

Research Repository

How ethical leadership and green values influence green performance management and creativity? Evidence from firms in Saudi Arabia

Mansoor Ahmad, NUST Business School, National University of Sciences and Technology, Islamabad, Pakistan

Muhammad Zahid Iqbal, National University of Modern Languages, Islamabad, Pakistan

Muhammad Mustafa Raziq, University of Sharjah, Sharjah, United Arab Emirates

Wali ur Rehman, University of Essex, Colchester, UK

Sharjeel Saleem, Lyallpur Business School, Government College University Faisalabad, Faisalabad, Pakistan

Accepted for publication in the International Journal of Manpower

Research Repository link: <https://repository.essex.ac.uk/42159/>

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the published version if you wish to cite this paper.

<https://doi.org/10.1108/IJM-01-2025-0035>

How Ethical Leadership and Green Values Influence Green Performance Management and Creativity? Evidence from Firms in Saudi Arabia

Journal:	<i>International Journal of Manpower</i>
Manuscript ID	IJM-01-2025-0035.R2
Manuscript Type:	Research Paper
Keywords:	Innovation, Leaders, Employee behaviour, Employee attitudes

SCHOLARONE™
Manuscripts

How Ethical Leadership and Green Values Influence Green Performance Management and Creativity? Evidence from Firms in Saudi Arabia

Abstract

Purpose – While using the combined lens of Social Learning Theory and Supply Value-Fit Theory, the study emphasizes the significance of reinforcement and value congruence in attaining environmental sustainability and claims that organizations foster ethical leadership, implement green performance management, and align employee green values with sustainability objectives.

Design/methodology/approach – We collected data from 250 employees using convenience sampling working in two global Saudi firms operating in the oil and gas, energy and chemical sectors. We used partial least square structural equation modeling to test our hypothesis.

Findings – Our findings show that green performance management practice partially and positively mediates the relationship between ethical leadership and employee green creativity. Furthermore, the relationship between ethical leadership and green performance management practices is moderated by individuals' green values, such that the relationship is stronger when the green values are more pronounced, and vice versa.

Originality – Our study explored a novel model that explained the role of ethical leadership, green performance management and individual green values in predicting employees' green creativity. We explored this issue in an oil-rich economy which intends to reduce its carbon emissions and adopt green technologies. Our research highlights the importance of effective green performance management that can prove to be an effective control mechanism for organizations that are interested in sustainability. Furthermore, we suggest that organizations, in the presence of ethical leaders, encourage individual employees to adopt green values.

Keywords: Ethical leadership, Individual green values, green performance management, green creativity

How Ethical Leadership and Green Values Influence Green Performance Management and Creativity? Evidence from Firms in Saudi Arabia

Introduction

Middle Eastern countries' heavy dependence on oil and gas has resulted in elevated carbon emissions, resource depletion, and environmental degradation (Zhou et al., 2025). In alignment with the Paris Agreement and its Vision 2030 initiative, the major oil producing country, Saudi Arabia is committed to achieving net-zero emissions and promoting green technologies (Aramco Sustainability Report, 2023). The United Nations has developed the Sustainable Development Goals. Firms play a pivotal role in addressing these challenges, with leaders and employees driving sustainable outcomes (Iqbal et al., 2023). Green creativity—defined as the generation of innovative ideas for environmentally friendly products, services, and processes—is critical for mitigating environmental issues (Han et al., 2025).

Leadership plays a pivotal role in cultivating altruistic, discretionary, and environmentally conscious behaviors among employees, which are essential for advancing organizational sustainability (Islam et al., 2021). Within this context, green creativity has emerged as a vital concept, enabling firms to enhance their environmental reputation while developing innovative green solutions (Zameer et al., 2021). Extensive research has examined how leadership influences employee green creativity, showing that various leadership styles, such as transformational, transactional, inclusive, and spiritual approaches, have positive effects on creativity (Arici and Uysal, 2022).

Recent scholarship has expanded this inquiry to specialized leadership concepts such as green transformational leadership, responsible leadership, and environmentally specific responsible leadership (Han et al., 2025). Growing attention has focused on ethical leadership and ethical organizational culture as drivers of green creativity and innovation (Şengüllendi et al., 2024). Grounded in Social Learning Theory (Bandura and Walters, 1963), this perspective

1
2
3 highlights how employees adopt sustainable behaviors by emulating ethical leaders who serve
4 as role models (Chen and Chang, 2013).
5
6

7 However, significant gaps remain in understanding the mechanistic roles and boundary
8 conditions that shape the relationship between ethical leadership and green creativity.
9 Particularly underexplored are the roles of green performance management systems and
10 individual green values—factors that may align and harmonize diverse stakeholder interests
11 within firms. This study seeks to address these gaps by examining how these mechanisms
12 interact to promote sustainable outcomes.
13
14

15 It makes sense to address the aforementioned gaps. At the theoretical level, we could learn
16 more about the connection between environmentally friendly creativity and ethical leadership
17 by describing the limits and ways in which these two concepts work together. We should go
18 beyond the simple question of whether leaders can influence environmentally friendly new
19 ideas. The existing conversation has focused on direct connections, resulting in a lack of new
20 explanations. This study contributes to the expanding research on green HRM and leadership
21 by examining sustainable behaviors from a process perspective. It does this by combining value
22 alignment (by individual green values) and feedback processes (through green performance
23 management). On the practical side, there exists a pressure on companies in businesses with
24 big effects on the environment, like oil, gas, and chemicals, to achieve a balance between
25 getting financial strength and taking care of the environment. Thus, our study encourages
26 managers to first understand the processes that encourage green creativity in order to make
27 leadership programs, performance review systems, and human resources policies that promote
28 both moral behavior and new ideas for sustainability. Therefore, we expect that addressing the
29 abovementioned gaps may guide companies to turn ethical leadership into real, visible, and
30 long-lasting environmental benefits.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The study draws upon Social Learning Theory, which emphasizes the critical function of reinforcement in organizational contexts. According to Bandura (2001), individuals demonstrate attentiveness to behaviors that receive rewards or sanctions, with these consequences serving as anticipatory mechanisms that shape future actions. Leaders can utilize this principle by applying different control methods to effectively implement their strategic initiatives. For sustainability objectives specifically, institutionalizing such control mechanisms becomes particularly impactful.

The academic discourse on green human resource management has undergone significant evolution since the early 2000s. Understood as a system of human resource management practices that improves a firm's environmental performance (Arulrajah et al., 2015), green human resource management represents a strategic approach to sustainability. Within this framework, green performance management emerges as a particularly effective control system—one that systematically encourages environmentally beneficial behaviors while discouraging harmful practices (Jabbour et al., 2010). As Beusch et al. (2022) demonstrate, such control systems serve as vital tools for leaders seeking to realize their sustainability agenda.

Supply-Value Fit Theory (Edwards, 1991) provides a critical framework for understanding the alignment between individual green values and organizational resources. Supply-Value Fit Theory examines the congruence between employees' values, needs, and desires and the firm's provision of resources, rewards, and working conditions. This alignment is particularly crucial for environmental sustainability initiatives, as employees' green values fundamentally shape their willingness to support organizational eco-friendly goals (Dumont et al., 2017). When individual and organizational values converge, optimal employee outcomes emerge (Edwards and Cable, 2009).

1
2
3 Despite its theoretical importance, empirical research on individual green values in
4 leadership and sustainability contexts remains limited. Research has shown that the
5 environmental values of employees significantly influence their green creativity (Al-Hawari et
6 al., 2021). Green values affect empowerment and organizational citizenship behaviors
7 (Hameed et al., 2020) Personal environmental values moderate the relationship between green
8 human resource management and organizational identification (Chaudhary, 2020) and green
9 role behaviors (Islam et al., 2021). Building on these foundations, we position individual green
10 values as a crucial enabling factor between ethical leadership and green performance
11 management (Gilal et al., 2019). Our central proposition holds that value congruence enhances
12 employee engagement, proactivity, and support for sustainability initiatives.
13
14

15 Drawing on Supply-Value Fit Theory (Edwards, 1991), we argue that employees
16 cognitively evaluate organizational offerings and respond positively when they perceive
17 alignment with their personal values. This makes individual values critical boundary conditions
18 for achieving organizational sustainability goals. Complementing this perspective, Social
19 Learning Theory (Bandura, 1977) emphasizes how employees learn sustainable behaviors
20 through supervisor observation, highlighting the importance of leadership style. We attempt to
21 establish the relationship between ethical leadership and green creativity, including underlying
22 mechanisms, through three research questions.
23
24

25 *RQ 1.* What is the relationship between ethical leadership and green creativity?
26

27 *RQ 2.* Does green performance management as an HR practice mediate the mechanism
28 between ethical leadership and green creativity?
29

30 *RQ 3.* Do individual green values moderate the relationship between ethical leadership and
31 green creativity?
32

33 Thus, we make an important two-fold contribution to environmental sustainability
34 literature by investigating the three research questions. First, by drawing on Social Learning
35

Theory (Bandura, 1977), we demonstrate that ethical leaders can inspire their followers to attain the right behaviors and contribute to green creativity. Employees reciprocate ethical leaders' pro-environmental efforts. Second, we contribute to supply-values fit theory (Edwards, 1991). Ethical leaders build a fit between individuals' green values and firm objectives. Ethical leaders can ignite and revitalize the individual green values by displaying pro-environmental behaviors. Thus, we contribute by showing that a fit between individual green values and organizational supplies results in acceptance of the reinforcement mechanism, i.e., green performance management, and employees exhibit better pro-environmental behavior, i.e., green creativity.

The Context, Theory and Hypotheses

The Kingdom of Saudi Arabia is one of the largest countries in the Middle East and a leading oil producer and exporter globally. As part of its commitment to climate change, Saudi Arabia has established a \$1.5 billion fund to invest in green technologies. By investing in lower carbon intensity and alternative energy resources, Saudi Arabia supports the Paris Agreement, contributes to the Sustainable Development Goals, and aims to achieve net-zero emissions by 2050. It also establishes partnerships with firms such as the International Petroleum Industry Environmental Conservation Association (Ipieca) and the World Economic Forum (WEF) to enforce industry practices for favorable environmental performance. Saudi Arabia has also initiated a Circular Carbon Economy national program, which encourages companies to develop durable, recyclable products for their customers (Aramco Sustainability Report, 2023). Our data is from a unique country that is considered the cradle of Islam, and Islam places much emphasis on the protection of the environment (Nasir et al., 2022). Muslims are duty-bound to protect the environment as per the instructions of their religion (Sarkawi et al., 2016).

Our study combines Social Learning Theory (Bandura, 1977) and Supply-Value Fit Theory (Edwards, 1991) to explain how ethical leadership drives green creativity. Ethical leadership

models sustainable behaviors, embedding environmental values into organizational culture (Bedi et al., 2016). Employees learn through observation (emulating leaders' actions) and reinforcement (responding to rewards and punishments), with observational learning being particularly powerful (Islam et al., 2021). Ethical leaders can potentially operationalize these principles through performance systems that monitor and reward green behaviors (Beusch et al., 2022). When such systems align with employees' environmental values, they create a powerful catalyst for green creativity. Essentially, employees are more likely to innovate sustainably when they see leaders practicing what they preach and when the firm rewards these efforts in ways that resonate with their values. This framework positions green performance management as a key mechanism—leveraging both role modeling and strategic incentives—to foster eco-conscious innovation.

The Supply-Value Fit Theory (Edwards, 1991) helps explain how ethical leadership, employee values, and green performance systems interact to drive sustainability efforts. At its core, Supply-Value Fit Theory suggests that when employees' environmental values align with organizational practices, they are more motivated to engage in eco-friendly behaviors (Al-Hawari et al., 2021). This value congruence creates a powerful dynamic: employees who prioritize sustainability naturally pay more attention to environmental initiatives when ethical leaders champion them (Masterson and Lensges, 2015). The match between personal green values and organizational support for sustainability leads to stronger environmental engagement (Edwards and Shipp, 2007). Essentially, when what the firm offers (like green performance systems) matches what employees value, it creates a mutually reinforcing cycle of positive green behaviors.

Next, we examine the proposed relationships, followed by the Method section, which outlines the procedures, measures, and data analysis strategy. This section transitions to the Analysis and Results segment, presenting hypothesis tests utilizing partial least squares

structural equation modeling. Toward the end, we present the discussion on the interpretation of key findings and their implications with final concluding remarks.

Ethical leadership and employee green creativity

Leaders' effectiveness indicates their success; however, an effective leader may not necessarily be an ethical one (Nazir et al., 2021). Ethical leadership is characterized by a strong sense of integrity, fairness, and accountability (Brown et al., 2005). Ethical leaders act as role models, prioritizing ethical standards and the welfare of their employees, organization, and society. Ethical leadership distinguishes itself from other leadership styles primarily through its focus on normatively appropriate behaviors and moral values in decision-making (Brown et al., 2005). Ethical leaders have a sense of responsibility not only for their firm but also for the community. Thus, they have a natural tendency to protect the environment and encourage green creativity and innovation (Ahmad et al., 2022).

Current empirical research indicates a significant positive relationship between ethical leadership and the green creativity and behavior of employees (Piwowar-Sulej et al., 2023). Chen and Chang (2013) describe 'green creativity' as producing creative ideas connected to greener goods, services, processes, and procedures. Employee success, on the other hand, is dependent on the leader's support and opinion (Amabile et al., 2004). Building on the above, we argue that ethical leadership will foster green creativity. As Saudi Arabia focuses on green technologies and reducing carbon emissions, we anticipate that ethical leadership will play a crucial role in enhancing the green creativity of its employees.

H1. Ethical leadership is positively associated with the green creativity of employees.

The mediating role of green performance management

Ethical leadership, as defined by Brown et al. (2005), emphasizes integrity, moral conduct, and fairness in decision-making and role modeling. Unlike transformational leadership—which motivates through vision (Avolio and Bass, 1995)—ethical leadership functions through norm-

1
2
3 based reinforcement mechanisms that shape followers' values and behaviors. Ethical leaders
4 integrate expectations into company principles, environment, and culture. Compliance
5 strategies enhance these efforts by adhering to legal and social norms. A programmatic
6 approach, specifically green performance management, aligns the expectations of both
7 management and employees. Green performance management systems ensure that
8 environmental strategies are integrated into organizational processes, fostering green creativity
9 (Bahuguna et al., 2023). Environmental performance positively correlates with economic
10 performance (Mousa and Othman, 2020) and improves with adherence to green standards
11 (Tang et al., 2018). Setting green objectives translates environmental goals into actionable
12 plans that drive green creativity (Mousa and Othman, 2020).
13
14

15 Drawing on Social Learning Theory (Bandura, 1977), employees are more likely to emulate
16 ethical leaders who embody sustainability goals, especially when such behavior is reinforced
17 through organizational practices like green performance management. Studies highlight the
18 role of performance management systems in linking leadership and creativity.
19 Transformational leaders create work environments that encourage creativity (Avolio and
20 Bass, 1995). Ethical leaders inspire employees to find meaning in their work, which in turn
21 strengthens their commitment to generating new ideas (Pandey and Gupta, 2008).
22 Reinforcement mechanisms within performance management systems channel leadership
23 influence toward creative behaviors (Bandura, 2001). Green performance management systems
24 formalize sustainability expectations through structured monitoring, feedback, and reward
25 mechanisms (Beusch et al., 2022). These systems enable ethical leaders to institutionalize
26 environmental values into daily performance routines, aligning employee behavior with
27 ecological objectives (Mousa and Othman, 2020). This process transforms ethical leadership's
28 influence from merely symbolic into a strategic behavioral driver of green creativity, defined
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 as the generation of novel and valuable ideas for green products and processes (Chen and
4
5 Chang, 2013).
6

7 Bahzar (2019) found that ethical leadership enhances creativity by fostering a supportive
8 work environment. In the context of Saudi Arabia, green performance management aligns with
9 national policies promoting environmental sustainability. Reinforcement mechanisms within
10 green performance management enhance creativity by establishing environmental goals,
11 offering feedback, and recognizing employees for eco-innovative actions (Merriman and Sen,
12 2012). Ethical leadership, supported by green performance management, aligns organizational
13 values with national sustainability imperatives in resource-intensive industries in Saudi Arabia,
14 where Vision 2030 and the national Net-Zero initiative emphasize environmental
15 transformation (Amran et al., 2020). Thus, ethical leadership provides the moral foundation for
16 sustainability and catalyzes green creativity by embedding environmental values within
17 performance control systems.
18

19 *H2. Green performance management mediates the positive association between ethical
20 leadership and employee green creativity.*
21

22 ***The moderating role of individual green values***
23

24 While ethical leadership and green performance management offer structural and cultural
25 foundations for green creativity, employees' individual green values determine the extent to
26 which they internalize and respond to such cues. Rooted in Supply-Value Fit Theory (Edwards,
27 1991), individuals exhibit optimal motivation and performance when their values align with
28 organizational expectations. Employees with strong green values are more receptive to leaders'
29 ethical signals and more willing to engage in sustainability-oriented performance systems
30 (Islam et al., 2021; Dumont et al., 2017). Individual green values influence work attitudes and
31 behaviors (Davidov et al., 2008). Employees with strong green values are more likely to
32 support ethical leadership and engage in environmentally responsible behaviors (Barclay and
33

Barker, 2020). When employee values align with organizational environmental values, they demonstrate a greater commitment to green HR practices, such as green performance management (Hameed et al., 2020). Employees intrinsically motivated by green values are more likely to embrace environmentally friendly practices (Ahmad et al., 2022).

Research suggests that green values serve as critical psychological filters, enabling employees to perceive ethical leaders as credible champions of sustainability (Al-Hawari et al., 2021; Barclay and Barker, 2020). This value congruence enhances the effectiveness of green performance management by motivating employees to transform green performance expectations into creative actions that advance environmental goals (Gilal et al., 2019). Individual green values moderate the relationship between green HR practices and green behavior-related outcomes, including environmental passion and green citizenship behavior (Rehan et al., 2024). Ethical leaders create environments conducive to green behavior by modeling sustainable practices, and employees with high green values reinforce this effect (Islam et al., 2021). HR systems that evaluate green performance encourage employees to contribute to green initiatives.

Deliberate efforts by ethical leaders to promote environmental sustainability enable businesses to establish a green identity (Şengüllendi et al., 2024). Employees with strong green values amplify the influence of ethical leadership and green performance management on green creativity. Social Learning Theory reinforces the idea that employees emulate leaders engaged in sustainable behaviors, especially when their values align with organizational goals (Şengüllendi et al., 2024). In the Saudi context, where organizational hierarchies are deeply entrenched, value alignment between ethical leaders and employees can significantly amplify moral legitimacy and behavioral engagement. Employees with higher green values are more likely to support environmental policies, view green performance management as meaningful, and proactively contribute creative eco-innovations aligned with both organizational and

1
2
3 national sustainability agenda (Sengüllendi et al., 2024). Hence, green values act as a
4 psychological amplifier, strengthening the mediating mechanism of green performance
5 management by making ethical leadership's environmental messaging more resonant and
6 actionable.
7
8
9
10
11

12 *H3. Employees' individual green values have a conditional process effect such that the*
13 *mediation effect of green performance management on the relationship between ethical*
14 *leadership and employee green creativity will be stronger when individual green values are*
15 *high than when they are low.*
16
17
18
19
20

21 **Method**

22

23 **Participants and procedure**

24

25 We collected time-lagged data from two Saudi global companies (A and B) operating in the
26 energy, chemical, and petroleum sectors. Company A engages in oil and gas production,
27 chemicals, and refined products, emphasizing high professional standards and Environmental,
28 Social, and Governance (ESG) goals. Its annual reports highlight efforts to reduce its carbon
29 footprint through technology and innovation, aligning with Sustainable Development Goals
30 such as affordable energy (SDG-7), climate action (SDG-13), and life on land (SDG-15). It
31 invests in minimizing environmental impacts via technology and nature-based solutions for
32 clean water (SDG-6) and responsible consumption (SDG-12). Company B, specializing in
33 polymers, chemical nutrients, and metals, holds 9,948 patents and prioritizes Environmental,
34 Social, and Governance transparency. Recognized for compliance, it also addresses
35 environmental challenges through technology, contributing to relevant Sustainable
36 Development Goals.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54 Students in the master's in human resources program at a Saudi Arabian university collected
55 the data. We recruited these students for data collection, offering them extra credit as a reward.
56 We trained them to collect data purely on a volunteer basis, ensuring adherence to ethical
57
58
59
60

1
2
3 standards. We distributed a letter explaining the purpose of the research and ensuring
4 confidentiality, along with the questionnaire in two parts. The paper-and-pencil survey
5 questionnaires that did not seek participants' personal identity were distributed to employees
6 at Time 1 (T_1) and Time 2 (T_2) with a one-month temporal separation (January–February 2023).
7
8 A one-month lag, as suggested by Islam et al. (2021a), suffices for time-lagged studies,
9 ensuring reliability.
10
11

12 T_1 data included demographic details, ethical leadership, and green performance
13 management practices. T_2 data, collected from the same participants using unique questionnaire
14 codes, captured individual green values and green creativity. The cross-sectional time-lagged
15 method reduces common method bias and strengthens causal inference by increasing internal
16 validity, particularly for research models requiring a mediation analysis (green performance
17 management) and a moderated mediation analysis (employee green values). It also enables
18 short-term tests that capture variations in the endogenous variable (employee green creativity),
19 which are clearly explained by the exogenous variable (ethical leadership). For matching T_1
20 and T_2 responses, the survey questionnaires included identification codes assigned by the
21 survey team.
22
23

24 We determined the appropriate sample size using G*Power 3.1. A minimum of 184
25 participants was required for a medium effect size of $f^2 = .15$, $\alpha = .05$, and power of $1 - \beta = .99$
26 with five predictors. We used convenience sampling to distribute 500 questionnaires,
27 anticipating nonresponses. Participants were permanent employees with at least one year of
28 experience. Each received an invitation letter ensuring voluntary participation and anonymity.
29 Specifically, for T_1 , students pre-approached the potential participants on a referral basis and
30 collected responses from 273 employees ($273/500 = 54.60\%$ response). However, for T_2 ,
31 students contacted only those participants who responded on T_1 . Due to their field
32 commitments, 23 participants were unable to respond during the T_2 survey ($250/273 = 91.58\%$
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 response). Thus, the final sample appeared to be $N = 250$ (overall, $250/500 = 50\%$ response).
4
5 Respondents included 123 males and 127 females; 34.4% had less than five years of
6 experience, 25.6% had 5–10 years, and 40% had over 10 years. Educational qualifications
7 varied, with 60% holding bachelor's degrees, 19.2% master's degrees, 2.4% doctorates, and the
8 rest technical certifications.
9
10

11 **Measures**

12

13 We used validated, English-language measures recommended by Islam et al. (2023).
14
15

16 *Ethical leadership.* It is defined as “the demonstration of normatively appropriate conduct
17 through personal actions and interpersonal relationships, and the promotion of such conduct to
18 followers through two-way communication, reinforcement, and decision-making” (Brown et
19 al., 2005, p. 120). This scale was deemed appropriate as it offered others' reported opinions,
20 which are crucial for mitigating social desirability bias that could happen in the case of self-
21 reported assessments of ethical practices. Employees assessed their managers using a 10-item
22 scale (Brown et al., 2005), e.g., “My manager sets an example of how to do things the right
23 way in terms of ethics.” This scale, validated in collectivist cultures like Saudi Arabia, used a
24 7-point rating from 1 (highly unlikely) to 7 (highly likely), achieving Cronbach's $\alpha = .92$ and
25 $\rho_c = .94$.
26
27

28 *Green performance management.* Employees reported on a 6-item subscale from Shah's
29 (2019) 28-item green human resource management scale, e.g., “My company reinforces
30 compliance with meeting environmental goals.” Responses ranged from 1 (strongly disagree)
31 to 5 (strongly agree), with $\alpha = .95$ and $\rho_c = .96$.
32
33

34 *Green creativity.* Measured using Chen and Chang's (2013) 6-item scale, e.g., “The
35 members of my organization promote and champion new green ideas to others.” Items replaced
36 “the green product development project” with “my organization.” The scale used a 5-point
37 rating (1 = strongly disagree, 5 = strongly agree), yielding $\alpha = .96$ and $\rho_c = .97$.
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 *Individual green values.* Assessed via Chou's (2014) 5-item scale, e.g., "I feel obliged to
4 save the environment from degradation, regardless of what others do." The scale used a 5-point
5 rating (1 = strongly disagree, 5 = strongly agree), yielding $\alpha = .90$ and $\rho_c = .93$.
6
7
8
9

10 *Control variables.* Gender (1 = women, 2 = men), education (1 = high school, 2 = associate
11 degree, 3 = bachelor's, 4 = master's, 5 = doctorate), and experience (1 = < 5 years, 2 = 5 – 10
12 years, 3 = > 10 years) were controlled to account for individual creativity differences (Chen
13 and Chang, 2013).
14
15
16
17
18

19 **Analysis and Results**

20

21 **Preliminary analysis**

22

23 We used partial least square structural equation modeling to examine the measurement
24 structure before testing our hypotheses, verifying the measures with ten standard model fit and
25 quality metrics. Five additional indices compared model-implied and empirical indicator
26 correlation matrices. Table I shows the indices, values, and acceptable levels for the three
27 models: baseline (Model 1), mediational (Model 2), and moderated mediational (Model 3). All
28 indices were within acceptable thresholds. For robustness, we assessed the measurement
29 structure using MPlus 7.0 (Muthén and Muthén, 1998), yielding good fit estimates: $\chi^2/df =$
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

[Insert Table I here]

Following Hair Jr. et al.'s (2021) guidelines, we computed both Cronbach's α and composite reliability coefficients (ρ_c) to represent internal consistency in PLS. All constructs showed Cronbach's α values of .92 – .96 and ρ_c values of .93 – .97, exceeding the .70 threshold (Table II).

[Insert Table II here]

Construct validity was confirmed through convergent and divergent validity. For convergence, all factor loadings met the $\geq .50$ threshold ($.58 \leq \lambda \leq .93$, $p < .001$), and all

constructs had AVE values between .59 and .83 (Table III). Divergent validity was verified as the square root of AVE exceeded latent variable correlations, and factor loadings ($.58 \leq \lambda \geq .93$) were higher than cross-loadings ($.00 \leq |\lambda_c| \geq .23$).

To ensure internal validity, we examined VIFs and error terms of endogenous variables. No significant link between error terms ($r(e) = .01, p = .85$) and acceptable VIFs (≤ 3.3) supported robustness. Predictive validity ($Q^2 \neq 0$) for endogenous variables further confirmed the model's validity (Table IV).

[Insert Table III here]

Common method bias was addressed using ex ante and ex post remedies. Procedural remedies minimized bias during survey design and administration. Specifically, we employed two strategies: 1) We randomized survey questions, and 2) we used different response categories (Podsakoff et al., 2003). Ex post, we conducted a full collinearity test (Kock, 2015) to detect inflation or deflation due to lateral and vertical collinearity. All VIF values ranged from 1.07 to 2.37, within the acceptable ≤ 3.3 range. Average block variance inflation factor (AVIF = 1.08) and average full collinearity variance inflation factor (AFVIF = 1.45) were ideal (≤ 3.3), indicating minimal bias (Table I).

Thus, the results demonstrated robust measurement validity and reliability, ensuring the integrity of hypothesis testing outcomes. In addition to all the above estimates, participants from two comparable industries reduced the likelihood of industry-specific effects. They held diverse positions, including managerial, technical, administrative, and operational roles. Using ANOVA with Scheffe's post hoc test, we found no significant differences in green creativity between job position groups, $F(6, 243) = 1.09, p = .37$.

Hypothesis testing

The baseline model (hypothesis 1), mediation model (hypothesis 2), and moderated mediation model (hypothesis 3) are examined in WarpPLS 8.0 (Kock, 2022). Specifically, to demonstrate

1
2
3 the robustness of our results pertaining to hypotheses 2 and 3, we also employed the additivity
4 assumption (MacKinnon et al., 2012).
5
6

7 Hypothesis 1 suggests that ethical leadership increases employee green creativity. Table
8
9 IV, Model 1, reveals that ethical leadership positively and significantly affects employee green
10 creativity (path c : $\beta = .30$, $t = 5.00$, $p < .001$). Hypothesis 1 is, hence, supported.
11
12

13 Hypothesis 2 suggests that ethical leadership and employee green creativity are linked via
14 green performance management. Table IV, Model 2, reveals that ethical leadership positively
15 relates to green performance management (path a : $\beta = .36$, $t = 6.05$, $p < .001$). Green
16 performance management also positively relates to employee green creativity (path b : $\beta = .64$,
17 $t = 11.27$, $p < .001$). After controlling green performance management, the association between
18 ethical leadership and employee green creativity turned non-significant (path c' : $\beta = .11$, $t =$
19 1.84, ns). More specifically, results indicated that ethical leadership indirectly relates to
20 employee green creativity via green performance management ($\beta = .23$, $t = 5.35$, $p < .001$).
21
22

23 Despite our study's design and analysis demonstrating temporality (the cause occurred
24 prior to the effect on the timeline) and strength (a statistically stronger relationship appeared
25 rather than a weaker relationship), we deemed it appropriate to assess the robustness of our
26 results by employing the additivity assumption (MacKinnon et al., 2012). This maintains that
27 the mediational effect is internally valid if the interaction effect of the mediating variable on
28 the baseline relationship is not significant. Table V, Model 4, reveals that the interaction effect
29 of green performance management ($\beta = .07$, $t = 1.06$, $p = .15$) on the relationship between
30 ethical leadership and green creativity is non-significant. Thus, non-violation of the additivity
31 assumption ensures the mediational effect's internal validity. Hypothesis 2 is, hence,
32 supported.
33
34

35 [Insert Table IV here]
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Hypothesis 3 states that green performance management's mediation effect on ethical
4 leadership and employee green creativity is stronger when employees' green values are high.
5
6 Table IV, Model 3, reveals that ethical leadership positively relates to green performance
7 management (path a : $\beta = .37$, $t = 6.14$, $p < .001$). Green performance management also
8 positively relates to employee green creativity (path b : $\beta = .64$, $t = 11.27$, $p < .001$). After
9 controlling green performance management, the association between ethical leadership and
10 employee green creativity turned non-significant (path c' : $\beta = .11$, $t = 1.84$, ns). Furthermore,
11 individual green values have a positive interaction effect on the relationship between ethical
12 leadership and green performance management ($\beta = .15$, $t = 2.51$, $p < .01$). The above initial
13 evidence of the interactional effect of employees' individual green values in the presence of
14 the mediational effect of green performance management is substantiated. That is, it is
15 substantiated by the moderated mediation effect of employees' individual green values on the
16 mediational effect of green performance management between the relationship of ethical
17 leadership and employees' green creativity ($\beta = .10$, $t = 2.25$, $p < .05$).
18
19

20 Once again, despite our study's design and analysis demonstrating temporality and
21 strength, we deemed it appropriate to assess the robustness of our results by employing the
22 additivity assumption (MacKinnon et al., 2012). This time, to ensure that the moderated
23 mediation effect is internally valid, we examined it on Path B (i.e., between green performance
24 management and green creativity). Table V, Model 5, reveals that the moderated mediation
25 effect of employees' individual green values ($\beta = -.05$, $t = -.78$, $p = .22$) is non-significant.
26 Thus, non-violation of the additivity assumption ensures the mediational effect's internal
27 validity. Hypothesis 3 is, hence, supported.
28
29

30 Figure 1 summarizes results on hypothesized relationships, Figure 2 summarizes the results
31 of the robustness check, i.e., the additivity assumption, and Figure 3 depicts the interaction
32 effects.
33
34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60**[Insert Table V here]****[Insert Figure 1 here]****[Insert Figure 2 here]****[Insert Figure 3 here]**

Discussion

Our study examined the green creativity of employees working for two global Saudi companies, focusing on the role of ethical leadership through individual and firm-level mechanisms. While prior research has linked ethical leadership to green productivity (Ahmad et al., 2022; Sengüllendi et al., 2024), the underlying mechanisms remain unclear. Drawing on Social Learning Theory, we explored how ethical models shape pro-environmental behaviors. We argue that leaders as social referents influence followers' behavioral outcomes in daily business and firm values (Toor and Ofori, 2009). Our findings strongly support the link between ethical leadership and green creativity in an oil-rich economy.

The study proposed that ethical leadership indirectly affects employee green creativity through green performance management. Green performance management acts as a reinforcement process, aligning employee behavior with firm objectives and the ethical values leaders wish employees to follow. Literature on sustainability highlights the importance of control systems in ensuring that sustainability goals are achieved (Beusch et al., 2022). Other studies support the claim that green performance management can enhance creative efforts (Avolio and Bass, 1995; Bahzar, 2019; Bandura, 2001).

The study highlights that companies' economic success aligns with achieving green objectives (Mousa and Othman, 2020). By rewarding employees' green creativity, green performance management helps recognize and incentivize pro-environmental behaviors (Merriman and Sen, 2012; Mousa and Othman, 2020). Ethical leaders, driven by high moral standards, are well-positioned to adopt human resource management-based control systems

1
2 like green performance management, influencing employee attitudes and behaviors toward
3 green creativity (Renwick et al., 2013).
4
5

6 We further discovered that the mediation effect of green performance management on the
7 ethical leadership–green creativity relationship strengthens when employees hold strong green
8 values. Ethical leaders foster sustainability among key stakeholders, including the business and
9 its employees (Hörisch et al., 2014). These leaders inspire pro-environmental behaviors
10 through their valid and influential positions (Nazir et al., 2021; Toor and Ofori, 2009). Our
11 results suggest that ethical leadership, which instills individual green values and establishes
12 control mechanisms like green performance management, enhances employee green creativity.
13 These findings align with Supply-Value Fit Theory (Edwards, 1996), emphasizing the
14 importance of value alignment between ethical leaders and employees. Our findings are also
15 consistent with studies that explore individual green values as crucial for environmental
16 sustainability (Al-Hawari et al., 2021; Islam et al., 2021).
17
18

19 ***Theoretical implications***

20

21 Building on the above, the study holds significance in three key areas: First, the study reinforces
22 the assertions of Social Learning Theory (Bandura and Walters, 1963) by demonstrating that
23 ethical leadership serves as a role model for employees in learning, emulating, and engaging
24 in environmentally sustainable behaviors. The effectiveness of this process is enhanced when
25 leaders utilize a green performance management system. The primary concept in the
26 aforementioned finding is that green performance management serves as a reinforcement
27 mechanism within the framework of Social Learning Theory.
28
29

30 Second, the study further supports Supply-Value Fit Theory (Edwards, 1991) by
31 demonstrating that employee green values are congruent with organizational values,
32 particularly when leaders advocate for ethics and integrate it into green performance
33
34

1
2
3 management. The conditional effect of employee green values increases value congruence and
4 enhances the perceived legitimacy of creative ideas.
5
6

7 **Third,** the study integrates Social Learning Theory (Bandura and Walters, 1963) and
8 Supply-Value Fit Theory (Edwards, 1991) by examining the mechanisms of reinforcement and
9 the relevance of value congruence within a unified framework. This theoretical integration is
10 expected to broaden the scope of future green research.
11
12

13 Lastly, this study supports ideas that have already been put forward and adds new
14 information to the existing scholarship on green HRM, ethical leadership, and green creativity.
15 Generally, ethical leadership is considered merely a moral factor that affects how well a
16 business does. Through value alignment and green performance management, two HRM
17 control methods, our study indicates that ethical leadership leads to employee creativity that is
18 advantageous for the environment. This combination goes beyond just matching theory with
19 examples to demonstrate an actually supported model that links small-scale leadership ethics
20 with large-scale sustainable systems. This study is advantageous for academics because it lays
21 the groundwork for multiple models that connect leadership, human resource management, and
22 environmental innovation. It also makes the social learning and supply-value fit theories more
23 general. Therefore, this study broadens the existing understanding of green HRM and
24 leadership while providing supporting evidence.
25
26

27 ***Practical implications***

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44 The findings hold important implications for firms and management practices. First, companies
45 should prioritize investment in ethical leadership development by educating leaders on ethics,
46 with a particular focus on promoting pro-environmental behaviors, articulating green values,
47 and advocating sustainability.
48
49
50
51
52
53
54
55

56 Second, managers should implement comprehensive green performance management by
57 systematically integrating environmental objectives, such as responsible consumption, into
58
59
60

1
2
3 performance evaluations. Provide specific feedback and link rewards or recognition to
4 measures of environmentally sustainable performance.
5
6

7 Third, managers should assess and promote individual environmental values by
8 incorporating ecological value assessments into recruitment and promotion criteria. Implement
9 internal communication and training programs that leverage cultural and religious values, such
10 as Islamic environmental stewardship in Saudi Arabia, to enhance employee alignment with
11 firm sustainability goals and foster value congruence.
12
13

14 Finally, managers may tailor strategies to recognize that employees with lower green values
15 require more significant reinforcement through green performance management, whereas those
16 with higher green values benefit from autonomy and resources to pursue green initiatives.
17 Green performance management provides the fundamental framework for both.
18

28 ***Limitations and future directions***

29

30 The study had topical, theoretical, and conceptual limitations. First, the study's focus on high-
31 impact sectors like oil, gas, and chemicals in Saudi Arabia's unique national context—
32 characterized by its oil-rich economy, Islamic culture, and ambitious Vision 2030—limits its
33 applicability to service sectors, non-resource-based economies, or significantly different
34 cultural settings.
35
36

37 Second, the research uses social learning and supply-value fit theories to emphasize
38 reinforcement and value congruence. However, certain theoretical lenses might be added to
39 cover additional SDGs and ESG targets. For instance, if combined, the Ability-Motivation-
40 Opportunity (AMO) framework for green performance management and the Theory of Planned
41 Behavior for individual green values may have offered a larger picture.
42
43

44 Finally, we picked individual green values, which are steady and less likely to capture their
45 evolution. Green creativity is examined solely as idea creation; therefore, essential steps to
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 integrate innovation in the framework are missing. Future researchers may address these
4 limitations to expand the green agenda.
5
6

7 Conclusion 8

9
10 This study provides that ethical leadership indirectly promotes green creativity in Saudi
11 Arabian energy and chemical firms. Formal green performance management systems
12 incorporate leadership ideas with Social Learning Theory-based goals and reinforcements.
13 Individual green values drive ethical leadership for developing green performance management
14 systems and green creativity. Supply-Value Fit Theory is supported by the fact that ethical
15 leaders and green performance management promote environmental principles that employees
16 share. These findings show that sustainable firms are likely to develop ethical leaders who
17 publicly promote green values, design robust green human resource management practices like
18 green performance management to institutionalize and reinforce these values through
19 performance expectations and rewards, and actively promote value congruence among
20 employees through selection, communication, and development. Future research should
21 evaluate value shift dynamics, green idea implementation, and model adaptation across
22 contexts to harness employee potential for environmental innovation.
23
24

25 References 26

27 Ahmad, I., Ullah, K., and Khan, A. (2022), "The impact of green HRM on green creativity:
28 Mediating role of pro-environmental behaviors and moderating role of ethical leadership
29 style", *The International Journal of Human Resource Management*, Vol. 33 No. 19, pp.
30 3789-3821.
31
32 Al-Hawari, M.A., Quratulain, S., and Melhem, S.B. (2021), "How and when frontline
33 employees' environmental values influence their green creativity? Examining the role of
34 perceived work meaningfulness and green HRM practices", *Journal of Cleaner
35 Production*, Vol. 310, pp.127598.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Amabile, T.M., Schatzel, E.A., Moneta, G.B., and Kramer, S.J. (2004), "Leader behaviors and
4
5 the work environment for creativity: Perceived leader support", *The leadership*
6
7 *Quarterly*, Vol. 15 No. 1, pp. 5-32.
8
9

10
11 Amran, Y.A., Amran, Y.M., Alyousef, R., and Alabduljabbar, H. (2020), "Renewable and
12
13 sustainable energy production in Saudi Arabia according to Saudi Vision 2030; Current
14
15 status and future prospects", *Journal of Cleaner Production*, Vol. 247, pp. 119602.
16
17

18 Aramco Sustainability Report (2023), <https://www.aramco.com/en/sustainability/sustainability-report>.
19
20

21 Arici, H.E., and Uysal, M. (2022), "Leadership, green innovation, and green creativity: A
22
23 systematic review", *The Service Industries Journal*, Vol. 42 No. 5-6, pp. 280-320.
24
25

26 Arulrajah, A.A., Opatha, H., and Nawaratne, N. (2015), "Green human resource management
27
28 practices: A review", *Sri Lankan Journal of Human Resource Management*, Vol. 5 No.
29
30 1, pp. 1-16.
31
32

33 Avolio, B.J., and Bass, B.M. (1995), "Individual consideration viewed at multiple levels of
34
35 analysis: A multi-level framework for examining the diffusion of transformational
36
37 leadership", *The Leadership Quarterly*, Vol. 6 No. 2, pp. 199-218.
38
39

40 Bahuguna, P.C., Srivastava, R., and Tiwari, S. (2023), "Two-decade journey of green human
41
42 resource management research: a bibliometric analysis", *Benchmarking: An*
43
44 *International Journal*, Vol. 30 No. 2, pp. 585-602.
45
46

47 Bahzar, M. (2019), "Effects of green transformational and ethical leadership on green
48
49 creativity, eco-innovation and energy efficiency in higher education sector of Indonesia",
50
51 *International Journal of Energy Economics and Policy*, Vol. 9 No. 6, pp. 408-414.
52
53

54 Bandura, A. (2001), "Social cognitive theory: An agentic perspective", *Annual Review of*
55
56 *Psychology*, Vol. 52 No. 1, pp. 1-26.
57
58
59
60

1
2
3 Bandura, A., and Walters, R.H. (1963), *Social learning and personality development*. Holt
4
5 Rinehart and Winston: New York.
6
7 Bandura, A., and Walters, R.H. (1977), *Social Learning Theory* (Vol. 1, pp. 141-154),
8
9 Englewood Cliffs, NJ: Prentice Hall.
10
11 Barclay, P., and Barker, J.L. (2020), "Greener than thou: people who protect the environment
12
13 are more cooperative, compete to be environmental, and benefit from reputation",
14
15 *Journal of Environmental Psychology*, Vol. 72, pp. 101441.
16
17 Bedi, A., Alpaslan, C.M., and Green, S. (2016), "A meta-analytic review of ethical leadership
18
19 outcomes and moderators", *Journal of Business Ethics*, Vol. 139, pp. 517-536.
20
21 Beusch, P., Frisk, J.E., Rosen, M., and Dilla, W. (2022), "Management control for
22
23 sustainability: Towards integrated systems", *Management Accounting Research*, Vol. 54,
24
25 pp. 100777.
26
27 Brown, M.E., and Treviño, L.K., and Harrison, D.A. (2005), "Ethical leadership: A social
28
29 learning perspective for construct development and testing", *Organizational Behavior
30
31 and Human Decision Processes*, Vol. 97 No. 2, pp. 117-134.
32
33 Chaudhary, R. (2020), "Green human resource management and employee green behavior: an
34
35 empirical analysis", *Corporate Social Responsibility and Environmental Management*,
36
37 Vol. 27 No. 2, pp. 630-641.
38
39 Chen, Y.S., and Chang, C.H. (2013), "The determinants of green product development
40
41 performance: Green dynamic capabilities, green transformational leadership, and green
42
43 creativity", *Journal of Business Ethics*, Vol. 116, pp. 107-119.
44
45 Chou, C.J. (2014), "Hotels' environmental policies and employee personal environmental
46
47 beliefs: Interactions and outcomes", *Tourism Management*, Vol. 40, pp. 436-446.
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Davidov, E., Schmidt, P., and Schwartz, S.H. (2008), "Bringing values back in: The adequacy
4
5 of the European Social Survey to measure values in 20 countries", *Public Opinion*
6
7 *Quarterly*, Vol. 72 No. 3, pp. 420-445.
8
9

10 Dumont, J., Shen, J., and Deng, X. (2017), "Effects of green HRM practices on employee
11
12 workplace green behavior: The role of psychological green climate and employee green
13
14 values", *Human Resource Management*, Vol. 56 No. 4, pp. 613-627.
15
16

17 Edwards, J.R., and Cable, D.M. (2009), "The value of value congruence", *Journal of Applied*
18
19 *Psychology*, Vol. 94 No. 3, pp. 654-677.
20
21

22 Edwards, J.R., and Shipp, A.J. (2007), "The relationship between person-environment fit and
23
24 outcomes: An integrative theoretical framework", in C. Ostroff and T. A. Judge (Eds.),
25
26 *Perspectives on Organizational Fit* (pp. 209-258), Lawrence Erlbaum Associates
27
28 Publishers.
29
30

31 Edwards, J.R. (1991), *Person-job fit: A conceptual integration, literature review, and*
32
33 *methodological critique*, John Wiley & Sons.
34
35

36 Edwards, J.R. (1996), "An examination of competing versions of the person-environment fit
37
38 approach to stress", *Academy of Management Journal*, Vol. 39 No. 2, pp. 292-339.
39
40

41 Gilal, F.G., Ashraf, Z., Gilal, N.G., Gilal, R.G. and Channa, N.A. (2019), "Promoting
42
43 environmental performance through green human resource management practices in
44
45 higher education institutions: a moderated mediation model", *Corporate Social*
46
47 *Responsibility and Environmental Management*, Vol. 26 No. 6, pp. 1579-1590.
48
49

50 Hair Jr, J.F., Hult, G.T.M., Ringle, C.M., and Sarstedt, M. (2021), *A primer on partial least*
51
52 *squares structural equation modeling (PLS-SEM)*, Sage publications.
53
54

55 Hameed, Z., Khan, I.U., Islam, T., Sheikh, Z., and Naeem, R.M. (2020), "Do green HRM
56
57 practices influence employees' environmental performance?", *International Journal of*
58
59 *Manpower*, Vol. 41 No. 7, pp. 1061-1079.
60

1
2
3 Han, Z., Ni, M., Huang, M., and Bao, Z. (2025), "Environmentally-special responsible
4 leadership and employee green creativity: The role of green job autonomy and green job
5 resource adequacy", *Journal of Cleaner Production*, Vol. 494, pp. 144938.
6
7
8
9
10 Hörisch, J., Freeman, R.E., and Schaltegger, S. (2014), "Applying stakeholder theory in
11 sustainability management: Links, similarities, dissimilarities, and a conceptual
12 framework", *Organization and Environment*, Vol. 27 No. 4, pp. 328-346.
13
14
15
16 Iqbal, Q., and Piwowar-Sulej, K. (2023), "Organizational citizenship behavior for the
17 environment decoded: sustainable leaders, green organizational climate and person-
18 organization fit", *Baltic Journal of Management*, Vol. 18 No. 3, pp. 300-316.
19
20
21
22
23 Islam, T., Ahmad, S., and Ahmed, I. (2023), "Linking environment specific servant leadership
24 with organizational environmental citizenship behavior: The roles of CSR and
25 attachment anxiety", *Review of Managerial Science*, Vol. 17 No. 3, pp. 855-879.
26
27
28
29
30 Islam, T., Hussain, D., Ahmed, I., and Sadiq, M. (2021), "Ethical leadership and environment
31 specific discretionary behavior: The mediating role of green human resource
32 management and moderating role of individual green values", *Canadian Journal of
33 Administrative Sciences/Revue Canadienne Des Sciences de L'Administration*, Vol. 38
34
35
36
37
38
39
40 No. 4, pp. 442-459.
41
42 Islam, T., Khan, M.M., Ahmed, I., and Mahmood, K. (2021a), "Promoting in-role and extra-
43 role green behavior through ethical leadership: mediating role of green HRM and
44 moderating role of individual green values", *International Journal of Manpower*, Vol.
45
46
47
48
49 No. 6, pp. 1102-1123.
50
51 Jabbour, C.J.C., Santos, F.C.A., and Nagano, M.S. (2010), "Contributions of HRM throughout
52 the stages of environmental management: methodological triangulation applied to
53 companies in Brazil", *The International Journal of Human Resource Management*, Vol.
54
55
56
57
58
59 No. 7, pp. 1049-1089.
60

1
2
3 Kock, N. (2015), "Common method bias in PLS-SEM: A full collinearity assessment
4 approach", *International Journal of e-Collaboration*, Vol. 11 No. 4, pp. 1-10.
5
6 Kock, N. (2022), *WarpPLS User manual: Version 8.0*, Laredo, TX: ScriptWarp Systems.
7
8 Search.
9
10 MacKinnon, D.P., Coxe, S., and Baraldi, A.N. (2012), "Guidelines for the investigation of
11 mediating variables in business research", *Journal of Business and Psychology*, Vol. 27,
12 pp. 1-14.
13
14 Masterson, S.S., and Lensges, M. (2015), "Leader-Member Exchange and Justice", in Talya
15 N. Bauer, and Berrin Erdogan (eds), *The Oxford Handbook of Leader-Member Exchange*
16 (pp. 67-86), Oxford Library of Psychology.
17
18 Merriman, K.K., Sen, S., (2012), "Incenting managers toward the triple bottom line: An agency
19 and social norm perspective", *Human Resource Management*, Vol. 51 No. 6, pp. 851-
20 871.
21
22 Mousa, S.K., and Othman, M. (2020), "The impact of green human resource management
23 practices on sustainable performance in healthcare organisations: A conceptual
24 framework", *Journal of Cleaner Production*, Vol. 243, pp. 118595.
25
26 Muthén, L.K. and Muthén, B.O. (1998), *Mplus User's Guide (Version 7)*, Muthén and Muthén,
27
28 Los.
29
30 Nasir, N.M., Nair, M.S., and Ahmed, P.K. (2022), "Environmental sustainability and
31 contemporary Islamic society: A Shariah perspective", *Asian Academy of Management
32 Journal*, Vol. 27 No. 2, pp. 211-231.
33
34 Nazir, S., Shafi, A., Asadullah, M.A., Qun, W., and Khadim, S. (2021), "How does ethical
35 leadership boost follower's creativity? Examining mediation and moderation
36 mechanisms", *European Journal of Innovation Management*, Vol. 24 No. 5, pp. 1700-
37 1729.
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Pandey, A., and Gupta, R.K. (2008), "A perspective of collective consciousness of business
4 organizations", *Journal of Business Ethics*, Vol. 80 No. 4, pp. 889-898.
5
6 Piwowar-Sulej, K., Austen, A., and Iqbal, Q. (2023), "Fostering three types of green behavior
7 through green HRM in the energy sector: The conditional role of environmental
8 managerial support", *Baltic Journal of Management*, Vol. 18 No. 4, pp. 509-524.
9
10 Podsakoff, P.M., MacKenzie, S.B., Lee, J.Y., and Podsakoff, N.P. (2003), "Common method
11 biases in behavioral research: A critical review of the literature and recommended
12 remedies", *Journal of Applied Psychology*, Vol. 88 No. 5, pp. 879-903.
13
14 Rehan, M., Abbass, K., Hussain, Y., Usman, M., and Makhdom, M.S.A. (2024), "Green human
15 resource management in Pakistan tourism industry: Moderating role of environmental
16 knowledge and individual green values", *International Journal of Environmental Science
17 and Technology*, Vol. 21 No. 3, pp. 2505-2516.
18
19 Renwick, D.W., Redman, T., and Maguire, S. (2013), "Green human resource management: A
20 review and research agenda", *International Journal of Management Reviews*, Vol. 15
21 No. 1, pp. 1-14.
22
23 Sarkawi, A.A., Abdullah, A., and Dali, N.M. (2016), "The concept of sustainability from the
24 Islamic perspectives", *International Journal of Business, Economics and Law*, Vol. 9 No.
25 5, pp. 112-116.
26
27 Sengüllendi, M., Bilgetürk, M., and Afacan, F. (2024), "Ethical leadership and green
28 innovation: The mediating role of green organizational culture", *Journal of
29 Environmental Planning and Management*, Vol. 67 No. 8, pp. 1702-1723.
30
31 Shah, M. (2019), "Green human resource management: Development of a valid measurement
32 scale", *Business Strategy and the Environment*, Vol. 28 No. 5, pp. 771-785.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Tang, G., Chen, Y., Jiang, Y., Paillé, P., and Jia, J., (2018), "Green human resource
4 management practices: Scale development and validity", *Asia Pacific Journal of Human
5 Resources*, Vol. 56 No. 1, pp. 31-55.
6
7
8
9
10 Toor, S.U.R., and Ofori, G. (2009), "Ethical leadership: Examining the relationships with full
11 range leadership model, employee outcomes, and organizational culture", *Journal of
12 Business Ethics*, Vol. 90, pp. 533-547.
13
14
15
16 Zameer, H., Wang, Y., and Yasmeen, H. (2020), "Reinforcing green competitive advantage
17 through green production, creativity and green brand image: implications for cleaner
18 production in China", *Journal of Cleaner Production*, Vol. 247, pp. 119119.
19
20
21
22 Zhou, Y., Wang, Y., Wu, Y., Wang, T., Wang, S., Zhou, X., Lodhi, M. I., Adam, N.A., and
23 Bilal, M. (2025), "Transitioning to green energy: Assessing environmental development
24 and sustainability in the Saudi Arabia", *Sustainable Futures*, pp. 100596.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

24	Standardized threshold difference count ratio	1.00	1.00	1.00	Ideal: = 1.00, Acceptable: $\geq .70$
25	Standardized threshold difference sum ratio	1.00	1.00	1.00	Ideal: = 1.00, Acceptable: $\geq .70$
26	<hr/> <i>N= 250, ***p < .001</i>				
27					
28					
29					
30					
31					
32					
33					
34					
35					
36					
37					
38					
39					
40					
41					
42					
43					
44					
45					
46					
47					
48					
49					
50					
51					
52					
53					
54					
55					
56					
57					
58					
59					
60					

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

tal of Manpower

Table III. Indicator Statistics

Indicators	Constructs				f^2	<i>T</i>	CI _{95%}
	EL	GPM	GC	IGV			
EL1	.80	-.16	.07	-.06	.11	14.59	[.70; .91]
EL2	.58	-.11	.10	.02	.06	10.20	[.47; .70]
EL3	.67	.22	-.23	.00	.08	11.79	[.56; .78]
EL4	.83	.12	-.05	-.06	.12	15.07	[.72; .93]
EL5	.86	.08	-.11	-.03	.12	15.68	[.75; .96]
EL6	.75	-.13	.01	-.04	.10	13.49	[.64; .86]
EL7	.79	-.05	.06	.04	.11	14.32	[.68; .90]
EL8	.80	.13	-.02	.06	.11	14.51	[.69; .91]
EL9	.80	-.01	.04	.10	.11	14.56	[.69; .91]
EL10	.77	-.11	.15	-.01	.10	13.86	[.66; .88]
GPM1	.02	.88	-.06	.00	.17	16.27	[.78; .99]
GPM2	.03	.89	.04	.02	.17	16.38	[.78; 1.00]
GPM3	.03	.89	.06	-.06	.17	16.47	[.79; 1.00]
GPM4	-.09	.87	-.02	-.02	.16	16.01	[.77; .98]
GPM5	-.02	.89	.02	.05	.17	16.42	[.79; 1.00]
GPM6	.02	.88	-.05	.01	.17	16.21	[.78; .99]
GC1	-.01	.03	.86	.01	.15	15.83	[.76; .97]
GC2	-.02	.01	.91	-.10	.17	16.88	[.81; 1.02]
GC3	-.02	.03	.93	.02	.17	17.28	[.83; 1.04]
GC4	.01	.03	.93	.02	.17	17.23	[.82; 1.04]
GC5	.00	-.05	.93	.04	.17	17.14	[.82; 1.03]
GC6	.04	-.05	.91	.02	.17	16.75	[.80; 1.01]
IGV1	.02	.02	.09	.84	.20	15.29	[.73; .95]
IGV2	.02	.12	-.04	.87	.21	15.96	[.76; .98]
IGV3	-.03	.01	-.02	.86	.21	15.67	[.75; .96]
IGV4	.03	-.20	.10	.82	.19	15.02	[.72; .93]
IGV5	-.04	.05	-.13	.83	.20	15.21	[.73; .94]

N = 250, f^2 = Effect Size, CI_{95%} = Confidence Interval; All factor loadings (λ), in bold face, are significant at $p < .001$ and Standard Error = .05 – .06; Factor loadings are unrotated and cross-loadings (λ_c) are oblique-rotated; EL = Ethical Leadership, GPM = Green Performance Management, GC = Green Creativity, IGV = Individual Green Values.

Table IV. Test of Hypotheses

Effects	B	t	CI _{95%}	f ²	R ²	Q ²
Model 1: Baseline (Hypothesis 1)						
<i>Control variables</i>						
Gender → GC	.09	1.48	[-.03; .21]	.01		
Education → GC	.26	4.28 ***	[.14; .38]	.08		
Experience → GC	-.21	-3.41 ***	[-.33; -.09]	.05		
<i>Direct effect</i>						
EL → GC (path c)	.30	5.00 ***	[.18; .42]	.11	.26	.26
Model 2: Mediation (Hypothesis 2)						
<i>Control variables</i>						
Gender → GC	.03	.43	[-.10; .15]	.00		
Education → GC	.13	2.03 *	[.01; .25]	.04		
Experience → GC	-.11	-1.70	[-.23; .02]	.03		
<i>Direct effects</i>						
EL → GPM (path a)	.36	6.05 ***	[.24; .48]	.13	.13	.13
GPM → GC (path b)	.64	11.27 ***	[.53; .75]	.47	.58	.59
EL → GC controlling GPM (path c')	.11	1.84	[-.01; .24]	.04		
<i>Indirect effect</i>						
EL → GPM → GC	.23	5.35 ***			.09	
Model 3: Moderated Mediation (Hypothesis 3)						
<i>Control variables</i>						
Gender → GC	.03	.43	[-.10; .15]	.00		
Education → GC	.13	2.03 *	[.01; .25]	.04		
Experience → GC	-.11	-1.70	[-.23; .02]	.03		
<i>Direct effects</i>						
EL → GPM	.37	6.14 ***	[.25; .48]	.13	.15	.15
GPM → GC	.64	11.27 ***	[.53; .75]	.47	.58	.57
EL → GC	.11	1.84	[-.01; .24]	.04		
<i>Moderated effect</i>						
EL X IGV → GPM	.15	2.51 **	[.03; .28]	.02		
<i>Conditional indirect effect</i>						
EL → GC	.23	5.42 ***			.09	
<i>Moderated mediation effect</i>						
IGV	.10	2.25 *			.01	

N = 250, *p < .05, **p < .01, ***p < .001; EL = Ethical Leadership, GPM = Green Performance Management, GC = Green Creativity, IGV = Individual Green Values.

Table V. Robustness Check – Additivity Assumptions

Effects	B	t	CI _{95%}	f ²	R ²	Q ²
Model 4: Additivity Assumption – H2						
<i>Control variables</i>						
Gender → GC	.03	.45	[-.10; .15]	.00		
Education → GC	.12	1.96 *	[.01; .24]	.04		
Experience → GC	-.10	-1.66	[-.23; .02]	.03		
<i>Direct effects</i>						
EL → GPM	.36	6.05 ***	[.24; .48]	.13	.13	.13
GPM → GC	.63	11.02 ***	[.52; .74]	.46	.59	.59
EL → GC	.11	1.70	[-.02; .23]	.04		
<i>Moderated effect</i>						
EL X GPM → GC	.07	1.06	[-.06; .19]	.02		
Model 5: Additivity Assumption – H3						
<i>Control variables</i>						
Gender → GC	.03	.41	[-.10; .15]	.00		
Education → GC	.12	2.01 *	[.01; .25]	.04		
Experience → GC	-.11	-1.75	[-.23; .01]	.03		
<i>Direct effects</i>						
EL → GPM	.36	6.05 ***	[.24; .48]	.13	.13	.13
GPM → GC	.62	10.97 ***	[.51; .74]	.46	.56	.59
EL → GC	.12	1.85	[-.01; .24]	.04		
<i>Moderated effect</i>						
GPM X IGV → GC	-.05	-.78	[-.17; .07]	.01		
<i>Conditional indirect effect</i>						
EL → GC	.22	5.21 ***			.09	
<i>Mediated moderation effect</i>						
IGV	-.05	-.78			.01	

N = 250, *p < .05, ***p < .001; EL = Ethical Leadership, GPM = Green Performance Management, GC = Green Creativity, IGV = Individual Green Values.

Figure 1. Summary of Results – Hypothesized Relationships

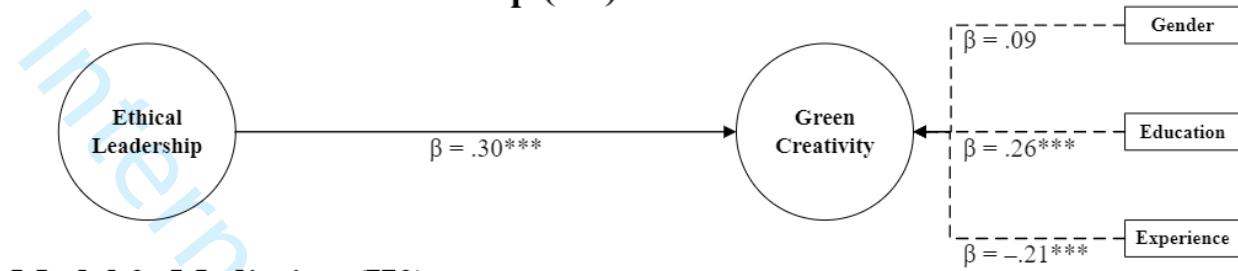
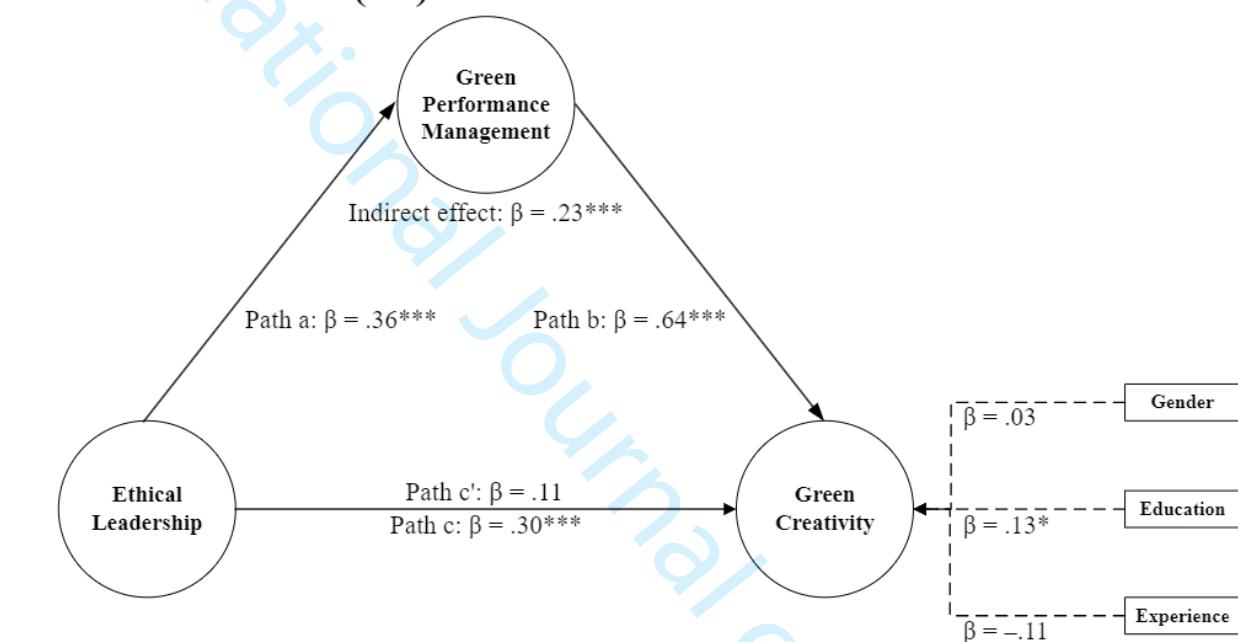
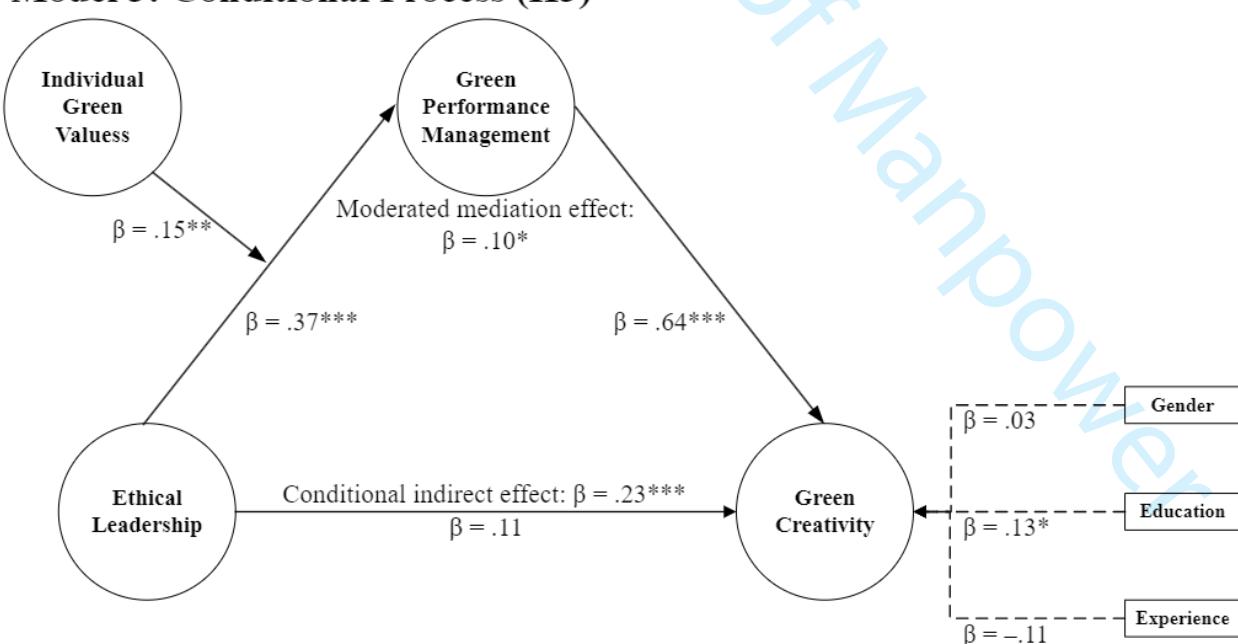



Model 1: Baseline Relationship (H1)**Model 2: Mediation (H2)****Model 3: Conditional Process (H3)**

Figure 2. Summary of Results – Robustness Check

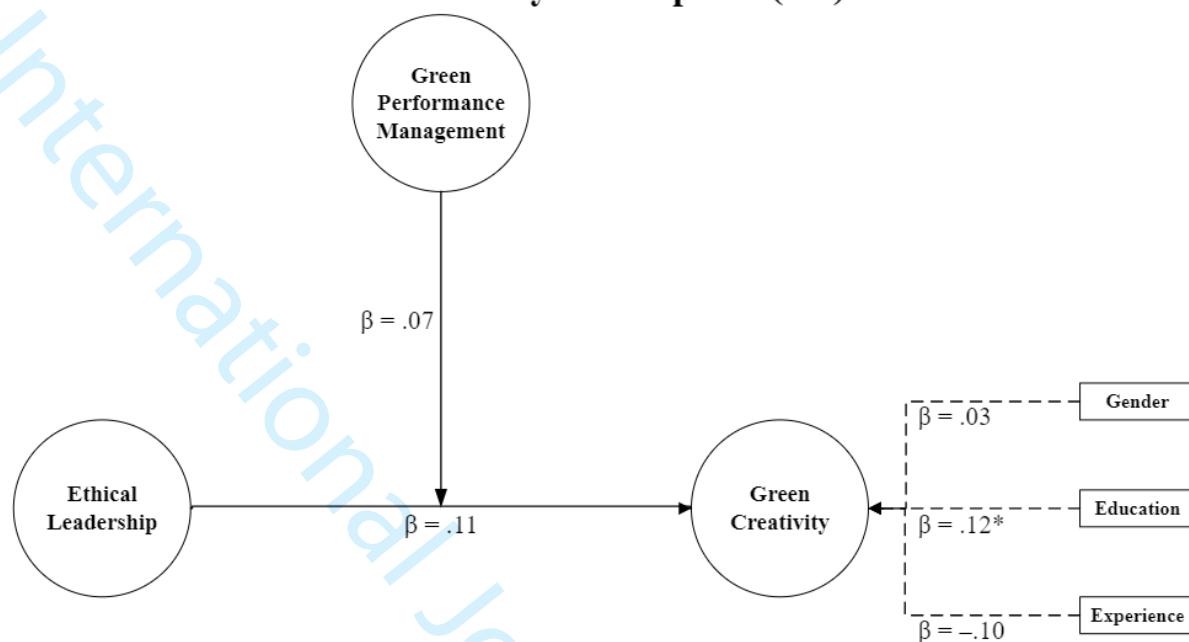
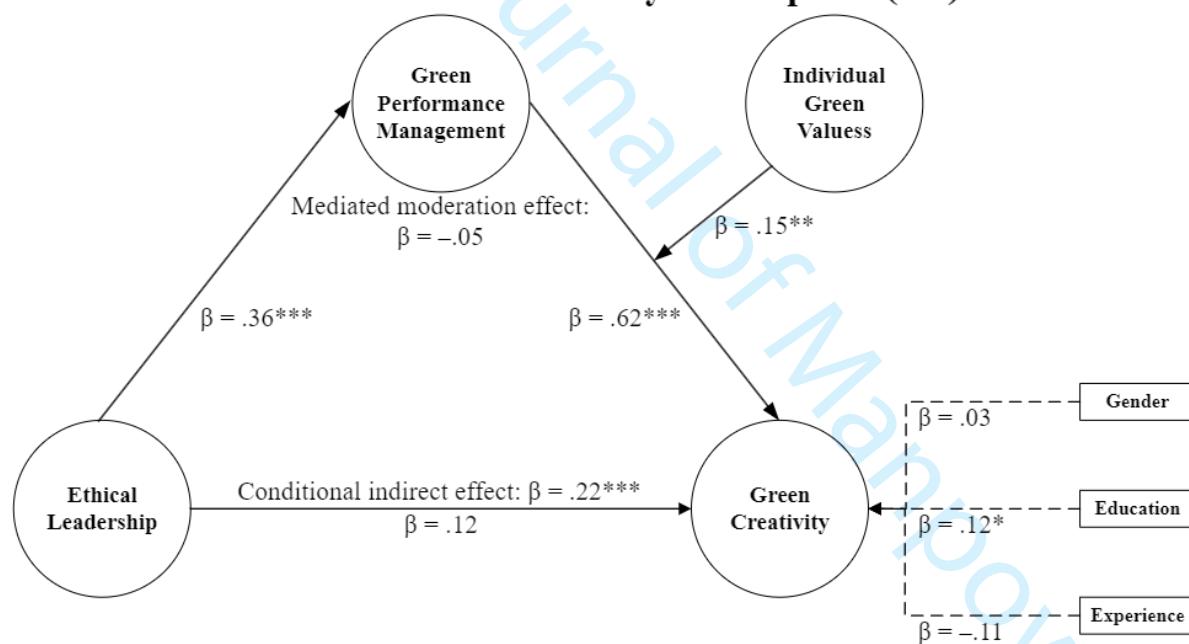
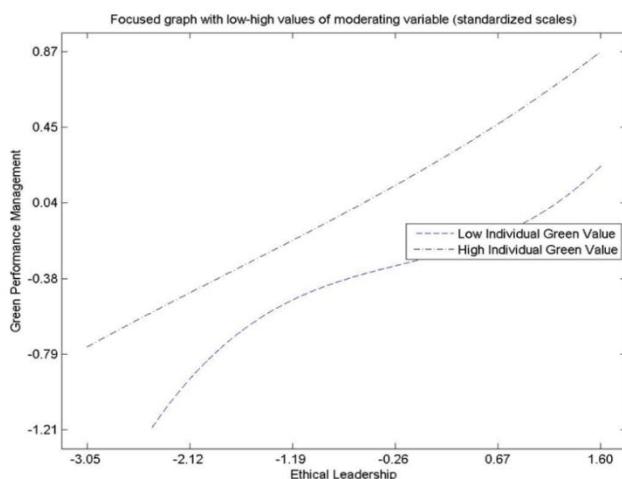
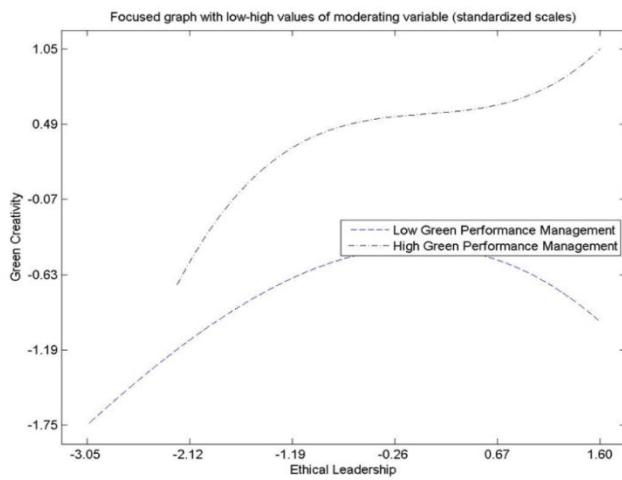
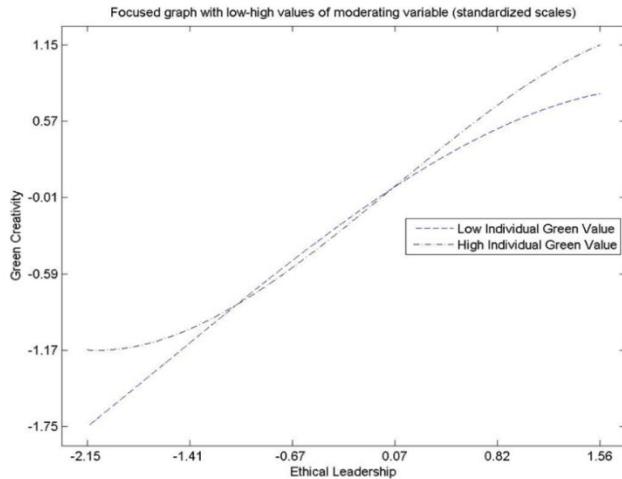




Model 4: Moderation as Additivity Assumption (H2)**Model 5: Conditional Process - Additivity Assumption (H3)**

Figure 3. Interaction Effects


Model 3: Interaction Effect (H3)

Model 4: Interaction Effect - Additivity Assumption (H2)

Model 5: Interaction Effect - Additivity Assumption (H3)

International Journal of Manpower

Manuscript ID: IJM-01-2025-0035.R1

How Ethical Leadership and Green Values Influence Green Performance Management and Creativity? Evidence from Firms in Saudi Arabia

On successful completion of the first round of review, we appreciate more words of encouragement and valuable feedback from the anonymous reviewers as well as from Dr. Abhishek Behl, Associate Editor, International Journal of Manpower. We are pleased that one reviewer is entirely satisfied with the manuscript, and we are also motivated to still improve it in light of the comments from the other reviewer. These comments need minor revisions to improve the quality of our article by bringing in more clarity where needed. We have once again tried to address all the concerns of the reviewer in this second round of review. We hope the updated manuscript is much better and adheres to the guidelines of the International Journal of Manpower. The following table contains our replies to the two reviewers' remarks. Additionally, as desired by the Editor, the text modifications are highlighted in yellow.

Reviewer 1

Review Question	Comment	Reply
R1-1. Originality: Does the paper contain new and significant information adequate to justify publication?	R1-1. Yes, this research addresses a timely topic. The arguments are well-developed, the data is appropriately analysed, and the results offer insights that have the potential to inform future research and practice.	We are grateful to you for providing insightful feedback on the first round of review. We appreciate that you have taken keen interest in improving our study and provided more developmental feedback for the second round of review. We once again assure you that we have taken all your comments seriously and tried to address them in letter and spirit.
R1-1. Thank you for your positive feedback regarding the relevance and quality of the research. We appreciate your recognition of the well-developed arguments and thorough data analysis. We believe that the insights gained from this study will indeed contribute to both future research and practical applications in the field. Your encouragement is invaluable as we continue to explore this important topic.		

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

R1-2. Relationship to Literature: Does the paper demonstrate an adequate understanding of the relevant literature in the field and cite an appropriate range of literature sources? Is any significant work ignored?:

R1-2. Yes, the literature review has been improved upon by the author(s) and flows well now. However, the introduction section still needs some work. The author(s) write that "significant gaps remain in understanding the mechanistic roles and boundary conditions that shape the relationship between ethical leadership and green creativity". So what? Why is it important to study these gaps? the mere presence of a gap does not in itself justify undertaking a study. A stronger rationale is needed to explain why this particular gap should be addressed. Specifically, the paper would benefit from clarifying the motivation behind the study. Why filling this gap is important for advancing the literature, and how the findings will be relevant and meaningful for practitioners. Without this justification, the contribution risks appearing descriptive rather than significant.

R1-2. Thank you very much for this wise remark. We introduced changes to the opening to make the theory and practical reasons for filling the gap clearer. We added a new paragraph that goes into more detail about why it's important to understand the mechanics and limits of ethical leadership and green creativity. The addition makes it clearer in the Introduction section that this study contributes to theory by showing how ethical leaders can encourage green creation through feedback and value alignment. It also stresses how important this study is for managers in industries that are pressured to be more environmentally friendly. This addition strengthens the incentive reasoning and demonstrates the study's academic and practical value. The following text is added at p. 3, l. 10 - 25).

"It makes sense to address the aforementioned gaps. At the theoretical level, we could learn more about the connection between environmentally friendly creativity and ethical leadership by describing the limits and ways in which these two concepts work together. We should go beyond the simple question of whether leaders can influence environmentally friendly new ideas. The existing conversation has focused on direct connections, resulting in a lack of new explanations. This study contributes to the expanding research on green HRM and leadership by examining sustainable

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

behaviors from a process perspective. It does this by combining value alignment (by individual green values) and feedback processes (through green performance management). On the practical side, there exists a pressure on companies in businesses with big effects on the environment, like oil, gas, and chemicals, to achieve a balance between getting financial strength and taking care of the environment. Thus, our study encourages managers to first understand the processes that encourage green creativity in order to make leadership programs, performance review systems, and human resources policies that promote both moral behavior and new ideas for sustainability. Therefore, we expect that addressing the abovementioned gaps may guide companies to turn ethical leadership into real, visible, and long-lasting environmental benefits.”

R1-3. Methodology: Is the paper's argument built on an appropriate base of theory, concepts or other ideas? Has the research or equivalent intellectual work on which the paper is based been well designed? Are the methods employed appropriate?:

R1-3. Yes, the new section on participants and procedures is well crafted and clarifies previously unanswered questions.

R1-3. Thank you for your positive feedback on the new section regarding participants and procedures. We are glad to know that it effectively addresses previous uncertainties. Your insights are invaluable, and I appreciate your acknowledgment of the enhancements made to improve clarity in the study.

R1-4. Results: Are results presented clearly and analysed appropriately? Do

R1-4. Yes, the results are clearly presented and analysed appropriately.

R1-4. We are grateful to you for your encouraging remark regarding the presentation and analysis of the

1
2
3
4
5
6
7
8
9
the conclusions adequately
tie together the other
elements of the paper?:

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
R1-5. Implications for
research, practice and/or
society: Does the paper
identify clearly any
implications for research,
practice and/or
society? Does the paper
bridge the gap between
theory and practice? How
can the research be used in
practice (economic and
commercial impact), in
teaching, to influence
public policy, in research
(contributing to the body of
knowledge)? What is the
impact upon society
(influencing public
attitudes, affecting quality
of life)? Are these
implications consistent with
the findings and
conclusions of the paper?:

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
results. We strive to communicate
our findings clearly and effectively,
and it is encouraging to know that
this effort resonated with you.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
R1-5. The implications are
quite descriptive in nature.
In the theoretical
implications section, the
authors propose that their
research supports the
theories of social learning
and supply-value fit.
However, is that a
significant contribution?
Putting the findings of this
research in the broader
context of the literature on
green HRM, ethical
leadership and green
creativity, would help in
this area. How do the
findings of this research
contribute to the broader
literature? How does it
bring novelty and value to
this literature? Why should
researchers care about this?
Trying to answer some of
these questions will help
you articulate your
theoretical contributions in
a better way.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
R1-5. We appreciate this valuable
suggestion. We have expanded the
theoretical implications section by
adding the final paragraph to situate
our contribution within the broader
literature on green HRM, ethical
leadership, and green creativity.
The revised paragraph clarifies that
our study contributes novelty by (1)
identifying green performance
management as a concrete
reinforcement mechanism through
which ethical leadership promotes
creativity, and (2) integrating
individual green values as a
boundary condition linking
leadership ethics to HRM systems.
These additions highlight how the
study advances theory
development rather than merely
supporting existing frameworks.
This revision strengthens the
articulation of our theoretical
contribution and clarifies its
significance for future research.
The following text is added at *p. 21,
l. 5 - 16*).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
“Lastly, this study supports
ideas that have already been
put forward and adds new
information to the existing
scholarship on green HRM,
ethical leadership, and green
creativity. Generally, ethical
leadership is considered
merely a moral factor that
affects how well a business
does. Through value
alignment and green
performance management,
two HRM control methods,
our study indicates that
ethical leadership leads to

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

employee creativity that is advantageous for the environment. This combination goes beyond just matching theory with examples to demonstrate an actually supported model that links small-scale leadership ethics with large-scale sustainable systems. This study is advantageous for academics because it lays the groundwork for multiple models that connect leadership, human resource management, and environmental innovation. It also makes the social learning and supply-value fit theories more general. Therefore, this study broadens the existing understanding of green HRM and leadership while providing supporting evidence.

R1-6. Quality of Communication: Does the paper clearly express its case, measured against the technical language of the fields and the expected knowledge of the journal's readership? Has attention been paid to the clarity of expression and readability, such as sentence structure, jargon use, acronyms, etc.:

R1-6. Yes, the paper is readable and I can see that several typing errors have been corrected now.

R1-6. Thank you for your positive feedback! We are glad to know that you have noticed that the readability of our manuscript is much improved and that the typing errors have been addressed. We appreciate your support and engagement!

We once again thank you for taking the time to review our paper and provide insightful feedback.