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Abstract—This paper investigates the security of seman-
tic communication systems over Rayleigh fading wiretap
channels. Unlike traditional systems, semantic communi-
cation focuses on recovering the intended meaning rather
than exact bits. To cope with this inconsistency, we propose,
for the first time, using the semantic similarity metric to
enhance physical layer security within a realistic frame-
work in which noise affects the transmitted messages at
the bit level similarly to traditional systems. Semantic
sets are defined via semantic (cosine) similarity thresholds
and decoding performance is evaluated accordingly. To
address complexity challenges, we segment the transmitted
messages into chunks of decreasing semantic importance.
We compare two strategies for the considered semantic
similarity thresholds: (a) keeping them constant across
all chunks and (b) linearly scaling them to adjust their
value according to the importance. Results reveal a trade-
off among semantic reliability, security, and complexity.
Further, our results demonstrate that by adjusting the
semantic similarity threshold, the size of the semantic set
is controlled, which in turn affects both decoding success
and vulnerability to leakage. Finally, we note that higher
thresholds improve security, but reduce reliability, while
lower thresholds enhance robustness at the cost of increased
risk of semantic leakage.

Index Terms—Semantic communication, physical layer
security

I. INTRODUCTION

HE development of 6G networks brings a funda-

mental shift in communication systems by priori-
tizing the delivery of meaningful and purposeful content
over the transmission of information. This new paradigm,
known as semantic communication (SemCom), empha-
sizes transmitting information that is semantically im-
portant and aligns with its intended use. However, this
evolution introduces new security challenges. Traditional
communication models, which focus solely on delivering
bit sequences, often overlook the context, content, and
intent of messages. As a result, the systems become
vulnerable to attackers who may exploit the conveyed
semantics rather than the raw data itself. Thus, it is
important to empower semantic communication systems
with robust security frameworks to ensure the success of
smarter and safer 6G and beyond networks [1].
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To address these challenges, physical layer security
(PLS) is a promising approach that leverages the intrinsic
properties of wireless communication channels. Inte-
grating semantic communication with PLS introduces
both opportunities and challenges. While SemCom en-
hances communication efficiency, ensuring the security
of semantic content, it demands novel strategies. This
is because conventional techniques primarily focus on
protecting bit sequences and ensuring their accurate
reconstruction. As highlighted in [2], new PLS metrics
with semantic goals are crucial for improving resilience
against eavesdropping and other threats. Similarly, the
work in [3] underscores the need for tailored frameworks
to address the unique security risks posed by semantic
systems. Traditional bit error-based security methods
are no longer sufficient to capture the risks introduced
by semantic communications systems. Adversaries may
extract meaningful information even without perfectly
decoding the transmitted bits. This limitation highlights
the need for semantic-aware security frameworks that
go beyond classical error metrics to quantify the risk
of semantic leakage. Such frameworks should be de-
signed to ensure reliable communication for legitimate
users while effectively limiting the information gain of
eavesdroppers.

Unlike most existing studies, our work focuses on a
physical layer semantic communication system, where
noise effect is investigated at the wireless channel itself
rather than considering semantic noise. This enables the
study of semantic physical layer security in a more
realistic setting. Our approach offers a simple way to
analyze semantic secrecy over physical channels.

A. Related Works and Motivation

Early research in [4] laid the groundwork for semantic
communication by developing a theoretical framework
that links semantic models to Shannon’s classical in-
formation theory (CIT). This work demonstrates that
Shannon’s source and channel coding theorems have
semantic counterparts. However, while these theorems
confirm the existence of semantic coding algorithms,
they offer little guidance for designing optimal ones.
Building on these foundations, the work in [5] con-
ceptualizes semantic communication as an evolution
beyond Shannon’s theory, particularly within the context



of Artificial Intelligence and Internet of Things (IoT)
systems. The study introduces frameworks for human-
to-human, human-to-machine, and machine-to-machine
communication by using neural networks and distributed
learning to improve 6G networks. The work in [6]
explores language exploitation through joint source-
channel coding and an end-to-end distortion metric and
defines the semantic distortion cost region. The work
in [7] establishes a systematic framework for Semantic
Information Theory (SIT) by introducing synonymous
mapping and metrics such as semantic entropy, mutual
information, and semantic capacity. Although these ef-
forts highlight SIT as a natural extension of CIT, a
universal consensus on its formal definition has not yet
emerged.

Research on semantic physical layer security is still
in its early stages, but there are notable findings. In
[8], semantic security is examined in type II wiretap
channels (WTC II). This work finds that the secrecy
capacity in this setting matches the semantic security
capacity by providing robustness against strong eaves-
droppers. The paper in [9] explores traditional security
approaches in the Semantic IoT (SIoT), by proposing
novel performance indicators, such as the probability
of semantic secrecy outage and the probability of de-
tection failure, to better assess the security of SIoT.
The study also identifies semantic-level threats and the
corresponding defense mechanisms. In [10], the authors
propose DeepSSC, a secure semantic communication
system implemented using a framework based on a deep
neural network (DNN). DeepSSC is trained to balance
accurate semantic recovery for legitimate users and min-
imize semantic leakage to eavesdroppers. BLEU score,
commonly used in natural language processing (NLP),
is used as a metric and the results show significant gains
in terms of semantic security at high SNRs. The work
in [11] presents a framework in which the transmitter
sends a bitstream comprised of both traditional and
semantic bit information. It uses the semantic signal
as artificial noise to disrupt eavesdroppers and achieves
significant gains in ergodic secrecy rate over fading
wiretap channels, by optimizing transmit power, power
split between semantic and bit streams, and the decoding
order at the transmitter. Lastly, a recent study [12]
proposes a PLS framework for integrated sensing and
semantic communication systems, where a semantic base
station simultaneously serves multiple users and senses
a malicious target in the presence of an eavesdropper. To
enhance semantic security, it optimizes beamforming for
both communication and sensing, and show the trade-
off between semantic secrecy rate (SSR) and sensing
accuracy. While the above systems represent important
advances toward achieving semantic security, they are
primarily inspired by NLP and often rely on task-specific

metrics such as BLEU, which limits their generality.

B. Contribution

This work investigates the security of semantic com-
munication systems over a Rayleigh fading wiretap
channel by analyzing the semantic success probabilities
of legitimate users and eavesdroppers under different
semantic similarity thresholds, codeword lengths and
SNR values. The main contributions are as follows:

o we develop a framework to quantify semantic suc-
cess and leakage probabilities using cosine similarity,
where the legitimate receiver relies on threshold-based
semantic sets and the eavesdropper, unaware of the
threshold, performs best-match decoding;

o we offer a new perspective on evaluating physical-
layer security in semantic communication systems by
analyzing how semantic similarity thresholds, code-
word length, and channel noise affect the trade-off
between reliability and leakage;

« we introduce a chunk-wise decoding strategy that en-
ables scalable semantic decoding for longer messages.
Thresholds per chunk are adjusted by keeping them
constant or linearly scaled them.

II. SYSTEM MODEL AND PROBLEM DEFINITION

Semantic communication redefines the objective of
transmission from exact bit recovery to the preservation
of meaning. While PLS traditionally aims to minimize
bit error rates for legitimate users, semantic communi-
cation systems necessitate new evaluation metrics that
capture how effectively meaning is conveyed and recon-
structed. In this work, we adopt cosine similarity [13] as
a performance metric to quantify the degree of semantic
alignment between transmitted and decoded messages.

A. System Overview

Consider a Rayleigh fading wiretap channel where a
transmitter (Alice) sends a binary message M € {0,1}"
to a legitimate receiver (Bob), while an eavesdropper
(Eve) attempts to intercept as illustrated in Fig. 1. Each
bit in the message is modulated by Binary Phase Shift
Keying (BPSK), where the modulated signal becomes
x € {—1,41}", and then is transmitted through a
Rayleigh fading channel with additive Gaussian noise:

y=hx+n (D)
where, h = |g|, with g ~ CN(0,1), and n ~ N (0, 0?).

B. Semantic Similarity and Semantic Sets

We determine whether a received signal conveys the
same meaning by comparing the direction of vectors in
the modulated multidimensional signal space. Semantic
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accuracy is evaluated using cosine similarity between the
transmitted signal x and a candidate x € {—1,+1}":

SemSim(x,x) = xx

e 2
[l 1]

Here, (-) denotes the dot product of two vectors, and || ||
represents the Euclidean norm of a vector. A semantic
set is defined for a similarity threshold 7 € [—1,1] as:

S-(x) ={x e {-1,+1}" : SemSim(x,%) > 7} (3)

Higher 7 values correspond to stricter semantic equiva-
lence. This definition of semantic sets offers a geometric
realization of the synonym mapping concept [7], where
codewords achieving a similarity threshold have the
same meaning. Note that, higher values of 7 imply
stricter semantic equivalence and smaller synonym sets.

C. Semantic Decoding and Leakage Detection

In our setting, Bob is a semantic receiver aware of
the semantic similarity threshold 7, and based on this
constructs the semantic set. Semantic decoding at Bob
is successful if the received message belongs to this set.
Additionally, Bob assigns the intended meaning (seed)
to a single codeword in each semantic set. Conversely,
the eavesdropper Eve, who is also a semantic receiver,
performs semantic decoding and selects the codeword
with the highest cosine similarity to her received signal.
However, unlike Bob, she is not aware of the threshold
7 and cannot construct or interpret the semantic set.
Semantic leakage occurs if Eve’s decoded codeword
coincides with the true meaning assigned within Bob’s
semantic set. The full decoding and leakage detection
process is summarized in Algorithm 1.

D. Chunk-Wise Similarity Threshold Scaling

The semantic set grows exponentially with the number
of codeword bits. To cope with this problem, we segment
the original message x into chunks of [ bits. We found 8-
bit chunks offer a balance between decoding complexity
and allow exact computation of local semantic sets.
Further, this segmentation of messages supports flexible
threshold scaling across the message. This is needed
as the first chunks carry more critical semantic content

Algorithm 1 Semantic Decoding and Leakage Detection

1: Input: Blocklength n, packet size p = min{8, n}, packets
K = [n/p], threshold Tyase, decrement a, trials T

2: Partition indices {Z1,...,Zx } from right to left

3: Set thresholds: 74, = Tase — (kK — 1) -afork=1,..., K

4: Generate codebook C = {0,1}" and modulate to X =
{_17 +1}n

5:fori=1to T do
6: Pick random x € X
7: Semantic Seeds:
8: for k=1to K do
9: X = Xz,,, define
Sk = {z € {£1}" : SemSim(x,z) > 7 }
10: if S, = @ then continue
11: end if
12: Pick random s; € Sk

13: end for

14: Full seed: s = [s1,...,SK]
15: Bob: Observe y, = hyx + ny
16: for k=1to K do

17: Xp,x = argmax,e(+1}y» SemSim(Re(ys, 7, ), z)
18: end for
19: Xp = [)A(b,l,.”,fcb,}(}

20: if Xy, € Sk VK then Taop < Tgop + 1
21: end if

22: Eve: Observe y. = h.x + n,

23: for k=1to K do

24: Xe ) = argmaxge(+13» SemSim(Re(ye,z, ), z)
25: end for

26: Xe = [Re1y- - -y Xe, K]

27:  if %o = s then T2k  Tieak 4

28: end if

29: end for

30: Compute: Prg = T30 /T,  Prieac = T /T,

compared to the next ones. Hence, a higher similarity
threshold 7,5 should be used for the first chunks to
ensure accurate decoding, which can then decrease to
account for the lower semantic importance of later
chunks. Here, we smoothly vary the cosine similarity
threshold across chunks by applying linear scaling, but
other approaches may result in further improvements.

Tk = Tbase — (k - 1) e (4)
We start from a base threshold 7,6 € [—1,1], and then
decrease it by a fixed amount o« > 0 for each chunk
k=1,2,..., K. This generates a sequence of semantic
thresholds where earlier chunks use stricter values and
later chunks allow looser semantic matches. For conve-
nience of notation, we use 7 and Ty, interchangeably
to refer to the initial base threshold.

E. Other security metrics

Apart from semantic similarity, in this section we
define the following metrics for performance evaluation:
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Fig. 2. Average semantic set size as a percentage of the total codebook
(2™) for different codeword lengths n, plotted against the cosine
similarity threshold Tpyge.

« Semantic success - Prg(Tyse, SNRp): It is defined as
the probability that each decoded chunk lies within its
corresponding semantic set. When the chunk approach
is followed, the semantic success is calculated as the
product of per chunk success, as to recover the actual
meaning requires all the chunks to be correctly and
semantically decoded.

o Semantic leakage - Pri.(SNRg): It is defined as
the probability that Eve’s decoded chunks all match
the designated seeds selected from their respective
semantic sets. It is again calculated as the product each
chunk matches the corresponding seed.

III. NUMERICAL RESULTS

Fig. 2 shows how the average semantic set size,
expressed as a percentage of the total number of code-
words, varies with the cosine similarity threshold 7pse.
At lower thresholds (e.g., Tpase < 0), the condition is
loose, so almost all modulated vectors fall within each
semantic set. At Thye = —1, every codeword is included,
yielding 100% semantic set size. As Tpase inCreases, the
requirement for directional similarity becomes stricter,
and results in smaller semantic sets. For 7, = 1, the
semantic set contains a single codeword, i.e., only the
transmitted codeword. Semantic success then requires
the decoder to recover the exact codeword. The effect
of dimensionality is also evident.

When n = 2, the sizes of the semantic sets remain
small and relatively stable across a wide range of Tyage,
as the codewords point in distinctly different directions.
In contrast, for n = 8, the sets are significantly larger
at small 7y,, as codewords are more concentrated and
even small angles include many nearby vectors. More-
over, some codewords have fewer semantically similar
neighbors and provide greater inherent security. Assign-
ing critical messages to these codewords may enhance

Bob 1 dB
9 |= — EvetdB
Bob 5 dB

— — Eve5dB
80 - Bob 10dB
Eve 10dB

50

Success Probability (%)
@
g
T

85\’\

00 ===

04 05 06 07 08 09 1

ok [ s L - I L L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 06 08 1

Cosine Similarity Threshold 7

Fig. 3. Success and leakage probability as a function of the cosine
similarity threshold 7,5 for Bob and Eve under varying SNR levels
for codeword length n = 8.
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Fig. 4. Semantic decoding success of Bob and Eve vs. blocklength n,
using 8-bit chunks following constant thresholds and scaled thresholds.

secrecy but can reduce robustness, which illustrates a
trade-off between reliability and leakage.

Fig. 3 shows how the semantic threshold 7, affects
the semantic success of Bob and Eve for n = 8. In this
setting, we assume a single chunk. As Ty, increases,
the semantic set becomes smaller and only codewords
with higher cosine similarity to the transmitted message
are accepted. We note that Bob performs well for low
Thase> DUt his success drops sharply beyond Tyase ~ 0.7,
especially under stronger noise. On the other hand, Eve
does not know 7y, value, and hence, always picks the
most similar codeword. From this figure, we can see
Eve’s success is low when semantic sets are big (low
Thase), because it is less likely that the correct seed will
be recovered. However, when semantic set size becomes
smaller (high 7y,), the probability of recovering the
correct seed by random guessing increases. Moderate
values, i.e. Thase € (0.5—10.7), show a trade-off on
reliability and secrecy.
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In Fig. 4, we examine semantic success and leakage
using the proposed chunk-based approach for various
codeword blocklengths when 8-bit chunks are assumed.
We compare 7 adaptation strategies: constant thresh-
olds, where each chunk uses the same 7y,s, and scaled
thresholds, where 7,5 decreases linearly across chunks
(av = 0.02). Recall, a higher 7, yields smaller semantic
sets, while lower T, values produce larger ones. We
note that Eve has a higher chance of finding the seed
when the set is small, i.e., for short codewords, with
Thase = 0.8, but her success drops to zero for larger
codewords. Bob benefits from the scaled strategy, which
gradually decreases the threshold across the codeword.
This compensates for the impact of noise in later chunks
and allows Bob to maintain higher semantic success than
with a constant threshold. Overall, scaling provides a
better balance between robustness and secrecy.

In Fig. 5, we compare the semantic and traditional
decoding success rates of Bob and Eve over a range
of SNR values to understand the potential gains coming
from the use of semantic similarity. We consider that Eve
faces 5 dB worse channel than Bob. The results show
that semantic decoding yields consistently higher success
rates for Bob compared to the traditional bit-level com-
munication. This performance gap is more pronounced
at moderate SNR values. For example, at § dB, Bob
achieves over 95% semantic success probability, while
his traditional bit-level decoding variant remains below
80%. In contrast, Eve’s semantic success probability is
very low and becomes close to zero even for a small
blocklength of 32 bits. This is because without access
to the similarity threshold 7p,se, she cannot recover the
correct seed with high probability. Differently, when
Eve employs a traditional bit-level decoder, her success
improves gradually with SNR as expected.

IV. CONCLUSION

This paper examined semantic communication over
a Rayleigh fading channel, where decoding is based
on cosine similarity between modulated vectors. We
introduced the concept of a semantic set and proposed
a framework to evaluate semantic decoding success and
leakage probabilities. Simulation results reveal several
important trends. First, larger codewords enhance se-
crecy by reducing Eve’s chance of correctly guessing
the transmitted signal. Second, the similarity threshold
7 plays a critical role. While higher thresholds reduce
semantic leakage, they may impair Bob’s success under
noise. Lastly, we adopt a chunk-based semantic decoding
strategy to manage complexity and avoid full codebook
search. This work marks an initial step toward secure
semantic communication systems by highlighting the
need to balance security, decoding complexity, and per-
formance through the geometric properties of modulated
signals.
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