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Accurate segmentation of the fetal cerebellum in ultrasound images is crucial for assessing fetal 
development and detecting prenatal abnormalities. However, this task remains challenging due to 
factors such as image noise, complex anatomical structures, and limited availability of annotated 
data, which is further compounded by the high cost and effort required for manual labeling. To address 
these challenges, we propose SS_CASE_UNet, a novel semi-supervised segmentation framework that 
enhances U-Net with attention mechanisms to better manage image noise and anatomical complexity. 
Additionally, a multi-stage semi-supervised training strategy effectively mitigates the scarcity of 
annotated data. The architecture integrates Squeeze-and-Excitation blocks for dynamic channel-wise 
feature recalibration and a Coordinate Attention block at the bottleneck to capture precise spatial 
and long-range dependencies. Our multi-stage training pipeline leverages both labeled and unlabeled 
data through iterative pseudo-label and re-training, improving generalization in low-annotation 
scenarios. Experimental results demonstrate that SS_CASE_UNet outperforms existing methods, 
achieving a Dice Similarity Coefficient (DSC) of 87.65%, along with high accuracy (99.08%), precision 
(93.49%), recall (82.34%), and Jaccard Similarity (81.78%). Despite incorporating advanced attention 
mechanisms, our model maintains a balanced complexity-performance trade-off. These results 
highlight SS_CASE_UNet as a robust and clinically practical solution for automated segmentation of 
the fetal cerebellum in ultrasound images.

Keywords  Fetal cerebellar segmentation, Ultrasound image, Semi-supervised learning, Convolution neural 
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Ultrasound (US) imaging is a cornerstone of prenatal diagnostics, offering a non-invasive, real-time, and 
cost-effective approach for assessing fetal development. Unlike other imaging techniques, such as Computed 
Tomography (CT) or Magnetic Resonance Imaging (MRI), ultrasound does not expose the fetus to ionizing 
radiation, making it a safer option for routine examinations throughout pregnancy1. Its accessibility and 
portability further contribute to its widespread adoption, particularly in resource-limited settings, enabling 
early detection of potential anomalies and guiding clinical interventions2. Additionally, the dynamic nature 
of ultrasound facilitates the visualization of organ movement and blood flow, offering essential functional 
information in conjunction with anatomical details.

Accurate evaluation of the fetal brain is essential for identifying neurological abnormalities and ensuring 
normal developmental progression. Standard prenatal ultrasound protocols typically involve acquiring and 
classifying specific fetal brain planes, including trans-cerebellar, trans-ventricular, and trans-thalamic views3,4. 
However, variability in fetal position, maternal body habitus, and image quality can complicate this process, 
highlighting the need for advanced image analysis techniques5–7.

Among various fetal brain structures, the cerebellum plays a significant role in development, contributing to 
motor control, coordination, and early cognitive functions8. Its proper formation indicates neurological health, 
while abnormalities may signal developmental disorders. However, accurately segmenting the fetal cerebellum in 
ultrasound images remains particularly challenging. This difficulty arises from its small size, complex anatomical 
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folding, rapid morphological changes across gestational ages, and the presence of surrounding hyperechoic 
tissues9. Additional challenges include blurred or ambiguous ultrasound boundaries, noise-related data loss, 
and visual similarity to adjacent structures, such as the amniotic fluid and uterine wall10. Figure 1 illustrates the 
cerebellar region in a trans-cerebellar ultrasound image.

Manual segmentation, although widely used, is labor-intensive, time-consuming, and requires significant 
sonographic expertise11,12. These limitations highlight the urgent need for robust and automated cerebellum 
segmentation methods to ensure accurate, efficient, and reproducible prenatal assessments.

In the medical imaging field, Convolutional Neural Networks (CNNs) have demonstrated remarkable 
effectiveness, leading to significant advancements in the detection and segmentation of various anatomical 
structures and pathologies13–15. Notable successes include applications in musculoskeletal ultrasound16 and 
fetal imaging5, underscoring the transformative potential of deep learning in automating and enhancing clinical 
diagnostic workflows17.

Despite these successes, directly applying neural network architectures designed for natural image datasets to 
the medical imaging field presents considerable challenges. Medical image datasets differ in several key aspects: 
their applications are narrowly specialized, data acquisition requires stringent ethical approvals, and accurate 
labeling demands extensive expertise from clinicians, making the process time-consuming and expensive18. 
Consequently, medical research datasets are often small, resulting in data scarcity that presents a significant 
challenge for deep convolutional neural network (DCNN) models. While DCNNs provide clear advantages for 
medical image analysis, their application in ultrasound image segmentation remains relatively underexplored. 
This gap highlights the need for further research focused on optimizing DCNNs for the unique characteristics 
of ultrasound-based segmentation.

Accurate segmentation of the fetal cerebellum in ultrasound images is essential for assessing fetal 
development, estimating gestational age, and detecting central nervous system abnormalities. However, manual 
segmentation is time-consuming and prone to inter- and intra-observer variability, highlighting the need for 
automated approaches. As a result, fetal cerebellum segmentation has become a central focus of research. Early 
studies utilized traditional image processing and statistical shape models, while recent advancements have 
increasingly embraced deep learning, particularly convolutional neural networks, to achieve higher accuracy 
and greater automation.

Fetal cerebellum segmentation methodologies can be broadly categorized into two main streams: traditional 
model-based approaches and data-driven deep learning techniques.

Traditional model-based approaches
Initial efforts in automated fetal cerebellum segmentation often utilized statistical shape models. These methods 
typically involve constructing a deformable model of the cerebellum from a training dataset, which is then fitted 
to new ultrasound images.

One such approach is the use of 3D statistical shape models, which represent the cerebellum’s 3D shape 
through parameters that capture typical variations. For instance, Fanti et al. proposed a 3D segmentation system 
utilizing a Point Distribution Model (PDM) based on spherical harmonics (SPHARMs)19. This PDM was 
automatically adjusted through an objective function optimized by gray-level voxel profiles, often employing 
a genetic algorithm. To assist with initialization and plane selection, they integrated a CNN (YOLO v2) for 
cerebellum detection on each plane. They reported a Dice coefficient of 0.83 ± 0.10 and a Hausdorff distance of 
3.61 ± 0.83 mm across 18 ultrasound volumes.

The primary advantage of statistical shape models is their ability to encode prior anatomical knowledge, 
resulting in robust segmentations even under challenging conditions. However, a significant drawback is their 
reliance on accurately constructed shape models, which may struggle with atypical anatomies or poor image 
quality that deviates from the training data. Furthermore, inherent challenges in 3D fetal ultrasound, such as 
acoustic shadow artifacts, speckle noise, and intensity inhomogeneity from fetal movement, pose additional 
limitations. Similarly, Velásquez et al.20 explored automatic cerebellum segmentation using a spherical harmonics 
model, achieving a mean Dice coefficient of 0.689 on 10 ultrasound volumes. While their approach is structured, 
performance can be sensitive to initialization and dataset variability, with artifacts limiting precision without 
robust pre-processing. Beyond statistical modeling, earlier pattern recognition methods that utilized cerebellar 

Fig. 1.  The cerebellar region in an ultrasound image. (a) Original image. (b) Highlighted cerebellar area.

 

Scientific Reports |        (2025) 15:44536 2| https://doi.org/10.1038/s41598-025-28201-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


model articulation controllers with fractal features21 demonstrated strong domain-specific performance. 
However, they often struggled to generalize to the variability and noise present in medical ultrasound images.

Deep learning-based approaches
The advent of deep learning has revolutionized medical image segmentation, providing powerful data-driven 
solutions that learn complex features directly from raw image data22.

Many recent studies have adopted Convolutional Neural Networks, particularly enhanced variants of the 
U-Net architecture, due to their effectiveness in medical image segmentation tasks. The U-Net architecture 
features an encoder-decoder structure with skip connections, making it well-suited for capturing both high-level 
semantic information and fine-grained spatial details, which are crucial for accurate segmentation.

Shu et al.23 introduced FCRB U-Net (Fully Connected Residual Block U-Net), an enhanced version of the 
U-Net that replaces standard double convolution operations with fully connected residual blocks. They also 
incorporated an effective channel attention module to improve feature extraction and utilized a feature reuse 
module during the decoding stage. This design aims to reduce feature information loss during convolution and 
enhance segmentation accuracy. They reported an average IoU of 86.72% and a mean Dice index of 90.45%, 
demonstrating significant improvements over basic U-Net models. A noted disadvantage is the challenge of 
sample imbalance and the necessity for large-scale, high-quality annotated datasets for fully supervised training.

Wang et al.18 presented ECAU-Net (Efficient Channel Attention U-Net) for fetal ultrasound cerebellum 
segmentation. Their method builds on the U-Net backbone and integrates Efficient Channel Attention (ECA) 
modules, which utilize one-dimensional convolutional layers with shared parameters to significantly reduce 
the number of model parameters without sacrificing performance. This enhances the model’s efficiency for 
deployment on resource-constrained platforms. They developed their own JSUAH-Cerebellum US database 
and performed data augmentation. ECAU-Net achieved a mean Jaccard Similarity (JS) of 86.01% and a Dice 
Similarity Coefficient (DSC) of 91.35%.

Chen et al.9 proposed ResU-Net-c, a semantic segmentation model specifically optimized for 2D fetal 
ultrasound brain images of the cerebellum. Their method builds on the U-Net architecture by integrating residual 
blocks and introducing dilated convolutions in the later layers to enhance feature extraction and preserve spatial 
details. Trained and evaluated on a dataset of 588 images for training and 146 for testing (using 5-fold cross-
validation), ResU-Net-c achieved a mean Dice Score Coefficient (DSC) of 87.00% and a Hausdorff Distance 
(HD) of 28.15. The authors acknowledge that the inherent characteristics of ultrasound images, such as noise 
and varying image quality, continue to pose significant challenges to accurate segmentation. Table 1 presents a 
comparative analysis of deep learning methodologies for fetal cerebellar segmentation.

Multi-task learning and dual
Some researchers have explored multi-task learning, where a single network is trained to perform multiple 
related tasks simultaneously, as well as dual-network approaches to enhance overall performance.

Namburete et al.24 investigated a Multi-task CNN for Structural Semantic Segmentation in 3D Fetal Brain 
Ultrasound. This approach aimed to segment multiple fetal brain structures, including the white matter, 
thalamus, brainstem, and cerebellum, from 3D ultrasound images using atlas-generated labels. This method 
allows the network to learn shared representations across different structures, potentially improving the accuracy 
of individual segmentations. Trained on 480 volumes and tested on 48, their multi-task CNN achieved a Dice 
coefficient of over 0.77 for cerebellum segmentation and 0.93 for white matter. A potential disadvantage, though 
not explicitly stated, could be the increased complexity of annotation for multiple structures and the challenge 
of ensuring uniform performance across all segmented regions, especially if some structures are harder to define 
or appear less frequently.

Vetriselvi et al.11 introduced a dual approach to plane localization and cerebellum segmentation in ultrasound 
images. This work addresses two critical steps: accurate plane localization (finding the correct anatomical view) 
and subsequent segmentation. They proposed two specialized CNN architectures: a “differential CNN” for plane 
localization, incorporating diverse convolutional operators, and a “dual CNN” for cerebellum segmentation, 
which integrates both original image data and complementary feature maps. This dual strategy aims to improve 
the overall diagnostic pipeline. The proposed models demonstrated high performance, achieving 98.6% accuracy 
for plane localization and a Dice coefficient of 0.956 for cerebellum segmentation, although specific dataset sizes 
were not detailed in the snippets. While effective, the complexity of a dual-network system could pose challenges 
for real-time applications or computational resources.

Article Method Number of Images Metrics

18 (2022) ECAU-Net, U-Net variant with efficient channel attention JSUAH-Cerebellum US database (private) Mean Jaccard Score (JS): 86.01%, Dice Similarity 
Coefficient (DSC): 91.35%

23 (2022) FCRBU-Net, U-Net variant with fully connected residual blocks 
and channel attention JSUAH-Cerebellum US database (private) Average IoU: 86.72%, Mean Dice Index: 90.45%

11 (2025) Differential CNN for localization, Dual CNN for segmentation Not explicitly stated for the cerebellum Accuracy (plane localization): 98.6%, Dice 
Coefficient (DSC) (cerebellum segmentation): 0.956

Table 1.  Comparative Article in fetal cerebellar segmentation (deep learning methods).
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Biometric measurement-focused studies
It is essential to differentiate between papers focused on segmentation and those concentrating on biometric 
measurements using ultrasound25. Manzo et al.26 aimed to establish reference ranges for the fetal transverse 
cerebellar diameter and cerebellar area for gestational age estimation. While this work is crucial for clinical 
practice, it does not present an automated segmentation method; instead, it relies on manual or semi-manual 
measurements to derive biometric data. The limitation lies not in the technique itself but in the dependence 
on labor-intensive measurement processes that automated segmentation seeks to address. Their study on 
384 pregnancies demonstrated strong correlations (e.g., r = 0.89 for the cerebellar area with gestational age), 
validating transverse cerebellar diameter as a reliable estimator of gestational age. Still, it does not directly 
contribute to the methodologies of automatic segmentation.

Wang et al.27 presented a framework for the automatic localization and quantitative segmentation of the 
cavum septum pellucidum complex (CCC) and the cerebellar vermis (CV) in fetal brain ultrasound images. 
Their approach employs a variational autoencoder to generate average templates, followed by a multi-step 
localization and segmentation strategy based on morphological characteristics. This framework, which leverages 
deep learning for landmark localization, aims to automate fetal brain biometry. Validated on 140 fetal brain mid-
sagittal ultrasound images, it demonstrated good localization accuracy, with automated measurements typically 
differing from manual ones by within 1–3 mm. A key limitation noted is the inherent challenge of segmenting 
complex structures, such as the CCC and CV, along with issues including fetal motion and the lack of consensus 
on biometric definitions.

Despite significant advancements in automated fetal ultrasound image analysis, several challenges persist. 
Deep learning methods generally require large, high-quality annotated datasets, which are difficult and costly 
to obtain in medical imaging. This leads to issues such as sample imbalance and limited generalization to 
unseen data. While many U-Net variants have been proposed, few effectively address the subtle, noise-sensitive 
characteristics of fetal brain ultrasound images through architectural refinement and semi-supervised learning. 
Consequently, existing models often struggle with precise boundary delineation, especially for small or low-
contrast structures like the fetal cerebellum.

Our work introduces the SS_CASE_UNet, a novel semi-supervised segmentation method based on an 
attention-enhanced U-Net architecture. This approach is designed to directly address the most critical challenges 
in fetal cerebellum ultrasound (US) image segmentation, including image noise, the complexity of anatomical 
folding, and ambiguous boundaries. The model is specifically engineered to manage the cerebellum’s small 
size and dynamic morphological changes by effectively capturing fine-grained spatial and contextual features. 
Importantly, the SS_CASE_UNet overcomes the established weaknesses of manual segmentation, which are 
time-consuming, labor-intensive, and prone to significant inter- and intra-observer variability. By intelligently 
leveraging a large pool of unlabeled data alongside limited labeled examples, our method aims to achieve 
superior segmentation performance and generalization across diverse images.

It’s important to acknowledge that leveraging unlabeled data is central to other advanced methods, such 
as the ASC (Appearance and Structure Consistency) framework28. However, our core objectives and technical 
applications differ significantly. ASC focuses on Unsupervised Domain Adaptation (UDA) for fetal brain MRI 
segmentation, where the primary challenge is bridging domain shifts between different datasets. In contrast, our 
SS_CASE_UNet is a Semi-Supervised Learning solution specifically designed for fetal cerebellum segmentation 
in noisy ultrasound images. Our focus is on mitigating data scarcity by creating and rigorously filtering high-
confidence pseudo-labels from the unlabeled ultrasound data.

Another relevant approach that utilizes unlabeled data involves general-purpose SSL frameworks, such as the 
Semi-Supervised Learning with Pseudo-Label Correction (SEMI-PLC)29. This method addresses data scarcity 
through a dual-subnet architecture trained with Consistency Loss (PLC). The key distinction lies in the pseudo-
label generation and filtering mechanism: SEMI-PLC forms a consensus prediction from its two subnets and 
filters the resulting pseudo-label using both a stability mask (which checks robustness to perturbations) and a 
confidence mask. In contrast, our approach employs a distinct and refined strategy for iterative pseudo-label 
generation, specifically designed to better cope with the unique and highly variable noise characteristics present 
in fetal ultrasound imaging.

In this paper, we present the SS_CASE_UNet methodology, designed to extract highly discriminative features 
from noisy ultrasound images while intelligently expanding the effective training dataset by leveraging unlabeled 
data. This strategy aims to significantly enhance segmentation accuracy, improve model generalization, and 
provide a more reliable tool for clinical assessment and diagnosis. The main contributions of this work are 
summarized as follows:

•	 Attention-Enhanced U-Net Architecture (CASE_UNet): We introduce a U-Net architecture specifically tai-
lored for fetal cerebellum segmentation. This design incorporates Squeeze-and-Excitation (SE) blocks in the 
encoder and decoder paths, as well as a Coordinate Attention (CA) block at the bottleneck. This dual atten-
tion mechanism allows the model to dynamically recalibrate channel-wise features (SE) and capture precise 
positional and long-range dependencies (CA), resulting in a more discriminative feature representation that 
is crucial for challenging ultrasound data.

•	 Robust Semi-Supervised Training Pipeline: We propose and implement a multi-stage semi-supervised learn-
ing strategy that effectively leverages unlabeled ultrasound images. Through a rigorous pseudo-labeling and 
iterative re-training process, our pipeline significantly enhances model robustness and generalization, directly 
addressing the scarcity of expert-annotated medical data.

•	 Context-Preserving Data Augmentation: To further mitigate data limitations and improve model invariance 
to real-world variations, we employ a comprehensive data augmentation strategy. This includes noise reduc-
tion techniques, morphological operations on masks to refine structural details, and diverse geometric trans-
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formations (e.g., zoom, flips), all of which substantially expand the effective training dataset while preserving 
essential anatomical context.

•	 Optimized and Rigorous Evaluation Framework: Our framework features an optimized hybrid Binary 
Cross-Entropy and Dice loss function for robust training. The multi-stage training regimen encompasses 
decoder training, full network fine-tuning, and subsequent pseudo-label-driven refinement. Performance is 
rigorously evaluated using standard metrics (Accuracy, Dice, Jaccard, etc.), complemented by Test-Time Aug-
mentation (TTA) to ensure highly reliable and robust segmentation outcomes.

The remainder of this paper is organized as follows: “Proposed method” provides a detailed description of the 
SS_CASE_UNet methodology. “Result analysis” presents the experimental setup, evaluation methods, and 
results. “Discussions” includes a thorough discussion of the findings. Finally, “Conclusion” offers the conclusion.

Proposed method
Our proposed methodology for fetal cerebellum segmentation from prenatal ultrasound images is based on a 
novel multi-stage semi-supervised learning strategy. This approach directly addresses the fundamental challenge 
of limited labeled medical data by effectively combining a robust attention-enhanced U-Net architecture with a 
structured pipeline for utilizing unannotated images. The central innovation of the SS_CASE_UNet is its ability 
to maximize the utility of all available data, achieving superior segmentation accuracy and model generalization 
in this challenging clinical context.

Model architecture: CASE_UNet
The foundational architecture of our segmentation framework is the U-Net, a well-established encoder-decoder 
Convolutional Neural Network known for its effectiveness in biomedical image segmentation, especially in 
scenarios with limited annotated data30. The design of the U-Net facilitates precise pixel-wise localization by 
utilizing skip connections to merge rich contextual information from the contracting (encoder) path with high-
resolution spatial details from the expansive (decoder) path.

To significantly enhance the U-Net’s ability to differentiate between complex anatomical structures and the 
inherent noise of ultrasound images, we introduce CASE_UNet. This novel architecture incorporates Squeeze-
and-Excitation (SE) blocks in both the encoder and decoder paths, along with a Coordinate Attention (CA) block 
at its bottleneck (as illustrated in Fig. 2). This integration allows for dynamic channel-wise feature recalibration 
via the SE blocks and enables the capture of precise positional and inter-channel dependencies through the CA 
block, resulting in a more discriminative and contextually aware feature representation.

Encoder path (contracting path): The encoder extracts multi-scale, hierarchical feature representations and 
captures comprehensive contextual information from input ultrasound images. In our implementation, we 
utilize a pre-trained EfficientNetB0 model as the backbone. EfficientNetB0 is known for its balanced scaling 
of depth, width, and resolution, making it an efficient and accurate feature extractor. Using an ImageNet pre-
trained backbone significantly enhances transfer learning, accelerating convergence and improving the model’s 
ability to learn robust, generalizable features from diverse natural image datasets, which can then be effectively 
adapted to our specific medical imaging domain.

To enhance feature recalibration and enrich the information transferred to the decoder, an SE block is 
integrated after the output of each major convolutional block, immediately preceding the skip connection. This 
strategic placement ensures that the feature maps sent to the expansive path are highly discriminative.

The Squeeze-and-Excitation (SE) block31 enhances neural network features by dynamically recalibrating 
them, allowing the model to emphasize the most relevant feature maps for a given task, such as segmentation. 
The process begins with the “squeezing” phase, in which each channel’s spatial information is condensed into 
a descriptor using global average pooling. For an input feature map X ∈ RH× W × C , the squeeze operation 
Fsq (X) generates a channel descriptor z ∈ R1× 1× C , where each element zc is computed in Eq. (1).

	
zc = Fsq (Xc) = 1

H × W

∑ H

i=1

∑ W

j=1
Xc (i, j)� (1)

Next, during the “excitation” phase, two fully connected layers learn the importance weights for each channel. 
These learned weights are then applied to scale the original feature map, effectively highlighting crucial features 
while diminishing the impact of less significant ones. The excitation operation Fex (z) Calculates the channel-
wise attention weights s ∈ RC  in Eq. (2).

	 s = Fex (z, W1, W2 ) = σ (W2δ ( W1z ))� (2)

Finally, the recalibrated output feature map Xout is obtained by element-wise multiplication of the original 
input feature map X with the learned attention weights s, as shown in Eq. (3).

	 Xout = X ⊗ s� (3)

This dynamic re-weighting improves model accuracy with minimal computational overhead, making the SE 
block an effective addition to many convolutional neural networks.

Bottleneck: The deepest layer of the encoder acts as the bottleneck, providing the most semantically rich and 
spatially compressed feature representation. At this crucial stage, we introduce a Coordinate Attention (CA) 
block32, designed to enhance neural networks by accurately identifying important features along both height and 
width dimensions. Unlike traditional global pooling, the CA block factorizes the process into two separate one-
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dimensional feature encoding processes for horizontal and vertical coordinates. This mechanism enables the 
model to effectively capture long-range spatial dependencies while simultaneously preserving precise positional 
information—an essential capability for complex boundary differentiation in ultrasound images. For an input 
feature map X ∈ RH× W × C , the process involves.

	1.	 1D Global Pooling:
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Fig. 2.  The schema of the CASE_UNet model.
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•	 Horizontal pooling in Eq. (4).

	
zc

h (h) = 1
W

∑ W

j=1
xc(h, j) (yielding Zh ∈ RH× 1× C � (4)

•	 Vertical pooling in Eq. (5).

	
zc

w (w) = 1
H

∑ H

i=1
xc(i, w) (yielding Zw ∈ R1× W × C � (5)

These are then concatenated in Eq. (6).

	 F = Concat(Zh , Zw) ∈ R(H+W )× 1× C � (6)

	2.	 Shared 1D Convolutional Transformation: The concatenated features F are passed through a shared 1 × 1 
convolutional layer f ∈ R(H+W )× 1× C/r  (where r is the reduction ratio, e.g.32), followed by a non-linear 
activation function and batch normalization, as shown in Eq. (7).

	 f = ReLU (BatchNorm( Conv1D1× 1 (F ) ))� (7)

	3.	 Split and 1D Convolutional Gates: f  is then split back into horizontal ( fh ∈ RH× 1× C/r) and vertical 
( fw ∈ RW × 1× C/r) components. Separate 1 × 1 convolutional layers transform fh​ and fw ​ into attention 
weights gh​ and gw ​, as defined in Eq. (8) and Eq. (9).

	 gh = σ (Conv1D1× 1 (fh)) ∈ RH× 1× C � (8)

	 gw = σ (Conv1D1× 1 (fw)) ∈ R1× W × C � (9)

where σ denotes the sigmoid activation function.

	4.	 Attention-Weighted Output: The final output Xout​ is obtained by element-wise multiplication of the origi-
nal input feature map X with the attention weights gh​ (broadcasted across the width) and gw  (broadcasted 
across height), as shown in Eq. (10).

	 Xout = X ⊗ gh ⊗ gw � (10)

This positional and channel-aware attention, particularly when applied at the bottleneck, enables the network 
to better localize targets such as the fetal cerebellum, even in abstract feature spaces, significantly improving 
computer vision performance with minimal computational cost33.

Decoder path (expansive path): The decoder aims to reconstruct a high-resolution segmentation map from 
compressed, attention-enhanced features through a series of up-sampling operations that progressively increase 
the spatial resolution of the feature maps. Skip connections play a critical role by directly concatenating the rich, 
SE-enhanced feature maps from the corresponding encoder stage with the up-sampled features in the decoder. 
This mechanism ensures the recovery of fine-grained spatial details lost during down-sampling, significantly 
enhancing the precision of the final segmentation boundaries.

As part of our novel SS_CASE_UNet architecture, we introduce an additional SE block within each up-
sampling unit in the decoder, positioned after the concatenation and subsequent convolutional layers. This 
strategic placement provides a second layer of feature refinement in the expansive path, allowing the model to 
adaptively select and amplify the most informative features as it reconstructs the segmentation mask.

Each up-sampling block typically consists of an UpSampling2D layer, followed by concatenation with the 
SE-enhanced skip features, two Conv2D layers with ReLU activation, and a dropout layer. The final output 
block performs one more UpSampling2D operation to restore the original image resolution, followed by two 
Conv2D layers and a final dropout layer. The ultimate output is a 1 × 1 Conv2D layer with a sigmoid activation, 
producing a single-channel probability map that indicates the likelihood of each pixel belonging to the fetal 
cerebellum. The overall reduction in filter counts throughout the decoder and attention blocks is a deliberate 
design choice aimed at optimizing for a lower parameter count and improved generalization when training with 
limited medical data.

Semi-supervised training strategy: A multi-stage approach
The core innovation of our proposed method lies in its multi-stage semi-supervised learning strategy34. This 
approach is explicitly designed to maximize the utility of our available data: a limited labeled dataset of 200 
images alongside 200 unlabeled images. This strategy is particularly vital in medical imaging, where obtaining 
extensive expert annotations is notoriously costly and time-consuming35. Our entire strategy is organized into 
three distinct training stages, with dynamic data augmentation applied at each step to significantly enhance 
model learning and robustness. Figure 3 illustrates the complete three-stage training process.

Stage 1: Decoder-only training (transfer learning adaptation): In the initial phase, the weights of the pre-
trained EfficientNetB0 encoder layers are frozen, meaning they remain fixed and are not updated during 
backpropagation. Only the randomly initialized decoder layers of the CASE_UNet, including the newly 
introduced attention blocks, are trained. This targeted training enables the model to quickly adapt its up-sampling 
and localization capabilities to the specific task of fetal cerebellum segmentation, leveraging the robust, general-
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purpose feature representations already learned by the pre-trained encoder. This stage provides an initialization 
for the decoder, aligning it with the encoder’s feature space while preventing drastic changes to the powerful pre-
trained features. During this phase, a comprehensive data augmentation strategy (detailed in “Comprehensive 
augmentation (stages 1 & 2)”) is applied to the labeled training data.

Stage 2: Full network fine-tuning: After the initial decoder training, all layers of the CASE_UNet model, 
including the EfficientNetB0 backbone and all attention blocks, are unfrozen. The entire network undergoes 
a comprehensive fine-tuning phase with a significantly reduced learning rate. This global fine-tuning allows 
for minute adjustments throughout the architecture, enabling the pre-trained encoder to adapt to the subtle 
and unique features of fetal ultrasound images. This fosters an optimal collaboration between the encoder, 
decoder, and attention mechanisms, enhancing segmentation accuracy on the initial labeled training set of 150 
images. The same comprehensive data augmentation strategy used in Stage 1 is applied here to further improve 
generalization.

 Stage 3: Pseudo-labeling and re-training (unlabeled data exploitation): This final stage is the cornerstone 
of our semi-supervised approach, explicitly designed to harness the valuable information latent within the 
unlabeled dataset36. This process is crucial for enhancing the model’s robustness and generalization capabilities 
beyond what is achievable through purely supervised learning. Figure 4 illustrates the complete three-step 
workflow of this stage.

 

Fig. 4.  Illustration of pseudo-labeling and re-training stage.

 

Fig. 3.  Illustration of the three training stages of the semi-supervised approach.
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•	    Pseudo-label generation: The well-tuned model from Stage 2 serves as our initial “teacher” model37. We first 
use this teacher model to perform inference on the entire pool of 200 unlabeled images. The resulting output 
probability maps provide the raw, initial predictions for the unannotated data.

•	     Confident pseudo-label selection: To ensure the quality and reliability of the generated pseudo-labels, a 
rigorous filtering process is applied. Only pseudo-labels that meet two strict criteria are selected: (i) High 
confidence threshold: We impose a high confidence threshold, accepting only pseudo-labels where the pre-
dicted probability for each foreground pixel (cerebellum) exceeds 0.95. This stringent criterion minimizes the 
propagation of noisy or incorrect labels. (ii) Minimum pixel count: Pseudo-masks with an extremely small 
number of predicted foreground pixels (fewer than 10 pixels) are discarded. This measure effectively filters 
out spurious or anatomically irrelevant predictions, ensuring that only meaningful structures are included.

•	     Dataset augmentation and re-training: The selected high-confidence pseudo-labeled images are combined 
with all available original labeled images. This process creates an expanded and diverse training dataset. The 
entire CASE_UNet model, with all layers unfrozen, is then re-trained using this augmented dataset. This 
re-training phase is critical as it exposes the model to a larger and more varied set of examples, preventing 
overfitting to the initial labeled dataset and fundamentally enhancing its ability to generalize to unseen data. 
This iterative process of generating and incorporating high-confidence pseudo-labels allows the model to 
learn effectively from unannotated data, directly addressing the challenges associated with limited annotated 
medical imaging datasets. For this specific stage, a simplified data augmentation strategy (detailed in “Sim-
plified augmentation (stage 3 - pseudo-labeling)”) is applied to avoid amplifying potential pseudo-label noise 
and to ensure that the model focuses on fundamental features from the pseudo-labeled data without being 
distracted by complex transformations.  

 

Result analysis
This section outlines the experiments to validate the proposed method for fetal cerebellum segmentation. It 
begins with a comprehensive overview of the dataset utilized, detailing the characteristics and augmentation of 
the data. Subsequently, implementation settings and evaluation metrics are articulated to assess the efficiency 
and accuracy of the proposed methodology. The final subsection presents an analysis of the results obtained 
from the experiments.

Dataset
We utilized the publicly available ultrasound image dataset, FETAL_PLANES_DB38, originally compiled by 
Burgos-Artizzu et al. This high-quality resource was collected from two different hospitals using various operators 
and ultrasound machines, resulting in significant diversity in image quality and acquisition protocols. The 
meta-information, including patient number, ultrasound machine, operator, and gestational age distribution, is 
publicly accessible alongside the dataset. The collection features six categories of images, with fetal brain images 
further categorized into trans-thalamic, trans-cerebellum, and trans-ventricular planes.

Our study specifically used 400 images from the trans-cerebellum plane, where the cerebellar area was visible. 
An expert performed the original manual labeling for classification. For our segmentation task, an expert then 
manually annotated the cerebellar boundaries in 200 of these images to ensure maximal annotation consistency 
and clinical relevance. The remaining 200 images were retained to serve as the unlabeled data pool for our semi-
supervised strategy. The progression of this specialized labeling process is illustrated in Fig. 5. The 200 fully 
labeled images were then split for supervised training and evaluation as follows: 75% (150 images) for training, 
20% (40 images) for testing, and 5% (10 images) for validation.

Finally, we confirm that Institutional Review Board (IRB) approval was not required for this study because 
the analysis was performed on a publicly available, de-identified dataset. The dedicated cerebellar annotations 
used for the segmentation task were completed by the authors.

Fig. 5.  Illustration of the cerebellar area labeling process. (a) Original ultrasound image, (b) cerebellar area 
determined by the expert, and (c) corresponding ground truth mask.
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 Data augmentation
To mitigate the challenges posed by limited annotated data and to enhance the model’s robustness and 
invariance to real-world variations, we employ a comprehensive and context-preserving data augmentation 
strategy39. Traditional augmentation methods were chosen for their safety, efficiency, and control, preserving 
diagnostic details without risking distortions. Unlike GANs, these basic transformations prevent artifacts and 
are effective with smaller datasets, maintaining data integrity, which is crucial for accurate clinical models40. This 
strategy is dynamically applied during training via a custom data generator, ensuring efficient memory usage and 
continuous data diversity. The augmentation pipeline is bifurcated into two distinct modes: a “Comprehensive 
Augmentation” strategy for the initial supervised training stages (Stage 1 and Stage 2) and a “Simplified 
Augmentation” strategy specifically tailored for the semi-supervised re-training phase (Stage 3).

Comprehensive augmentation (stages 1 & 2)
This strategy is designed to expose the model to a wide variety of realistic transformations, thereby enhancing its 
robustness and generalization capabilities when learning from high-quality labeled data. Each original training 
image-mask pair undergoes a structured sequence of transformations, culminating in 32 unique augmented 
pairs per original sample.

The pipeline consists of noise reduction, morphological operations, and geometric transformations. Here is 
a detailed explanation of each step:

Noise reduction: Each input image first undergoes a median-blur operation with a kernel size of five. This 
non-linear filter is highly effective at reducing speckle noise, a common artifact in ultrasound images, thereby 
improving image quality for subsequent feature extraction.

Morphological operations: To refine and diversify the structural representations of the cerebellum mask, 
various morphological operations are applied. These include dilation (expanding foreground regions), erosion 
(shrinking foreground regions), opening (erosion followed by dilation, useful for removing small objects or 
noise), and closing (dilation followed by erosion, useful for filling small holes or gaps). Each of these four 
operations is executed with both 3 × 3 and 5 × 5 kernels, generating eight distinct morphological variants for the 
mask. These variants are then paired with the noise-reduced image.

Geometric transformations: To enhance spatial robustness and simulate natural anatomical variations, the 
following geometric transformations are applied to each of the eight morphological variants (image-mask pairs): 
(i) Original scale: The image and mask are included without any additional resizing. (ii) Zoom (1.2x scale): 
Images and their corresponding masks are resized by a factor of 1.2 (120% scale) using bilinear interpolation 
for images and nearest-neighbor for masks. They are then centrally cropped back to the original 256 × 256 
resolution. This simulates variations in anatomical scale and improves the model’s ability to handle different 
magnifications. (iii) Horizontal flip: Images and their masks are flipped along the vertical axis. (iv) Vertical flip: 
Images and their masks are flipped along the horizontal axis.

This combination of eight morphological variants and four geometric transformations yields a total of 
8 × 4 = 32 unique augmented image-mask pairs from each original sample. Figure 6 showcases the generated 
augmented samples.

 Simplified augmentation (stage 3-pseudo-labeling)
For the crucial pseudo-labeling re-training stage, a more controlled and simplified augmentation strategy is 
employed. This is a deliberate choice to prevent the amplification of potential noise or inaccuracies inherent in 
the generated pseudo-labels. This strategy produces eight augmented pairs for each original image and mask, 
comprising:

Noise reduction: A median blur (kernel size five) is applied to the image to effectively reduce noise, similar 
to the comprehensive strategy.

Morphological operations: Four core morphological operations—dilation, erosion, opening, and closing—
are applied to the mask using a small (3 × 3) kernel. This approach mitigates significant shape changes compared 
to larger kernels or multiple kernel sizes, preserving the integrity of pseudo-labeled structures more reliably.

Geometric flips: Only horizontal and vertical flips are applied to both the noise-reduced image and its 
original mask. Zoom is intentionally excluded from this simplified set to minimize potential distortions in the 
pseudo-labels.

Minor intensity adjustment: An additional augmentation involves a slight brightness and contrast adjustment, 
such as random scaling of pixel values within a small range of 0.8 to 1.2. This subtly alters the image’s appearance 
without distorting its underlying structure, enhancing illumination robustness.

This reduced set of transformations allows the model to learn fundamental features from the pseudo-labeled 
data more reliably, without the distraction of overly complex or potentially noisy transformations during this 
sensitive re-training phase. Figure 7 showcases the generated augmented samples.

Training
We applied transfer learning in our study by utilizing the network parameters of a pre-trained U-Net with an 
EfficientNetB0 backbone, which was initially trained on the ImageNet dataset. Our primary objective was to 
evaluate its effectiveness in predicting fetal cerebellar segmentation after training on our specific dataset. Our 
semi-supervised method employed a three-stage training process, incorporating dynamic data augmentation 
at each step to enhance model robustness. In Stage 1, we trained the unfrozen decoder layers for 20 epochs. 
This was followed by Stage 2, which involved a full network fine-tuning phase lasting 50 epochs. Finally, Stage 
3 included pseudo-labeling and re-training for 30 epochs, a duration selected to balance adequate model 
convergence with the prevention of overfitting to our dataset. This comprehensive process aimed to fine-tune 
the model parameters for improved predictive accuracy in our task.
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All models were developed utilizing TensorFlow v2.15, and the experiments were conducted on the Google 
Colab platform.

Loss functions for semi-supervised cerebellar segmentation: Our semi-supervised method utilizes a combined 
loss function to effectively train the model using both labeled and unlabeled data. This function balances a 
supervised Dice loss for annotated samples with an unsupervised Mean Squared Error (MSE) consistency 
regularization loss for unannotated samples.

Supervised segmentation loss: For the labeled data, we employ the Dice Loss, a standard metric widely 
recognized in medical image segmentation for effectively addressing class imbalance. The Dice Loss quantifies 
the overlap between the prediction and the ground truth, as shown in Eq. (11).

	
LDice (P, G) =

2
∑

iPiGi∑
iP 2

i +
∑

iG2
i

� (11)

where Pi is the predicted probability and Gi is the ground truth label for pixel i.

Fig. 7.  Examples of simplified data augmentation. Visualizations of augmented images generated from an 
image.

 

Fig. 6.  Examples of comprehensive data augmentation. Visualizations of augmented images generated from a 
single original input.
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Unsupervised consistency regularization loss (mean squared error): To leverage unlabeled data, we use a 
consistency regularization loss. This enforces stable predictions for unlabeled inputs under perturbations, 
calculated as the MSE between two passes of the same input in Eq. (12).

	
LMSE (P1 , P2) = 1

N

∑
i(P1,i − P2,i)2� (12)

where P1,i and P2,i  are softmax outputs from two passes of pixel i, and N  is the total number of pixels.
Total combined loss: The overall training loss L is a weighted sum, balancing supervised accuracy and 

unsupervised consistency, as shown in Eq. (13).

	 L = LDice + λ LMSE� (13)

here, λ is a hyperparameter controlling the weight of the consistency term, often annealed during training. This 
combined approach optimizes for robust and generalizable cerebellar segmentation.

Model evaluation metrics
To rigorously evaluate the performance of our SS_CASE_UNet model for fetal cerebellar segmentation, 
we employ Accuracy, Precision, Recall, Jaccard Similarity (JS), and Dice Similarity Coefficient (DSC) as five 
metrics. These quantitative metrics assess various aspects of segmentation accuracy, providing a comprehensive 
understanding of the model’s capabilities.

DSC, also known as the F1-score or Sørensen-Dice index, is a widely used metric in medical image 
segmentation. It measures the spatial overlap between the predicted segmentation (P) and the ground truth (G), 
ranging from 0 (no overlap) to 1 (perfect overlap). Given its direct relation to the Dice Loss used during training, 
it serves as a primary indicator of segmentation quality. The formulas for Accuracy, Precision, Recall, JS, and 
DSC are defined in Eq. (14) to Eq. (18).

	
Accuracy = T P + T N

T P + F P + T N + F N
� (14)

	
P recision = T P

T P + F P
� (15)

	
Recall = T P

T P + F N
� (16)

	
Jaccard Similarity = T P

T P + F P + F N
� (17)

	
DSC (P , G) = 2 |P ∩ G|

|P | + |G| = 2 × T P

2 × T P + F P + F N
� (18)

where TP, TN, FP, and FN represent the number of True Positives, True Negatives, False Positives, and False 
Negatives, respectively.

Segmentation results
Our work introduces SS_CASE_UNet, a novel semi-supervised deep learning architecture designed for accurate 
fetal cerebellar segmentation. Its superior performance builds on the U-Net framework by integrating Squeeze-
and-Excitation (SE) and Coordinate Attention (CA) blocks. This combined attention mechanism, along with 
our semi-supervised training strategy that leverages both labeled and unlabeled data, significantly enhances 
segmentation accuracy in challenging medical image analysis.

To demonstrate the effectiveness of SS_CASE_UNet, we conducted a rigorous comparative analysis against 
several state-of-the-art algorithms. These included FCRBU-Net23, an enhanced U-Net utilizing fully connected 
residual blocks; ECAU-Net18, which integrates Efficient Channel Attention for improved efficiency; and Dual_
CNN11, a two-stage approach that focuses first on plane localization before segmentation. We ensured a fair 
comparison by successfully reproducing these algorithms and conducting all experiments with identical training 
strategies and parameter settings. Table 2 provides a quantitative summary of the overall cerebellar segmentation 
results, highlighting the performance of each method.

As demonstrated in Table 2, our proposed SS_CASE_UNet model consistently outperforms all other state-
of-the-art methods on the test dataset, achieving the highest scores across all five evaluation criteria (Accuracy, 
Precision, Recall, Jaccard Similarity (JS), and Dice Similarity Coefficient (DSC)).

Specifically, SS_CASE_UNet achieved an impressive Accuracy of 99.08% and a strong DSC of 87.65%. 
The model’s high accuracy is particularly noteworthy given the significant class imbalance in the dataset. 
Compared to FCRBU-Net23, the next best-performing model, SS_CASE_UNet demonstrated significant gains: 
an increase in Accuracy by 0.42, JS by 5.22, and DSC by 1.19. These robust gains underscore the effectiveness 
of our approach in complex fetal cerebellum segmentation. This superior performance is a direct result of the 
deliberate integration of our attention mechanisms, a justified increase in complexity even compared to the most 
lightweight competitor, Dual_CNN11.

This performance advantage is achieved through the combination of Squeeze-and-Excitation (SE) blocks for 
channel recalibration and the Coordinate Attention (CA) block for precise spatial awareness. This enables our 
model to extract more discriminative and contextually rich features from noisy ultrasound images—a capability 
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that simpler, lower-parameter models often lack. This strategic architectural design is the primary reason SS_
CASE_UNet achieves better results without the excessive parameter increase seen in other advanced U-Net 
variants. Building on the quantitative summary in Table 2; Fig. 8 visually represents the segmentation results, 
offering a clear comparative analysis of SS_CASE_UNet’s performance against other established deep learning 
models across all evaluation metrics.

To enhance prediction consistency and robustness—a critical requirement for clinical medical imaging tasks—
we implemented Test-Time Augmentation (TTA). This technique applies fundamental geometric operations 
(such as horizontal and vertical flips) to each test image. With TTA applied, SS_CASE_UNet achieved a DSC of 
85.74% (along with an Accuracy of 98.26%, Precision of 92.61%, Recall of 80.82%, and JS of 80.03%). As Fig. 9 
visually confirms, our model consistently and accurately recognizes the fetal cerebellar area, highlighting its 
enhanced robustness and generalization despite subtle variations in image orientation and presentation.

The number of model parameters and the resulting inference time are critical factors for practical clinical 
deployment. FCRBU-Net, with the highest parameter count of 33 million, is consequently the slowest model, 
requiring 5465.72 ms for a single prediction—a speed that severely limits its real-time application. In stark 
contrast, our SS_CASE_UNet, with only 6.7 million parameters, achieves optimal speed, boasting the fastest 
inference time of just 489.57 ms. Although Dual_CNN has the lowest parameter count at 3 million, its prediction 
time is significantly slower at 1017.52 ms. This disparity arises from Dual_CNN’s computationally expensive 
dual-network design, underscoring the superior real-time efficiency of our streamlined, single-pipeline SS_
CASE_UNet architecture.

This optimal balance of performance and efficiency is achieved through a deliberate architectural strategy: 
while lightweight SE and CA attention blocks were integrated, the overall parameter count remains lower than 
that of a standard U-Net baseline primarily due to a strategic reduction in the number of filters within the 
decoder path (e.g., reducing filter counts from 128 to 8 in the final stage). This careful parameter optimization 
ensures superior segmentation performance with a practical and optimized model size.

Figure 10 offers a crucial visual comparison of fetal cerebellum segmentation across all models, displaying 
the original ultrasound images, corresponding ground truth, and binary segmentation results. SS_CASE_UNet 
demonstrates superior segmentation results, consistently resembling the ground truth, which attests to its high 
fidelity. A notable limitation of the comparative methods is their difficulty in handling inherent ultrasound noise, 
often resulting in fragmented predictions, false positives, and a lack of boundary continuity. For example, in Row 
2, while models like ECAU-Net and Dual_CNN present fragmented or inaccurate predictions, SS_CASE_UNet 
effectively delineates the complex cerebellar boundary with high fidelity. Furthermore, Row 5 strongly illustrates 
SS_CASE_UNet’s robustness in segmenting the cerebellum, even under challenging image quality, producing a 
complete and accurate mask where other methods exhibit significant omissions or false positives. This ability to 

Fig. 8.  Quantitative Performance Comparison of SS_CASE_UNet and State-of-the-Art Deep Learning Models.

 

Method

Metrics

#Params Average Inference Time (ms)Accuracy Pre Rec JS DSC

U-Net 97.80 84.26 74.18 65.08 78.89 10 M 1972.36

ECAU-Net 18 98.03 90.85 79.91 76.17 85.04 31 M 2734.51

FCRBU-Net23 98.66 92.61 79.95 76.54 85.74 33 M 5465.72

Dual_CNN11 97.55 83.89 75.45 67.57 79.34 3M 1017.52

SS_CASE_UNet 99.08 93.49 82.34 81.76 87.65 6.7 M 489.57

Table 2.  Comparisons of different models on the test dataset. The best values are in bold. 
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maintain the structural integrity and continuity of the segmented cerebellum highlights the model’s resistance to 
common failure modes seen in less robust approaches.

To validate our specialized semi-supervised strategy, we compared SS_CASE_UNet with SEMI-PLC29, a well-
known and general SSL framework. While SEMI-PLC uses a dual-subnetwork architecture and stability masks 
to generate consensus pseudo-labels, our approach relies on a single, improved attention network coupled with 
a fully filtered single-step pseudo-labeling mechanism. As shown in Table 3, the SEMI-PLC method achieved a 
final DSC of only 72.32%. This poor performance is likely due to its general architecture, which struggles with 
the high speckle noise and low contrast inherent in fetal ultrasound images. In contrast, our SS_CASE_UNet 
achieved a DSC of 87.65%, representing a significant improvement of 15.33%. This significant gap provides 
strong evidence that the integration of SE and CA attention blocks is crucial for extracting reliable features from 
noisy ultrasound data.

 
To further elucidate the internal workings and interpretability of our SS_CASE_UNet model, we utilize 

Gradient-weighted Class Activation Mapping (Grad-CAM)41 heatmap to visualize the regions of an image 
that most strongly influence the model’s segmentation decisions. Figure 11 presents representative heatmaps 
overlaid on the original ultrasound images, showcasing the spatial focus of our model during inference. These 
visualizations demonstrate how SS_CASE_UNet’s integrated attention mechanisms (SE and CA blocks) enable 
it to concentrate precisely on the fetal cerebellum, even amidst surrounding noise and complex anatomical 
structures. The heatmaps confirm that the model effectively identifies and prioritizes the relevant pixels, 
providing a deeper understanding of its robust segmentation performance. This visual evidence supports the 
efficacy of our architectural design in enhancing discriminative feature learning.

 Ablation experiments
In addition to verifying the effectiveness and generalization capabilities of our proposed method through 
comparative experiments (as discussed in “Segmentation results”), we conducted an ablation study to rigorously 
evaluate the contribution and necessity of each component within the SS_CASE_UNet framework. The 
quantitative results of these experiments are summarized in Tables 4 and 5.

Our analysis began by establishing the baseline performance of the standard U-Net model, which achieved a 
Dice Similarity Coefficient (DSC) of 78.89%.

Upon integrating the Coordinate Attention (CA) block into the U-Net, we formed the CA-UNet model, 
which demonstrated substantial improvements across all evaluated metrics. As summarized in Table 4, the CA-
UNet yielded a DSC of 86.98% (an 8.09% improvement) compared to the baseline, clearly demonstrating the 
CA block’s effectiveness in directing the network’s attention to critical spatial features. Similarly, the inclusion of 

Fig. 9.  The performance of SS_CASE_UNet with test-time augmentation. (a) The original ultrasound image, 
(b) the ground-truth, (c) the segmentation results of SS_CASE_UNet.
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the Squeeze-and-Excitation (SE) block, resulting in the SE-UNet model, led to significant performance gains, 
achieving a DSC of 85.20% (a 6.31% improvement over the baseline). This marked improvement highlights the 
SE block’s ability to recalibrate channel-wise feature responses, optimizing information flow within the network.

We then experimented with a fully supervised CASE-UNet model, which incorporates both the CA and SE 
blocks and is trained exclusively on the limited labeled dataset. The results confirm the synergistic collaboration 

Fig. 10.  Comparison of fetal head segmentation by different deep learning models. (a) The original ultrasound 
image, (b) the ground-truth, and the segmentation results of (c) SS_CASE_UNet, (d) FCRBU-Net, (e) ECAU-
Net, and (f) Dual_CNN.
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between the two attention mechanisms, with the model achieving a DSC of 87.16%, surpassing the performance 
of either individual block configuration.

To quantify the specific advantage of our multi-stage semi-supervised strategy, we conducted an ablation 
study focused solely on the training process, as detailed in Table 5. We used the supervised CASE-UNet (DSC 
87.16%) as our baseline, representing the model’s performance with labeled data only.

When processing all 200 unlabeled images with pseudo-labels but without rigorous confidence and size 
filtering (Naive_CASE-UNet), the performance showed only a modest increase (DSC of 87.24%). This highlights 
the significant risk of error propagation from noisy ultrasound data. By applying our proposed strict filtering 
criteria (0.95 probability and a minimum size of 10 pixels), the full SS_CASE_UNet model achieved the highest 
performance metrics, with a final DSC of 87.65%. This represents an overall improvement of + 0.49 points over 
the supervised baseline, clearly demonstrating that the sequential, high-fidelity pseudo-labeling in Stage 3 is 
responsible for the majority of the final performance gains.

This analysis confirms that the superior performance of SS_CASE_UNet results from the synergistic 
combination of both the optimized attention-enhanced architecture and the carefully designed, filtered semi-
supervised learning process.

Discussions
The accurate and efficient segmentation of the fetal cerebellum from ultrasound images is crucial for prenatal 
diagnostics, enabling early detection of neurological abnormalities and precise biometric measurements. 
However, as highlighted in the introduction, this task is inherently challenging due to speckle noise, varying image 
quality, complex anatomical structures, and significant logistical hurdles in acquiring large, expertly annotated 
datasets. Our proposed SS_CASE_UNet framework directly addresses these limitations by introducing a novel 
attention-enhanced U-Net architecture (CASE_UNet), coupled with a robust multi-stage semi-supervised 
training strategy.

Our comprehensive comparative analysis, quantitatively summarized in Table 2, clearly demonstrates that 
SS_CASE_UNet outperforms several established state-of-the-art models in fetal cerebellum segmentation. 
Achieving a DSC of 87.65%, along with high Accuracy (99.08%), Precision (93.49%), Recall (82.34%), and 
Jaccard Similarity (JS) (81.78%), our model establishes a new benchmark for this challenging task. The notable 
2.23% point improvement in DSC over FCRBU-Net23, a leading baseline, underscores the effectiveness of our 
integrated approach in capturing the intricate boundaries and challenging features of the fetal cerebellum. 
Visually, as depicted in Fig. 10, SS_CASE_UNet consistently produces segmentation masks that closely resemble 
the ground truth, exhibiting superior boundary delineation and reduced artifacts compared to ECAU-Net18 or 
Dual_CNN11, especially in cases with low contrast or partial occlusions.

The rigorous ablation study, detailed in Table 4, provides critical insight into the individual contributions 
and synergistic effects of the attention blocks. Both the Coordinate Attention (CA) block and the Squeeze-and-
Excitation (SE) block) individually enhance the baseline U-Net’s performance, validating their complementary 
roles in refining feature representations. The CA block’s ability to embed precise positional information is crucial 
for accurately localizing the cerebellum, while the SE block’s dynamic channel-wise feature recalibration is vital 
for emphasizing salient features and suppressing the influence of noise inherent in the ultrasound environment. 
The combined deployment of both blocks in the supervised CASE_UNet results in further incremental 
improvement in DSC, confirming their indispensable cooperation.

Furthermore, a key architectural advantage of SS_CASE_UNet is its optimized balance between model 
complexity and clinical efficiency. While models like FCRBU-Net23 have significantly higher parameter 
counts (e.g., 33 M), potentially limiting real-world deployability, our SS_CASE_UNet maintains a competitive 
6.7 million parameters and boasts the fastest inference time of 489.57 ms. Although Dual_CNN11 has fewer 
parameters, its dual-network design makes its prediction time more than double that of our streamlined, single-
pipeline architecture. This efficiency is achieved through the strategic use of parameter-efficient SE and CA 
blocks, combined with a deliberate reduction of filters in the decoder path, enabling our model to generalize 
effectively without the computational burden of larger models.

A core innovation of our work is the multi-stage semi-supervised training strategy. This strategy employs 
a Teacher-Student model for pseudo-label generation, sharing a conceptual link with methods like the ASC 
framework28. However, SS_CASE_UNet is specifically designed for ultrasound segmentation, addressing the 
challenge of noisy images through a refined Attention-Enhanced U-Net (CASE-UNet) architecture and a multi-
stage training pipeline. This pipeline, which includes pre-training, fine-tuning, and re-training with strictly 
filtered, high-confidence pseudo-labels, is optimized for extracting reliable segmentation from noisy unlabeled 

Methods

Metric

Accuracy Precision Recall JS DSC

SEMI-PLC29

Subnet A 98.19 83.56 62.72 55.48 71.03

Subnet B 98.26 82.04 67.61 58.63 73.61

Average Result 98.23 82.80 65.17 57.06 72.32

SS_CASE_UNet 99.08 93.49 82.34 81.76 87.65

Table 3.  Performance metrics of the comparative Semi-Supervised segmentation framework (SEMI-PLC29. 
The best values are in bold. 
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ultrasound data. This represents a crucial distinction from the consistency-regularization often used in MRI-
based UDA methods, such as ASC.

To validate SS_CASE_UNet, we compared it against the generalized SSL framework SEMI-PLC29. As detailed 
in Table 5, SEMI-PLC achieved a final DSC of only 72.32%, while SS_CASE_UNet attained an improvement of 
15.33% points.

Fig. 11.  Visual representation of the SS_CASE_UNet model’s performance using heatmaps. (a) Original 
ultrasound image, and (b) Grad-CAM heatmap.
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The implementation of Test-Time Augmentation (TTA) confirms the inherent stability and strong 
generalization capabilities of the model. TTA enhances the consistency and reliability of our segmentation, with 
Fig. 9 visually reinforcing the model’s ability to maintain precise segmentation despite subtle variations in image 
orientation.

Moreover, the interpretability offered by Grad-CAM heatmaps, visually represented in Fig.  11, provides 
crucial insights into our model’s decision-making process. These heatmaps clearly illustrate how SS_CASE_
UNet precisely targets the cerebellar region, validating the effectiveness of the integrated attention mechanisms 
in guiding the network’s focus to relevant anatomical features, thereby minimizing the influence of noise and 
ambiguous boundaries.

In conclusion, SS_CASE_UNet represents a robust, highly accurate, and efficient solution for the automated 
segmentation of the fetal cerebellum. Its ability to achieve high performance, coupled with an optimized 
parameter profile and effective utilization of unlabeled data, positions it as a promising tool to augment prenatal 
screening processes. While our current focus has been on segmentation accuracy, the derived precise cerebellar 
masks lay a strong foundation for future work, including the automatic classification of cerebellar abnormalities, 
which could significantly aid clinicians in early diagnosis and intervention.

Conclusion
This study introduces SS_CASE_UNet, an attention-enhanced, semi-supervised framework for accurate fetal 
cerebellum segmentation in ultrasound images. By integrating Squeeze-and-Excitation (SE) and Coordinate 
Attention (CA) blocks into a U-Net, our model effectively addresses challenges such as image noise, complex 
anatomical structures, and the scarcity of annotated data. Our results demonstrate that SS_CASE_UNet surpasses 
existing methods, achieving a Dice Similarity Coefficient (DSC) of 87.65%. Ablation studies confirm that both the 
CA and SE blocks are crucial for enhancing segmentation accuracy and robustness, showing a synergistic effect 
when used together. The model achieves this superior performance with a balanced and optimized parameter 
count, which is lower than the standard U-Net baseline, making it more practical for clinical deployment. 
The multi-stage semi-supervised training strategy and Test-Time Augmentation (TTA) were also key to our 
success, allowing the model to learn from limited labeled data and improve prediction consistency effectively. 
In conclusion, SS_CASE_UNet is a robust and efficient automated tool for fetal cerebellum assessment that 
addresses the key limitations of manual segmentation and data scarcity. For future work, the precise cerebellar 
segmentation masks generated by SS_CASE_UNet lay a strong foundation for advancing prenatal diagnostics. 
Our next critical step is to leverage this accurate anatomical localization to detect cerebellar abnormalities, with 
a focus on the automated identification of Dandy-Walker Malformation (DWM).

Data availability
The dataset analysed during the current study is available at https://zenodo.org/records/3904280.The generated 
code is available at ​[​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​a​m​e​n​e​v​a​t​a​n​p​a​r​a​s​t​/​S​S​_​C​A​S​E​_​U​N​e​t​]​(​h​t​t​p​s​:​/​g​i​t​h​u​b​.​c​o​m​/​a​m​e​n​e​v​a​t​a​n​p​a​r​
a​s​t​/​S​S​_​C​A​S​E​_​U​N​e​t​) .
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