
nstitute of Statistics13 (ISTAT) and Bank of Italy, which evaluates the likelihood of a firm facing difficulties in obtaining or repaying

financing. It reflects the firm’s financial health, creditworthiness, and ability to meet its debt obligations. It is a regional and annual
indicator.

Finally, we investigate the persistence of target values over time, i.e., we examine the impact of clients who changed their
outcome over the years, both from defaulted to recovered and vice-versa. Table A.3 in the Appendix reports the number of clients
hat changed over time. To assess the impact of this phenomenon, we compare the distribution of the input variables subject to

clients’ behaviour, and we calibrate the models both on the entire dataset and on the dataset where we remove the clients that
hanged the outcome over the years. We find that models’ performances are not affected by the inclusion of target-switching clients,
esulting in the robustness of our results to this phenomenon. Fig. A.4 in the Appendix shows the distribution of relative changes
ver the years of each input variable split by clients’ behaviour, i.e., clients that are persistent over time and clients that do not
xhibit such a behaviour.

4.4. Importance of variables

We explore which input variable contributes the most to each model prediction, focusing on the changes when the PD is added.
For this reason, we evaluate the predictive power of the variables using two state-of-the-art techniques for feature importance:
ermutation Feature Importance (PFI) and Shapley Additive Explanations (SHAP). PFI evaluates the importance of the 𝑗th variable

by comparing the performance, e.g., F1-score, of the model that predicts the observations used for the calibration against the
performance of the model that predicts the same observations where the values of the 𝑗th column are shuffled (Fisher et al., 2018).
In this way, the correlation between the 𝑗th variable and all the others is broken, thus removing the influence of that variable on
the model predictions. If the change in performance is negligible, the 𝑗th variable is unimportant for the model. SHAP is based on
Shapley values, a method from coalitional game theory which provides a way to fairly distribute the payout among the players by
computing the average marginal contribution of each player across all possible coalitions (Shapley, 1953; Osborne and Rubinstein,
1994). SHAP, proposed by Lundberg et al. (2020), uses Shapley values to evaluate the difference in the predicted value of a single
observation, by comparing the prediction of all possible combinations of variables that include the 𝑗th variable against the ones that
do not. The differences are then averaged, and the positive or negative change in the prediction is used for variable importance.
For example, if the model predicts the probability of default, SHAP evaluates, for a single observation, which variable contributed

ost in increasing or decreasing the final probability. In this way, exploiting the additive property of Shapley values, it is possible
o estimate the impact of all variables on the final predicted value for every single observation. PFI provides a global measure of
mportance, measuring the impact of all observations together. Moreover, it measures the changes in global performance. On the

other hand, SHAP provides a local measure of importance, measuring the impact of variables for every observation. However, taking
he average of the absolute values of each observation’s SHAP, it is still possible to get a global measure of the average importance

of the variables. Instead, taking the average of the Shapley values rather than their absolute value provides an average effect of
ach variable on the predictions. Both techniques are described in detail in Appendix A.

5. Results

5.1. Matching unlisted firms with peers

As described in Section 4.2, we first find the embedding that minimizes the Reconstruction Error. Table 3 reports the optimal
embedding dimension 𝑘, the reconstruction error of the different algorithms, the 𝑅2 and the Trustworthiness  and Continuity
 metrics. In our context, in analogy with the classical 𝑅2, we compute the RSS term as the Reconstruction Error given by the

12 This means that the model has similar performances on both data used for calibration and unseen observations.
13 https://www.istat.it/sistema-informativo-6/banca-dati-territoriale-per-le-politiche-di-sviluppo/
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Table 3
Results of dimensionality reduction. Reconstruction Error and its proportion with the average absolute value of the input data is reported for all methods as
well as 𝑅2. In our context, in analogy with the classical 𝑅2, we compute the RSS term as the Reconstruction Error given by the embedding and the TSS term
s the total variance contained in the original data. Trustworthiness and Continuity metrics are also reported. Values close to 1 mean good preservation of the

information. Values in parentheses are the optimal number of neighbours used to evaluate the metric.
Input level Rows Columns Method Input

dimension
Embedding
dimension

Reconstruction error
(% of Avg Abs
Input)

𝑅2  (𝑛𝑏)
(𝑛𝑏)

(𝑛𝑏)
(𝑛𝑏)

Firm–year
Firm–year
pairs

Variables AE 19,743 × 22 19,743 x 6 𝟎.𝟏𝟒𝟏𝟖
(20%)

98% 𝟎.𝟗𝟔
(𝟔)

𝟎.𝟗𝟓
(𝟕)

RobPCA 19,743 × 22 19,743 × 9 0.2033
(30.6%)

95.70% 0.9
(5)

0.88
(5)

Firm
(batch of years)

Firms Variables AE-LSTM 10,136 × 22 10,136 × 10 0.2138
(31.8%)

94.60% 0.89
(6)

0.85
(5)

Firm Firms Variables-year
pairs

AE 10,136 × 66 10,136 × 32 0.2391
(35.9%)

91.30% 0.72
(12)

0.69
(11)

RobPCA 10,136 × 66 10,136 × 15 0.3857
(58%)

84.80% 0.51
(8)

0.88
(9)

embedding and the TSS term as the total variance contained in the original data which represents a proxy for how much intrinsic
information within the data is preserved in the transformation. The optimal number of neighbours for  and  is selected via
bootstrap, selecting the value that leads to the smallest variability in the metric. The embedding resulting from AE with the firm–
year level approach performed best, showing the lowest reconstruction error, the highest 𝑅2 and both  and  close to 1. Methods
evaluated with a firm-level approach performed worse and will not be included in the following analysis.

We tune the hyper-parameters of each neural network by means of Cross-Validation, and we calibrate the models with the optimal
parameters on the entire dataset to have a single model to be used for the evaluation of the embeddings. Here, optimality is intended
as a trade-off between the minimized reconstruction error and both model complexity, i.e., the dimension of the embedding space,
nd information loss, i.e., the Trustworthiness and Continuity scores. We generate elbow graphs for both the information loss metrics
nd the reconstruction error, plotting these metrics against the dimensionality of the embedding. By examining the elbow points
cross all metrics, we identify a consistent dimensionality that minimizes information loss while avoiding unnecessary complexity.

For the AE model we tune the layers’ structure 𝑙𝑆 (both the number of layers and neurons), the size of the bottleneck layer 𝑙𝐵 ,
he activation functions 𝑎𝑐 𝑡𝑆 and 𝑎𝑐 𝑡𝐵 used in 𝑙𝑆 and 𝑙𝐵 , respectively, the number of epochs 𝑛𝐸 and batch size 𝑠 used during the

training. For the AE-LSTM model we tune the recurrent blocks’ structure 𝑙𝑆 (both number of layers and number of neurons), the size
of the bottleneck layer 𝑙𝐵 , the type of recurrent unit 𝑡𝑦𝑝𝑒rec used in all recurrent blocks, the 𝛼 share of 𝐿1 and 𝐿2 regularization for
the weights in each block, the number of epochs 𝑛𝐸 and batch size 𝑠 used during the training. 𝑡𝑦𝑝𝑒rec can be 𝐿𝑆 𝑇 𝑀 for Long-Short
Term Memory or 𝐺 𝑅𝑈 for Gated Recurrent Unit. Table C.4 in the Appendix reports the best parameters from the tuning of each
model on the MSME dataset with the 22 ratios.

Then, we look for the optimal number 𝐶 of clusters. Table 4 reports the performance of the clustering on each low-dimensional
embedding as well as the comparison with the clusters found in the original high-dimensional data. We select 𝐶 = 5 clusters identified
in the AE embedding. Regardless of the method, clusters evaluated on the embeddings always show better clustering performances
than their counterparts evaluated on the original set of variables. Moreover, we apply the UMAP algorithm to visualize the clusters
in a 3-dimensional space. Fig. 1 depicts the five clusters for all observations (small points) as well as the matched peers (bold
spheres), showing a good separation, even if there is small overlapping between the yellow and green cluster and few blue peers
are mapped close to the red ones. We recall that the embedding function 𝑓 is estimated only on the MSMEs dataset and then the
peers’ embedding is evaluated by applying 𝑓 , as an out-of-sample set. UMAP, instead, is calibrated on MSMEs and peers datasets
as a whole and is not directly influenced by the estimated embeddings and clusters: it only represents an ‘‘optimal’’ visualization
of the high-dimensional data in the three-dimensional space. Here optimal is intended as the best way to exacerbate the distance
between points that are dissimilar and to reduce the gap between points with similar features. Therefore, from Fig. 1 we can conclude
that the good clustering performance found on low-dimensional embeddings is corroborated by the visual representation of UMAP
technique. On the contrary, Fig. B.5 in the Appendix shows the UMAP projection of original high-dimensional data, clustered with
the optimal number of clusters found for the embedding, i.e., five, where the clusters are clearly overlapping, and most of the
peers are misplaced. It is worth pointing out that the figure does not show the actual distribution of the data, which actually lies
in a 22-dimensional space, and the clustering has been performed in the 6-dimensional space of the AE embedding. Therefore, the
distances between the plotted points cannot be used in a proper clustering algorithm. Furthermore, we compare the distribution of
the original 22 variables of MSMEs with the average of the assigned peers in each cluster. Figs. B.6 and B.7 in the Appendix show
that the average value of the peers is within the inter-quantile range of the MSMEs for the majority of the variables and clusters,
oth in the original 22-dimensional space and in the 6-dimensional embedding space. Finally, the clusters are used to assign the PD

to each MSME firm, matching year-cluster pairs for asset volatility.
We provide an economic interpretation of the matching procedure by exploring the resulting segmentation in the original variable

space. As described in Section 4.2, we perform one-way ANOVA for each original variable, grouped according to the evaluated
clusters, and record the number of significant differences in distribution for every cluster compared to others. Furthermore, we
10 
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Table 4
Results of clustering. Davies–Bouldin index and Silhouette coefficient are reported for clusters evaluated on both embedding and original data, as well as the
optimal clustering technique and distance metric, in parentheses. Davies–Bouldin is a positive number, the smaller the better the separation between the clusters.
Silhouette coefficient is bounded between −1 and 1, where −1 means overlapping of clusters and 1 perfect separation. Only the top two results for each method
are reported.

Method Clusters Dimension Algorithm
(Distance)

Davies–Bouldin Silhouette

Original Embedding Original Embedding Original Embedding Original Embedding

AE 𝟓 22 6 k-Means
(Euclidean)

GMM
(Euclidean)

0.36 𝟎.𝟎𝟖 0.45 𝟎.𝟗𝟏

4 0.43 0.11 0.37 0.59

RobPCA 4 22 9 k-Means
(Cos. Simil.)

GMM
(Cos. Simil.)

0.53 0.13 0.41 0.72

3 0.71 0.2 0.32 0.44

AE-LSTM 3 22 10 k-Means
(Euclidean)

GMM
(Euclidean)

0.8 0.2 0.07 0.21

2 0.93 0.32 −0.13 0.06

Fig. 1. 3D visualization of five clusters for the 6-dimensional AE embedding. Visual embedding is evaluated with the UMAP algorithm. Small points are MSMEs
observations, bold spheres are peers’ observations.

utilize box-plot comparisons (see Fig. B.8 in the Appendix) to visualize how each cluster is differentiated from the others across
each variable, providing a clearer economic interpretation.

The financial symptoms of each group and their corresponding clusters are outlined below. To enhance understanding of the
management implications of this study, we analyse the findings from each cluster in relation to the primary causes of failure
identified in the literature, along with possible interventions to mitigate the likelihood of default.

Cluster 1: This group is predominantly characterized by a high level of bank debt (indicated by a high Debt Burden Index and
high Financial Interest on Revenues) and modest economic performance (high Fixed Asset Coverage, low Net Worth on Equity, low
Return on Assets). The observed poor asset management and underutilization of resources indicate financial fragility—one of the
most common precursors to bankruptcy (Kucher et al., 2020). Consequently, effective cost management emerges as a key strategy
for mitigating short-term bankruptcy risk, while long-term strategies should focus on optimizing asset utilization and enhancing
operational efficiency.

Cluster 2: The second group exhibits high Payables to Sales alongside moderate debt dependence. Enhanced cost management
practices could foster improvements in profitability, thereby increasing key profitability ratios. Such advancements may ultimately
yield greater value creation for shareholders.

Cluster 3: This cluster encompasses firms with significant debt reliance and low capitalization levels. Insufficient equity is
frequently identified as a critical internal factor leading to bankruptcy, as it restricts operational sustainability and complicates
11 
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Fig. 2. Distribution of PDs compared with the corresponding target values. 𝑦-axis reports quartiles of PD values.

access to alternative financing sources (Carter and Auken, 2006; Ooghe and De Prijcker, 2008; Kucher et al., 2020; Mayr et al.,
2021). To mitigate financial risk, a reevaluation of debt strategies is essential.

Cluster 4: Firms in this cluster demonstrate strong economic performance and balanced equity and financial structures.
Consequently, no specific symptoms indicative of potential default are apparent. The primary implication for these firms is the
opportunity to reinvest excess liquidity into growth initiatives to sustain positive long-term performance.

Cluster 5: This final group comprises firms characterized by high Payables to Assets, moderate Operating Margins, and balanced
cash flows. These companies can be classified as slow movers, illustrating that even with a sound financial position, their economic
performance remains lackluster (Kucher et al., 2020; Mayr et al., 2021). The potential for stagnation due to conservative financial
strategies could erode their competitive advantage over time.

Each cluster exhibits unique characteristics that allow for the identification of specific financial and economic symptoms.
Understanding these relationships enables the development of targeted strategies to address vulnerabilities, ultimately improving
the overall financial health and stability of the companies involved.

5.2. Prediction of default

Being the PD assigned, we calibrate the prediction models. The following results refer to the PDs evaluated with the pointwise-PD
approach described in Section 4.2 because it performed better than the average-PD one, although the findings described below still
remain robust. Fig. 2 shows the distribution of PDs compared with the corresponding target values. PD seems to be a reliable
indicator of the outcome of the target variable.

We tune the parameters of each model with the Stratified Cross-Validation, and we calibrate the models with the optimal14

parameters on the entire dataset, to have a single model15 to be used for feature importance evaluation. In particular, for the
Elastic-Net model we tune the 𝛼 parameter that represents the share of 𝐿1 and 𝐿2 regularization, for the MARS model we tune the
degree 𝑑 of the polynomial functions; for SVM-RBF model we tune the regularization cost 𝐶 and the scale of RBF kernel 𝜎; for the
k-NN model we tune the number of neighbours 𝑘; and for the Random Forest model we tune the number of trees 𝑛tree, the number
𝑛var of variables randomly sampled as candidates at each split and the minimum size 𝑠 of observation in each node. Table C.5 in
the Appendix reports the best parameters from the tuning of each model on both the dataset with and without Merton’s PD. In
Table 5 we report the performance on the entire dataset and the average performance on validation folds for each model. We also
compare the models trained with the 22 ratios only and the ones with the addition of PD. Random Forest is the top-performing
model with good performances, followed by the k-NN model, both capturing the different local separations of the data, as discussed
in Section 4.3. Nevertheless, all models show an improvement in class-specific performance, i.e., F1-score for the defaulted class,
and on the PRAUC when the PD is included as a predictor. The statistical significance of the relative differences in performances
𝛥% between the baseline and extended setting is evaluated using a permutation test (Efron and Tibshirani, 1994), performed by
randomly shuffling the predicted classes between the two models and recalculating the performance metric for each permutation.
This process is repeated 5,000 times to create a null distribution of the performance metric under the assumption that there is no
significant difference between the models. The 𝑝-value is then calculated as the proportion of permutations where the observed

14 Optimal parameters are selected according to the maximum cross-validation F1 score.
15 In the 𝑘-fold Cross-Validation, 𝑘 models are calibrated on 𝑘 − 1 folds and the performances on the 𝑘th fold are then averaged.
12 
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Table 5
F1-score, Precision–Recall AUC and Matthews Correlation Coefficient for all considered models calibrated on a dataset with input variables only and with the
addition of PD. Values refer to the performance of the model calibrated on the entire dataset. Values in parentheses refer to the average performance of
alidation folds of Cross-Validation. 𝛥% is the relative improvement in performance between the ‘‘Baseline’’ and ‘‘With PD’’ settings. The statistical significance

of the difference is evaluated via a permutation test with 5000 repetitions. The rank of importance for PD variable is reported in the last two columns for both
ermutation Feature Importance and SHAP techniques. Values in parentheses refer to the relative normalized importance.
Algorithm F1

(Cross-Val)
PRAUC
(Cross-Val)

MCC
(Cross-Val)

PD Feature Imp. Rank
(Relative %)

Baseline With PD 𝛥% Baseline With PD 𝛥% Baseline With PD 𝛥% PFI SHAP

Elastic-net 30.7%
(29.8 ± 1.7%)

31%
(30.3 ± 1.1%)

1%** 21.7%
(20.8 ± 0.8%)

21.9%
(20.8 ± 1.4%)

1%*** 25.6%
(24.5 ± 1%)

25.9%
(25 ± 1%)

1%* 1
(60.7%)

1
(38.1%)

MARS 43.6%
(42 ± 1.2%)

44.1%
(42.1 ± 1.5%)

1%* 40.7%
(39.9 ± 1%)

41.1%
(39.5 ± 0.9%)

1%* 37.7%
(35.8 ± 1.5%)

38%
(36.6 ± 1.1%)

1% 1
(38.5%)

1
(32%)

SVM-RBF 51.6%
(49.7 ± 1.3%)

53.1%
(51.8 ± 1.3%)

3%* 36.6%
(35.7 ± 1.7%)

37.7%
(36.6 ± 0.7%)

3%*** 45.8%
(43.6 ± 0.8%)

47.2%
(44.4 ± 1.3%)

3%** 1
(20.1%)

2
(16.6%)

k-NN 70.5%
(67.5 ± 1.2%)

72.6%
(70.8 ± 1.4%)

3%** 74%
(70.6 ± 1.6%)

76.2%
(73.5 ± 1.3%)

3%*** 66.9%
(64.7 ± 0.8%)

69%
(65.8 ± 1.2%)

3%** 1
(19.2%)

2
(12.2%)

Random
Forest

88.4%
(84.1 ± 0.9%)

95%
(91.9 ± 0.8%)

7.5%* 93.3%
(88.2 ± 0.9%)

96.3%
(91.1 ± 1.2%)

3.2%*** 87%
(82.9 ± 1.3%)

93.5%
(90.9 ± 1.4%)

7.5%* 1
(25.9%)

1
(24.6%)

Notes: The *, ** and *** symbols denote the p-values at 10th, 5th and 1st significance level, respectively.

difference is equal to or more extreme than the actual difference. If the 𝑝-value is below the significance threshold, the observed
difference is considered statistically significant. Tables C.7 and C.8 in the Appendix report the results of the models with Static and
Dynamic controls for fixed effects, respectively, showing the stability of performances and the resulting robustness of the models.
Fig. C.9 in the Appendix shows Precision–Recall curves of all models with no fixed effects only.

5.3. Importance of variables

We explore the feature importance for all models. PFI and SHAP are evaluated on a model calibrated with input variables and
ith the addition of PD. Fig. 3 shows the PFI of the Random Forest model, where the changes of the F1-score are normalized to

sum up to 100%. PD is the second most important variable, slightly below the financial interest on revenues. Figs. 4(a) and 4(b)
show the effect of input variables on the predicted probabilities16 of the Random Forest model, for each observation predicted as
1 and 0, respectively, by the means of SHAP. The colour of the points ranges from red, meaning that the observation has a low
alue for the specific variable, to blue, meaning high values for the same variable. The position on the horizontal axis represents
he contribution of the variable in increasing or decreasing the predicted probability of each observation. Values in the left column
eport the average absolute change in predicted probability across all observations, along with normalized values in parentheses.
D is one of the top two most important variables, and we can check the expected impact on the predicted probability: for defaulted
bservations, high values of PD (blue) result in a major increase in probability, whereas for non-defaulted observations, low values of
D (red) result in a significant decrease of probability. The accounting variables, as well as the PD, exhibit the expected effect on the
redicted probability, e.g., lower return on assets (ROA) and working capital turnover increase the predicted probability, whereas
ower financial interests decrease the latter. Figs. 5(a) and 5(b) show the average signed effect of input variables on the predicted

probabilities for all observations predicted as 1 and 0, respectively. In both cases, PD is one of the top two most important variables,
increasing the predicted probability for defaulted observations while reducing the probability for non-defaulted observations. We
see that PFI and SHAP agree on the importance of PD, supporting its added value as measured by the increase in model performance.
Although both techniques lead to the same conclusion, it is worth noting the complementary contribution to model interpretability:
PFI provides a synthetic overall measure of the relative importance of the variables, whereas SHAP offers insights on the magnitude
and the direction of the effect of the variables on each observation, similarly to the explanation of linear regression coefficients.
Figures from D.10 to D.12 in the Appendix report the PFI and SHAP variable importance for k-NN, leading to similar results,
supporting the relevance of the addition of PD as a predictor. We omit plots for Elastic-net, MARS and SVM-RBF because of the
poor performance. Nevertheless, similar results still hold.

To further investigate the non-linear relationships and possible overlapping classes in the data we evaluate SHAP Scatter Plots,
that are able to highlight the relationship between individual feature values, their corresponding SHAP values, and the true class
labels. In these plots, the 𝑥-axis represents the actual values of a specific feature, while the 𝑦-axis represents the evaluated SHAP
values for the feature itself, indicating how changes in the feature influence the model’s output. Points are coloured according to
the true class labels, allowing for a clear distinction between how the feature affects predictions for each class. Fig. 6 reports the
SHAP scatter plots of the most important variable for every model in the baseline setting. Although no strong non-linearity emerges
from the plots, it is clear how Elastic-net, MARS and SVM-RBF struggle in separating the overlapping classes, whereas k-NN and, in
articular, Random Forest are able to better partition the complex structure.

16 All five classification models predict probabilities in [0, 1]. If the probability is above 0.5, the observation is classified as defaulted (1), non-defaulted (0)
otherwise.
13 
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Fig. 3. Permutation Feature Importance for Random Forest model, comparing variable importance of model calibrated with input variables and with the addition
of PD. Normalized changes in the F1-score are used to rank the variables.

6. Additional robustness checks

6.1. Information loss in the embedding

There is an inherent risk of information loss when employing dimensionality reduction techniques to generate low-dimensional
embeddings. This occurs because the process of compressing high-dimensional data into a lower-dimensional space may discard
some of the original information, mainly if the embedding space is not sufficiently expressive or if the reduction process prioritizes
certain features over others. However, the goal of dimensionality reduction is not to preserve all information but rather to retain the
most relevant and discriminative information for downstream tasks, such as clustering or classification (Hinton and Salakhutdinov,
2006).

Specifically, we train the same five prediction models to predict the default flag using only the low-dimensional embeddings
as inputs. Table C.9 in the Appendix reports the F1-score performance for the five prediction models when using the original 22
variables and the embeddings evaluated with the AE, RobPCA and AE-LSTM techniques. The maximum performance degradation
due to the use of low-dimensional representation is around 7% for the selected AE technique for the top two-performing models. This
indicates that the AE-derived representation retains most of the relevant information, supporting its suitability for our clustering
purposes. The performances of RobPCA and AE-LSTM are worse than those of the AE models, consistently across each prediction
model. Moreover, we notice that the two linear models, Elastic-net and MARS show an increase in performance (although they have
very low F1-scores) when using the AE embedding, benefiting from the non-linear information compression of the dimensionality
technique.

6.2. Placebo test for PD

To ensure the mapped PD reflects firm-specific risk rather than cluster-level noise, we conducted a placebo test by randomly
reassigning PDs within clusters, re-training the models and evaluating model performance. Table C.10 in the Appendix compares
the F1-score, Precision–Recall AUC and Matthews Correlation Coefficient of the models trained on the described settings. To further
control for randomness, we repeated the random assignment five times, using a different starting seed each time. Results show that
there is no significant improvement in performance compared to the baseline setting. Moreover, the feature importance relevance of
the randomized PD confirms that the variable makes no contribution to the prediction performance, both in terms of ranking and
relative importance, for all models. This analysis complements our PFI analysis in Section 4.4, which similarly demonstrated the
PD’s importance post-hoc by evaluating the loss of performance when shuffling the variable. Together, these tests mitigate concerns
about unobservable factors or sector-wide signals that may be driving the results.
14 
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Fig. 4. SHAP effects on predicted probability for Random Forest model and defaulted (top) and non-defaulted (bottom) observations only, comparing variable
importance of model calibrated with input variables and with the addition of PD. The colour of the points ranges from red, meaning that the observation has
a low value for the specific variable, to blue, meaning high values for the same variable. The position on the horizontal axis represents the contribution of the
variable in increasing or decreasing the predicted probability of each observation. Values on the left column report the average absolute change in predicted
probability over all observations and the normalized values in parentheses. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

6.3. Stability over time

To address potential overfitting to the 2012–2014 period, we conducted out-of-time validations using both a ‘‘rolling window’’
(train on year 𝑡, test on 𝑡 + 1) and a holdout sample (train on 2012–2013, test on 2014). The models are then cross-validated by
sampling from the defined year(s). Table C.11 in the Appendix compares the F1-score of the models trained on the two described
settings. Results show that both the improvement in performance and the feature importance relevance in the two settings are
15 
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Fig. 5. SHAP average signed effect for Random Forest model and defaulted (top) and non-defaulted (bottom) observations only, comparing variable importance
of model calibrated with input variables and with the addition of PD. Bars report the average effect of input variables on the predicted probabilities for all
observations predicted as 1 and 0, respectively.

comparable to those in the extended setting in Table 5. Therefore, our findings confirm that performance gains are not period-specific.
This stability underscores the model’s capacity to generalize across macroeconomic conditions.

6.4. Disentangling PD contribution

To rigorously disentangle whether the Merton PD’s predictive power stems from unique firm-specific risk signals or merely
correlates with observable characteristics like sector, size, region, etc. as in Tables C.7 and C.8 in the Appendix, we conducted a
three-way ’horse race’ analysis comparing: (a) a baseline model with only the mapped PD (no controls for fixed effects), (b) our
original specification combining PD with fixed effects, and (c) a novel residualized PD model where we first purge the PD of its linear
16 
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Fig. 6. SHAP scatter plots of the most relevant feature for all models. Value on 𝑥-axis represent the feature values and distribution, value on the 𝑦-axis are the
corresponding evaluated SHAP values. Points are coloured according to the true class labels. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

dependence on observables. In particular, for approach (c), first we regressed the raw PD values on fixed effects, then we extracted
the regression residuals (orthogonalized PD) and finally we replaced the original PD with these residuals in the full model (while
excluding fixed effects). Table C.12 reveals that the performance gain from adding fixed effects to PD (positive 𝛥% from (a) to (b))
17 
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nearly offsets the loss from using residualized PD without fixed effects (a negative 𝛥% from (a) to (c)), demonstrating that fixed effects
rimarily capture the observable-correlated portion of PD’s predictive power. The residualized PD retains substantial standalone
redictive power, confirming that the majority of PD’s value derives from firm-specific risk factors orthogonal to sector/size/region.
his decomposition proves PD’s role as an independent source of information beyond observable proxies.

6.5. Industry-specific controls

Matching private firms to public counterparts to estimate default risk may simply capture industry-specific information rather
than firm-specific characteristics. Therefore, a prediction model might overfit industry trends and miss peculiar and sensitive signs
of risk specific to the private firm itself. This can be problematic for firms that deviate from the industry norms.

To address this concern and validate that our models capture both firm-specific and industry-level characteristics, we conduct
additional experiments by incorporating industry-level measures into our analysis. Specifically, we include two industry-level
variables: European 𝛽s by Sector, provided by A. Damodaran,17 a measure of systematic risk at the industry level, and the Industrial
roduction Index18 provided by the Italian National Institute of Statistics (ISTAT), a macroeconomic indicator reflecting industry-

level production trends. We train all prediction models in additional settings where we include both the proposed PD and the two
industry-level indicators separately. Additionally, we evaluated feature importance using the same techniques to assess whether the
relevance of the PD remains stable and to determine the contribution of the added industry-level indicators.

Table C.13 in the Appendix compares the F1-score of the models trained on the described settings. Results show that the
performance improvement due to the inclusion of both PD and the considered industry-level indicators, both in absolute values
nd relative differences, is comparable to the ones in the extended setting with no controls in Table 5. Therefore, our findings

are robust across both settings, with no significant improvement in predictive accuracy when industry-level measures are added.
This suggests that our original model already captures the relevant firm-specific characteristics necessary for accurate default risk
prediction without relying heavily on industry-level trends. Moreover, the relevance of the proposed PD as a feature is comparable
to the one in Table 5, both in ranking and relative importance and for all models. On the other side, the two added indicators show
low relevance in all models, both in ranking and relative importance. This reinforces our conclusion that the model primarily relies
on firm-specific characteristics rather than industry-level trends.

6.6. Market information

As a further robustness check, to assess the validity of the market information provided by the mapping, we fit the models using
the assets volatility and market leverage as additional variables instead of Merton’s PD, as suggested in Campbell et al. (2008).
Table C.14 in the Appendix reports the F1-score of the models with the two alternative measures of market information, showing
similar performance of Merton’s PD. The feature importance, both in ranking and relative contribution, for PFI and SHAP prove that
the results are aligned with the ones obtained with the PD in Table 5. This provides further empirical evidence that our results are
obust to alternative measures of market information, such as stock price volatility and market leverage, consistent with Campbell

et al. (2008).
In addition, we replicate our analysis by controlling for the current leverage of the given unlisted firm, i.e., bank finance, as

ifferent leverage levels may influence the probability of a company defaulting on its obligation, consistent with well-known studies
in the theoretical corporate finance literature (Andrade and Kaplan, 1998). Table C.15 in the Appendix reports the F1-score of the
models with both Merton’s PD and the variable ‘‘Bank Finance’’, again showing a similar performance of the model with Merton’s
PD alone. The feature importance for both PFI and SHAP, in terms of ranking and relative contribution, prove that the results are
aligned with those obtained with the PD in Table 5, whereas Bank Finance is contributing little to the predictive performance.

6.7. Aggregated risk measures

Furthermore, the added value of the MSMEs-peers matching is evaluated by comparing the impact of the firm-wise Merton’s
probability of default with the average PD provided by Cerved, an Italian credit rating agency. As for the previous tests, we replicate
the analysis while replacing Merton’s PD with both the sectorial and geographical Cerved PD. Cerved average PD ranges from 4% to
10%, whereas Mertons’ PD ranges from 0% to 100%. Table C.16 in the Appendix reports the F1-score of the models when replacing

erton’s PD with the ‘‘Average sectorial PD’’ and ‘‘Average geographical PD’’. Both lower F1-score increases and smaller feature
mportance ranking and relative contribution prove that aggregated measures of default are not as powerful as firm-wise ones in

capturing the credit riskiness of a firm.
Finally, to test both the effect of alternative measures of default riskiness and aggregated indicators, we apply the same routine

explained above and replace Merton’s PD with the market implied volatility of FTSE 100 and FTSE MIB Italian indexes. Table C.17
in the Appendix reports the F1-score of the models when replacing Merton’s PD with the ‘‘Market Volatility Implied Index’’ variable.
Again, results show that average market implied volatility cannot adequately capture the uniqueness of each firm’s risk profile.

17 https://pages.stern.nyu.edu/~adamodar/New_Home_Page/datahistory.html
18 http://dati.istat.it/Index.aspx?DataSetCode=DCSC_INDXPRODIND_1
18 
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7. Conclusions

By exploiting a unique and proprietary dataset comprising 10,136 Italian micro-, small-, and mid-sized enterprises (MSMEs)
operating with 113 cooperative banks over the period 2012–2014, this paper investigates the role of market information in predicting
corporate default for unlisted firms by digging into the underlying economic drivers of the improvement in default prediction
of unlisted private firms that comes from the peers’ market-based information. To address our research question, we exploit a
ranular proprietary dataset of 10,136 Italian micro-, small-, and mid-sized enterprises (MSMEs) required to publicly disclose their

financial statements and we propose a novel public–private firms’ mapping approach to investigate whether peers’ market-based
information enhances the accuracy of default prediction for private unlisted firms. Specifically, our novel mapping approach matches
he market information of listed firms with that of private firms by following a data-driven clustering by means of Neural Networks
utoencoder. This process allows us to map the Merton’s Probability of Default (PD) of public peers to the private firms belonging

to the same cluster. We then adopt five statistical techniques, namely linear models, multivariate adaptive regression spline (MARS),
upport vector machine with radial basis function kernel (SVM-RBF), k-Nearest Neighbours (k-NN) and random forest (RF) to predict
orporate default at the private firm-level, and compare the performance of the models with and without the inclusion of the Merton’s

Probability of Default (PD) estimated using the peer’s market-based information. Finally, we make use of Shapley values to assess
the contribution of each predictor. The status of the bank’s clients is predicted using five statistical models.

Our results provide novel evidence that market information represents a crucial indicator in predicting the corporate default of
unlisted firms. Indeed, we show a significant improvement in model performance, both on class-specific (F1-score for defaulted class)
and overall metrics (Area Under the Precision–Recall curve and Matthew’s Correlation Coefficient) when using market information in
credit risk assessment, in addition to accounting information. Moreover, by taking advantage of global and local variable importance
techniques, we prove that the increase in performance is effectively attributable to market information, highlighting its relevant
effect in predicting corporate default. Our results, therefore, confirm that private firms are characterized by noisy accounting data
that, if considered alone, prevent accurate default prediction.

Our study makes important inferences for policy implications. Indeed, our findings shed new light on the opportunity for banks
to potentially integrate their hybrid credit scoring methodologies with market information for credit risk assessments that capture
ommonality between matched public and private, to increase the accuracy of forecasting corporate defaults for unlisted firms. Thus,

the results of this paper could be beneficial for forward-looking financial risk management frameworks (Breden, 2008; Rodriguez
Gonzalez et al., 2018) to mitigate issues related to the noisy information disclosure of MSMEs while reaching accurate credit risk
assessment.

Future extensions stemming from this work could involve not only applying alternative prediction models to provide further
vidence on the importance of market information in predicting corporate default of unlisted firms but also testing the impact of
ynthetic information extracted using the dimensionality reduction technique when replacing the original financial ratios.
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Appendix A. Dataset

See Figs. A.1–A.4 and Tables A.1–A.3.
Table A.1
Correlation matrix of input variables for MSMEs. Legend is below:
 is ‘Oth Reven on Reven’, 2 is ‘Deprec on Costs’, 3 is ‘Pay to Bank on Assets’, 4 is ‘Cashflow on Reven’, 5 is ‘Fixed Asset Cov’, 6 is ‘Labour Cost on Reven’, 7
s ‘ST Pay on Due to Bank’, 8 is ‘Tot Debt on ST Debt’, 9 is ‘Tot Debt on Net Worth’, 10 is ‘Pay to Suppl on Net Worth’, 11 is ‘Pay to Suppl on Tot Debt’, 12
s ‘Inventory Duration’, 13 is ‘Quick Ratio’, 14 is ‘Debt Burden Index’, 15 is ‘Fin Int on Reven’, 16 is ‘Fin Int on Added Val’, 17 is ‘Net Worth on LT Eqt/Pay’,
8 is ‘Net Worth on NW+Invent’, 19 is ‘ROA’, 20 is ‘ROD’, 21 is ‘Working Cap Turnover’, 22 is ‘Turnover’.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1 1

2 0.19*** 1

3 0.11*** 0.38*** 1

4 0.16*** 0.52*** 0.2*** 1

5 −0.05*** −0.18*** −0.16*** −0.01** 1

6 −0.1*** −0.14*** −0.13*** −0.38*** −0.08*** 1

7 −0.04*** −0.13*** −0.28*** −0.06*** 0.14*** 0.05*** 1

8 0.1*** 0.31*** 0.55*** 0.2*** −0.11*** −0.16*** −0.36*** 1

9 0.03*** −0.09*** 0.06*** −0.21*** −0.2*** 0.1*** −0.02** 0.03*** 1

10 −0.01 −0.19*** −0.11*** −0.26*** −0.13*** 0.11*** 0.17*** −0.15*** 0.82*** 1

11 −0.11*** −0.32*** −0.4*** −0.13*** 0.21*** 0 0.55*** −0.52*** −0.03*** 0.29*** 1

12 0.21*** 0 −0.04*** −0.01 0.06*** −0.09*** −0.07*** 0.11*** 0.05*** 0.01** −0.1*** 1

13 −0.04*** 0.05*** −0.12*** 0.16*** 0.18*** −0.09*** −0.16*** 0.35*** −0.15*** −0.21*** −0.19*** −0.17*** 1

14 0 −0.06*** 0.04*** −0.11*** −0.02*** 0.2*** −0.09*** 0.03*** 0.12*** 0.08*** −0.06*** 0.21*** −0.07*** 1

15 0.25*** 0.37*** 0.45*** 0.23*** −0.17*** −0.2*** −0.29*** 0.46*** 0.1*** −0.07*** −0.42*** 0.31*** 0 0.26*** 1

16 0.05*** 0.02** 0.25*** −0.09*** −0.1*** −0.09*** −0.27*** 0.31*** 0.2*** 0.11*** −0.25*** 0.24*** −0.05*** 0.36*** 0.6*** 1

17 −0.05*** 0.02** −0.21*** 0.24*** 0.28*** −0.12*** 0.33*** −0.33*** −0.57*** −0.47*** 0.34*** −0.08*** 0.06*** −0.05*** −0.27*** −0.38*** 1

18 −0.02*** 0.29*** 0.12*** 0.36*** 0.04*** −0.16*** 0.05*** 0.04*** −0.45*** −0.47*** −0.07*** −0.4*** 0.31*** −0.18*** 0 −0.23*** 0.43*** 1

19 −0.08*** −0.04*** −0.12*** 0.52*** 0.19*** −0.29*** 0.08*** −0.09*** −0.21*** −0.16*** 0.14*** −0.16*** 0.15*** −0.31*** −0.2*** −0.26*** 0.31*** 0.23*** 1

20 −0.01 0.06*** 0.13*** 0.06*** −0.14*** −0.08*** −0.3*** 0.22*** 0.02** −0.08*** −0.32*** 0.02*** 0.11*** 0.18*** 0.52*** 0.46*** −0.21*** −0.02*** −0.03*** 1

21 −0.15*** −0.02** 0.34*** 0 −0.08*** 0.02*** 0.02** 0.03*** −0.06*** −0.06*** 0 −0.28*** −0.17*** −0.1*** −0.16*** −0.11*** 0.04*** 0.13*** 0.13*** 0.1*** 1

22 −0.17*** −0.4*** −0.25*** −0.25*** 0.2*** 0.09*** 0.18*** −0.26*** 0.02** 0.14*** 0.3*** −0.3*** −0.07*** −0.11*** −0.47*** −0.2*** 0.08*** −0.09*** 0.25*** −0.11*** 0.41*** 1

Table A.2
List of input variables for peers dataset.

Variable Description Mean St.Dev. Min 5th perc Median 95th perc Max

1 - Oth Reven on Reven Other revenues on revenues 0.03 0.08 0 0 0.01 0.08 0.93
2 - Deprec on Costs Depreciation on costs 0.08 0.11 0 0 0.05 0.31 0.72
3 - Pay to Bank on Assets Payables to banks on current assets −1.48 9.64 −90.58 −10.6 0.19 2.74 16.84
4 - Cashflow on Reven Cash flow on revenues −3.4 41.62 −526.34 −0.31 0.05 0.26 0.71
5 - Fixed Asset Cov Fixed asset coverage 14.52 137.75 −0.19 0.49 1.13 2.86 1727.34
6 - Labour Cost on Reven Labour cost on revenues −0.06 10.79 −125.98 −0.05 0.69 1.43 37.86
7 - ST Pay on Due to Bank Short-term payables on amounts due to banks 26.86 81.79 0.51 0.97 4.31 100 924.29
8 - Tot Debt on ST Debt Total debt on short-term debts 1.73 1.05 1.01 1.07 1.38 3.37 7.28
9 - Tot Debt on Net Worth Total debt on net worth 2.42 9.67 −72.91 0.24 1.61 6.72 68.4
10 - Pay to Suppl on Net Worth Payables to suppliers on Net worth 0.71 2.28 −6.31 0.04 0.35 1.84 17.8
11 - Pay to Suppl on Tot Debt Payables to suppliers on Total debt 0.28 0.17 0.02 0.04 0.25 0.59 0.75
12 - Inventory Duration Inventory duration 0.79 1.15 0 0 0.5 2.26 7.13
13 - Quick Ratio Quick ratio 1.25 1.07 0.09 0.3 1 2.47 9.41
14 - Debt Burden Index Debt burden index 0.28 3.07 −16.8 −1.65 0.16 1.58 30.5
15 - Fin Int on Reven Financial interest on revenues 3.2 38.5 0 0 0.02 0.39 486.94
16 - Fin Int on Added Val Financial interest on added value −0.19 3.05 −28.69 0 0.07 0.7 5.86
17 - Net Worth on LT Eqt/Pay Net worth on long-term equity and payables 0.62 0.48 −3.82 0.25 0.7 0.96 0.99
18 - Net Worth on NW+Invent Net worth on net worth and inventories 0.75 0.37 −2.92 0.42 0.76 1 2.35
19 - ROA Return on Assets 0 0.09 −0.48 −0.18 0.01 0.09 0.2
20 - ROD Return on Debt 0.11 0.31 −0.15 −0.04 0 1 1
21 - Working Cap Turnover Working capital turnover 2.18 5.61 0 0.13 1.25 5.43 69.26
22 - Turnover Turnover normalized by Total Assets 0.8 0.46 0 0.1 0.78 1.64 2.12
Total Assets Total Assets (EUR Mln) 201.85 329.77 4.91 9.45 72.93 775.71 1621.96
Total Liabilities Total Liabilities (EUR Mln) 66.82 243.67 0 0 7.42 118.94 1742.64
Volatility Assets Volatility 0.52 0.82 0.01 0.04 0.21 2.31 4.18
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Fig. A.1. Distribution of input variables for Peers and MSMEs. For every variable, the Kolmogorov–Smirnov 𝑝-value is evaluated when testing the alternative
hypothesis of samples coming from different populations.

Fig. A.2. Distribution of the bank debt level of the MSMEs compared to the Peers group. The Kolmogorov–Smirnov 𝑝-value is evaluated when testing the
alternative hypothesis of samples coming from different populations.
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Fig. A.3. Distribution of input variables for MSMEs split by target variable.

Table A.3
Distribution of clients that are persistent over time, i.e., the target is always 0
or 1, compared with clients that move from 0 to 1 and vice-versa.
Target Total clients Total banks

0 17,943 9228
1 876 446
0 (0->1) 388 388
0 (1->0) 74 74
1 (0->1) 388
1 (1->0) 74

Total 19,743 10,136
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Fig. A.4. Distribution of relative changes over the years of each input variable divided by clients’ behaviour. Blue and red distributions represent the clients
with persistent targets of 0 and 1, respectively; green and yellow distributions represent the clients that moved from 0 to 1 and vice-versa, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Appendix B. Matching unlisted firms

See Figs. B.5–B.8.

Fig. B.5. 3D visualization of five clusters for the 22-dimensional original data. Visual embedding is evaluated using the UMAP algorithm. Small points are
MSMEs observations, bold spheres are peers’ observations.
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Fig. B.6. Comparison of the distribution of input variables for MSMEs with an average of the assigned peers in each cluster. Colours reflect the ones of Fig. 1,
and bold crosses represent the peers’ average.
25 



A. Bitetto et al. Journal of Corporate Finance 94 (2025) 102830 
Fig. B.7. Comparison of the distribution of embedding variables for MSMEs with an average of the assigned peers in each cluster. Colours reflect the ones of
Fig. 1, and bold crosses represent the peers’ average.
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Fig. B.8. Box-plot comparison for original variables grouped by clusters evaluated on the embedding space. Values on 𝑥-axis report the total of significant
differences for the cluster from the others, evaluated via the post-hoc Dunn test.
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Appendix C. Prediction of default

See Tables C.4–C.17 and Fig. C.9.

Fig. C.9. Comparison of Precision–Recall curves for all models calibrated with input variables only and with the addition of PD, with no controls for fixed
effects. Area Under the Precision–Recall curve is reported in the legend.

Table C.4
Optimal hyper-parameters from the tuning of neural networks. Tuning is performed with Cross-Validation, and the minimum
reconstruction error is used as the optimality criterion. For the AE model we tune the layers’ structure 𝑙𝑆 (both the number of
layers and neurons), the size of the bottleneck layer 𝑙𝐵 , the activation functions 𝑎𝑐 𝑡𝑆 and 𝑎𝑐 𝑡𝐵 used in 𝑙𝑆 and 𝑙𝐵 , respectively, the
number of epochs 𝑛𝐸 and batch size 𝑠 used during the training. For the AE-LSTM model we tune the recurrent blocks’ structure
𝑙𝑆 (both number of layers and number of neurons), the size of the bottleneck layer 𝑙𝐵 , the type of recurrent unit 𝑡𝑦𝑝𝑒rec used in
all recurrent blocks, the 𝛼 share of 𝐿1 and 𝐿2 regularization for the weights in each block, the number of epochs 𝑛𝐸 and batch
size 𝑠 used during the training. 𝑡𝑦𝑝𝑒rec can be 𝐿𝑆 𝑇 𝑀 for Long-Short Term Memory or 𝐺 𝑅𝑈 for Gated Recurrent Unit.
Algorithm Hyper-parameters

AE 𝑙𝑆 = [20, 16, 14, 12], 𝑙𝐵 = 6, 𝑎𝑐 𝑡𝑆 = tanh, 𝑎𝑐 𝑡𝐵 = ReLU, 𝑛𝐸 = 500, 𝑠 = 500
AE-LSTM 𝑙𝑆 = [55, 31, 17], 𝑙𝐵 = 10, 𝛼 = 0.2, 𝑡𝑦𝑝𝑒𝑟𝑒𝑐 = GRU, 𝑛𝐸 = 500, 𝑠 = 100
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Table C.5
Optimal hyper-parameters from the tuning of each model on both the dataset with and without the Merton’s PD. Tuning is performed with Stratified Cross-

alidation, and the maximum cross-validation F1 score is used as the optimality criterion. For the Elastic-Net model, we tune the 𝛼 parameter that represents
he share of 𝐿1 and 𝐿2 regularization; for the MARS model we tune the degree 𝑑 of the polynomial functions; for SVM-RBF model we tune the regularization
ost 𝐶 and the scale of RBF kernel 𝜎; for the k-NN model we tune the number of neighbours 𝑘; and for the Random Forest model, we tune the number of trees
tree, the number 𝑛var of variables randomly sampled as candidates at each split and the minimum size 𝑠 of observation in each node.
Algorithm Hyperparameter range Baseline With PD

Elastic-Net 𝛼 ∈ [0, 1] 𝛼 = 0.4 𝛼 = 0.06
MARS 𝑑 ∈ {1,… , 6} 𝑑 = 2 𝑑 = 4
SVM-RBF 𝐶 , 𝜎 ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000} 𝐶 = 100, 𝜎 = 0.001 𝐶 = 1000, 𝜎 = 0.0001
k-NN 𝑑 ∈ {1,… , 100} 𝑘 = 27 𝐶 = 1000, 𝑘 = 31
Random Forest 𝑛tree ∈ {50,… , 500}, 𝑛var ∈ {1,… , 21}, 𝑠 ∈∈ {1,… , 200} 𝑛tree = 262, 𝑛var = 10, 𝑠 = 40 𝑛tree = 371, 𝑛var = 9, 𝑠 = 55

Table C.6
F1-score, Precision–Recall AUC and Matthews Correlation Coefficient for all considered models on a subset of the MSMEs sample, including only the ones that
have a credit relationship with a single bank, for a total of 7155 firms. Values refer to the performance of the model calibrated on the entire dataset. Values
in parentheses refer to the average performance of validation folds of Cross-Validation. 𝛥% is the relative improvement in performance between the ‘‘Baseline’’
and ‘‘With PD’’ settings. The statistical significance of the difference is evaluated via permutation test. The rank of importance for PD variable is reported in the
last two columns for both Permutation Feature Importance and SHAP techniques. Values in parentheses refer to the relative normalized importance.

Algorithm F1
(Cross-Val)

PRAUC
(Cross-Val)

MCC
(Cross-Val)

PD Feature Imp. Rank
(Relative %)

Baseline With PD 𝛥% Baseline With PD 𝛥% Baseline With PD 𝛥% PFI SHAP

Elastic-net 31%
(30.3 ± 1.6%)

31.5%
(30.1 ± 1.1%)

1.8%** 21.6%
(20.5 ± 0.7%)

21.3%
(21 ± 1.4%)

−1.2%*** 25.4%
(24.6 ± 1%)

25.5%
(24.8 ± 1%)

0.2%* 1
(61.4%)

1
(39.3%)

MARS 43.5%
(41.6 ± 1.3%)

43.9%
(42.7 ± 1.4%)

1%* 41.5%
(39.7 ± 0.9%)

40.4%
(38.9 ± 0.9%)

−2.5%* 37%
(35.7 ± 1.5%)

38.4%
(36.4 ± 1%)

3.6% 1
(39.6%)

1
(30.6%)

SVM-RBF 51.6%
(50.4 ± 1.4%)

53%
(52 ± 1.4%)

2.9%* 37.1%
(36 ± 1.5%)

38.4%
(35.8 ± 0.7%)

3.7%*** 45.1%
(42.3 ± 0.8%)

46.1%
(44.6 ± 1.4%)

2.2%** 1
(20.8%)

2
(16.2%)

k-NN 69.9%
(68.5 ± 1.1%)

72.2%
(71.5 ± 1.3%)

3.3%** 73.2%
(70.6 ± 1.7%)

77.4%
(74 ± 1.4%)

5.8%*** 67.1%
(63.9 ± 0.8%)

67.3%
(66 ± 1.3%)

0.3%** 1
(19%)

2
(12.3%)

Random
Forest

87%
(84.4 ± 0.8%)

93.1%
(90.1 ± 0.8%)

7%* 91.2%
(86.2 ± 0.8%)

94.3%
(91 ± 1.3%)

3.5%*** 85.9%
(83.8 ± 1.4%)

93.4%
(92 ± 1.5%)

8.8%* 1
(24.9%)

1
(24.5%)

Notes: The *, ** and *** symbols denote the p-values at 10th, 5th and 1st significance level, respectively.
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Table C.7
Comparison of F1-score for all considered models calibrated on a dataset with input variables only and with the addition of PD and with or without Static
ontrols for fixed effects. Values refer to the performance of the model calibrated on the entire dataset. Values in parentheses refer to the average performance

of validation folds of Cross-Validation. 𝛥% is the relative improvement in performance between the ‘‘Baseline’’ and ‘‘With PD’’ settings. The statistical significance
of the difference is evaluated via a permutation test with 5000 repetitions. The rank of importance for PD variable is reported in the last two columns for both
ermutation Feature Importance and SHAP techniques. Values in parentheses refer to the relative normalized importance.

Control Algorithm F1
(Cross-Val)

PD Feature Importance
Rank (Relative %)

Baseline With PD 𝛥% PFI SHAP

St
at

ic

Dummy Industry

Elastic-net 31.1%
(30.1 ± 1.8%)

31.5%
(30.8 ± 1.2%)

1.5%** 1
(58.1%)

1
(39%)

MARS 44.3%
(42.7 ± 1.2%)

44.6%
(42.7 ± 1.5%)

0.7%* 1
(37.1%)

1
(30.6%)

SVM-RBF 52.6%
(50.5 ± 1.4%)

54%
(52.6 ± 1.3%)

2.7%* 1
(20%)

2
(15.8%)

k-NN 71.3%
(68.5 ± 1.1%)

73.7%
(71.8 ± 1.3%)

3.3%** 1
(8.8%)

2
(12%)

Random Forest 89.4%
(85.7 ± 0.8%)

96.3%
(93.3 ± 0.7%)

7.7%* 1
(27.3%)

1
(24.1%)

Firm Type

Elastic-net 31.2%
(30.2 ± 1.8%)

31.5%
(30.7 ± 1.1%)

1.1%** 1
(61.8%)

1
(38.2%)

MARS 44.2%
(42.6 ± 1.2%)

44.6%
(42.9 ± 1.5%)

0.8%* 1
(38.4%)

1
(32.4%)

SVM-RBF 52.3%
(50.6 ± 1.4%)

53.7%
(52.4 ± 1.2%)

2.6%* 1
(21.1%)

2
(16.8%)

k-NN 71.8%
(68.7 ± 1.2%)

73.5%
(72.2 ± 1.5%)

2.4%** 1
(8.9%)

2
(11.9%)

Random Forest 89.9%
(85.2 ± 0.9%)

96.7%
(93.3 ± 0.9%)

7.6%* 1
(26.8%)

1
(24.5%)

Industrial Sector

Elastic-net 31.3%
(30.2 ± 1.6%)

31.5%
(30.7 ± 1.1%)

0.5%** 1
(63.2%)

1
(39.4%)

MARS 44%
(42.5 ± 1.2%)

44.8%
(42.5 ± 1.5%)

1.8%* 1
(39.6%)

1
(30.2%)

SVM-RBF 52.1%
(50.5 ± 1.4%)

53.9%
(52.4 ± 1.3%)

3.3%* 1
(21.2%)

2
(16.4%)

k-NN 71.6%
(68.4 ± 1.1%)

73.9%
(71.7 ± 1.4%)

3.2%** 1
(9.4%)

2
(12.2%)

Random Forest 90%
(85.4 ± 1%)

96.8%
(93.2 ± 0.8%)

7.5%* 1
(26.3%)

1
(23.4%)

Region

Elastic-net 31.1%
(30.3 ± 1.7%)

31.4%
(30.6 ± 1.1%)

0.9%** 1
(57.2%)

1
(35.9%)

MARS 44.3%
(42.4 ± 1.3%)

44.6%
(42.6 ± 1.5%)

0.7%* 1
(36.2%)

1
(31.9%)

SVM-RBF 52.5%
(50.4 ± 1.3%)

54.1%
(52.5 ± 1.4%)

3%* 1
(18.9%)

2
(16%)

k-NN 71.4%
(68.7 ± 1.3%)

73.4%
(72 ± 1.5%)

2.9%** 1
(8.8%)

2
(12.5%)

Random Forest 89.3%
(85.5 ± 0.8%)

96.9%
(93.1 ± 0.9%)

8.5%* 1
(25.8%)

1
(25.4%)

Notes: The *, ** and *** symbols denote the p-values at 10th, 5th and 1st significance level, respectively.
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Table C.8
Comparison of F1-score for all considered models calibrated on a dataset with input variables only and with the addition of PD and with or without Dynamic
controls for fixed effects. Values refer to the performance of the model calibrated on the entire dataset. Values in parentheses refer to the average performance
of validation folds of Cross-Validation. 𝛥% is the relative improvement in performance between the ‘‘Baseline’’ and ‘‘With PD’’ settings. The statistical significance
of the difference is evaluated via a permutation test with 5000 repetitions. The rank of importance for PD variable is reported in the last two columns for both
Permutation Feature Importance and SHAP techniques. Values in parentheses refer to the relative normalized importance.

Control Algorithm F1
(Cross-Val)

PD Feature Importance
Rank (Relative %)

Baseline With PD 𝛥% PFI SHAP

Dy
na

m
ic

Firm Size

Elastic-net 31.5%
(30.5 ± 1.7%)

31.5%
(31.2 ± 1.1%)

0.1%** 1
(60.9%)

1
(40.1%)

MARS 44.3%
(43.2 ± 1.3%)

44.6%
(43.1 ± 1.6%)

0.6%* 1
(37.3%)

1
(34%)

SVM-RBF 52.3%
(51 ± 1.3%)

53.9%
(53.1 ± 1.3%)

3.1%* 1
(19.9%)

2
(17%)

k-NN 72.5%
(68.3 ± 1.3%)

74.7%
(71.8 ± 1.4%)

2.9%** 1
(8.8%)

2
(12.4%)

Random Forest 90.3%
(85.1 ± 0.9%)

96.6%
(93.4 ± 0.8%)

7%* 1
(25.2%)

1
(25.9%)

Funding Risk

Elastic-net 31.1%
(30.5 ± 1.9%)

31.4%
(31 ± 1.1%)

0.8%** 1
(62.5%)

1
(36%)

MARS 44.8%
(42.9 ± 1.3%)

45.1%
(43.3 ± 1.6%)

0.6%* 1
(38.8%)

1
(31.4%)

SVM-RBF 53%
(50.7 ± 1.3%)

54.3%
(53.2 ± 1.4%)

2.5%* 1
(20.1%)

2
(16.6%)

k-NN 72.1%
(69 ± 1.2%)

73.8%
(72.4 ± 1.3%)

2.3%** 1
(9.4%)

2
(12.7%)

Random Forest 90.5%
(85.4 ± 1%)

96.8%
(93.2 ± 0.8%)

6.9%* 1
(24.6%)

1
(24.7%)

Notes: The *, ** and *** symbols denote the p-values at 10th, 5th and 1st significance level, respectively.

Table C.9
Comparison of F1-score for all considered models when predicting the default flag with the original 22 variables (first column) and with the embedding evaluated
through the AE, RobPCA and AE-LSTM techniques. Values refer to the performance of the model calibrated on the entire dataset. Values in parentheses refer to
the average performance of validation folds of Cross-Validation. 𝛥% is the relative improvement in performance between the ‘‘Baseline’’ and ‘‘With PD’’ settings.
The statistical significance of the difference is evaluated via a permutation test with 5000 repetitions.

Algorithm Embedding

22 features AE RobPCA AE-LSTM

F1 F1 𝛥% F1 𝛥% F1 𝛥%

Elastic-net 30.7%
(29.8 ± 1.7%)

32.1%
(31.7 ± 1.6%)

4.7%* 28.5%
(27.8 ± 1.6%)

−7.3%* 29.9%
(28.6 ± 1.7%)

−2.8%*

MARS 43.6%
(42 ± 1.2%)

45.9%
(43.5 ± 1.2%)

5.2%** 40.2%
(38.3 ± 1.2%)

−7.7%** 40.7%
(40 ± 1.1%)

−6.6%**

SVM-RBF 51.6%
(49.7 ± 1.3%)

48.6%
(46.5 ± 1.3%)

−5.8%** 47.6%
(45.4 ± 1.4%)

−7.8%** 46.4%
(45.3 ± 1.3%)

−10.1%**

k-NN 70.5%
(67.5 ± 1.2%)

65.8%
(63.7 ± 1.2%)

−6.7%* 65.2%
(61.4 ± 1.3%)

−7.5%* 64.4%
(62 ± 1.2%)

−8.7%*

Random Forest 88.4%
(84.1 ± 0.9%)

82.4%
(79 ± 1%)

−6.8%* 81.7%
(77.9 ± 0.9%)

−7.6%* 81.5%
(77.6 ± 0.9%)

−7.8%*

Notes: The *, ** and *** symbols denote the p-values at 10th, 5th and 1st significance level, respectively.
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Table C.10
Comparison of F1-score, Precision–Recall AUC and Matthews Correlation Coefficient for all considered models when predicting the default flag with the original
variables only and when including a randomized PD. Values refer to the performance of the model calibrated on the entire dataset. Values in parentheses refer
to the average performance of validation folds of Cross-Validation. 𝛥% is the relative improvement in performance between the ‘‘Baseline’’ and ‘‘Random PD’’
settings. The statistical significance of the difference is evaluated via a permutation test with 5000 repetitions. The rank of importance for PD variable is reported
n the last two columns for both Permutation Feature Importance and SHAP techniques. Values in parentheses refer to the relative normalized importance.
Algorithm F1

(Cross-Val)
PRAUC
(Cross-Val)

MCC
(Cross-Val)

PD Feature Importance
Rank (Relative %)

Baseline Random PD 𝛥% Baseline Random PD 𝛥% Baseline Random PD 𝛥% PFI SHAP

Elastic-net 30.7%
(29.8 ± 1.5%)

30.7%
(29.9 ± 1.6%)

0%*** 21.7%
(21 ± 1.7%)

21.7%
(21.1 ± 1.6%)

0.2%* 25.6%
(24.9 ± 1%)

25.6%
(25 ± 0.9%)

0%*** 18
(3.4%)

13
(2.2%)

MARS 43.6%
(42.7 ± 1.6%)

43.8%
(42.9 ± 1.7%)

0.4%*** 40.7%
(39.1 ± 0.7%)

40.8%
(39.2 ± 0.7%)

0.1%* 37.7%
(35.6 ± 1.3%)

37.8%
(35.7 ± 1.2%)

0.3% 19
(1.1%)

15
(2.9%)

SVM-RBF 51.6%
(49.2 ± 1.2%)

51.7%
(49.2 ± 1.1%)

0.1% 36.6%
(34.8 ± 1.5%)

36.7%
(34.9 ± 1.5%)

0.2%** 45.8%
(43.4 ± 1.6%)

45.8%
(43.4 ± 1.5%)

0%*** 16
(2.3%)

16
(1.6%)

k-NN 70.5%
(66.8 ± 1.2%)

70.6%
(67 ± 1.1%)

0.1%*** 74%
(69.6 ± 0.8%)

74%
(69.6 ± 0.8%)

0%* 66.9%
(63.3 ± 1.3%)

67%
(63.4 ± 1.4%)

0.1% 16
(1%)

15
(2.7%)

Random
Forest

88.4%
(83.8 ± 0.7%)

88.6%
(84.2 ± 0.7%)

0.2%* 93.3%
(91.3 ± 1.3%)

93.5%
(91.5 ± 1.3%)

0.2%*** 87%
(81.8 ± 0.7%)

87.3%
(81.9 ± 0.7%)

0.4% 14
(2%)

15
(1.5%)

Notes: The *, ** and *** symbols denote the p-values at 10th, 5th and 1st significance level, respectively.

Table C.11
Comparison of F1-score for all considered models when predicting the default flag with the original variables only and when including the PD and when the
train-test procedure is evaluated in a year-on-year rolling window or training on 2012–2013 and testing on 2014. Values in parentheses refer to the average
erformance of validation folds of Cross-Validation. 𝛥% is the relative improvement in performance between the ‘‘Baseline’’ and ‘‘With PD’’ settings. The statistical
ignificance of the difference is evaluated via a permutation test with 5000 repetitions. The rank of importance for PD variable is reported in the last two columns
or both Permutation Feature Importance and SHAP techniques. Values in parentheses refer to the relative normalized importance.
Algorithm F1

(Cross-Val)
Feature Importance
Rank
(Relative %)

Rolling window 2012–2013 vs 2014 PFI SHAP

Baseline With PD 𝛥% Baseline With PD 𝛥% Rolling
window

2012–2013
vs 2014

Rolling
window

2012–2013
vs 2014

Elastic-net 30.7%
(29.8 ± 1.5%)

30.9%
(29.5 ± 1.2%)

0.5%* 30.7%
(29.8 ± 1.5%)

30.7%
(30.7 ± 1.3%)

0.2%** 1
(61.8%)

1
(61.4%)

1
(37.9%)

1
(38%)

MARS 43.6%
(42.7 ± 1.6%)

43.7%
(42.3 ± 1.2%)

0.1%*** 43.6%
(42.7 ± 1.6%)

44.2%
(44.2 ± 1.3%)

1.4% 1
(38.4%)

1
(38.2%)

1
(31.9%)

1
(31.8%)

SVM-RBF 51.6%
(49.2 ± 1.2%)

52.4%
(52.4 ± 1.7%)

1.5%** 51.6%
(49.2 ± 1.2%)

53.3%
(53.3 ± 1.5%)

3.3%*** 1
(19.8%)

1
(20.1%)

2
(16.8%)

2
(16.4%)

k-NN 70.5%
(66.8 ± 1.2%)

71.8%
(71.8 ± 1.1%)

1.9%* 70.5%
(66.8 ± 1.2%)

72.7%
(72.7 ± 1.1%)

3.1%* 1
(18.8%)

1
(19.2%)

2
(12.1%)

2
(12.1%)

Random Forest 88.4%
(83.8 ± 0.7%)

92.7%
(92.7 ± 1%)

4.8%** 88.4%
(83.8 ± 0.7%)

94.7%
(94.7 ± 1%)

7.1%* 1
(25.5%)

1
(26.2%)

1
(24.8%)

1
(24.6%)

Notes: The *, ** and *** symbols denote the p-values at 10th, 5th and 1st significance level, respectively.
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Table C.12
Comparison of F1-score only for k-NN and Random Forest models calibrated on a dataset with the addition of PD, with the PD and Static or Dynamic controls for
ixed effects and with the PD ‘‘residualized’’ on the controls. Values refer to the performance of the model calibrated on the entire dataset. Values in parentheses
efer to the average performance of validation folds of Cross-Validation. 𝛥% is the relative improvement in performance between the ‘‘With PD’’ and ‘‘With PD
nd Fix. Eff.’’ and ‘‘With PD’’ and ‘‘With PD Residualized’’ settings. The statistical significance of the difference is evaluated via a permutation test with 5000

repetitions.
Control Algorithm F1

(Cross-Val)

With PD With PD
and Fix. Eff.

𝛥% With PD With PD
Residualized

𝛥%

St
at

ic

Dummy Industry k-NN 72.6%
(70.8 ± 1.4%)

73.7%
(71.8 ± 1.4%)

1.5%** 72.6%
(70.8 ± 1.4%)

71.4%
(69.9 ± 1.4%)

−1.6%**

Random Forest 95%
(91.9 ± 0.8%)

96.3%
(93.3 ± 0.8%)

1.4%* 95%
(91.9 ± 0.8%)

93.2%
(90.6 ± 0.9%)

−1.9%*

Firm Type k-NN 72.6%
(70.8 ± 1.4%)

73.5%
(72.2 ± 1.4%)

1.3%** 72.6%
(70.8 ± 1.4%)

72.1%
(70.5 ± 1.5%)

−0.6%**

Random Forest 95%
(91.9 ± 0.8%)

96.7%
(93.3 ± 0.8%)

1.8%* 95%
(91.9 ± 0.8%)

93.4%
(89.8 ± 0.7%)

−1.6%*

Industrial Sector k-NN 72.6%
(70.8 ± 1.4%)

73.9%
(71.7 ± 1.4%)

1.7%** 72.6%
(70.8 ± 1.4%)

71.8%
(70.1 ± 1.4%)

−1.1%**

Random Forest 95%
(91.9 ± 0.8%)

96.8%
(93.2 ± 0.8%)

1.9%* 95%
(91.9 ± 0.8%)

93.7%
(90.6 ± 0.8%)

−1.3%*

Region k-NN 72.6%
(70.8 ± 1.4%)

73.4%
(72 ± 1.4%)

1.2%** 72.6%
(70.8 ± 1.4%)

72.2%
(70.4 ± 1.3%)

−0.6%**

Random Forest 95%
(91.9 ± 0.8%)

96.9%
(93.1 ± 0.8%)

2%* 95%
(91.9 ± 0.8%)

92.7%
(89.7 ± 0.8%)

−2.4%*

Dy
na

m
ic

Firm Size k-NN 72.6%
(70.8 ± 1.4%)

74.7%
(71.8 ± 1.4%)

2.8%** 72.6%
(70.8 ± 1.4%)

70.6%
(68.3 ± 1.4%)

−2.8%**

Random Forest 95%
(91.9 ± 0.8%)

96.6%
(93.4 ± 0.8%)

1.7%* 95%
(91.9 ± 0.8%)

93.6%
(89.5 ± 0.8%)

−1.4%*

Funding Risk k-NN 72.6%
(70.8 ± 1.4%)

73.8%
(72.4 ± 1.4%)

1.7%** 72.6%
(70.8 ± 1.4%)

71.3%
(69 ± 1.3%)

−1.8%**

Random Forest 95%
(91.9 ± 0.8%)

96.8%
(93.2 ± 0.8%)

1.9%* 95%
(91.9 ± 0.8%)

93.8%
(90.2 ± 0.9%)

−1.2%*

Notes: The *, ** and *** symbols denote the p-values at 10th, 5th and 1st significance level, respectively.

Table C.13
Comparison of F1-score for all considered models when predicting the default flag with the original variables only and when including the PD and two
ndustry-level controls: European 𝛽s by Sector and Italian Industrial Production Index. Values refer to the performance of the model calibrated on the entire
ataset. Values in parentheses refer to the average performance of validation folds of Cross-Validation. 𝛥% is the relative improvement in performance between
he ‘‘Baseline’’ and ‘‘With PD’’ settings. The statistical significance of the difference is evaluated via a permutation test with 5000 repetitions. The rank of
mportance for PD variable is reported in the last two columns for both Permutation Feature Importance and SHAP techniques. Values in parentheses refer to
he relative normalized importance.
Algorithm F1

(Cross-Val)
Feature Importance Rank
(Relative %)

Sector 𝛽 Ind. Prod. PFI SHAP

Baseline With PD
and Sector 𝛽

𝛥% Baseline With PD
and Ind. Prod.

𝛥% PD Ind.
Prod.

Ind.
Prod.

PD Sector 𝛽 Ind.
Prod.

Elastic-net 30.9%
(30 ± 1.5%)

31.2%
(30.6 ± 1%)

1.1%** 30.4%
(29.4 ± 1.7%)

30.6%
(29.9 ± 1.1%)

0.8%** 1
(63%)

6
(7.9%)

10
(5.6%)

1
(36.8%)

8
(4.6%)

9
(3.6%)

MARS 44%
(42.4 ± 1.3%)

44.4%
(42.3 ± 1.4%)

1%* 43%
(41.4 ± 1.2%)

43.6%
(41.6 ± 1.6%)

1.4%* 1
(36.6%)

6
(4.1%)

11
(4%)

1
(30.9%)

10
(6.2%)

10
(3.8%)

SVM-RBF 52.1%
(50 ± 1.3%)

53.5%
(52.1 ± 1.4%)

2.7%* 51%
(49.1 ± 1.2%)

52.4%
(51.1 ± 1.2%)

2.8%* 1
(20.9%)

9
(2.6%)

8
(2%)

2
(16.9%)

7
(3.4%)

10
(1.7%)

k-NN 70.9%
(68 ± 1.1%)

73.1%
(71.3 ± 1.3%)

3.1%** 69.7%
(66.6 ± 1.1%)

71.7%
(70 ± 1.5%)

2.9%** 1
(18.9%)

10
(1.1%)

8
(1.2%)

2
(11.7%)

7
(1.3%)

13
(1.6%)

Random
Forest

88.9%
(84.6 ± 0.9%)

95.7%
(92.5 ± 0.8%)

7.7%* 87.2%
(82.9 ± 0.9%)

93.9%
(90.8 ± 0.9%)

7.7%* 1
(25.3%)

9
(5.1%)

10
(2.5%)

1
(24.6%)

10
(3.5%)

11
(2.7%)

Notes: The *, ** and *** symbols denote the p-values at 10th, 5th and 1st significance level, respectively.
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Table C.14
Comparison of F1-score for all considered models when predicting the default flag with the original variables only and when replacing the PD with two alternative

easures for market information: Volatility and Leverage. Values refer to the performance of the model calibrated on the entire dataset. Values in parentheses
efer to the average performance of validation folds of Cross-Validation. 𝛥% is the relative improvement in performance between the ‘‘Baseline’’ and ‘‘With PD’’
ettings. The statistical significance of the difference is evaluated via a permutation test with 5000 repetitions. The rank of importance for PD variable is reported
n the last two columns for both Permutation Feature Importance and SHAP techniques. Values in parentheses refer to the relative normalized importance.
Algorithm F1

(Cross-Val)
Feature Importance Rank
(Relative %)

Volatility Leverage PFI SHAP

Baseline With Volatility 𝛥% Baseline With Leverage 𝛥% Volatility Leverage Volatility Leverage

Elastic-net 30.7%
(29.8 ± 1.7%)

30.8%
(29.9 ± 1.2%)

0.1%** 30.7%
(29.8 ± 1.7%)

30.7%
(29.7 ± 1.1%)

0.1%* 1
(60%)

1
(61.2%)

1
(37.8%)

1
(37.8%)

MARS 43.6%
(42 ± 1.2%)

44.3%
(42.7 ± 1.5%)

1.5%* 43.6%
(42 ± 1.2%)

44.4%
(43.7 ± 1.5%)

1.8%*** 1
(38.7%)

1
(39.2%)

1
(32%)

1
(32.5%)

SVM-RBF 51.6%
(49.7 ± 1.3%)

52.5%
(52.5 ± 1.3%)

1.8%** 51.6%
(49.7 ± 1.3%)

51.8%
(50.6 ± 1.2%)

0.5%*** 1
(20.5%)

1
(20%)

2
(16.3%)

2
(16.3%)

k-NN 70.5%
(67.5 ± 1.2%)

71.2%
(71.2 ± 1.3%)

1%* 70.5%
(67.5 ± 1.2%)

70.6%
(70.6 ± 1.5%)

0.1%* 1
(19.1%)

1
(19.4%)

2
(12.4%)

2
(12.2%)

Random
Forest

88.4%
(84.1 ± 0.9%)

92.7%
(92.7 ± 0.7%)

4.9%*** 88.4%
(84.1 ± 0.9%)

94.2%
(94.2 ± 0.9%)

6.5% 1
(26.3%)

1
(25.6%)

1
(24.2%)

1
(24.8%)

Notes: The *, ** and *** symbols denote the p-values at 10th, 5th and 1st significance level, respectively.

Table C.15
Comparison of F1-score for all considered models when predicting the default flag with the original variables only and when including both Merton’s PD and the
‘‘Bank Finance’’ variable. Values refer to the performance of the model calibrated on the entire dataset. Values in parentheses refer to the average performance
of validation folds of Cross-Validation. 𝛥% is the relative improvement in performance between the ‘‘Baseline’’ and ‘‘With PD’’ settings. The statistical significance
of the difference is evaluated via a permutation test with 5000 repetitions. The rank of importance for PD variable is reported in the last two columns for both
ermutation Feature Importance and SHAP techniques. Values in parentheses refer to the relative normalized importance.
Algorithm F1

(Cross-Val)
Feature Importance Rank
(Relative %)

PD and Bank Finance PFI SHAP

Baseline With PD and
Bank Finance

𝛥% PD Bank Finance PD Bank Finance

Elastic-net 30.7%
(29.1 ± 1.6%)

30.9%
(29.9 ± 1.1%)

0.6%** 1
(61.6%)

5
(7.3%)

1
(38.3%)

5
(5.1%)

MARS 41.9%
(40.7 ± 1.2%)

43.4%
(43.4 ± 1.5%)

3.7% 1
(38.3%)

5
(4.6%)

1
(32.3%)

5
(3.4%)

SVM-RBF 49.7%
(49 ± 1.4%)

52%
(52 ± 1.3%)

4.7%* 1
(20.2%)

6
(3%)

2
(16.5%)

8
(3.3%)

k-NN 69.2%
(65.6 ± 1.1%)

71.8%
(71.8 ± 1.4%)

3.7% 1
(18.9%)

6
(2.9%)

2
(12.2%)

7
(1.8%)

Random Forest 87.9%
(82.4 ± 1%)

94.5%
(94.5 ± 0.8%)

7.6%** 1
(26%)

7
(1%)

1
(24.8%)

6
(1.2%)

Notes: The *, ** and *** symbols denote the p-values at 10th, 5th and 1st significance level, respectively.
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Table C.16
Comparison of F1-score for all considered models when predicting the default flag with the original variables only and when replacing Merton’s PD with the
‘Average sectorial PD’’ and ‘‘Average geographical PD’’. Values refer to the performance of the model calibrated on the entire dataset. Values in parentheses
efer to the average performance of validation folds of Cross-Validation. 𝛥% is the relative improvement in performance between the ‘‘Baseline’’ and ‘‘With PD’’
ettings. The statistical significance of the difference is evaluated via a permutation test with 5000 repetitions. The rank of importance for PD variable is reported
n the last two columns for both Permutation Feature Importance and SHAP techniques. Values in parentheses refer to the relative normalized importance.
Algorithm F1

(Cross-Val)
Feature Importance Rank
(Relative %)

PD
Sector Avg.

PD
Geogr. Avg.

PFI SHAP

Baseline With PD
Sector Avg.

𝛥% Baseline With PD
Geogr. Avg.

𝛥% PD
Sector
Avg.

PD
Geogr.
Avg.

PD
Sector
Avg.

PD
Geogr.
Avg.

Elastic-net 30.7%
(29.8 ± 1.7%)

30.9%
(30.9 ± 1.1%)

0.6%* 30.7%
(29.8 ± 1.7%)

31.3%
(31.3 ± 1.1%)

1.8%* 4
(14.9%)

5
(6.5%)

6
(10.5%)

7
(5.1%)

MARS 43.6%
(42 ± 1.2%)

44.1%
(43.1 ± 1.6%)

1.1%** 43.6%
(42 ± 1.2%)

43.7%
(42.2 ± 1.6%)

0.3%*** 4
(9.4%)

6
(7.7%)

6
(8.3%)

5
(3.2%)

SVM-RBF 51.6%
(49.7 ± 1.3%)

52%
(52 ± 1.3%)

0.8%*** 51.6%
(49.7 ± 1.3%)

52.2%
(52.2 ± 1.4%)

1.2%* 6
(5%)

6
(3%)

5
(3.3%)

6
(3.3%)

k-NN 70.5%
(67.5 ± 1.2%)

73.1%
(73.1 ± 1.4%)

3.7%*** 70.5%
(67.5 ± 1.2%)

70.7%
(70.7 ± 1.3%)

0.3%** 6
(4.8%)

6
(1.9%)

5
(1.2%)

7
(1.2%)

Random Forest 88.4%
(84.1 ± 0.9%)

93.5%
(93.5 ± 0.8%)

5.7%* 88.4%
(84.1 ± 0.9%)

92.9%
(92.9 ± 0.8%)

5.1%*** 6
(5.2%)

5
(7.3%)

6
(3.7%)

5
(8.9%)

Notes: The *, ** and *** symbols denote the p-values at 10th, 5th and 1st significance level, respectively.

Table C.17
Comparison of F1-score for all considered models when predicting the default flag with the original variables only and when replacing Merton’s PD with the

arket implied volatility of FTSE 100 and FTSE MIB Italian indexes ‘‘Market Volatility Implied Index’’. Values refer to the performance of the model calibrated on
he entire dataset. Values in parentheses refer to the average performance of validation folds of Cross-Validation. 𝛥% is the relative improvement in performance
etween the ‘‘Baseline’’ and ‘‘With PD’’ settings. The statistical significance of the difference is evaluated via a permutation test with 5000 repetitions. The rank
f importance for PD variable is reported in the last two columns for both Permutation Feature Importance and SHAP techniques. Values in parentheses refer
o the relative normalized importance.
Algorithm F1

(Cross-Val)
Feature Importance Rank
(Relative %)

Mkt. Impl. Vol. Index Mkt. Impl. Vol. Index

Baseline With Mkt. Impl.
Vol. Index

𝛥% PFI SHAP

Elastic-net 30.7%
(29.8 ± 1.7%)

31%
(29.3 ± 1.1%)

1.1% 7
(0.7%)

8
(3.8%)

MARS 43.6%
(42 ± 1.2%)

44.6%
(43 ± 1.5%)

2.2%* 9
(2%)

8
(5.4%)

SVM-RBF 51.6%
(49.7 ± 1.3%)

51.9%
(51.9 ± 1.2%)

0.7%*** 9
(5.3%)

10
(2.8%)

k-NN 70.5%
(67.5 ± 1.2%)

71.7%
(72.2 ± 1.4%)

1.8%*** 7
(0.9%)

10
(1.2%)

Random Forest 88.4%
(84.1 ± 0.9%)

89.7%
(89.7 ± 0.9%)

1.5%** 7
(1.2%)

7
(1%)

Notes: The *, ** and *** symbols denote the p-values at 10th, 5th and 1st significance level, respectively.
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Appendix D. Feature importance

Explainability capabilities of all models PB have been compared using Permutation Feature Importance (PFI) and Shapley
Additive Explanations (SHAP). The change in models’ performances and the probability correlated to each predictor has been
explored to understand the sign of the effect on each class of the target variable.

PFI evaluates the importance of each variable by computing the gain in the model’s prediction error after shuffling the feature’s
values. A feature is considered relevant for model’s prediction if the prediction error increases after permuting its values, otherwise,
if model error remains unchanged, its contribution is not important. As proposed by Fisher et al. (2018), the algorithm for a generic
model 𝑓 can be defined as:

Algorithm 1: Permutation Feature Importance
Input: Trained model 𝑓 , feature matrix 𝑋, target vector 𝑦, performance metric 𝑃 (𝑦, 𝑓 )

1 Estimate the original model performance 𝑃orig = 𝑓 (𝑦, 𝑋);
2 foreach feature 𝑗 = 1,… , 𝑝 do
3 Generate feature matrix 𝑋perm by permuting feature 𝑗 in the data 𝑋;
4 Estimate 𝑃perm = 𝑓 (𝑦, 𝑋perm) based on the predictions of the permuted data;
5 Evaluate PFI𝑗 = 𝑃perm∕𝑃orig. Alternatively, the difference can be used: PFI𝑗 = 𝑃perm − 𝑃orig;
6 return PFI𝑗 ;
7 end
8 Sort features by descending PFI

Shapley values represent the marginal contribution of each feature to the prediction of a given data point. The feature values, for
instance, 𝑥, behave like players in a game where the prediction is the payout. As described in Shapley (1953), the Shapley value 𝛷𝑗
of a feature value 𝑥𝑗 is defined using a value function 𝑣𝑎𝑙 of actors in S and represents its contribution to the prediction, weighted
and summed across all possible coalitions:

𝛷𝑗 (𝑣𝑎𝑙) =
∑

𝑆 ⊆{𝑥1 ,…,𝑥𝑝}⧵{𝑥𝑗}

|𝑆|!(𝑝 − |𝑆| − 1)!
𝑝!

(𝑣𝑎𝑙(𝑆 ∪ {𝑥𝑗}) − 𝑣𝑎𝑙(𝑆))

where 𝑆 denotes a subset of features, 𝑥 represents the feature values of the instance of interest and 𝑝 the number of features and
𝑣𝑎𝑙𝑥(𝑆) is the prediction for feature values in set 𝑆 that are marginalized over features that are not included in 𝑆:

𝑣𝑎𝑙𝑥(𝑆) = ∫ 𝑓 (𝑥1,… , 𝑥𝑝)𝑑P𝑥∉𝑆 − 𝐸𝑋 (𝑓 (𝑋))

Estimating the Shapley values for more than a few features becomes computationally infeasible since all possible coalitions of feature
values need to be considered with and without feature 𝑗. A Monte-Carlo sampling was proposed by Strumbelj and Kononenko (2014):

Fig. D.10. Permutation Feature Importance for k-NN model, comparing variable importance of model calibrated with input variables and with the addition of
PD. Normalized changes in the F1-score are used to rank the variables.
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Fig. D.11. SHAP effects on predicted probability for k-NN model and defaulted (top) and non-defaulted (bottom) observations only, comparing variable importance
of model calibrated with input variables and with the addition of PD. The colour of the points ranges from red, meaning that the observation has a low value
for the specific variable, to blue, meaning high values for the same variable. The position on the horizontal axis represents the contribution of the variable in
increasing or decreasing the predicted probability of each observation. Values on the left column report the average absolute change in predicted probability
over all observations and the normalized values in parentheses. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. D.12. SHAP average signed effect for k-NN model and defaulted (top) and non-defaulted (bottom) observations only, comparing variable importance of
model calibrated with input variables and with the addition of PD. Bars report the average effect of input variables on the predicted probabilities for all
observations predicted as 1 and 0, respectively.
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𝛷̂𝑗 =
1
𝑀

𝑀
∑

𝑚=1
(𝑓 (𝑥𝑚+𝑗 ) − 𝑓 (𝑥𝑚−𝑗 ))

where 𝑓 (𝑥𝑚+𝑗 ) represents the prediction for the instance of interest 𝑥 but with a random permutation of features (taken from a random
ata point 𝑧) except for 𝑗th feature. The vector 𝑥𝑚−𝑗 is identical to 𝑥𝑚+𝑗 , but the value for feature 𝑗 is randomized as well from the

sampled 𝑧. The algorithm for a generic model 𝑓 can be defined as:

Algorithm 2: Shapley value
Output: Shapley value for the value of the 𝑗-th feature
Input : Number of iterations 𝑀 , instance of interest 𝑥, feature index 𝑗, data matrix 𝑋, and machine learning model 𝑓

1 foreach 𝑚 = 1,… , 𝑀 do
2 Draw random instance 𝑧 from data matrix 𝑋;
3 Choose a random permutation 𝑜 of the feature values;
4 Order instance 𝑥: 𝑥𝑂 = (𝑥(1),… , 𝑥(𝑗),… , 𝑥(𝑝));
5 Order instance 𝑧: 𝑧𝑂 = (𝑧(1),… , 𝑧(𝑗),… , 𝑧(𝑝));
6 Construct two new instances:

• With feature 𝑗: 𝑥+𝑗 = (𝑥(1),… , 𝑥(𝑗−1), 𝑥(𝑗), 𝑧(𝑗+1),… , 𝑧(𝑝))
• Without feature 𝑗: 𝑥−𝑗 = (𝑥(1),… , 𝑥(𝑗−1), 𝑧(𝑗), 𝑧(𝑗+1),… , 𝑧(𝑝))

Compute marginal contribution: 𝛷𝑚
𝑗 = 𝑓 (𝑥+𝑗 ) − 𝑓 (𝑥−𝑗 );

return 𝛷𝑚
𝑗 ;

7 end
8 Compute Shapley value as the average: 𝛷𝑗 (𝑥) = 1

𝑀
∑𝑀

𝑚=1 𝛷
𝑚
𝑗

This procedure must be repeated for each feature of interest to get all the Shapley values. Among the advantages of Shapley
values over the other methods, in the first place, there is the efficiency property, i.e., the difference between prediction and average
rediction is fairly distributed among features.

Figures from D.10 to D.12 report the PFI and SHAP variable importance for k-NN model, calibrated with input variables and
with the addition of PD as a predictor.

Data availability

Data will be made available on request.
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