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A B S T R A C T 

Gravitational lensing of background galaxies by intervening matter is a powerful probe of the cosmological model. In the era 
of Stage IV surveys, contamination from galaxies below the detection threshold has emerged as a significant source of bias. 
Adopting a noise-bias-free machine-learning method to estimate shear, we quantify the impact of faint galaxies for a Euclid-like 
survey. In our baseline simulations, faint blends induce a multiplicative shear bias of −0.008, well above Euclid’s requirement. 
Similar to previous studies, we find that calibration simulations must include neighbouring galaxies to AB apparent magnitudes 
as faint as 27.0 ( + 2.1, −0.9) and within approximately 1.0 ( + 0.2, −0.2) arcsec of each bright sample galaxy (BSG; the galaxy 

for which shear is measured). By varying faint galaxy properties, we identify which ones significantly affect shear biases and 

quantify how well they must be constrained. Crucially, we find that biases not only depend on the mean projected faint-galaxy 

density and apparent-magnitude distribution across the sample, but also on how these quantities vary with the observed brightness 
of the BSG. Furthermore, biases are sensitive to radial and tangential alignments and positional anisotropy of faint galaxies 
relative to BSGs. By contrast, shear coherence between BSGs and faint galaxies, parallel orientation alignments, and variations 
in the faint galaxy size–magnitude relation have negligible impact within the parameter ranges explored. Our results guide 
calibration simulations and highlight the critical role of deep observations in measuring the properties of faint galaxies. 

Key words: gravitational lensing: weak – methods: data analysis – cosmology: observations. 
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 I N T RO D U C T I O N  

eak gravitational lensing provides a powerful probe of cosmic 
tructure, making it one of the main science drivers for large- 
cale cosmological surveys. Stage IV missions such as Euclid 1 (R. 
aureijs et al. 2011 ; L. Amendola et al. 2013 ), the Vera C. Rubin
bservatory’s Legacy Survey of Space and Time 2 (LSST; LSST Dark 
nergy Science Collaboration 2012 ), and NASA’s Nancy Grace 
oman Space Telescope 3 (D. Spergel et al. 2015 ) aim to deliver
ub-percent level constraints on cosmological parameters, including 
he dark energy equation-of-state parameter w0 . Achieving this level 
f precision requires stringent control of systematic biases in weak 
ensing measurements. 

Sources of systematic bias include galaxy shape measurement (C. 
eymans et al. 2006 ; R. Massey et al. 2007 ; T. D. Kitching et al. 2012 ;
. Mandelbaum et al. 2015 ), photometric redshifts (H. Hildebrandt 
t al. 2010 ), intrinsic alignments (e.g. C. M. Hirata & U. c. v. Seljak
004 ; B. Joachimi & S. L. Bridle 2010 ; C. Heymans et al. 2013 ), and
he modelling of non-linear structure and baryonic effects (see also 
. Mandelbaum 2018 , for a review). Shape measurement systematics 

nclude model-fitting bias (L. M. Voigt & S. L. Bridle 2010 ), noise
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ias (T. Kacprzak et al. 2012 ; A. Refregier et al. 2012 ), and modelling
f the point-spread function (PSF; S. Paulin-Henriksson et al. 2008 ),
ncluding wavelength-dependent effects (E. S. Cypriano et al. 2010 ; 
. M. Voigt et al. 2012 ). A bias that has emerged more recently
s a significant concern is blending – flux contamination from 

eighbouring or overlapping galaxies that affects both the detection 
nd shape measurement of sources (e.g. S. Samuroff et al. 2018 ).
hese galaxies may be physically associated with the source (e.g. 
ithin groups or clusters) or unrelated galaxies projected at small 

ngular separation. 
While some bright blends – i.e. those above the detection threshold 

can be mitigated using deblending algorithms (e.g. B. Arcelin et al.
020 ; R. Zhang et al. 2024 ) or catalogue-level flagging based on
EXTRACTOR ’s output parameters (E. Bertin 2011 ; J. Zuntz et al.
018 ), galaxies below the detection threshold cannot be directly 
emoved yet still contribute flux to the images of galaxies used for
hear estimation. We refer to the galaxies used for shear estimation
s bright sample galaxies (BSGs), and their undetected neighbours 
s faint galaxies. These faint blends, despite being undetected, can 
ntroduce significant shear biases if their presence is ignored i.e. if
he bright galaxy used for shear estimation is assumed to be isolated.
tage III surveys, for example the Dark Energy Survey (DES) 4 Year
 analysis, have incorporated deep image simulations to model these 
ffects, extending the simulated galaxy population to magnitudes as 
 https://www.darkenergysurvey.org/
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aint as mAB ∼ 27 . 5 (N. MacCrann et al. 2022 ). Although some shear
easurement techniques aim to reduce dependence on simulations,

uch as METACALIBRATION and METADETECTION (E. Huff & R. Man-
elbaum 2017 ; E. S. Sheldon & E. M. Huff 2017 ; E. S. Sheldon et al.
023 ), simulations nevertheless remain a key component of weak
ensing analyses – particularly for those using model-fitting methods
uch as LENS fit (L. Miller et al. 2007 ; S.-S. Li et al. 2023 ). In such
ases, assumptions about the faint galaxy population can affect shear
alibration and shift cosmological constraints. However, the extent
o which the properties of the faint galaxy population in these simula-
ions must match those in the data still requires further investigation.

In this paper, we carry out a systematic study of the biases
rising from faint blends, using Euclid as the reference survey.
e quantify the sensitivity of the shear bias to several faint galaxy

roperties, such as the limiting magnitude to which galaxies must
e simulated and the maximum separation from the BSG at which
aint blends still contribute significantly – parameters that have been
xplored in previous studies using separate galaxy simulation and
hear measurement methods (H. Hoekstra, M. Viola & R. Herbonnet
017 ; Euclid Collaboration 2019 ; H. Hoekstra, A. Kannawadi &
. D. Kitching 2021 , hereafter H17, M19 and H21, respectively).
e extend this work to also include additional properties such as

he angular distribution and orientation of faint galaxies relative
o the BSG, the shear applied to faint galaxies, the slope of the
aint galaxy apparent magnitude distribution, and the form of the
ize–magnitude relation. Crucially, we also investigate the impact of
orrelations between the properties of faint blends and those of the
SG – specifically, dependencies of the local faint galaxy density and
agnitude distribution slope on BSG brightness. To our knowledge,

his is the first time such correlations have been explicitly quantified
n the context of shear calibration. These effects are particularly
elevant for Stage IV surveys, where even sub-percent level biases
an impact cosmological inferences. 

We simulate galaxy images with a fixed PSF using simplified
odels, with the aim of isolating the impact of the faint galaxy

opulation on shear bias. To measure shear, we use the convolutional
eural network (CNN) method developed in L. M. Voigt ( 2024 ),
hich employs a committee of shallow CNNs trained to recover
nbiased shear estimates in the presence of noise. This supervised
earning approach relies on a training set of simulated galaxies with
nown shears, from which the model learns to predict shear for
ew data. Model-fitting and PSF-related biases are avoided by using
onsistent galaxy and PSF models in both the training and test sim-
lations. To isolate biases arising from the faint galaxy population,
e deliberately exclude faint galaxies from the training simulations
hile including them in the test simulations, which are intended to
imic real survey data. By comparing shear measurements across

imulations with varying faint galaxy properties, we quantify the
ensitivity of biases to the faint population. These results inform
he level of realism required in calibration simulations to meet the
tringent systematic error budgets of Euclid -like Stage IV weak
ensing surveys. 

The paper is organized as follows. We describe the analytical
alaxy and PSF models in Section 2 and provide the ellipticity and
hear definitions in Section 3 . Section 4 summarizes the apparent
agnitude, ellipticity, size, morphology, and signal-to-noise ( S/N )

istributions adopted for the BSG and faint galaxy populations. We
etail the simulation setup and shape measurement methodology in
ections 5 and 6 , respectively, followed by a discussion in Section 7
f the shear biases obtained for isolated galaxies. In addition, in
ection 7 we present a novel method for obtaining signal-to-noise
stimates from noisy images. In Section 8 , we present results for
NRAS 545, 1–22 (2026)
he biases arising from faint galaxy contamination. These biases are
hen further explored in Section 9 , which investigates the impact
f correlations between faint galaxy properties and the apparent
agnitude of the BSG. Finally, we summarize and discuss the

mplications of our results in Section 10 . 

 T H E  G A L A X Y  A N D  PSF  M O D E L S  

e simulate a population of single-component disc and elliptical
alaxies with constant ellipticity isophotes. The projected intensity
istributions are modelled using Sérsic profiles (J. L. Sersic 1968 )
ith intensity I (x ) at position x given by 

 ( x) = I0 exp 

{
−k

[
( x − x0 )

T C( x − x0 )
] 1 

2 ns 

}
, (1) 

here I0 is the peak intensity, x0 the position of the galaxy’s centre,
nd ns the Sérsic index. The matrix C encodes the axis lengths and
rientation of the elliptical isophotes, and is given by 

 =
(

C11 C12 

C21 C22 

)
, (2) 

ith 

11 = cos 2 ( φ) 

a2 
+ sin 2 ( φ) 

b2 
, (3) 

12 = C21 = 1 

2 

(
1 

a2 
− 1 

b2 

)
sin (2 φ) , (4) 

nd 

22 = sin 2 ( φ) 

a2 
+ cos 2 ( φ) 

b2 
. (5) 

ere, a, b, and φ are the semimajor and semiminor axis lengths
 a ≥ b) and the orientation (measured counter-clockwise from the
-axis) of the galaxy, respectively. For k = 1 . 9992 ns − 0 . 3271 and a
ircular profile, a( = b) is the radius enclosing half the total flux (A.
raham & M. Colless 1997 ). 
We model the PSF as an elliptical Gaussian with ellipticity

omponents 0.01 and 0.02 along and at 45◦ to the x-axis, respectively
see Section 3 for definitions). The full width at half maximum is
.17 arcsec (corresponding to a half-light radius of 0.084 arcsec),
ampled on a 0.1 arcsec pixel grid. The PSF size and pixel scale are
hosen to be representative of the Euclid VISible (VIS) instrument.

hile the true VIS PSF follows an Airy pattern modified by optical
nd detector effects, a Gaussian approximation captures its overall
ize and shape sufficiently well for studying blending-induced biases.
he PSF model is fixed throughout and assumed to be precisely
nown. 

 ELLIPTICITY  A N D  SHEAR  

 galaxy with elliptical isophotes can be described by a complex
llipticity 

u = eu 
1 + ieu 

2 =
(

a − b 

a + b 

)
e2 iφ, (6) 

here a, b, and φ are defined in Section 2 . 
Gravitational lensing transforms image–plane positions according

o a Jacobian matrix. The mapping from lensed coordinates ( x l , y l )
o unlensed coordinates ( xu , yu ) is given by 

xu 

yu 

)
=

(
1 − κ − γ1 −γ2 

−γ2 1 − κ + γ1 

)(
x l 

y l 

)
, (7) 
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Table 1. Parameter values used for the galaxy apparent magnitude distribution (equations ( 15 ) and ( 37 )) and the size–magnitude relation (equations 
( 16 ) and ( 18 )) for the bright and faint populations. For the faint population, we list the fiducial values for both the full and simplified linear forms 
of the apparent magnitude distribution. The linear setup is used in Sections 8.7 and 9 . mAB , lw and mAB , up denote the lower and upper apparent 
magnitudes for each population. For the size–magnitude relation, the dispersion parameters ασ = −0 . 0166 and βσ = 0 . 5633 are fixed for both 
populations. 

Population type Model mAB , lw mAB , up Am 

αm 

βm 

αr βr 

Bright – 20 24.5 3 . 8564 × 10−8 0.36 1 −0 . 1324 2.65 
Faint Fiducial full 24.5 29 −2 . 1095 × 109 −5 . 25970 × 105 −3 . 9427 −0 . 0330 1.06 
Faint Fiducial linear 24.5 27 8 . 2451 × 10−3 0.139 1 −0 . 0330 1.06 
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5 Detected galaxies must also meet specific selection criteria to be included 
in the shear catalogue, typically based on signal-to-noise ratio and size. 
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here γ = γ1 + iγ2 is the gravitational shear and κ is the dimen- 
ionless surface mass density (see e.g. M. Bartelmann & P. Schneider 
001 ). This transformation shears and magnifies the unlensed image 
uch that the observed (lensed) complex ellipticity is 

l = eu + g 

1 + g∗eu 
, (8) 

here the reduced shear, g = g1 + ig2 , is related to γ and κ via 

 = γ

1 − κ
. (9) 

In the weak lensing regime, where | γ | � 1 and κ � 1, the reduced
hear approximates the true shear and the lensed ellipticity simplifies 
o 

l ≈ eu + γ. (10) 

The Jacobian in equation ( 7 ) also changes the overall image size.
n general the projected area transforms as 

 b −→ a b 

(1 − κ)2 − | γ |2 . (11) 

or the case of κ ≈ 0 this reduces to 

 b −→ a b 

1 − | γ |2 . (12) 

Assuming galaxies have randomly oriented intrinsic shapes, the 
ean unlensed ellipticity averages to zero: 〈 eu 〉 = 0. A shear estima-

or can therefore be defined as the average observed ellipticity: 

est = 〈 el 〉 = γ ± σe √ 

ngal 
, (13) 

here σe ( ≈ 0 . 26; M. Gatti et al. 2021 ) is the dispersion of each
llipticity component, and ngal is the number of galaxies in the 
nsemble. 

In practice, the measured shear, γ est, b 
i , is a biased estimate of

he true shear due to various systematics, including blending (see 
ection 1 ). This bias is commonly parametrized as 

est, b 
i = (1 + mi ) γi + ci , (14) 

here mi and ci are the multiplicative and additive biases on the 
th component of the shear. For Euclid , these biases must satisfy
 mi | < 2 × 10−3 and | ci | < 3 × 10−4 in order for them to be sub-
ominant to the expected statistical uncertainties (A. Amara & A. 
éfrégier 2008 ; M. Cropper et al. 2013 ). 

 T H E  B R I G H T  A N D  FA IN T  G A L A X Y  

OPULATION S  

e divide galaxies into two populations: BSGs, with apparent 
agnitudes between 20 and 24.5, and faint galaxies, which fall below 

he Euclid VIS band detection threshold. BSGs are detected galaxies 
sed for shear estimation after standard selection cuts 5 , whereas faint
alaxies are not detected but may blend with the brighter sources used
or shear estimation. 

.1 Apparent magnitude distribution 

e sample galaxies from a cumulative distribution function, where 
he mean projected number density per arcmin2 of galaxies with AB 

pparent magnitude less than or equal to mAB is given by 

〈 N ( mAB )〉 = Am 

αm 

ln (10) 
10αm ( mAB )βm 

, (15) 

here Am 

, αm 

, and βm 

are population-dependent parameters that 
ontrol the normalization, slope, and curvature of the distribution. 
his functional form provides flexibility to match observed number 
ounts across both the bright and faint galaxy populations. 

We first consider the parameter values used for the BSGs. We
dopt a slope of αm 

= 0 . 36, consistent with values used in other
tudies (e.g. H17), and set the amplitude Am 

so that the number
ensity of bright galaxies matches the expected ∼ 30 galaxies per 
rcmin2 in the Euclid VIS band (e.g. R. Laureijs et al. 2011 ). The
arameter values adopted for the bright galaxy distribution, provided 
n Table 1 , are fixed throughout the paper. 

In this study, faint galaxies are defined as those with apparent
agnitudes fainter than the Euclid detection limit of 24.5 and 

righter than 29. The parameters for the faint population are chosen
o reproduce the projected number densities reported in Euclid 
ollaboration ( 2024 ), specifically 250 and 90 galaxies per arcmin2 

or apparent magnitudes below 29.5 and 26.5, respectively. The 
umulative number density distributions are shown for the bright 
nd faint galaxy populations in Fig. 1 . In addition, Table 2 lists
he mean number density of faint galaxies for different limiting 

agnitudes. 
To enable analysis of the sensitivity of shear biases to the faint-

nd slope of the apparent magnitude distribution, we also define a
implified ‘linear’ model with βm 

= 1 over the range 24 . 5 < mAB <

7 (see Fig. 1 ). This approximation is used in Sections 8.7 and 9
o assess the impact of varying the slope parameter, αm , f , of the
aint population, including potential correlations with the apparent 
agnitude of the BSG. The fiducial parameters adopted for this 
odel are listed in Table 1 , with further discussion in Section 8.7 . 
Fig. 2 shows the apparent magnitude distributions of the bright and

aint populations, with the fiducial linear approximation overlaid for 
he faint end. This framework provides a flexible model for exploring
ow the undetected galaxy population contributes to biases in shear 
MNRAS 545, 1–22 (2026)
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M

Figure 1. Mean cumulative number density of galaxies per arcmin2 , 
〈 N ( mAB )〉 , for the bright (blue) and faint (green) populations as a function 
of apparent magnitude. The functional form is given in equation ( 15 ) and 
parameter values in Table 1 . The linear approximation to the faint galaxy 
distribution over the range 24 . 5 < mAB ≤ 27 is also shown (red dashed), 
offset to match the green curve at mAB = 24 . 5 (see Section 8.7 ). The black 
vertical dotted line shows the division between the bright and faint populations 
at mAB = 24 . 5. 

Table 2. Mean number density of faint galaxies (per 
arcmin2 ) as a function of limiting magnitude, mlim 

, 
using the full model for the faint apparent magnitude 
distribution (see Table 1 ). 〈 N3 〉 is the mean number 
of faint galaxies within 3 arcsec of a bright galaxy, 
assuming a uniform random spatial distribution. 

mlim 

〈 N ( mlim 

)〉 − 〈 N (24 . 5)〉 〈 N3 〉 
arcmin−2 

25 11 .13 0.09 
26 40 .69 0.32 
27 80 .34 0.63 
28 129 .70 1.02 
29 187 .59 1.47 

4

G  

f  

r  

d  

e  

l  

w

〈
a

σ

F

〈
a  

p  

w  

0  

e  

r  

f  

F
 

f  

f

f

w  

R  

u  

a  

s  

r  

a  

2  

e  

e  

φ

 

u  

(  

T  

a

F
s
s
(
s

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/545/3/staf2136/8362692 by gues
.2 Galaxy size, ellipticity, and morphology distributions 

alaxy sizes are assigned based on distinct size–magnitude relations
or the bright and faint populations. We define the effective radius,
e =

√ 

ab (where a and b are the semimajor and semiminor axes
efined in Section 2 ), such that for a circular galaxy ( a = b), the
NRAS 545, 1–22 (2026)

igure 2. Distributions of apparent magnitudes ( mAB , left) and effective radii ( re , 
hown for both the full (green solid) and simplified ‘linear’ (red dashed) models fo
ee also Fig. 11 . Bright galaxies are simulated over the range 20 < mAB < 24 . 5, w
simplified model). Histograms use equal bin widths and identical x-axis ranges in e
imulated within 3 arcsec of each BSG (see Table 2 ). 
ffective radius equals the half-light radius. For bright galaxies, the
ogarithm of the effective radius is drawn from a normal distribution
ith mean 

log 10 re 〉 = αr mAB + βr , (16) 

nd a magnitude-dependent dispersion given by 

log 10 re = ασ mAB + βσ . (17) 

or faint galaxies, re is drawn from a normal distribution with mean 

 re 〉 = αr mAB + βr , (18) 

nd the same form of magnitude-dependent dispersion. The
opulation-dependent parameters αr and βr are listed in Table 1 ,
hile the dispersion parameters are fixed at ασ = −0 . 0166 and βσ =
 . 5633 for both populations. For all galaxies, we set the maximum
ffective radius in simulations to 1.2 arcsec and adopt a minimum
e = 0. The bright-end relation is motivated by observational results
rom H17, and the shallower faint-end trend by (M19; see their
ig. 1 ). 
We model the intrinsic (unlensed) ellipticities of both bright and

aint galaxies using a Rayleigh distribution, with probability density
unction 

 ( e ) = e 

σ 2 
e 

exp 

(
− e2 

2 σ 2 
e 

)
, (19) 

here the ellipticity magnitude is e =
√ 

e2 
1 + e2 

2 . The mode of the
ayleigh distribution – which corresponds to the dispersion of each
nderlying normally distributed ellipticity component – is fixed
t σe = 0 . 25, consistent with values adopted in previous lensing
imulation studies (e.g. H21) and supported by recent observational
esults (M. Gatti et al. 2021 ). The distribution is commonly truncated
t a maximum ellipticity between 0.7 and 0.9 (e.g. S. Bridle et al.
010 ; M. Tewes et al. 2019 ); here, we adopt a maximum intrinsic
llipticity of 0.8, corresponding to a maximum post-sheared galaxy
llipticity of approximately 0.87. The unlensed galaxy position angle
is uniformly distributed in the range [0 , π ). 
For the morphology distribution, we simulate a two-type pop-

lation comprising single-component disc ( ns = 1) and elliptical
 ns = 4) galaxies, with discs comprising 80 per cent of the total.
his simplification is justified because model-fitting biases are not
ddressed in this work. 
right) for bright (blue solid) and faint galaxies. Faint galaxy distributions are 
r the apparent magnitude distribution. Parameter values are listed in Table 1 ; 
hile faint galaxies span 24 . 5 < mAB < 29 (full model) or 24 . 5 < mAB < 27 
ach panel. Distributions are based on 104 BSGs and associated faint galaxies 

t on 19 January 2026
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Figure 3. Signal-to-noise distribution (left) for an independent set of 104 galaxies, where the flux is obtained from (i) noise-free postage stamps (black solid) 
and (ii) predicted from noisy stamps using CNNsnr (blue dashed). Residuals (right) show predicted minus true S/N for a random subset of 103 galaxies (black 
dots). The red points show the binned mean residuals with error bars indicating the standard error on the mean, and the light red shaded band indicates the 
sample standard deviation within each bin. The green dashed line marks zero residuals. Results are shown for zero shear and test set fiducial galaxy parameter 
values. 
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.3 Signal-to-noise 

he signal-to-noise ratio is defined as 

/N =
√ ∑ 

I 2 

σn 
, (20) 

here the sum is taken over all pixels in the postage stamp and σ 2 
n is

he variance of the constant Gaussian noise added to each pixel. The
eak intensity, I0 (see equation ( 1 )), is related to the flux, F , through
he equation 

0 = F 

2 πns k−2 ns r2 
h 
(2 ns ) 

, (21) 

here F = F0 10−0 . 4 mAB and 
 is the gamma function. We set
0 /σn such that the resulting signal-to-noise distribution peaks at 
/N ∼ 10–20 (see Fig. 3 ), consistent with the expected Euclid 
alaxy populations (e.g. Euclid Collaboration 2025a , see their 
g. 21). 
In both the training and test sets, we exclude galaxies with S/N >

00. We impose no lower limit on the signal-to-noise in the training
tage. We note that imposing a lower limit on the signal-to-noise
atio during training – even if lower than the test set cut – results in
arger biases. 

 SIMULATING  T H E  IMAG ES  

n this section, we describe the simulations used to generate PSF-
onvolved galaxy images on postage stamps with 0.1 arcsec pixels. 
e follow a similar procedure to that described in previous work (L.
. Voigt & S. L. Bridle 2010 ; L. M. Voigt 2024 ) and adopted for the

hape measurement pipeline IM3SHAPE (J. Zuntz et al. 2013 ). 
Galaxy and PSF profiles are simulated separately on convolution 

rids 6 with npix image pixels per side, where each pixel is subdivided 
nto n2 

conv subpixels. For exponential profiles, the flux in each subpixel 
s computed assuming the intensity is constant across the subpixel 
nd equal to the value at its centre. For de Vaucouleurs profiles, to
ccurately capture the steep central peak, subpixels within the central 
 The grids used for numerically convolving the galaxy with the PSF are larger 
han the final postage stamps to avoid edge effects. 

h  

J  

G  

2  
 × 3 image pixels are further subdivided into n2 
int sub-subpixels, and 

he intensity is integrated over these. We use nconv = 3 and nint = 9;
ncreasing these values does not significantly change the intensity 
rofiles. The galaxy intensity is set to zero for ( x − x0 )T C ( x − x0 ) >
2 
cut (see equation ( 1 )), with Rcut = 4 so that the truncation occurs at

emi-axes 4 a and 4 b. 
The BSG is positioned randomly within the central pixel of the

ostage stamp, with its centre coordinates drawn independently as 

0 , b , y0 , b ∼ U ( −0 . 05 , 0 . 05) arcsec . (22) 

f a faint neighbouring galaxy is present, its position is sampled
andomly within a square region centred on the BSG, with side
ength 2 θr , such that 

0 , f = x0 , b + U ( −θr , θr ) , y0 , f = y0 , b + U ( −θr , θr ) (23) 

nd is simulated only if its centre lies within a circular region of
adius θr around the BSG, i.e. if 

 x0 , f − x0 , b )
2 + ( y0 , f − y0 , b )

2 ≤ θ2 
r . (24) 

he fiducial value for θr adopted in this paper is 3 arcsec, and the
ositions described above correspond to the lensed coordinates of 
he galaxies. 

In practice, BSG and faint galaxy intensity profiles are simulated 
eparately on convolution grids, summed, and then convolved with 
he PSF. The convolution is performed using the convolve2d 
unction from the signal module in SciPy (P. Virtanen et al. 2020 ).
ollowing convolution, the images are binned and cropped to produce 
ostage stamps of size nstamp × nstamp pixels. In this work, we set 
stamp = 17 and npix = 19. 

 T H E  SHEAR  MEASUREMENT  M E T H O D  

 wide range of techniques have been developed to infer weak
ravitational lensing shear from galaxy shapes (see review article R. 
andelbaum 2018 , and references therein). These include moment- 

ased approaches, such as KSB (N. Kaiser, G. Squires & T. Broad-
urst 1995 ), which were used in early detections of cosmic shear (D.
. Bacon, A. R. Refregier & R. S. Ellis 2000 ; N. Kaiser, G. Wilson &
. A. Luppino 2000 ; L. V. Waerbeke et al. 2000 ; D. M. Wittman et al.
000 ), and model-fitting methods, such as IM3SHAPE (J. Zuntz et al.
MNRAS 545, 1–22 (2026)
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Table 3. Architecture of the CNN models used to estimate shear (CNNei 
) and S/N (CNNsnr ). nstamp is the width (in 

pixels) of the square postage stamp image; nfil is the number of convolutional filters; nbatch is the number of samples per 
training batch, set equal to the number of noise realizations nreal . The model does not include pooling or dropout layers. 
The convolutional layer uses a Rectified Linear Unit (ReLU) activation function, and in the dense layer, CNNei 

uses a 
hyperbolic tangent activation while CNNsnr uses a linear activation. 

Layer Layer type Output shape Trainable parameters 

1 Convolution (2D) 
(
nbatch , nstamp −2 , nstamp −2 , nfil 

)
(3 × 3 + 1) × nfil 

2 Flatten 
(
nbatch , ( nstamp −2)2 × nfil 

)
0 

3 Dense (fully connected) ( nbatch , 1) ( ninputs + 1)a 

Note. a Where ninputs = ( nstamp −2)2 × nfil is the number of flattened input features; the + 1 accounts for the bias term. 
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Table 4. Hyperparameters used to train the CNNs for shear (CNNei 
) and 

signal-to-noise (CNNsnr ) estimation. Table (a) lists parameters with shared 
values, and Table (b) those with CNN-specific values. For shear estimation, 
predictions are averaged over a committee of 31 trained CNNei 

models; for 
S/N estimation, we use a single CNN. 

(a) Shared hyperparameters 
Hyperparameter Value 

Number of filters ( nfil ) 40 
Filter size (pixels) 3 × 3 
Stride (pixels) 1 
Epochs 150 
Batch size nreal 

Learning rate 10−3 

(b) CNN-specific hyperparameters 
Hyperparameter CNNei 

CNNsnr 

Training set size ( ngal ) 5 × 104 105 

Noise realizations per galaxy ( nreal ) 300 1 
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013 ) and LENSFIT (L. Miller et al. 2007 ), adopted in later surveys
e.g. L. Miller et al. 2013 ; M. A. Troxel et al. 2018 ; A. H. Wright
t al. 2025 ). As survey data improve and systematic requirements
ighten, increasingly sophisticated techniques have been developed
o estimate shear with reduced biases. These include simulation-
alibrated model-fitting methods (e.g. H. Hildebrandt et al. 2017 ; J.
untz et al. 2018 ; S.-S. Li et al. 2023 ) and self-calibrating approaches
uch as METACALIBRATION (E. Huff & R. Mandelbaum 2017 ), which
as employed in the DES Year 3 analyses (A. Amon et al. 2022 ;
. Secco et al. 2022 ). In recent years, machine learning techniques
ave also been explored for shear estimation (e.g. D. Ribli, L. Dobos
 I. Csabai 2019 ; M. Tewes et al. 2019 ). In this work, we employ a
NN-based shear measurement method introduced by L. M. Voigt
 2024 ). This approach avoids noise bias without relying on external
alibration, making it particularly well-suited for isolating the effects
f galaxy blending on shear estimation. We describe the method in
etail below. 

.1 The CNN model architecture 

he shape measurement method employs two committees of shallow
NNs; one for estimating the first component of the lensed ellipticity,

l 
1 , and another for the second component, el 

2 , for each galaxy in the
atalogue. These are the shear estimators, γ est, b 

1 and γ est, b 
2 , given in

quation ( 14 ). We refer to each CNN model within a committee
s CNNei 

. The model architecture is summarized in Table 3 and
escribed in detail in L. M. Voigt ( 2024 ). In brief, for each CNNei 

,
SF-convolved postage stamps are fed into the first convolutional

ayer 7 , consisting of nfil filters 3 by 3 pixels across. We use a stride
f one and do not include any padding, resulting in nfil feature maps
n grids with width ( nstamp − 2), where nstamp is the width of the
ostage stamp in image pixels. The activation function adopted
or this layer is a Rectified Linear Unit (ReLU; V. Nair & G. E.
inton 2010 ). The output from the first layer is flattened 8 and passed

hrough a dense layer 9 with a hyperbolic tangent activation function,
nsuring the output lies within the valid ellipticity range [ −1 , 1]. The
otal number of trainable parameters in each CNNei 

is 9401. Each
ommittee consists of 31 10 independently trained CNNei 

models, and
he per-component ellipticity estimate for each galaxy is computed
s the mean over the predictions of the committee members (see
ection 6.3 ). 
NRAS 545, 1–22 (2026)

 tensorflow.keras.layers.Conv2D 

 tensorflow.keras.layers.Flatten 
 tensorflow.keras.layers.Dense 
0 We initially trained a larger ensemble; the committee size reflects the 
umber of models that converged successfully during training. 

a  

s  

F  

i  

b  

s  

n  

r

.2 Training the CNN models 

he trainable parameters (i.e. the weights and biases) in each CNNei 

re optimized by minimizing the difference between the measured
biased) lensed ellipticity, el , b 

i , and the true lensed ellipticity, el 
i , using

 mean-square-bias (MSB) loss function (D. Gruen et al. 2010 ; M.
ewes et al. 2019 ), given by 

SB = 1 

ngal 

ngal ∑ 

n = 1 

[ 

1 

nreal 

nreal ∑ 

m = 1 

(
e

l , b 
i; n,m 

− el 
i; n,m 

)] 2 

, (25) 

uch that the total number of images used to train the network is
gal × nreal . The MSB loss function is used to mitigate the noise bias
T. Kacprzak et al. 2012 ; A. Refregier et al. 2012 ) which arises if the
tandard mean-square-error (MSE) is used as the objective function.
his bias occurs because ellipticity, ei , is not a linear function of

he pixel intensities. Although the simulated galaxies in the training
ets are not explicitly sheared, their target ellipticities are defined to
epresent the post-lensing (observed) values. This ensures that the
raining procedure remains consistent with the quantities predicted
or the sheared galaxies in the test sets. 

Each CNNei 
model in a committee is trained independently using

 unique set of simulated images. Extending the hyperparameter
tudy based on noise-free images in L. M. Voigt ( 2024 , see their
ig. 6), we adopt values optimized with networks trained on noisy

mages. These values, summarized in Table 4 , provide a practical
alance between performance and training efficiency. Each training
et contains ngal = 5 × 104 unique galaxy images, with nreal = 300
oisy realizations per image, and each training batch consists of all
ealizations of a single galaxy. 



Shear biases from undetected galaxies 7

 

w  

o  

e

6

S
e

w
γ

a  

a
a
e  

a
p
2

q
(  

p  

o  

i
t  

n
m  

w
f

e  

o

w
 

a

γ

a
γ  

p
c
m

7
E

I  

f
s
b
u
w

m
o

o  

M

a  

d  

b  

s
d
v
l

k  

m
g  

b

o
w

s
c  

(  

c

G  

f
a
m
f  

B

n  

t
a  

e  

m  

c
i  

n
(  

r  

C

(
g
s
z  

a  

l
u  

S  

o
S

r  

n  

a
u

i 

11 We also tested a sigmoid activation to constrain the normalized S/N 

between 0 and 1, but found the linear function yielded better performance. 
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We exclude faint galaxies from the training sets and simulate BSGs
ith properties described in Section 4 . We do not apply any shear
r size truncation to galaxies in the training sets and include all
llipticity magnitudes up to | e| < 1. 

.3 Shear bias estimation procedure 

hear biases are assessed by applying the CNN committees for e1 and 
2 to test sets, each comprising independent, noisy, sheared galaxies 
ith a different known constant input shear, γi . The predicted shear, 
est, b 
i , is obtained by averaging the CNN committee predictions over 
ll galaxies in each test set (see equations ( 26 ) and ( 27 ) below),
nd then compared with the true input values. Multiplicative and 
dditive biases are defined by assuming a linear relation between the 
stimated and true shears (equation ( 14 )). To reduce shape noise, we
dopt the standard approach of simulating galaxy pairs, where each 
air consists of identical sources rotated by 90◦ (R. Massey et al. 
007 ). Each test set contains ntest such pairs. 
Using training and test sets provides a useful framework for 

uantifying different sources of shear bias. For example, L. M. Voigt 
 2024 ) examined biases arising from mismatches in PSF or galaxy
opulations between training and test data. In this paper, we focus
n biases introduced by faint galaxies that are present in the test
mages but excluded from the training sets. This approach quantifies 
he bias that would occur in our shear measurements if we assumed
o faint galaxies in the data, while in reality such faint galaxies –
atching the population in the test sets – are present. In Section 7 ,
e demonstrate that biases are consistent with requirements when 

aint galaxies are absent from the test sets. 
As described above, we compute the predicted i th component of the 

llipticity for the j th galaxy in a test set by averaging the predictions
ver a committee of ncnn independently trained CNN models: 

〈 

e
l , b 
i; j 

〉 

= 1 

ncnn 

ncnn ∑ 

k= 1 

e
l , b 
i; j,k , (26) 

here el , b 
i; j,k is the ei estimate obtained from the kth CNNei 

model. 
The shear estimate from the full test set is then computed by

veraging over all 2 ntest galaxies i.e. all pairs: 

est, b 
i = 1 

2 ntest 

2 ntest ∑ 

j= 1 

〈 

e
l , b 
i; j 

〉 

. (27) 

To estimate shear biases, we generate 25 test sets corresponding to 
ll combinations of five equally spaced shear values per component, 
i = {−0 . 05 , −0 . 025 , 0 , 0 . 025 , 0 . 05 } . Each test set has a distinct
air of ( γ1 , γ2 ) values. The resulting shear estimates from the CNNei 

ommittees are then fit with a linear regression model to determine 
ultiplicative and additive biases (see also L. M. Voigt 2024 ). 

 BA SELINE  SHEAR  BIASES  A N D  S/N 

STIMATION  

n this section, we present a new method for estimating S/N directly
rom noisy galaxy images and establish a baseline measurement of 
hear biases in the absence of faint-galaxy contamination. These 
aseline biases provide the reference against which the impact of 
ndetected galaxies is later assessed, and we confirm that they lie 
ithin the Euclid requirements. 
Even without faint galaxy contamination, shear measurement 
ethods are affected by systematic biases. Since this paper focuses 

n biases introduced by nearby undetected galaxies, we control 
r eliminate other sources of bias, as outlined below (see R.
andelbaum 2018 , for a review of weak lensing systematics). 
While noise bias is commonly calibrated, for the CNN method 

pplied here it is already reduced below the required thresholds (as
emonstrated in L. M. Voigt 2024 ). Model-fitting biases are avoided
y adopting identical galaxy profiles in both the training and test
ets. In addition, galaxies are sampled from the same population 
istributions, with the exception that the training sets allow larger 
alues of re (effectively unbounded) and ellipticity (up to the physical 
imit | e| < 1) to account for shearing applied in the test sets. 

Biases from PSF mis-modelling are eliminated by using the same, 
nown PSF in both training and test sets (see Section 2 for the PSF
odel). Detection biases are also absent: our simulations include all 

alaxies drawn from the distributions in Section 4 , removing any
ias associated with selection at detection. 
We note that biases from mismatches between simulated and 

bserved galaxy intensity profiles and population distributions, as 
ell as between PSF models, are discussed in L. M. Voigt ( 2024 ). 
Another potential source of bias in weak lensing pipelines is 

election cuts, with analyses typically removing objects with PSF- 
onvolved galaxy to PSF size ratios < 1 . 25 or S/N < 10, or both
R. Laureijs 2017 ). In this study, we do not impose a minimum size
ut, but a cut on signal-to-noise is applied with S/N ≥ 10. 

In benchmark shear measurement studies – for example the 
REAT08 challenge (S. Bridle et al. 2010 ) – S/N is often calculated

rom noise-free images. While suitable for controlled validation, this 
pproach does not account for potential biases arising when S/N 

ust be estimated directly from noisy data. Typically, S/N estimates 
or survey data are obtained using tools such as SExtractor (E.
ertin & S. Arnouts 1996 ). 
Here, we introduce a CNN-based method for estimating S/N from 

oisy galaxy images. The network, which we refer to as CNNsnr , is
rained to predict S/N from individual noisy postage stamps. Its 
rchitecture mirrors that used for shear estimation (see Table 3 ),
xcept that the dense layer uses a linear activation function. 11 The
odel is trained on 105 noisy galaxy images, with target S/N values

omputed from the corresponding noise-free stamps. The target S/N 

s defined as the ratio of the galaxy’s total flux, integrated over the
oise-free postage stamp, to the per-pixel Gaussian noise level σn 

see equation ( 20 )). We found no benefit from using multiple noise
ealizations ( nreal > 1) or from employing a CNN committee. The
NNsnr hyperparameters are listed in Table 4 . 
Fig. 3 shows the ‘true’ (from noise-free stamps) and predicted 

from CNNsnr ) S/N distributions for an independent set of 104 

alaxies, along with residuals (predicted minus true) for a random 

ubset of 103 galaxies. The mean residuals deviate significantly from 

ero in the lowest two bins (0 < S/N ≤ 10 and 10 < S/N ≤ 20)
nd marginally in the bin at 50 < S/N ≤ 60. However, even the
argest mean residual (in the lowest S/N bin) is only ∼ 0 . 6 in S/N 

nits and we find that using the predicted S/N instead of the true
/N has negligible impact on the shear biases obtained in this work.
Fig. 4 demonstrates that the multiplicative and additive biases 

btained – excluding faint galaxies and applying a selection cut with 
/N ≥ 10, estimated using CNNsnr – are consistent with the Euclid 

equirements. Biases are shown as a function of the committee size,
cnn . We find that multiplicative biases stabilize for ncnn � 5, while
dditive biases stabilize for ncnn � 15. In subsequent analyses we 
se all 31 trained CNNe models. 
MNRAS 545, 1–22 (2026)
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Figure 4. Multiplicative (top) and additive (bottom) biases adopting com- 
mittees comprising ncnn subsets of 31 trained CNNei 

models. A selection 
cut of S/N ≥ 10, using the CNNsnr predictions, is applied. Black crosses 
(squares) correspond to i = 1 ( i = 2), while blue filled circles showing the 
mean across the two components. Green open circles indicate biases obtained 
using the ‘true’ S/N with ncnn = 31 (offset for clarity). Shaded regions show 

the top-level Euclid bias requirements (see Section 3 ). 
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 SHEA R  BIASES  F RO M  FA IN T  G A L A X Y  

O N TA M I NAT I O N  

n this section, we assess the impact of faint, undetected galaxies
i.e. with magnitude > 24 . 5) on the accuracy of shear measurements
ade using CNNei 

committees trained on isolated bright galaxies
see Section 6 ). Shear estimates ( γ est, b 

i ) are obtained from postage
tamps that include these faint contaminants, and the resulting shear
iases are measured following the procedure outlined in Section 6.3 ,
sing 25 test sets. Galaxies with S/N < 10 – estimated using CNNsnr 

see Section 7 ) – are excluded from the sample. We find that the
dditive biases are negligible for all faint galaxy parameters explored.
s such, we present only multiplicative biases for the remainder of

he paper. 
In the fiducial set-up, we simulate a random distribution of faint

alaxies within each postage stamp, using the field densities provided
n Table 2 and with an apparent magnitude distribution that matches
he overall field distribution (see Section 4 and Table 1 ). Faint galaxy

orphologies and ellipticities are drawn from the same distributions
s the BSGs, described in Sections 2 and 4 . We apply the same
hear to the faint galaxies that is applied to the BSGs. All galaxies
p to a limiting magnitude of 29 and within 3 arcsec of the BSG
entre are included in the simulations. This fiducial configuration
rovides the baseline for our tests; in subsequent sections we explore
ow the results change under different assumptions about the faint
opulation. 
Assuming a random spatial distribution, the expected number of

aint galaxies within a circular region of radius θr arcsec and up to
imiting magnitude mlim 

, is given by 

〈
Nθr 

〉 = [ N ( mlim 

) − N (24 . 5)] × π

(
θr 

60 

)2 

, (28) 

here 〈 N ( mAB ) 〉 is the cumulative projected number density per
rcmin2 defined in equation ( 15 ); here it is evaluated at mlim 

and at
AB = 24 . 5. Table 2 lists

〈
Nθr 

〉
for θr = 3 arcsec. For instance, the
NRAS 545, 1–22 (2026)
ean number of faint galaxies within a 3 arcsec radius for mlim 

= 29
s 1.47. 

Within the halo model (A. Cooray & R. Sheth 2002 ), the number
f satellite galaxies within a dark matter halo follows a Poisson
istribution (Z. Zheng et al. 2005 ), with a mean (the halo occupation
umber) that scales with halo mass (see Appendix B ). Although
ot all BSGs are central galaxies, we similarly adopt a Poisson
odel for the number of faint galaxies within θr arcsec of a BSG.
his assumption is justified because the various contributions to the

aint galaxy population around BSGs – comprising foreground, back-
round, and halo member galaxies – can be treated as independent
oisson processes, whose sum is also Poisson-distributed. As such,
or a given BSG, the number of faint galaxies within θr arcsec is
rawn from: 

θr 
∼ Po 

(〈
Nθr 

〉)
, (29) 

here Po ( λ) denotes a Poisson distribution with mean λ. In this Sec-
ion, we assume

〈
Nθr 

〉
is constant across all BSGs, i.e. independent

f BSG properties. 
Fig. 5 shows a random selection of BSGs and their associated

aint neighbours on 6 by 6 arcsec2 grids. For each selected galaxy,
e also show the 90◦ rotated counterpart included in the test sets

see Section 6.3 ), each with independent faint galaxy realizations.
he locations, sizes, ellipticities, and orientations of faint neighbours
re indicated using overlaid ellipses. Also shown are the faint galaxy
ircular inclusion regions (radius 3 arcsec) and postage stamp cut-
uts used for shear estimation. Intensities are displayed on a linear
cale, so faint galaxies are only visible when their magnitudes are
omparable to that of the BSG. Apparent magnitudes of both BSGs
nd faint neighbours are annotated. 

In the following subsections, we examine deviations from the
ducial setup that may significantly influence the resulting shear
iases – and thus require careful treatment in calibration simulations.

.1 Limiting apparent magnitude and clustering radius 

ig. 6 shows how the multiplicative biases vary when changing
ither the faint galaxy limiting magnitude ( mlim 

) or the maximum
adial distance from the BSG centre ( θr ). Faint galaxies are sampled
rom the apparent magnitude distribution given by equation ( 15 ),
nd excluded from the postage stamps if their apparent magnitude is
reater than the limiting value or their radial distance from the BSG
entre exceeds θr (see Section 5 ). We find that faint contaminants
ntroduce a multiplicative bias that becomes increasingly negative
ith mlim 

up to ∼ 27, and with separation up to θr ∼ 1arcsec .
imilar trends have been reported in previous studies (e.g. H17,
19), although the absolute bias values, as well as the point at
hich they cease decreasing, depend on the implementation details,

ncluding the shape measurement method as well as the assumed
roperties of the faint population. 
To characterize the trends we find more precisely and to obtain

onfidence intervals (CIs), we fit simple parametric models using
rror-weighted non-linear least-squares regression. 68 per cent CIs
re estimated from 2000 Monte Carlo (MC) realizations, obtained
y resampling each data point from a Gaussian with width given by
ts measurement error. In both cases, the asymptotic bias parameter
 a
 or aθ ) describes the limiting value reached at large mlim 

or θr .
e define the point at which the bias effectively flattens, x∗, as the
inimum value of the independent variable where the model bias lies
ithin �m = 4 × 10−4 of its asymptotic value (i.e. within a factor
f 5 of the top-level Euclid requirement). 
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Figure 5. Images showing 6 by 6 arcsec2 regions of sky centered on the BSG. Each panel displays the PSF-convolved image with zero applied shear, sampled 
at 0.1 arcsec pixel scale, and scaled so that the central pixel has unit intensity. The images are shown without noise for 10 galaxy pairs (where each galaxy in a 
pair is the 90◦ rotated version of the other one). Faint neighbour galaxies are illustrated using ellipses that show their intrinsic (pre-PSF convolved) shapes with 
semimajor and semiminor axes a and b (solid white; see Section 2 ), together with the truncation boundary at 4 a and 4 b (dashed cyan). Apparent magnitudes are 
indicated for the BSG (white; top-left corner of each panel) and for each faint neighbour (magenta; at ellipse centres). The green solid square denotes the 1.7 by 
1.7 arcsec cut-out region used for shear measurement. Only faint galaxies whose centre lies within the green dotted circle (with radius θr arcsec, centred on the 
centre of the BSG), are simulated in the test sets. Shown for the field number density of faint galaxies to a limiting magnitude mlim 

= 29 (see Table 2 ). 
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Figure 6. Multiplicative biases as a function of: the faintest galaxy magnitudes included in the postage stamps ( mlim 

; left); the maximum radial distance 
between the BSG and faint galaxy centres ( θr ; middle) and the excess faint galaxy density over the field density ( fex ; right). m1 ( m2 ) using the full model for 
the apparent magnitude distribution are shown as grey crosses (open squares), with blue solid circles indicating the mean bias across the two components. The 
red open circle (left) shows the corresponding mean bias value for the linear approximation model to the apparent magnitude distribution for mlim 

≤ 27. The 
dark grey shaded regions indicate the Euclid bias requirement ( | mi | < 2 × 10−3 ). Black dashed lines show the best-fitting exponential (left), sigmoid (middle), 
and linear (right) regression models. The lighter (hashed) regions show values within ±2 × 10−3 ( ±4 × 10−4 ) of the asymptotic bias (left and middle) and the 
mean bias predicted by the model at fex = 0 (right). 
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For the dependence on limiting magnitude, we adopt an exponen-
ial form 

 ( mlim 

) = a
 + b
 exp [ −k
 ( mlim 

− 24 . 5)] , (30) 

here b
 sets the amplitude of the exponential term and k
 controls
he rate of flattening. The best-fitting asymptotic bias is a
 =

7 . 9 × 10−3 , corresponding to a flattening point m∗
lim 

= 27 . 0. From
he MC realizations, we obtain a
 ∈ [ −9 . 4 , −7 . 2] × 10−3 and m∗

lim 

∈
26 . 1 , 29 . 1], with medians a
 = −8 . 1 × 10−3 and m∗

lim 

= 26 . 9. Thus
aint contaminants at least as faint as mAB ∼ 26 and potentially as
aint as mAB ∼ 29 will need to be included in simulations. 

For the dependence on clustering radius, we use a flipped sigmoid
3-parameter logistic) form 

 ( θr ) = aθ

1 + exp [ −kθ ( θr − θ0 )] 
, (31) 

here kθ controls the steepness of the transition and θ0 is the
idpoint. The best-fitting asymptotic bias is aθ = −8 . 2 × 10−3 ,

orresponding to a flattening radius θ∗
r = 1 . 03 arcsec . From the

C realizations, we obtain aθ ∈ [ −8 . 9 , −7 . 6] × 10−3 and θ∗
r ∈

0 . 79 , 1 . 25] arcsec, with medians aθ = −8 . 3 × 10−3 and θ∗
r =

 . 99 arcsec. We verify that the choice of faint galaxy truncation
as negligible effect: increasing the cut radius from the fiducial
alue of Rcut = 4 to Rcut = 10 does not significantly change the
ias dependence on θr . The minimum required radius we find here
s somewhat smaller than the 2.5–3 arcsec reported by M19, which
ay be due to the smaller postage stamps used in this study. 
In this section, we have adopted simple parametric forms that

apture the observed trends with minimal parameters. Although the
recise values of x∗ depend on the assumed functional form, the
esulting CIs provide a useful indication of the depths to which
alibration simulations may need to extend and the radii around
SGs within which faint galaxies must be included. 

.2 Faint galaxy excess 

e quantify the dependence of the biases on the mean number of
aint galaxies around BSGs in terms of an excess relative to the mean
cross the field, denoted by fex . The mean local number of faint
alaxies within θr arcsec of a BSG is given by 〈
Nθr ;loc 

〉 = 〈
Nθr 

〉
(1 + fex ) , (32) 
NRAS 545, 1–22 (2026)
here fex = 0 (the fiducial case) corresponds to the field density
see also M19). In this section, we assume the excess is the
ame for all BSGs. In Section 9 , we examine the impact of an
xcess that correlates with the apparent magnitude of the bright
alaxy. 

In Fig. 6 , we observe a strong dependence of the multiplicative
iases on fex . We fit a linear regression to the mean of m1 and m2 ,
btaining a slope of −(8 . 0 ± 0 . 2) × 10−3 and an intercept of −(8 . 0 ±
 . 3) × 10−3 , where the intercept represents the bias for a field-density
evel of faint galaxies. The slope implies that, for accurate calibration
or Euclid , the mean faint galaxy density close to BSGs must be
nown to within ±0 . 25, or to within ±0 . 05 to be a factor of 5 below
he Euclid requirement. 

.3 Maximum halo occupancy 

s discussed in Section 8 , we sample faint galaxies from a Poisson
istribution with mean

〈
Nθr 

〉
. Since this distribution allows a non-

ero probability of unrealistically high occupancies, we explore
he impact of imposing an upper limit on the number of faint
alaxies per bright galaxy, denoted kmax , while keeping the mean
umber of faint galaxies across the BSG sample fixed at the field
alue. 

For a given BSG, the number of nearby faint galaxies is drawn from
 truncated Poisson distribution, whose probability mass function
PMF) is defined as: 

 ( N = k) =
{

e−λλk /k! k = 0 , 1 , . . . , kmax 

0 k > kmax , 
(33) 

here λ is computed numerically so that the expected number of
aint neighbours, given by E[ Nθr ] =

∑ kmax 
k= 0 kP ( N = k), is equal to

Nθr 

〉
, for all kmax . 

Fig. 7 shows the multiplicative biases as a function of kmax for
he fiducial set-up. Fitting a linear regression model, we find that the
iases are insensitive to the truncation threshold, with no evidence
or a slope different from zero ( p-value = 0.5). This suggests
hat although a true Poisson distribution permits unphysical high-
ccupancy outliers, these rare cases have negligible impact on the
verall shear bias, provided the mean number of faint galaxies is
ccurate. It is therefore acceptable to use an untruncated Poisson
istribution in calibration simulations. 
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Figure 7. Residual multiplicative biases ( �m ) as a function of the maximum halo occupancy ( kmax ; left) and the slope ( αr, f ; middle) and normalization ( fre ; 
right) of the faint galaxy effective radius–apparent magnitude relation. �m1 ( �m2 ) values are shown as grey crosses (open squares), with blue filled circles 
indicating the mean bias across the two components. Black dashed lines show the best-fitting regression lines to the blue data points. For kmax , biases are shown 
relative to the average over the mean biases (i.e. measured mean bias minus average mean bias). For αr, f and fre , biases are shown relative to those predicted by 
the best-fitting regression models at the fiducial parameter values (i.e. measured mean bias minus predicted fiducial mean bias). Results use the fiducial setup 
with the full model for the faint galaxy apparent magnitude distribution. The light (hashed) region shows values within ±2 × 10−3 ( ±4 × 10−4 ) of zero residual 
bias. 

Figure 8. Relation between effective radius, re , and apparent magnitude, mAB , used in this study. The blue solid line shows the relation for BSGs, and the 
green solid line for the fiducial faint population. Also shown are: the steep ( αr, f = −0 . 1; black dotted) and shallow ( αr, f = 0; black dashed) slopes for the faint 
population, and the upper ( fre = 1 . 6; red dotted) and lower ( fre = 0 . 4; red dashed–dotted) size scalings, explored in Section 8.4 . The size–magnitude relation 
adopted for the bright sample in M19 corresponds to the black dotted line. Faint curves represent extrapolations beyond the region where the relation is applied. 
Open grey circles (left panel) show faint galaxies sampled from the fiducial population. Magenta and black small open circles show faint galaxies sampled at 
the minimum and maximum investigated values of αr, f (middle panel) and fre (right panel), respectively. 
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.4 Size–magnitude relation 

e investigate how variations in the size–magnitude relation of faint 
alaxies (see equations ( 17 ) and ( 18 )) affect the biases. Our fiducial
lope matches that adopted for faint galaxies in M19. Here, we assess
he sensitivity of the biases to changes in this slope – that is, to how
alaxy size scales with magnitude. A steeper slope implies that faint 
alaxies are more compact, with their flux distributed over fewer 
ixels, while a shallower slope leads to more extended profiles. Fig. 
 illustrates the range of slopes we explore, from flat (no dependence
f size on magnitude) to one consistent with the bright-end relation 
n M19 ( αr, f = −0 . 1). 

The results, shown in Fig. 7 , indicate that the slope of the size–
agnitude relation has minimal impact on the biases. A linear 

egression yields a slope consistent with zero ( p = 0 . 07). There is a
light suggestion that the absolute value of the bias decreases for the
teepest slope, but this trend is likely not physical. Instead, it arises
rom the way our model treats faint galaxies with very small sizes:
henever a draw gives re < 0, we set the effective radius to zero

ather than re-sampling. This choice avoids distorting the magnitude 
istribution, but it means that very faint galaxies are effectively 
xcluded from the simulations. As a result, when αr, f = −0 . 1, the
umber of galaxies with mlim 

> 27 drops (see Fig. 8 ), leading to a
eduction in the contribution of the faintest sources to the measured
ias. 
We also examine how the biases respond to an overall scaling of

aint galaxy sizes. This shifts the size–magnitude relation vertically 
nd slightly alters its slope (see Fig. 8 ). Results are shown in Fig.
 for scaling factors between 0.4 and 1.6. For the parameter range
xplored, we find a minimal impact on the biases ( p-value = 0.2). 

.5 Faint galaxy shear 

n the fiducial set-up, faint galaxies are sheared by the same shear
s the BSG, implicitly assuming that they are physically close and
hus subject to the same lensing distortion. In reality, however, only a
ubset of faint neighbours projected on the sky lie at similar redshifts
o the BSG; background and foreground galaxies experience different 
ensing due to matter distributions along their respective lines of 
ight, only partially correlated with those affecting the BSG. 

To test the sensitivity of our results to this assumption, we vary
he coherence between the shear applied to the BSG and that applied
o the faint galaxies. Specifically, we model the shear of each faint
alaxy as a linear combination of the BSG shear and a random shear
MNRAS 545, 1–22 (2026)
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12 The von Mises distribution is the circular analogue of the normal distribu- 
tion. 
13 For κvM 

= 0, the von Mises distribution reduces to a uniform distribution 
over the range [0 , 2 π ). 
14 Some studies have reported minor-axis alignments – known as the Holm- 
berg effect (e.g. E. Holmberg 1969 ) – but this is generally observed for 
satellites at large projected separations. Since we are concerned with satellites 
close to the central, this effect is not expected to be significant here. 
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omponent: 

i,faint = ργ γi,BSG +
√ 

1 − ρ2 
γ γi,rand , (34) 

here ργ ∈ [0 , 1] controls the level of shear coherence. Each
andom component γi,rand is drawn independently from a Gaussian
istribution, γi,rand ∼ N (0 , σ 2 

γi 
), with σγi 

= 0 . 02, representative of
he cosmic shear variance on arcminute scales. Although this
odel does not capture the full statistical properties of the cosmic

hear field – particularly non-Gaussianity on small scales and
orrelations between shear components – it provides a straightfor-
ard test of robustness to variations in the shear applied to faint
alaxies. 

This test smoothly interpolates between two limiting cases: ργ =
, where faint galaxies experience identical shear to the BSG (the
ducial set-up), and ργ = 0, where the faint galaxy shears are entirely
ncorrelated with the BSG shears. The results are shown in Fig. 10 ,
hich plots the resulting shear bias as a function of ργ . Across

he full range of shear coherence, we find no significant change
n the measured bias, with no evidence for a slope different from
ero ( p-value = 0.25), indicating that our results are robust to as-
umptions about the lensing relationship between the BSG and faint
eighbours. 

.6 Faint galaxy alignments relative to the BSG 

n this section we investigate how alignments between faint galaxies
nd the BSG affect shear biases. We consider three effects: the
rientation of the faint galaxy relative to the BSG centre, the relative
rientations of the faint and bright galaxies, and the location of the
aint galaxy with respect to the BSG major axis. These are examined
n the following subsections. We also briefly discuss the physical
echanisms that give rise to them. 

.6.1 Faint galaxy orientation 

e investigate the impact of alignments between faint galaxy
rientations and the position and orientation of the BSG. Specifically,
e consider: (i) radial alignment, where the faint galaxy’s major axis

ies along the line connecting the centres of the faint galaxy and the
SG (0◦ offset); (ii) tangential alignment, where the major axis is
erpendicular to this line (90◦ offset); and (iii) parallel alignment,
here the faint galaxy’s major axis is aligned with that of the BSG.

n all cases, the degree of alignment is quantified prior to lensing,
nd both the BSG and faint galaxies are subsequently lensed by the
ame shear. We discuss the validity of this approach further below. 

Radial and parallel alignments arise when faint galaxies are
hysically close to the BSG. Radial alignments can occur when
he BSG is a Bright Central Galaxy (BCG) and the faint galaxy is
ne of its satellites, while parallel alignments may be observed when
oth the BSG and the faint galaxy are satellites within the same halo.
hese alignments are attributed to tidal gravitational interactions and
re examples of intrinsic alignments (e.g. R. Mandelbaum 2018 , and
eferences therein). Tangential alignments, by contrast, are expected
hen faint galaxies projected close to the BSG lie at higher redshift,

uch that they are lensed by the BSG host halo. In this case, the
angential orientation of the faint galaxy represents the shear induced
y the BSG halo itself. In all three cases, the BSG and faint galaxies
re then subject to a similar foreground shear from matter between
he BSG and the observer. This justifies our procedure of applying
he same shear to both the BSG and faint galaxies after imposing the
nitial alignment. 
NRAS 545, 1–22 (2026)
The faint galaxy orientation, φf , is drawn from a von Mises
istribution 12 as follows: 

f ∼ vM ( ψ, κvM 

) , 

here ψ = φ for alignment with the BSG major axis. For alignment
ith the BSG position, ψ = θp + δ, where θp is the angle to the line

oining the bright and faint galaxy centres, given by 

p = arctan 

(
y0 , f − y0 , b 

x0 , f − x0 , b 

)
, 

ith δ = 0◦ (90◦) corresponding to radial (tangential) alignment.
e note that faint galaxies are placed at random positions around

he BSG and are not translated under shear. In reality, lensing also
nduces small positional shifts, which would require a full multiplane
ay-tracing treatment to model accurately. Modelling such shifts is
eyond the scope of this work. 
The von Mises concentration parameter, κvM 

, controls the degree
f alignment: κvM 

= 0 corresponds to random orientations, 13 while
vM 

� 100 yields orientations tightly clustered around ψ , approxi-
ating perfect alignment. All position angles φf drawn from the von
ises distribution are mapped to the range [0◦, 180◦). 
We vary κvM 

and quantify the degree of alignment using the
tatistic: 

ψ ≡
〈
cos 2 ( φf − ψ)

〉
, 

here the average is taken over all faint galaxies in an unlensed BSG
ample. For the range of κvM 

values we explore, Aψ varies from
.5 (random orientations) to 1 (perfect alignment). We note that
he alignments we impose are quantified prior to lensing, whereas
bservationally alignments are measured post-lensing and would
herefore appear weaker. This does not reduce the relevance of our
pproach: the pre-lensing alignments we quantify are the physically
elevant quantities for shear bias, and our procedure captures their
mpact accurately. 

In Fig. 10 , we show the biases associated with each type
f alignment, together with linear regression fits. The impact is
ignificant for radial ( p-value = 0.001) and tangential ( p-value
 0.002) cases, but not for parallel alignment ( p-value = 0.2).
adial alignment increases the magnitude of the bias (regression

lope −(6 . 4 ± 1 . 3) × 10−3 ), while tangential alignment reduces it
slope (6 . 7 ± 1 . 5) × 10−3 ). Overall, these results suggest that a
ealistic treatment of faint galaxy–BSG alignments is important for
alibration simulations. 

.6.2 Faint galaxy spatial distribution 

atellite galaxies are known to exhibit anisotropic spatial distribu-
ions around the BCG (referred to in the literature as the ‘host’
alaxy), typically aligning along the host’s major axis 14 (e.g. T. G.
rainerd 2005 ; P. Wang et al. 2018 ; Y. Liu et al. 2024 ). The strength
f this alignment depends on both galaxy colour and morphology:
ed centrals with red satellites exhibit the strongest anisotropy, while
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Figure 9. PDF (left; p( χp )) and cumulative density function (right) for the 
angle χp between the major axis of the BSG and the position of the faint 
galaxy. The fiducial model assumes a uniform distribution (grey dotted; 
E [ χp ] = 45◦). Linear models are shown in blue: the solid line corresponds 
to the relation in T. G. Brainerd ( 2005 ) (E [ χp ] ≈ 42◦), while the dashed line 
represents a more extreme case with E [ χp ] ≈ 30◦. The black solid curve 
shows a quadratic model approximating the relation found in I. Agustsson & 

T. G. Brainerd ( 2006 ), with E [ χp ] ≈ 34◦. 
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15 More generally, for βm 

�= 1, 

nf ( mAB ) d mAB = Am , f βm 

m
βm −−−1 
AB 10αm , f mAB d mAB . 

This form is used in Fig. 11 where we compare the full model and linear 
approximations. 
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ystems with blue centrals typically show nearly isotropic satellite 
istributions (J. Bailin et al. 2008 ). Of particular relevance to this
tudy is that alignment strength increases with decreasing projected 
eparation from the central and may be more pronounced when the 
atellite is significantly fainter than its host (X. Yang et al. 2006 ). 

These observational trends are broadly supported by structure 
ormation simulations (e.g. I. Agustsson & T. G. Brainerd 2006 ; 
. Kang et al. 2007 ), and they challenge the assumption in our
aseline model that faint galaxies are isotropically distributed around 
SGs. Although not all BSGs correspond to BCGs with nearby 

aint satellites, we nevertheless examine the impact of anisotropic 
aint galaxy distributions on shear bias estimates under this extreme 
cenario, in order to quantify a plausible ‘worst-case’ bias. 

We adopt two different forms for the probability density function 
PDF) of the position angle, χp , of the faint galaxy relative to the
ajor axis of the BSG. The first is a linear form, motivated by the

esults of T. G. Brainerd ( 2005 ) based on isolated host galaxies in
he Sloan Digital Sky Survey (SDSS; D. G. York et al. 2000 ): 

( χp ) = αχχp + βχ , (35) 

nd the second is a quadratic form, representing the results from
 CDM simulations presented in I. Agustsson & T. G. Brainerd

 2006 ): 

( χp ) = αχ + βχχp + γχχ2 
p . 

he parameter values are estimated from the plots in the respective 
apers and chosen to ensure proper normalization of the PDFs over 
he range [0◦, 90◦]. These curves are shown in Fig. 9 , alongside the
niform distribution used as our fiducial model and an extreme linear 
ase for comparison. 

To construct the full 2D angular distribution of faint galaxies while 
reserving alignment with the BSG’s major axis, we draw angles χp 

rom p( χp ) over [0◦, 90◦], and extend this to the full circle via the
ransformation: 

′ 
p = εχχp + δχ , 

here εχ ∈ {−1 , + 1 } and δχ ∈ { 0◦, 180◦} are chosen randomly
ith equal probability. This construction yields a distribution that 

s symmetric about the major axis while retaining the alignment 
reference encoded in p( χp ). 
We quantify the degree of anisotropy using the expected value of
he position angle: 

[ χp ] =
∫ 90◦

0◦
χp p( χp ) d χp . (36) 

n practice, we estimate E[ χp ] by computing the mean χp across an
nlensed simulated population of BSGs and faint galaxies. Fig. 10 
hows the resulting shear biases as a function of E[ χp ], which ranges
rom 45◦ (isotropic distribution) to 30◦. The distributions based on 
. G. Brainerd ( 2005 ) and I. Agustsson & T. G. Brainerd ( 2006 )
orrespond to E[ χp ] ≈ 42◦ and 34◦, respectively. 

Fitting a linear regression model to the results based on the
inear form of p( χp ), we find a statistically significant slope ( p-
alue = 0.03) with gradient (1 . 5 ± 0 . 6) × 10−4 . This implies that the
nisotropy of faint galaxies around BSGs, expressed through E[ χp ], 
ust be constrained to within ±2 . 7◦ in order for biases to remain at

east a factor of five below the top-level Euclid requirement. 

.7 Faint galaxy apparent magnitude slope 

he apparent magnitude distribution of faint galaxies surrounding 
SGs may differ from that of the general faint galaxy population
cross the field. For example, brighter satellites may preferentially 
eside closer to the halo centre (T. Tal, D. A. Wake & P. G. Dokkum
012 ). Additionally, observational studies suggest a correlation 
etween the absolute magnitude of the BCG and that of its brightest
atellite. We investigate this latter effect further in Section 9 . 

Here, we quantify the effect on the biases when varying the slope
f the faint galaxy apparent magnitude distribution for the entire 
SG sample. Since the biases flatten for mlim 

� 27 (see Fig. 6 ),
e simplify the analysis by including only faint galaxies up to

his magnitude limit. In this range, the cumulative distribution in 
quation ( 15 ) is well-approximated by an exponential in magnitude
equivalently a power law in flux) with βm 

= 1, so that log 10 ( N )
aries linearly with mAB . We refer to this as the linear approximation
o the full model. This simplified model allows us to vary αm , f while
eeping the total number density of faint galaxies fixed, thereby 
solating the impact of the slope alone. 

Differentiating equation ( 15 ), we obtain the following expression 
or the mean number density (per arcmin2 ) of faint galaxies in the
agnitude range mAB to mAB + dmAB : 

f ( mAB ) d mAB = Am , f 10αm , f mAB d mAB , (37) 

here we have set βm 

= 1 15 and the subscript f refers to the faint
alaxy population. 

Fiducial values for the parameters Am , f and αm , f in the linear 
pproximation model are obtained by imposing two conditions. First, 
he faint galaxy number density integrated over the range 24 . 5 <

AB < 27 must equal the fiducial value for the full model, such
hat: ∫ 27 

24 . 5 
nf ( mAB ) dmAB = Nfid;27 , (38) 

here Nfid;27 = 80 . 34 galaxies per arcmin2 (see Table 2 ). Secondly,
e require that nf ( mAB ) at mAB = 25 is the same in both the full and
MNRAS 545, 1–22 (2026)
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Figure 10. Impact of various alignment and shear coherence scenarios for faint galaxies on multiplicative shear bias. Top row, left to right: residual bias as a 
function of the alignment parameter Aψ , which quantifies (i) radial and (ii) tangential alignment of faint galaxy orientations with respect to the line connecting 
the faint galaxy and BSG centres, and (iii) the parallel alignment of faint and BSG orientations. Aψ = 1 corresponds to perfect alignment, and Aψ = 0 . 5 to 
random orientations. Bottom left: residual bias as a function of the spatial alignment of faint galaxies with the BSG’s major axis, quantified using the anisotropy 
metric E( χp ), where χp is the angle between the faint galaxy position and the BSG’s major axis; E( χp ) = 45◦ corresponds to random spatial positions. Blue 
points correspond to the linear form of p( χp ); the single green point corresponds to the quadratic form. In all cases, the specified alignment is applied prior to 
shearing. Bottom right: residual bias as a function of the shear coherence parameter ργ (equation ( 34 )), which quantifies the correlation between the applied 
shear on faint galaxies and that of the BSG. ργ = 1 corresponds to identical shears, while ργ = 0 represents completely uncorrelated shears. Grey and blue 
points, black dashed lines, and shaded regions are as in Fig. 7 . For the anisotropy panel, the green point is omitted from the regression. For all panels biases are 
shown relative to those predicted by the linear model fits at the fiducial parameter value. 
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16 Large magnitude gaps may also be associated with isolated groups located 
away from the dense nodes of the cosmic web (S. Zarattini et al. 2023 ). 
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inear approximation models; this somewhat arbitrary choice ensures
 reasonable match between the two models within the relevant
agnitude range (see Fig. 11 ). The resulting fiducial values of Am , f 

nd αm , f for the linear approximation are listed in Table 1 . In Fig. 6 ,
e plot the bias obtained when we adopt the linear approximation
ith mlim 

= 27 and find that it is consistent with the bias obtained
sing the ‘full’ model. 
As αm , f is varied, the mean number density is held fixed by

djusting the normalization constant Am , f according to: 

m , f =
{ 

2 
5 Nfid;27 αm , f = 0 , 

αm , f ln (10) Nfid;27 

1027 αm , f −1024 . 5 αm , f 
otherwise . 

(39) 

or reference, we plot the linear density profiles for αm , f = −0 . 1
nd 0.4 in Fig. 11 . We note that the number density distribution
s discontinuous at mAB = 24 . 5 when αm , f is varied away from the
ducial value, as may be expected if BSGs and faint galaxies are
rawn from separate populations. 
We plot the biases as a function of αm , f in Fig. 11 . The fiducial slope

s αm , f = 0 . 139. As expected, the absolute value of the bias increases
or flatter or negative slopes (corresponding to a higher proportion of
righter faint neighbours) and decreases for steeper positive slopes.
itting a linear regression model, we find a statistically significant
lope ( p-value = 0.002) with gradient (5 . 0 ± 1 . 2) × 10−3 . This
mplies that, for calibration simulations, αm , f must be determined
o within ±0 . 4 of its true value to satisfy the Euclid top-level bias
equirement, or to within ±0 . 08 to remain within a factor of 5 of the
equirement. 
NRAS 545, 1–22 (2026)
 SHEAR  BIASES  F RO M  C O R R E L AT I O N S  

ETWEEN  FA I N T-G A L A X Y  PROPERTIES  A N D  

SG  M AG N I T U D E  

he local mean density of faint galaxies around a BSG is likely to
ary, depending on its environment. For instance, when the BSG
s the BCG of a massive halo, the excess can reach factors of
rder 5 (e.g. M19). In contrast, isolated galaxies, as well as those
n low-mass groups, will tend to be surrounded by an underden-
ity of faint neighbours relative to the average across all BSGs.
his suggests a positive correlation between halo mass and faint-
alaxy excess. If BSG apparent magnitude is taken as a proxy for
ass, then a corresponding dependence on BSG magnitude is also

xpected. 
A second effect arises from the magnitude gap: haloes hosting

righter BCGs tend to have larger gaps between the first and second
rightest members (G. Gozaliasl et al. 2014 ). This is thought to
eflect the halo’s formation history 16 (A. A. Dariush et al. 2010 ; A.
. Vitorelli et al. 2018 ) and implies that the faint galaxy apparent
agnitude distribution depends on the BCG’s luminosity. Again, if

pparent magnitude is used as a proxy for absolute magnitude, this
ranslates to a correlation between the faint-galaxy distribution and
he BSG apparent magnitude. 

We investigate these two effects separately in the following
ections. We adopt the linear form for the faint galaxy apparent
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Figure 11. Left: mean faint galaxy number density 〈 n ( mAB )〉 for αm , f = −0 . 1 (blue dashed), 0.4 (blue dotted), and the fiducial value αm , f = 0 . 139 (red dashed) 
using the ‘linear’ model. The area under each curve in the range 24 . 5 < mAB < 27 is fixed to Nfid;27 = 80 . 34 galaxies per arcmin2 . The green solid curve shows 
〈 n ( mAB )〉 for the ‘full’ model (see Table 1 ). Right: residual multiplicative biases as a function of αm , f using the linear model. Grey and blue points, black dashed 
line, and shaded regions are as in Fig. 7 . Biases are shown relative to the regression model prediction at the fiducial parameter value. 
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17 The median BSG magnitude is ≈ 23 . 4 and the mean ≈ 23 . 7. 
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agnitude distribution (see Table 1 and Section 8.7 ) and include 
eighbouring galaxies up to a limiting magnitude of mlim 

= 27. 

.1 Including a dependence of faint galaxy excess on BSG 

agnitude 

e consider a model in which the mean number of faint galaxies
ithin θr arcsec of a BSG is conditional on the apparent magnitude 
f the BSG as follows: 〈
Nθr 

( mAB , b )
〉 = Bm 

10−bm mAB , b , (40) 

here mAB , b is the apparent magnitude of the BSG, bm 

= 0 for a
onstant mean density for all BSGs and Bm 

is given by 

m 

= Nfid;27 π ( θr / 60)2 ( αm , b − bm 

)
(
1024 . 5 αm , b − 1020 αm , b 

)
αm , b 

(
1024 . 5( αm , b −bm ) − 1020( αm , b −bm ) 

) (41) 

o that the mean excess across all BSGs is held equal to the
ducial excess (see derivation in Appendix A ). We include all faint
alaxies within θr = 3 of the BSG and up to a limiting magnitude
lim 

= 27. The number density of faint galaxies per arcmin2 is Nfid;27 

see Section 8.7 ) and the slope of the BSG apparent magnitude
istribution is αm , b = 0 . 36 (see Table 1 ). 
We justify the use of this empirical relation in Appendix B , finding

n approximate value for bm 

∼ 0 . 3. In practice, its value will depend
n the survey parameters, in particular the survey depth and filters,
nd will need to be determined from observational data, such as
he Euclid deep field. For a positive bm 

the number density of faint
alaxies is greater for a brighter BSG, as is supported in the literature
e.g. S. Zarattini et al. 2021 ; K. Simotas et al. 2023 ). In Fig. 12 , we
lot the relationship between the number of faint galaxies within 
 arcsec of a BSG ( N3 ) and the apparent magnitude of the BSG for
 range of bm 

values, together with barplots showing the frequency 
ensity of N3 across the sample. 
The multiplicative biases are shown in Fig. 13 for values of bm 

etween 0 and 0.5. Also shown are the biases when we implement the
ame distribution of excesses provided by equation ( 40 ), but with zero
orrelation between

〈
Nθr 

( mAB , b )
〉

and the BSG apparent magnitude. 
his is achieved in practice by drawing a different random magnitude 

or the BSG than that used to obtain
〈
Nθr 

( mAB , b )
〉
. 

Assuming a linear relation between the multiplicative bias and 
m 

, we find a statistically significant slope ( p-value = 0.0004) when
tting a linear regression model to the mean of m1 and m2 as a
unction of bm 

, with d �m/ d bm 

= (8 . 3 ± 1 . 5) × 10−3 . In contrast,
hen we preserve the same distribution of faint galaxy excesses 
cross BSGs but remove the correlation with BSG magnitude, the 
lope is consistent with zero ( p-value = 0.24). This latter result
s expected given the linear response of the multiplicative bias 
o a uniform change in faint galaxy excess across the sample,
emonstrated in Section 8.2 and Fig. 6 . Nevertheless, the zero-
orrelation test provides a useful check that confirms the correlation 
etween the mean faint galaxy density and BSG magnitude is the
actor driving the residual biases, rather than differences in the 
verall N3 distribution relative to the fiducial case. To ensure that 
esidual biases remain at least a factor of 5 below the top-level
uclid requirement, calibration simulations must therefore model 

his correlation accurately, constraining the parameter bm 

to within 
0 . 05 of its true value. 

.2 Including a dependence of the faint galaxy magnitude 
istribution on BSG magnitude 

n this section, we explore the effect of a correlation between
SG apparent magnitude and the magnitude distribution of the 

urrounding faint galaxies. We adopt a simple model in which 
he conditional slope of the faint galaxy apparent magnitude dis- 
ribution, αm , f;c , varies linearly with the BSG apparent magnitude 

AB , b : 

m , f;c = αm , f;fid − Bc ( mAB , b − mAB , b;p ) , (42) 

here αm , f;fid = 0 . 139 is the fiducial slope (see Table 1 ), mAB , b;p is
he ‘pivot’ magnitude (see below), and Bc controls the strength of 
he correlation. When Bc = 0, the slope is independent of the BSG

agnitude. We fix mAB , b;p = 23 . 5 (chosen close to the median BSG
agnitude 17 ) so that approximately half the galaxy sample has an

ssociated faint galaxy magnitude slope below the fiducial value, and 
alf above. 
For each BSG, the mean number of faint galaxies is held constant

t the field value (i.e. with fex = 0) by re-normalizing the distribution
sing equation ( 39 ) with αm , f = αm , f;c . Thus, while the distribution
f faint magnitudes varies with BSG brightness, the mean number of
aint galaxies is fixed for each BSG at the fiducial value. 

However, because the BSG number density itself varies with 
agnitude, the overall faint galaxy apparent magnitude distribution 
MNRAS 545, 1–22 (2026)
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Figure 12. Top panels: Number of faint galaxies within 3 arcsec of each BSG ( N3 ) as a function of the BSG apparent magnitude, for three values of the 
correlation parameter: bm 

= 0 . 1 (left), 0.2 (middle), and 0.3 (right). The red lines show 〈 N3 〉 as a function of BSG magnitude, while grey dots represent N3 for 
individual BSGs. The horizontal blue dashed lines indicate 〈 N3 〉 for bm 

= 0. Bottom panels: Distribution of N3 across all BSGs. Grey bars show the distribution 
for the fiducial setup with bm 

= 0, while red-outlined bars show the distributions for the corresponding bm 

> 0 cases. The overall mean excess is fixed to zero. 

Figure 13. Residual multiplicative biases as a function of bm 

, the parameter defining the correlation between the mean faint galaxy excess and BSG apparent 
magnitude (left-hand plot; see equation ( 40 )). Also shown are the biases obtained using the same distribution of excesses among BSGs, but with zero correlation 
with the BSG magnitude (right-hand plot). Grey and blue points, black dashed lines, and shaded regions are as in Fig. 7 . Biases are shown relative to that 
predicted by the regression model fit at the fiducial parameter value (i.e. at bm 

= 0). 
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cross the BSG sample will differ from the fiducial (uncorrelated,
c = 0) case. Fig. 14 compares the overall faint galaxy distribution
ith the fiducial case for different Bc values, along with distributions

ssociated with the brightest and faintest BSGs. Across the range
ested, the total distribution is very close to fiducial. None the less,
NRAS 545, 1–22 (2026)
ecause even small changes in the faint distribution can affect shear
iases (see Section 8.7 and Fig. 11 ), we perform a sensitivity test
esigned to isolate the impact of the correlation itself from that
f changes in the overall faint magnitude distribution. Specifically,
e compute biases using the same distribution as that obtained when
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Figure 14. Faint galaxy apparent magnitude distribution for Bc = −0 . 2 (top left), 0.1 (top right), 0.2 (bottom left), and 0.3 (bottom right) for BSG apparent 
magnitudes mAB , b = 20 (blue dashed) and 24.5 (blue solid). The red solid line shows the faint galaxy distribution across all BSGs when using equation ( 42 ) 
with mAB , b;p = 23 . 5. The fiducial case ( Bc = 0) is shown with a black dotted line. 

Figure 15. Dependence of the faint galaxy apparent magnitude slope on BSG 

magnitude for Bc = −0 . 2 (red dashed), 0 (black dotted), 0.1 (blue solid), 
and 0.3 (green dashed–dotted) with mAB , b;p = 23 . 5 (see equation ( 42 )). For 
Bc = 0, the slope is fixed at the fiducial value ( αm , f = 0 . 139; see ‘Fiducial 
Linear’ model in Table 1 ). 
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Figure 16. Relationship between faint galaxy magnitudes and BSG magni- 
tudes for different Bc values (colours and linestyles as in Fig. 15 ). All faint 
galaxies within 3 arcsec of a BSG are included. Results are shown with ∼100 
BSGs per bin. Best-fitting regression parameters and correlation coefficients 
are given in Table 5 . 

∼  

18 The distribution of magnitude gaps between the brightest and second- 
brightest galaxies in a halo is commonly studied (e.g. S. More 2012 ; S. 
Zarattini et al. 2021 ). However, since our analysis excludes neighbours 
brighter than 24.5, a direct comparison is not possible. Nevertheless, the 
linear relation observed between BCG absolute magnitude and magnitude 
gap in previous work (e.g. G. Gozaliasl et al. 2014 ) motivates the form of 
equation ( 42 ). 
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c �= 0, but remove the correlation with BSG magnitude by randomly 
eassigning BSG magnitudes when generating the faint population. 
his ensures that any difference in biases between the two cases 
rises solely from the correlation, rather than from a shift in the
lobal faint galaxy magnitude distribution. 
We explore correlation strengths in the range Bc ∈ [ −0 . 2 , 0 . 35].

ig. 15 illustrates how the conditional slope αm , f;c varies with BSG 

agnitude for representative Bc values. To connect Bc with an 
bservable quantity, Fig. 16 shows, for each Bc , the mean faint galaxy
agnitude as a function of BSG magnitude, binned in quantiles of
100 BSGs each. The relationship is approximately linear 18 ; Table 5
MNRAS 545, 1–22 (2026)
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Table 5. Best-fitting linear regression parameters 
for the relation between faint galaxy magnitudes, 
mAB , f , and BSG magnitudes, mAB , b , for different 
Bc values (see Fig. 16 ). Also shown is Pearson’s 
correlation coefficient r . 

Bc Slope Intercept r 

−0.2 0 .27 19.48 0 .37 
0 0 .00 25.97 0 .00 
0.1 −0 .14 29.10 −0 .19 
0.3 −0 .27 32.3 −0 .38 
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rovides the regression slope, intercept, and Pearson’s correlation
oefficient for each Bc . 

Fig. 17 shows the multiplicative biases versus Bc , both with ( r �= 0)
nd without ( r ≈ 0) the correlation between αm , f and BSG magnitude
ncluded in the simulations. We find that with r ≈ 0 there is no
vidence for a linear regression slope different from zero ( p-value
 0.8). This demonstrates that any differences in the overall faint

alaxy apparent magnitude distribution (i.e. across all BSGs) from
he fiducial case has a negligible impact on the biases. However,
hen we include the correlation between the faint-end magnitude

lope and the BSG magnitude there is a significant effect ( p-value
 0.007) with slope −(2 . 0 ± 0 . 8) × 10−3 . Assuming the relation

hown in Fig. 16 , our results suggest that Bc must be constrained
o within ±0 . 2 to ensure biases are a factor of 5 below the Euclid
equirement. 

0  DI SCUSSION  

e have investigated the impact of undetected galaxies on shear
alibration, focusing on how various properties of the faint population
nfluence multiplicative biases. Using independent image simula-
ions 19 and a noise-bias-free machine learning shape measurement
ode (L. M. Voigt 2024 ), we confirm previous findings that failing
o account for faint blends leads to unacceptably large biases. In our
ducial simulations, this bias reaches mi ∼ −8 × 10−3 – well above

he Euclid top-level requirement of | mi | < 2 × 10−3 . 
Consistent with previous studies (e.g. M19), we find that calibra-

ion simulations must include faint galaxies to a limiting magnitude
AB , f ∼ 27 . 0+ 2 . 1 

−0 . 9 in order to capture the dominant contributions
o blending-induced bias. 20 However, we find that galaxies need
nly be included out to projected separations θr ∼ 1 . 03+ 0 . 22 

−0 . 24 arcsec
approximately 10 pixels for Euclid ) from each BSG, compared to
he ∼2.5 arcsec inclusion radius found by M19. This difference may
rise from the smaller postage stamps used in our setup (M19 use
4 by 64 pixels), and suggests that calibration simulations should be
dapted to the specifics of the shear measurement pipeline. 

Our study builds on previous work by systematically varying
ey properties of the faint galaxy population that have not yet
een explicitly explored in this context. Specifically, we examine
he size–magnitude relation, the slope of the apparent magnitude
NRAS 545, 1–22 (2026)

9 We generate PSF-convolved galaxy images using an independent image- 
eneration pipeline, providing a useful verification of results obtained by 
17, M19, and H21, who use the GalSim galaxy simulation toolkit (B. T. 

. Rowe et al. 2015 ). 
0 This agrees with the finding in M19 that the required limiting magnitude is 
argely insensitive to the choice of shear measurement method. 
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istribution, 21 and correlations between faint galaxy properties and
hose of the BSG, including its position, orientation, and brightness.
rucially, where possible, we quantify biases in terms of parameters

hat can in principle be measured directly from survey data. 
In Table 6 , we summarize which properties of the faint population

ignificantly impact multiplicative biases over the range of values
xplored. We refer to these as the ‘critical’ parameters and provide
onstraints on how precisely each one must be determined to suppress
esidual biases to at least a factor of 5 below Euclid ’s top-level
equirement. We note that even stricter thresholds may be required
o accommodate multiple systematics in shear measurement. 

As expected, blending biases depend sensitively on the mean faint
alaxy density in the vicinity of BSGs, which we define as the
xcess over the mean density of faint galaxies across the field. We
nd that this excess must be constrained to within ±0 . 05 to reduce
esidual biases sufficiently. Furthermore, a correlation between the
ocal faint galaxy density and the BSG apparent magnitude can
nduce large residual biases if unaccounted for. We model this relation
Appendix B ), described by the parameter bm 

(equation ( 40 )), and
nd that it must be known to within at least ±0 . 05 of its true value. 
In addition, the slope of the faint galaxy apparent magnitude

istribution – measured across all BSGs and with the mean faint
alaxy number density held constant – has a pronounced impact.
hallower slopes (i.e. a higher fraction of relatively bright faint
alaxies) increase the absolute magnitude of the bias, while steeper
lopes reduce it. Our results indicate that the slope must be known
o within ±0 . 08 to limit residual biases. We also examine the impact
f a linear relation between the slope and BSG apparent magnitude.
his correlation has a statistically significant effect on shear biases
nd requires the parameter Bc (equation ( 42 )) to be determined to
ithin ±0 . 2 to keep residual biases under control. 
Faint galaxy orientations and positions must also be taken into

ccount. Radial and tangential alignments of faint galaxies with
espect to the BSG centre, as well as anisotropy in their spatial
istribution relative to the BSG major axis, all substantially alter
he biases. By contrast, correlations between the shears of faint
alaxies and the BSG, as well as parallel alignments of their intrinsic
rientations, do not have a measurable impact. Across the parameter
anges explored, variations in the slope or normalization of the
ize–magnitude relation also do not substantially affect the biases,
ndicating robustness to moderate uncertainties in size–magnitude

odelling. 
Any shear estimator that does not explicitly account for flux

ontamination from unresolved neighbours is likely to exhibit
imilar sensitivities to faint blends as those described above. Our
esults thus inform the design of calibration simulations used by
hape-measurement pipelines, identifying the critical faint-galaxy
roperties that must be included in, for example, the Euclid Flagship
imulation (D. Potter, J. Stadel & R. Teyssier 2017 ; Euclid Collab-
ration 2025b ), which plays a central role in modelling detection,
election, and shape-measurement systematics. 

Furthermore, our work highlights the need to measure faint-
alaxy properties directly from deep-field data in order to achieve
he required precision on these critical parameters (see Table 6 ).

hile theoretical models and N -body simulations provide valuable
nsights into large-scale galaxy distributions (e.g. M. Vogelsberger
t al. 2014 ), they are less reliable for capturing the small-scale
1 H17 also examine the slope of the apparent magnitude distribution, but here 
e fix the mean galaxy number density to isolate the effect of the distribution 

hape from changes in projected number density. 
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Figure 17. Residual multiplicative biases as a function of Bc , both with (left) and without (right) the correlation between the faint-end slope and BSG magnitude 
included. At a given Bc , the overall distribution of faint galaxy magnitudes across all BSGs is the same in both cases. Grey and blue points, black dashed lines, 
and shaded regions are as in Fig. 7 . Biases are shown relative to that predicted by the regression model fit at the fiducial parameter value (i.e. at Bc = 0). 

Table 6. Summary of the linear regression model fits used to quantify the dependence of 
multiplicative biases on faint galaxy parameters. For each parameter, we fit a simple linear 
regression model and test the null hypothesis H0 : β = 0 (no dependence of bias on the parameter) 
against the alternative HA : β �= 0, where β is the slope of the best-fitting regression line. We report 
the two-sided p-value from this test. The parameters are grouped into two subtables: those with 
p< 0 . 05, referred to as critical because they show a statistically significant dependence of shear 
bias on the parameter, and those with p ≥ 0 . 05, for which no significant dependence is detected 
over the range explored. For all parameters we list the fiducial value adopted in the simulations and 
the range of values included in the regression fit. For the critical parameters we additionally report 
the constraint required to keep the residual multiplicative bias below 4 × 10−4 , corresponding to 
a factor of 5 more stringent than the top-level Euclid requirement. 

(a) Critical parameters ( p< 0 . 05) 
Parameter p-value Constraint Fiducial Range explored 

fex 4 × 10−7 ±0 . 05 0 [ −1 , 2] 
Aψ radial 0.001 ±0 . 06 0.5 [0.5,1] 
Aψ tangential 0.002 ±0 . 06 0.5 [0.5,1] 
E[ χp ] 0.03 ±2 . 7◦ 45◦ [30◦, 45◦] 
αm , f 0.002 ±0 . 08 0.139 [ −0 . 1 , 0 . 4] 
bm 

0.0004 ±0 . 05 0 [0,0.5] 
Bc 0.007 ±0 . 2 0 [ −0 . 2 , 0 . 35] 

(b) Non-critical parameters ( p ≥ 0 . 05) 
Parameter p-value Fiducial Range explored 

kmax 0.5 ∞ [3,23] 
αr, f 0.07 −0.033 [ −0 . 1 , 0] 
fre 0.2 1 [0.4,1.6] 
Aψ parallel 0.2 0.5 [0.5,1] 
ργ 0.25 1 [0,1] 
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istributions of faint-galaxy positions, magnitudes, and orientations 
hat matter for blending. These challenges stem from uncertainties 
n the galaxy–halo connection and the impact of baryonic physics on 
alaxy formation and clustering. 

To constrain biases from contaminants as faint as mAB ∼ 27, deep 
elds must reliably detect galaxies to at least this limit. The Euclid
eep Survey, although covering most of the faint range ( mAB ∼
4 . 5–26.5), may fall short of capturing the full contribution from the
aintest blends. This highlights the importance of complementary 
ltra-deep data sets such as the Hubble Ultra Deep Field (HUDF) 
r Hubble eXtreme Deep Field, which reach i ′ ∼ 29. Previous 
imulation-based studies have drawn on HUDF data to model faint- 
alaxy clustering (M19), but our results emphasize the need for 
ighter quantitative constraints on parameters such as clustering 
xcess, magnitude slope, and local correlations with BSG properties. 
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Figure B1. 3D halo mass enclosed within a 3 arcsec radius at z = 1 (blue 
solid) using the mass–concentration relation from H. Shan et al. ( 2017 ) 
(equation ( B4 )). The red dashed curve shows the best-fitting power law: 
M( < 3 arcsec ) ∝ M

αR 
200 , with αR = 0 . 25. For reference, the dotted black line 

shows the one-to-one relation, M( < 3 arcsec ) = M200 . At low halo masses, 
r200 falls within the aperture, so the enclosed mass approaches the total halo 
mass. 

c

δ

a  

d

c

c

w  

0  

e  

S
1  

f

c

3

M

I  

c  

E
 

c
W  

d

M

22 Defined such that the mean overdensity within r200 is 200 times the critical 
density. 
23 M200 is the mass enclosed within r200 . 
24 The halo mass is truncated at r200 , so that M( < 3 arcsec ) tends to M200 as 
the halo mass decreases and r200 < R. 
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PPEN D IX  A :  D E R I V I N G  T H E  FA I N T-G A L A X Y  

XCESS  – BSG  BRIGHTNESS  C O R R E L AT I O N  

O R M A L I Z AT I O N  PARAMETER  

ere we derive the parameter Bm 

, which quantifies the excess 
umber of faint galaxies around a BSG as a function of its apparent
agnitude. 
The mean total number of faint galaxies within a radius θr (in

rcsec) of a BSG, integrated over all BSGs (per arcmin2 ), is 

〈
Nθr ,tot 

〉 =
∫ 24 . 5 

20 

〈
Nθr 

( mAB , b )
〉
nb ( mAB , b ) dmAB , b , (A1) 

here
〈
Nθr 

( mAB , b )
〉

is defined in equation ( 40 ) and nb ( mAB , b ) is the
SG number density per arcmin2 per unit magnitude. 
Substituting

〈
Nθr 

( mAB , b )
〉

in terms of Bm 

and bm 

into equation 
 A1 ) gives 

〈
Nθr ,tot 

〉 = Bm 

Am , b 

( αm , b − bm 

) ln 10 
(1024 . 5( αm , b −bm ) − 1020( αm , b −bm ) ) . (A2) 

Alternatively, expressing
〈
Nθr ,tot 

〉
in terms of the fiducial mean 

umber of faint galaxies within θr , 

〈
Nθr ,tot 

〉 = πθ2 
r Nfid ;27 

602 

∫ 24 . 5 

20 
nb ( mAB , b ) dmAB , b , (A3) 

ith ∫ 24 . 5 

20 
nb ( mAB , b ) dmAB , b =

Am , b 

(
1024 . 5 αm , b − 1020 αm , b 

)
αm , b ln 10 

. (A4) 

Equating the two expressions for
〈
Nθr ,tot 

〉
then yields equation 

 41 ), giving the required form of Bm 

. 

PPEN D IX  B:  R ELATIONSHIP  BETWEEN  

UMBER  O F  SATELLITES  IN  A  FIXED  

PERTU R E  A N D  H A L O  MASS  

n this Appendix, we present an approximate derivation of the 
elationship between the number of satellites within a fixed circular 
perture of radius R around a BCG and the host halo mass. This
odelling does not enter into the main analysis, but is used to justify

he form of the relation provided in equation ( 40 ) and to obtain an
pproximate value for bm 

. 
Within the halo occupation framework, the total number of 

atellites (above a fixed luminosity threshold) residing in a halo 
f mass M200 scales approximately as 〈
Nsat, tot 

〉 ∝ ( M200 ) 
αtot , (B1) 

ith αtot ∼ 0 . 9–1 (A. Vale & J. P. Ostriker 2006 ). Under the
ssumption that satellites follow the dark matter distribution, the 
umber of satellites enclosed within a fixed aperture grows more 
lowly with halo mass, since a smaller fraction of satellites falls
ithin the aperture at higher halo masses due to the increasing halo

ize. 
Satellite galaxies are often assumed to follow the same spatial 

istribution as the dark matter (e.g. I. Zehavi et al. 2011 , see also
omments in the final paragraph of this Section), typically modelled 
y a Navarro–Frenk–White (NFW) profile (J. F. Navarro, C. S. Frenk 
 S. D. M. White 1997 ), with density at radius r given by 

( r ) = δc ρc 

( r /rs )(1 + r/rs )2 
, (B2) 

here ρc = 3 H ( z)2 / (8 πG ) is the critical density of the Universe at
edshift z, H ( z) is the Hubble parameter, G is Newton’s gravitational
onstant, δc is the characteristic overdensity 22 , given by 

c = 200 

3 

c3 

ln (1 + c) − c/ (1 + c) 
, (B3) 

nd rs , the scale radius, is related to the virial radius r200 and the
imensionless concentration parameter c via r200 = crs . 
We adopt a relationship between the virial mass, M200 

23 , and 
oncentration from H. Shan et al. ( 2017 ), such that 

( M200 ) = C0 

(
M200 

1012 M�

)−γc 

, (B4) 

ith C0 = 6 . 61 and γc = 0 . 15 for galaxies in the redshift range
 . 4 < z < 0 . 6. These parameter values were determined by H. Shan
t al. ( 2017 ) based on the Canada–France–Hawaii Telescope (CFHT)
tripe 82 Survey, covering haloes in the mass range 5 × 1012 –2 ×
014 M�. We allow for an evolution with redshift using the relation
rom J. S. Bullock et al. ( 2001 ), given by 

( M200 ) ∝ (1 + z)−1 . (B5) 

Integrating equation ( B2 ) and assuming spherical symmetry, the 
D halo mass enclosed within a fixed radius R is 

( < R) = 4 πδc ρc r
3 
s 

[
ln 

(
1 + R 

rs 

)
− R/rs 

1 + R/rs 

]
. (B6) 

n our fiducial setup, we use an aperture with radius 3 arcsec,
orresponding to R ≈ 24 kpc at z = 1 (the median redshift for
uclid ). 
Using equations ( B3 )–( B6 ), we plot in Fig. B1 the 3D mass en-

losed within 3 arcsec of the halo centre as a function of virial mass. 24 

e find that a power law provides a reasonable approximation to the
istribution, such that 

( < R) ∝ ( M200 ) 
αR , (B7) 
MNRAS 545, 1–22 (2026)



22 L. M. Voigt
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ith αR ∼ 0 . 25 for R = 3 arcsec and z = 1. Thus, we can write the
ean number of satellites within radius R as 

〈 Nsat ( < R)〉 ∝ ( M200 ) 
αR αtot . (B8) 

We now relate 〈 Nsat ( < R)〉 to the BCG apparent magnitude.
ssuming all galaxies lie at the same redshift, the BCG luminosity

s related to its apparent magnitude by 

BCG ∝ 10−0 . 4 mAB . (B9) 

e find that this relation is only marginally shallower if we instead
se a realistic redshift distribution. Adopting a sub-linear relation
etween BCG luminosity and halo mass, 

BCG ∝ ( M200 ) 
βL , (B10) 

ith βL ∼ 0 . 3 (S. Brough et al. 2008 , and references therein), we
btain 

〈 Nsat ( < R)〉 ∝ 10−0 . 4 αR αtot mAB /βL . (B11) 

sing representative values of αR = 0 . 25, αtot = 0 . 9, and βL = 0 . 3,
nd assuming the number of satellites within R corresponds to the
rojected number, we find bm 

∼ 0 . 3 (see equation ( 40 )). 
NRAS 545, 1–22 (2026)
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( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reus
We emphasize that the above derivation provides only a rough
stimate and the actual relation will likely differ from the one
rovided here. For simplicity, we have shown the enclosed 3D mass,
hereas observations correspond to satellite counts in projected

pertures. Other factors may also affect the satellite number density–
agnitude relation. For example, we assume satellites follow the dark
atter distribution, but simulations suggest they are less centrally

oncentrated (e.g. L. Gao et al. 2004 ), although the picture is complex
e.g. L. Sales & D. G. Lambas 2005 ; J. Chen et al. 2006 ; J. Chen
008 , and references therein). In addition, the inner density profiles
f dark matter haloes may be more cuspy than the NFW profile
e.g. A. A. Dutton & A. V. Macciò 2014 ), which would increase the
nclosed mass at small radii and modify the halo mass dependence.
tudies also suggest a more complex redshift dependence of the
oncentration parameter than the simple (1 + z)−1 scaling adopted
ere (e.g. J. C. Mu˜ noz-Cuartas et al. 2011 ). Finally, we note that only
 proportion of BSGs will be BCGs, so the comparison to equation
 40 ) is approximate. It will therefore be important to determine bm 

mpirically from deep field surveys. 

his paper has been typeset from a TE 

X/LA TE 

X file prepared by the author. 
© The Author(s) 2025. 
Open Access article distributed under the terms of the Creative Commons Attribution License 
e, distribution, and reproduction in any medium, provided the original work is properly cited. 

m
ic.oup.com

/m
nras/article/545/3/staf2136/8362692 by guest on 19 January 2026

https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 THE GALAXY AND PSF MODELS
	3 ELLIPTICITY AND SHEAR
	4 THE BRIGHT AND FAINT GALAXY POPULATIONS
	5 SIMULATING THE IMAGES
	6 THE SHEAR MEASUREMENT METHOD
	7 Baseline shear biases and  estimation
	8 SHEAR BIASES FROM FAINT GALAXY CONTAMINATION
	9 SHEAR BIASES FROM CORRELATIONS BETWEEN FAINT-GALAXY PROPERTIES AND BSG MAGNITUDE
	10 DISCUSSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: DERIVING THE FAINT-GALAXY EXCESS BSG BRIGHTNESS CORRELATION NORMALIZATION PARAMETER
	APPENDIX B: RELATIONSHIP BETWEEN NUMBER OF SATELLITES IN A FIXED APERTURE AND HALO MASS

