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Federated-Learning-Assisted RIS Active and Passive
Beamforming with ADMM for IoT Devices

Yujun Cai, Shufeng Li, Jianbo Liu, Qianyun Zhang, Zhijin Qin, Xinruo Zhang

Abstract—Federated learning (FL) and reconfigurable intelli-
gent surfaces (RIS) are pivotal technologies for future Internet
of Things (IoT) networks, enhancing user privacy and system
efficiency. However, realizing their full potential necessitates a
cohesive and synergistic integration, challenging the traditional
view of them as disparate components. This paper tackles
the complex problem of maximizing energy efficiency (EE)—a
critical yet under-explored metric insuch tightly coupled FL-RIS
systems. We address this gap by formulating ajoint optimization
problem that intrinsically links the FL process with physical
layer resource allocation. Our framework maximizes the system’s
global EE by concurrently designing the base station’s active
beamforming and the RIS’s passive phase shifts,with an FL
aggregation mechanism that is explicitly channel-aware and
adaptive to the RIS-optimized wireless environment. This co-
design ensures RIS actively facilitates FL by establishing robust
communication, while FL intelligently leverages these improved
channels for efficient and accelerated learning, all under practical
FL performance constraints. Simulation results demonstrate that
our proposed framework significantly enhances system energy
efficiency compared to several benchmark schemes and exhibits
robust convergence properties.

Index Terms—Communications and networking for IoT; fed-
erated learning; reconfigurable intelligent surface; beamforming
and efficient communications

I. INTRODUCTION

The proliferation of Internet of Things (IoT) devices chal-
lenges wireless networks to deliver both high throughput and
superior energy efficiency. Reconfigurable intelligent surfaces
(RIS) have emerged as a key 6th generation (6G) technology
to address these demands by intelligently reconfiguring the
wireless propagation environment [1]. The potential of RIS
has been demonstrated in diverse applications, from enhancing
physical layer security and enabling non-orthogonal multiple
access (NOMA) to optimizing multiple-input multiple-output
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(MIMO) communications [2-4]. Central to unlocking these
benefits is the precise design of the RIS phase shifts, under-
scoring the critical role of effective beamforming techniques.

A primary focus of RIS research is the joint design of
active beamforming at the base station (BS) and passive
beamforming at the RIS to optimize system performance.
Foundational work established key principles, such as an-
alyzing the performance gains relative to the number of
RIS elements and investigating baseline random beamforming
strategies [5-6]. More recent studies propose sophisticated
joint optimization algorithms. For example, some approaches
maximize system throughput using statistical channel state
information (CSI), while others aim to reduce computational
complexity for a single-user system’s spectral efficiency by
decoupling the active and passive beamforming design [7-
8]. Although these studies provide valuable insights, their
primary focus remains on traditional spectral efficiency or
throughput metrics. Furthermore, RIS is being integrated into
more complex applications like over-the-air computing and
high-altitude communication, which highlights the need for
new beamforming designs tailored to the unique performance
objectives of such emerging paradigms [9-10].

Building upon foundational beamforming techniques, re-
cent research has increasingly focused on joint optimization
frameworks that integrate RIS with other system components
to address more complex communication challenges. An et
al. [11] developed a low-complexity framework for simulta-
neous channel estimation and passive beamforming in RIS-
assisted MIMO systems, significantly enhancing achievable
rates through optimized reflection coefficients. In [12], a re-
fracting RIS-aided hybrid satellite-terrestrial relay system was
proposed to overcome signal blockage, where an alternating
optimization framework based on singular value decomposi-
tion and penalty methods was developed to minimize the total
transmit power while satisfying user rate requirements. For
multi-RIS scenarios, Ma et al. [13] presented a cooperative
beamforming design that models and decouples complex chan-
nel interactions to optimize user sum rates. Security concerns
in IoT networks have been addressed by Niu et al. [14] through
joint optimization of power allocation, transmit beamforming,
and RIS phase shifts to maximize secrecy rates. Fascista et al.
[15] offered a comprehensive solution for joint localization
and synchronization in mmWave systems using optimized BS
precoding and RIS phase profiles. Liu et al. [16] further
advanced this field with a double active RIS-assisted radar-
communication coexistence system, employing penalty dual
decomposition to solve the non-convex optimization prob-
lem of maximizing communication data rates. These studies
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collectively demonstrate the trend toward multi-dimensional
optimization in RIS-assisted systems, yet they predominantly
focus on conventional performance metrics such as data rate
and security, leaving energy efficiency considerations largely
unexplored.

The integration of artificial intelligence (AI) into
next-generation communication systems, such as the
space–air–ground integrated networks envisioned for 6G,
highlights the importance of AI-enabled resource optimization
for ubiquitous connectivity [17]. Federated learning (FL) has
emerged as a transformative distributed learning paradigm
that effectively safeguards user privacy by keeping raw data
locally stored while transmitting only gradient parameters.
The FL research landscape has evolved along two primary
dimensions: communication efficiency and model performance
optimization. To address the communication bottleneck, Wu
et al. [18] developed adaptive mutual knowledge distillation
with dynamic gradient compression techniques, significantly
reducing communication overhead. Zhang et al. [19]
proposed adaptive parameter update rules that enhance test
accuracy while minimizing communication costs. On the
model performance front, Wu et al. [20] introduced cosine
similarity-based weight coefficients for improved aggregation,
while Chen et al. [21] designed a dynamic weighted averaging
algorithm based on maximum mean discrepancy. System-
level innovations include asynchronous federated stochastic
gradient descent algorithm [22], which demonstrates higher
efficiency than synchronous approaches, and integration of FL
with edge computing for distributed model updates [23]. Peng
et al. [24] addressed noise interference challenges through
the FedNoise algorithm with separate client-server learning
rates. However, the aforementioned FL studies assume ideal
communication channels, thereby neglecting the impact of
physical wireless channel constraints. In particular, energy
consumption poses a critical challenge for practical FL
deployment, especially when battery-constrained IoT devices
participate in distributed learning tasks.

To bridge the gap between algorithmic FL and physical layer
realities, recent research has begun to integrate RIS into FL
systems [25]. Foundational studies have shown that RIS can
effectively mitigate communication errors during the FL pro-
cess. Building on this, more advanced works have focused on
joint resource allocation and beamforming design to directly
enhance learning performance, for instance, by maximizing
device participation under aggregation error constraints in
over-the-air computation systems or by optimizing spectrum
learning frameworks [26-27]. In a complementary direction,
FL has also been leveraged as a tool to solve traditional
wireless challenges, such as performing distributed channel
estimation with reduced overhead [28-30]. Beside, Wang et
al. [31] introduced a graph neural network (GNN)-based
algorithm for scalable and efficient model aggregation for RIS-
assisted over-the-air FL framework. Despite these significant
contributions, the primary focus of existing work has been
on improving learning accuracy or reducing communication
latency. The critical issue of energy efficiency in these systems
remains largely unexplored. This oversight represents a sig-
nificant research gap, as a truly practical system must balance

learning performance with sustainable energy consumption.
This paper investigates the critical yet under-explored prob-

lem of energy efficiency (EE) maximization in FL-assisted
RIS-IoT networks. To address the highly non-convex and cou-
pled nature of this problem, we propose an effective iterative
optimization framework based on the synergy of successive
convex approximation (SCA) and the alternating direction
method of multipliers (ADMM). The main contributions are
summarized as follows:

• We propose an FL-aware adaptive optimization strategy.
By leveraging the gradient information inherent to the FL
process, we design a dynamic stopping criterion for the
resource allocation algorithm. This allows the optimization to
terminate once a desired learning performance is achieved,
significantly reducing unnecessary computational overhead for
energy-constrained IoT devices compared to fixed-iteration
approaches.

• To solve the challenging joint active and passive beam-
forming subproblem, we introduce an efficient ADMM-based
decomposition algorithm. This algorithm effectively decouples
the optimization of the BS’s active beamforming and the RIS’s
computationally-complex unit-modulus phase shifts, enabling
them to be solved iteratively with high efficiency.

• Through extensive simulations, we validate the effec-
tiveness of our proposed framework. The results not only
show significant improvements in both EE and sum rate
over baseline schemes but also empirically demonstrate the
robust convergence of our algorithm, providing a practical and
efficient solution for deploying FL in future RIS-assisted IoT
systems.

The remainder of this paper is organized as follows. Section
II introduces the system model. The proposed algorithm is
presented in Section III. Section IV offers numerical results
to demonstrate the performance of the proposed algorithm.
Finally, the paper comes to a conclusion in Section V.

II. SYSTEM MODEL

In essence, our system establishes an iterative co-
optimization loop of that synergistically integrates RIS with FL
through an alternating optimization strategy. Specifically, the
RIS phase shift configuration directly influences the wireless
channel conditions that affect FL model transmission quality,
while the FL convergence performance provides critical feed-
back for subsequent RIS reconfiguration.

To contextualize this co-optimization, let us consider an
illustrative application scenario: a smart factory for equipment
fault prediction. In this large-scale smart factory, numerous IoT
sensors are deployed across production lines to continuously
monitor the operational status of machinery (e.g., vibration,
temperature, current). These sensors collaboratively train a
real-time equipment fault prediction model using federated
learning. Factory environments, typically characterized by
metallic structures, present significant challenges for wireless
communication due to severe signal blockages and multi-path
effects. RIS arrays are strategically positioned on walls and
beams to create more stable and reliable communication links.
This practical scenario highlights the necessity and benefits of
our proposed FL-assisted RIS co-design.
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In this Section, we introduce the FL and RIS model respec-
tively, detailing their individual components and how they are
integrated within our framework.

A. Federated Learning Process

The model training process of FL is illustrated in Fig. 1.
During FL, the devices download the latest global gradient pa-
rameters from the server for local training. After training their
local models, the devices send their local gradient parameters
back to the server. The server aggregates the received local
gradient parameters to update the global model [32]. The aim
of FL is to minimize the loss function, that is,

F (w) =
1

K

K∑
k=1

f (w;xk,yk), (1)

where w is the vector of gradient parameter, K is the number
of training samples, (xk,yk) represents the k-th input vector
and the output vector, f(w;xk,yk) is the loss function related
to xk,yk.

According to gradient descent method, the global model is
updated by

wt+1 = wt − ζ

K∑
i=1

∇fi (wt), (2)

where ζ represents the learning rate, which is used to control
the step size in each iteration, and t represents the number of
the current iteration.

In the aggregation phase of FL, the BS needs to aggregate
the local model updates (or gradient information) received
from each participating device. While the classic FedAvg
algorithm employs simple arithmetic averaging, which assigns
equal weights to all devices, it often overlooks the heteroge-
neous communication conditions and resource capabilities of
diverse mobile devices. This lack of differentiation can impede
model convergence and even affect learning performance in
wireless FL scenarios.

Inspired by [33], we adopt a channel-aware weighted aggre-
gation mechanism for the global model update to address these
challenges. This approach is particularly critical in our RIS-
assisted wireless system, where the dynamically reconfigurable
channels significantly impact the reliability and efficiency
of local model transmissions. By weighting local updates
based on communication link quality, our method ensures
that clients experiencing better channel conditions contribute
more prominently and reliably to the global model, thereby
implicitly enhancing overall FL performance and crucially,
supporting the overarching energy efficiency maximization by
aligning communication quality with learning contributions.

The quality of the channel can be measured by the l2
norm of the channel matrix. Define the channel between the
k-th device and the BS as hk(Φ). The larger the value of
∥hk(Φ)∥2, the better the quality of the channel.

After calculating the l2 norm of the channel matrix between
all devices and the BS, the BS will assign different weight
parameters to aggregate the gradient according to the channel
quality, which can be expressed as:

Fig. 1. FL process

w =
1

K

K∑
k=1

λkwk, (3)

where λk is the weight parameter assigned to the k-th device,
which can be calculated by

λk =
∥hk(Φ)∥2

K∑
k=1

∥hk(Φ)∥2

. (4)

It can be seen from the above formula that devices with bet-
ter channel quality will get a larger weight coefficient, so that
the gradient parameters of devices with good channel quality
in the system occupy a larger proportion of the global model,
accelerating the convergence speed of the global model. Cru-
cially, the instantaneous channel quality, represented by the
l2 norm, is directly and dynamically influenced by the RIS
passive beamforming and the BS active beamforming. This
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Fig. 2. A RIS-assisted communication system model

establishes a fundamental feedback mechanism: the physical
layer optimization, driven by RIS and BS beamforming,
directly informs and enhances the FL aggregation process
through these adaptive weights. This ensures that the FL algo-
rithm is not oblivious to the underlying wireless conditions but
actively leverages the improved communication environment
to achieve more robust and efficient global model updates, thus
enabling the “FL-assisted” component to be truly intelligent
and responsive to the physical layer.

B. RIS-Assisted Communication Model

In this work, we consider a multi-user MISO downlink sce-
nario where the BS utilizes spatial multiplexing to simultane-
ously transmit the global model parameters to K users within
the same time-frequency resource block. The BS employs a
dedicated beamforming vector θk for each user k to focus the
transmitted signal towards that user. Although the underlying
informational content (the global model) is the same for all
users, this concurrent spatial transmission inevitably creates
inter-user interference, as the signal intended for user k acts as
interference to other users. The objective of the beamforming
design is precisely to manage this interference and maximize
the desired signal power at each user.

The RIS-assisted communication model we use is shown in
Fig. 2. The model includes a BS and K users and considers
downlink data transmission. At this time, the transmission path
includes the direct communication link from the BS to the
device and the link reflected by the RIS. Define that the BS is
configured with multiple antennas, the number of antennas is
N, each device has a single antenna, and the number of RIS
reflecting elements is L. Define the reflecting coefficient of
the l-th RIS reflecting element is φl = τle

jνl , l = 1, 2, ..., L,
where τl ∈ (0, 1] represents the reflection amplitude loss
coefficient for element l, and νl ∈ (0, 2π] is the phase shift.
In practical RIS implementations, due to imperfect materials
and fabrication, τl is generally less than 1. For simplicity,
we assume a uniform reflection amplitude loss across all
elements, i.e., τl = τ for all l. The reflection coefficient
diagonal matrix of RIS is Φ = diag(τejν1 , τejν2 , ..., τejνL),
where diag(·) represents the diagonal matrix. In addition, the
signal transmitted by the BS is defined as x, and beamforming

technology is used to support the transmission of data to the
device. Therefore, the received signal of the k-th device can
be expressed as:

yk = (hBD,k + hBRΦhRD,k)x+ nk, (5)

where hBD,k, hBR, hRD,k represent the channel matrix from
BS to the k-th device, from BS to RIS, from RIS to the
k-th device, respectively. nk ∼ CN(0, σk

2) represents the
additive white Gaussian noise. The composite channel vector
hk (Φ) = hBD,k + hBRΦhRD,k is crucial as it explicitly
demonstrates the direct and tunable influence of the RIS phase
shift matrix on the received signal at device k. This highlights
how RIS actively reconfigures the wireless propagation envi-
ronment, which in turn underpins the channel quality metric
used for FL aggregation as discussed in Section II-A.

In practical communications, beamforming is first applied to
make the energy of transmitted signal more concentrated. As-
suming that the original signal component transmitted by the
system to the device is sj , the BS can design the transmission
signal x according to the following formula:

x =

K∑
j=1

θjsj , (6)

where θj is the bramforming vector of the BS. Therefore, the
received signal of the k-th device can be written as:

yk = hk(Φ)

K∑
j=1

θjsj + nk. (7)

The above formula can be further divided into three parts
of expected signal, interference signal, and noise:

yk = hk(Φ)θksk + hk(Φ)

K∑
j=1,j ̸=k

θjsj + nk, (8)

where the first item is the expected signal of the k-th device,
the second item is the interference signal from the other
devices, and the third item is the noise. Therefore, the signal
to interference plus noise ratio (SINR) of the k-th device can
be written as:
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γk =
|hk(Φ)θksk|2∣∣∣∣∣hk(Φ)

K∑
j=1,j ̸=k

θjsj

∣∣∣∣∣
2

+ σ2
k

. (9)

According to Shannon formula, the sum rate of all the
devices can be written as:

Rsum =

K∑
k=1

log2 (1 + γk) (10)

In the design of modern wireless communication systems,
particularly for the IoT, system sum rate is the most critical
performance metrics. System sum rate, which represents the
total data throughput for all users, is a direct measure of the
system’s capacity and its ability to provide a high quality of
service. Maximizing the sum rate is essential for supporting
the massive connectivity and high-data demands of emerging
IoT applications. To improve the service quality between users
and transmitters as much as possible, it is necessary to max-
imize the device’s achievable communication rate under the
condition of meeting the transmission power budget, forming
the following optimization problem:

max
Φ,θ

Rsum =

K∑
k=1

log2 (1 + γk). (11)

Simultaneously, energy efficiency, defined as the ratio of the
sum rate to total power consumption, has become a paramount
concern. This is motivated by two key factors. Firstly, many
IoT devices are battery-powered, and high energy efficiency
is crucial for extending their operational lifetime and reducing
maintenance costs. Meanwhile, from the network perspective,
reducing the power consumption of network infrastructure,
such as base stations, lowers operational expenditures and
contributes to environmentally sustainable or green commu-
nications, a key goal for 6G networks. In order to analyze the
energy efficiency of the system, it is necessary to analyze the
power consumption of the system. The total power consump-
tion of the system consists of the transmission power of the
BS and the power consumed by each component, and can be
expressed as:

Ptotal = ξ∥θ∥2 + PB +K · PD +N · PR (12)

where ξ is the inverse of the transmit power amplifier effi-
ciency, PB , PD, PR are the power consumption of the BS,
a device and a RIS reflecting element. Therefore, the energy
efficiency can be defined as:

ηEE =
Rsum

Ptotal
. (13)

The energy efficiency problem of the system can be ex-
pressed as:

max
θ,Φ

ηEE =

K∑
k=1

log2 (1 + γk)

ξ∥θ∥2 + PB +K · PD +N · PR

(14)

s.t.
K∑

k=1

∥θk∥2 ≤ Pmax (15)

|φl| = τ, l = 1, 2, ..., Lx (16)

where the first constraint limits the maximum transmission
power of the BS to Pmax, and the second constraint con-
strains the RIS reflection coefficient with a constant modulus
condition. It can be seen that the above energy efficiency
optimization problem is a non-convex optimization problem.
In the next Section, we will use the proposed algorithm to
optimize this problem.

III. ACTIVE AND PASSIVE BEAMFORMING BASED ON
SCA AND ADMM ALGORITHMS

A. Optimization of FL Iteration Using SCA Algorithm

The basic process of the SCA algorithm is to approximate
each non-convex part of a non-convex problem as a convex
function at a certain point, and then solve the approximated
convex problem. The SCA algorithm operates iteratively. In
each iteration, it constructs a tractable convex approximation
of the original non–convex problem, localized around the
solution obtained from the previous iteration. This approx-
imated problem is then solved to generate the next iterate.
This process is repeated, generating a sequence of solutions
that are guaranteed to converge to a stationary point of the
original problem, which corresponds to a locally optimal or
suboptimal solution. In Section II, the loss function of FL is
non-convex, therefore we introduce a quadratic approximation
convex surrogate function:

g(w,wt) = f(wt) + ⟨∇f(wt),w −wt⟩

+
1

2
(w −wt)

T
Ht(w −wt), (17)

where ∇f(wt) is the gradient vector at wt, Ht is the Hessian
matrix at wt. Therefore, the update formula of the global
model parameters can be expressed as:

wt+1 = wt − ζ

K∑
i=1

∇gi(wt). (18)

After each iteration, the average value of the gradients
uploaded by all devices is calculated by

∇(wt+1) =
1

K

K∑
i=1

∇gi(wt+1). (19)

The stopping criterion of the iteration is related to the aver-
age gradient. We set the threshold ϵ, when

∥∥∇(wt+1)
∥∥
2
< ε,

the iteration stops. In this paper, we set the convergence
threshold ε = 10−4. The selection of this specific threshold is
based on a trade-off between achieving sufficient optimization
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accuracy and computational efficiency. A smaller ε would lead
to a more precise convergence point, potentially yielding a
marginally higher energy efficiency. However, it would also
require a greater number of iterations, thereby increasing the
computational time. Conversely, a larger ε would result in
faster convergence but might terminate prematurely, leading
to a suboptimal solution.

B. Transformation of Energy Efficiency Optimization Problem

To address the complex form of the objective function
in energy efficiency optimization problems, the objective
function can be decoupled using the method of Lagrangian
dual reconstruction. Introducing the auxiliary variable α =
[α1, α1, ..., αK ]

T, the original problem can be equivalently
transformed into the following form:

max
θ,Φ,α

K∑
k=1

[
(1 + αk)

∣∣hH
k (Φ)θk

∣∣2∑K
j=1

∣∣hH
k (Φ)θj

∣∣2 + σ2
k

+ log2 (1 + αk)− αk

]
− ηEEPtotal, (20)

s.t.
K∑

k=1

∥θk∥2 ≤ Pmax, (21)

|φl| = τ, l = 1, 2, . . . , L. (22)

Introducing the auxiliary variable β = [β1, β2, ..., βK ]
T,

and using the quadratic transformation, the above problem is
converted into the following form:

max
θ,Φ,α,β

f1(θ,Φ,α,β), (23)

s.t.
K∑

k=1

∥θk∥2 ≤ Pmax, (24)

|φl| = τ, l = 1, 2, ..., L, (25)

where the object function f1(θ,Φ,α,β) is

K∑
k=1

[
− |βk|2

 K∑
j=1

∣∣hH
k (Φ)θj

∣∣2 + σ2
k

+ log2 (1 + αk)

− αk + 2
√
1 + αk Re{βkh

H
k (Φ)θk}

]
− ηEEPtotal.

(26)
The alternating optimization method can be used to perform

cyclic optimization updates on the four variables. By taking
partial derivatives of the auxiliary variables α and β in
f1(θ,Φ,α,β) and setting them equal to zero, we can obtain
the optimal solutions αopt and βopt for the auxiliary variables
α and β, respectively, that is,

∂f1
∂αk

= 0,
∂f1
∂βk

= 0, k = 1, 2, ...,K. (27)

At this point, the components of the auxiliary variables α
and β can be obtained as follows:

αopt
k =

ck(ck +
√
c2k + 4)

2
, (28)

βopt
k =

√
1 + αkh

H
k (Φ)θk

K∑
k=1

∣∣hH
k (Φ)θj

∣∣2 + σ2
k

, (29)

where ck = Re{βkh
H
k (Φ)θk}.

C. Solution of Active Beamforming Vector at BS

When auxiliary variables α, β, and passive beamforming
vector Φ at RIS is fixed, we can solve the optimized solution
θopt of the active beamforming vector θ at BS. To simplify
the objective function, we have the following definitions:

A ≜ Ik ⊗

(
ηEEξIk +

K∑
k=1

|βk|2hk(Φ)hH
k (Φ)

)
, (30)

vk ≜
√
1 + αkβkhk(Φ), (31)

V ≜
[
vH
1 ,v

H
2 , ...,v

H
K

]H
. (32)

Therefore, the object function can be written as:

f1(θ) = −θHAθ + 2Re
[
VHθ

]
. (33)

The optimization problem can be written as:

min
θ

f2(θ) = θHAθ − 2Re
[
VHθ

]
, (34)

s.t. θHDθ ≤ Pmax, (35)

where D = IK ⊗ IN . The above optimization problem is a
quadratic constrained quadratic programming problem, and the
optimal solution can be obtained using the ADMM algorithm.

The feasible region G of the constraint function is defined
as:

IG(Q) ≜

{
0, Q ∈ G,
+∞, otherwise,

(36)

where auxiliary variable Q = θ. Therefore, the problem is
equivalent to

min
θ,Q

QHAQ− 2Re
[
VHQ

]
+ IG(Q), (37)

s.t. Q = θ. (38)

Construct the augmented Lagrangian function:

Lρ(Q,θ,ω) = QHAQ− 2Re
[
VHQ

]
− Re [ω(Q− θ)] +

ρ

2
∥Q− θ∥22

(39)

where ρ > 0 is the penalty term, ω is the Lagrange dual
variable. Alternately optimize variables Q, θ, and ω:

Qt+1 = argmin
Q

Lρ(Q
t,θt,ωt), (40)
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θt+1 = argmin
θ

Lρ(Q
t+1,θt,ωt), (41)

ωt+1 = ωt − ρ(Qt+1 − θt+1). (42)

Since the above Lagrangian function is convex, the closed-
form solution of θ can be obtained according to the first-
order optimal condition. By taking the partial derivative of
the Lagrangian function with respect to Q, we have:

∂Lρ

∂Q
= 2AQt+1 − 2V − ωt + ρ(Qt+1 − θt). (43)

Setting the partial derivative equal to 0, we have:

Qt+1 = (2A+ ρIK)
−1

(2V + ωt + ρθt). (44)

Then we can optimize θ. By taking the partial derivative of
of the Lagrangian function with respect to θ, we have:

∂Lρ

∂θ
= ωt − ρ(Qt+1 − θt+1). (45)

Setting the partial derivative equal to 0, we have:

θt+1 = Qt+1 − ρ−1ωt, (46)

ωt+1 = 2AQt+1 − 2V. (47)

The update of θ iteratively refines the BS transmit beam-
forming, directly influencing the downlink channel quality and
thus the data rates to the devices. Its convergence reflects the
optimization of power allocation and directional transmission
to maximize the objective function given the current RIS
configuration and local device accuracies.

D. Solution of Passive Beamforming Vector at RIS

When auxiliary variables α, β, and active beamforming
vector θ at BS is fixed, we can solve the optimized solution
of the passive beamforming vector at RIS. The optimization
problem max

Φ
f3(Φ) can be written as:

K∑
k=1

[
log2(1 + αk)− αk + 2

√
1 + αk Re

{
βkh

H
kθk

}
−|βk|2

 K∑
j=1

∣∣hH
kθj
∣∣2 + σ2

k

− ηEEPmax. (48)

Similar to the optimization process of the active beamform-
ing vector at BS, the optimization problem can be rewritten
as:

Φ = argmin
Φ

f4(Φ) = ΦHBΦ− 2Re
[
ΦHu

]
, (49)

s.t. |φl| = τ, l = 1, 2, ..., L, (50)

where matrix B and u are:

B =

K∑
k=1

|βk|2
K∑
j=1

hH
k (Φ)θjθ

H
j hk(Φ), (51)

u =

K∑
k=1

√
(1 + αk)βkh

H
k (Φ)θk. (52)

The object function is convex, while the constraint is non-
convex. Relaxing it to the convex constraint condition of
|φl| ≤ 1 can transform the optimization problem into a
quadratic constrained quadratic programming problem, and
the ADMM algorithm can be used to obtain the sub-optimal
solution.

The feasible region H of the constraint function is defined
as:

IH(q) ≜

{
0, q ∈ H,

+∞, otherwise,
(53)

where auxiliary variable q = Φ. Therefore, the optimization
problem is equal to

min
Φ,q

qHBq− 2Re
[
qHu

]
+ IH(q), (54)

s.t. q = Φ. (55)

Construct the augmented Lagrangian function:

Lδ(q,Φ,µ) = qHBq− 2Re
[
qHu

]
− Re [µ(q−Φ)] +

δ

2
∥q−Φ∥22

(56)

where δ > 0 is the penalty term, µ is the Lagrange dual
variable. Alternately optimize variables q, Φ, and µ:

qt+1 = argmin
q

Lδ(q
t,Φt,µt), (57)

Φt+1 = argmin
Φ

Lδ(q
t+1,Φt,µt), (58)

Φt+1 = argmin
Φ

Lδ(q
t+1,Φt,µt). (59)

Since the above Lagrangian function is convex, the closed-
form solution of Φ can be obtained according to the first-
order optimal condition. By taking the partial derivative of
the Lagrangian function with respect to q, we have:

∂Lδ

∂q
= 2Bqt+1 − 2u− µt + δ(qt+1 −Φt). (60)

Setting the partial derivative equal to 0, we have:

qt+1 = (2B+ δIN )
−1

(2u+ µt + δΦt). (61)

Then we can optimize Φ. By taking the partial derivative
of of the Lagrangian function with respect to Φ, we have:

∂Lδ

∂Φ
= µt − δ(qt+1 −Φt+1). (62)

Setting the partial derivative equal to 0 and considering the
constraint, we have:
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Fig. 3. Iterative update process of each variable of ADMM algorithm

Φt+1 =
qt+1 − δ−1µt

|qt+1 − δ−1µt|
. (63)

Finally, we can optimize the Lagrange dual variable µ and
obtain its expression:

µt+1 = 2Bqt+1 − 2u. (64)

The update of Φ dynamically adjusts the RIS reflection
coefficients. This step is crucial for constructively combining
signals to enhance desired paths and mitigate interference. Its
convergence signifies that the optimal passive beamforming
pattern for the current active beamforming and device require-
ments has been achieved, maximizing the RIS’s collaborative
gain.

Our proposed iterative optimization framework intrinsically
couples the RIS-assisted beamforming design with the FL
training and aggregation process to maximize system energy
efficiency. Each iteration represents a cycle where commu-
nication resources are optimized to explicitly facilitate FL,
and FL’s aggregation strategy intelligently utilizes the result-
ing communication conditions. Specifically, the framework
involves alternating updates between the FL-aware commu-
nication parameters and auxiliary variables that mediate the
FL performance within the energy efficiency objective. The
channel information, dynamically shaped by RIS and active
beamforming, directly influences parameters like the FL aggre-
gation weights and the auxiliary variables for the EE problem,
thus establishing a closed-loop co-design. The general analysis
of the convergence of ADMM can be found in [34].

The optimization iterative process of each variable is sum-
marized in Algorithm 1, and its flow chart is shown in Fig. 3.
This algorithm takes maximizing the system energy efficiency
as the optimization goal, and iterates the four variables alter-
nately until the objective function converges. Crucially, in each
iteration, the updated RIS phase shifts and active beamforming
vectors directly impact the communication channels. This re-
freshed channel information then feeds into the calculation of

Algorithm 1 Iterative update process of each variable of
ADMM algorithm
Input: Channel matrix Hk(Φ), k = 1, 2, ...,K, threshold ε,
maximum transmission power of BS Pmax

1 Initialization: Φ(0),θ(0),α(0),β(0)

2 Set t = 1
3 repeat
4 Replace auxiliary variable α(t) by (28)
5 Calculate intermediate variable β(t) via (29)
6 Update active beamforming vector θ(t) at BS following
1 θ(t) = Q(t) − ρ−1ω(t−1)

7 Renew passive beamforming vector Φ(t) at RIS accord-
1 ing to Φ(t) = q(t)−δ−1µ(t−1)

|q(t)−δ−1µ(t−1)|
8 Compute the sum rate Rsum as mentioned in

1 Rsum =
K∑

k=1

log2 (1 + γk)

9 Determine the energy efficiency ηEE based on
1 ηEE = Rsum

Ptotal

10 t = t+ 1
11 until f = Rsum − ηEEPmax < ε
12 return Φ(opt),θ(opt), Rsum, ηEE

the FL aggregation weights, ensuring a dynamic and channel-
aware FL process. This iterative dependency highlights the
tight coupling between the communication layer optimization
and the FL training process, where RIS’s role is to enable
efficient communication for FL, and FL’s role is to leverage
those efficiencies for better learning outcomes and overall
system EE.

The total computational complexity per ADMM iteration is
dominated by the most intensive subproblem. In our case, it
is primarily driven by the active beamforming optimization
and passive beamforming optimization. Therefore, the overall
complexity per iteration is approximately O

(
N3K3 + L3

)
.

For typical large-scale IoT systems, the number of devices K
can be very large, while the number of BS antennas N and
RIS elements L are usually of moderate size. Our algorithm’s
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complexity per iteration grows polynomially with K, N , and
L. For massive MIMO arrays, very large RIS arrays, or a large
number of IoT devices, the terms could become significant.

To provide a comprehensive comparison with classical
optimization techniques, we consider a direct gradient descent
(GD) approach applied to our non-convex energy efficiency
maximization problem. A single iteration of GD would involve
calculating the gradients of the objective function with respect
to all optimization variables. This typically requires operations
such as computing composite channel vectors, SINRs, and
power consumption terms. Specifically, evaluating the gradient
with respect to θ and Φ would involve numerous matrix-
vector multiplications and element-wise operations. While a
detailed derivation of GD’s complexity for this specific non-
convex problem is intricate, it is generally on the order
of O

(
KN2 +KL2

)
, and crucially, it typically avoids the

computationally expensive matrix inversion operations present
in our ADMM subproblems.

Comparing these, a single iteration of a basic gradient
descent method might appear computationally less intensive
than one iteration of our SCA-ADMM algorithm due to the
lack of matrix inversions. However, for highly non-convex and
coupled problems like ours, direct gradient descent methods
are known to suffer from slow convergence or even fail to
converge to high-quality solutions. They are highly sensitive to
learning rate selection and prone to getting stuck in poor local
optima. In contrast, our SCA-ADMM approach, by iteratively
solving convex approximations via ADMM, leverages stronger
theoretical guarantees for converging to a stationary point
of the original non-convex problem. This robust convergence
property, coupled with potentially fewer overall iterations
needed to achieve a satisfactory solution quality, often makes
the SCA-ADMM algorithm more efficient in practice, despite
its higher per-iteration complexity.Therefore, further research
on low-complexity approximation methods would be neces-
sary.

IV. SIMULATION RESULTS

A. Simulation Settings

To accurately reflect the signal transmission characteristics
in the real environment, the channel used in the simulation is
the Ricean channel, which is consistent with the two paths in
the communication model: from the BS to the device directly
and from the BS to the device via the RIS array. The SNR for
the simulation is set at 20 dB. This value is selected to repre-
sent a moderate to good signal quality environment, allowing
the observation of beamforming gains while also reflecting
realistic conditions where noise and interference are present.
It is a common benchmark in wireless communication studies
to evaluate system performance effectively under favorable yet
practical conditions.

The BS is equipped with 4 antennas. This configuration rep-
resents a common multi-antenna BS setup, suitable for spatial
multiplexing and beamforming in current and near-future IoT
deployments, balancing complexity and performance gains.
The power consumption per RIS reflecting element is set
to 0 dBm. This value reflects the generally very low power

consumption of passive RIS elements, primarily for control
circuitry, which is a key advantage of RIS technology for
energy efficiency and aligns with typical assumptions in RIS
power models. The power consumption per user device is cho-
sen as 10 dBm. This represents a typical power consumption
for an IoT device undergoing active communication and local
computation, balancing the energy cost of data transmission
and local model processing in a realistic scenario. The learning
rate for FL is set to 0.05. This value is empirically chosen
within the commonly accepted range for federated learning
algorithms to balance convergence speed and solution stability.
It ensures that the model updates are significant enough to
progress efficiently without causing oscillations. The total
number of users is set to 40. This number reflects a moderately
dense IoT environment, typical for applications like smart
cities or industrial IoT, where a significant but manageable
number of devices participate in the FL process, allowing us
to evaluate the system’s performance under practical multi-
user conditions.

The coordinates of the BS at (0, -50 m, 3 m), the RIS at
(20 m, 10 m, 5 m), and the center coordinates of the devices
at (40 m, 0, 0) are chosen to represent a typical urban or
suburban IoT deployment scenario. This configuration allows
for both a direct line-of-sight path and an RIS-assisted path,
reflecting realistic signal propagation environments where RIS
can effectively mitigate blockages or enhance received signal
strength. The specific distances are set to explore performance
in a moderately sized service area, consistent with common
cellular communication ranges for IoT devices. The number of
reflective elements in the RIS array, the number of iterations
in FL, the transmission power of the BS, and the reflection
amplitude loss of the RIS elements are the variables in the
simulation.

TABLE I
SIMULATION PARAMETERS

Parameters Values

Coordinate of BS (0, -50m, 3m)

Coordinate of RIS (20m, 10m, 5m)

Center coordinate of devices (40m, 0, 0)

Learning rate 0.05

Number of devices 40

Number of BS antennas 4

RIS power consumption 0 dBm

Device power consumption 10 dBm

For the FL model, we employ a convolutional neural net-
work (CNN) architecture comprising two 5 × 5 convolutional
layers, each followed by 2 × 2 max pooling, a normalization
layer, a fully connected layer, a ReLU activation, and a
Softmax output. The cross-entropy function serves as the loss
function. This CNN architecture is a standard and widely
adopted benchmark model for FL research, particularly suit-
able for resource-constrained IoT devices due to its moderate
complexity, enabling fair comparison with existing FL litera-
ture. We use the sum rate and energy efficiency as evaluation
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TABLE II
SIMULATION RESULTS (MEAN±STD) OF THE PROPOSED SCA-ADMM ALGORITHM AND COMPARISON METHODS UNDER DIFFERENT SYSTEM SETTINGS.

Scenario SCA-ADMM SCA P-BF [6] / RCG [11] / FedAvg Random Phase Shift w/o FL w/o RIS

Sum Rate vs. RIS Elements
8 22.36±0.41 18.31±0.51 20.20±0.48 (P-BF) 16.14±0.62 14.35±0.78 -
16 29.08±0.44 25.89±0.45 27.15±0.49 (P-BF) 21.95±0.54 20.82±0.65 -
32 39.84±0.40 36.32±0.46 38.10±0.45 (P-BF) 31.14±0.50 30.36±0.56 -
64 48.24±0.38 45.31±0.43 47.35±0.47 (P-BF) 41.18±0.49 40.34±0.58 -

Sum Rate vs. Transmit Power (W)
0.2 29.89±0.20 23.46±0.23 25.78±0.20 (RCG) 22.07±0.25 13.96±0.38 6.85±0.42
0.5 34.30±0.23 27.27±0.28 30.29±0.22 (RCG) 25.09±0.31 16.97±0.43 9.86±0.51
0.8 41.54±0.25 31.64±0.32 37.43±0.26 (RCG) 27.32±0.34 19.21±0.46 12.10±0.56
1.0 47.80±0.27 35.46±0.35 43.79±0.28 (RCG) 28.28±0.35 20.17±0.51 13.06±0.60

Energy Efficiency vs. Transmit Power (W)
0.2 1.19±0.05 1.12±0.08 1.17±0.05 (RCG) 1.07±0.10 1.12±0.11 0.92±0.09
0.8 1.79±0.07 1.70±0.09 1.77±0.08 (RCG) 1.57±0.13 1.62±0.10 1.42±0.12
1.2 2.02±0.09 1.94±0.11 2.00±0.08 (RCG) 1.85±0.13 1.90±0.13 1.69±0.11
1.6 1.86±0.08 1.77±0.10 1.84±0.09 (RCG) 1.73±0.12 1.78±0.12 1.58±0.13

Sum Rate vs. Iteration Rounds
10 30.26±0.33 27.01±0.48 29.18±0.36 (P-BF) 24.88±0.52 - 22.48±0.61
30 56.13±0.30 45.72±0.43 55.03±0.32 (P-BF) 45.16±0.45 - 43.19±0.50
50 57.85±0.28 49.60±0.41 57.59±0.29 (P-BF) 47.51±0.40 - 45.34±0.44

Energy Efficiency vs. Iteration Rounds
10 1.47±0.05 1.40±0.06 1.42±0.05 (P-BF) 1.32±0.08 - 1.37±0.09
30 1.51±0.04 1.44±0.05 1.47±0.05 (P-BF) 1.44±0.08 - 1.38±0.07
50 1.51±0.04 1.44±0.05 1.47±0.06 (P-BF) 1.44±0.09 - 1.38±0.08

Sum Rate vs. RIS Amplitude Loss (τ )
0.2 18.05±0.36 14.98±0.43 12.88±0.48 (FedAvg) 11.27±0.50 - 8.34±0.56
0.6 29.21±0.31 23.16±0.37 22.50±0.42 (FedAvg) 19.92±0.45 - 15.02±0.44
1.0 47.28±0.29 37.33±0.35 35.04±0.39 (FedAvg) 31.96±0.41 - 25.90±0.38

Energy Efficiency vs. RIS Amplitude Loss (τ )
0.2 0.71±0.05 0.60±0.05 0.52±0.06 (FedAvg) 0.29±0.08 - 0.22±0.10
0.6 1.49±0.04 1.21±0.05 1.13±0.08 (FedAvg) 0.92±0.09 - 0.61±0.08
1.0 1.88±0.05 1.53±0.06 1.30±0.07 (FedAvg) 1.19±0.08 - 0.99±0.09

metrics for model performance. The parameters used in the
simulation and their values can be seen in Table I.

To ensure statistical reliability, each simulation was in-
dependently executed ten times under random channel real-
izations. The averaged results of these runs are plotted as
line curves in the figures, while the corresponding mean and
standard deviation values for all algorithms are summarized
in Table II.

B. Simulation on the Number of RIS Reflective Elements

Firstly, we compare the system sum rate under different
numbers of RIS reflective elements. In this part of the simu-
lation, the BS transmission power is fixed at 1 W, the number
of iterations for FL is set to 50, and we assume the RIS
reflective elements do not have reflection amplitude loss. We
use the P-BF algorithm proposed in [6] for comparison. Since
we are comparing the impact of RIS reflective elements, no
simulation without RIS was conducted. As expected, it can
be intuitively observed from Fig. 4 that each curve increases
as the number of RIS reflective elements increases, leading
to a higher system sum rate. As can be observed from the

figure, incorporating FL results in a higher system sum rate
compared to the traditional SCA algorithm due to the stopping
criteria. With the traditional SCA algorithm, the sum rate
essentially reaches its maximum value after 56 RIS reflective
elements, while with the SCA-ADMM algorithm and the P-
BF algorithm, there are still upward trends in the sum rate
when the number of RIS reflective elements reaches 64.

C. Simulation on Transmit Power of the BS

Secondly, we compare the system sum rate and energy
efficiency under different BS transmission power levels. In this
part of the simulation, the number of RIS reflective elements
is fixed at 64, the number of iterations for FL is set to 50, and
we assume the RIS reflective elements do not have reflection
amplitude loss. We use the RCG algorithm proposed in [11]
for comparison. As shown in Fig. 5, under the same conditions,
regardless of whether the RIS array is used to reflect signals or
whether FL is applied, the proposed SCA-ADMM algorithm is
more effective than both the traditional SCA algorithm and the
RCG algorithm in enhancing the system sum rate. When both
FL and the RIS array are used, even if the BS transmission
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Fig. 5. Sum rate with transmit power of the BS

power increases to 1 W, the system sum rate increases with
increasing transmit power. In contrast, when neither RIS nor
FL is used, the rate of increase is very slow. It can also be
observed that the impact of the RIS array on the system sum
rate is greater than that of FL.

In Fig. 6, we compare the system energy efficiency using
several beamforming algorithms. The proposed SCA-ADMM
algorithm outperforms other algorithms, but has a similar
performance to the RCG algorithm. Without FL, the curve
of energy efficiency is similar to the one using random phase
shift, but much better than the one without RIS. We can see
from Fig. 6 that the energy efficiency increases first when the
transmit power rises regardless of the beamforming algorithm.
When the transmit power reaches 1.2 W, the energy efficiency
starts to decrease. This is because when the transmit power is
low, the energy efficiency of the system depends on the system
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sum rate. When the transmit power increases, the power
consumption of the system also increases, and the energy
efficiency is dependent on the system power consumption.

D. Simulation on the Number of Training Rounds

Next, we compare the system sum rate and energy efficiency
under different numbers of FL iterations. In this part of the
simulation, the number of RIS reflective elements is fixed
at 64, the BS transmission power is set to 1 W, and we
assume the RIS reflective elements do not have reflection
amplitude loss. We use the P-BF algorithm proposed in [6]
for comparison. As shown in Fig. 7, as the number of FL
iterations increases, the system sum rate also improves, but it
essentially converges when the number of iterations reaches
around 40. Additionally, regardless of the presence of the RIS
array, the proposed SCA-ADMM algorithm achieves a higher
system sum rate than the traditional SCA algorithm, but is
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similar to the P-BF algorithm. In the absence of the RIS array,
the performance improvement of the SCA-ADMM algorithm
is minimal; however, with the RIS array, it effectively enhances
the system sum rate performance. Furthermore, using two RIS
arrays to reflect the transmitted signals can more effectively
improve the system sum rate.

In Fig. 8, we compare the system energy efficiency using
different beamforming algorithms. When the beamforming
algorithm has no RIS, the energy efficiency shows little
changes regardless of the iteration rounds. All other algo-
rithms converge within 30 rounds of iteration. The proposed
SCA-ADMM algorithm outperforms the SCA, the P-BF, and
random phase shift beamforming algorithms, as it converges
faster and achieves higher energy efficiency under the same
number of iteration rounds. The core strength of the proposed
algorithm lies in its ability to effectively tackle the highly non-
convex and coupled EE maximization problem by synergisti-
cally combining SCA and ADMM. SCA efficiently transforms
the non-convex fractional EE objective into a sequence of
tractable convex subproblems, allowing us to find a high-
quality local optimum. Although the SCA algorithm converges
faster and achieves better energy efficiency when the number
of iteration rounds is low, its performance becomes similar to
that of the random phase shift algorithm once both algorithms
have converged.

E. Simulation on RIS hardware constraint

Finally, we compare the system performance when the RIS
reflective elements have reflecting amplitude loss (i.e., τ ≤ 1),
which is similar to practical communications. In this part of
the simulation, the number of RIS reflective elements is fixed
at 64, the BS transmission power is set to 1W, and the number
of iterations for FL is set to 50. Meanwhile, we use FedAvg
algorithm to show the effectiveness of our proposed method.
Fig. 9 illustrates the change of system sum rate when τ
rises. Our proposed algorithm consistently achieves the highest
sum rate across all τ values, demonstrating its superior capa-

bility in jointly optimizing active and passive beamforming.
Furthermore, the monotonically increasing trend of sum rate
with higher τ for all RIS-enabled schemes underscores the
importance of minimizing RIS hardware imperfections for
maximizing system throughput.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

RIS Reflecting Amplitude Loss

5

10

15

20

25

30

35

40

45

50

S
u

m
 R

a
te

(b
p

s/
H

z)

SCA-ADMM algorithm

SCA algorithm

FedAvg algorithm

Random phase shift

Beamforming without RIS

Fig. 9. Sum rate with RIS reflecting amplitude loss
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Fig. 10 presents the energy efficiency of various algorithms
as a function of the RIS reflecting amplitude coefficient.
Consistently, all RIS-assisted schemes demonstrate superior
energy efficiency compared to the “Beamforming without
RIS” baseline, highlighting the substantial benefits of inte-
grating RIS. Our proposed algorithm consistently achieves the
highest energy efficiency across the entire range of reflection
coefficients. The gradual increase in energy efficiency with
improved RIS reflection quality across all curves underscores
the critical impact of RIS hardware characteristics on system
performance and the necessity for robust optimization algo-
rithms to fully harness its potential.
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F. Limitations and Future Works

While our current work presents a robust framework for
RIS-empowered FL through an SCA-ADMM co-design, future
research could explore several directions to enhance its practi-
cality and scalability in complex real-world scenarios. This in-
cludes designing robust resource allocation and FL aggregation
mechanisms to ensure consistent performance under dynamic
environments with fluctuating device participation and diverse
channel conditions.

Furthermore, the current polynomial complexity of our
SCA-ADMM approach may pose a bottleneck for extremely
large-scale deployments, necessitating the development of
more computationally efficient and scalable solutions. A crit-
ical future direction also involves extending the framework to
jointly optimize resource allocation and RIS configurations for
both uplink and downlink transmission phases within each FL
communication round, addressing their inherent interplay.

V. CONCLUSION

In this paper, we introduced a novel co-designed framework
that tightly integrates FL with RIS-assisted active and passive
beamforming to maximize system energy efficiency and sum
rate in IoT networks. Our approach goes beyond simple coex-
istence of FL and RIS; it establishes a bidirectional synergy
where RIS dynamically optimizes communication channels
for efficient FL data transfer, and the FL process, through
its inherent channel-aware weighted aggregation mechanism,
intelligently leverages these physical layer enhancements. The
proposed SCA-ADMM algorithm effectively solves the com-
plex and highly-coupled joint optimization problem, iteratively
optimizing both communication resources and FL parameters
to achieve superior performance.
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