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EEG Network reorganisation reveals somato-motor
transition from segregation to integration during
tonic pain

Wenxin Su®®, Chris G. Antonopoulos®, Elia Valentini®*

Abstract
The sustained nature of tonic pain makes it a useful experimental analogue for studying the prolonged neural processing involved in
chronic pain. However, research is yet to identify its consistent and generalisable biomarkers. Here, we

analysed electroencephalography data recorded in 36 volunteers during 5-minute sessions of noxious hot and innocuous
warm water immersion using network-based statistics and graph theory-based analysis. Our results revealed a brain-wide
reorganisation of functional connectivity during tonic pain, marked by a global shift from segregation to integration. This shift
was characterised by a transition from intra- to internetwork communication, with the Somato-Motor (SomMot) network
playing a pivotal role. During innocuous warmth, the SomMot network exhibited significantly higher functional specialisation for
localised sensory processing. During noxious heat, however, it shifted to an integrative coordinator, a finding reinforced by a
significant discrepancy in global clustering coefficient when intranetwork connections were excluded. We also found that
psychological traits modulated global network inferences (GNIs) in distinct, clinically relevant ways: pain catastrophising
was positively associated with network segregation and integration during pain, whereas anxiety was negatively
associated with segregation and integration during innocuous warmth. Notably, a machine learning model using these GNIs
achieved 86% accuracy in classifying noxious heat from innocuous warmth. Together, our findings elucidate the transformation
from segregated processing to integrated network dynamics induced by tonic pain, characterised by a transition in the SomMot
network functioning as an integrator. Critically, global network inferences may serve as valuable predictors of pain experiences,

highlighting their translational potential in pain neuroscience.
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1. Introduction

Identifying reliable biomarkers for chronic pain remains a major
challenge because of reliance on self-reports, clinical heteroge-
neity, and the engagement of multiple brain systems.®6'®
Functional magnetic resonance imaging (fMRI) studies have
consistently implicated several large-scale brain networks in pain
processing, with central roles for the somato-motor (SomMot),
frontoparietal, and dorsal attention networks.®! For instance,
sustained myofascial pain has been associated with a shift in
contralateral primary sensorimotor connectivity toward the
salience network,?" whereas capsaicin-induced pain increases
crosstalk among SomMot, default mode, auditory, and visual
networks.%®
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Electroencephalography (EEG) studies further highlight the
involvement of alpha band oscillations in tonic pain. During
sustained heat pain, alpha power in sensorimotor areas is
suppressed, whereas phase-based alpha connectivity between
sensorimotor and medial prefrontal cortex increases.** These
effects are thought to originate from the sensorimotor cortex*”"¢3
and have been showed to correlate negatively with pain
ratings.*”*® Together, these findings suggest that the SomMot
network contributes to both intranetwork (local) and internetwork
(distributed) coordination during tonic pain, possibly mediated by
alpha-band dynamics.

Graph theory provides a powerful framework to quantify such
brain network organisation. Nodes represent brain regions, and
edges reflect functional connectivity, allowing computation of
global network inferences (GNIs) to quantify graph properties,
which capture the balance between segregation (eg, global
clustering coefficient [Gee]) and integration (eg, global efficiency
[Geff]) in brain function.*>? Notably, classification analyses using
a combination of GNIs from alpha-band EEG have achieved up to
92% accuracy in differentiating pain from no-pain states,*°
emphasizing their translational promise.

However, a systematic review indicated that although GNI
differences exist between patients with chronic pain and healthy
controls, the findings remain mixed.3 Similarly, experimental pain
studies report conflicting results. Some fMRI studies have
reported increased Gcee and reduced small-worldness (Sw) and
modularity (Mod) in response to noxious stimuli.'>%"° |n
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contrast, even in the same EEG dataset, no significant Gce or
Geff differences were observed when using phase-locking value,
whereas significant Gee increases during pain emerged using the
debiased weighted phase lag index (dwPLI).**

To address these discrepancies, we aimed to analyse brain-
wide graphs, higher-order intra-SomMot, and internetwork
graphs. By combining functional connectivity topology with
graph-theoretical analyses, we sought to provide insights into
the pain-induced brain reorganisation. Given that baseline neural
activity normalisation may reduce intersubject variability, thereby
unmasking condition-specific network properties, we also
assessed its influence by both relative and absolute comparisons
(see Methods). Finally, we explored the predictive utility of GNIs
for classifying pain states.

To achieve these goals we reanalysed a secondary EEG
dataset recorded during a tonic thermal pain model.®® We
hypothesised that tonic pain would determine the reorganisation
of functional connectivity from intranetwork segregation to
internetwork integration, with the SomMot network playing
a central role. In addition, we expected that combined GNIs
would exhibit robust predictive power in classifying pain states.

If validated, these EEG-based biomarkers could contribute to
the development of objective pain assessment tools, particularly
for noncommunicative individuals and chronic pain populations.

2. Methods
2.1. Participants

Forty-three participants volunteered for the study. Seven
participants were excluded: one had taken a painkiller before
the experiment, another failed the perceptual matching pro-
cedure (detail in experimental procedure), and data from the 5
were excluded because of technical issues with EEG recording.
Therefore, only 36 were analysed and 22 of these were female,
with a mean age of 25.36 years (range: 20-56 years). All
participants had normal or corrected-to-normal vision and normal
hearing. Before attending, the volunteers were asked to complete
a questionnaire to ensure that they had no history of neurological,
psychiatric, or pain disorders that could interfere with the study or
jeopardise their safety. Psychological traits relevant to pain
processing were also assessed using the Pain Catastrophising
Scale (PCS)*® and the trait component of the State-Trait Anxiety
Inventory (STAI).5” These measures were later included in
correlational analyses.

The study received approval from the Ethics Committee of the
University of Essex (EV1801).

2.2. Experimental procedure

We used a 30-L water tank (RW-3025P, Medline Scientific,
Rotherham, United Kingdom) to deliver 2 out of 3 experimental
sensory conditions. We induced an experience of tonic pain by
having participants immersing their left hand in hot water at 44.50
(+0.49)C, referred to as the hot condition. The starting
temperature (45°C) was selected based on previous studies, '*!7
which found it to induce a moderate level of pain. We induced an
innocuous warm sensation by reducing the water temperature by
6°C less than the hot condition. During the stimulation,
participants were asked to rate their level of unpleasantness
every 10 seconds using an onscreen visual analogue scale (VAS),
with verbal anchors at 0 (“No unpleasantness”) and 100
(“Intolerable unpleasantness”). In total, participants provided 30
ratings for each condition. At the beginning and end of the
experimental session, both eyes-open and eyes-closed resting-

state sessions were recorded, each lasting about 2.5 minutes.
Hence, each condition lasted around 5 minutes. Data from the
resting-state eyes-open condition only were included in this
study. The third sensory condition (ie, tonic sound) is not included
in the current study (see 60 for the full experimental design).

Before the experiment, all participants were required to
complete a perceptual matching procedure. This critical step
ensured the subjective unpleasantness of the auditory stimulus
was equivalent to that of the painful heat stimulus for each
participant. This matching was a cornerstone of the original
experimental design. For consistency, we did not include the
single participant who failed the procedure in the seminal study
within the current reanalysis. Because the target unpleasantness
rating ranged from 50 to 75 on the VAS (0-100), this confirmed
that we successfully induced a moderate level of unpleasantness
during the hot stimulation. If the unpleasantness rating for the
warm stimulation was significantly lower than that for the hot
stimulation, it would further support the success of the thermal
manipulation. Moreover, if unpleasantness increased during the
hot water immersion, it would provide additional evidence for the
successful induction of tonic pain in our study.

2.3. Electroencephalography preprocessing

Electroencephalography data were recorded using an electrode
montage of 62 channels consisting of all 10 to 20 system
electrodes with Ag/AgCl electrodes (Easycap, BrainProducts
GmbH, Gilching, Germany). The impedance of all electrodes was
kept below 10 k€, and the EEG signal was amplified and digitised
at 1000 Hz. The online reference was placed upon the left
earlobe, and the ground was located at electrode position AFz.

The EEG data in hot, warm, and resting-state open-eyes
conditions before stimulation were preprocessed using a high-
pass value set to 0.1 Hz and the low-pass value set to 100 Hz. All
data were down sampled to 500 Hz. Artefacts such as eye-
blinking and muscle movements were removed using indepen-
dent component analysis (ICA).

After ICA, the data were further denoised with a notch filter to
exclude the frequency bands from 49.5 to 50.5 Hz, were re-
referenced to the average of all electrodes,'® and were
segmented into 2-second epochs with a 25% overlapping rate
and 25% baseline correction.

2.4. Analytical design

All analyses were performed in MATLAB using the EEGLAB
toolbox,® FieldTrip toolbox,*® the Brain connectivity toolbox,® the
DISCOVER-EEG toolbox, " the Network-Based Statistic toolbox
V1.2 (https://www.nitrc.org/projects/nbs/), and custom-written
scripts.

Preprocessed data were analysed using the pipeline showed in
Figure 1. The brain-wide graph (Fig. 1A) was constructed in both
sensor and source spaces. In the sensor space, we focused on
the alpha band, whereas exploratory analyses were also
conducted in other frequency bands. We assessed functional
connectivity using dwPLI, and the thresholded matrices were
binarised using 1 standard deviation above the median for each
subject’s connectivity matrix in each condition to create
adjacency matrices for subsequent network-based statistics
(NBS) and graph analyses. The source space data were
reconstructed into 100 regions of interest of the Schaefer atlas®®
using an atlas-based beamforming approach via the Discover
EEG toolbox. Further analysis based on brain-wide graph
(Fig. 1B) for intra- and internetwork connections was conducted
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Figure 1. Pipeline for the analysis of EEG data. (A) The preprocessed EEG data were extracted in the alpha band and then used for the brain-wide functional
connectivity assessment using dwPLI in both sensor and source spaces. The functional connectivity matrices were binarised using a threshold of one standard
deviation above the median for each subject’s connectivity matrix in each condition and then analysed through NBS and graph analysis. (B) The brain-wide graphs
in the source space were further constructed as a higher-order graph involving 7 networks in parcellation. For intranetwork analysis, statistical comparisons of the
intranetwork connectivity strength were conducted, and the binarised graph of the SomMot network was analysed using NBS and graph analysis. For
internetwork analysis, statistical comparisons of the mean internetwork connections between each pair of networks were conducted, and internetwork
connections between pairs of networks were constructed as weighted matrices and analysed through NBS, as well as both local and global graph analyses. Conn,
connectivity; dwPLI, debiased weighted phase lag index; EEG, electroencephalography; NBS, network-based statistics; ROI, regions of interest; SomMot,

somato-motor; stats, statistics.

in the source space, using the 100-region atlas that classifies 7
networks. Intranetwork connections for all 7 networks were
analysed, with particular focus on the binary SomMot network. In
addition, internetwork connections were evaluated using
weighted matrices, using NBS and graph theory. Detailed
methodology is provided in Section 2.5, 2.6 and the supplemen-
tary material, http://links.lww.com/PAIN/C435.

We performed absolute and relative comparisons between the
hot and warm conditions in both spaces. Specifically, the
functional connectivity matrices for the relative comparisons
were calculated by dividing the original dwPLI for each sensory
condition by the dwPLI of the prestimulation resting-state eyes-
open condition for each participant (we excluded the closed eye
condition for this purpose based on the assumption that the open
eyes resting state would have provided a better reference
baseline for sensory-related mental states).

Notably, NBS-based graphs revealed connectivity patterns for
group-level contrasts between hot and warm stimulation. In parallel,

the graph-theoretical analysis was performed on individual-level
connectivity matrices to compute several network inferences, which
were then submitted to group-level statistical testing to identify
condition-dependent alterations in graph characteristics. Although
these 2 analytical approaches are methodologically distinct, they
provide complementary insights: NBS highlights condition-contrast
connectivity patterns, whereas graph-theoretical inferences quantify
the corresponding network-level properties.

2.5. Methodological rationale for dual analytical approach:
absolute and relative comparison

In this study, we used both absolute and relative comparison
methods throughout the analysis, based on methodological and
theoretical considerations rather than as a duplication of
analyses.

The use of resting-state baseline normalisation is a well-
established methodological approach in neuroimaging research,
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used to enhance the detection and interpretation of condition-
specific neural dynamics. This technique improves both the
specificity and sensitivity of findings. For example, Alain et al®
demonstrated enhanced specificity by using baseline-referenced
analyses to dissociate overlapping activations during pitch and
spatial auditory tasks, revealing distinct neural pathways that
were otherwise conflated. Similarly, the utility of normalisation for
sensitivity is evident in clinical neurophysiology. Feng et al.™®
showed that a normalised alpha power metric, but not the
absolute power, successfully uncovered a significant correlation
with clinical pain intensity in patients with chronic low back pain.
Together, these examples demonstrate that relative, normalised
comparisons are vital for revealing subtle, condition-specific
neural associations which absolute measures may obscure, thus
supporting our analytical approach.

In the present study, we implemented both absolute and
relative analyses for complementary reasons. Absolute measure-
ments of functional connectivity are widely used but can be
strongly influenced by intersubject variability in baseline neural
activity. Relative comparisons help to mitigate this variability,
thereby unmasking condition-specific network properties that
may otherwise be obscured. This dual approach allowed us to
examine network dynamics from two perspectives: an absolute
measure of overall connectivity strength, and a relative measure
that highlights within-subject changes relative to baseline.

Furthermore, implementing both analytical approaches
allowed us to evaluate the robustness of our findings across
different methodological frameworks. The convergence of
patterns across the 2 approaches increases confidence that
the observed effects reflect genuine condition-specific network.
Although this strategy adds analytical complexity, we believe it
strengthens the methodological rigour of the study and the
validity of its conclusions.

2.6. Brain-wide graph analysis

We conducted a brain-wide graph analysis in both sensor and source
spaces (Fig. 1A). In the analysis of sensor space, we extracted the
preprocessed EEG data in the alpha band (8-13 Hz) using the Hilbert
transform. To estimate functional connectivity in phase synchronisa-
tion, we performed further analysis (details in the supplementary
materials, http://links.ww.com/PAIN/C435) using the dwPLI® be-
cause of its significant reduction of volume conduction effects.*

For each participant and condition, dwPLI values were
computed for all pairs of 62 EEG channels and averaged across
epochs to construct functional connectivity matrices. These
matrices were then binarised using a threshold set at 1 standard
deviation above the median of each matrix. The resulting
binarised undirected adjacency matrices were used for sub-
sequent connectivity and graph analyses.

2.6.1. Connectivity analysis for sensor space graphs

Connectivity analysis was performed using the NBS toolbox®®¢”

to identify significant differences in brain connectivity between
conditions. Network-based statistics, a nonparametric statistical
approach, uses cluster-based analysis while controlling for
family-wise error rate.?” In the sensor space, we applied NBS
to compare the 2 conditions using 62 X 62 node graphs.

2.6.2. Analysis for source space graphs

In the source space analysis, we projected the preprocessed
sensor space data onto 100 regions of interest from the Schaefer

atlas®® using an atlas-based beamforming approach via the
Discover EEG toolbox."! We computed dwPLI matrices for each
participant and condition and then binarised them into adjacency
matrices using the same thresholding procedure applied in the
sensor space analysis. Graphs comprising 100 nodes were then
constructed, and connectivity and graph-theoretical analyses
were performed following the same procedures as in the sensor
space.

2.7. Higher-order graph analysis

Based on the binarised source space graphs, we further analysed
higher-order graphs (Fig. 1B), which included 7 functional
networks: Visual (Vis), Somato-motor (SomMot), Dorsal Attention
(DorsAttn), Salience-Ventral Attention (SalVentAttn), Limbic,
Control (Cont), and Default.

2.7.1. Intranetwork analysis

For the intranetwork analysis, only the intranetwork connections
within each of the 7 networks were retained. The connectivity
strength was calculated by averaging these connections and
then compared between the 2 conditions.

Apart for the intranetwork connectivity analysis, a focussed
analysis was conducted on the SomMot network. Brain regions
corresponding to the SomMot network were extracted, yielding
a 14 X 14 binarised, undirected subgraph. Connectivity and
graph-theoretical analyses were then performed using the same
procedures as those applied in the sensor and source spaces.

2.7.2. Internetwork analysis

For the internetwork analysis, all the connections between
different networks were preserved, whereas intranetwork con-
nections were excluded. For each network, internetwork
connectivity strength was calculated as the average of its
connections with the other 6 networks.

We also applied connectivity and graph analysis on the
resulting 7 X 7 weighted internetwork graphs. Given the limited
number of nodes in the higher-order graph, 2 GNIs were
computed: Gee and Geff. In addition, 2 local inferences were
assessed for each node (network) in the internetwork graph: edge
betweenness centrality (Ebc) and local clustering coeffi-
cient (Lcc).

2.8. Graph analysis based on graph theory

Graph analysis consisted of 4 GNls in the sensor space, source
space, and intranetwork graphs: Gee, Geff, Sw, and Mod. Global
clustering coefficient is one of the best-known indicators of
functional segregation, quantified as the average clustering
coefficient of each node in the graph. Clustering coefficients at
the node level indicate the fraction of the node’s neighbours that
are also neighbours of each other.®* A high fraction of triangles in
the graph implies functional segregation, reflecting the brain’s
ability to use densely interconnected regions to sustain speci-
alised brain processes. Global efficiency is a measure of
functional integration,’ facilitating the rapid exchange of in-
formation across distributed brain regions. It is computed as the
average inverse shortest path length, which is the minimum
number of edges required to connect any pair of nodes in
a graph.®® Small-worldness describes how a graph is more
clustered than random networks with similar characteristic path
lengths.®* It is calculated as the ratio of the clustering coefficient
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to Geff compared to random networks. Small-world organisation
reflects an optimal balance of functional integration and
segregation.®® Mod quantifies the degree to which a graph can
be subdivided into clearly delineated groups.*’ Unlike other
network-structure measures, Mod relies heavily on optimisation
algorithms that subdivides the graph into nonoverlapping
modules. We used the maximised Mod algorithm,*? which is an
accurate and sufficiently fast approach to quantify Mod for
smaller networks.%? Higher Mod values indicate that a network
has a stronger community structure, meaning there are dense
connections among nodes within the same module (or group)
and sparser connections between nodes in different modules.
This suggests that the network is more efficiently organised into
distinct subgroups, which can enhance functional specialisation
and improve resilience to disruptions.

It is worth noting that segregation in brain-wide and intranet-
work graphs reflects functional specialisation within a given
graph, whereas integration characterises global information flow.
However, when within-network connectivity is excluded, the local
network inferences derived from higher-order internetwork
graphs represent dynamics related to interaction with other
networks. In this context, GNIs primarily capture internetwork
communication.

2.9. Statistical analysis

All statistical comparisons, except for the network-based
statistics (as implemented in the NBS toolbox), were conducted
using IBM SPSS (version 20; IBM Corp, Armonk, NY). Detailed
NBS statistics and visualisation methods are in the supplemen-
tary materials, http://links.lww.com/PAIN/C435.

For the graph analysis, we used different statistics for global
and local network inferences. For GNIs in all graphs, we applied
2-way repeated measures analysis of variance (ANOVA), followed
by post hoc comparisons using Bonferroni-corrected 2-sided
paired sample t-tests with an alpha level set at 0.05. Using
ANOVA, we not only assessed the differences between 2
conditions but also examined how these differences varied
between absolute and relative comparison methods. As for the
local network inferences, which were conducted exclusively in
higher-order internetwork graphs, we computed paired-sample
t-tests for Lce, with an alpha level set at 0.05 (2-tailed) with false
discover rate (FDR) correction for multiple comparisons. As for
Ebc, we also performed the NBS to identify significant differences
in edge-level centrality. To analyse the connectivity strength
within intra- and internetwork graphs, we performed 2-tailed
paired-sample t-tests with an alpha level set at 0.05, with FDR
correction for multiple comparisons between conditions under
both absolute and relative comparison methods.

2.10. Correlation analysis between global network
inferences and self-report data

Before classification analyses, we quantified the correlation
between GNIs and behavioural ratings for hot and warm
conditions separately. To assess the potential influence of age,
we conducted correlations between participant age and each
GNI. We further evaluated how individual differences in pain
responsiveness modulated GNIs using partial correlations,
controlling for age and sex. Individual differences were defined
using 4 behavioural measures: pain perception was defined as
the mean difference in unpleasantness ratings between hot and
warm conditions for each participant; pain tolerance was
operationalised as the change in average unpleasantness rating

from the first third to the last third of the hot stimulation period;
and pain-related psychological traits were assessed using the
PCS and the trait component of the STAI.

2.11. Machine learning classification

Global network inferences were selected as features for classifica-
tion, derived from individual or combined graph types including
Sensor space, source space, intra-SomMot, and internetwork
graphs under both absolute and relative comparison methods.
Qur feature inclusion was primarily theory-driven rather than
performance-optimised, as the goal was to use classification to test
the robustness of GNIs as potential biomarkers. We incorporated all
GNIs from 4 graph types because each was hypothesised to
capture distinct aspects of brain network organisation that may
differentiate responses to hot and warm stimuli. Given the modest
sample size, we deliberately avoided data-driven feature selection
methods, which could increase the risk of overfitting and
compromise the validity of cross-validation. Instead, we systemat-
ically evaluated all possible combinations of the 4 feature sets and
reported the 3 best-performing combinations. This strategy ensured
methodological transparency and reduced the risk of overfitting by
avoiding any optimisation on the test set.

To assess the predictive capacity of GNIs in distinguishing
tonic pain states (hot vs warm), we implemented a linear support
vector machine (SVM) with L2 regularisation. The regularisation
parameter (\) was automatically optimised within each training
fold. Input features (GNIs) were standardised using z-score
normalisation based on the training set’s mean and standard
deviation, and the trained model was used to classify the held-out
subject’s data.

A leave-one-subject-out cross-validation framework was
applied across all 36 participants. For each fold, 1 subject’s data
were held out for testing, whereas the remaining data were used
for training and normalisation. Model performance was evaluated
using area under the receiver operating characteristic curve
(AUC-ROC), and pooled inferences from the confusion matrix,
including accuracy, sensitivity, and specificity.

To assess the significance of the classifier’s discriminative
performance, we conducted a permutation test with 1000
iterations. For each iteration, participant labels were randomly
shuffled to disrupt the true feature-label relationship, and the
entire cross-validation pipeline was repeated using these
permuted labels. The null distribution of AUC-ROC values was
generated from these shuffled-label iterations. The empirical
P-value was computed as the proportion of permutation AUCs
exceeding or matching the original model’s AUC. This approach
quantifies the probability that the observed classification perfor-
mance occurred by chance under the null hypothesis of no true
feature-label association.

3. Results
3.1. Perception

As we already showed in a previous study,®° the unpleasantness
ratings were significantly different between tonic hot and warm
stimulation (T [35] = 36.31, Prpr < 0.001). This difference was
accounted for by greater unpleasantness during the hot condition
(hot: 67.83 = 9.18, 95% Cl = [64.73, 70.94]; warm 3.17 = 1.30,
95% Cl = [2.28, 6.93]). These results demonstrate that the
manipulation of thermal stimulation was effective in inducing
distinctive affective states in healthy participants. Moreover,
a paired-sample t test comparing the average unpleasantness
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rating from the first third of the hot condition to the average rating
from the last third revealed a significant increase (t [35] = 5.55,
P < 0.001), suggesting a trend of sensitisation to the stimulus
over time within the hot condition and thereby validating the
successful experimental manipulation of tonic pain in our study.

3.2. Brain-wide graph results in sensor space
3.2.1. Sensor space connectivity results

In the absolute comparison (Fig. 2A), the group-level graph
construction in the axial plane revealed that edges in the hot
condition were clustered bilaterally from the central to parietal
regions and within parietal areas (Fig. 2A third row left panel). In
contrast, the warm condition exhibited a more distributed edge
pattern within brain regions, indicated by nodes of the same colour
(Fig. 2A third row right panel). Network-based statistics revealed
a significant graph with larger connectivity in the hot condition
relative to warm condition (Fig. 2A fourth row left panel),
comprising 60 nodes and 378 edges, predominantly distributed
in posterior regions (P < 0.001). Conversely, the warm condition
(Fig. 2A fourth row right panel) yielded a significant graph with
larger connectivity relative to hot condition, consisting of 62 nodes
and 410 edges, with a concentration of connections in the central
region (P < 0.001). The relative hot and warm conditions displayed
distinct differences in both the dwPLI matrices and the adjacency
matrices (Fig. 2B). Connections were generally distributed
throughout the scalp in the group-level relative hot graph
(Fig. 2B third row left panel), with a greater concentration in the
anterior regions, whereas the relative warm condition displayed
a more central distribution (Fig. 2B third row right panel). The
relative hot condition demonstrated significantly greater connec-
tivity pattern than the relative warm condition (Fig. 2B fourth row left
panel) with connections predominantly extending from the frontal
to parietal regions, comprising 51 nodes and 213 edges (P <
0.001). Conversely, the graph for the relative warm condition
(Fig. 2B fourth row right panel), which indicated significant graph
with connectivity larger than the hot condition, revealed a distribu-
tion pattern clustered from the frontal-central to central-parietal
regions, maximally expressed in the central region, and comprised
58 nodes and 185 edges (P < 0.001).

Results from both comparison methods revealed a significant
pattern of increased frontoparietal connectivity in the hot
condition compared to the warm condition, whereas the warm
condition showed a significant stronger connectivity localised in
the centre of the scalp relative to the hot condition.

Although the adjacency matrices (Fig. 2, second row) and
derived graphs (Fig. 2, third row) appear markedly different
between the absolute and relative comparison methods, this
difference reflects a key methodological point. Absolute com-
parison method captures overall connectivity strength, incorpo-
rating both intrinsic baseline activity and task-induced signals,
whereas relative (baseline-normalised) matrices diminish shared
baseline activity to isolate condition-specific neural responses.
Importantly, despite these visual differences at the group level,
the condition-contrasts derived from network-based statistics
(p-graphs) were more consistent across the 2 methods,
suggesting that condition-contrast connectivity patterns were
robustly identified regardless of comparison methods used.

3.2.2. Sensor space graph analysis results

Significant main effects of stimulus condition (warm vs hot) and
comparison method (absolute vs relative) were observed

across all GNIs: functional segregation (Gcc), integration
(Geff), small-worldness (Sw), and modularity (Mod) (Fig. 2C).
Warm stimulation consistently enhanced functional segrega-
tion compared to hot stimulation under both comparison
methods. Absolute comparisons amplified this effect, yielding
higher Gce than relative methods across stimuli. For functional
integration (Geff), relative comparisons produced substantially
higher values than absolute methods in both conditions;
notably, hot stimulation elicited greater Geff than warm
stimulation only in the absolute comparisons. Both Sw and
Mod were markedly elevated in the absolute versus relative
comparisons, with warm stimulation further increasing Mod in
absolute (but not relative) contexts. Detailed statistical results
(ANOVA, post-hoc tests) are provided in Supplementary
Table 1, http://links.lww.com/PAIN/C435. In summary,
graphs induced by warm stimulation showed significantly
greater segregation (Gcc), reduced integration (Geff), and
improved information transfer into distinct modules (Mod)
compared to those elicited by hot stimulation in absolute
comparisons. Whilst relative comparisons only reflected in-
creased segregation (Gcce) for warm stimuli.

3.2.3. Exploratory results of graphs derived from theta, beta,
and gamma bands in sensor space

Aligned with the alpha band findings, condition-contrast
graphs across all frequency bands exhibited greater consis-
tency than group-level condition-specific graphs elicited by
hot and warm stimulation (Fig. S1, http://links.lww.com/PAIN/
C435). Under absolute comparisons, condition-specific
graphs showed predominantly occipital connectivity across
all bands (Fig. S1 ABC, http://links.lww.com/PAIN/C435,
upper and left-half panel), accompanied by additional frontal
connectivity in the theta band (Fig. S1A, http://links.lww.com/
PAIN/C435), central connectivity in the beta band (Fig. S1B,
http://links.lww.com/PAIN/C435), and prefrontal connectivity
in the gamma band (Fig. S1C, http://links.lww.com/PAIN/
C435). In contrast, relative comparisons consistently revealed
dense right-frontal to left-parietal connectivity across all
frequency bands (Fig. S1 ABC, http://links.lww.com/PAIN/
C435, upper and right-half panel).

Most condition contrasts did not reach statistical significance,
and the corresponding t-graphs consisted of sparse connectivity
(Fig. S1 ABC, http://links.lww.com/PAIN/C435, lower panel). The
only statistically significant contrast was identified in the beta
band under absolute comparison (Fig. S1B, http://links.lww.
com/PAIN/C435, lower panel second column), which showed
greater connectivity during warm than hot stimulation (P = 0.04).
This graph comprised 107 edges and 52 nodes, distributed
within the right hemisphere (frontal to parietal regions) and
included cross-hemispheric connections from left frontal to right
parietal areas.

Unlike the robust findings in the alpha band, no main effect of
stimulus condition was observed in other frequency bands. A
post hoc difference was detected only in the theta band, with
higher Mod during hot compared to warm stimulation.

Overall, the limited number of significant GNI results and the
sparsity of condition-contrast ¢-graphs restrict the interpretability
of findings outside the alpha band. Although oscillatory activity in
theta, beta, and gamma bands is implicated in pain-related brain
dynamics, the present results highlight alpha oscillations as the
primary frequency band of interest for subsequent analyses.

The results of GNIs in other frequency bands were shown in
Supplementary Table 2, http://links.lww.com/PAIN/C435.
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Functional connectivity

Graphs constructed Adjacency matrices

from adjacency matrices with median+std thresholding

P-graphs of
connections after NBS

Figure 2. Functional graphs elicited by hot and warm stimulation using 2 comparison methods in sensor space. (A) Group-level functional connectivity matrices for
hot and warm stimulation (first row). The corresponding adjacency matrices (second row) were used to construct undirected, unweighted graphs (third row).
Sensors corresponding to different scalp regions (Prefrontal, Frontal, Temporal, Frontal-central, Central, Central-parietal, Parietal, and Occipital) were colour-
labelled for visual distinction. Condition contrast significant connectivity patterns were identified using NBS and visualised as P-graphs (fourth row). The left panel
showed hot-preferred responses, and the right panel showed warm-preferred responses. (B) Similar to (A) but using a relative comparison method in which each
subject’s dwPLI matrix under stimulation was normalised by their own eyes-open resting-state dwPLI matrix. (C) Violin plots with overlaid scatter and box plots
show the results of repeated-measures ANOVA with Bonferroni correction for post hoc comparisons of 4 GNIs across the hot (red) and warm (orange) conditions
and 2 comparison methods. A green-filled circle with a black edge denotes the mean value for each group. A significant graph emerged, characterised by
increased frontoparietal connectivity for hot stimulation, whereas the warm stimulation condition showed stronger, centrally distributed connectivity. In addition,
a notably higher degree of functional segregation was observed in the graphs elicited by warm stimulation compared to those from hot stimulation, as
demonstrated by both comparison methods. *P < 0.05, **P < 0.001. Gcc, global clustering coefficient; Geff, global efficiency; GNIs, global network inferences;
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Mod, modularity; NBS, network-based statistics; Sw, small-worldness.



3.3. Brain-wide graph results in source space
3.3.1. Source space connectivity results

Across both comparison methods (Figs. 3A and B), the hot
condition graphs displayed a more bilateral distribution (Figs. 3A
and B third row left panel), whereas the warm condition graphs
exhibited a connectivity pattern dominated by the right hemi-
sphere (Fig. 3A third row right panel). Although no significant
graphs were identified after NBS, t-graphs from both comparison
methods consistently showed that the hot contrasts were
primarily concentrated in the left frontoparietal regions (Figs. 3A
and B, fourth row, left panel). Conversely, the warm contrasts
were predominantly localised in the right hemisphere, particularly
around the SomMot networks (Figs. 3A and B, fourth row, right
panel).

Despite the lack of statistical significance, these results
consistently revealed distinct ipsilateral-dominant differential
connectivity patterns emerged in brain regions preferentially
responsive to hot and warm stimulation consistent across
comparison methods (Figs. 3A and B, fourth row). Furthermore,
source space projections exhibited greater concordance be-
tween the absolute and relative comparison methods, particularly
in the group-level condition-specific and condition-contrast
graphs, than was observed in sensor space analyses.

3.3.2. Source space graph analysis results

In source space, GNIs revealed significant effects of comparison
method and stimulus condition (Fig. 3C). Absolute comparison
consistently produced higher functional segregation (Gcc) than
relative comparison across both stimulus conditions, whereas
warm stimulation increased Gcce specifically in relative compar-
isons. For functional integration (Geff), absolute comparisons
enhanced values compared with relative comparisons during hot,
and hot stimulation increased Geff compared to warm stimulation
exclusively in absolute comparisons. Small-worldness was
elevated in absolute comparisons for both stimuli, with- warm
stimulation increasing Sw across methods. Modularity (Mod) was
higher in absolute comparisons, with hot stimulation enhancing
Mod in both methods. Detailed statistical results are in
Supplementary Table 3, http://links.lww.com/PAIN/C435.

In summary, the graph analysis revealed that absolute
comparisons exhibited higher functional segregation (Gcc),
greater small-world properties (Sw), and enhanced information
processing capabilities (Mod) compared to relative comparisons
across both stimulus conditions in the source space. These
results aligned with sensor-space findings, which also indicated
reduced segregation for hot stimuli in relative comparisons and
enhanced integration for hot stimuli in absolute comparisons.

3.4. Higher-order intranetwork and internetwork
connectivity strength results

To understand better the brain-wide graph connectivity dynam-
ics, we categorised them into intranetwork and internetwork
connections. Intranetwork connectivity (Fig. S2, http://links.lww.
com/PAIN/C435, top) showed increased hot-stimulation con-
nectivity in SomMot, Limbic, and Cont networks for absolute
comparisons, and in Cont and SomMot (marginally) for relative
comparisons. Conversely, relative comparisons exhibited in-
creased warm-stimulation connectivity in Visual, DorsAttn,
SalVentAttn, and Default networks. For internetwork connectivity
(Fig. S2, http://links.lww.com/PAIN/C435, bottom), absolute
comparisons demonstrated higher hot-stimulation connectivity

in Limbic and Cont networks, with no significant effects in relative
comparisons. Detailed statistical results are in Supplementary
Table 4, http://links.lww.com/PAIN/C435.

In summary, Limbic and Cont networks exhibited significantly
higher intranetwork connectivity associated with hot stimulation in
both comparisons. Moreover, SomMot network also showed
significantly higher intranetwork connectivity in absolute comparison
but marginally higher intranetwork connectivity for relative comparison.

3.5. Higher-order intra-somato-motor graph results
3.5.1. Intra-somato-motor connectivity results

Focussing on the SomMot network (Fig. 4), group-level graphs
exhibited distinct bilateral patterns with a concentration of
connections in the right hemisphere in both comparison methods
and stimulus conditions (Fig. 4A). Although no significant graphs
were found post-NBS, t-graphs illustrated connections with
t-values greater than zero. The hot contrast exhibited a bilateral
pattern in the absolute comparison (Fig. 4A second row first
column), whereas in the relative comparison, it showed a left
hemisphere-dominated pattern accompanied by cross-
hemispheric connections (Fig. 4A second row third column). In
contrast, the warm contrast (Fig. 4A second row second and
fourth columns) exhibited a right hemisphere-dominant pattern
across both comparison methods.

In summary, we observed that during tonic pain, although not
surviving statistical correction, the SomMot network shifted from
a right hemisphere-dominant, clustered organisation (warm
condition) to a more bilateral, distributed connectivity profile (hot
condition) in both comparison methods (Fig. 4A, second row).

3.5.2. Intra-somato-motor graph results

In the analysis of SomMot graph inferences, only functional
segregation (Gcce) showed significant effects (Fig. 4B). The
absolute comparison produced higher Gcce than relative for both
stimulus conditions, whereas warm stimulation consistently
enhanced Gcc versus hot stimulation across both comparison
methods. This pattern aligns with the observed right hemisphere-
dominated clustering in warm condition graphs compared to the
less clustered intra-SomMot connectivity in hot condition graphs
(detailed statistical results are in Supplementary Table 5, http://
links.lww.com/PAIN/C435).

In summary, for connections within the SomMot network
across both stimulus conditions, the absolute comparison
demonstrated greater functional segregation (Gcc) than relative
comparison. Moreover, across both comparison methods,
distinct processing dynamics were reflected in significant differ-
ences in global segregation, which may account for the
contrasting connectivity patterns between conditions. Specifi-
cally, Gee associated with warm stimulation was significantly
larger than that induced by hot stimulation, likely because of the
distribution of less clustered edges within intra-SomMot connec-
tivity in the hot condition’s t-graphs (Fig. 4 second row first and
third columns). In contrast, right hemisphere-dominated patterns
with greater clustering were observed in the warm condition’s ¢-
graphs (Fig. 4 second row second and fourth columns).

3.6. Higher-order internetwork graph results
3.6.1. Internetwork connectivity results

For the internetwork graph results (Fig. 5), although no
statistically significant effects were observed, both comparison
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Figure 3. Functional graphs elicited by hot and warm stimulation using 2 comparison methods in source space. (A) Group-level functional connectivity matrices for
hot and warm stimulation (first row) projected in source space for 100 pairs of brain regions organised into 7 different functional networks (Visual, Somato-motor,
Dorsal Attention, Salience-Ventral Attention, Limbic, Control, and Default). Adjacency matrices (second row) were constructed as absolute, unweighted graphs
(third row), t-graphs (fourth row) constructed from connections with a t-value larger than 1.7 compared between conditions using NBS (shown in reduced opacity
indicate nonsignificant results). The left panel showed hot-preferred responses, and the right panel showed warm-preferred responses. (B) Similar to (A) but using
arelative comparison. (C) Violin plots with overlaid scatter, and box plots illustrate the results of repeated-measures ANOVA with Bonferroni correction for post hoc
comparisons of 4 GNIs across the hot (red) and warm (orange) conditions and 2 comparison methods. A green-filled circle with a black edge denotes the mean
value for each group. A stable pattern emerged across both comparison methods, with the hot condition showing a bilateral distribution of connectivity, whereas
the warm condition exhibited a right-lateralised distribution. Notably, hot stimulation consistently elicited increased connectivity in the left frontoparietal regions,
whereas the warm condition was associated with enhanced connectivity around the SomMot network. Graphs evoked by the hot stimulus exhibited a significantly
lower degree of functional segregation in the relative comparison and a significantly higher degree of functional integration in the absolute comparison compared to
those from warm stimulation, which were consistent with the results in sensor space. *P < 0.05, ***P < 0.001. Gcc, global clustering coefficient; Geff, global
efficiency; GNIs, global network inferences; Mod, modularity; NBS, network-based statistics; SomMot, somato-motor; Sw, small-worldness.
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Figure 4. Higher-order intra-SomMot graph. (A) Group-level intranetwork graphs (upper panel) for the SomMot and corresponding t-graphs (t > 0; reduced
opacity indicate nonsignificant results, in the lower panel) were generated after NBS analysis across different stimulus conditions. The left-half panel for absolute
comparison and the right-half panel for relative comparison. (B) Violin plots with overlaid scatter, and box plots illustrate the results of repeated-measures ANOVA
with Bonferroni correction for post hoc comparisons of 4 GNIs across the hot (red) and warm (orange) conditions and 2 comparison methods. A green-filled circle
with a black edge denotes the mean value for each group. The t-graphs from both comparison methods showed less clustered edges distributed bilaterally within
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The Gece induced by warm stimulation was significantly larger than that induced by hot stimulation in both comparison methods. *P < 0.05, ***P < 0.001. Gcc,
global clustering coefficient; Geff, global efficiency; GNIs, global network inferences; Mod, modularity; NBS, network-based statistics; SomMot, somato-motor;

Sw, small-worldness.

methods consistently indicated greater internetwork communi-
cation during hot stimulation compared to warm stimulation.
Moreover, the t-graphs for the hot contrast in both comparison
methods highlighted increased involvement of the DorsAttn and
SomMot networks (Fig. 5A, third row, first and third columns).

3.6.2. Internetwork graph results

Local graph inferences were computed using Ebc and Lcc for
each network in the weighted graph (Fig. 5B). Although the

effects did not survive statistical correction, the t-graph after NBS
revealed distinct edges centred on the SomMot network for the
hot contrast under the absolute comparison (Fig. 5B, upper
panel, first column). For Ebc in the hot contrast under the relative
comparison, the t-graph shared 4 edges with that of the absolute
comparison. Among these, 2 edges (SomMot-Limbic and
SomMot-Cont) represented connections linking the SomMot
network with other networks (Fig. 5B, upper panel, third column).

All 7 networks exhibited significantly higher Lcc under hot
versus warm condition in absolute comparison (Fig. 5B lower and
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Figure 5. Internetwork analysis and local and global graph inferences for internetwork graph. (A) Group-level internetwork weighted matrices (first and second row)
and corresponding t-graphs (t > 0O; reduced opacity indicate nonsignificant results, third row) were generated after NBS analysis across different stimulus
conditions. The left-half panel for absolute comparison and the right-half panel for relative comparison. (B) Results for local graph inferences analysis. Ebc
corresponded t-graphs generated after NBS (t > 0; shown in reduced opacity, upper panel); box plots illustrate the statistical analysis for Lcc by paired-sample
t test with FDR correction between stimulus conditions for 2 comparison methods (lower panel). (C) Violin plots with overlaid scatter and box plots show the results
of repeated-measures ANOVA with Bonferroni correction for post hoc comparisons of 2 GNls across the hot (red) and warm (orange) conditions and 2 comparison
methods. A green-filled circle with a black edge denotes the mean value for each group. The t-graphs illustrating both higher internetwork connectivity and Ebc
evoked by hot stimulation emphasised the importance of edges connecting the SomMot network with other networks in both comparison methods. In absolute
comparison, higher Lcc across all networks leading to significant higher Gee in hot condition for internetwork graph. *P < 0.05, ***P < 0.001. Ebc, edge
betweenness centrality; Gee, global clustering coefficient; Geff, global efficiency; GNIs, global network inferences; Lcc, local clustering coefficient; NBS, network-
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left panel), whereas relative comparison (Fig. 5B lower and right
panel) showed no significant differences (detailed statistics are in
Supplementary Table 6, http://links.lww.com/PAIN/C435).

For GNIs from internetwork connections (Fig. 5C), both
functional segregation (Gcc) and integration (Geff) showed
significant stimulus and comparison method effects. Absolute
comparison revealed higher Gee and Geff for hot versus warm
stimulation, whereas relative comparison enhanced both metrics
exclusively under hot stimulation. This divergence from intranet-
work findings reflects hot stimulation’s stronger internetwork
connectivity, evidenced by greater edge density and edge
betweenness centrality in t-graphs. Crucially, these patterns
highlight SomMot network’s crosstalk with other networks,
particularly through connections strengthened by hot stimulation
(detailed statistics are in Supplementary Table 5, http://links.lww.
com/PAIN/C435).

In summary, the GNIs indicated that absolute comparison
demonstrates greater functional segregation (Gcc) for internet-
work connections recruited by hot stimulation (Fig. 5C). The
significantly greater Gce in the internetwork connectivity matrix in
the hot compared to the warm condition may be attributed to the
significantly higher Lcc in each network from that graph (Fig. 5B
lower and left panel), reflecting overall enhanced network
communication during noxious stimulation. Although NBS-
based condition-contrast t-graphs did not survive statistical
correction, their spatial patterns showed alignment with the
network inferences results. Specifically, the larger number of
edges in t-graph, which represents larger internetwork connec-
tivity evoked by hot than warm stimulation in absolute comparison
(Fig- 5A third row, left-half panel), was consistent with the
significant segregation effects captured by Gce and Lcc.

These patterns were particularly evident in connections
involving the SomMot. The t-graphs illustrating both higher
internetwork connectivity (Fig. 5A third row first and third
columns) and Ebc evoked by hot stimulation (Fig. 5B upper
panel first and third columns) emphasised the importance of
edges connecting the SomMot network with other networks in
both comparison methods. Therefore, the higher-order internet-
work graphs highlight the crosstalk of SomMot with other
networks.

Although these edge-level patterns should be interpreted
cautiously given their nonsignificant status, they provide com-
plementary spatial context to the significant network-level
findings revealed by graph-theoretical analysis.

3.7. Correlation between global network inferences and self-
report data

We assessed condition-specific relationships between GNIs and
unpleasantness ratings for both absolute and relative compar-
isons (Table 1). Under absolute comparisons, 6 significant
associations were identified (Fig. 6A): For the warm condition,
sensor space Geff showed a positive correlation (r =
0.38, Puncorrecteqy = 0.02), whereas source space Geff exhibited
a negative correlation (r = —0.40, Puncorecteqy = 0.02) with
unpleasantness. Moreover, internetwork Gee and Geff positively
correlated with unpleasantness during the hot condition (Gee: r =
0.35, Puncorrected) = 0.04; Geff: r = 0.34, Puncorrected) = 0.04),
whereas the same GNls inversely correlated with unpleasantness
during the warm condition (Gce: r = —0.40, Puncorrectey = 0.02;
Geff:r = —0.38, Puncorrecteq) = 0.02). These findings suggest that
internetwork Gee and Geff differentially encode tonic hot and
warm perception, with opposing directional effects between the 2
conditions. In contrast, relative comparisons revealed no

significant correlations between individual GNIs and unpleasant-
ness ratings (all P > 0.05).

No significant correlations were observed between participant
age and any GNls. Similarly, after controlling for age and sex using
partial correlation, no significant relationships were found
between GNIs and individual differences in pain perception
(defined as the mean unpleasantness difference between hot and
warm conditions) or pain tolerance (operationalised as the
change in unpleasantness from the first to last third of hot
stimulation) (all P > 0.05).

However, significant associations emerged between GNIs and
pain-related psychological traits. Pain catastrophising, as mea-
sured by the PCS, showed significant positive correlations with 3
GNIs derived from the hot condition in the absolute comparison:
source space Gce (r = 0.55, Puncorrecteq) = 0.01); Gee and Geff
from internetwork graph (both r = 0.44, Pyncomecteqg = 0.04).
Conversely, trait anxiety (STAI-T) was negatively correlated with 6
GNIs under the warm condition: Gec in absolute condition from
intra-SomMot graph (r = —0.44, Pncomecteq) = 0.04), Gee and Geff
in relative comparison from source space graph (Gee: r = —0.53,
Puncorrecteqy = 0.01; Geff: r = —0.50, Puncorrectey = 0.02), Gee in
relative comparison from intra-SomMot graph (r = —0.48,
Puncorrecteqy = 0.02), and Gee and Geff in relative comparison from
internetwork graph (both r = —0.50, Pyncorecteqy = 0.02).

In sum, pain catastrophising was associated with greater
segregation and integration during noxious stimulation, whereas
higher trait anxiety was associated with reduced network
segregation and integration during innocuous warmth. Together,
these findings suggest that pain-related psychological traits (pain
catastrophising and anxiety) may affect functional network
characteristics during noxious and innocuous thermal stimula-
tion, even in the absence of effects related to age and sex. Yet,
due to the explorative nature of these correlation, and the
absence of a multiple comparison correction of the alpha value,
these relationships should be further tested before drawing any
confident conclusion.

3.8. Classification performance using global
network inferences

The SVM classifier robustly distinguished tonic hot and warm
conditions using GNIs derived from combined graph inferences,
with the top 3 models based on absolute comparison and
showed in Figure 6B. The highest-performing model, integrating
GNIs from sensor space, source space, and internetwork graphs,
achieved an AUC-ROC of 0.94 (P < 0.001), with an accuracy of
86%, sensitivity of 0.78, and specificity of 0.92. The second-
ranked model attained an accuracy of 85%, sensitivity of 0.75,
and specificity of 0.89 (AUC-ROC = 0.93, P < 0.001) from GNlIs
in sensor space and internetwork graphs. Combining GNIs from
sensor and source space graphs results in the third best
performance, with an accuracy of 83%, sensitivity of 0.78, and
specificity of 0.89 (AUC-ROC = 0.92, P < 0.001). These results
demonstrate the robust discriminative power of GNls, particularly
when combining multimodal graph features, in distinguishing
between tonic hot and warm states. The high performance
(accuracy above 80% and AUC-ROC above 0.90) highlights their
potential as a biomarker framework for decoding tonic pain-
related neurophysiological mechanisms.

4. Discussion

We systematically examined EEG functional connectivity patterns
during tonic thermal pain in healthy volunteers using network-
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based statistics and graph theory-based analysis. Our study
yielded 4 main findings. First, we identified a significant brain-wide
reorganisation of connectivity during tonic pain, marked by a shift
from functional segregation to integration. Second, segregation
effects confirmed the transition from intra- to internetwork
communication with enhanced SomMot-centred crosstalk.
Third, machine learning models successfully distinguished hot
from warm states using GNIs (highest AUC-ROC of 0.94;
accuracy of 86%; Fig. 6B), demonstrating robust discriminative
power. Fourth, we highlight the critical influence of comparison
methods and thresholding strategies.

4.1. Reorganisation of the brain-wide graph from
segregation to integration

We observed a consistent and significant decline in functional
segregation (specialisation) and enhanced functional integration
(efficiency of global information flow) during tonic pain in both
sensor and source spaces (Figs. 2C and 3C). This shift,
accompanied by significantly decreased modularity (Mod,
Fig. 2C) and small-worldness (Sw, Fig. 3C), suggested a shift
toward a more randomised and less cost-efficient network
architecture.® These findings aligned with alternations observed
in the neuropathic pain patients,®® and a multicentre study in
chronic pain cohorts,®® indicating a fundamental and sustained
characteristic shared between experimental tonic pain and
clinical chronic pain, which may reflect robust nociceptive
integration.®:6°

This global topological alteration was underpinned by a reor-
ganisation of brain-wide connectivity. In sensor space, we
identified significantly different connectivity patterns (Figs. 2A
and B). Although these patterns did not survive statistical
correction in source space, the consistent trend supports the
reliability of the topological reorganisation: a shift from

contralateral functional specialised sensorimotor connectivity
during warm (Figs. 3A and B, fourth row right panel; Fig. 4A,
lower panel second and fourth columns) to ipsilateral integrated
frontoparietal connectivity during pain (Figs. 3A and B, fourth row
left panel). The emergent frontoparietal pattern, associated with
the cognitive control network,?®2° is implicated in attention,
salience processing, and top-down modulation of pain.”%°
Conversely, innocuous warmth was associated with strength-
ened contralateral sensorimotor connectivity (Figs. 3A and B,
fourth row right panel; Fig. 4A, lower panel second and fourth
column). The absence of the contralateral connectivity during
pain might be linked to local suppressions of alpha-band
oscillations originating in the sensorimotor cortex.43:44:47:50.63
This asymmetry may reflect alpha-band event-related desynch-
ronisation, which through thalamocortical circuits'®?® and
gamma-aminobutyric acid inhibition,?°*” may indicate selective
gating of information flow, suppression of irrelevant sensory input,
and engagement of top-down cognitive processes for
attention. 182548

4.2. Transition of the somato-motor network

The innocuous warmth exhibited significant higher Gece in the
SomMot network (Fig. 4B), reflecting higher functional special-
isation. This finding aligns with prior identification of a distinct
processing system overlapping with resting-state modules and
subserving sensory-discriminative  functions,®® whereas the
noxious hot pattern aligns with SomMot integration with control
and ventral attention (salience) networks.?81:32:69

This network property difference was reflected in the connec-
tivity pattern within SomMot, with the warm condition producing
a right hemisphere-dominated pattern (Fig. 4A, lower panel
second and fourth columns), in contrast with a more bilateral
distribution for the hot condition (Fig. 4A, lower panel first and

Correlation coefficients between global network inferences and unpleasantness ratings across graph types and comparison

methods during hot and warm conditions.

Conditions Type of graphs Comparison method Correlation coefficient (Piuncorrected))
Gee Geff Sw Mod

Hot Sensor space Absolute 0.09 (0.60) —0.11 (0.51) 0.04 (0.81) 0.17 (0.33)
Relative 0.04 (0.80) 0.00 (0.99) 0.05 (0.78) 0.28 (0.10)
Source space Absolute 0.20 (0.25) 0.29 (0.09) —0.12 (0.50) —0.24 (0.17)
Relative —0.12 (0.47) 0.12 (0.48) —0.21 (0.23) —0.10 (0.57)
Intra-SomMot Absolute —0.01 (0.93) 0.23 (0.19) — 0.05 (0.77)
Relative 0.22 (0.20) 0.14(0.42) — 0.04 (0.82)

Internetwork Absolute 0.35 (0.04) 0.34 (0.04) — —

Relative 0.17 (0.32) 0.16 (0.35) — —
Warm Sensor space Absolute 0.18 (0.30) 0.38 (0.02) 0.04 (0.84) 0.21 (0.21)
Relative 0.22 (0.19) —0.14 (0.43) 0.25 (0.14) —0.26 (0.13)
Source space Absolute —0.29 (0.09) —0.40 (0.02) 0.06 (0.74) 0.04 (0.82)
Relative 0.06 (0.75) 0.07 (0.68) 0.10 (0.57) —0.05(0.79)
Intra-SomMot Absolute —0.07 (0.66) —0.11 (0.51) = —0.10 (0.59)
Relative 0.1 (0.51) 0.04 (0.80) — —0.11 (0.51)

Internetwork Absolute —0.40 (0.02) —0.39 (0.02) — —

Relative —0.05 (0.78) —0.03 (0.89) — —

Correlations were computed between GNIs and mean participant-level unpleasantness ratings. Statistically significant results (2 < 0.05) are highlighted in bold. All correlations are reported using uncorrected Avalues.

Gcec, global clustering coefficients; Geff, global efficiency; GNIs, global network inferences; Mod, modularity; SomMot, somato-motor; Sw, small-worldness.
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Figure 6. Correlation between single GNIs and behavioural ratings, and classification performance. (A) Scatter plots with linear fit and 95% confidence intervals
illustrating the correlations between significant individual GNIs and unpleasantness ratings within each stimulation condition. All correlations are reported using
uncorrected P-values and should be interpreted with caution. (B) Classification performance was evaluated using leave-one-subject-out cross-validation with an
SVM classifier. The top 3 performing models are presented, with the best performance highlighted in red, the second-best in green, and the third in blue. The
highest classification performance was achieved using a combination of GNIs derived from sensor space, source space, and internetwork graphs, yielding an
AUC-ROC 0of 0.94, an accuracy of 86%, a sensitivity of 0.78, and a specificity of 0.92. ***P < 0.001. Abs, absolute comparison; AUC, area under curve; Gece, global
clustering coefficients; Geff, global efficiency; GNIs, global network inferences; ROC, receiver operating characteristic; SVM, support vector machine.

third columns). Although these connectivity patterns were not
statistically significant, their alignment across comparison meth-

ods supports a dynamic shift in SomMot processing.

Furthermore, we found consistent, although nonsignificant,
greater number of edges clustering around the SomMot (Fig. 5A,
third row first and third columns) as well as greater Ebc (Fig. 5B,
upper panel first and third columns), highlighting the SomMot

5,23,28

central role in between-network communication. This adaptability
may reflect rapidly increased synaptic plasticity in the primary
somatosensory cortex induced by nociception,
potentially disrupted in chronic pain.2**°:62 Taken together, these
findings highlight the SomMot network’s dual functionality:
localised sensory processing for nonpainful somatosensory
experience versus integrative coordination during pain.

mechanisms



4.3. Shift from intranetwork to internetwork connectivity

We observed decreased segregation at the brain-wide level
during tonic pain (lower Gcc; Figs. 2C and 3C) whereas
internetwork connectivity exhibited increased local clustering
(Lcc; Fig. 5B) and segregation (higher Gcc; Fig. 5C). This
discrepancy arose from the exclusion of intranetwork connec-
tions, which artificially inflated Gce by removing interconnected
local clusters. This methodological distinction explains conflicting
prior results: although the community detection method found
increased Gcc with reduced connectivity between an integrated
“pain supersystem” and other networks during pain,®® canonical
network analysis using atlas defined parcellation (like ours)
reported increased segregation (Gce) only during the innocuous
condition, with enhanced between-network connectivity. '°

Based on Gcc variations, intranetwork connections prioritise
nociceptive information, facilitating a shift from segregated to
integrated brain states. This was observed in the SomMot
network and aligns with reduced intranetwork connectivity found
in sustained myofascial pain®' and patients with fibromyalgia,?
indicating a transition from functional specialisation under
innocuous stimulation to broader integration during pain
experience.

Such integration was also reflected by overall elevation of Lcc
(Fig. 5B, lower panel absolute comparison) and greater number
of edges in the internetwork graphs (Fig. 5A, third row first and
third columns). These results align with previous research
showing that thermal pain induces a brain-wide shift from
segregation to integration, with enhanced between-network
connectivity.'® Specifically, capsaicin-induced sustained pain
has been associated with the emergence of a SomMot-dominant
neural community, wherein ventral primary SomMot regions
showed dissociated from their original network and incorporated
with subcortical and frontoparietal regions.®> A finding also
replicated in patients with chronic low back pain’® and
postherpetic neuralgia.*

In summary, although methodological factors explain Gce
discrepancies, our results converge to show that tonic pain
induces an alteration from localised functional specialisation
within intranetwork to enhanced internetwork communication
and global integration. This reorganisation, centred on SomMot
connectivity, underscores the dynamic balance between
segregation and integration in shaping pain-related brain
states.'*27

4.4. Global network inferences as a potential
translational biomarker

GNIls achieved high classification performance in distinguishing
noxious hot from innocuous warm stimulation and identified
significant links with pain-related psychological states. Psycho-
logical traits modulated pain-related network reorganisation in
distinct and clinically relevant ways: catastrophising predomi-
nantly influenced responses to noxious stimuli, whereas anxiety
affected innocuous sensory processing.

Although our findings provide a general model of pain-related
network dynamics under controlled conditions, their generalisa-
tion to chronic pain populations warrants caution. Chronic pain
involves neuroplastic adaptations and compensatory mecha-
nisms that may alter functional network signatures, with
psychological influences potentially amplified.

Translating GNls into clinically useful biomarkers will require
validation in large, multicentre datasets accounting for comor-
bidities, medication, and pain duration. Future work should also

explore the use of GNlIs for real-time monitoring of psycholog-
ical states and their integration into closed-loop neuromodu-
lation, ensuring interpretability and reliability across clinical
contexts.

4.5. Methodological considerations: comparison methods
and thresholding strategies

Our analysis revealed consistent connectivity patterns and
network inferences across both comparison methods. This
demonstrates the robustness of the identified condition-
contrast effects and underscores the complementary value of
using both approaches, which together provide a more compre-
hensive characterisation of brain network reorganisation.

Our decision to retain weak connections in thresholding
strategies may resolve conflicting reports on GNIs such as
Gice. 35994489 Arpitrary thresholding criteria, such as retaining
only the top 10% of strongest connections or iterating across
densities (eg, 10%-30%) and then averaging Gcc values across
these arbitrary cutoffs, risk conflating reorganisation of strong,
hub-dominated connections and subtler reconfigurations in weak
but topologically critical edges. By contrast, including weaker
connections captures nuanced shifts in network topology. This
aligns with prior evidence that thresholding strategies critically
influence neuroimaging outcome,? and that weak connections,
often dismissed as noise, may underpin cognitive flexibility and
network resilience.®*

4.6. Limitations

The main caveat of the current study is that our conclusions are
primarily drawn from t-graphs, except from the significant
P-graphs derived from sensor space. The absence of statistically
significant connectivity graphs limits the robustness of our
interpretation. This issue should be addressed in future research
with larger sample sizes and multiple datasets to increase
statistical power and improve the detection of reproducible
network alterations after multiple comparisons correction. In
addition, although our classifier achieved high performance
(AUC-ROC > 0.9), its generalisability and validity need to be
further evaluated using independent datasets to ensure its
applicability in broader contexts.

5. Conclusion

Altogether, these findings provide compelling evidence that tonic
experimental pain in healthy volunteers is associated with
significant reorganisation of alpha EEG connectivity. The hallmark
of this reorganisation is a shift from high intranetwork functional
segregation (especially the SomMot network) to internetwork
integration via enhanced communication. Furthermore, the
robust predictive performance of GNIs highlights their trans-
lational potential as biomarkers for pain states. Our approach also
demonstrates the importance of including both strong and weak
connections as well as baseline assessment. Such methodolog-
ical approach not only reconciles conflicting reports in the
literature but also sets a foundation for future studies aimed at
elucidating the neural substrates of chronic pain and its clinical
translation.

Conflict of interest statement

The authors have no conflicts of interest to declare and used
generative Al to assist with narrative improvement.



Acknowledgments

The authors thank Daisy McInnerney, Jason Cooke, and Istvan
L. Gyimes for helping with the preparation and data collection of
the original experiment. The authors thank Sebastian Halder for
providing feedback on the correctness of the machine learning
approach to feature selection. The refrigerated and heating bath
was purchased by means of a Departmental Research Promotion
and impact Fund award to E.V. The authors acknowledge the use
of the High-Performance Computing Cluster (CERES) and
support services at the University of Essex. The software scripts
and data files used for the analyses are available on a dedicated
OSF repository (https://osf.io/wdxra/).

References

[1] Achard S, Bullmore E. Efficiency and cost of economical brain functional
networks. PLoS Comput Biol 2007;3:e17.

[2] Adamovich T, Zakharov |, Tabueva A, Malykh S. The thresholding
problem and variability in the EEG graph network parameters. Sci Rep
2022;12:18659.

[3] Alain C, Arnott SR, Hevenor S, Graham S, Grady CL. “What” and “where”
in the human auditory system. Proc Natl Acad Sci 2001;98:12301-6.

[4] BarabasiDL, Bianconi G, Bullmore E, Burgess M, Chung S, Eliassi-Rad T,
George D, Kovacs IA, Makse H, Nichols TE, Papadimitriou C, Sporns O,
Stachenfeld K, Toroczkai Z, Towlson EK, Zador AM, Zeng H, Barabasi AL,
Bernard A, Buzsaki G. Neuroscience needs network science. J Neurosci
2023;43:5989-95.

[56] Cao F-L, Xu M, Gong K, Wang Y, Wang R, Chen X, Chen J. Imbalance
between excitatory and inhibitory synaptic transmission in the primary
somatosensory cortex caused by persistent nociception in rats. J Pain
2019;20:917-31.

[6] Cohen MX. Analyzing neural time series data: theory and practice.
Cambridge, MA: MIT Press; 2014.

[7] Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven
attention in the brain. Nat Rev Neurosci 2002;3:201-15.

[8] Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of
single-trial EEG dynamics including independent component analysis.
J Neurosci Methods 2004;134:9-21.

[9] Eldabe S, Obara |, Panwar C, Caraway D. Biomarkers for chronic pain:
significance and summary of recent advances. Pain Res Manag 2022;
2022:1-6.

[10] Feng L, LiH, Cui H, Xie X, Xu S, Hu Y. Low back pain assessment based
on alpha oscillation changes in spontaneous electroencephalogram
(EEG). Neural Plast 2021;2021:1-11.

[11] GilAvilaC, Bott FS, Tiemann L, Hohn VD, May ES, Nickel MM, Zebhauser PT,
Gross J, Ploner M. DISCOVER-EEG: an open, fully automated EEG pipeline
for biomarker discovery in clinical neuroscience. Sci Data 2023;10:613.

[12] Goldman D. The clinical use of the “average” reference electrode in
monopolar recording. Electroencephalogr Clin Neurophysiol 1950;2:209-12.

[13] Granot M, Weissman-Fogel |, Crispel Y, Pud D, Granovsky Y, Sprecher E,
Yarnitsky D. Determinants of endogenous analgesia magnitude in
a diffuse noxious inhibitory control (DNIC) paradigm: do conditioning
stimulus painfulness, gender and personality variables matter? PAIN
2008;136:142-9.

[14] Hemington KS, Wu Q, Kucyi A, Inman RD, Davis KD. Abnormal cross-
network functional connectivity in chronic pain and its association with
clinical symptoms. Brain Struct Funct 2016;221:4203-19.

[15] Huang S, Wakaizumi K, Wu B, Shen B, Wu B, Fan L, Baliki MN, Zhan G,
Apkarian AV, Huang L. Whole-brain functional network disruption in
chronic pain with disk herniation. PAIN 2019;160:2829-40.

[16] Hughes SW, Crunelli V. Thalamic mechanisms of EEG alpha rhythms and
their pathological implications. Neuroscientist 2005;11:357-72.

[17] Jackman JS, Bell PG, Van Someren K, Gondek MB, Hills FA, Wilson LJ,
Cockburn E. Effect of hot water immersion on acute physiological
responses following resistance exercise. Front Physiol 2023;14:
1213733.

[18] Jensen O, Mazaheri A. Shaping functional architecture by oscillatory
alpha activity: gating by inhibition. Front Hum Neurosci 2010;4:186.

[19] Kastrati G, Thompson WH, Schiffler B, Fransson P, Jensen KB. Brain
network segregation and integration during painful thermal stimulation.
Cereb Cortex 2022;32:4039-49.

[20] Kim JA, Davis KD. Neural oscillations: understanding a neural code of
pain. Neuroscientist 2021;27:544-70.

[21] Kim J, Loggia ML, Edwards RR, Wasan AD, Gollub RL, Napadow V.
Sustained deep-tissue pain alters functional brain connectivity. PAIN
2013;154:1343-51.

[22] Kim J, Loggia ML, Cahalan CM, Harris RE, Beissner F, Garcia RG, Kim H,
Barbieri R, Wasan AD, Edwards RR, Napadow V. The somatosensory link
in fibromyalgia: functional connectivity of the primary somatosensory
cortex is altered by sustained pain and is associated with clinical/
autonomic dysfunction. Arthritis Rheumatol 2015;67:1395-405.

[23] Kim W, Kim SK, Nabekura J. Functional and structural plasticity in the
primary somatosensory cortex associated with chronic pain.
J Neurochem 2017;141:499-506.

[24] Kim H, Mawla |, Lee J, Gerber J, Walker K, Kim J, Ortiz A, Chan S-T,
Loggia ML, Wasan AD, Edwards RR, Kong J, Kaptchuk TJ, Gollub RL,
Rosen BR, Napadow V. Reduced tactile acuity in chronic low back pain is
linked with structural neuroplasticity in primary somatosensory cortex and
is modulated by acupuncture therapy. Neuroimage 2020;217:116899.

[25] Klimesch W. Alpha-band oscillations, attention, and controlled access to
stored information. Trends Cognit Sci 2012;16:606-17.

[26] Kong J, Jensen K, Loiotile R, Cheetham A, Wey HY, Tan Y, Rosen B,
Smoller JW, Kaptchuk TJ, Gollub RL. Functional connectivity of the
frontoparietal network predicts cognitive modulation of pain. PAIN 2013;
154:459-67.

[27] Kucyi A, Davis KD. The dynamic pain connectome. Trends Neurosci
2015;38:86-95.

[28] Kuner R, Flor H. Structural plasticity and reorganisation in chronic pain.
Nat Rev Neurosci 2017;18:20-30.

[29] Kutch JJ, Labus JS, Harris RE, Martucci KT, Farmer MA, Fenske S, Fling
C, Ichesco E, Peltier S, Petre B, Guo W, Hou X, Stephens AJ, Mullins C,
Clauw DJ, Mackey SC, Apkarian AV, Landis JR, Mayer EA. Resting-state
functional connectivity predicts longitudinal pain symptom change in
urologic chronic pelvic pain syndrome: a MAPP network study. PAIN
2017;158:1069-82.

[30] Latora V, Marchiori M. Efficient behavior of small-world networks. Phys
Rev Lett 2001;87:198701.

[31] Lee JJ, KimHJ, Ceko M, Park BY, Lee SA, Park H, Roy M, Kim SG, Wager
TD, Woo CW. A neuroimaging biomarker for sustained experimental and
clinical pain. Nat Med 2021;27:174-82.

[32] Lee JJ, Lee S, Lee DH, Woo CW. Functional brain reconfiguration during
sustained pain. Elife 2022;11:e74463.

[33] Lenoir D, Cagnie B, Verhelst H, De Pauw R. Graph measure based
connectivity in chronic pain patients: a systematic review. Pain Physician
2021;24:E1037-58.

[34] Li H, Li X, Wang J, Gao F, Wiech K, Hu L, Kong Y. Pain-related
reorganization in the primary somatosensory cortex of patients with
postherpetic neuralgia. Hum Brain Mapp 2022;43:5167-79.

[35] LiL, DiX, Zhang H, Huang G, Zhang L, Liang Z, Zhang Z. Characterization
of whole-brain task-modulated functional connectivity in response to
nociceptive pain: a multisensory comparison study. Hum Brain Mapp
2022;43:1061-75.

[36] Liao X, Vasilakos AV, He Y. Small-world human brain networks:
perspectives and challenges. Neurosci Biobehav Rev 2017;77:286-300.

[37] Lorincz ML, Kékesi KA, Juhasz G, Crunelli V, Hughes SW. Temporal
framing of thalamic relay-mode firing by phasic inhibition during the alpha
rhythm. Neuron 2009;63:683-96.

[38] LouW, LiX, Jin R, Peng W. Time-varying phase synchronization of resting-
state functional magnetic resonance imaging reveals a shift toward self-
referential processes during sustained pain. PAIN 2024;165:1493-504.

[39] Mano H, Kotecha G, Leibnitz K, Matsubara T, Nakae A, Shenker N,
Shibata M, Voon V, Yoshida W, Lee M, Yanagida T, Kawato M, Rosa MJ,
Seymour B. Classification and characterisation of brain network changes
in chronic back pain: a multicenter study. Wellcome open Res 2018;3:19.

[40] Modares-Haghighi P, Boostani R, Nami M, Sanei S. Quantification of pain
severity using EEG-based functional connectivity. Biomed Signal Process
Control 2021;69:102840.


https://osf.io/wdxra/

[41] Newman ME. Fast algorithm for detecting community structure in
networks. Phys Rev E 2004;69:066133.

[42] Newman ME. Modularity and community structure in networks. Proc Nat!
Acad Sci 2006;103:8577-82.

[43] Nickel MM, May ES, Tiemann L, Schmidt P, Postorino M, Ta Dinh S,
Gross J, Ploner M. Brain oscillations differentially encode noxious
stimulus intensity and pain intensity. Neuroimage 2017;148:141-7.

[44] Nickel MM, Ta Dinh S, May ES, Tiemann L, Hohn VD, Gross J, Ploner M.
Neural oscillations and connectivity characterizing the state of tonic
experimental pain in humans. Hum Brain Mapp 2020;41:17-29.

[45] Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: open source
software for advanced analysis of MEG, EEG, and invasive
electrophysiological data. Comput Intell Neurosci 2011;2011:1-9.

[46] Ortiz E, Stingl K, MunBinger J, Braun C, Preiss| H, Belardinelli P. Weighted
phase lag index and graph analysis: preliminary investigation of functional
connectivity during resting state in children. Comput Math Methods Med
2012;2012:186353.

[47] Peng W, Hu L, Zhang Z, Hu Y. Changes of spontaneous oscillatory
activity to tonic heat pain. PLoS One 2014;9:91052.

[48] Peng W, Babiloni C, Mao Y, Hu Y. Subjective pain perception mediated
by alpha rhythms. Biol Psychol 2015;109:141-50.

[49] Pfannmdller J, Strauss S, Langner |, Usichenko T, Lotze M. Investigations
on maladaptive plasticity in the sensorimotor cortex of unilateral upper
limb CRPS | patients. Restorative Neurol Neurosci 2019;37:143-53.

[50] Ploner M, Sorg C, Gross J. Brain rhythms of pain. Trends Cognit Sci 2017;
21:100-10.

[51] Qi R, Ke J, Schoepf UJ, Varga-Szemes A, Milliken CM, Liu C, Xu Q, Wang
F, Zhang LJ, Lu GM. Topological reorganization of the default mode
network in irritable bowel syndrome. Mol Neurobiol 2016;53:6585-93.

[562] Rubinov M, Sporns O. Complex network measures of brain connectivity:
uses and interpretations. Neuroimage 2010;52:1059-69.

[53] Rubinov M, Kétter R, Hagmann P, Sporns O. Brain connectivity toolbox:
a collection of complex network measurements and brain connectivity
datasets. Neuroimage 2009;47:5169.

[564] Santarnecchi E, Galli G, Polizzotto NR, Rossi A, Rossi S. Efficiency of
weak brain connections support general cognitive functioning. Hum Brain
Mapp 2014;35:4566-82.

[65] Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo X-N, Holmes AJ,
Eickhoff SB, Yeo BT. Local-global parcellation of the human cerebral
cortex from intrinsic functional connectivity MRI. Cereb Cortex 2018;28:
3095-114.

[56] Sullivan M. J., Bishop S. R., Pivik J. The pain catastrophizing scale:
development and validation. Psychological assessment. 1995;7:524.

[57] Spielberger C. D. Manual for the State-Trait Anxiety Inventory (STAI).
PaloAlto, CA: Consulting Psychologists Press; 1983.

[568] Sporns O, Honey CJ. Small worlds inside big brains. Proc Natl Acad Sci
2006;1083:19219-20.

[69] Torta DM, Legrain V, Mouraux A, Valentini E. Attention to pain! A
neurocognitive perspective on attentional modulation of pain in
neuroimaging studies. Cortex 2017;89:120-34.

[60] Valentini E, Halder S, Mclnnerney D, Cooke J, Gyimes IL, Romei V.
Assessing the specificity of the relationship between brain alpha
oscillations and tonic pain. Neuroimage 2022;255:119143.

[61] van der Miesen MM, Lindquist MA, Wager TD. Neuroimaging-based
biomarkers for pain: state of the field and current directions. Pain Rep
2019;4:e751.

[62] Vitterse AD, Halicka M, Buckingham G, Proulx MJ, Bultitude JH. The
sensorimotor theory of pathological pain revisited. Neurosci Biobehav
Rev 2022;139:104735.

[63] Wang H, Guo Y, Tu Y, Peng W, Lu X, Bi Y, lannetti GD, Hu L. Neural
processes responsible for the translation of sustained nociceptive inputs
into subjective pain experience. Cereb Cortex 2023;33:634-50.

[64] Watts DJ, Strogatz SH. Collective dynamics of “small-world” networks.
Nature 1998;393:440-2.

[65] XinH, Yang B, JiaY, Qi Q, Wang Y, Wang L, Chen X, Li F, Lu J, Chen N.
Graph metrics reveal brain network topological property in neuropathic
pain patients: a systematic review. J Pain Res 2024;17:3277-86.

[66] Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying
differences in brain networks. Neuroimage 2010;53:1197-207.

[67] zalesky A, Cocchi L, Fornito A, Murray MM, Bullmore E. Connectivity
differences in brain networks. Neuroimage 2012;60:1055-62.

[68] Zhang L-B, Chen Y-X, Li Z-J, Geng X-Y, Zhao X-Y, Zhang F-R, Bi Y-Z, Lu
X-J, Hu L. Advances and challenges in neuroimaging-based pain
biomarkers. Cell Rep Med 2024;5:101784.

[69] Zheng W, Woo CW, Yao Z, Goldstein P, Atlas LY, Roy M, Schmidt L,
Krishnan A, Jepma M, Hu B, Wager TD. Pain-evoked reorganization in
functional brain networks. Cereb Cortex 2020;30:2804-22.

[70] ZhuK, ChangJ, Zhang S, LiY, Zuo J, NiH, Xie B, Yao J, XuZ, Bian S, Yan
T,Wu X, Chen S, Jin W, Wang Y, Xu P, Song P, Wu'Y, Shen C, Zhu J, Yu
Y, Dong F. The enhanced connectivity between the frontoparietal,
somatomotor network and thalamus as the most significant network
changes of chronic low back pain. Neuroimage 2024;290:120558.





