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Summary

This thesis focuses on using phenology models and deep learning models

on hyperspectral images to predict the optimal harvest window and the

fruit maturity, respectively. Conventional maturity assessments require a

lot of time and manpower, yet they are destructive and can only estimate

the harvest window within seven days of harvest at the orchard-level.

A need for a quicker, non-destructive method that can achieve maturity

estimates per fruit will enable apples to be picked at their optimum maturity.

Improved fruit maturity can improve shelf-life and the final fruit quality

at market. Chapter 1 introduces the current methods in the literature

and their limitations. In Chapter 2, this research aimed to evaluate

the accuracy of the PhenoFlex phenology model and determine the best

method of parameterisation when dealing with numerous cultivars. The

3rd chapter focused on the shortcomings of phenology models that predict

only the average flowering date. The effect of flowering variation on fruit

maturity was discussed. In Chapter 4, we explored the use of hyperspectral

imaging with deep learning models to predict apple maturity features. The

main contributions of our studies showed that phenology models can be

applied at the species level, generalising the model across all apple cultivars.

Flowering time can add a large degree of variation to fruit maturity and

should be considered when estimating the harvest window. Lastly, the

large diverse hyperspectral dataset collected across cultivars, seasons and

countries was used to train deep learning models. Key wavelengths were

identified in our study, which can be used to create simpler cameras, making

imaging more accessible to growers. In Chapter 5, we discuss an alternative

framework that uses phenology models and imaging to accurately and

non-destructively predict the optimal harvest window for apples.
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Abstract

This thesis investigates the biological and environmental factors influencing

apple maturity, with the aim of developing a non-destructive framework

for accurate harvest prediction. It begins by reviewing phenology models

commonly used to estimate flowering and harvest timing and introduces

imaging as a promising alternative to directly assess apple maturity.

Chapter 3 focuses on the parameterisation of multiple cultivars to determine

the level of specificity during model fitting. This has not previously been

done before, mainly due to the lack of training data. In this chapter, the

PhenoFlex model is applied to a unique 85-year dataset of 26 apple cultivars

grown at East Malling. The study demonstrates that generic (species-level)

or grouped (based on flowering time similarity) parameterisation approaches

can effectively predict flowering time, reducing the need for cultivar-specific

calibration, especially with limited data.

Chapter 4 explores the impact of flowering time variation on fruit maturity.

The temperature experienced by individual flower clusters was tracked

until their corresponding fruit was harvested. The Growing Degree Hours

model was applied to each flowering to harvest period to determine the

influence of temperature on growth. The variation in maturity was assessed

considering flowering time, season, tree and canopy region, and it was found

that flowering time accounts for up to 20% of maturity variation, depending

on the cultivar. Smaller effects were observed from seasonal and tree-level

effects. These findings highlight the limitations of using average flowering

dates in harvest models and support the need for more precise, fruit-level

assessments starting from the earliest possible harvest date.

Chapter 5 evaluates hyperspectral imaging as a non-destructive method
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for assessing apple maturity. A large and diverse dataset of 5,756 apples

was collected from different cultivars, seasons and countries. This dataset

is approximately 1800% larger than the datasets used in previous studies

studying apple traits. The Vision Transformer architecture achieved the

highest accuracy in predicting Brix and firmness. Key spectral and spatial

features were identified, and cultivar-specific information improved model

performance. Imaging a single side of the fruit was insufficient; the model

that was trained on images from all four sides yielded better results.

The thesis concludes by discussing the results found in each chapter and

proposes a way to integrate phenology and imaging into a framework for

harvest window predictions.
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Chapter 1
Introduction

1.1 Background

The apple (Malus domestica (Suckow) Borkh), a widely consumed fruit from the

Rosaceae family, is one of the most extensively cultivated fruits worldwide [2, 3]. In the

United Kingdom, apples rank among the top 20 agricultural commodities, producing

407,770 tonnes with an estimated production value of £140,501,640 in 2023 [4]. An

estimated 10-50% of apples produced go to waste [5, 6], resulting in significant financial

losses and implications for food security. Fresh fruit ranks the lowest in the UK’s food

to supply ratio [7], showing a heavy reliance on imports to meet domestic demand.

These suggest a need for interventions to improve fruit quality and reduce food loss in

production.

Apple quality is crucial for market value and consumer satisfaction. Quality is influ-

enced by physical traits and chemical traits (sugar content and bioactivate compounds).

The UK marketing standard guidelines indicate that apples should be intact, clean,

free from pests, odd flavours, and external moisture; at most slightly damaged, and at

an appropriate maturity when they reach the markets [8]. Growers can manage most

of these guidelines at the post-harvest stage, but some guidelines require intervention

at the harvest stage. Improving the quality of apples is important for minimising

fruit loss in the production process [9] and can increase the market value [10]. Higher

quality apples require fewer fruit to be harvested to achieve the same value as lower
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Chapter 1. Introduction 2

quality fruit, occupy less space in cold storage, and are less likely to deteriorate during

storage. These advantages offer both economic and ecological benefits, reinforcing

the importance of enhancing apple fruit quality. Harvesting apples at the appropriate

maturity influences the quality and shelf life of apples. Previous research has found

that apples that have started ripening are more likely to develop post-harvest storage

disorders such as rots and superficial scald due to softer fruit in long-term storage [11,

12]. However, if the fruit are harvested too early, they are physiologically and biochem-

ically underdeveloped, resulting in smaller, flatter fruit with impaired flavours [11,

13].

Harvest maturity has been known to influence post-storage fruit quality. However,

it is difficult to determine the optimal harvest maturity with conventional maturity

assessments. The current methods are destructive, labour-intensive and limited in

forecasting ability. They typically provide orchard-level insights only a week before

harvest, which restricts efficient resource allocation and may include underdeveloped

or overripe fruit. To overcome these limitations, there is a need for non-destructive

approaches that can accurately forecast the optimal harvest window earlier than

current practices.

1.2 Research motivation

Conventional apple maturity assessments rely on destructive sampling methods that

are labour-intensive, time-consuming and often subjective, particularly for starch

measurements. These methods typically offer forecasts within seven days before

harvest and provide orchard-level insights that fail to capture intra-orchard variability.

As a result, growers face challenges in efficiently allocating resources and may harvest

fruit that are either not completely developed or overripe.

In contrast, phenology models and hyperspectral imaging offer promising non-destructive
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alternatives to maturity predictions. Phenology models can predict flowering time

and harvest windows based on temperature, while imaging can achieve objective,

real-time assessments of apple traits (firmness and sugar content) without the need

for destructive sampling.

The purpose of this study was to identify a non-destructive method of maturity

prediction in apples more than seven days before harvest. By leveraging the well-

defined phenological cycle—where flowering time can be predicted from dormancy, and

the harvest date can be predicted from flowering time, primarily through temperature-

driven models—phenology models provide early-season forecasts. Imaging techniques,

applied closer to harvest, offer more precise assessments of fruit maturity. These

approaches have the potential to improve orchard planning, enhance post-storage fruit

quality and reduce food loss.

1.3 Contributions and thesis structure

Two of the technical chapters (3 and 4) presented in this thesis have been peer-reviewed

and published as standalone research articles in the European Journal of Agronomy

and Frontiers in Agronomy, respectively, highlighting the novel approaches and results

in this thesis. Chapter 5 has been prepared for submission into a peer-reviewed journal.

Lastly, the hyperspectral images are being prepared for submission as a data paper,

allowing others to train models on the collected dataset.

1.3.1 Chapter 2

The objective of this chapter was to examine the biological and environmental factors

influencing apple maturity and the limitations of current assessment methods. This

chapter reviewed key phenology models used to estimate flowering time and harvest

windows, focusing on those commonly applied for apple flowering time and the harvest
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window predictions. Following this, imaging was evaluated as a non-destructive

alternative to conventional maturity assessments.

1.3.2 Chapter 3

In Chapter 3, the PhenoFlex model is applied to a large flowering-time dataset. The

key gap in the current research is the limited understanding of how accurately flowering

time can be predicted across different apple cultivars. To address this, the PhenoFlex

model was fitted on twenty-six apple cultivars grown at a single site in East Malling.

This dataset is the largest collection available from a single site, encompassing multiple

cultivars over a period of up to 85 years. Its consistency across a single location

removes environmental variability as a confounding factor in model training. The

model was chosen as it is theoretically the most biologically accurate model currently

available, enabling a flexible amount of overlap through parameter tuning for each

cultivar. Additionally, a combined parameterisation approach, based on similarities in

flowering times, and a generic parameterisation approach (using all cultivars in the

study) were conducted to determine whether parameterisation was required at the

cultivar, grouped-flowering-time or at the species (common apple) level. From this

study, the most promising method was identified as a generic or a flowering-time-based

grouped parameterisation approach, especially with small datasets.

1.3.3 Chapter 4

Building on the previous objective, this chapter addresses the understudied impact of

flowering time variation on fruit maturity; most harvest date predictions focus on the

average flowering date, disregarding the effect of the spread of flowering time. To explore

the impact of flowering time, flower clusters were tagged as they opened (April) and fruit

maturity was processed at harvest (September – October) for five apple cultivars. This

gave the specific days between flowering and harvest for each individual fruit. Maturity
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data (starch, Brix and firmness) was combined with the calculated number of growing

units, using the Thermodynamic, Growing Degree Days (GDD) and Growing Degree

Hours (GDH) models, by applying temperature data recorded within the range of those

specific dates. To understand the factors contributing to variation in apple maturity,

cultivar-specific influences including flowering time, seasonal conditions, individual tree

variability and canopy position were examined. Flowering time was hypothesised to

play a significant role in determining harvest maturity. Seasonal and tree-level effects

were considered to account for environmental and biological variability, while canopy

region was included to assess potential microclimatic influences, particularly related

to light exposure. This analysis aimed to evaluate the limitations of phenology-based

harvest predictions—particularly those relying on average flowering dates—and to

determine whether a more targeted, image-based approach closer to harvest could offer

improved accuracy for non-destructive maturity assessment. The results show that the

majority of variation (up to 20%) is explained by flowering time variation. Seasonal

and individual tree effects had a smaller impact on fruit maturity, while canopy region

showed no significant impact.

1.3.4 Chapter 5

In Chapter 5, the third objective is addressed, focusing on directly assessing apples using

imaging techniques as a non-destructive approach to predict apple maturity. Compared

to spectroscopy and multispectral imaging, hyperspectral imaging acquires both spatial

and spectral information. Although hyperspectral cameras are relatively expensive,

the technology can determine the significant wavelengths of interest to predict apple

maturity. This insight allows for the practical use of simpler, more affordable imaging

systems tailored to specific wavelengths associated with maturity predictions. An

extensive dataset of hyperspectral images was collected from multiple regions, seasons,

and cultivars, yielding the largest collection of apple hyperspectral images. This dataset
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is important for training deep learning models, as model performance generally benefits

from more diverse datasets, which enhance generalisation and predictive accuracy.

Building on the promising outcomes of simpler models, deep learning techniques

were applied to establish more complex relationships between image data and fruit

maturity traits. Four different model architectures were tested to determine the

best-performing model architecture. To optimise computational efficiency, without

losing spatial information, input images were downscaled. Edge cropping was applied

to isolate the key region of the apples, ensuring that the model focused only on the

face of the apples. Cultivar information was embedded into the input layer to provide

genetic information during training. Bayesian optimisation was employed to efficiently

tune hyperparameters and reduce computational complexity. Shapley analysis was

used to quantify the relative importance of spectral wavelengths and spatial regions

within the images. Additionally, the necessity of multiple views of the fruit are required

for accurate prediction was evaluated to assess the feasibility of simplified imaging

setups for practical orchard use. Lastly, models were independently trained on seasonal

data to observe seasonal-specificity in the data. These insights point toward the

potential for a combined phenology model and imaging approach to guide a practical,

non-destructive framework for reliable apple maturity predictions, one that could

deliver reliable forecasts earlier than conventional methods. The greatest contribution

was the large and diverse imaging dataset collected for the study. The dataset was

collected from 6 cultivars, 3 seasons, and 2 countries, totalling 3636 images of 5756

apples. This is approximately 600% larger than any other apple dataset used to train

deep learning models (approximately 800 apples [14]) for fruit maturity traits. This

dataset provides a strong foundation for training deep learning models due to its size,

diversity and consistency. The results show that imaging is a promising alternative to

conventional maturity assessment methods for Brix and firmness. The most effective

deep learning model found was the Vision Transformer model, due to its ability to

process both spatial and spectral information. Cultivar information was found to be
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important during model training, as distinct spectral values were found across cultivars.

Key wavelengths for predicting Brix and firmness were identified in the study using

Shapley analysis. Spatial importance was found for firmness but not soluble solids.

Lastly, it was determined that a single side of the fruit was insufficient in making

accurate maturity predictions; the highest accuracy was found by using all four sides

of the apple images.

1.3.5 Chapter 6

In the discussion chapter, the key results from the studies are presented and evaluated

for their applicability in developing a non-destructive framework for predicting apple

maturity. The contributions and limitations of the approaches are highlighted, and

the thesis is concluded by reflecting on the broader implications of the research.



Chapter 2
Literature Review

Apples are a staple ingredient in any household, being a versatile product with various

culinary applications (flavourings, juices, ciders, cooking and dessert apples). Despite

their low caloric content, they contain essential vitamins, minerals, and secondary

plant metabolites that help protect against cardiovascular diseases, cancer, and type

II diabetes [15–18]. Apple quality is determined by their physical (colour, shape,

texture and size) and chemical (flavour, bioactive compounds) traits, attributes which

determine their value on the market [10]. The quality of fruit at the end of a long

period of storage is partly attributed to harvesting at the optimal maturity [19]. Fruit

harvested too early are underdeveloped in flavour, colour and size and are more likely

to develop scald and bitter pit storage disorders [1]. Overripe fruit tend to be softer,

leading to bruises and rots, and once the autocatalytic ethylene production has started,

it greatly reduces the storage life of all apples within its vicinity [1, 11–13]. By

harvesting fruit at the optimal maturity, the overall quality can be improved and fruit

loss from long-term storage can be minimised [9]. The optimal maturity is when the

fruit exhibits attractive qualities but have not started ripening. However, although

fairly accurate, the process of determining maturity is time-consuming, labour-intensive

and destructive. Because forecasts can only predict within seven days of the harvest

date, it becomes challenging for growers to efficiently allocate resources and manpower

during the harvest window. Moreover, conventional maturity assessments are only

capable of determining the optimum harvest date at the orchard level, this risks

8
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Figure 2.1: Objective points alongside phenological periods from winter to harvest.

including fruit that are either overripe or not fully developed in the final yield. In

this thesis, the use of phenology models was explored, along with the evaluation of

imaging as a non-destructive maturity assessment method (Figure 2.1). Alternative

approaches to current conventional maturity assessment methods were tested: 1) can

flowering time be accurately predicted with phenology models, 2) if varying flowering

times influence the fruit maturity, and 3) can imaging predict fruit maturity traits?

2.1 Conventional methods for predicting apple ma-

turity

In the following sections, the current processes used to determine apple maturity

are discussed. In particular, the biological basis of the mathematical modelling used

to determine flowering time and the harvest window and the process of destructive

maturity assessments.
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2.1.1 Temperature effects on dormancy

Studies since the nineteen hundreds have shown that temperature and day length play

major roles in dormancy and dormancy break [20–22]. However, previous studies have

shown that members of the Rosaceae family are insensitive to day length, as the growth

of apple trees can be induced by 4 weeks of warm temperatures at 21°C in short-day

conditions (10 hrs per day) [21]. Cold temperatures are required over a prolonged

period to induce dormancy. Dormancy in perennial plants is a survival strategy during

unsuitable growing conditions, where most physiological processes are stopped to

protect sensitive tissues from environmental stress. Dormancy is characterised into

three types: paradormancy, endodormancy, and ecodormancy. Paradormancy occurs

during activate growth periods and is regulated by hormonal signals from competing

buds that inhibit bud break [23]. In contrast endodormancy and ecodormancy are

triggered by environmental changes. Observable signs of the start of endodormancy

include leaf fall and growth cessation, usually at the end of autumn. Endodormancy is

internally regulated and renders the plant insensitive to warm temperatures. Chilling

temperatures alleviate dormancy-related insensitivity, with the required chilling being

genetically determined by the specific cultivar [24]. Once chilling requirements are

met, endodormancy transitions to ecodormancy, a phase in which growth remains

suspended until external conditions become favourable. Dormancy release is followed

by budbreak and flowering.

Dormancy is an important part of apple phenology. The consequences of shallow

dormancy, when chilling requirements are insufficient, have critical implications for

plant growth and development. Previous studies have reported delayed and prolonged

flowering periods and greater variation in floral bud development (size, number of

spurs, and peduncle length) [20, 25, 26]. The effects of shallow dormancy on floral

bud development can increase fruit variation within trees, reducing the size, weight

and total yield of fruit. In the worst-case scenario, apple trees in shallow dormancy
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could respond to short bursts of warm weather in autumn, causing buds to wake in

winter and therefore leading to the damage or loss of flowers and fruit production for

the season [24, 27].

2.1.2 Approaches of flowering time models

Apple trees undergo a series of key developmental stages, including dormancy (endodor-

mancy), dormancy release (the start of ecodormancy) and flowering. Various phenology

models have been established to represent these phases. Chilling models — Chilling

Hours [28, 29], Utah [30] and Dynamic models [31–33] — simulate endodormancy.

Whereas, forcing models, such as the Growing Degree Hours and Growing Degree Day

models [34, 35] estimate the influence of warm temperatures on ecodormancy until

flowering. These key phases of transition are difficult to detect due to the minimal

physical changes that accompany them. As such, the application of chilling and

forcing models has largely been guided by biological assumptions. The Sequential

Model assumes that chill requirements need to be reached before forcing units start

accumulating, so these two phases occur one after the other [36]. The Parallel model

assumes that chill accumulates at the same time [37]. However, this is not biologically

accurate as plants are not responsive to heat during endodormancy; a chill requirement

must be met before forcing units are accumulated [24, 38]. Hence, the development of

overlapping models. The Alternating Model and Chill overlap models assume that

there is an overlapping period when either chilling or forcing units can accumulate,

depending on the temperature of the hour and the start date of forcing accumulation

is not a fixed date [39, 40]. Notably, the sequential model will accumulate chilling

units up to the start of the forcing model. In contrast, the Parallel and Chill Overlap

Models assume that chill continues to accumulate until flowering is reached [38]. This

distinction is important to the hypothesis that additional chilling exposure may have

a beneficial effect by reducing the heat unit threshold to initiate flowering [41–43].
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Given the lack of clarity in the biological mechanisms underlying phase transitions and

the absence of observable physical changes, the overlap model is considered the most

biologically plausible. However, since the chilling and forcing models are two distinct

models, a key limitation lies in clarifying how their overlap should be addressed. This

led to the development of the PhenoFlex model [44]. The PhenoFlex model has a

slope parameter that flexibly integrates both the chilling and forcing models. Thus,

depending on the parameter, the models can range from complete overlap, like the

Parallel model, to complete independence, like the Sequential model. The PhenoFlex

model makes modelling different cultivars more promising as the chilling and heat

model parameters can be adjusted for each cultivar.

Parameterisation of model parameters should be conducted when training a phenology

model. However, most studies fail to do so. Thus, applying models trained on other

species or cultivars on their own datasets without calibration. This practice can

lead to inaccurate predictions. When parameterisation is conducted, it is typically

done on a single cultivar due to the limited datasets therefore, the best method of

parameterisation is unknown.

2.1.3 Temperature effects on fruit development

The growth of the fruit starts from pollination, and it follows a curvilinear pattern,

where cell division occurs in the early development, before subsequent cell expansion

[45]. The temperatures within the first 50 days following pollination have been linked

to the maximum potential fruit size [46] as warmer temperatures affect the rate of

cell division [47, 48]. Temperature effects after 40 days after full bloom were found to

have a lower impact on soluble sugars, firmness or starch hydrolysis than the initial

period [48]. As the rate of fruit development is influenced by temperature, it is possible

to predict the optimal harvest date through temperature-based modelling during the

growth period.
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2.1.4 Approaches of harvest date models

Many models have been presented to determine the optimal harvest date. Some use

a set number of days after full bloom (DAFB), while others model the relationship

between temperature and the harvest maturity to predict the optimal harvest date

for apples [1, 49–51]. However, the key date, full bloom, is often inconsistent between

studies. Luton and Hamer [50] consider full bloom when 50% of the flowers are

open, 70% for Sugiura et al. [52], and 80% for Blanpied and Silsby [1]. Moreover, by

predicting the harvest date with an averaged date, it will not account for the variation

in flowering time. Apple trees are in bloom for an average of two weeks in April (in

the United Kingdom) [53], therefore, the differences in temperature exposure between

the flowers are unaccounted for by these models.

2.1.5 Flowering time effects on fruit maturity

Volz et al. [54] show that fruit from apple flowers that bloom later are smaller and

less mature as shown by the greater presence of starch. This also occurs in other

species such as tomato [55] and kiwifruit [56, 57]. Bohner and Bangerth [55] show

that flowering time has a significant impact on tomato maturity. Normally, there is

a 5-day difference in flowering (and pollination) between flowers closer to the stem

and the distal flowers. If tomatoes are pollinated on the same date, they ripen at

the same time, proving that the variation in flowering time affects tomato maturity.

Studies on kiwifruit varieties are inconclusive. Kiwifruit cultivars, Hayward [56] and

Zesy002 [57], show that flowers at the end of the cane bloom earlier than those closer

to the roots. When picked at a single time point, fruit from the ends were more mature

than fruit closer to the root end, suggesting flowering time is positively correlated to

fruit maturity. However, the kiwifruit cultivar Hort16A [56] flowers bloomed earlier at

the root end, but despite this, the fruit on the tip ends were riper (less firm) despite

flowers blooming later. Studies will need to be conducted in apple to determine the
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influence of flowering time on fruit maturity variation.

2.1.6 Maturity assessments

Maturity assessments are the current gold standard for maturity assessments. They

are the most common way of determining the harvest maturity close to the actual

harvest date. A sample of fruit is collected from an orchard and processed to obtain

the average starch, firmness and Brix levels. When apples mature, the cell walls start

to break down, resulting in softer, more palatable fruit. They also start to convert

starch into soluble solids, which decreases the amount of surface starch-iodine staining

of apple halves (Figure 2.2) and increases Brix levels. Apples at a starch index of 3 or

4 are the most appropriate for long-term storage [1, 58]. Another common trait is the

loss of chlorophyll, as observed by the degreening of the skin. In addition, depending

on the cultivar, anthocyanins may be produced, resulting in red pigmentation in the

skin.

There are several limitations to these conventional maturity assessments. The most

prominent being their reliance on destructive sampling. Each evaluation results in

the loss of fruit and involves time-consuming procedures. This highlights a need for a

more efficient, non-destructive alternative. Further concerns include the subjective

nature of starch iodine staining. Consistency is best achieved when the assessment is

performed by a single individual. However, even then, results may vary from day to day.

The inherent subjectivity of the process may produce unreliable results. Degreening

is also a good way to determine fruit maturity; however, its effectiveness is limited

in red-skinned varieties. Red pigments (anthocyanins) may mask the presence of

chlorophyll, making it difficult to accurately assess with the human eye. Additionally,

anthocyanins are produced in response to light exposure, creating uneven colouring on

opposite sides (light exposed vs non-exposed) of the fruit, further complicating visual

evaluations.
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Figure 2.2: Starch iodine indexes in apple [1]. An iodine mixture is used to spray
halved apples to determine fruit ripeness from 1 - least ripe to 8 fully ripe. In common
practice, the optimal harvest dates for long-term storage are around stages 3 and 4.

2.2 Imaging

Imaging has emerged as a non-destructive method to predict fruit maturity and

quality. Other than being a non-destructive testing method, imaging can overcome

the limitations of conventional testing methods by obtaining scans faster, being

objective in their measurements, being able to detect compounds unseen by the

human eye and being able to test the maturity of the fruit of interest rather than

using a representative sample. Images are defined as a representation of a surface,

with each pixel containing spatial and qualitative information [59]. This makes them

powerful tools for analysing complex biological constituents including: dry matter,

sugar, water, acids, and minerals [60]. Apple fruit is comprised of 75 - 88% water,

which may interfere with soluble sugar detection as they both reflect in the infra-

red spectra [60–62]. Despite this, imaging techniques are capable of measuring fruit

maturity traits, in particular soluble solids and firmness. Apple studies show that
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imaging results using detached apples put in a dark chamber with a detector and

a light source can be used to class maturity as unripe, ripe, or over-ripe with more

than 84-95.5% accuracy [63–67]. These studies validated their classifications using

conventional methods.

Imaging data is highly collinear, especially when wavelengths are closely spaced. Multi-

variate statistical methods have been used, such as partial least squares regression,

multiple linear regression, and a dimension reduction method, such as principal com-

ponents analysis to address the relationship and remove highly collinear wavelengths

in imaging data [65, 68–70]. More recently, deep learning models have been applied

to imaging studies to decipher more complex patterns [71, 72]. However, a major

challenge with deep learning models lies in their black box nature, which limits the

interpretability of model outcomes.

Xu et al. [67] tested the effect of using imaging to predict maturity based on the

location the image is taken on the fruit. Capturing images at different places may

affect the clarity of the spectra especially when an apple’s surface is curved and this

curvature is stronger at the calyx and stalk ends. The spectra intensity is significantly

lower when taken from these ends. They show that the best orientation to capture

an image is at the equator of the fruit as these best represent the average of all their

seven tested positions. Moreover, they captured images from one random position on

the fruit to validate their test which further confirmed their results. Even though the

position of the fruit doesn’t alter the spectra results, at least two sides of the apple

should be tested as the side exposed to light may be firmer than the other sides of the

fruit [73–75].
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2.3 Summary

This review explored the biological and technological approaches to predicting apple

maturity, with a focus on improving harvest timing and fruit quality. Phenology models,

which simulate developmental stages, such as dormancy and flowering, are not properly

used in practice, often failing to conduct the parameterisation step. The best method

of parameterisation has yet to be found, mainly due to the lack of expansive datasets.

Additionally, phenology models can offer valuable insights, but their start dates are

inconsistent between studies and they are unable to account for within-tree variations

in flowering time. Moreover, conventional maturity assessments are destructive and

may be subjective. Imaging may be a promising alternative method of fruit maturity

assessment due to the non-destructive nature of the process. However, hyperspectral

images are highly collinear, requiring more complex modelling techniques such as

deep learning models. While deep learning models can capture complex patterns and

filter out multi-collinear wavelengths, their black box nature makes them difficult

to interpret. External factors such as light quality and fruit orientation can also

affect model results. Future studies should focus on identifying the best practice for

parameterisation, determining the effect of flowering time variation and evaluating the

effectiveness of hyperspectral imaging for apple maturity predictions.
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Evaluating the performance of models

predicting the flowering times of twenty-six

apple cultivars in England

3.1 Introduction

Apple tree dormancy is regulated by temperature [21, 76]. Low temperatures slow

plant processes so that young meristems such as leaf and flower buds are protected

against harsh environments. There are two types of dormancy that affect the flowering

period: endodormancy and ecodormancy. Endodormancy is the state in which trees

stop growing in response to chilly conditions. Following this, ecodormancy sets in,

signifying that chilling requirements have been met but the plants are awaiting warm

temperatures to resume growth. Specifically, the chilling requirement refers to the

duration and intensity of chilling temperatures needed to complete endodormancy and

likewise, the heat requirement refers to the duration and intensity of warm temperatures

needed to overcome ecodormancy. Both the chilling and heat requirements are species-

specific [77].

Apples (Malus domestica (Suckow) Borkh.) have been cultivated for several thousand

years, dating back to 1000 BCE [78] and while only about 100 cultivars are grown

commercially, there are over 7500 unique cultivars [79]. Predicting the timing of apple

18
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flowering time is important for variety selection and crop management. Phenology

models aim to explain the realities of biology with mathematical representations.

Many phenology models have been developed to predict flowering time but there is no

consensus to the best phenology model for apple [37, 80–82]. A complete flowering

time model comprises of two sub-models: the first models chilling accumulation

and the second models heat accumulation. Chilling models estimate completion of

endodormancy whereas forcing models represent the hypothetical relationship between

warm temperatures and plant development.

Chilling models include the Chilling Hours, Utah and Dynamic models. The Chilling

Hours model is a long-established chilling model and takes the cumulative number of

hours below a certain temperature threshold [29]. However, it does not consider the

negative effects of chill accumulation by high temperatures unlike the Utah model and

the Dynamic model. The Utah model calculates chilling accumulation by giving each

hour a positive, negative, or no chilling value [30]. As the Utah model results in negative

chilling units in tropical and subtropical climates, this model is only appropriate for

temperate climates [83]. The Dynamic model is the only known empirical chilling

model that utilises bud break experiments to formulate the model, which is why

this thesis will focus on this chilling model [24, 41, 84, 85]. The Dynamic model

calculates chilling accumulation in two steps. The first step accumulates a pseudo

product called precursor to the dormancy-breaking factor (PDBF) which is created in

chilling temperatures but destroyed in warm temperatures. Both the formation and

destruction follow Arrhenius law, describing the effect of temperature on the rate of

chemical reactions in an exponential relationship. The PDBF fluctuating in response

to temperature allows the model to adapt to warmer regions, since longer periods of

warm temperatures will not result in negative chilling. Additional chilling activates

the second step, the irreversible conversion of the PDBF to a chill portion after a

critical amount of chilling is reached. These chill portions are stable and cannot be
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destroyed by subsequent heat exposure.

The most widely used forcing model is the Growing Degree Hour (GDH) model [34].

The GDH model is the hourly variation of the growing degree days model, which takes

the average temperature of the day rather than the hour [34, 86]. A GDH model sums

the temperatures suitable for growth (temperatures above a threshold temperature)

and each degree is weighted based on its proximity to the optimal growing temperature.

The date when the GDH units reach the heat requirement is predicted as the flowering

date.

The boundary between endodormancy and ecodormancy is unclear due to a lack of

measurable physiological changes. Thus, recent phenology models were developed to

integrate chilling and forcing models into a single framework for predictive purposes.

To ensure a flexible modelling approach, several forms of transitions from chilling

to forcing have been studied, including (1) treating chilling and heat accumulations

completely sequentially and separately (chilling must be completed before heat accu-

mulation starts), (2) assuming a complete overlap (chilling and heat accumulation

is simultaneous), and (3) assuming a partial overlap between the chilling and heat

accumulation phases (heat accumulation can start before chilling is completed but not

before the initiation of chilling).

The Parallel model assumes that chilling and forcing units accumulate at the same

time [37]. However, it is understood that a chill requirement must be met before forcing

units can accrue because any response to heat before chilling satisfaction may lead to

flowering in unsuitable conditions [24–26, 38]. In contrast to parallel accumulations of

chilling and heat, the Sequential and Unified models both assume independent phases

for chilling and heat accumulation [36, 81]. The difference between the Sequential

and Unified models is that the Sequential model uses user-chosen chilling and forcing

models, whereas the Unified model chooses the chilling and forcing models based on

the data. The shape of the adjustable function within the Unified model can follow
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the shape for Triangular Chilling, Chilling Days, Sigmoidal and Growing Degree Days

models and anything in between for chilling and forcing. These models are commonly

used in older combination models. The parameters determine the shape of the model,

so it does not prematurely constrain the data to fit a particular model [81]. The

StepChill model is a simpler variation of the Unified model. It showed similar predictive

performance in a recent comparative study in predicting bud break in major forest

tree species compared to the full Unified model despite the use of fewer parameters [44,

87].

Later models were developed with the concept of an overlap existing between the chilling

and heat phases and, moreover, they consider a beneficial effect on heat accumulation

through additional chilling after chilling requirements have been reached [41–43].

The Chill Overlap model attempts to model an overlap between the chilling and

heat models. This model is based on the idea that once endodormancy is satisfied,

additional exposure to chilling temperatures will reduce the heat requirement [38, 39,

82]. The PhenoFlex model was developed in 2021 and was used to predict apple and

pear flowering time [44]. This model integrates the Dynamic and GDH models as

the chilling and forcing models. The difference is that while the Chill Overlap model

requires a preset overlap value, the PhenoFlex model allows for no overlap, various

degrees of overlap or complete overlap between the chilling and forcing models.

Previously, apple flowering time of different cultivars has been predicted with a range

of different approaches. The recent studies have used parameterisation to minimise

the root mean square error (RMSE) to get the highest level of predictive accuracy. A

typical sequential model combination is the Dynamic and GDH model combination.

This combination resulted in fairly good predictions in validation datasets for Boskoop

(4.2 days), Cox’s Orange (5.7 days), Golden Delicious (5.12 days) and Jonagold (4.57

days) apples in Belgium [88] but poor predictions for Crispps Pink apples in Australia

(RMSE of 14.7 days) [82]. A chill overlap model was developed for Cripps Pink apples
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grown in Australia with a RMSE value of 5.9 days [82]. A StepChill model resulted in

a RMSE of 7.68 days for Boskoop apple trees in Germany, but a PhenoFlex model

improved these results, reducing the RMSE to 3.82 days [44]. These few studies on a

limited number of apple cultivars indicated that the overlapping modelling framework

for predicting apple flowering time may be better than a completely sequential model

and that apple cultivars may differ significantly in the exact model formulation as well

as in parameter values within the same model formulation.

A study in apricots [89] shows that while applying flowering data from many cultivars

to a crop does not result in accurate predictions, consolidating cultivars based on

their flowering group can improve model accuracy. Apple cultivars are classified into

flowering groups (based on similar flowering times), but it would be interesting to see

if a naïve clustering method can be used to classify cultivars into groups that are used

to generate parameters suitable for the PhenoFlex model.

Previous research has focused on parameterisation for individual cultivars separately,

thus in the present study comparative modelling of multiple cultivars based on the

PhenoFlex modelling framework is explored. Specifically, the present study focuses

on estimation of PhenoFlex model parameters for (1) individual cultivars separately

(cultivar-specific), (2) cultivar groups derived from K-means clustering of mean flowering

dates and their variation across years (mean flowering time), and (3) a common

model fitted to all cultivars (common model). Three approaches were evaluated for

their accuracy in predicting flowering dates. The cultivar-specific approach follows

conventional protocols when fitting a phenology model. The common model approach

is to explore whether a large dataset from combining all different apple cultivars

improves model performance. The K-means approach is an intermediate between the

cultivar-specific and common model approaches and is used to determine if cultivars

can be grouped together using a naïve clustering method based on pattern similarities

in their mean flowering dates. The hypothesis is that the cultivar-specific approach
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will prove to be the most accurate in predicting flowering dates, followed by K-means

grouped and the common approach. Finally, the best of the three approaches is used

to compare it to the StepChill model to assess if the PhenoFlex model can achieve

comparative results.

3.2 Materials and Methods

3.2.1 Flowering data

The flowering time of twenty-six apple cultivars have been recorded from East Malling,

United Kingdom, over the last eighty-five years. The flowering data collected for each

cultivar ranged between eighteen to eighty-five years. Some records are shorter than

others as some cultivars may have been recorded earlier than others, discontinued or are

newer cultivars. Due to the apples being monitored from one site, the environmental

variation can be limited within the dataset and directly determine the variation

between apple cultivars. The specific years are indicated in Table 3.1 and depicted in

Figure 3.1. For each cultivar, their date of the first flower (BBCH 60, according to

the BBCH-scale for fruit phenology [90]), will be used for modelling purposes as the

first flowers are less affected by environmental conditions other than temperature [38,

82]. The flowering dates are either an average of four trees of the same cultivar or an

individual tree, depending on the data availability. The number of trees are recorded in

Table 3.1. The cultivars are grown on sixteen different rootstocks, which have not been

used as a factor in the analysis as flowering behaviour is assumed to be determined by

the scion.

3.2.2 Temperature data

Temperature records were obtained from the East Malling weather station (51.2876°N,

0.4486°E, 33m above mean sea level), an official UK Meteorological Office Station.
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Table 3.1: Summary of the range of flowering time data available from East Malling,
the total number of years and number of datapoints used to train and test each model
for each of the twenty-six cultivars. The table is split by K-means clustering on mean
flowering dates and variation across years. The last column represents the standard
deviation of flowering.

Cultivar
Starting

year
Ending
year

Total
years

Tree
(n)

Training
years

Testing
years

SD of
flowering dates

Group 1

Beauty of Bath 1948 1965 18 5 13 5 9.89

Crispin 1970 2021 51 5 36 15 9.75

Egremont Russet 1970 2021 52 5 36 16 10.53

Greensleeves 1984 2021 38 3 27 11 9.89

Idared 1984 2021 34 4 24 10 10.27

James Grieve 1972 2021 49 5 34 15 9.35

Jonagold 1984 2021 38 5 27 11 9.12

Group 2

Edw7 1946 1969 24 13 17 7 7.27

Howgate Wonder 1960 2019 54 3 38 16 7.74

Lanes Prince Albert 1960 2021 62 3 43 19 8.30

Laxton’s Superb 1950 1980 25 3 18 7 7.35

Tydeman’s Early Worcester 1950 1987 31 5 22 9 7.55

Tydeman’s Late Orange 1950 1980 26 5 18 8 6.85

Worcester Pearmain 1944 2021 70 11 49 21 8.16

Group 3

Bramley’s Seedling 1936 2021 81 9 57 24 8.90

Cox’s Orange Pippin 1936 2021 85 17 59 26 9.19

Discovery 1970 2021 50 5 35 15 8.84

Elstar 1991 2021 29 1 20 9 7.88

Fiesta 1991 2021 31 2 22 9 8.16

Gala Mondial 1991 2021 30 2 21 9 7.64

Golden Delicious 1970 2020 51 4 36 15 9.17

Jupiter 1988 2021 34 1 24 10 7.95

Katy 1984 2021 37 2 26 11 8.67

Malling Kent 1972 2021 50 5 35 15 8.98

Spartan 1984 2020 36 2 25 11 8.82

Suntan 1973 2021 49 6 34 15 9.52
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Figure 3.1: Year range for each of the twenty-six cultivars, shown as black bars. The
data highlighted in grey indicate simulated temperatures using latitude and maximum
and minimum daily temperatures. The unhighlighted area represents temperature
data from real recorded hourly temperatures, supplemented with simulated data where
there are missing hourly values. The dashed lines indicate the specific years in which
the three days and five hours of missing data occurs.

The orchards were located within 0.75 miles east and 0.31 miles north, 0.21 miles west,

0.18 miles south of the weather station. Fluctuations in hourly temperatures in a day

follow typical patterns between maximum and minimum daily temperatures. These

patterns can be modelled by a sine function for daytime warming and logarithmic

decay for nighttime cooling, respective to a specific geographical latitude. A simulated

approach following these patterns was used to generate missing hourly temperature

values [44, 91]. Data from 1935 to 1999 are recorded as daily maximum and minimum

temperatures so the simulated approach was used to generate hourly temperatures for

all hourly observations between 1935 and 1999. These generated hourly temperatures

were also used to fill in missing hourly datapoints from 2000 to 2021. Overall, 72.15%

of the data was formed by the simulated approach, and 27.84% was of real data values.

The remaining 0.011% is due to the inability to simulate hourly temperatures due to
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missing daily minimum and maximum temperatures. In total this accounts to three

days and five hours of data which is unlikely to significantly affect model predictions.

The hourly data from 2000 to 2021 was mostly complete. It consists of 99.8% of

real temperature values, 0.24% in simulated data and a negligible amount in missing

temperatures (28 hours).

3.2.3 Model formulation

PhenoFlex model

The PhenoFlex model, implemented in the PhenoFlex_GDHwrapper() function from

the chillR package, integrates the framework from the Dynamic model and the GDH

model [91]. The PhenoFlex model [44] is fitted with twelve parameters, with the

parameters for the chilling requirement (yc), the heat requirement (zc) and slope (s1)

linking the Dynamic and GDH models.

The heat accumulated at any point in time (t) is calculated by the PhenoFlex model

equation, incorporating the total heat accumulated so far (z) and a portion of the

GDH function over the elapsed time and temperature (T ) [44]. Py(y) is a function

following a sigmoidal pattern which determines the proportion or size (s) of heat that

can be accumulated, as a function of the accumulated chill (y) [44]. The inflection

point is determined by the critical chilling threshold (yc) and the slope of the transition

is determined by the parameter s1. Large values of s1 indicates lower levels of overlap

and vice versa.

Six of the twelve PhenoFlex parameters are associated with the Dynamic model. The

hypothetical process to form and destroy the precursor to the dormancy-breaking

factor (PDBF) follows Arrhenius law. E0 and E1 represent the time-independent

activation energy, and A0 and A1 refer to the amplitude of the function. E0 and A0

contribute to PDBF formation, while E1 and A1 are involved in PDBF destruction.

When x reaches 1, a portion of the PDBF is converted to a stable chilling portion
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where it cannot be destroyed by warm temperatures [41]. The pseudo-intermediate

(x) is calculated as a function over time, where t is the new time and tj is the level of

x at time j. The portion converted is determined by a sigmoidal function with the

inflection point at Tf and slope governed by the slope parameter [41].

Three parameters are associated with the GDH model. The contribution to heat

accumulation is dictated by the optimal temperature (Tu), the upper temperature limit

(Tc) and the lower temperature limit (Tb) [34]. The difference between optimal and

lower temperatures are multiplied with a function which determines the effectiveness

of GDH in driving the biological process under consideration [34].

StepChill model

The five-parameter StepChill model was fitted with the StepChill_Wrapper() function

from the chillR package [91]. The first parameter is the chilling threshold (Tc). Any

temperature lower than Tc does not contribute to chilling function (CF ); temperatures

above Tc contributes 1 to the CF (Equation 3.1).

CF (T ) =


0, T ≤ Tc

1, T > Tc

(3.1)

Chilling hours accumulate until it reaches the chilling requirement (C⋆), the second

parameter of this model. The heat (forcing) model then begins and is represented

by Equation 3.2. This function determines the amount of heat contributed by the

temperature (x). In the simplified version of the Unified model, the StepChill function

sets parameter a to 0. The third and fourth parameters, b and c, affect whether

the sigmoidal curve starts positive and shifts to negative or vice versa and at what

temperature this shift occurs. The fifth coefficient F ⋆ represents the heat requirement

and budbreak occurs when the heat accumulated reaches F ⋆ [81, 91].
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Heat(T ) =
1

1 + ea(x−c)2+b(x−c)
(3.2)

3.2.4 Model optimisation and performance evaluation

The flowering data was split into a training dataset and a test dataset by randomly

selecting 70% of the years for each cultivar and leaving the last 30% of the unselected

data for the test dataset. This split was done for each cultivar then the split was

maintained for subsequent model fitting and comparisons between approaches.

Specific models were fitted to the corresponding training data with a simulated

annealing algorithm, wrapped in the phenologyFitter() function from the chillR

package [91]. The simulated annealing mechanism generates model parameters for the

model chosen, then aims to reduce the residual sum of squares (RSS) by choosing a

new set of model parameters. This process is repeated up to 1000 times or until there

are no improvements after 250 iterations. The best fit model was then bootstrapped

99 times with the function bootstrap.phenologyFit() in the chillR package [80, 91].

The standard errors for the parameters were calculated on the 99 bootstrap values

and the original set of fitted parameter values. This process was repeated at least

seven times using different starting parameters as the PhenoFlex model results can be

sensitive to the initial parameters. The reported results were from the run with the

smallest residual sum of squares (RSS).

Fitted models were evaluated with Akaike information criterion (AIC) [92], model

efficiency (EFF) [93] and RMSE for both the training and test datasets. AIC is a

measure of model goodness of fit that considers the number of parameters in the fitted

model. The function AICc contains a penalty term adjusting for small sample sizes

(Equation 3.3).
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AICc = 2k + nlog(
RSS

n
) +

2k2 + 2k

n− k − 1
(3.3)

The number of parameters is represented by the letter k, the number of samples, n,

and the residual sum of squares, RSS. AICc will be used to assess the fitted models

and their parameters and determine the model that minimises information loss. AICc

values are relative to each other, the smaller the AICc value, the better.

The model efficiency (EFF) compares models that were fitted to the same training

dataset. The efficiency is the ratio between the residual sum of squares and the squared

sum of the differences between the observed values and the mean (Equation 3.4).

EFF =
RSS∑
(ti − t)2

(3.4)

Root mean squared error (RMSE) is a commonly used metric of prediction accuracy.

AIC and EFF can only be used to compare between models fitted with the same

dataset, while RMSE can be used to compare between models. This is why RMSE is

used to evaluate the test dataset.

Due to differences in the amount of flowering data for each cultivar, the Ratio of

Performance to InterQuartile distance (RPIQ) was used to standardise the prediction

errors against the variation of the observed flowering dates.

3.2.5 Comparative modelling

Comparing PhenoFlex models between apple cultivars

Firstly, PhenoFlex models were fitted to individual cultivars, and thus the model was

fitted to twenty-six test datasets (one for each cultivar). Next, K-means clustering

was applied on mean flowering dates and their variation across years to determine

flowering groups. K-means clustering is an unsupervised method which assigns each
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observation into a group based on their similarities with other observations in the same

group. Principal Component Analysis (PCA) of standardised Z scores were used for

interpretability and visualisation. PhenoFlex models were then fitted to each flowering

group of cultivars as identified by the K-means clustering. Finally, a single PhenoFlex

model was fitted to all twenty-six cultivars. Model performance, particularly for the

test datasets, was then evaluated and compared among the three sets of models.

Comparing PhenoFlex and StepChill models using common parameters

In addition to the common PhenoFlex model, a common StepChill model was fitted

to the pooled training data of all twenty-six cultivars. The common PhenoFlex and

StepChill models were then assessed for the performance.

R version

The analysis was run on R version 4.3.2 (2023-10-31 ucrt). Model fitting and bootstrap-

ping was run on a high throughput computer running R version 4.2.3 (2023-03-15).

3.3 Results

3.3.1 PhenoFlex models fitted to individual cultivars

Cultivar-specific parameter estimates for the PhenoFlex model (Table 3.2) were used

to predict flowering dates for individual cultivars. The parameters were derived from

running the model 10 times with different starting parameters. The parameters were

selected from the runs with the lowest RSS for each cultivar. The average RSS was

1194.15 ± 103.69 for the specific model.
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Table 3.2: The best fit parameters of the PhenoFlex model for twenty-six apple cultivars, each one optimised by generalised
simulated annealing algorithm with 99 bootstraps.

Cultivar yc zc s1 Tu E0 E1 A0 A1 Tf Tc Tb slope

Beauty Of Bath 28.66 ± 0.17 300.45 ± 3.15 22.97 ± 0.72 16.65 ± 0.12 3970.6 ± 2.12 10 725.61 ± 5.99 8721.52 ± 41.25 5.95× 1013 ± 2.13× 107 2.03 ± 0.15 30 ± 0.34 3.7 ± 0.04 30.77 ± 0.81

Bramley’s Seedling 27.87 ± 0.12 300.59 ± 1.88 0.83 ± 0.71 17.33 ± 0.08 3812.45 ± 5.44 10 196.84 ± 16.56 10 813.98 ± 68.98 5.85× 1013 ± 2.23× 107 −3.98 ± 0.17 29.88 ± 0.27 2.76 ± 0.02 40.08 ± 0.64

Cox’s Orange Pippin 29.86 ± 0.24 280.09 ± 1.47 22.23 ± 0.4 22.06 ± 0.13 3983.1 ± 3.91 10 686.31 ± 11.55 9782.07 ± 38.61 5.89× 1013 ± 1.67× 107 −0.03 ± 0.12 29.44 ± 0.22 2.96 ± 0.02 49.39 ± 0.45

Crispin 20.71 ± 0.2 284.16 ± 1.25 0.66 ± 0.49 15.71 ± 0.08 3891.13 ± 1.84 10 298.48 ± 9.66 10 417.43 ± 44.17 5.93× 1013 ± 1.25× 107 1.3 ± 0.11 29.69 ± 0.18 3.26 ± 0.02 35.41 ± 0.44

Discovery 25.03 ± 0.13 334.17 ± 1.2 22.82 ± 0.39 15 ± 0.11 3898.5 ± 1.82 10 451.35 ± 4.66 8542.24 ± 36.85 5.91× 1013 ± 1.52× 107 2.51 ± 0.09 25.46 ± 0.18 2.8 ± 0.01 35.46 ± 0.4

Edw 7 23.58 ± 0.11 293.47 ± 1.11 1.4 ± 0.38 16.38 ± 0.1 3828.77 ± 1.84 10 244.67 ± 4.69 9566.66 ± 30.87 5.91× 1013 ± 1.32× 107 4.9 ± 0.08 20.23 ± 0.17 3.38 ± 0.01 50.28 ± 0.37

Egremont Russet 21.3 ± 0.11 370.38 ± 1.07 22.57 ± 0.34 18.62 ± 0.09 3842.75 ± 1.7 10 272.34 ± 4.33 10 503.56 ± 29.03 5.91× 1013 ± 1.24× 107 3.42 ± 0.08 21.77 ± 0.15 3.21 ± 0.01 49.18 ± 0.34

Elstar 25.32 ± 0.1 310.54 ± 1.11 22.85 ± 0.26 24.57 ± 0.09 3932.29 ± 2.14 10 761.05 ± 7.67 8403 ± 32.36 5.94× 1013 ± 1.12× 107 4.82 ± 0.07 29.9 ± 0.14 3.2 ± 0.01 39.71 ± 0.32

Fiesta 26.26 ± 0.09 287.96 ± 1.02 17.36 ± 0.24 24.78 ± 0.1 3861.87 ± 2.01 10 455.76 ± 6.85 8887.9 ± 30.3 5.94× 1013 ± 1.04× 107 −1 ± 0.07 29.99 ± 0.13 3.18 ± 0.01 55.87 ± 0.31

Gala Mondial 29.18 ± 0.11 325.41 ± 0.85 22.98 ± 0.23 22.6 ± 0.08 3826.05 ± 1.92 10 302.38 ± 5.75 10 376.74 ± 27.24 5.89× 1013 ± 9.99× 106 0.57 ± 0.07 30 ± 0.12 2.75 ± 0.01 30.13 ± 0.28

Golden Delicious 20.26 ± 0.09 340.27 ± 0.89 22.56 ± 0.21 21.21 ± 0.08 3999.44 ± 1.84 10 585.62 ± 5.97 9451.45 ± 25.85 5.94× 1013 ± 1.05× 107 2.21 ± 0.06 30 ± 0.11 3.13 ± 0.01 32.63 ± 0.28

Greensleeves 29.14 ± 0.1 292.51 ± 0.8 23 ± 0.23 20.56 ± 0.07 3990.64 ± 1.45 10 672.78 ± 4.74 10 407.76 ± 26.36 5.93× 1013 ± 9.21× 106 1.85 ± 0.06 29.97 ± 0.11 3.43 ± 0.01 30.42 ± 0.26

Howgate Wonder 25.95 ± 0.08 325.05 ± 0.79 4.04 ± 0.24 20.17 ± 0.07 3936.24 ± 1.34 10 489.47 ± 3.69 9723.83 ± 19.69 5.91× 1013 ± 9.71× 106 −0.92 ± 0.06 24.06 ± 0.11 3.5 ± 0.01 32.23 ± 0.25

Idared 22.09 ± 0.08 368.47 ± 0.82 0.47 ± 0.19 19.97 ± 0.07 3868.48 ± 1.62 10 317.06 ± 5.4 9985.63 ± 22.88 5.94× 1013 ± 9.29× 106 0.82 ± 0.05 28.52 ± 0.1 2.71 ± 0.01 31.7 ± 0.24

James Grieve 23.07 ± 0.07 332.38 ± 0.79 22.98 ± 0.19 21.7 ± 0.07 3934.8 ± 1.51 10 525.06 ± 5.04 8779.79 ± 21.59 5.94× 1013 ± 9.17× 106 0.07 ± 0.05 23.1 ± 0.1 2.83 ± 0.01 56.84 ± 0.24

Jonagold 20.36 ± 0.08 330.6 ± 0.69 22.04 ± 0.21 20.92 ± 0.06 3808.8 ± 1.39 10 244.36 ± 4.06 9746.5 ± 21.69 5.93× 1013 ± 7.78× 106 1.83 ± 0.05 29.99 ± 0.1 2.96 ± 0.01 37.5 ± 0.22

Jupiter 28.26 ± 0.08 281.63 ± 0.68 21.98 ± 0.2 21.39 ± 0.06 3880.92 ± 1.33 10 414.83 ± 3.83 9959.96 ± 21.12 5.93× 1013 ± 7.97× 106 0 ± 0.05 22.61 ± 0.1 3.88 ± 0.01 39.43 ± 0.21

Katy 27.35 ± 0.06 303.23 ± 0.72 0.39 ± 0.2 19.98 ± 0.06 3816.23 ± 1.4 10 342.18 ± 4.45 9022.32 ± 21.24 5.92× 1013 ± 8.33× 106 −3.34 ± 0.05 29.83 ± 0.09 3.2 ± 0.01 33.97 ± 0.21

Lanes Prince Albert 28.37 ± 0.07 304.04 ± 0.7 22.59 ± 0.17 23.24 ± 0.06 3869.55 ± 1.31 10 539.21 ± 4.19 8751.57 ± 19.55 5.94× 1013 ± 7.83× 106 1.37 ± 0.05 24.87 ± 0.09 2.72 ± 0.01 43.8 ± 0.21

Laxton’s Superb 29.43 ± 0.06 396.47 ± 0.66 22.9 ± 0.19 21.07 ± 0.05 3945.93 ± 1.09 10 808.79 ± 3.57 8800.54 ± 16.8 5.91× 1013 ± 7.95× 106 2.29 ± 0.05 29.97 ± 0.09 2.76 ± 0.01 35.63 ± 0.2

Malling Kent 26.86 ± 0.06 302.5 ± 0.65 1.09 ± 0.16 20.27 ± 0.06 3987 ± 1.23 10 850.53 ± 4.12 8241.43 ± 18.96 5.94× 1013 ± 7.27× 106 0.74 ± 0.04 29.91 ± 0.08 2.84 ± 0.01 30.9 ± 0.2

Spartan 25.91 ± 0.06 319.16 ± 0.64 22.88 ± 0.18 20.12 ± 0.05 3912.47 ± 1.18 10 512.29 ± 3.42 8733.05 ± 17.47 5.88× 1013 ± 8.58× 106 1.57 ± 0.04 29.96 ± 0.08 3.75 ± 0.01 40.08 ± 0.2

Suntan 25.38 ± 0.06 307.09 ± 0.63 22.91 ± 0.16 22.83 ± 0.06 3997.95 ± 1.23 10 875.44 ± 4.18 9673.65 ± 17.74 5.94× 1013 ± 6.8× 106 2.7 ± 0.04 30 ± 0.08 3.83 ± 0.01 30.58 ± 0.19

Tydeman’s Early Worcester 27.03 ± 0.06 351.99 ± 0.63 22.97 ± 0.16 20.78 ± 0.05 3963.57 ± 1.2 10 676.47 ± 4.09 9413.76 ± 17.27 5.94× 1013 ± 6.61× 106 2.4 ± 0.04 29.95 ± 0.08 2.89 ± 0.01 38.08 ± 0.19

Tydeman’s Late Orange 28.66 ± 0.06 282.34 ± 0.61 23 ± 0.16 20.9 ± 0.05 3990.56 ± 1.15 10 785.38 ± 3.5 8943.02 ± 16.32 5.88× 1013 ± 7.82× 106 −2.04 ± 0.04 29.98 ± 0.08 3.41 ± 0.01 32.16 ± 0.18

Worcester Pearmain 23.66 ± 0.06 309.29 ± 0.6 0.94 ± 0.16 23.16 ± 0.05 3962.44 ± 1.15 10 871.61 ± 4.12 8593.58 ± 16.48 5.94× 1013 ± 6.22× 106 4.12 ± 0.04 25.92 ± 0.07 3.26 ± 0.01 30.93 ± 0.18



Chapter 3. Evaluating the performance of models predicting the flowering times of
twenty-six apple cultivars in England 32

The PhenoFlex model fitted well to the individual training datasets of twenty-six

cultivars, resulting in an average RMSE of 6.15 ± 0.22 days and an R2 value of 0.99

(Table 3.3 and Figure 3.2A). A decline in model performance (RMSE 13.8 ± 0.53

days) was observed when the fitted model was used to predict flowering date on the

test datasets (Figure 3.2B). The resulting R2 value was negative (-3.93), indicating a

poor model fit. Poor model performance was particularly apparent for ten cultivars:

Cox’s Orange Pippin, Egremont Russet, Fiesta, Golden Delicious, Greensleeves, Katy,

Malling Kent, Spartan, Tydeman’s Early Worcester, and Worcester Pearmain, with

RMSEs above 13 days. When these ten cultivars were excluded, the R2 value of the

test data improved to 0.43.

Figure 3.2: A comparison of the mean observed and predicted bloom dates using
cultivar-specific parameters on the PhenoFlex model on A) training data and B) test
data. The dashed line represents the line of equality or the y = x relationship between
the x and y coordinates. The square points in B represent cultivars which have RMSEs
greater than 13 days.

Linear regression with forwards and backwards selection were used to determine which

of the twelve PhenoFlex parameters are correlated with high RMSEs. There were no

significant correlations between high RMSE and any of the twelve parameters.

Of the twenty-six cultivars, seven cultivars – Egremont Russet (5.12 ± 1.26 days),
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Table 3.3: Average RMSE and RPIQ for each model parameterisation approach from
training and test datasets.

Data Model Average RMSE RPIQ

Test PhenoFlex - Mean FT group 1 5.46±0.6 1.75

Test PhenoFlex - Mean FT group 2 4.34±0.47 1.86

Test PhenoFlex - Mean FT group 3 5.5±0.42 1.55

Test PhenoFlex - common 5.64±0.30 1.67

Test PhenoFlex - specific 12.58±0.58 0.75

Test StepChill - common 32.38±0.46 0.29

Training PhenoFlex - Mean FT group 1 9.68±0.69 1.06

Training PhenoFlex - Mean FT group 2 4.98±0.35 1.60

Training PhenoFlex - Mean FT group 3 8.42±0.42 1.11

Training PhenoFlex - common 8.62±0.30 1.16

Training PhenoFlex - specific 6.08±0.22 1.64

Training StepChill - common 9.6±0.34 1.04

Gala Mondial (4.54 ± 1.58 days), Howgate Wonder (4.49 ± 1.25 days), Jupiter (4.95

± 1.34 days), Katy (6.42 ± 1.88 days), Lane’s Prince Albert (5.44 ± 1.22 days) and

Malling Kent (4.42 ± 1.16 days) – resulted in test data RMSEs smaller than the

standard deviation of flowering dates between years. The RPIQ of the cultivar-specific

PhenoFlex model was 1.64 for the training data but only 0.75 in the test data (Table

3.3).

3.3.2 PhenoFlex models fitted to groups of cultivars as identi-

fied by mean flowering dates and variation across years

The cultivars separated well in the first two dimensions of the PCA scores (Figure

3.3A), with three clusters identified using the silhouette method (Figure 3.3B). Group
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Group
Mean standard deviation

of bloom dates
Mean number

of training years

Common better 9.89 13.00

Mean Flowering Time better 8.62 ± 0.90 22.50 ± 3.18

Common and Mean Flowering Time similar 8.69 ± 0.09 33.91 ± 1.34

All models similar 8.59 ± 0.08 30.42 ± 0.70

Table 3.4: Analysis of bloom dates and training data across cultivar groups which
showed either more accurate predictions with common, specific, or mean flowering
time models or whether they are similar. Some only had one cultivar so no standard
error was calculated.

one contained 7 cultivars with 280 flowering dates, group 2 contained 7 cultivars with

292 flowering dates and group 3 contained 12 cultivars with 563 flowering dates (Table

3.1). K-means was applied on mean flowering dates and variation across years to

divide the cultivars by their flowering behaviours. The variance of flowering patterns

in group 1 were the highest at 9.48 days, followed by group 3 at 8.96 days and lastly

group 2 at 5.36 days. The cultivars from group 1 contains the least genetic variability

with a total of 32 trees, followed by group 2 with 43 trees and group 3 with 56 trees

(Table 3.1).

We fitted PhenoFlex models for three groups of cultivars identified via K-means

clustering of the means and variations of flowering dates (Figure 3.4A). The model

was run 10 times, each with different initial parameters. The average RSS identified

from the 10 runs on the mean flowering time groups were 19507.29 ± 201.39, 5661.96

± 111.61 and 2911.12 ± 209.45 for groups 1, 2 and 3, respectively. Group 1 consists

mostly of cultivars which bloom earlier in the season, group 3 consists of cultivars

blooming late in the season, and group 2 contains cultivars which bloom sometime in

between. As the groups were split by their mean flowering dates, R2 values are not

that relevant, but were reported to be 0.51, 0.58 and 0.33 on the training data and

0.54, 0.74 and -0.06 for the test data for groups 1, 2 and 3, respectively. Evaluation
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Figure 3.3: K-means clustering presented in a PCA plot for mean flowering time
and flowering variation across years for the twenty-six cultivars. B) Silhouette plot
indicating three optimal clusters.

against the test datasets showed the best model performance among the three model

approaches. The RMSE for groups 1,2 and 3 were 9.68 ± 0.69, 4.98 ± 0.35 and 8.42

± 0.43 days on the training data, respectively. The RMSE remains consistent on

the test dataset, at 5.46 ± 0.60, 4.34 ± 0.47 and 5.50 ± 0.42 days for groups 1, 2

and 3, respectively (Figure 3.4). The average RMSE for the three groups were all

less than the standard deviation of the interannual flowering dates, so these model

parameters identified were significantly better than taking the average flowering date

of each cultivar. The mean flowering date approach is a significant improvement on the
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predictive accuracy of flowering dates compared to using cultivar-specific parameters.

The RPIQ of the mean flowering time groups 1, 2 and 3 were 1.06, 1.60 and 1.11,

respectively (Table 3.3). Their RPIQs improved when applied to the test dataset

(group1 = 1.75, group 2 = 1.86 and group 3 = 1.55). Overall, the mean flowering date

clustered groups performed better than the cultivar-specific model.

Figure 3.4: A comparison of the observed and predicted bloom dates of cultivars
grouped by K-means clustering on mean flowering and variation on the PhenoFlex
model for A) training data and B) test data. The dashed line represents the line of
equality or the y = x relationship between the x and y coordinates.

The mean flowering clustered groups performs well but are outperformed by the cultivar-

specific model predictions on four cultivars (Beauty of Bath, Edw7, Greensleeves and

Katy) on the training data (Figure 3.6A). In the test dataset, the mean flowering

clustered group outperformed both the cultivar-specific and common model approaches

in all but Beauty of Bath (Figure 3.6B).

3.3.3 A common PhenoFlex model fitted to all cultivars

The common model was run 7 times with various initial parameters. The average RSS

identified across the seven runs was 60431.79 ± 785.74. The standard error is higher

than the previous approaches, likely because the model needs to allow for larger errors
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to fit a more generalised model with more cultivars. The common model performance

on the training data was 8.62 ± 0.31 days, with an R2 value of 0.44 (Figure 3.5).

Its performance on the test data yielded a RMSE of 5.64 ± 0.30 days and R2 of

0.53, which was better than cultivar-specific model performance. Unlike the specific

model, which predicts bloom dates later than the observed bloom date, the common

model predicts flowering time around the observed flowering date (Figure 3.5). The

RPIQ observed for the common model was 1.16 for the training data and 1.67 for the

test data (Table 3.3). This RPIQ is on par with the RPIQ observed using clustered

mean flowering dates. The common model produced smaller RMSE than the standard

deviation of flowering time for all cultivars, suggesting that model predictions are

better than taking the average bloom date for each cultivar.

Figure 3.5: A comparison of the observed and predicted bloom dates using common
parameters on the PhenoFlex model on A) training data and B) test data. The dashed
line represents the line of equality or the y = x relationship between the x and y
coordinates.

The cultivar-specific model was able to more accurately predict bloom dates better

on the training data (Figure 3.6A), but the common model predictions outperformed

the cultivar-specific model predictions or were the same between model approach

predictions in the test dataset (Figure 3.6B). The common model approach was
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outperformed by the mean flowering cluster approach on Greensleeves and Laxton’s

Superb (Figure 3.6B).

Figure 3.6: Comparison of RMSE of the cultivar-specific, mean flowering grouped
and common models for A) the training data and B) the test data. The graphs
are separated by whether the specific (S), grouped by mean flowering date (M) or
common (C) models perform better. When two of the approaches perform equally
well, two letters are shows (M&S and C&M) or whether there is no difference between
approaches (All).

When there are large numbers of data per cultivar (more than 30 years), the cultivar-

specific approach does well in predicting bloom dates. When there are around 20 years
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of data, the mean bloom date cluster performs well since this method increases the

number of datapoints by including more cultivars. When there are only few numbers

of years per cultivar (approximately 10 years), but many cultivars are present, it is

better to apply the common approach (Table 3.4).

3.3.4 Comparison of the common PhenoFlex and StepChill

models

Fitting the training the data with the StepChill model resulted in an average RMSE

of 9.60 ± 0.34 days and an R2 of 0.52 (Figure 3.7A). The common StepChill model

did not predict bloom dates well for the test data, resulting in a RMSE of 32.4 ±

0.46 days and R2 of -30.86. All predicted flowering dates were later than the observed

bloom date (Figure 3.7B). Overall, the PhenoFlex model predicted flowering dates

82.59% more accurately than the StepChill model. This agrees with the observed

RPIQ values. The common StepChill model produced smaller RPIQ (0.29) on the

test dataset compared to the common PhenoFlex model.

Figure 3.7: A comparison of the observed and predicted bloom dates using common
parameters on the StepChill model on A) training data and B) test data. The dashed
line represents the line of equality or the y = x relationship between the x and y
coordinates.
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AICc model selection was used to select between possible models which were trained

on the same dataset and the Nash-Sutcliffe efficiency of the model was used to quantify

the predictive effectiveness of a model, with a good efficiency being close to 1. The

common PhenoFlex model with twelve parameters was deemed to be better than the

StepChill model with five parameters as PhenoFlex model AICc (3438.53 ± 5.29)

was lower than StepChill model AICc (3611.21 ± 4.65), and the PhenoFlex model

efficiency (0.27 ± 0.003) was higher than StepChill model efficiency (0.08 ± 0.004).

The common PhenoFlex model was more reliable as it was able to predict bloom dates

for all the years, but the common StepChill model was unable to predict 2 datapoints

from 1950 on the test dataset.

3.4 Discussion

In this study, a large collection of flowering dates of twenty-six apple cultivars at East

Malling, Kent, England was used to fit PhenoFlex models to predict flowering time,

and to compare the PhenoFlex and StepChill models that were fitted to the training

data of all twenty-six cultivars.

Predictive performance of cultivar-specific approach is the worst of the three modelling

approaches, with large RMSEs (13.8 ± 0.53 days). Most predictions were worse

than taking the average bloom dates of each cultivar as the predicted bloom date.

Flowering predictions for seven of twenty-six cultivars were better than taking the

average flowering date. The groups identified by applying K-means on mean flowering

dates and their variation were significantly better than using the cultivar-specific

model. The model predictions were better than taking the average bloom dates for

each cultivar. The common model performed as well as the second approach, with

similar RMSEs and RPIQ.

We can speculate that the difference in model performance results from model over-
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fitting on training data of smaller datasets, excessive model complexity and noisy

training data, with more emphasis placed on the first two factors. Cultivar-specific

models tended to do well when the dataset is large (approximately 30 years or more

of training data per cultivar), the mean flowering date grouped model did well with

at least 20 years of training data per cultivar and the common model does well with

even less training data per cultivar. Small datasets can restrict the optimisation

functions’ performance, increasing the chance that the model parameters converge at

a local minimum rather than the global minimum. In the present study, flowering

data were only available for a limited number of years for several cultivars and for

some, flowering dates were only observed for a limited number of trees, thus limiting

the genetic influence on flowering time. Another reason could be the large variability

in flowering dates between years for some cultivars or variability in flowering dates

between cultivars in the same year, which could make parameter convergence difficult in

model optimisation. Problems associated with small datasets are further exacerbated

when complex models are fitted.

The common PhenoFlex model performs as well as previous literature since its average

RMSE (5.64 ± 0.30 days) is comparable to previous results predicting flowering dates

for Boskoop (RMSE = 4.2 days), Cox’s Orange Pippin (RMSE = 5.7 days), Golden

Delicious (RMSE = 5.12 days), Jonagold apples (RMSE = 4.57 days) [88] and Crispps

Pink apples (RMSE = 14.7 days) [82] using the Dynamic and GDH models sequentially.

However, previous application of the PhenoFlex model on a single cultivar (Boskoop

apples with RMSE = 3.82 days) [44] attained better predictive accuracy than the

grouped and common models. As discussed above, the size of available data and

number of individual trees are key factors affecting model predictive performance. A

potential improvement for the common model would be to retain the CR and HR

of the individual models but identify a common set of parameters for the other 10

parameters. In theory, this would be the best common model as previous studies agree
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that CR and HR are species specific [77].

Present modelling suggested that cultivars differ in the exact PhenoFlex model param-

eter estimates, although grouped by mean flowering date and variation of bloom dates

and common PhenoFlex model led to more accurate predictions than the cultivar-

specific model. Predictions given by both approaches were more or less balanced

(namely varying around the observed dates). In contrast, cultivar-specific models

predicted flowering later than the observed. Consistent large overpredictions (bias)

may suggest model under-fitting. Small datasets may be the cause of poor predictive

performance of cultivar-specific models. Under-fitting is more likely due to the fact

that the data do not contain sufficient information on the generic feature due to large

differences in the generic features between cultivars.

We grouped cultivars together based on their mean flowering date and variation of bloom

dates. A previous study attempted a similar modelling approach with several phenology

models to predict apricot flowering time, but they did not find good predictive results

from modelling at the species level (common model approach) [89]. They did find

good results when split into smaller precocity groups for early, intermediate and late

flowering, which is similar to what was observed in the current study. The common

model was speculated to work well because the data originated from one site, thus

reducing the generic variability and difference in response to different conditions.

Drepper et al. [88] identified much larger chilling and heat requirements for Cox’s

Orange Pippin (CR = 79.6 and HR = 4430), Golden Delicious (CR = 59.84 and HR

= 4980), Jonagold (CR = 60.66 and HR = 4980) and Boskoop (CR = 59.16 and

HR = 4430). This agrees with the chilling (45) and heat (8500) requirements used

by Darbyshire et al., [82] on Boskoop apples. Using a combined chilling and heat

model which can adjust for the overlap between the models appears to lower the chill

and heat requirements for flowering by 2- to 3-fold. Luedeling et al., [44] identified

parameters very similar (CR = 25.4 ± 3.2 and HR = 348 ± 31) to the parameters
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identified in the common model (Table 3.5) as well as similar levels of overlap as shown

by their s1 value of 1 ± 22. The common model implements a large overlap between

the chilling and heat models, as indicated by the smaller s1 parameter (0.55 ± 0.08).

The present model is more likely to have a greater level of overlap as the s1 parameter

estimate has a much smaller standard error than in Luedeling et al. [44].

Model yc zc s1 Tu E0 E1

Common 25.36 ± 0.14 286.01 ± 9.34 0.55 ± 0.08 21.22 ± 0.29 3.82× 103 ± 4.33× 10−1 1.03× 104 ± 2.74× 10−1

Group 1 22.6 ± 0.46 321.95 ± 13.09 0.55 ± 7.23 18.61 ± 0.55 3.82× 103 ± 1.22 1.02× 104 ± 1.49

Group 2 22.3 ± 0.23 355.14 ± 3.31 22.96 ± 8.04 20.24 ± 0.23 3.92× 103 ± 0.772 1.04× 104 ± 0.508

Group 3 28.44 ± 0.18 305.96 ± 4.19 0.76 ± 2.23 19.73 ± 0.15 3.82× 103 ± 0.157 1.03× 104 ± 0.47

Model A0 A1 Tf Tc Tb slope

Common 8.51× 103 ± 6.70 5.91× 1013 ± 2.07× 108 −3.64 ± 1.73 27.27 ± 3.13 2.85 ± 0.06 46.87 ± 8.45

Group 1 1.025× 104 ± 27.3 5.89× 1013 ± 2.22× 108 0.82 ± 2.18 28.74 ± 3.52 3.53 ± 0.17 40.22 ± 8.78

Group 2 1.084× 104 ± 27.1 5.94× 1013 ± 2.08× 108 2.35 ± 1.69 27.15 ± 3.31 3.18 ± 0.15 52.1 ± 9.48

Group 3 9.996× 103 ± 12.5 5.92× 1013 ± 2.27× 108 −2.15 ± 1.99 29.7 ± 3.55 3.09 ± 0.15 31.01 ± 10.23

Table 3.5: The best fit parameters of the PhenoFlex model for the K-means groups
and Common (all cultivars). The standard errors are calculated on 99 bootstraps and
the original parameters.

The common PhenoFlex model had much better predictive performance than the

StepChill model. Although both models had the similar goodness of fit for the training

dataset, the StepChill model had much worse predictive performance, predicting

flowering dates much later than observed. Moreover, for 1950, it failed to predict

flowering time. The large bias in predictions indicated a model underfitting, suggesting

that the model formulation does not capture much of the generic responses of apple

flowering development in response to temperature.

In this study, over 70% of hourly temperature data was generated using the recorded

daily maximum and minimum temperatures following a sine curve for warming and

logarithmic decay for cooling temperatures in the data collected prior to the year

2000 as temperatures were only recorded as daily maximum and minimum values. In

doing so, it must be assumed that temperatures more or less follow these trends for

warming and cooling. Since the models are parameterised on the available data, their

reliability is only as good as the simulated data. In this current study, the effectiveness
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of the three approaches in predicting flowering date was compared, and since the

hourly temperatures are the same for all approaches, this would unlikely impact the

comparisons between models. Nevertheless, it would be informative to repeat this

experiment with non-simulated hourly temperatures to understand the impact of using

simulated hourly data on model fitting and performance.

Although apple trees are mostly affected by temperature, future applications of this

model in different countries may need to consider environmental differences that can

affect maturity features. An example is radiance. Comparing the UK, which is more

often cloudy, to New Zealand, which has plenty of sun and is affected by low Ozone air

from Antarctica, the radiance can vary strongly and affect the predictive results of the

models. Even changes in microclimates (shaded vs non-shaded) can affect maturity, let

alone major changes in their growing environments. The author strongly recommends

parametrising the model using data from their respective countries.

3.5 Conclusion

The present research showed that the PhenoFlex model approach is an improved

approach over the StepChill model to predict apple flowering development in relation

to temperature, as concluded from higher EFF and lower AICc and RMSE values.

Moreover, the common PhenoFlex model had no failed predictions. Contrary to the

hypothesis, the common PhenoFlex model and cultivars grouped by mean flowering

time was found to result in the best predictive accuracy and highest RPIQ compared

to the cultivar-specific approach. Grouping cultivars by similar flowering dates can

be used to adjust for low numbers of data in individual cultivars or grouping all data

of a species from one region will yield better results than modelling each cultivar

independently. Much of the poor model performance may be associated with small data

sizes for fitting a complex model such as the PhenoFlex model with 12 parameters. In

future, PhenoFlex models should be developed with a much-increased dataset through
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merging data from different locations as well as formulate specific CR and HR for each

cultivar whilst having common values for the other 10 parameters.



Chapter 4
Flowering variation induces apple maturity

variation at harvest

4.1 Introduction

It is established that fruit quality after long-term storage has been linked to fruit

maturity at the time of harvest [19, 94, 95]. Fruit picked too early are more likely

to develop storage disorders such as core rot and internal browning [96]. Moreover,

underdeveloped fruit are less attractive to consumers due to poor development in

secondary metabolites (flavonoids). The group of secondary metabolites not only

adds flavour and colour to fruit, but also have antioxidant, anticancer, antiviral and

anti-inflammation properties. On the other hand, although over-ripe fruit contains

these beneficial and attractive qualities, they tend to be too soft and easily bruised,

leading to rot and making it unsuitable for long-term storage [95, 97]. In addition,

over-ripe fruit produces ethylene, which causes an autocatalytic ripening effect on

itself and other fruit in the vicinity, causing them to ripen. Picking fruit at the optimal

harvest time can thus reduce fruit loss and increase fruit quality.

The optimal time of harvest is difficult to predict because there is no single clear index

for apple maturity. Changes in several physical traits can be observed, such as colour,

firmness and sweetness, but these traits can be highly variable even among individual

fruit on the same tree. These traits can vary year to year, with the extent of variability

46
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depending on cultivars, partially due to the variability in the season’s conditions [1,

95]. The industry standard for maturity assessments includes destructive assessments

of small samples of fruit, to measure firmness, Starch Pattern Index (SPI), soluble

solids and ethylene. Firmness, soluble solids and SPI measurements can be aggregated

into a single variable called Strief [98]. However, no single feature can represent the

true maturity of apples, and an aggregation of multiple features is more effective [98,

99]. Regardless of the maturity indicator, these assessments only forecast up to a

week from the harvest window. Therefore, a clear definition of maturity and earlier

indicators for the optimal harvest window are necessary for effective orchard harvest

and post-harvest management [50, 100].

A set calendar date after full bloom is not a good predictor of harvest windows,

especially with changing climates [99]. Statistical methods can be used to predict

harvest windows for specific cultivars. Typically, they are done using growth models

based on the accumulation of effective temperatures within a specified temperature

limit [51, 101]. Assorted windows of time were tested, as temperature has different

effects on fruit depending on the stage of development [48]. Many model variants

account for temperatures at different stages of development. Several studies showed

that temperatures within 30-days post-bloom improved harvest date predictions [102,

103]. Perry et al. [51] trialled 30-, 40-, 50- and 60-days post-bloom temperatures,

but were only able to improve predictions by 1 day for Delicious apples, and no

improvement for Golden Delicious apples. Other studies found that a three-month

window (June, July and August) improved the prediction accuracy by 3 days [50].

The complete harvest window from full bloom to harvest only improved harvest day

predictions by 1 day [104]. Predictive results often varied greatly with cultivars [105].

In most studies, average daily temperatures instead of hourly temperatures were used

to predict harvest time. Thus, if the underlying relationship of temperature with fruit

development is not linear, the use of hourly models is expected to improve predictions.
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The term “full bloom” can mean different stages of flowering: 50% bloom [1], 70%

bloom [52] or 80% bloom [50, 106]. Moreover, treating flowering times of all fruit in a

single orchard as a single date ignores the variability in the flowering time between trees

and between individual flowers on the same tree. Later blooming flowers developed fruit

which were smaller and had greater levels of starch in apples [54]. Thus, inaccuracies

in predicted harvest time by previous models may be partially attributable to this

simplification of flowering time for a given orchard. It can be argued that a better

predictive model should be based on individual fruit, from flowering to harvest.

Fruit position within the canopy has been shown to affect maturity of apples [107].

The fruit position is used as a proxy for light exposure, as fruit grown on the outer

zones of the trees were more likely to have higher soluble sugars [54, 107, 108] and

be firmer [73–75]. Inconsistent results, occasionally showing no change or opposing

findings in maturity indices [109], could be due to varying cultivar responses to the

environment.

The most commonly used harvest prediction models use only the average flowering

date to estimate at a single point in time to harvest. However, the impact of extended

flowering time is not considered in these models, nor are other environmental factors.

In this study, the aim was to determine the degree of impact on harvest maturity due

to flowering time, season (year), region of the canopy and individual trees. Knowing

the effect of these factors can improve harvest predictions and improve the overall

fruit quality at the picking time. To model temperature effect on fruit development,

three growth rate models (linear growing degree hours (linear GDH), non-linear GDH

and Thermodynamic) were used to relate temperature to fruit maturity. The relative

importance of individual factors (flowering time [i.e., temperature accumulation],

season, tree, canopy region) was assessed in the framework of generalised linear

modelling (GLM). In our study, flowering time was found to affect fruit maturity at

harvest, but the degree of the effect is cultivar dependent.



Chapter 4. Flowering variation induces apple maturity variation at harvest 49

4.2 Methods

4.2.1 Plants

We focused our research on five apple cultivars: Braeburn, Cox, Fuji, Gala and Golden

Delicious. The same 14 trees were monitored over the 2022 and 2023 seasons, except

for Cox’s Orange Pippin, which only had 5 fruit in 2022. There were three trees for

each cultivar, except Fuji for which one tree was severely diseased and thus there were

no fruits from this tree reaching maturation. The three trees of the same cultivar were

adjacent to each other in an orchard; all five cultivars were situated in adjacent rows,

which run north to south, with 2 m spacing between each tree and 2.5 m spacing

between each row. All trees were about 12 years old and grafted on M9 rootstocks. The

orchard received basic orchard management, but no commercial thinning or pruning

was applied. Natural June drop was the only process of fruit thinning. All trees were

at most 2.5 m tall and 2 m wide.

4.2.2 Flowering records

Apple flowers grow in clusters. Flowering records were done by tagging clusters of

flowers with the date of bloom. The bloom date was noted when the majority (three

of five flowers) of the cluster was fully open. Therefore, the flowering dates used in this

study were when flowers on positions 2 and 3 were fully open, which usually occurred

a day after the king bloom flower opened and a day before the flowers at positions 4

and 5 opened. A total of 1199 flower clusters were tagged between the 14 trees, made

up of 12 to 85 clusters per tree (Table 4.1).

4.2.3 Tree canopy zones

A single tree canopy was divided into 7 zones as a proxy for fruit exposure to light:

north, south, east, west, upper, inner and lower (Table 4.1). The first 5 zones are
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Table 4.1: Summary of fruit and cluster quantities across different trees and zones
in 2022 and 2023. Three trees of each cultivar were used in the study, except for
Fuji. Collection of fruit occurred in 2022 and 2023 but Cox was only collected in 2023.
Cluster represents the total flower clusters collected from each cultivar, year and tree.

Tree Canopy Zones

Cultivar Tree Year
Total
fruit

Clusters
per tree North South East West Upper Inner Lower

Braeburn BB1 2022 79 50 7 2 8 9 2 13 9
Braeburn BB1 2023 124 77 3 2 4 5 7 29 27
Braeburn BB2 2022 63 38 10 2 1 5 6 3 11
Braeburn BB2 2023 133 78 8 2 8 4 3 28 25
Braeburn BB3 2022 76 49 5 9 8 7 2 6 12
Braeburn BB3 2023 72 59 1 2 4 9 11 14 18

Braeburn Total 547 351 34 19 33 39 31 93 102

Cox CX1 2023 76 58 8 5 10 5 7 17 6
Cox CX2 2023 37 13 2 0 0 0 0 7 4
Cox CX3 2023 131 85 3 6 6 5 7 37 21

Cox’s Orange Pippin Total 244 156 13 11 16 10 14 61 31

Fuji FJ2 2022 77 31 2 1 3 0 6 10 9
Fuji FJ2 2023 56 28 8 2 1 0 1 4 12
Fuji FJ3 2022 108 40 1 4 6 1 6 7 15
Fuji FJ3 2023 51 22 1 1 0 1 2 10 7

Fuji Total 292 121 12 8 10 2 15 31 43

Gala GL1 2022 113 58 8 8 6 7 8 12 9
Gala GL1 2023 42 21 0 1 2 0 0 10 8
Gala GL2 2022 102 49 7 6 4 7 3 14 8
Gala GL2 2023 130 59 4 4 1 0 6 34 10
Gala GL3 2022 145 78 6 8 6 10 7 16 25
Gala GL3 2023 65 34 0 0 0 0 2 19 13

Gala Total 597 299 25 27 19 24 26 105 73

Golden Delicious GD1 2022 93 36 2 1 5 5 9 7 7
Golden Delicious GD1 2023 80 50 5 6 6 4 3 15 11
Golden Delicious GD2 2022 113 49 12 6 0 2 3 8 18
Golden Delicious GD2 2023 82 40 0 2 1 0 1 19 17
Golden Delicious GD3 2022 196 85 3 6 10 8 12 34 12
Golden Delicious GD3 2023 23 12 0 0 0 0 2 9 1

Golden Delicious Total 587 272 22 21 22 19 30 92 66
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regions on the outer areas of the trees with greater light exposure, whereas fruit from

the inner and lower zones were mostly shaded by foliage during fruit development.

The upper region consisted of fruit within the upper 25% of the tree. The fruit from

the four cardinal directions were picked from the outer edge of the trees. Fruit picked

from the inner and lower of the trees were located close to the trunk and within the

lower 25% of the trees, respectively.

4.2.4 Temperature records

An official UK Meteorological Office Station situated approximately 465 m from the

orchard in East Malling (51.2876°N, 0.4486°E, 33 m above the mean sea level) collected

hourly temperatures.

4.2.5 Maturity measurements

In total, 2267 fruit were collected over two years (Table 4.1). The tagged fruit were

harvested at the recommended commercial harvest date for specific cultivars in the

UK, and tested for starch, soluble solids (Brix) and firmness within 36 hours from

picking. They were always picked in the morning over a 3-month period. Firmness

was measured by peeling two sides of the apple at 90 degrees in the equatorial region,

avoiding obvious bruises, then using a fruit texture analyser (Llyod LRX, UK) fitted

with an 11 mm diameter probe to puncture the fruit to a depth of 8 mm. The

force at 8 mm was used for the analysis. The soluble solids was measured using an

Atago portable benchtop refractometer (palette series, model PR-32α), using water

to calibrate at the start of each sampling day. The starch pattern index (SPI) is

the gold standard in determining apple ripeness. An apple was first cut in half at

its equator; one of the halves was then immediately stained with potassium iodine

mixture (1% w/v iodine and 4% w/v potassium iodide), leaving it to stain for at least

30 minutes; finally the staining pattern was compared to the CTIFL starch conversion
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chart for apples to estimate SPI as an index from 1 to 10, and proportion of staining

coverage. The 30-minute staining was more practical and allowed for all apples to be

evaluated without large breaks between each set. No significant differences in staining

pattern occurs within 30 minutes but starch breakdown may occur if left overnight

(Per comms). The SPI, firmness and Brix were transformed into a singular unit called

the Streif index [98, 110].

Streif = Firmness/(Brix ∗ Starch) (4.1)

4.2.6 Models describing temperature effects

Three temperature-based models were evaluated for their relationship with fruit

maturity (linear GDH, non-linear GDH and Thermodynamic). They were chosen to

model the relationship between temperature and maturity. The preliminary analysis

showed that the cultivars differed, hence a model was fitted across the two years for

each cultivar separately. Hourly temperatures from flowering to harvest were used to

calculate the growth units as specified by each model for individual apples. For each

model, a simple grid search was used to identify the set of parameters that maximised

the Kendall’s Tau correlation between SPI and accumulated temperature measurement

from flowering to harvest for individual fruit. All parameters were iterated through

a range as specified below for each model at a step length of 0.1. Temperatures at

East Malling in 2022 and 2023 did not exceed 40 °C, thus higher temperatures was

not explored for model parameters.

Linear Growing Degree Hours

The linear GDH, established by Anderson and Seeley [111], assumes a linear re-

lationship of growth with accumulative temperatures above a temperature (base)

threshold. It has 3 parameters, Tb, Tc and Tu, representing the base, critical and
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optimal temperatures. Temperatures below the base do not count towards GDH units,

nor temperatures exceeding the critical threshold. The contribution of each degree

increase in temperature from the base linearly increases as temperature increases,

up until the optimum temperature. Temperatures between the optimum and critical

temperatures accumulate GDH units at the maximum rate. Thus, strictly speaking,

this GDH is not linear but two lines joining at Tu.

GDHlinear(T ) =
∑

flinearGDH
(T ) (4.2)

flinearGDH
(T ) =


Tu − Tb, if Tu ≤ T < Tc

T − Tb, if Tb < T < Tu

0, if T ≤ Tb or Tc ≤ T

(4.3)

In grid search, Tb spanned from 0°C to 10°C, Tu from 15°C to 25°C, and Tc from 30°C

to 40°C. The base temperature originally proposed by Richardson et al. [112] was

4.5°C for peach trees. However, a recent study by Tang et al. [113] found that the base

temperatures of apple trees may be lower than 4.5°C. The search was extended from

0°C to 10°C to explore the best fitting base temperature. Tu was chosen based on

the expected best growth conditions of most living organisms, and finally, the critical

temperature was expected to range somewhere between 30 and 40°C.

Non-linear Growing Degree Hours

The second is another well-established model growing degree hour model by Anderson

et al. [34]. Opposed to the linear non-linear GDH model, this model assumes a

non-linear accumulative relationship of growth with temperature. Each temperature

increase from the base causes a non-linear increase in GDH up until the optimum

temperature. Temperatures above the optimal gradually decrease in effectiveness in

GDH accumulation (Figure 4.3).
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GDH(T ) =
∑

((Tu − Tb) ∗ fnon−linearGDH
(T )) (4.4)

fnon−linearGDH
=



1
2
∗
(
1 + cos

(
π + π ∗ T−Tb

Tu−Tb

))
, if Tb < T ≤ Tu

1 + cos
(

π
2
+ π

2
∗ T−Tu

Tc−Tu

)
, if Tu < T ≤ Tc

0, otherwise

(4.5)

The grid search range for Tb, Tc and Tu was the same as for the linear GDH model.

Thermodynamic model

The Thermodynamic model is a non-linear growth rate model based on the theory

of enzyme activity rate variation in response to temperature changes [114, 115]. The

parameters for the Thermodynamic model are B, C, TH and ρ. K is the temperature

in Kelvin.

R(K) =
ρK
298

exp[B(1− 298
K
]

1 + exp[C(1− TH
K
)]

(4.6)

In the grid search, the range of parameters B was 15 to 40°K, C was 5 to 30°K and

TH was 290 to 300°K. The last variable in the equation, ρ, is a scaling factor and

does not affect the correlation of the estimated growth unit from flowering to maturity

with SPI, so it was fixed to 1.

4.2.7 Assessment of the relative importance of experimental

factors in fruit maturity

Logistic regression with starch proportion as the response variable was used to deter-

mine the effect of flowering time (as approximated by the estimated temperature-based

growth unit), year, individual trees, and fruit position within the tree canopy on

fruit maturity. In the GLM analysis, a binomial distribution was assumed for the
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residual errors. The deviance explained by each experimental factor was calculated

by extracting the residual deviance from ANOVA tables calculated using Chi-square

(synonymous to likelihood ratio) as the test function. Since this study focused on the

temperature effect (flowering time) on fruit maturity, the accumulated growth models

estimated by one of the three models was first added in GLM analysis of SPI for each

cultivar. Then, year, tree, and canopy region were added sequentially. A nested model

approach was used to test for statistical significance of the effect of specific factors on

fruit development (SPI).

4.3 Results

4.3.1 Variability of temperature and effects on flowering

The temperatures in 2022 during fruit development were more extreme than in 2023

and had a slightly lower median temperature (Figure 4.1). The median flowering day

in 2022 was earlier than in 2023 by 9.8 days; flowering was spread over 3 weeks in

2022 (Table 4.2). On the other hand, temperatures in 2023 were more often within

optimal growing temperatures, so flowering occurred within a shorter time span (∼11

days), with Cox’s Orange Pippin as an exception as there were no fruit available for

this cultivar in 2022 (Table 4.2).

Table 4.2: Summary of flowering data from 2022 and 2023 for 5 apple cultivars.

Cultivar Year Median flowering Julian Day Range Interquartile range
Braeburn 2022 116.0 21 7.00
Braeburn 2023 125.0 10 3.00
Cox 2023 125.0 21 2.00
Fuji 2022 124.5 18 4.00
Fuji 2023 130.0 11 0.00
Gala 2022 120.0 22 8.25
Gala 2023 128.0 12 5.00
Golden Delicious 2022 119.0 19 10.00
Golden Delicious 2023 130.0 12 3.00
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Figure 4.1: The frequency of temperatures between 0 and 40°C at 0.5°C increments
from the first flowering to harvest for the five apple cultivars in 2022 (black bars) and
2023 (grey bars).
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4.3.2 Fruit maturity measurements

Of the five cultivars, Cox is the earliest to mature, whereas Golden Delicious and

Fuji matured the latest. Strief can account for several factors in one variable and

no single fruit quality parameter has been able to accurately define the maturity of

an apple. Therefore, Streif should be a better factor than individual measures for

maturity. However, in the present study, Streif segregated the dataset in firmness

and soluble solids (Brix) measurements (Figure 4.2). This division of data seen in

Braeburn and Gala are not due to differences between year, tree or canopy zones. The

division is also seen in Cox indicate no differences between tree or canopy zone. There

are no known biological differences between trees, including rootstocks, and since all

trees were planted in the same orchard, in adjacent rows, they were exposed to the

same environmental conditions and orchard management systems. It is speculated

that there might be a latent variable segregating the data. Thus, starch proportion

was used as the maturity indicator for the present study. The relationship between

Streif and starch proportion appears to follow a logistic function (Figure 4.2), as the

degradation of starch starts slowly, then increases rapidly as fruit matures.

4.3.3 Temperature-based fruit development

The correlation between calculated linear GDH and starch proportion had a maximum

of 0.54 from Braeburn and a minimum of 0.22 from Fuji (Table 4.3). Golden Delicious

and Fuji have the smallest correlation, have nearly identical parameters (Table 4.3)

and hence temperature-growth rate relationship (Figure 4.3A). They have the highest

optimum and critical temperatures. Gala has the smallest effective temperature range

between 9.1 – 30 °C, which may be compensated by the lowest optimal temperature

(16.1 °C). Braeburn and Cox have similar temperature-growth rate relationship (Figure

4.2A), but the parameters for Cox are 3 °C lower than Braeburn for all three parameters.

For the non-linear GDH model, Braeburn has the highest correlation of 0.54. The least
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Figure 4.2: Strief vs soluble solids (Brix), firmness and starch measurements of all
apple cultivars collected in 2022 and 2023 from a single orchard. Note: Cox only
produced fruit in 2023 and samples were collected from three trees per cultivar, except
for Fuji which only had two.
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Figure 4.3: Growth rate of apple cultivars for hourly exposure to temperatures
between 0 and 40°C using A) linear GDH, B) non-linear GDH and C) Thermodynamic
models.
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Table 4.3: Linear Growing Degree Hour model parameters estimated by the best
correlation (Kendall’s Tau) to Starch. Where multiple combinations result in the best
correlation, the parameters presented are the closest to the median values. The errors
represent the standard deviation of the best correlated parameters.

Cultivar Best correlation Tb Tu Tc

Braeburn 0.54 10.0 ± 0.00 19.0 ± 0.29 37.3 ± 1.86
Cox 0.41 7.8 ± 0.00 16.3 ± 0.00 34.4 ± 3.28
Fuji 0.22 10.0 ± 0.05 24.9 ± 0.12 39.2 ± 0.21
Gala 0.47 9.1 ± 0.11 16.1 ± 0.27 30.0 ± 0.63
Golden Delicious 0.33 10.0 ± 0.00 24.9 ± 0.06 39.6 ± 0.26

correlated is Fuji, with a weak negative correlation (Table 4.4). Fuji, Golden Delicious

and Braeburn have similar temperature-growth rate relationship (Figure 4.3B). Their

parameters vary slightly, with Fuji having lower temperature requirements and Golden

Delicious being acceptive of high temperatures (Tc = 39.7°C). The critical temperature

for Gala is the lowest of the five cultivars. Gala and Cox have low base temperature

values (5.9 and 8.2°C, respectively).

Table 4.4: Non-linear Growing Degree Hour model parameters estimated by the best
correlation (Kendall’s Tau) to Starch. Where multiple combinations result in the best
correlation, the parameters presented are the closest to the median values. The errors
represent the standard deviation of the best correlated parameters.

Cultivar Best correlation Tb Tu Tc

Braeburn 0.54 10.0 ± 0.00 23.1 ± 0.28 36.7 ± 2.32
Cox 0.41 8.2 ± 0.28 15.4 ± 0.28 34.5 ± 1.71
Fuji -0.17 9.8 ± 0.10 22.2 ± 0.49 34.6 ± 2.85
Gala 0.47 5.9 ± 0.53 17.5 ± 0.77 32.7 ± 1.66
Golden Delicious 0.30 10.0 ± 0.00 25.0 ± 0.00 39.7 ± 0.00

The temperature-growth rate relationship as modelled by the Thermodynamic model

for Braeburn, Fuji and Golden Delicious are similar (Table 4.5 and Figure 4.3C). They

all follow an exponential pattern, suggesting their maximum growth rate has not been

reached at 40°C. Similarly, Cox has also not reached its maximum growth rate 40°C,
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but its growth rate appears to be almost linearly related to temperature. In contrast,

the maximum growth rate for Gala is at 22°C. The estimated relative growth rate at

22°C were similar for all cultivars.

Table 4.5: Thermodynamic model parameters estimated by the best correlation
(Kendall’s Tau) to Starch. Where multiple combinations result in the best correlation,
the parameters presented are the closest to the median values. The errors represent
the standard deviation of the best correlated parameters.

Cultivar Best correlation B C TH
Braeburn 0.53 40.0 ± 0.19 7.9 ± 1.03 293.6 ± 3.34
Cox 0.41 18.8 ± 2.18 17.1 ± 5.06 290.0 ± 0.00
Fuji 0.23 39.8 ± 2.50 9.1 ± 5.30 290.0 ± 0.32
Gala 0.37 16.4 ± 0.52 29.9 ± 0.11 290.7 ± 0.93
Golden Delicious 0.34 40.0 ± 0.00 20.9 ± 0.00 300.0 ± 0.00

As expected, there is a negative correlation between the proportion of starch and

accumulated growth unit for all three growth models —linear GDH (Figure 4.4A), non-

linear GDH (Figure 4.4B) and Thermodynamic (Figure 4.4C) models. For Braeburn,

Cox and Gala, the relationship follows a logistic shape as starch proportion does not

change significantly in the early stages of development, but rapidly degrades after

accumulation of certain growth units (Figure 4.4). The difference in the trend between

years is consistent with the observed relationship of temperature accumulation with

maturity: harvesting fruit appeared to be too early in 2023. For Golden Delicious,

proportion of starch appears to decrease linearly with increasing accumulated growth

units for all three models. The correlation between maturity and relative growth

rates for Fuji apples were consistently the lowest (Tables 4.3-4.5), this is reflected by

the weak trends observed for Fuji (Figure 4.4). The calculated accumulated growth

units were higher in 2023 than in 2022 for linear GDH and Thermodynamic models,

but the opposite was true for the non-linear model (Figure 4.4). This change in the

accumulated growth units does not occur in the other four cultivars.
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Figure 4.4: Proportion of starch (1 – immature and 0 – mature) against relative
growth units calculated using A) linear Growing Degree Hours, B) non-linear Growing
Degrees Hours and C) Thermodynamic model for each apple cultivar across 2 years.
The trend lines show the trends of the values from 2022 and 2023 for each cultivar on
each model
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4.3.4 Factors contributing to maturity variation

Table 4.6 shows the summary of deviance in the fruit maturity (SPI) attributable

to individual factors for individual cultivars. Comparing the deviance explained

by the accumulated growth units across the three temperature growth models, the

linear GDH model is the most effective for Gala (14.71%), the non-linear GDH model

suits Braeburn, explaining 3.37%, and the Thermodynamic model works best for

Cox (19.68%) and Golden Delicious (6.76%). However, it should be noted that the

deviance attributable to the accumulated growth units was very similar among the

three models (Table 4.6). The effect of accumulated growth units is not always

statistically significant; only the linear GDH model for Braeburn (2.88%) and Gala

(14.71%), non-linear GDH model for Braeburn (3.37%) and Thermodynamic model

for Golden Delicious (6.76%) were statistically significant. For Fuji, < 1% of deviance

in proportion of starch was explained by accumulated growth units (Table 4.6).

Some of the differences between the two seasons are expected to be accounted for

by the accumulated growth units. The year effect did not contribute much to the

deviance in proportion of starch for Braeburn or Gala, but it did affect proportion of

starch significantly for Fuji with the linear GDH model (2.17%) and Golden Delicious

with the non-linear GDH (1.75%) and Thermodynamic models (1.84%).

Differences between individual trees did not significantly affect proportion of starch for

Braeburn, Fuji and Gala. In contrast, for Cox’s Orange Pippin, tree effects were highly

significant for all growth models, contributing 6.71%, 6.75% and 7.55% of deviance

in the linear GDH, non-linear GDH and Thermodynamic models, respectively. For

Golden Delicious, tree effects were significant for the linear and non-linear GDH models

(Table 4.6).

The regions within the canopy contributed to less than 6% of the deviance in the

observed proportion of starch, none of which was statistically significant.
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Table 4.6: The percentage of the total variation explained by the linear GDH, non-
linear GDH and Thermodynamic models for all cultivars. The values represent the
percentage explained by each variable. Chi-squared test was used to determine the
significance of each variable.

Terms Linear GDH Non-linear GDH Thermodynamic

Braeburn
Relative growth units 2.88 *** 3.37 *** 2.18
Year 1.07 0.84 0.05
Tree 0.65 0.83 0.46
Region 1.95 1.93 2.10
Cox’s Orange Pippin
Relative growth units 18.44 18.70 19.68
Tree 6.71 *** 6.78 *** 7.55 ***
Region 4.82 4.88 5.61
Fuji
Relative growth units 0.52 0.61 0.29
Year 2.17 *** 6.40 0.03
Tree 0.58 0.61 0.54
Region 2.90 2.86 3.16
Gala
Relative growth units 14.71 *** 13.42 12.18
Year 0.64 1.53 4.88
Tree 0.33 0.49 0.66
Region 3.57 3.35 3.06
Golden Delicious
Relative growth units 6.15 5.86 6.76 ***
Year 0.02 1.75 *** 1.84 ***
Tree 10.86 *** 10.61 *** 11.50
Region 2.09 1.99 2.30
The significance codes denote the p-value thresholds.
*** p < 0.001
** p < 0.01
* p < 0.05
. p < 0.1
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4.4 Discussion

4.4.1 Harvest predictions and flowering effect

Flowering can occur in a quick burst or a longer span of time depending on the

temperatures in the season. Harvest prediction models commonly use the average

flowering date to predict a single harvest date. The accuracy of calendar date models

will decrease as the climate changes. This is because plants can make small changes in

their behaviour, such as changing their flowering patterns to avoid harsh temperatures.

Only their offspring (with selective breeding) may become more tolerant to extreme

temperatures, but commercial apple cultivars are based on clonal propagation. Thus,

although calendar date models may have been accurate, but its effectiveness will

fade. Moreover, due to only using the average harvest date, it ignores tree-to-tree

and within-tree fruit-to-fruit flowering time. The present research assessed whether

the within-orchard variation in flowering time can impact fruit maturity at harvest

and hence predicted harvest dates. The present research showed that within-orchard

flowering time accounted for 2-20% of the variability in fruit maturity (as represented

by proportion of starch in fruit), depending on cultivars.

In the present study, different apple cultivars had flowering differences of about 10

days, with the within-cultivar variation of about 10 to 22 days. This difference in

within-cultivar flowering time led to differences in accumulated growth units among

individual fruit. Since temperature was usually much lower around the flowering time,

the impact of this difference is thus expected to depend on the temperature-based

growth relationship. The variation due to flowering time was observed to be less than

5% for Braeburn, Fuji and Golden Delicious, but can be much higher in Cox’s Orange

Pippin (18.4-19.7%) and Gala (12.2-14.7%). Since the difference in flowering time is

relatively small even when temperature was usually low in the spring this shows that

incorporating fine-resolution flowering time may improve the accuracies in predicting
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the harvest window.

An unexpected linear trend was observed only for Golden Delicious. This could be

due to a lack of immature Golden Delicious (namely with close to 100% starch), so

only the development stage when the proportion of starch is reducing at a linear rate

can be observed. Of course, unlike the other cultivars, Golden Delicious may indeed

lose starch at a linear rate with accumulated growth units. Fuji consistently resulted

in low correlation between starch and maturity. Fuji is deduced to mature differently

than the other cultivars, and that Fuji may not depend on temperature as much as

other apple cultivars. Another possibility for the lack of temperature relationship for

Fuji is the low variability in flowering time, particularly in 2023 with zero interquartile

range. The loss of one tree in an already limited number of biological replicates may

have compromised the statistical power in our study. Overall, this study should be

replicated with a greater number of trees per cultivar to ensure that the results are

accurate and reproducible.

4.4.2 Year, tree, region and cultivar effects on maturity vari-

ation

Year, tree and canopy region accounted for a small proportion of the observed variability

in the proportion of starch after the accumulated growth unit was included in the

model. For the year factor, there still appears to be some significant effects, depending

on the cultivar. The effect of year on Fuji, with the linear GDH model, and Golden

Delicious, with the non-linear GDH and Thermodynamic models were significant, albeit

accounting for < 2% of the deviance. It is assumed that this year-to-year effect could

be due to differences in the solar radiation intensity since the temperature effects were

accounted for by the accumulated growth units. Further data on multiple years across

multiple locations with large differences in solar radiation are required to assess the

potential effect of solar radiation on fruit development. A better understanding might
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be gained by using a commercial orchard as these apple trees are not commercially

thinned each year. The consequences of not thinning fruit include non-uniform fruit,

and biennial cropping: less fruit after a season of heavy crop [99].

The effect of canopy region was insignificant for all cultivars. This result is inconsistent

with previous findings [73–75, 107]. Most likely, this difference is due to the fact that

our trees are small relative to conventional orchard trees; thus, there was no significant

difference in shading between fruit in different zones of the same tree. In the present

research, the proportion of starch was used as the maturity indicator; but previous

studies focused on soluble sugars and firmness. Different maturity indicators may thus

also account for the differences in the canopy effects.

It was surprising to observe the significant effects of individual neighboring trees on

proportion of starch for Cox and Golden Delicious. As the trees were in proximity

and exposed to the same biological and environmental conditions, it is difficult to

explain such significant effects. One possible explanation could be that the number of

fruit varied greatly among trees (hence possibly more variability in fruit development),

which may affect fruit development in the same season and the following season (as

these trees were not thinned) [99].

4.4.3 Evaluation of linear GDH, non-linear GDH and Ther-

modynamic models

In the present study, complicated optimisation algorithms were not used to estimate

model parameters. Instead, a simple grid search approach was used to search a set

of parameters that maximised the correlation of the estimated accumulated growth

units and the observed proportion of starch. This simple approach will not be able to

resolve non-converging issues often encountered in fitting complex nonlinear models.

This approach was selected for two reasons. Firstly, nearly all parameters are related

to minimum, optimal and maximum temperatures for fruit development. For these
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parameters, there is a well-defined range based on biological intuition. Secondly,

the present study focuses on the relative effect of flowering time (as represented by

temperature effects) and other factors on fruit maturity, not the precise parameter

values. By ensuring the parameter values maximised the correlation, the maximum

effects of flowering time (temperature model) on fruit development within our defined

search limits are expected to be captured. In our study, our maximum correlation

was 0.54 for linear and non-linear GDH models on Braeburn, this is similar to values

from a previous study by Sugiura et al. [52], where their absolute correlation of their

linear model was 0.56 in field studies. This gives us confidence that our models are

appropriate for our study.

We expected the optimal growth temperatures to be within 15-30°C, similar to values

found in [113] and [44], but optimal growth rates have not been determined by

the Thermodynamic model, even at 40°C, except for Gala (Figure 4.2C). Optimal

temperatures above 40°C are unrealistic, and a detrimental effect was expected on

most biological functions when temperatures exceed the realistic optimal temperature

range [116]. Although optimal growth temperatures were not identified, since it is

likely that temperature fluctuations during the growth season range from 10-30°C, the

effective growth for each cultivar modelled by the Thermodynamic model is similar to

the other two models. The temperature rates were more biologically sound for the

linear and non-linear GDH. However, it should be noted that the linear GDH model is

actually non-linear, consisting of two lines that join at the optimal temperature. There

is no definitive rationale for preferring one GDH model over the other. The order of

maximum relative development rates suggested by the non-linear GDH model follows

the order of maturation of cultivars (Figure 4.2); Cox’s Orange Pippin matures earliest

in the season, followed by Braeburn, Gala, Golden Delicious and Fuji. This makes

biological sense, as a faster rate of development suggests a shorter development period

is required. Moreover, the non-linear GDH model tends to explain more variation
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than the linear GDH model for most cultivars.

Commonly, when using the GDH model, the base temperature is set to 4.5°C, as per

the original model [34]. The limits for the base temperature was explored between 0

to 10°C since flowering was observed in the spring when temperatures were usually

less than 10°C and growth was not expected below 0°C. In the linear GDH model,

the base temperatures were 7.8°C for Cox, 9.1°C for Gala, and 10°C for Braeburn,

Fuji and Golden Delicious. The non-linear GDH model had base temperatures of

10°C for Braeburn and Golden Delicious, 8.2°C for Cox, 9.8°C for Fuji and 5.9°C for

Gala. Growing degree day models and their variants used similar base temperatures

at 10°C [101] or higher [51]. However, papers which fitted model parameters [44, 113]

or tested a series of base temperatures [106] found lower base temperatures between 0

to 4°C than observed in our study.

4.4.4 Assumptions and limitations

This project was focused on conventional methods of fruit maturity methods, commonly

used by growers. Therefore, the focus was on soluble solids, firmness and starch. The

maturity parameter used in this study was the proportion of starch, a standard method

for determining fruit maturity. Previous studies indicated that maturity cannot be

represented by a single variable. Our findings showed a latent variable present in

our Streif measurements (Figure 4.2). Therefore for this study, it must be assumed

that starch proportion is an adequate measure of maturity despite it being a highly

subjective assessment. Considering that each of the fitted models only explained up

to 20% of the variability in fruit maturity, there is still a large amount of unexplained

variance. It can be assumed that everything else is due to random variability. Physical

assessments of fruit quality are therefore still required closer to the harvest window.

The authors acknowledge that flowering date and pollination date may not be the

same. However, for the purpose of this study, it is assumed that flowers are pollinated
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when the flowers are fully open. Apple flowers are typically insect-pollinated but

pollinators may not always be present (in abundance) in the orchard, so it cannot be

guaranteed that the flowers were pollinated on the bloom date. This would introduce

a level of error in GDH calculations.

4.4.5 Implementations

Changes in the climate can affect the duration of flowering time, and therefore, the

downstream harvest window. Growers can more accurately predict the harvest window,

particularly the duration of the harvest window, when accounting for the variation in

flowering time. This can reduce the noise for harvest window predictions. Knowing

the duration of the harvest window will help orchard management during the harvest

season. Our results show there is still a large amount of variation unexplained,

therefore it is essential to assess the fruit close to the predicted harvest date, whether

by destructive fruit assessments or by non-destructive methods.

4.5 Conclusion

The variation of maturity can be effectively quantified by either the linear or non-linear

GDH models. The effect of flowering variation varies depending on the cultivar; the

effect is small for Braeburn and Golden Delicious, but large for Cox’s Orange Pippin

and Gala. No flowering effect was found for Fuji. Considering these variations are

induced within a 2-to-3-week period, flowering time is a significant contributor to

maturity variation at harvest. Of the factors: year, region and tree specimen, only

year and tree were significant for some cultivars but the effects were suspected to be

due to non-uniform fruit cropping. Proper orchard management could help resolve

differences.



Chapter 5
Toward accurate prediction of apple

firmness and Brix across countries, seasons

and cultivars with hyperspectral imaging

5.1 Introduction

Traditional apple harvest prediction methods are essential for ensuring high-quality

apples, but they are time-consuming, labour-intensive and rely on destructive sampling.

Imaging has emerged as an efficient, non-destructive method to predict fruit maturity.

Spectroscopy captures spectral wavelengths in a localised region, but previous research

involving five surface scans per fruit across a large sample of apples did not yield reliable

results for predicting maturity (unpublished). Hyperspectral imaging captures spectral

data within an area, thus providing spectral and spatial information. Hyperspectral

imaging has been successful for maturity trait predictions in apple [68, 70], sweet

potato [117], tomato [118], cherry [119] and other fruits. While numerous studies have

applied hyperspectral imaging to apples, the dataset in this study is notably broader,

encompassing multiple cultivars, growing seasons, and countries.

Visible and near-infrared (VIS/NIR) spectroscopy has been a common area of study in

determining fruit maturity qualities due to the obvious green-to-red (or yellow) colour

change in the apple development process and the reflective soluble sugars at NIR.

71
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Water is also highly absorptive in NIR [61], and can introduce complexity and noise

into the data — particularly relevant given that water makes up approximately 80%

of apple content [120]. Due to this noise, assigning wavelengths to specific functional

groups (e.g. -OH or -COOH) is ineffective. Most studies identify significant spectral

indices — ratios between specific wavelengths — that correlate with the presence and

concentration of biological compounds or physiological traits. Some studies observe

chlorophyll degradation using the difference in absorption ratio between 670 and 720

nm (IAD) [99, 121–123], and others look at the ratio of anthocyanin (R800/R678) or

carotenoids (R550/R700) and chlorophyll [124]. IAD also shows some correlation with

firmness [121], soluble solids [121] and starch degradation [122]. However, using IAD

to predict maturity parameters may not be consistent year-to-year [122].

Other studies use multivariate statistical methods, which help extract informative

wavebands from spectral data. Methods such as Partial Least Squares Regression

(PLSR), Principal Component Analysis (PCA), Multiple Linear Regression (MLR) and

their variants [68–70] are commonly used to address the high collinearity of spectral

wavelengths and to model fruit maturity traits effectively. Wang et al., 2022 [70] found

wavelength indices for chlorophyll, carbohydrate and water absorbance. The most

significant wavelengths include the normalised difference spectral indices between 767

and 737 nm for soluble solids and 764 and 820 nm for firmness. On the other hand, Li

et al., 2020 [69] identified 14 wavelengths in the infrared region (interesting spectra

were found between 907 and 1107 nm) to define soluble solids (Brix).

More recently, hyperspectral imaging has been successfully analysed with deep learning

models for learning complex patterns [71, 72]. The application of deep learning models

to spectral data remains relatively new. When employed, these models often lack

interpretability, offering limited insight into the importance of key spectral indices

due to their black-box nature. Moreover, only a limited number of studies utilise

large-scale dataset that exceeds 300 apples, despite the importance of large sample
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sizes when training deep learning models [71, 125].

In the present study, we collected a large apple hyperspectral dataset comprising of

5756 apples, sourced from orchards in both the United Kingdom and New Zealand.

Covering 6 cultivars across 3 growing seasons, this dataset provides a robust foundation

for predicting key maturity traits in apples. We trained deep learning models with

our data and found that: 1) the Vision transformer model performed the best out

of four deep learning architectures (2D-Convolutional Neural Network (2D-CNN),

3D-Convolutional Neural Network (3D-CNN), and hybrid CNN-transformer model).

2) The models were only effective for predicting soluble solids and firmness, but not for

starch. 3) The wavelengths important for making maturity predictions are in the visible

region for both soluble solids (Brix) and firmness (Brix: 400-411, 453-465, 482-488,

538, 600-630, 648-668 and 671-692 nm, and firmness: 400-408, 633-698, 565-600) and

one band at 1000 nm for firmness only. 4) The fruit region had no impact on soluble

solids (Brix) predictions, but it was a significant factor in firmness predictions. 5) A

single side of the fruit is insufficient for making accurate predictions due to increased

bias. 6) Models showed that factoring cultivar into the training process improved

model predictions. 7) Seasonal data showed specificity, but the model trained on all

three seasons improved model performance.

5.2 Material and Methods

5.2.1 Fruit Samples

Fruit of six apple cultivars were collected from Kent, United Kingdom and Hawke’s

Bay and Nelson, New Zealand in three harvest seasons. Fruit were harvested during

the harvest seasons from NZ (February to April) in 2023 and 2024, and from UK

(September to October) in 2024. In England, Cox, Braeburn, Fuji, Gala and Golden

Delicious were picked from East Malling (51°17’07.0"N 0°27’13.2"E) and additional
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Gala, Braeburn, Cox and Jazz were sourced from orchards around Harbledown, UK

(51°16’33.5"N 1°2’28.4"E). All cultivars, except Jazz, were picked from orchards at

Plant and Food (PFR) Research Hawke’s Bay (39°39’37.4"S 176°52’45.9"E). Additional

Gala and Fuji were picked from a commercial orchard (39°36’11.5"S 176°49’20.9"E),

Golden Delicious was picked from a local grower (39°36’54.2"S 176°50’52.1"E), and

Braeburn and Fuji from PFR Nelson (41°06’49.7"S 172°59’04.3"E) in 2023 and 2024.

All apples were picked in the morning, imaged, then the firmness, soluble solids and

starch of each fruit were measured within 36 hours of harvest at ambient temperature.

A total of 5756 apples were harvested (Table 5.1).

Table 5.1: Image and apple count per season split by cultivar. Numbers represent
pre-filtering counts.

Cultivar NZ2023 NZ2024 UK2024

Apples Images Apples Images Apples Images

Braeburn 47 32 350 236 804 464

Cox 248 180 0 0 119 72

Fuji 811 472 524 360 280 160

Gala 463 356 424 292 850 492

Golden Delicious 132 104 111 76 574 328

Jazz 0 0 0 0 19 12

Total 1701 1144 1409 964 2646 1528

The equipment reported for each maturity feature was used, as follows, in the UK and

NZ, respectively. Firmness was measured using a fruit texture analyser (Llyod LRX,

UK and GÜSS, South Africa) with an 11 mm diameter probe to a depth of 8 mm.

Two regions (approximately perpendicular to each other) along the equatorial region

of the fruit were punctured after peeling away the skin. The force at maximum depth

was used in this study. Atago refractometers (portable benchtop palette series, model

PR-32α and pocket PAL series, model PAL-1) were used to measure the apple juice

collected from the puncture sites made during the firmness process. The refractometers

were calibrated at the start of each sampling day using distilled water. Lastly, the
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starch percentage was measured by cutting the apples in half horizontally then a

potassium iodine solution was applied to one half of the apple by dipping them in

a 1% w/v iodine and 4% w/v potassium iodide solution or spraying with 1% w/v

potassium iodide and 0.25% w/v iodine. The apples were left to stain for 30 minutes

(Per comms) before recording the staining percentage. The firmness readings from

both sides of each fruit were averaged to create an average firmness reading.

5.2.2 Obtaining fruit images and initial image processing

Images were taken using two different Specim IQ hyperspectral cameras (Specim

Imaging Ltd., Oulu, Finland) using the same settings [126]; one was in New Zealand

and the other was in the United Kingdom. The spectral range of the cameras was

400-1000 nm, with 204 spectral bands at 7 nm resolution. Two 750 W tungsten halogen

lights (ARRILITE 750 Plus, ARRI, Germany) were each positioned approximately 1

m apart, forming a triangular setup with the photo shooting tent. This setup ensured

little shadow was cast on the apples. The tent diffused the light to avoid overexposure

caused by direct light on the waxy layer of apples. The camera was set in front of

the tent (Figure 5.1). The camera set-up and calibration were followed according to

the manufacturer’s manual. The reflectance was generated by correcting with white

and dark references to reduce background noise. Images were captured following

appropriate integration times.

In a dark room, four images of each apple were taken by rotating the apples by 90

degrees on the horizontal axis to attain four equatorial images. These were processed

at room temperature before the maturity assessments. Depending on the size of the

fruits, each image contained between 2 to 8 apples arranged in two rows. A total

of 3636 images were taken (Table 5.1). The image metadata was inputted during

the imaging process, ensuring the date, cultivar and fruit numbers were recorded.

Some apples may not have images from all four sides due to human errors during the
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collection process.

Figure 5.1: Schematic of the hyperspectral imaging equipment setup. Two lights on
stands were set up on either side of a camera on a tripod, facing the light diffusion
tent containing the apples. The lights and tent formed a triangle with sides of ∼1m
length.

5.2.3 Image Processing

Since multiple apples were presented in the images, object detection was done using

Segment Anything Model 2 (SAM2) [127] on the RGB images generated by the

hyperspectral camera. Occasionally, SAM2 would not detect all the apples within

the image. To ensure that we retained the correct number of actual apples and those

detected by the image detection AI, we counted the number of bounding boxes detected

and matched it to the count of fruit noted in the metadata. When the numbers did not

match for that image, the image and the maturity data for those apples were removed

from the final dataset. 2.75% of the images were filtered out due to mismatches

between the detected and actual number of apples in the image. Valid masks were

applied onto the hyperspectral images so that any pixel coordinates for any wavelength

outside of the segmented area is zeroed.

The apple images within the bounding box coordinates (apple and zeroed background)
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were divided into equal parts before locally averaging the pixels, forming either 30-by-

30 or 50-by-50 pixel images. This method reduces the size of the tensors and retains

spatial information. To further localise just the centre of the images, 5 pixels were

removed from each edge of the generated images, thus forming 20-by-20 or 40-by-40

pixels images. Due to the curvature of apples and lower quality of pixel values around

the edge of the fruit, removing the edges may improve model accuracy [70] The

spectral data, 204 contiguous bands, made up the third dimension of the image. In

addition to the hyperspectral data, each sample was labelled with its corresponding

cultivar information using one hot encoding so that it is trainable by machine learning

algorithms. The six cultivars in the study were encoded into a binary format and

integrated into the last layer of the images, increasing the third dimension from 204 to

210 channels, unless otherwise stated.

The data was first split into their respective cultivars before randomly splitting into

training, test and validation datasets at 80, 18 and 2%, respectively. The different

training, test and validation datasets for each cultivar were rejoined after the random

split to ensure all cultivars were equally represented in all three datasets. The images

were further processed to test whether specific regions of the apple were important in

model predictions. The images were processed as above, then they were split in half

vertically and horizontally before the quadrants were swapped diagonally (Figure 5.2).

This caused the outer corners of the apples to be placed in the centre and vice versa.

Figure 5.2: Example of a swapped quadrants image. The four corners were swapped
diagonally to simulate whether apple regions are important.



Chapter 5. Toward accurate prediction of apple firmness and Brix across countries,
seasons and cultivars with hyperspectral imaging 78

5.2.4 Deep Learning Models

The selection of these four model architectures was intended to systematically compare

the performance differences of various deep learning strategies in processing hyper-

spectral data for the values of soluble solids (Brix), firmness, and starch prediction.

Specifically, 2D-Convolutional Neural Networks (CNN) excel at extracting local spatial

features (Figure 5.3); 3D-CNNs can simultaneously capture joint features in both

spatial and spectral domains (Figure 5.4); Hybrid CNN-Transformer models attempt

to combine the local receptive field capabilities of CNNs with the global dependency

modelling capabilities of Transformers (Figure 5.5); and Vision Transformer (ViT)

models rely entirely on self-attention mechanisms for feature learning (Figure 5.6).

All models were implemented on the TensorFlow and Keras frameworks. The process

utilised tf.distribute.MirroredStrategy() for efficient utilisation of available graphics

processing units (GPU). Common training configurations included he use of Adam

optimiser and Mean Absolute Error (MAE) as the primary evaluation metric. MAE

intuitively reflects the average magnitude of deviation between predicted and true val-

ues. During the training process, MAE on the validation set also serves as a key metric

for monitoring model performance, making early stopping decisions, and selecting

the best model weights (saved via the ModelCheckpoint callback). Concurrently, loss

function values (such as MSE or Huber loss) during training will also be recorded and

analysed to aid in understanding the model’s convergence behaviour. The CSVLogger

recorded a detailed training history.

5.2.5 Hyperparameter Tuning

Bayesian optimisation is a method to optimise model hyperparameters [128]. Bayesian

optimisation was used to determine the hyperparameters only for the ViT model, as it

demonstrated the strongest baseline performance among the four architectures tested.

A combination of the number of layers (1-5), patch size (2-10), projection dimension
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Figure 5.3: 2D-Convolutional Neural Network architecture.

Figure 5.4: 3D-Convolutional Neural Network architecture.

Figure 5.5: Hybrid model architecture, consisting of 2D-CNN and Transformer
blocks.
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Figure 5.6: Vision Transformer model architecture.

(64-256), number of heads (1-5), multilayer perceptron (MLP) head units (small head:

[128, 64], medium head: [256-128] or large head: [256-128-64]) and dropout rates

(0.1-0.5) were tested. The larger the head, the more complex patterns can be learnt,

but it may overfit and require more time to train. The final model was evaluated as

follows.

5.2.6 Model Evaluation and Feature Selection

The three models return outputs for soluble solids (Brix), average firmness and starch

percentage, independently. Root Mean Squared Error (RMSE) and the Coefficient of

Determination (R2) were used to determine the performance of the model. Evaluation

of important wavebands, apple regions of interest and cultivar was done using Shapley

values. Shapley value is based on coalition theory to fairly split a prize pool of money,

based on their contribution. The greater their contribution, the greater their winnings.

We calculate Shapley values for each feature on our final machine learning models to

determine the contribution of each waveband to each maturity feature prediction, as

well as the significance of each region of the apple and cultivars.

Floating Point Operations (FLOPs) were used to measure the complexity of models.
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The lower the FLOPs value, the lower the computational cost. We used FLOPs to

assess the difference between the Bayesian optimised models and the models trained

on default parameters.

5.2.7 Hardware and software environment

Models were trained and evaluated with Python 3.10.13, using Keras (v2.15.0), Pytorch

(v2.1.0), scikit-learn (v1.4.2), Numpy (v1.26.4), Pandas (v2.2.3), OpenCV (v4.8.1) and

Matplotlib (v3.8.2). All ML models were trained on a NVIDIA A100 (80 GB), 503

GB RAM system.

5.2.8 Modelling strategies to assess model performance on

maturity features

Several tests were conducted to get the optimised models for soluble solids, firmness

and starch (Figure 5.7). We first tested between 2D-CNN, 3D-CNN, Hybrid or ViT

models to identify the best performing model type. Secondly, different image sizes

(30-by-30 or 50-by-50 pixels) and cropped (20-by-20 or 40-by-40 pixels) images were fed

into the best model to determine the best input shape. These models were optimised

using Bayesian optimisation functions to tune the hyperparameters of the models for

each of the maturity features, independently. On the optimised models, we compared

the effects of 1) removing the cultivar encoding, 2) just having one model for all three

features and 3) reducing the input to just a single side of the apples (instead of using

images from all sides of the fruits). We further tested 4) the effects of segregating

the data into their seasons and 5) retaining a percentage of high impact channels

and observing the effect on the models. Finally, 6) we tested how important each

region of the apple is by splitting apple images into quadrants and swapping quadrants

diagonally. All model RMSE and R2 values were compared between the models.
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Figure 5.7: Model training and testing workflow. Solid rectangles represent research
questions, while diamonds represent the options tested for each query. Pink lines
depict the experimental pathway, with annotations along each line representing the
rationale behind successive choices. The last four boxes, connected by the yellow lines,
show the outcome of the varied inputs.
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5.3 Results

5.3.1 Analysis of maturity parameters

Harvests were done over the commercial harvest period for six apple cultivars, and

their starch, soluble solids and firmness measurements were recorded (Table 5.2). As

expected, soluble solids and firmness are more similar within cultivars than between

cultivars. Overall, the fruit with lower firmness was likely to have lower starch levels

and vice versa, as seen by the slight positive trend (Figure 5.8).

Firmness is measured twice for each fruit. The overall standard deviation of firmness

between sides is 0.46 ± 0.37 kgF, with a minimum of 0 and maximum of 2.63 kgF. The

mean standard deviation for each cultivar, ordered from the largest to the smallest,

is Jazz (0.56 ± 0.23), Cox (0.54 ± 0.39), Braeburn (0.49 ± 0.42), Fuji (0.48 ± 0.39),

Gala (0.44 ± 0.33) and Golden Delicious (0.4 ± 0.35). Jazz was only harvested in

the final season and had the least number of samples and therefore shows the least

amount of deviance in soluble solids and starch values, but it was ranked the highest

in firmness deviance (Table 5.2).

5.3.2 Analysis of Spectral Data

The main trends in spectra are similar between cultivars, namely peaks at 500-700

nm which are coloured pigments such as carotenoids, chlorophyll and anthocyanins;

and a large peak at 700 nm which continues onwards to 1000 nm, the limit of the

camera. The relative reflectance was distinct for each cultivar, indicating that cultivar

types can be inferred through imaging, specifically between 800-900 nm (Figure 5.9).

Blue light, between 400-480 nm, is where carotenoids and chlorophyll absorb light.

This is consistent with our results as Golden Delicious has the highest reflectance in

this region and Braeburn and Jazz had the least reflectance in this range. Golden

Delicious shows a high reflectance peak around 530-640 nm, likely due to the low
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Table 5.2: Quality distribution table of apples by cultivar from 2023-2024. The
columns represent the mean and standard deviation of the mean for firmness, soluble
solids(Brix) and starch. Firmness is the average firmness of the two sides of the fruit.
The rows represent the six apple cultivars in this study. Each cultivar is calculated for
each season separately and with all seasons together.

Cultivar Season Firmness (kgF) Soluble Solids (°Brix) Starch (%)

Braeburn NZ2023 8.11± 0.63 12.41± 1.0 55.00± 21.59

NZ2024 9.25± 1.01 11.97± 1.04 69.04± 22.06

UK2024 9.72± 0.89 10.58± 0.82 83.01± 15.70

All 9.51± 0.98 11.07± 1.13 77.73± 19.71

Cox’s Orange Pippin NZ2023 8.36± 1.36 13.02± 1.49 67.59± 22.25

UK2024 8.06± 1.25 10.83± 0.95 62.18± 15.59

All 8.26± 1.33 12.28± 1.69 65.76± 20.39

Fuji NZ2023 7.45± 0.82 14.36± 1.54 32.64± 23.95

NZ2024 7.39± 0.81 14.65± 1.41 49.07± 23.36

UK2024 9.01± 0.87 12.32± 1.12 36.83± 18.26

All 7.71± 1.03 14.09± 1.66 38.67± 23.99

Gala NZ2023 7.78± 1.10 13.15± 1.35 39.10± 28.28

NZ2024 7.81± 0.84 12.46± 1.23 44.36± 28.41

UK2024 8.77± 0.81 11.05± 0.80 69.81± 22.06

All 8.27± 1.02 11.96± 1.42 55.27± 29.18

Golden Delicious NZ2023 7.58± 0.97 11.92± 0.72 84.27± 12.41

NZ2024 7.59± 0.61 13.16± 0.94 53.06± 18.16

UK2024 7.19± 0.68 11.62± 1.27 15.15± 14.62

All 7.30± 0.75 11.88± 1.27 30.66± 29.83

Jazz UK2024 11.35± 1.50 11.23± 0.97 95.16± 3.83
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Figure 5.8: Pairwise plot between Brix, firmness and starch, coloured by each
cultivar.
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levels of carotenoid and anthocyanin present in the skin [124]. Gala likely has the

lowest concentration of chlorophyll due to the higher reflectance at 650-670 nm [124].

Braeburn and Jazz contain the highest levels of anthocyanins in the peel, as evident

by the low reflectance between 550 and 600 nm. Due to significant differences in

wavelengths between cultivars, we encoded the cultivar information in the training

process.

Figure 5.9: Mean reflectance of six apple cultivars between 400-1000 nm.

5.3.3 Model Training Analysis

This study tested which type of model was the best in predicting fruit maturity (Table

5.4; runs 1-4). 2D-CNN, 3D-CNN, Hybrid-Transformer and ViT models were tested

on 50-by-50px images. The best performing model was the ViT model, consistently

resulting in the lowest RMSE values for Brix, firmness and starch and the highest R2

values. In comparison, the 2D-CNN, Hybrid and 3D-CNN models were not as accurate

as the ViT model. Interestingly, the 3D-CNN model performed better in predicting

firmness and starch compared to the Hybrid model, but the Hybrid model did better

in predicting soluble solids (Brix). The 2D-model worked well for soluble solids (Brix),
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ranking second after the ViT results. Firmness and starch were slightly worse than

results from the 3D-CNN model but better than the Hybrid model. The second test

determined the best size of the data input Table 5.4; runs 4-7). The images were

aggregated into 30-by-30 pixel or 50-by-50 pixel size. The aggregating process would

average across more pixels on larger apples such as Braeburn, compared to smaller

apples such as Cox’s Orange Pippin due to the differences in the original apple sizes

(Table 5.3). We further tested 20-by-20 pixel and 40-by-40 pixel images, which were

created by removing 5 pixels from each edge of the original 30-by-30 or 50-by-50 pixel

images, respectively. This causes the models to be trained only on the central part of

the apple face, as the edges may have reduced signal quality [70]. The images sized

40-by-40 pixels, showed the best results for Brix with the edges removed, despite a

slight reduction in model performance in firmness and starch. Between 20-by-20 and

40-by-40 pixels sized apples, soluble solids and firmness had a small improvement in

accuracy, but firmness accuracy dropped by a small amount. Therefore, we selected

40-by-40 pixels images to train our subsequent models.

Table 5.3: Mean dimensions of apple cultivars in pixels

Cultivar Mean Height (px) Mean Width (px)

Braeburn 130 136

Cox’s Orange Pippin 118 122

Fuji 123 131

Gala 124 132

Golden Delicious 125 132

Jazz 120 119

A Bayesian optimisation function was used to find the optimal hyperparameters of the

models (Table 5.5). This changed the number of convolutional blocks (each containing

Conv2d, normalisation, max pooling and dropout layers) from 4 blocks to 5 for soluble

solids (Brix) and 3 for firmness, and the number of blocks for starch was unchanged.

The patch sizes were increased after the optimisation for all features, and the number
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Table 5.4: Model summary results for Brix, Firmness, and Starch

Soluble solids (Brix) Firmness Starch

Run Name Image
size

Model Result RMSE R2 RMSE R2 RMSE R2

1 Model
type

50px 2D-CNN Runs 1–4:
Vision transformer model
outperformed the other
model types

1.14 0.61 0.86 0.53 19.89 0.57

2 Model
type

50px 3D-CNN 1.97 -0.16 1.15 0.15 20.46 0.54

3 Model
type

50px Hybrid 1.33 0.47 1.78 -1.03 34.70 -0.31

4 Model
type

50px ViT Runs 4–7:
Results are slightly better
with edges removed
(either 40 or 20 px
images). 40px chosen for
subsequent processes

0.94 0.74 0.74 0.65 17.33 0.67

5 Image
size

40px ViT 0.92 0.75 0.76 0.63 17.37 0.67

6 Image
size

30px ViT 0.98 0.71 0.75 0.64 17.79 0.66

7 Image
size

20px ViT 0.95 0.73 0.76 0.63 17.11 0.68

8 Optimised
hyperpa-
rameters

40px ViT Run 5 vs 8:
Optimised hyperparame-
ters with Bayesian optimi-
sation function. Results
improved or unchanged
for all features

0.91 0.75 0.76 0.63 16.79 0.69

9 Without
cultivar

40px ViT Run 9 vs 8:
Embedded cultivar data
improved model results for
all features

0.97 0.72 0.79 0.60 17.53 0.67

10 All 3
features

40px ViT Run 10 vs 8:
A model for each feature
is more accurate than
one model for all three
features

1.08 0.65 0.92 0.46 17.13 0.68

11 Season -
NZ2023

40px ViT Runs 11–13 vs 8:
Trained seasons indepen-
dently but results are not
as accurate as all data
model

2.11 -0.33 1.01 0.34 28.38 0.12

12 Season -
NZ2024

40px ViT 1.95 -0.14 1.08 0.25 28.87 0.09

13 Season -
UK2024

40px ViT 6.68 -12.37 1.95 -1.44 27.02 0.21

14 Top 20%
wave-
lengths

40px ViT Runs 14–16 vs 8:
Retained the specified
amount of channels and
retrained the models.
Retaining 50% of the data
was as good as modelling
with all channels

0.94 0.73 0.76 0.63 18.49 0.63

15 Top 50%
wave-
lengths

40px ViT 0.89 0.76 0.76 0.63 17.31 0.67

16 Top 80%
wave-
lengths

40px ViT 0.89 0.76 0.76 0.63 17.07 0.68

17 Swapped
corners
diago-
nally

40px ViT Run 17 vs 8:
Swapped images reduced
model accuracy for soluble
solids (Brix) and starch
but did not affect firmness

1.00 0.70 0.76 0.63 18.75 0.62

18 Single
side

40px ViT Run 18 vs 8:
Trained using one side of
the apples

0.96 0.72 0.83 0.55 19.24 0.60
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of heads decreased from the default model. The projection dimension increased for

Brix but decreased for firmness and starch. The dropout rates also increased for

firmness and starch but remained the same for Brix. In terms of MLP heads, Brix

and firmness had less layers and similar number of neurons. The MLP head layers

and neurons were unchanged for starch. The optimised hyperparameters resulted in

models with similar performance for Brix and firmness between runs 5 and 8 (Table

5.4). Starch results showed significant improvement in RMSE (17.37 vs 16.79) and

R2 (0.67 vs 0.69) between run 5 and 8, respectively. Although no large improvements

in RMSE or R2 was observed, all optimised models reduced the number of FLOPs

required to make model predictions (Table 5.6). The plot of predicted vs actual values

of Brix and firmness show good predictions close to the x=y line, evenly spread across

the range with equal deviance on both sides of the line (Figure 5.10). For starch, the

points follow a vague positive trend, but it has high deviation, especially around the

centre of the plot (between 20 – 80%).

Table 5.5: Bayesian Optimisation results for Brix, firmness and starch models. The
default represents the parameters used prior to optimisation.

Model Transformer
Layers

Patch
Size

Projection
Dim.

Head
Num-
ber

MLP Head
Units

Dropout

Default 4 5 128 8 [256, 128, 64] 0.1

Brix 5 8 256 3 [256, 128] 0.1

Firmness 3 10 64 5 [128, 64] 0.223

Starch 4 9 66 4 [256, 128, 64] 0.137

Table 5.6: Floating Point Operations (FLOPs) calculated for each model before and
after Bayesian optimisation

Model Brix Firmness Starch

Pre-optimised model 4.59× 108 4.59× 108 4.59× 108

Optimised model 2.39× 108 4.48× 107 3.85× 107

Encoding cultivar data into the last layer of the training data yielded improved results

for all three features (Table 5.4; run 9 vs 8). We also determined if the performance
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Figure 5.10: Predicted vs Actual values of A) Brix, B) Firmness and C) Starch on
the optimised trained models. The red dashed line represents the x=y line.
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of a single model, predicting three features (Brix, firmness and starch), would be as

accurate as three separate models predicting one feature each. We tested this feature

on the 2D-CNN model in preliminary testing (results not shown) and with the ViT

model. Model accuracy improved by training three separate models for Brix and

firmness compared to a single model (Table 5.4; runs 8 and 10). There was a significant

improvement in model performance with Brix and firmness. For Starch, there were no

significant differences. Therefore, the subsequent models trained independent features.

5.3.4 Seasonal Comparisons

To see if the variation in model predictions is due to seasonal variation, the models are

trained with each season independently (Table 5.4; run 11-13). We cross-validated the

seasons with each other, computing each five times on five randomly generated test

sample subsets and averaging the RMSE. Applying one season’s model on another

season, in most cases, will result in worse RMSE for soluble solids and firmness. The

exception was the firmness model trained on NZ2024 data and tested on NZ2023

(RMSE = 1.17) data, compared to results on data from the same year (RMSE =

1.28) (Table 5.7). Overall, we observe less predictive accuracy and correlation between

predictions and observed results when models are trained using single seasons for

soluble solids and firmness. The results for starch always produced high RMSE and

did not show seasonal specificity.

5.3.5 Single-sided Analysis

Finally, we tested whether using a single side of the apple would yield accurate

results. The model was trained on one of the four sides of the imaging data and

its corresponding maturity data. The models showed lower accuracy for all features

(Figure 5.11). The tails of Brix and firmness plots start to flatten out, indicating some

bias in the models. The shape of the firmness points is less defined and appears to
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Table 5.7: Cross-validation of seasonal data on other seasons data. The values are
the average RMSE computed across five randomly sampled subsets of the test dataset.

Data

NZ2023 NZ2024 UK2024

Model

Brix

NZ2023 1.90 2.20 1.89

NZ2024 2.18 1.98 2.50

UK2024 2.80 2.76 1.47

Firmness

NZ2023 1.16 1.30 1.60

NZ2024 1.17 1.28 1.62

UK2024 1.98 1.92 1.47

Starch

NZ2023 36.63 32.06 32.25

NZ2024 32.80 26.51 38.55

UK2024 36.27 36.27 38.73
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follow less of a positive trend. Starch remains just as variable as with all four sides of

the apple data.

Figure 5.11: Prediction vs actual plot of A) Brix, B) Firmness and C) Starch models
on a single side of apple data. The red dashed line represents the x=y line.

5.3.6 Shapley Analysis

Hyperspectral data are highly correlated, making a large portion of the channels

redundant. Shapley values indicate that the top 20% of the most important spectral

channels were between 400-411, 453-465, 482-488, 538, 600-630, 648-668 and 671-692

nm (peaking at 400, 459, 488, 538, 618, 657 and 683 nm) for Brix (Figure 5.12A);

400-408, 633-698, 565-600 and 1000 nm (peaking at 400, 589, 651, 683, and 1000 nm)

for firmness (Figure 5.12B); and 400-411, 547-598, 600-642, 671-692 nm (peaking at
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Figure 5.12: Mean spectral importance. 1) Mean Shapley values across wavebands
and 2) the top 20% most significant wavebands for the A) Brix, B) firmness and C)
starch models.



Chapter 5. Toward accurate prediction of apple firmness and Brix across countries,
seasons and cultivars with hyperspectral imaging 95

400, 547, 577, 636 and 683 nm) for starch (Figure 5.12C). The spectra between 800-950

nm had small Shap values, indicating a low level of importance of wavelengths in this

region. Using Shap values as the level of importance, we kept 20%, 50% and 80%

of the most important channels for each feature and retrained the models with the

reduced channels. The results show that reducing the wavelength channels to the

top 20% for firmness does not affect model accuracy (RMSE = 0.76 and R2 = 0.63).

For soluble solids (Brix), reducing the channel wavelengths to the top 50% slightly

improves model accuracy (RMSE = 0.89 and R2 = 0.75). For starch, even keeping

the top 80% of channels causes a reduction in model accuracy (RMSE = 17.07 and R2

= 0.68). Removing 50% of the wavelengths does not induce any noticeable bias in

model predictions (Figure 5.13).

Figure 5.13: Predicted vs Actual plot of A) Brix, B) Firmness and C) Starch models
trained with 50% reduced wavelengths. The red dashed line represents the x=y line.
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Shapley values were used to evaluate the significance of patches and regions of the

apples. The Shapley values indicate that the models put more emphasis on the outer

regions of the apple images, in particular the top left corners for Brix and firmness,

the bottom right corners for Brix and starch and the top right corner for firmness and

starch. Less significance is seen the middle section of the apple images (Figure 5.14).

To test whether this region is significant or whether the models are more attentive to

these regions of the data, we trained the model on images with quadrants swapped

(Figure 5.2). The Shapley values showed very similar patterning in Brix, indicating

that the model tends to look at the top left (first patch into the model) and the

bottom right (last patch into the model) (Figure 5.15). The regions are insignificant

for Brix. However, the model prediction accuracy dropped for Brix (RMSE = 1.00,

R2 = 0.7) compared to the original images (RMSE = 0.91, R2 = 0.75). The pattern

of the Shapley values is altered for firmness, the most significant patches are in the

bottom row. However, the degree of significance for firmness is very low (maximum

Shapley value is 0.001) compared to Brix (0.023) and starch (0.04). For starch, all

patches are now significant, with the middle section having slightly less importance

than the outer patches. In particular, the top left and bottom right, as before, were

important patches, indicating that the models put more attention on the first and

last patches. Starch model accuracy dropped slightly between the original images and

swapped images (Table 5.4; run 8 vs 17).

5.4 Discussion

In our study, we evaluated the state-of-the-art effective model and tested the effects of

wavelengths, regions of interest, cultivar encoding, and seasonality on models predicting

soluble solids (Brix), firmness and starch. We found that imaging is an effective method

for predicting soluble solids and firmness, but it does not work well for starch. The

best model performance is achieved by training Vision Transformer models for each
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Figure 5.14: Mean spectral importance (Shapley values) per pixel for all apples for
A) Brix, B) firmness and C) starch models. The black margin in starch is due to the
image size (40-by-40 pixels) being divided into patch sizes of 9-by-9 pixels.

Figure 5.15: Mean spectral importance (Shapley values) per pixel for all apples for
A) Brix, B) firmness and C) starch models trained on swapped images. The black
margin in starch is due to the image size (40-by-40 pixels) being divided into patch
sizes of 9-by-9 pixels.
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maturity feature, on datasets from different seasons and geographic locations, training

the models on more than one side of the fruit and encoding cultivar information in the

training process. Reductions in computational processes can be achieved by reducing

the wavelengths to the top 50% of most informative wavelengths.

5.4.1 Cultivar and Seasonal Information

The work in the present study incorporates data from multiple seasons, cultivars and

geographical locations, in contrast to most previous studies whose dataset limit their

generalisability. We assess the effect this additional information has on our model

performance. The broader scope introduces more variability into the models, which

may partially explain the comparatively poorer performance metrics compared to more

focused studies. However, diversity is essential for building robust and generalisable

models. The average spectral wavelengths varied distinctly between cultivars thus,

cultivars were encoded in the model training process. Without cultivar encoding,

we saw a slight drop in model accuracy for all features. During the preliminary

assessment, we found that models trained on individual cultivars yielded inaccurate

results and were highly bias (data not presented). Similar findings were observed

when training individual seasonal data (Table 5.7). Splitting the training data into

smaller sizes typically reduced the model accuracy, a common result in deep learning

models. Cross-season prediction tests revealed a degree of season-specificity, with

models performing best within their own season. Despite this, the full model (model

trained on data from all three seasons) produced the best result, demonstrating the

importance of training on diverse datasets to improve consistency and reliability. The

authors recommend that data be trained on multi-season and multi-cultivar data for

the best model performance.
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5.4.2 Model Results

The firmness prediction model performed the best out of the three maturity features

tested. We achieved RMSE of 0.76 and R2 of 0.63 (Table 5.4; run 8). Comparing

previous studies from multivariate linear regression (RMSE = 5.76 and R2 = 0.74

( [68] and RMSE = 1.26 and R2 = 0.67 [71]), least squares support vector machine

(RMSE = 4.26 and R2 = 0.88) [68] and partial least squares regression (PLSR) (RMSE

= 0.99 and R2 = 0.78) [70], predictions from our deep learning model yielded better

RMSE but lower R2 values. Our results are similar to a study using artificial neural

network models (RMSE = 0.722 and R2 = 0.896) [66]. Their study recorded firmness

at a puncture depth of 1 mm, whereas in our study, we used the gold standard of

puncture tests at a depth of 8 mm for our firmness measurements. It is interesting to

find similar results because the mean light penetration depth within the visible region

— where high importance of wavelengths was found (Figure 5.12B) — is 1-2 mm [129].

Our results suggest that HSI with ViT models is an effective method of predicting

apple firmness.

Our second-best model was Brix (RMSE = 0.91, R2 = 0.75). Brix is the measurement

of soluble sugars in the juice. Compared to other studies using multivariate linear

regression — with reported performance RMSE = 0.6 and R2 = 0.76 [68], RMSE =

0.412 and R2 = 0.96 [69] and RMSE = 0.82 and R2 = 0.76 [71] — as well as least

squares support vector machine (RMSE = 0.64 and R2 = 0.74; [68]), and PLSR, with

RMSE = 0.56 and R2 = 0.79 [130] and RMSE = 0.54 and R2 = 0.90 [70]), our results

using ViT models performed worse. We suspect that soluble solids does not need

complex models to make accurate predictions or perhaps it is due to the increased

variation as our data is collected from multiple cultivars and seasons.

Starch percentage or the standard starch pattern index is a measurement of starch

coverage inside the fruit. Starch degradation starts from the centre of the fruit, near

the seeds and therefore, light does not penetrate deep enough for the models to predict
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accurate starch predictions [129, 131]. This is evident in our study as predictions closer

to unripe (100%) or overripe (0%) were more accurate than predictions in between

(Figure 5.11). Thus, starch cannot be accurately predicted by spectral imaging. Starch

results will not be further discussed due to the poor results.

5.4.3 Important Channels

Shapley values enable us to decode black box systems and identify which wavelengths

are important in the model prediction process. The Shapley values indicate that

wavelengths in the visible spectra at ranges 400-411, 453-465, 482-488, 538, 600-630,

648-668 and 671-692 nm were within the top 20% of the most significant wavelengths,

with peaks at 400, 459, 488, 538, 618, 657 and 683 nm were important for predicting

soluble solids (Brix) values (Figure 5.12A). Similarly, wavelengths between 400-408,

633-698, 565-600 and 1000 nm with peaks at 400, 589, 651, 683, and 1000 nm were

within the top 20% of most important wavelengths for firmness (Figure 5.12B). The

most important wavelengths identified in our study are similar to those identified by

Merzlyak et al. ] [124] in their Plant Senescence Reflectance Index (PSRI; (R678 –

R500)/RNIR or (R678 – R500)/R800), which are correlated to fruit ripening onset,

those used by Pourdarbani et al. [72](535-560, 835-855 and 950-975 nm) and Zhai et

al. [132] (403, 430, 551, 617, and 846 nm) to predict fruit maturity. The detected

metabolites are likely chlorophyll, carotenoids and anthocyanins in the visible spectrum

and the oxygen-hydrogen bonds abundant in soluble sugars and water in the NIR

region [72]. Other studies have also identified several effective spectral ranges for

predicting SSC and firmness within the boundaries of important wavelengths identified

in our study. For instance, Wang et al. [70] highlighted normal spectral indices

around 746/749 nm, while Zhao et al. [133] found the range between 704-805 nm to

be effective in sugar content predictions. Similarly, Çetin et al. [71] reported that

wavelengths at 505, 511, 704 and 689 nm were useful for SSC prediction. Çetin et al. [71]



Chapter 5. Toward accurate prediction of apple firmness and Brix across countries,
seasons and cultivars with hyperspectral imaging 101

attributed ratio combinations between 680, 880, 905 and 940 nm to firmness predictions.

Although the wavelengths are not exact, most can also attribute their spectral results

to chlorophyll, carotenoids, anthocyanins and O-H bonds for soluble sugars. Despite

significant spectra not being exact, they attained similar or better RMSE and R2

compared to our results. These studies select highly important wavelengths to predict

their features. Whereas, in our study, we reduced the number of wavelengths by 50%

(retaining 102 channels), proving that most wavelengths between 400-1000 nm are

redundant for model predictions. Our process does not guarantee the removal of

multicollinear wavelengths, potentially retaining wavelengths with similar information.

5.4.4 Regions of the Fruit

The Shapley values in the original images (Figure 5.14) suggests that edges, and more

specifically, the top left and bottom right patches, are the most important regions

when making model predictions. This would be consistent with the findings of [134],

as the curvature of the apples affects the signal-to-noise quality of the reflectance. We

tested the theory by swapping quadrants of the original images (Figure 5.2 and Figure

5.15) and found that the Shapley quadrants do not change the significant regions for

Brix. This suggests that the regions of the fruit are unimportant for soluble solids. One

reason could be that the soluble sugars of the fruit are homogenous throughout the

fruit and therefore, sampling from any region will not make a difference to predictions.

Another reason why the top left and bottom right patches may be more significant

could be because the model is emphasising on the first and last patch in the model.

The reduced accuracy with the swapped quadrants suggests that the quality of the

image in the centre part of the apple is not as good as the edges, consistent with the

findings from [134].

The original images (Figure 5.14) showed the same trend for firmness; where the

centre patches are less important and more importance is placed on the edges. We
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anticipated some importance to be placed in the centre as the puncture site when

collecting firmness is near the equator of the apple. When the quadrants were swapped

(Figure 5.15), the pattern of the Shapley values changed significantly. Each firmness

patch was deemed important by Shapley values. This could be due to the uneven

firmness across the fruit’s surface, or it might be an artefact of the data collection

process — specifically, the side of the fruit used for firmness measurements may not

correspond to the side shown in the images. This shows that fruit regions may have

some significance for predicting firmness. In the future, if imaging were used for

predicting firmness, the side corresponding to the image should be used for firmness

measurements.

5.4.5 Single-sided Analysis

In our study, we captured images from all four sides of each apple. We treated each

side as an independent apple. Previous studies averaged each side together to create a

mean spectral image of the apple [72]. In our study, we treated each side independently

because if imaging is applied to an orchard, the imaging system will only capture

one side of the fruit. This is our rationale in testing prediction models trained on a

single side of the fruit. These models resulted in a reduction in model accuracy and

increased bias on the test dataset. The increased error might be due to a decreased

amount of training data. This is common in deep learning models. Another reason

could be due to a difference in the side of the image and the corresponding side used

to measure firmness. We were unable to match up the sides as it was not recorded

during the collection process. The variation of firmness between two sides of the fruit

deviates by 0.46 ± 0.37 kgF, which may explain the decrease in model accuracy. To

improve model results, the same face should be used to measure soluble solids and

firmness as the side imaged.
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5.4.6 Pre-processing Method

Fruit maturity is largely a factor of fruit size, shape and colour when discerned with

the human eye. However, by locally averaging and aggregating pixels together, it

removes size and shape information. The models chosen in our study required the

same size input. Newer models that allow variable input shapes are available, and it

may be worth retraining the models in the current study with different-sized images.

In a practical setting within an orchard, retaining a fixed distance between the camera

and the apples would be difficult; thus, the current models would achieve better results.

There are advantages and disadvantages to either approach. Choosing between any

approach would depend on the subject of interest.

5.4.7 Applications

As imaging is a non-destructive process, it enables repeated measurements over time.

This allows growers to monitor apple maturity progression over the season. Growers

can therefore schedule harvests based on the progression of each fruit. Such temporal

tracking could significantly enhance crop management strategies, reduce waste and

improve fruit quality at market. However, more research is required to adapt the

present model to in-field applications. Environmental factors such as variations in light

intensities and angles of the light can influence spectral images. Understanding and

compensating for these effects are essential for producing a robust model for in-field

maturity tracking.

5.4.8 Limitations

As apples have a curved surface, the light reflection and the distance of the apple

edge changes. This results in variable pixel quality, particularly near edges, where

shadows or glare may be more pronounced. Such variability can affect the accuracy

of model training and introduce bias. In the future, incorporating a curvature-aware
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preprocessing method may enhance pixel uniformity and improve model accuracy.

5.5 Conclusion

In summary, the large-scale hyperspectral dataset comprising of 5756 apples from mul-

tiple countries, seasons and cultivars have provided a robust foundation for predicting

apple maturity features. Its scale and diversity mark a significant step forward in

development of reliable, data-driven approaches for non-destructive maturity assess-

ments. The results show that ViT models are able to predict soluble solids (RMSE =

0.91, R2 = 0.75) and firmness (RMSE = 0.76, R2 = 0.63) within reasonable accuracy,

demonstrating their potential as effective tools for non-destructive apple maturity

assessment across diverse cultivars, seasons and countries. Results from this study

suggest that wavelengths around 400-411, 453-465, 482-488, 538, 600-630, 648-668 and

671-692 nm with peaks at 400, 459, 488, 538, 618, 657 and 683 nm are significant for

Brix; and 400-408, 633-698, 565-600 and 1000 nm, with peaks at 400, 589, 651, 683,

and 1000 nm are significant for firmness predictions with a Vision transformer model.

We can reduce the wavelengths used in this study and make soluble solids and firmness

predictions as accurately as the full model. It would be of interest to further reduce

the number of wavelengths in the study to identify a small subset of key wavelengths.

The region of the fruit is not particularly important in making predictions, but a

clean signal is important for accuracy. The models show some seasonal specificity so

it is important to train models with multi-season and multi-cultivar data for a more

generalised model.



Chapter 6
Conclusion and Discussion

This study demonstrates the practical potential of the combination of phenology

models and hyperspectral imaging with ViT models for non-destructive assessment

of apple maturity (soluble solids (Brix) and firmness). By combining both systems,

growers can plan harvests more effectively, using long-term forecasting over entire

orchards with phenology models and real-time maturity assessment on individual fruit

with hyperspectral imaging.

Traditional maturity assessment methods are fundamental in establishing the optimal

harvest window. However, assessments are destructive, labour-intensive and time-

consuming. In this thesis, we investigated the potential of phenology and hyperspectral

imaging as predictive tools for harvest timing. Our findings suggest that phenology

models and hyperspectral imaging offer a viable and efficient alternative to conventional

methods.

In the first study, we evaluated the effectiveness of phenology models in predicting

apple flowering time. We applied the PhenoFlex model to our extensive flowering data,

collected across 85 years, on a range of different cultivars from East Malling, UK. The

study showed that a common apple model at the species level was better at predicting

flowering time for the twenty-six apple cultivars studied than using models trained

on individual cultivars. The trained model could predict the flowering date within 5

days of harvest. Similar results can be found with models trained on groups of apple

105
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cultivars clustered by flowering time. The predictions in this approach depended on

the internal consistency of each group, and results were within 5-6 days of the harvest

window. Both approaches gave predictions comparable to previous flowering time

prediction studies, with results ranging between 3-6 days [44, 82, 88]. The results

from this study were slightly higher, since we are reporting the average RMSE for all

twenty-six cultivars as opposed to individual cultivars. There is some risk in training

models on a single cultivar; models trained on individual cultivars can yield polarising

(ranging from precise to misleading) results. Our results show that generalised models

— models trained on data either aggregated with a large number of cultivars or divided

into smaller groups by flowering date are appropriate and more reliable for making

flowering time predictions compared to single cultivar approaches.

Since flowering time can be predicted with reasonable accuracy, the harvest date

can be forecasted using the average flowering date, a convention commonly used to

estimate the harvest date of apples [50, 101]. However, due to the use of the average

flowering date in this process, harvest date predictions often overlook the variation in

flowering time and its influence on fruit maturity. We recorded the flowering date and

fruit maturity from five apple cultivars harvested over two seasons to determine how

much flowering time influences the fruit maturity. The growth units were calculated

from the flowering date to harvest date for each apple cluster. The results show that

up to 20% of maturity variation is explained by flowering time variation, with this

effect being more pronounced in early-flowering cultivars than late-flowering cultivars.

This suggests that accounting for flowering time variability is crucial for improving

the accuracy of harvest predictions, particularly for early-season cultivars. Therefore,

phenology models that rely on modelling the climate data alone is insufficient for

accurate harvest date predictions. Given the remaining variability in harvest timing

predicted by phenology models, there is a need for methods that can assess fruit

maturity more accurately, closer to the harvest date.
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In this thesis, we tested hyperspectral imaging as a non-destructive method to evaluate

fruit maturity. We imaged over 5000 apples over three seasons from both the United

Kingdom and New Zealand and applied deep learning models to find patterns between

the hyperspectral data and maturity data. Our results demonstrated that deep learning

vision transformer models could reliably predict key maturity indicators — soluble

sugar content and firmness — with prediction accuracies of 0.91°Brix and 0.79 kgF,

respectively. Our results are consistent with previous studies predicting firmness with

hyperspectral imaging [68, 71], but our soluble solids (Brix) model underperformed

in comparison with previous models [70, 130] suggesting that soluble solids does not

require deep learning models for accurate soluble solids predictions. Despite less

accurate results, our model can still predict well within reasonable errors.

Overall, phenology models are valuable to ensure that seasonal weather conditions

will satisfy the chilling and forcing requirements specific to each cultivar. Without

sufficient environmental cues, the apples will not flower and therefore will not fruit.

They can also approximate the harvest window for each cultivar. While phenology

models provide useful estimates for the harvest window, they fail to capture the full

variability induced by differences in flowering time. On the other hand, deep learning

models trained on hyperspectral images can accurately determine the levels of soluble

solids and firmness at the individual fruit level. However, the deep learning model

trained on hyperspectral images may not generalise well beyond the conditions of the

current study. Therefore, integrating phenology models with hyperspectral imaging

offers a promising alternative to traditional harvest prediction methods. By combining

both systems, growers could plan harvests more effectively, using long-term forecasting

over entire orchards with phenology models and real-time maturity assessment on

individual fruit with hyperspectral imaging.
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Applications

Phenology models, such as the PhenoFlex model, can be applied to forecast the

harvest window. As temperature data is required as the model inputs, and growers

are primarily interested in the coming season’s harvest date, historical temperature

data can be used to initially simulate temperatures to predict an estimated harvest

date, then refine the predictions with actual temperatures experienced by the trees.

According to the results from our studies, this will attain an estimated harvest window

within ± 7 days of the actual harvest date. Hyperspectral imaging can be applied from

the earliest point of the potential harvest day, tracking the development of soluble

solids and firmness over time. By monitoring the progress of soluble solids and firmness,

the optimal harvest maturity can be determined by observing the changes in soluble

solids, which increases when ripe, and firmness, which decreases with maturity, for

each fruit. Future applications may extend beyond apples and into other fruits.

6.0.1 Contributions

We show the potential of phenology models and imaging for non-destructive soluble

solids and firmness predictions of apple fruit. Generalised multi-cultivar models are

more effective for flowering time and maturity quality predictions in both phenology

and deep learning ViT models. This allows a simplified approach to model applications

since it only requires a single model for different cultivars. We also found a link

between the variation of flowering time and flowering time itself, where more maturity

variation is induced in early flowering cultivars compared to late flowering cultivars.

The models can be applied with cultivar and flowering time information to more

accurately determine the harvest dates. Moreover, imaging using the key wavelengths

identified in our study — spectral bands within the visible spectrum (400-411, 453-465,

482-488, 538- 565-630, 648-668 and 471-692 nm) and one band (1000 nm) in the near

infrared spectrum — can greatly reduce the camera costs, making a more affordable



Chapter 6. Conclusion and Discussion 109

and non-destructive tool for predicting maturity, thereby making them more widely

accessible. Since the data collected in this study spans more than one country, we show

a potential for a generalised ViT model to work effectively on apples from different

countries.

Figure 6.1: Graphical representation of applications. The phenological phases are
represented in the top brown bar, and the applications and their applied range are
shown below as red and blue bars.

Limitations

Phenology models are dependent on temperature data. When simulated data is

used, prediction accuracy can be compromised. This would impact regions where

temperature is inconsistent or where there is limited coverage or lack of historical

data to simulate with. The increasing unpredictability of the climate due to unusual

weather events may introduce more frequent an extreme anomalies. However, previous

phenology models will also be vunerable to unusual weather patterns. Training models

with updated temperature data will help maintain model robustness.

Apple varieties are constantly produced through breeding programs. While we present

a large range of existing apple cultivars, our results may not generalise well to newer

varieties. As a result, our findings may not fully translate to future varieties, limiting

the long-term applicability of the results. The models should be continuously trained
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and recalibrated with the emergence of new cultivars.

As we captured apple images in a highly controlled environment, the feasibility of

hyperspectral imaging will need to be tested in-field with the reduced wavebands

identified in our study. The effects of variable lighting and occlusion by leaves or other

fruit will affect the accuracy of model results. The distance of the apples from the

camera will also affect model results. The apples captured for our study were aligned

in a row, with small distances between the camera and each apple. In-field applications

would typically scan the entire canopy height for fruit from approximately 1 m away,

thus reducing the resolution of the pixels of each apple. Reduced pixel resolution may

limit the accuracy and reliability of predictive models. Moreover, the distance of each

apple from the camera will introduce inconsistencies, further influencing the model

results. These factors will need to be investigated in the future to determine their

impact on the model performance in outdoor settings. Further preprocessing of image

data will be needed to standardise inputs and mitigate the variability.
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