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ABSTRACT

Gravitational lensing of background galaxies by intervening matter is a powerful probe of the cosmological model. In the era
of Stage IV surveys, contamination from galaxies below the detection threshold has emerged as a significant source of bias.
Adopting a noise-bias-free machine-learning method to estimate shear, we quantify the impact of faint galaxies for a Euclid-like
survey. In our baseline simulations, faint blends induce a multiplicative shear bias of —0.008, well above Euclid’s requirement.
Similar to previous studies, we find that calibration simulations must include neighbouring galaxies to AB apparent magnitudes
as faint as 27.0 (4-2.1, —0.9) and within approximately 1.0 (4-0.2, —0.2) arcsec of each bright sample galaxy (BSG; the galaxy
for which shear is measured). By varying faint galaxy properties, we identify which ones significantly affect shear biases and
quantify how well they must be constrained. Crucially, we find that biases not only depend on the mean projected faint-galaxy
density and apparent-magnitude distribution across the sample, but also on how these quantities vary with the observed brightness
of the BSG. Furthermore, biases are sensitive to radial and tangential alignments and positional anisotropy of faint galaxies
relative to BSGs. By contrast, shear coherence between BSGs and faint galaxies, parallel orientation alignments, and variations
in the faint galaxy size—magnitude relation have negligible impact within the parameter ranges explored. Our results guide

calibration simulations and highlight the critical role of deep observations in measuring the properties of faint galaxies.
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1 INTRODUCTION

Weak gravitational lensing provides a powerful probe of cosmic
structure, making it one of the main science drivers for large-
scale cosmological surveys. Stage IV missions such as Euclid' (R.
Laureijs et al. 2011; L. Amendola et al. 2013), the Vera C. Rubin
Observatory’s Legacy Survey of Space and Time? (LSST; LSST Dark
Energy Science Collaboration 2012), and NASA’s Nancy Grace
Roman Space Telescope® (D. Spergel et al. 2015) aim to deliver
sub-percent level constraints on cosmological parameters, including
the dark energy equation-of-state parameter wy. Achieving this level
of precision requires stringent control of systematic biases in weak
lensing measurements.

Sources of systematic bias include galaxy shape measurement (C.
Heymans et al. 2006; R. Massey et al. 2007; T. D. Kitching et al. 2012;
R. Mandelbaum et al. 2015), photometric redshifts (H. Hildebrandt
et al. 2010), intrinsic alignments (e.g. C. M. Hirata & U. c. v. Seljak
2004; B. Joachimi & S. L. Bridle 2010; C. Heymans et al. 2013), and
the modelling of non-linear structure and baryonic effects (see also
R. Mandelbaum 2018, for a review). Shape measurement systematics
include model-fitting bias (L. M. Voigt & S. L. Bridle 2010), noise
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bias (T. Kacprzak et al. 2012; A. Refregier et al. 2012), and modelling
of the point-spread function (PSF; S. Paulin-Henriksson et al. 2008),
including wavelength-dependent effects (E. S. Cypriano et al. 2010;
L. M. Voigt et al. 2012). A bias that has emerged more recently
as a significant concern is blending — flux contamination from
neighbouring or overlapping galaxies that affects both the detection
and shape measurement of sources (e.g. S. Samuroff et al. 2018).
These galaxies may be physically associated with the source (e.g.
within groups or clusters) or unrelated galaxies projected at small
angular separation.

While some bright blends —i.e. those above the detection threshold
— can be mitigated using deblending algorithms (e.g. B. Arcelin et al.
2020; R. Zhang et al. 2024) or catalogue-level flagging based on
SEXTRACTOR’s output parameters (E. Bertin 2011; J. Zuntz et al.
2018), galaxies below the detection threshold cannot be directly
removed yet still contribute flux to the images of galaxies used for
shear estimation. We refer to the galaxies used for shear estimation
as bright sample galaxies (BSGs), and their undetected neighbours
as faint galaxies. These faint blends, despite being undetected, can
introduce significant shear biases if their presence is ignored i.e. if
the bright galaxy used for shear estimation is assumed to be isolated.
Stage III surveys, for example the Dark Energy Survey (DES)* Year
3 analysis, have incorporated deep image simulations to model these
effects, extending the simulated galaxy population to magnitudes as
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faintas mag ~ 27.5 (N. MacCrann et al. 2022). Although some shear
measurement techniques aim to reduce dependence on simulations,
such as METACALIBRATION and METADETECTION (E. Huff & R. Man-
delbaum 2017; E. S. Sheldon & E. M. Huff 2017; E. S. Sheldon et al.
2023), simulations nevertheless remain a key component of weak
lensing analyses — particularly for those using model-fitting methods
such as LENsfit (L. Miller et al. 2007; S.-S. Li et al. 2023). In such
cases, assumptions about the faint galaxy population can affect shear
calibration and shift cosmological constraints. However, the extent
to which the properties of the faint galaxy population in these simula-
tions must match those in the data still requires further investigation.

In this paper, we carry out a systematic study of the biases
arising from faint blends, using Euclid as the reference survey.
We quantify the sensitivity of the shear bias to several faint galaxy
properties, such as the limiting magnitude to which galaxies must
be simulated and the maximum separation from the BSG at which
faint blends still contribute significantly — parameters that have been
explored in previous studies using separate galaxy simulation and
shear measurement methods (H. Hoekstra, M. Viola & R. Herbonnet
2017; Euclid Collaboration 2019; H. Hoekstra, A. Kannawadi &
T. D. Kitching 2021, hereafter H17, M19 and H21, respectively).
We extend this work to also include additional properties such as
the angular distribution and orientation of faint galaxies relative
to the BSG, the shear applied to faint galaxies, the slope of the
faint galaxy apparent magnitude distribution, and the form of the
size—magnitude relation. Crucially, we also investigate the impact of
correlations between the properties of faint blends and those of the
BSG - specifically, dependencies of the local faint galaxy density and
magnitude distribution slope on BSG brightness. To our knowledge,
this is the first time such correlations have been explicitly quantified
in the context of shear calibration. These effects are particularly
relevant for Stage IV surveys, where even sub-percent level biases
can impact cosmological inferences.

We simulate galaxy images with a fixed PSF using simplified
models, with the aim of isolating the impact of the faint galaxy
population on shear bias. To measure shear, we use the convolutional
neural network (CNN) method developed in L. M. Voigt (2024),
which employs a committee of shallow CNNs trained to recover
unbiased shear estimates in the presence of noise. This supervised
learning approach relies on a training set of simulated galaxies with
known shears, from which the model learns to predict shear for
new data. Model-fitting and PSF-related biases are avoided by using
consistent galaxy and PSF models in both the training and test sim-
ulations. To isolate biases arising from the faint galaxy population,
we deliberately exclude faint galaxies from the training simulations
while including them in the test simulations, which are intended to
mimic real survey data. By comparing shear measurements across
simulations with varying faint galaxy properties, we quantify the
sensitivity of biases to the faint population. These results inform
the level of realism required in calibration simulations to meet the
stringent systematic error budgets of Euclid-like Stage IV weak
lensing surveys.

The paper is organized as follows. We describe the analytical
galaxy and PSF models in Section 2 and provide the ellipticity and
shear definitions in Section 3. Section 4 summarizes the apparent
magnitude, ellipticity, size, morphology, and signal-to-noise (S/N)
distributions adopted for the BSG and faint galaxy populations. We
detail the simulation setup and shape measurement methodology in
Sections 5 and 6, respectively, followed by a discussion in Section 7
of the shear biases obtained for isolated galaxies. In addition, in
Section 7 we present a novel method for obtaining signal-to-noise
estimates from noisy images. In Section 8, we present results for
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the biases arising from faint galaxy contamination. These biases are
then further explored in Section 9, which investigates the impact
of correlations between faint galaxy properties and the apparent
magnitude of the BSG. Finally, we summarize and discuss the
implications of our results in Section 10.

2 THE GALAXY AND PSF MODELS

We simulate a population of single-component disc and elliptical
galaxies with constant ellipticity isophotes. The projected intensity
distributions are modelled using Sérsic profiles (J. L. Sersic 1968)
with intensity /(x) at position x given by

1) = IoeXP{—k [(x—xo)Tax—xo)]ﬁ}, M

where [ is the peak intensity, x, the position of the galaxy’s centre,
and n the Sérsic index. The matrix C encodes the axis lengths and
orientation of the elliptical isophotes, and is given by

c=(c )
with
iy = Coizz(qb) n sm;z(¢)’ 3)
Cop= Cyp = & (i _ i) Sin(29), 4
2 \a? b2
and
Cop = sin?() 0052(¢)' (5)
a2 b2

Here, a, b, and ¢ are the semimajor and semiminor axis lengths
(a > b) and the orientation (measured counter-clockwise from the
x-axis) of the galaxy, respectively. For k = 1.9992n; — 0.3271 and a
circular profile, a(= b) is the radius enclosing half the total flux (A.
Graham & M. Colless 1997).

We model the PSF as an elliptical Gaussian with ellipticity
components 0.01 and 0.02 along and at 45° to the x-axis, respectively
(see Section 3 for definitions). The full width at half maximum is
0.17 arcsec (corresponding to a half-light radius of 0.084 arcsec),
sampled on a 0.1 arcsec pixel grid. The PSF size and pixel scale are
chosen to be representative of the Euclid VISible (VIS) instrument.
While the true VIS PSF follows an Airy pattern modified by optical
and detector effects, a Gaussian approximation captures its overall
size and shape sufficiently well for studying blending-induced biases.
The PSF model is fixed throughout and assumed to be precisely
known.

3 ELLIPTICITY AND SHEAR

A galaxy with elliptical isophotes can be described by a complex
ellipticity

a—>b ;
= tiet = —— )%, 6
itie={ ©)
where a, b, and ¢ are defined in Section 2.

Gravitational lensing transforms image—plane positions according
to a Jacobian matrix. The mapping from lensed coordinates (x', y')
to unlensed coordinates (x", y") is given by

x\ [l —k—p -V x!
(y“) h ( —72 I—x+ Vl) (y‘)’ @
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Shear biases from undetected galaxies 3

Table 1. Parameter values used for the galaxy apparent magnitude distribution (equations (15) and (37)) and the size-magnitude relation (equations
(16) and (18)) for the bright and faint populations. For the faint population, we list the fiducial values for both the full and simplified linear forms
of the apparent magnitude distribution. The linear setup is used in Sections 8.7 and 9. map 1w and map up denote the lower and upper apparent

magnitudes for each population. For the size—magnitude relation, the dispersion parameters o, = —0.0166 and B, = 0.5633 are fixed for both
populations.

Population type Model MABlw  MAB,up Am Qm Bm o Br
Bright - 20 24.5 3.8564 x 1078 0.36 1 —0.1324 2.65
Faint Fiducial full 24.5 29 —2.1095 x 10° —5.25970 x 10° —3.9427  —0.0330 1.06
Faint Fiducial linear 24.5 27 8.2451 x 1073 0.139 1 —0.0330 1.06

where y = y; + iy, is the gravitational shear and « is the dimen-
sionless surface mass density (see e.g. M. Bartelmann & P. Schneider
2001). This transformation shears and magnifies the unlensed image
such that the observed (lensed) complex ellipticity is

u
ol £ T8 ®)
1 + g*eu
where the reduced shear, g = g; + ig», is related to y and « via
v
8=1_¢ )
—K

In the weak lensing regime, where |y| < 1 and« < 1, the reduced
shear approximates the true shear and the lensed ellipticity simplifies
to

et +y. (10)

The Jacobian in equation (7) also changes the overall image size.
In general the projected area transforms as

b ab (11)
ab — ——m————
(1 =w)?—|yl?
For the case of k ~ 0 this reduces to
b
ab — —2 (12)
-1yl

Assuming galaxies have randomly oriented intrinsic shapes, the
mean unlensed ellipticity averages to zero: (e") = 0. A shear estima-
tor can therefore be defined as the average observed ellipticity:

Oe

where o, (& 0.26; M. Gatti et al. 2021) is the dispersion of each
ellipticity component, and 7ng4, is the number of galaxies in the
ensemble.

In practice, the measured shear, yf“‘b, is a biased estimate of
the true shear due to various systematics, including blending (see
Section 1). This bias is commonly parametrized as

yr=te =y E——, (13)

v = A 4+ my + i, (14)

where m; and ¢; are the multiplicative and additive biases on the
ith component of the shear. For Euclid, these biases must satisfy
Imi] <2 x 1073 and |¢;| < 3 x 10~* in order for them to be sub-
dominant to the expected statistical uncertainties (A. Amara & A.
Réfrégier 2008; M. Cropper et al. 2013).

4 THE BRIGHT AND FAINT GALAXY
POPULATIONS

We divide galaxies into two populations: BSGs, with apparent
magnitudes between 20 and 24.5, and faint galaxies, which fall below
the Euclid VIS band detection threshold. BSGs are detected galaxies

used for shear estimation after standard selection cuts®, whereas faint
galaxies are not detected but may blend with the brighter sources used
for shear estimation.

4.1 Apparent magnitude distribution

We sample galaxies from a cumulative distribution function, where
the mean projected number density per arcmin?® of galaxies with AB
apparent magnitude less than or equal to mag is given by

Am 1005m(mAB)ﬁm , (15)

(N(map)) = @ In(10)

where An, om, and By, are population-dependent parameters that
control the normalization, slope, and curvature of the distribution.
This functional form provides flexibility to match observed number
counts across both the bright and faint galaxy populations.

We first consider the parameter values used for the BSGs. We
adopt a slope of a,, = 0.36, consistent with values used in other
studies (e.g. H17), and set the amplitude A, so that the number
density of bright galaxies matches the expected ~ 30 galaxies per
arcmin® in the Euclid VIS band (e.g. R. Laureijs et al. 2011). The
parameter values adopted for the bright galaxy distribution, provided
in Table 1, are fixed throughout the paper.

In this study, faint galaxies are defined as those with apparent
magnitudes fainter than the Euclid detection limit of 24.5 and
brighter than 29. The parameters for the faint population are chosen
to reproduce the projected number densities reported in Euclid
Collaboration (2024), specifically 250 and 90 galaxies per arcmin?
for apparent magnitudes below 29.5 and 26.5, respectively. The
cumulative number density distributions are shown for the bright
and faint galaxy populations in Fig. 1. In addition, Table 2 lists
the mean number density of faint galaxies for different limiting
magnitudes.

To enable analysis of the sensitivity of shear biases to the faint-
end slope of the apparent magnitude distribution, we also define a
simplified ‘linear’ model with B,, = 1 over the range 24.5 < map <
27 (see Fig. 1). This approximation is used in Sections 8.7 and 9
to assess the impact of varying the slope parameter, oy ¢, of the
faint population, including potential correlations with the apparent
magnitude of the BSG. The fiducial parameters adopted for this
model are listed in Table 1, with further discussion in Section 8.7.

Fig. 2 shows the apparent magnitude distributions of the bright and
faint populations, with the fiducial linear approximation overlaid for
the faint end. This framework provides a flexible model for exploring
how the undetected galaxy population contributes to biases in shear
estimation.

SDetected galaxies must also meet specific selection criteria to be included
in the shear catalogue, typically based on signal-to-noise ratio and size.

MNRAS 545, 1-22 (2026)
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Figure 1. Mean cumulative number density of galaxies per arcmin?,
(N (map)), for the bright (blue) and faint (green) populations as a function
of apparent magnitude. The functional form is given in equation (15) and
parameter values in Table 1. The linear approximation to the faint galaxy
distribution over the range 24.5 < map < 27 is also shown (red dashed),
offset to match the green curve at map = 24.5 (see Section 8.7). The black
vertical dotted line shows the division between the bright and faint populations
at mag = 24.5.

Table 2. Mean number density of faint galaxies (per
arcmin?) as a function of limiting magnitude, mjin,
using the full model for the faint apparent magnitude
distribution (see Table 1). (N3) is the mean number
of faint galaxies within 3 arcsec of a bright galaxy,
assuming a uniform random spatial distribution.

Miim (N(miim)) — (N(24.5)) (N3)
arcmin 2

25 11.13 0.09

26 40.69 0.32

27 80.34 0.63

28 129.70 1.02

29 187.59 1.47

4.2 Galaxy size, ellipticity, and morphology distributions

Galaxy sizes are assigned based on distinct size—-magnitude relations
for the bright and faint populations. We define the effective radius,
ro = +/ab (where a and b are the semimajor and semiminor axes
defined in Section 2), such that for a circular galaxy (a = b), the

le3

effective radius equals the half-light radius. For bright galaxies, the
logarithm of the effective radius is drawn from a normal distribution
with mean

(logygre) = omap + P, 16)
and a magnitude-dependent dispersion given by

Ologigre = %oMAB + Bo- (17)
For faint galaxies, r. is drawn from a normal distribution with mean
(re) = aymag + Br, 18)

and the same form of magnitude-dependent dispersion. The
population-dependent parameters «, and S, are listed in Table 1,
while the dispersion parameters are fixed at o, = —0.0166 and 8, =
0.5633 for both populations. For all galaxies, we set the maximum
effective radius in simulations to 1.2 arcsec and adopt a minimum
re = 0. The bright-end relation is motivated by observational results
from H17, and the shallower faint-end trend by (M19; see their
Fig. 1).

We model the intrinsic (unlensed) ellipticities of both bright and
faint galaxies using a Rayleigh distribution, with probability density
function

e e?
fle)= ;exp (_ﬁ) s (19)

where the ellipticity magnitude is e = y/e? + e2. The mode of the
Rayleigh distribution — which corresponds to the dispersion of each
underlying normally distributed ellipticity component — is fixed
at 0. = 0.25, consistent with values adopted in previous lensing
simulation studies (e.g. H21) and supported by recent observational
results (M. Gatti et al. 2021). The distribution is commonly truncated
at a maximum ellipticity between 0.7 and 0.9 (e.g. S. Bridle et al.
2010; M. Tewes et al. 2019); here, we adopt a maximum intrinsic
ellipticity of 0.8, corresponding to a maximum post-sheared galaxy
ellipticity of approximately 0.87. The unlensed galaxy position angle
¢ is uniformly distributed in the range [0, 7).

For the morphology distribution, we simulate a two-type pop-
ulation comprising single-component disc (ny = 1) and elliptical
(ny = 4) galaxies, with discs comprising 80 per cent of the total.
This simplification is justified because model-fitting biases are not
addressed in this work.

le3

Frequency
I )
o (4] o (4] o

o
o

N

Frequency

N

0.0
20 22 24

Mag

0 2 4 6 8 10 12
re (pixels)

Figure 2. Distributions of apparent magnitudes (mag, left) and effective radii (re, right) for bright (blue solid) and faint galaxies. Faint galaxy distributions are
shown for both the full (green solid) and simplified ‘linear’ (red dashed) models for the apparent magnitude distribution. Parameter values are listed in Table 1;
see also Fig. 11. Bright galaxies are simulated over the range 20 < map < 24.5, while faint galaxies span 24.5 < map < 29 (full model) or 24.5 < map < 27
(simplified model). Histograms use equal bin widths and identical x-axis ranges in each panel. Distributions are based on 10* BSGs and associated faint galaxies

simulated within 3 arcsec of each BSG (see Table 2).
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Figure 3. Signal-to-noise distribution (left) for an independent set of 10* galaxies, where the flux is obtained from (i) noise-free postage stamps (black solid)
and (ii) predicted from noisy stamps using CNNjy, (blue dashed). Residuals (right) show predicted minus true S/N for a random subset of 103 galaxies (black
dots). The red points show the binned mean residuals with error bars indicating the standard error on the mean, and the light red shaded band indicates the
sample standard deviation within each bin. The green dashed line marks zero residuals. Results are shown for zero shear and test set fiducial galaxy parameter

values.

4.3 Signal-to-noise

The signal-to-noise ratio is defined as

S/N = 7VZIZ, (20)
On

where the sum is taken over all pixels in the postage stamp and o2 is
the variance of the constant Gaussian noise added to each pixel. The
peak intensity, I, (see equation (1)), is related to the flux, F, through
the equation

F

=,
0 2 ngk=2s 2T (2n)

21
where F = Fy107%4ms8 and T' is the gamma function. We set
Fy/o, such that the resulting signal-to-noise distribution peaks at
S/N ~ 10-20 (see Fig. 3), consistent with the expected Euclid
galaxy populations (e.g. Euclid Collaboration 2025a, see their
fig. 21).

In both the training and test sets, we exclude galaxies with S/N >
100. We impose no lower limit on the signal-to-noise in the training
stage. We note that imposing a lower limit on the signal-to-noise
ratio during training — even if lower than the test set cut — results in
larger biases.

5 SIMULATING THE IMAGES

In this section, we describe the simulations used to generate PSF-
convolved galaxy images on postage stamps with 0.1 arcsec pixels.
We follow a similar procedure to that described in previous work (L.
M. Voigt & S. L. Bridle 2010; L. M. Voigt 2024) and adopted for the
shape measurement pipeline IM3SHAPE (J. Zuntz et al. 2013).
Galaxy and PSF profiles are simulated separately on convolution
erids® with n,x image pixels per side, where each pixel is subdivided
inton2  subpixels. For exponential profiles, the flux in each subpixel
is computed assuming the intensity is constant across the subpixel
and equal to the value at its centre. For de Vaucouleurs profiles, to
accurately capture the steep central peak, subpixels within the central

The grids used for numerically convolving the galaxy with the PSF are larger
than the final postage stamps to avoid edge effects.

3 x 3 image pixels are further subdivided into n?, sub-subpixels, and
the intensity is integrated over these. We use n1¢cony = 3 and njy, = 9;
increasing these values does not significantly change the intensity
profiles. The galaxy intensity is set to zero for (x — x¢)” C(x — X¢) >
Rczul (see equation (1)), with R, = 4 so that the truncation occurs at
semi-axes 4a and 4b.

The BSG is positioned randomly within the central pixel of the
postage stamp, with its centre coordinates drawn independently as

X0.b> Yoo ~ U(—0.05, 0.05) arcsec. (22)

If a faint neighbouring galaxy is present, its position is sampled
randomly within a square region centred on the BSG, with side
length 26,., such that

Xof = Xop + U(=6,,6,),  yor= Yo+ U(=06,,0,) (23)

and is simulated only if its centre lies within a circular region of
radius 6, around the BSG, i.e. if

(X0t — X0.0)* + (Yot — Yop)* < 67 (24)

The fiducial value for 6, adopted in this paper is 3 arcsec, and the
positions described above correspond to the lensed coordinates of
the galaxies.

In practice, BSG and faint galaxy intensity profiles are simulated
separately on convolution grids, summed, and then convolved with
the PSF. The convolution is performed using the convolve2d
function from the signal module in SciPy (P. Virtanen et al. 2020).
Following convolution, the images are binned and cropped to produce
postage stamps of size ngamp X Ngamp pixels. In this work, we set
Nsamp = 17 and npix = 19.

6 THE SHEAR MEASUREMENT METHOD

A wide range of techniques have been developed to infer weak
gravitational lensing shear from galaxy shapes (see review article R.
Mandelbaum 2018, and references therein). These include moment-
based approaches, such as KSB (N. Kaiser, G. Squires & T. Broad-
hurst 1995), which were used in early detections of cosmic shear (D.
J. Bacon, A. R. Refregier & R. S. Ellis 2000; N. Kaiser, G. Wilson &
G. A. Luppino 2000; L. V. Waerbeke et al. 2000; D. M. Wittman et al.
2000), and model-fitting methods, such as IM3SHAPE (J. Zuntz et al.
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6 L.M. Voigt

Table 3. Architecture of the CNN models used to estimate shear (CNN,,;) and §/N (CNNgy;). ngtamp is the width (in
pixels) of the square postage stamp image; ng is the number of convolutional filters; npach is the number of samples per
training batch, set equal to the number of noise realizations rnc,. The model does not include pooling or dropout layers.
The convolutional layer uses a Rectified Linear Unit (ReLU) activation function, and in the dense layer, CNN,; uses a
hyperbolic tangent activation while CNNgy,, uses a linear activation.

Layer Layer type

Output shape

Trainable parameters

1 Convolution (2D) (nbatchs Nstamp—2, Mstamp—2, nﬁ]) B x3+1) xng
2 Flatten (nbalchs (nslamp_z)z X nﬁl) 0
3 Dense (fully connected) (Mbatch, 1) (Minputs + 1)

Note. *Where Minputs = (ngmmp—Z)2 X ng is the number of flattened input features; the +1 accounts for the bias term.

2013) and LENSFIT (L. Miller et al. 2007), adopted in later surveys
(e.g. L. Miller et al. 2013; M. A. Troxel et al. 2018; A. H. Wright
et al. 2025). As survey data improve and systematic requirements
tighten, increasingly sophisticated techniques have been developed
to estimate shear with reduced biases. These include simulation-
calibrated model-fitting methods (e.g. H. Hildebrandt et al. 2017; J.
Zuntz et al. 2018; S.-S. Li et al. 2023) and self-calibrating approaches
such as METACALIBRATION (E. Huff & R. Mandelbaum 2017), which
was employed in the DES Year 3 analyses (A. Amon et al. 2022;
L. Secco et al. 2022). In recent years, machine learning techniques
have also been explored for shear estimation (e.g. D. Ribli, L. Dobos
& 1. Csabai 2019; M. Tewes et al. 2019). In this work, we employ a
CNN-based shear measurement method introduced by L. M. Voigt
(2024). This approach avoids noise bias without relying on external
calibration, making it particularly well-suited for isolating the effects
of galaxy blending on shear estimation. We describe the method in
detail below.

6.1 The CNN model architecture

The shape measurement method employs two committees of shallow
CNN:s; one for estimating the first component of the lensed ellipticity,
e}, and another for the second component, e}, for each galaxy in the
catalogue. These are the shear estimators, ™" and y5™°, given in
equation (14). We refer to each CNN model within a committee
as CNN,,. The model architecture is summarized in Table 3 and
described in detail in L. M. Voigt (2024). In brief, for each CNN,,,
PSF-convolved postage stamps are fed into the first convolutional
layer’, consisting of ng filters 3 by 3 pixels across. We use a stride
of one and do not include any padding, resulting in ng feature maps
on grids with width (ngamp — 2), Where ng,mp is the width of the
postage stamp in image pixels. The activation function adopted
for this layer is a Rectified Linear Unit (ReLU; V. Nair & G. E.
Hinton 2010). The output from the first layer is flattened® and passed
through a dense layer’ with a hyperbolic tangent activation function,
ensuring the output lies within the valid ellipticity range [—1, 1]. The
total number of trainable parameters in each CNN,, is 9401. Each
committee consists of 31! independently trained CNN,, models, and
the per-component ellipticity estimate for each galaxy is computed
as the mean over the predictions of the committee members (see
Section 6.3).

"tensorflow.keras.layers.Conv2D

8tensorflow.keras.layers.Flatten

%tensorflow.keras.layers.Dense

10We initially trained a larger ensemble; the committee size reflects the
number of models that converged successfully during training.
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Table 4. Hyperparameters used to train the CNNs for shear (CNN,) and
signal-to-noise (CNNjy,,) estimation. Table (a) lists parameters with shared
values, and Table (b) those with CNN-specific values. For shear estimation,
predictions are averaged over a committee of 31 trained CNN,, models; for
S/N estimation, we use a single CNN.

(a) Shared hyperparameters

Hyperparameter Value
Number of filters (ng;) 40
Filter size (pixels) 3x3
Stride (pixels) 1
Epochs 150
Batch size Nreal
Learning rate 1073

(b) CNN-specific hyperparameters

Hyperparameter CNN, CNNgpr
Training set size (nga1) 5% 10* 10°
Noise realizations per galaxy (#rea1) 300 1

6.2 Training the CNN models

The trainable parameters (i.e. the weights and biases) in each CNN,,
are optimized by minimizing the difference between the measured
(biased) lensed ellipticity, e,'-‘b, and the true lensed ellipticity, e!, using
a mean-square-bias (MSB) loss function (D. Gruen et al. 2010; M.
Tewes et al. 2019), given by

n 2
1 gal l Nreal
MsB= L 3 [z (e, —e}-m,m)} , 2s)

Ng; Mre:
gal oy L real oy

such that the total number of images used to train the network is
Ngal X Nreat. The MSB loss function is used to mitigate the noise bias
(T. Kacprzak et al. 2012; A. Refregier et al. 2012) which arises if the
standard mean-square-error (MSE) is used as the objective function.
This bias occurs because ellipticity, e;, is not a linear function of
the pixel intensities. Although the simulated galaxies in the training
sets are not explicitly sheared, their target ellipticities are defined to
represent the post-lensing (observed) values. This ensures that the
training procedure remains consistent with the quantities predicted
for the sheared galaxies in the test sets.

Each CNN,, model in a committee is trained independently using
a unique set of simulated images. Extending the hyperparameter
study based on noise-free images in L. M. Voigt (2024, see their
Fig. 6), we adopt values optimized with networks trained on noisy
images. These values, summarized in Table 4, provide a practical
balance between performance and training efficiency. Each training
set contains 71y =5 x 10* unique galaxy images, with 71,¢ = 300
noisy realizations per image, and each training batch consists of all
realizations of a single galaxy.
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We exclude faint galaxies from the training sets and simulate BSGs
with properties described in Section 4. We do not apply any shear
or size truncation to galaxies in the training sets and include all
ellipticity magnitudes up to |e| < 1.

6.3 Shear bias estimation procedure

Shear biases are assessed by applying the CNN committees for e; and
ey to test sets, each comprising independent, noisy, sheared galaxies
with a different known constant input shear, y;. The predicted shear,
yf“’b, is obtained by averaging the CNN committee predictions over
all galaxies in each test set (see equations (26) and (27) below),
and then compared with the true input values. Multiplicative and
additive biases are defined by assuming a linear relation between the
estimated and true shears (equation (14)). To reduce shape noise, we
adopt the standard approach of simulating galaxy pairs, where each
pair consists of identical sources rotated by 90° (R. Massey et al.
2007). Each test set contains ng such pairs.

Using training and test sets provides a useful framework for
quantifying different sources of shear bias. For example, L. M. Voigt
(2024) examined biases arising from mismatches in PSF or galaxy
populations between training and test data. In this paper, we focus
on biases introduced by faint galaxies that are present in the test
images but excluded from the training sets. This approach quantifies
the bias that would occur in our shear measurements if we assumed
no faint galaxies in the data, while in reality such faint galaxies —
matching the population in the test sets — are present. In Section 7,
we demonstrate that biases are consistent with requirements when
faint galaxies are absent from the test sets.

As described above, we compute the predicted i component of the
ellipticity for the j" galaxy in a test set by averaging the predictions
over a committee of n.,, independently trained CNN models:

Nenn

(i) = > elh )

ncnn k=1

where e}’;? ; is the e; estimate obtained from the k" CNN,, model.
The shear estimate from the full test set is then computed by
averaging over all 2n galaxies i.e. all pairs:

2niest
est,b __ 1

1,b>
=— e ). 27)
v 2Miest ; < "

To estimate shear biases, we generate 25 test sets corresponding to
all combinations of five equally spaced shear values per component,
y; = {—0.05, —0.025, 0, 0.025, 0.05}. Each test set has a distinct
pair of (y1, y») values. The resulting shear estimates from the CNN,,
committees are then fit with a linear regression model to determine
multiplicative and additive biases (see also L. M. Voigt 2024).

7 BASELINE SHEAR BIASES AND S/N
ESTIMATION

In this section, we present a new method for estimating S/N directly
from noisy galaxy images and establish a baseline measurement of
shear biases in the absence of faint-galaxy contamination. These
baseline biases provide the reference against which the impact of
undetected galaxies is later assessed, and we confirm that they lie
within the Euclid requirements.

Even without faint galaxy contamination, shear measurement
methods are affected by systematic biases. Since this paper focuses
on biases introduced by nearby undetected galaxies, we control

Shear biases from undetected galaxies 7

or eliminate other sources of bias, as outlined below (see R.
Mandelbaum 2018, for a review of weak lensing systematics).

While noise bias is commonly calibrated, for the CNN method
applied here it is already reduced below the required thresholds (as
demonstrated in L. M. Voigt 2024). Model-fitting biases are avoided
by adopting identical galaxy profiles in both the training and test
sets. In addition, galaxies are sampled from the same population
distributions, with the exception that the training sets allow larger
values of r, (effectively unbounded) and ellipticity (up to the physical
limit |e| < 1) to account for shearing applied in the test sets.

Biases from PSF mis-modelling are eliminated by using the same,
known PSF in both training and test sets (see Section 2 for the PSF
model). Detection biases are also absent: our simulations include all
galaxies drawn from the distributions in Section 4, removing any
bias associated with selection at detection.

We note that biases from mismatches between simulated and
observed galaxy intensity profiles and population distributions, as
well as between PSF models, are discussed in L. M. Voigt (2024).

Another potential source of bias in weak lensing pipelines is
selection cuts, with analyses typically removing objects with PSF-
convolved galaxy to PSF size ratios < 1.25 or /N < 10, or both
(R. Laureijs 2017). In this study, we do not impose a minimum size
cut, but a cut on signal-to-noise is applied with S/N > 10.

In benchmark shear measurement studies — for example the
GREATOS challenge (S. Bridle et al. 2010) — S/ N is often calculated
from noise-free images. While suitable for controlled validation, this
approach does not account for potential biases arising when S/N
must be estimated directly from noisy data. Typically, S/N estimates
for survey data are obtained using tools such as SExtractor (E.
Bertin & S. Arnouts 1996).

Here, we introduce a CNN-based method for estimating S/N from
noisy galaxy images. The network, which we refer to as CNNg,, is
trained to predict S/N from individual noisy postage stamps. Its
architecture mirrors that used for shear estimation (see Table 3),
except that the dense layer uses a linear activation function.!' The
model is trained on 10° noisy galaxy images, with target S/N values
computed from the corresponding noise-free stamps. The target S/ N
is defined as the ratio of the galaxy’s total flux, integrated over the
noise-free postage stamp, to the per-pixel Gaussian noise level o,
(see equation (20)). We found no benefit from using multiple noise
realizations (7ey > 1) or from employing a CNN committee. The
CNN;,,r hyperparameters are listed in Table 4.

Fig. 3 shows the ‘true’ (from noise-free stamps) and predicted
(from CNNy,) S/N distributions for an independent set of 10*
galaxies, along with residuals (predicted minus true) for a random
subset of 10* galaxies. The mean residuals deviate significantly from
zero in the lowest two bins (0 < §/N <10 and 10 < S/N < 20)
and marginally in the bin at 50 < S/N < 60. However, even the
largest mean residual (in the lowest S/N bin) is only ~ 0.6 in S/N
units and we find that using the predicted S/N instead of the true
S/ N has negligible impact on the shear biases obtained in this work.

Fig. 4 demonstrates that the multiplicative and additive biases
obtained — excluding faint galaxies and applying a selection cut with
S/N > 10, estimated using CNNy,,, — are consistent with the Euclid
requirements. Biases are shown as a function of the committee size,
Renn- We find that multiplicative biases stabilize for ng,, = 5, while
additive biases stabilize for n¢,, = 15. In subsequent analyses we
use all 31 trained CNN,, models.

IWe also tested a sigmoid activation to constrain the normalized S/N
between 0 and 1, but found the linear function yielded better performance.

MNRAS 545, 1-22 (2026)
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Figure 4. Multiplicative (top) and additive (bottom) biases adopting com-
mittees comprising n¢p, subsets of 31 trained CNN,; models. A selection
cut of S/N > 10, using the CNNj,, predictions, is applied. Black crosses
(squares) correspond to i = 1 (i = 2), while blue filled circles showing the
mean across the two components. Green open circles indicate biases obtained
using the ‘true’ S/N with n¢pn = 31 (offset for clarity). Shaded regions show
the top-level Euclid bias requirements (see Section 3).

8 SHEAR BIASES FROM FAINT GALAXY
CONTAMINATION

In this section, we assess the impact of faint, undetected galaxies
(i.e. with magnitude > 24.5) on the accuracy of shear measurements
made using CNN,, committees trained on isolated bright galaxies
(see Section 6). Shear estimates (yl.eSt’b) are obtained from postage
stamps that include these faint contaminants, and the resulting shear
biases are measured following the procedure outlined in Section 6.3,
using 25 test sets. Galaxies with §/N < 10 —estimated using CNN,,
(see Section 7) — are excluded from the sample. We find that the
additive biases are negligible for all faint galaxy parameters explored.
As such, we present only multiplicative biases for the remainder of
the paper.

In the fiducial set-up, we simulate a random distribution of faint
galaxies within each postage stamp, using the field densities provided
in Table 2 and with an apparent magnitude distribution that matches
the overall field distribution (see Section 4 and Table 1). Faint galaxy
morphologies and ellipticities are drawn from the same distributions
as the BSGs, described in Sections 2 and 4. We apply the same
shear to the faint galaxies that is applied to the BSGs. All galaxies
up to a limiting magnitude of 29 and within 3 arcsec of the BSG
centre are included in the simulations. This fiducial configuration
provides the baseline for our tests; in subsequent sections we explore
how the results change under different assumptions about the faint
population.

Assuming a random spatial distribution, the expected number of
faint galaxies within a circular region of radius 6, arcsec and up to
limiting magnitude my;p, is given by

6,\’
(No, ) = [N(myim) — N(24.5)] x 7 (@) , (28)

where (N(magp)) is the cumulative projected number density per
arcmin? defined in equation (15); here it is evaluated at my;;,, and at
map = 24.5. Table 2 lists ( Ny, ) for 6, = 3 arcsec. For instance, the
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mean number of faint galaxies within a 3 arcsec radius for my;;,, = 29
is 1.47.

Within the halo model (A. Cooray & R. Sheth 2002), the number
of satellite galaxies within a dark matter halo follows a Poisson
distribution (Z. Zheng et al. 2005), with a mean (the halo occupation
number) that scales with halo mass (see Appendix B). Although
not all BSGs are central galaxies, we similarly adopt a Poisson
model for the number of faint galaxies within 6, arcsec of a BSG.
This assumption is justified because the various contributions to the
faint galaxy population around BSGs — comprising foreground, back-
ground, and halo member galaxies — can be treated as independent
Poisson processes, whose sum is also Poisson-distributed. As such,
for a given BSG, the number of faint galaxies within 6, arcsec is
drawn from:

Ng'_ ~ PO (<N9,>) N (29)

where Po(}) denotes a Poisson distribution with mean A. In this Sec-
tion, we assume <N9,> is constant across all BSGs, i.e. independent
of BSG properties.

Fig. 5 shows a random selection of BSGs and their associated
faint neighbours on 6 by 6 arcsec® grids. For each selected galaxy,
we also show the 90° rotated counterpart included in the test sets
(see Section 6.3), each with independent faint galaxy realizations.
The locations, sizes, ellipticities, and orientations of faint neighbours
are indicated using overlaid ellipses. Also shown are the faint galaxy
circular inclusion regions (radius 3 arcsec) and postage stamp cut-
outs used for shear estimation. Intensities are displayed on a linear
scale, so faint galaxies are only visible when their magnitudes are
comparable to that of the BSG. Apparent magnitudes of both BSGs
and faint neighbours are annotated.

In the following subsections, we examine deviations from the
fiducial setup that may significantly influence the resulting shear
biases — and thus require careful treatment in calibration simulations.

8.1 Limiting apparent magnitude and clustering radius

Fig. 6 shows how the multiplicative biases vary when changing
either the faint galaxy limiting magnitude (mjyy,) or the maximum
radial distance from the BSG centre (6,). Faint galaxies are sampled
from the apparent magnitude distribution given by equation (15),
and excluded from the postage stamps if their apparent magnitude is
greater than the limiting value or their radial distance from the BSG
centre exceeds 0, (see Section 5). We find that faint contaminants
introduce a multiplicative bias that becomes increasingly negative
with my, up to ~ 27, and with separation up to 6, ~ larcsec.
Similar trends have been reported in previous studies (e.g. H17,
M19), although the absolute bias values, as well as the point at
which they cease decreasing, depend on the implementation details,
including the shape measurement method as well as the assumed
properties of the faint population.

To characterize the trends we find more precisely and to obtain
confidence intervals (Cls), we fit simple parametric models using
error-weighted non-linear least-squares regression. 68 per cent CIs
are estimated from 2000 Monte Carlo (MC) realizations, obtained
by resampling each data point from a Gaussian with width given by
its measurement error. In both cases, the asymptotic bias parameter
(ap or ag) describes the limiting value reached at large my;, or 6,.
We define the point at which the bias effectively flattens, x*, as the
minimum value of the independent variable where the model bias lies
within Am =4 x 107 of its asymptotic value (i.e. within a factor
of 5 of the top-level Euclid requirement).
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Figure 5. Images showing 6 by 6 arcsec? regions of sky centered on the BSG. Each panel displays the PSF-convolved image with zero applied shear, sampled
at 0.1 arcsec pixel scale, and scaled so that the central pixel has unit intensity. The images are shown without noise for 10 galaxy pairs (where each galaxy in a
pair is the 90° rotated version of the other one). Faint neighbour galaxies are illustrated using ellipses that show their intrinsic (pre-PSF convolved) shapes with
semimajor and semiminor axes a and b (solid white; see Section 2), together with the truncation boundary at 4a and 4b (dashed cyan). Apparent magnitudes are
indicated for the BSG (white; top-left corner of each panel) and for each faint neighbour (magenta; at ellipse centres). The green solid square denotes the 1.7 by
1.7 arcsec cut-out region used for shear measurement. Only faint galaxies whose centre lies within the green dotted circle (with radius 6, arcsec, centred on the
centre of the BSG), are simulated in the test sets. Shown for the field number density of faint galaxies to a limiting magnitude myi, = 29 (see Table 2).
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Figure 6. Multiplicative biases as a function of: the faintest galaxy magnitudes included in the postage stamps (miim; left); the maximum radial distance
between the BSG and faint galaxy centres (6,; middle) and the excess faint galaxy density over the field density ( fex; right). m; (m2) using the full model for
the apparent magnitude distribution are shown as grey crosses (open squares), with blue solid circles indicating the mean bias across the two components. The
red open circle (left) shows the corresponding mean bias value for the linear approximation model to the apparent magnitude distribution for myy, < 27. The

dark grey shaded regions indicate the Euclid bias requirement (|m;| < 2 x 1073). Black dashed lines show the best-fitting exponential (left), sigmoid (middle),
and linear (right) regression models. The lighter (hashed) regions show values within £2 x 1073 (4 x 10~%) of the asymptotic bias (left and middle) and the

mean bias predicted by the model at fox = 0 (right).

For the dependence on limiting magnitude, we adopt an exponen-
tial form

m(miim) = a¢ + by exp [—ke (miim — 24.5)], (30)

where b, sets the amplitude of the exponential term and &, controls
the rate of flattening. The best-fitting asymptotic bias is a, =
—7.9 x 1073, corresponding to a flattening point m};,, = 27.0. From
the MC realizations, we obtaina, € [—9.4, —7.2] x 1073 and my,, €
[26.1,29.1], with medians a, = —8.1 x 10~* andmj,,, = 26.9. Thus
faint contaminants at least as faint as mag ~ 26 and potentially as
faint as map ~ 29 will need to be included in simulations.

For the dependence on clustering radius, we use a flipped sigmoid
(3-parameter logistic) form

Ay
1 + exp[—kg (0, — 6)]

m(0,) = (3D
where ky controls the steepness of the transition and 6 is the
midpoint. The best-fitting asymptotic bias is ag = —8.2 x 1073,
corresponding to a flattening radius 6 = 1.03 arcsec. From the
MC realizations, we obtain ay € [—8.9, —7.6] x 10~ and 0F e
[0.79, 1.25] arcsec, with medians ay = —8.3 x 1073 and 0 =
0.99 arcsec. We verify that the choice of faint galaxy truncation
has negligible effect: increasing the cut radius from the fiducial
value of Rey =4 to Rey = 10 does not significantly change the
bias dependence on 6,. The minimum required radius we find here
is somewhat smaller than the 2.5-3 arcsec reported by M19, which
may be due to the smaller postage stamps used in this study.

In this section, we have adopted simple parametric forms that
capture the observed trends with minimal parameters. Although the
precise values of x* depend on the assumed functional form, the
resulting CIs provide a useful indication of the depths to which
calibration simulations may need to extend and the radii around
BSGs within which faint galaxies must be included.

8.2 Faint galaxy excess

We quantify the dependence of the biases on the mean number of
faint galaxies around BSGs in terms of an excess relative to the mean
across the field, denoted by f.c. The mean local number of faint
galaxies within 6, arcsec of a BSG is given by

<N9,-;loc> = <N9,> (I+ fex)v (32)
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where f.x = 0 (the fiducial case) corresponds to the field density
(see also M19). In this section, we assume the excess is the
same for all BSGs. In Section 9, we examine the impact of an
excess that correlates with the apparent magnitude of the bright
galaxy.

In Fig. 6, we observe a strong dependence of the multiplicative
biases on f.. We fit a linear regression to the mean of m and m,,
obtaining a slope of —(8.0 & 0.2) x 1073 and an intercept of —(8.0 &
0.3) x 1073, where the intercept represents the bias for a field-density
level of faint galaxies. The slope implies that, for accurate calibration
for Euclid, the mean faint galaxy density close to BSGs must be
known to within £0.25, or to within £0.05 to be a factor of 5 below
the Euclid requirement.

8.3 Maximum halo occupancy

As discussed in Section 8, we sample faint galaxies from a Poisson
distribution with mean <N9r>. Since this distribution allows a non-
zero probability of unrealistically high occupancies, we explore
the impact of imposing an upper limit on the number of faint
galaxies per bright galaxy, denoted k., while keeping the mean
number of faint galaxies across the BSG sample fixed at the field
value.

For a given BSG, the number of nearby faint galaxies is drawn from
a truncated Poisson distribution, whose probability mass function
(PMF) is defined as:

e Ak k!

vty = fo B0t

k > K. (33)

where A is computed numerically so that the expected number of
faint neighbours, given by E[Ny ] = Z’,j:“‘g kP(N = k), is equal to
(Ng, ), for all kpax.

Fig. 7 shows the multiplicative biases as a function of kp,y for
the fiducial set-up. Fitting a linear regression model, we find that the
biases are insensitive to the truncation threshold, with no evidence
for a slope different from zero (p-value = 0.5). This suggests
that although a true Poisson distribution permits unphysical high-
occupancy outliers, these rare cases have negligible impact on the
overall shear bias, provided the mean number of faint galaxies is
accurate. It is therefore acceptable to use an untruncated Poisson
distribution in calibration simulations.

920z Arenuer g uo 1sanB Aq Z69Z9E8/9E | ZIEIS/E/SHS/PIIME/SEIULY/WOO dNO"dlWapede//:sdny Wolj papeojumoq



Shear biases from undetected galaxies 11

6 le—3 6 le—3 6 le—3
4 4 4
2 2 2
S g G T 0 E ot s L A,
3 3 % I g ' Z
-2 b -2 ? -2
-4 -4 -4
6 6 -6
5 10 15 20 -0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.4 0.6 0.8 1.0 1.2 1.4 1.6
kmax Qr f fre

Figure 7. Residual multiplicative biases (Am) as a function of the maximum halo occupancy (kmax; left) and the slope (o, ¢; middle) and normalization ( f;.;
right) of the faint galaxy effective radius—apparent magnitude relation. Am (Amy) values are shown as grey crosses (open squares), with blue filled circles
indicating the mean bias across the two components. Black dashed lines show the best-fitting regression lines to the blue data points. For kp,x, biases are shown
relative to the average over the mean biases (i.e. measured mean bias minus average mean bias). For a, ¢ and f;,, biases are shown relative to those predicted by
the best-fitting regression models at the fiducial parameter values (i.e. measured mean bias minus predicted fiducial mean bias). Results use the fiducial setup
with the full model for the faint galaxy apparent magnitude distribution. The light (hashed) region shows values within 2 x 1073 (4 x 10~*) of zero residual
bias.
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Figure 8. Relation between effective radius, re, and apparent magnitude, m g, used in this study. The blue solid line shows the relation for BSGs, and the
green solid line for the fiducial faint population. Also shown are: the steep (o f = —0.1; black dotted) and shallow (e f = 0; black dashed) slopes for the faint
population, and the upper (f,, = 1.6; red dotted) and lower ( f,, = 0.4; red dashed—dotted) size scalings, explored in Section 8.4. The size-magnitude relation
adopted for the bright sample in M 19 corresponds to the black dotted line. Faint curves represent extrapolations beyond the region where the relation is applied.
Open grey circles (left panel) show faint galaxies sampled from the fiducial population. Magenta and black small open circles show faint galaxies sampled at
the minimum and maximum investigated values of o, r (middle panel) and f,, (right panel), respectively.

8.4 Size-magnitude relation reduction in the contribution of the faintest sources to the measured
bias.

We also examine how the biases respond to an overall scaling of
faint galaxy sizes. This shifts the size-magnitude relation vertically
and slightly alters its slope (see Fig. 8). Results are shown in Fig.
6 for scaling factors between 0.4 and 1.6. For the parameter range
explored, we find a minimal impact on the biases (p-value = 0.2).

We investigate how variations in the size—-magnitude relation of faint
galaxies (see equations (17) and (18)) affect the biases. Our fiducial
slope matches that adopted for faint galaxies in M19. Here, we assess
the sensitivity of the biases to changes in this slope — that is, to how
galaxy size scales with magnitude. A steeper slope implies that faint
galaxies are more compact, with their flux distributed over fewer
pixels, while a shallower slope leads to more extended profiles. Fig.
8 illustrates the range of slopes we explore, from flat (no dependence
of size on magnitude) to one consistent with the bright-end relation

. 8.5 Faint galaxy shear
in M19 (e s = —0.1).

The results, shown in Fig. 7, indicate that the slope of the size— In the fiducial set-up, faint galaxies are sheared by the same shear
magnitude relation has minimal impact on the biases. A linear as the BSG, implicitly assuming that they are physically close and
regression yields a slope consistent with zero (p = 0.07). There is a thus subject to the same lensing distortion. In reality, however, only a
slight suggestion that the absolute value of the bias decreases for the subset of faint neighbours projected on the sky lie at similar redshifts
steepest slope, but this trend is likely not physical. Instead, it arises to the BSG; background and foreground galaxies experience different
from the way our model treats faint galaxies with very small sizes: lensing due to matter distributions along their respective lines of
whenever a draw gives r. < 0, we set the effective radius to zero sight, only partially correlated with those affecting the BSG.
rather than re-sampling. This choice avoids distorting the magnitude To test the sensitivity of our results to this assumption, we vary
distribution, but it means that very faint galaxies are effectively the coherence between the shear applied to the BSG and that applied
excluded from the simulations. As a result, when a;; = —0.1, the to the faint galaxies. Specifically, we model the shear of each faint
number of galaxies with my, > 27 drops (see Fig. 8), leading to a galaxy as a linear combination of the BSG shear and a random shear

MNRAS 545, 1-22 (2026)
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component:

Vitaint = Py ViBsG + /1 — 02 Virand, (34)

where p, € [0, 1] controls the level of shear coherence. Each
random component y; r4nq 1S drawn independently from a Gaussian
distribution, ¥; rana ~ N(O, a}f’,), with o,, = 0.02, representative of
the cosmic shear variance on arcminute scales. Although this
model does not capture the full statistical properties of the cosmic
shear field — particularly non-Gaussianity on small scales and
correlations between shear components — it provides a straightfor-
ward test of robustness to variations in the shear applied to faint
galaxies.

This test smoothly interpolates between two limiting cases: p, =
1, where faint galaxies experience identical shear to the BSG (the
fiducial set-up), and p,, = 0, where the faint galaxy shears are entirely
uncorrelated with the BSG shears. The results are shown in Fig. 10,
which plots the resulting shear bias as a function of p,. Across
the full range of shear coherence, we find no significant change
in the measured bias, with no evidence for a slope different from
zero (p-value = 0.25), indicating that our results are robust to as-
sumptions about the lensing relationship between the BSG and faint
neighbours.

8.6 Faint galaxy alignments relative to the BSG

In this section we investigate how alignments between faint galaxies
and the BSG affect shear biases. We consider three effects: the
orientation of the faint galaxy relative to the BSG centre, the relative
orientations of the faint and bright galaxies, and the location of the
faint galaxy with respect to the BSG major axis. These are examined
in the following subsections. We also briefly discuss the physical
mechanisms that give rise to them.

8.6.1 Faint galaxy orientation

We investigate the impact of alignments between faint galaxy
orientations and the position and orientation of the BSG. Specifically,
we consider: (i) radial alignment, where the faint galaxy’s major axis
lies along the line connecting the centres of the faint galaxy and the
BSG (0° offset); (ii) tangential alignment, where the major axis is
perpendicular to this line (90° offset); and (iii) parallel alignment,
where the faint galaxy’s major axis is aligned with that of the BSG.
In all cases, the degree of alignment is quantified prior to lensing,
and both the BSG and faint galaxies are subsequently lensed by the
same shear. We discuss the validity of this approach further below.

Radial and parallel alignments arise when faint galaxies are
physically close to the BSG. Radial alignments can occur when
the BSG is a Bright Central Galaxy (BCG) and the faint galaxy is
one of its satellites, while parallel alignments may be observed when
both the BSG and the faint galaxy are satellites within the same halo.
These alignments are attributed to tidal gravitational interactions and
are examples of intrinsic alignments (e.g. R. Mandelbaum 2018, and
references therein). Tangential alignments, by contrast, are expected
when faint galaxies projected close to the BSG lie at higher redshift,
such that they are lensed by the BSG host halo. In this case, the
tangential orientation of the faint galaxy represents the shear induced
by the BSG halo itself. In all three cases, the BSG and faint galaxies
are then subject to a similar foreground shear from matter between
the BSG and the observer. This justifies our procedure of applying
the same shear to both the BSG and faint galaxies after imposing the
initial alignment.

MNRAS 545, 1-22 (2026)

The faint galaxy orientation, ¢¢, is drawn from a von Mises
distribution'? as follows:

¢r ~ VMY, ko),

where = ¢ for alignment with the BSG major axis. For alignment
with the BSG position, y» = 6, + &, where 6, is the angle to the line
joining the bright and faint galaxy centres, given by

0,f — Y0,b
0p = arctan (u) ,
Xo,f — X0,b

with 6 = 0° (90°) corresponding to radial (tangential) alignment.
We note that faint galaxies are placed at random positions around
the BSG and are not translated under shear. In reality, lensing also
induces small positional shifts, which would require a full multiplane
ray-tracing treatment to model accurately. Modelling such shifts is
beyond the scope of this work.

The von Mises concentration parameter, kyy, controls the degree
of alignment: ky = O corresponds to random orientations,'> while
kym 2, 100 yields orientations tightly clustered around v, approxi-
mating perfect alignment. All position angles ¢ drawn from the von
Mises distribution are mapped to the range [0°, 180°).

We vary kyv and quantify the degree of alignment using the
statistic:

Ay = (cos’(¢r — V),

where the average is taken over all faint galaxies in an unlensed BSG
sample. For the range of v values we explore, Ay varies from
0.5 (random orientations) to 1 (perfect alignment). We note that
the alignments we impose are quantified prior to lensing, whereas
observationally alignments are measured post-lensing and would
therefore appear weaker. This does not reduce the relevance of our
approach: the pre-lensing alignments we quantify are the physically
relevant quantities for shear bias, and our procedure captures their
impact accurately.

In Fig. 10, we show the biases associated with each type
of alignment, together with linear regression fits. The impact is
significant for radial (p-value = 0.001) and tangential (p-value
= 0.002) cases, but not for parallel alignment (p-value = 0.2).
Radial alignment increases the magnitude of the bias (regression
slope —(6.4 & 1.3) x 1073), while tangential alignment reduces it
(slope (6.7 1.5) x 107%). Overall, these results suggest that a
realistic treatment of faint galaxy—BSG alignments is important for
calibration simulations.

8.6.2 Faint galaxy spatial distribution

Satellite galaxies are known to exhibit anisotropic spatial distribu-
tions around the BCG (referred to in the literature as the ‘host’
galaxy), typically aligning along the host’s major axis'* (e.g. T. G.
Brainerd 2005; P. Wang et al. 2018; Y. Liu et al. 2024). The strength
of this alignment depends on both galaxy colour and morphology:
red centrals with red satellites exhibit the strongest anisotropy, while

12The von Mises distribution is the circular analogue of the normal distribu-
tion.

BFor kym = 0, the von Mises distribution reduces to a uniform distribution
over the range [0, 27).

14Some studies have reported minor-axis alignments — known as the Holm-
berg effect (e.g. E. Holmberg 1969) — but this is generally observed for
satellites at large projected separations. Since we are concerned with satellites
close to the central, this effect is not expected to be significant here.
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Figure 9. PDF (left; p(x;)) and cumulative density function (right) for the
angle x, between the major axis of the BSG and the position of the faint
galaxy. The fiducial model assumes a uniform distribution (grey dotted;
E[xp] = 45°). Linear models are shown in blue: the solid line corresponds
to the relation in T. G. Brainerd (2005) (E[x] &~ 42°), while the dashed line
represents a more extreme case with [E[Xp] =~ 30°. The black solid curve
shows a quadratic model approximating the relation found in I. Agustsson &
T. G. Brainerd (2006), with E[x,] = 34°.

systems with blue centrals typically show nearly isotropic satellite
distributions (J. Bailin et al. 2008). Of particular relevance to this
study is that alignment strength increases with decreasing projected
separation from the central and may be more pronounced when the
satellite is significantly fainter than its host (X. Yang et al. 2006).

These observational trends are broadly supported by structure
formation simulations (e.g. I. Agustsson & T. G. Brainerd 2006;
X. Kang et al. 2007), and they challenge the assumption in our
baseline model that faint galaxies are isotropically distributed around
BSGs. Although not all BSGs correspond to BCGs with nearby
faint satellites, we nevertheless examine the impact of anisotropic
faint galaxy distributions on shear bias estimates under this extreme
scenario, in order to quantify a plausible ‘worst-case’ bias.

We adopt two different forms for the probability density function
(PDF) of the position angle, xp, of the faint galaxy relative to the
major axis of the BSG. The first is a linear form, motivated by the
results of T. G. Brainerd (2005) based on isolated host galaxies in
the Sloan Digital Sky Survey (SDSS; D. G. York et al. 2000):

p(Xp) = Uy Xp + ﬂxv (35)

and the second is a quadratic form, representing the results from
ACDM simulations presented in I. Agustsson & T. G. Brainerd
(2006):

POp) =y + Byxp + Vi Xy

The parameter values are estimated from the plots in the respective
papers and chosen to ensure proper normalization of the PDFs over
the range [0°, 90°]. These curves are shown in Fig. 9, alongside the
uniform distribution used as our fiducial model and an extreme linear
case for comparison.

To construct the full 2D angular distribution of faint galaxies while
preserving alignment with the BSG’s major axis, we draw angles x,
from p(x,) over [0°, 90°], and extend this to the full circle via the
transformation:

X;; = €xXp T Oy,

where €, € {—1,+1} and §, € {0°,180°} are chosen randomly
with equal probability. This construction yields a distribution that
is symmetric about the major axis while retaining the alignment
preference encoded in p(xp).

Shear biases from undetected galaxies 13

We quantify the degree of anisotropy using the expected value of
the position angle:

90°
Elxp] = / %0 PO) - (36)
.

In practice, we estimate E[x,] by computing the mean x, across an
unlensed simulated population of BSGs and faint galaxies. Fig. 10
shows the resulting shear biases as a function of E[x,], which ranges
from 45° (isotropic distribution) to 30°. The distributions based on
T. G. Brainerd (2005) and 1. Agustsson & T. G. Brainerd (2006)
correspond to E[x,] A~ 42° and 34°, respectively.

Fitting a linear regression model to the results based on the
linear form of p(xp), we find a statistically significant slope (p-
value = 0.03) with gradient (1.5 & 0.6) x 10~*. This implies that the
anisotropy of faint galaxies around BSGs, expressed through E[x,],
must be constrained to within £2.7° in order for biases to remain at
least a factor of five below the top-level Euclid requirement.

8.7 Faint galaxy apparent magnitude slope

The apparent magnitude distribution of faint galaxies surrounding
BSGs may differ from that of the general faint galaxy population
across the field. For example, brighter satellites may preferentially
reside closer to the halo centre (T. Tal, D. A. Wake & P. G. Dokkum
2012). Additionally, observational studies suggest a correlation
between the absolute magnitude of the BCG and that of its brightest
satellite. We investigate this latter effect further in Section 9.

Here, we quantify the effect on the biases when varying the slope
of the faint galaxy apparent magnitude distribution for the entire
BSG sample. Since the biases flatten for myy, 2> 27 (see Fig. 6),
we simplify the analysis by including only faint galaxies up to
this magnitude limit. In this range, the cumulative distribution in
equation (15) is well-approximated by an exponential in magnitude
(equivalently a power law in flux) with B, = 1, so that log,,(N)
varies linearly with m o5. We refer to this as the linear approximation
to the full model. This simplified model allows us to vary oy, ¢ while
keeping the total number density of faint galaxies fixed, thereby
isolating the impact of the slope alone.

Differentiating equation (15), we obtain the following expression
for the mean number density (per arcmin?) of faint galaxies in the
magnitude range magp to map + dmag:

ng(map) dmap = Ap r 10™48 dm up, (37)

where we have set 8, = 1'° and the subscript f refers to the faint
galaxy population.

Fiducial values for the parameters An¢ and oy ¢ in the linear
approximation model are obtained by imposing two conditions. First,
the faint galaxy number density integrated over the range 24.5 <
map < 27 must equal the fiducial value for the full model, such
that:

27

/ ng(map) dmap = Niap7, (38)
245

where Ngg.07 = 80.34 galaxies per arcmin? (see Table 2). Secondly,

we require that n¢(map) at map = 25 is the same in both the full and

15More generally, for B, # 1,
ne(map) dmap = Amg By ' 1090748 g pp.

This form is used in Fig. 11 where we compare the full model and linear
approximations.
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Figure 10. Impact of various alignment and shear coherence scenarios for faint galaxies on multiplicative shear bias. Top row, left to right: residual bias as a
function of the alignment parameter Ay, which quantifies (i) radial and (ii) tangential alignment of faint galaxy orientations with respect to the line connecting
the faint galaxy and BSG centres, and (iii) the parallel alignment of faint and BSG orientations. Ay = I corresponds to perfect alignment, and Ay = 0.5 to
random orientations. Bottom left: residual bias as a function of the spatial alignment of faint galaxies with the BSG’s major axis, quantified using the anisotropy
metric E(xp), where y;, is the angle between the faint galaxy position and the BSG’s major axis; E(x,) = 45° corresponds to random spatial positions. Blue
points correspond to the linear form of p(xp); the single green point corresponds to the quadratic form. In all cases, the specified alignment is applied prior to
shearing. Bottom right: residual bias as a function of the shear coherence parameter p, (equation (34)), which quantifies the correlation between the applied
shear on faint galaxies and that of the BSG. p,, = 1 corresponds to identical shears, while p,, = 0 represents completely uncorrelated shears. Grey and blue
points, black dashed lines, and shaded regions are as in Fig. 7. For the anisotropy panel, the green point is omitted from the regression. For all panels biases are
shown relative to those predicted by the linear model fits at the fiducial parameter value.

linear approximation models; this somewhat arbitrary choice ensures
a reasonable match between the two models within the relevant
magnitude range (see Fig. 11). The resulting fiducial values of Ay, ¢
and oy, ¢ for the linear approximation are listed in Table 1. In Fig. 6,
we plot the bias obtained when we adopt the linear approximation
with m;;, = 27 and find that it is consistent with the bias obtained
using the ‘full’ model.

As o is varied, the mean number density is held fixed by
adjusting the normalization constant A, ; according to:

2
= Nha:27 o =0,

Ang = > ¢ In(10)Npigi2 S 39)
T0¥ ¥t _ 102 Sm otherwise.

For reference, we plot the linear density profiles for oy, = —0.1

and 0.4 in Fig. 11. We note that the number density distribution
is discontinuous at mag = 24.5 when oy, ¢ is varied away from the
fiducial value, as may be expected if BSGs and faint galaxies are
drawn from separate populations.

We plot the biases as a function of oy, ¢ in Fig. 11. The fiducial slope
is am ¢ = 0.139. As expected, the absolute value of the bias increases
for flatter or negative slopes (corresponding to a higher proportion of
brighter faint neighbours) and decreases for steeper positive slopes.
Fitting a linear regression model, we find a statistically significant
slope (p-value = 0.002) with gradient (5.0 & 1.2) x 1073, This
implies that, for calibration simulations, o, ¢ must be determined
to within 0.4 of its true value to satisfy the Euclid top-level bias
requirement, or to within £0.08 to remain within a factor of 5 of the
requirement.

MNRAS 545, 1-22 (2026)

9 SHEAR BIASES FROM CORRELATIONS
BETWEEN FAINT-GALAXY PROPERTIES AND
BSG MAGNITUDE

The local mean density of faint galaxies around a BSG is likely to
vary, depending on its environment. For instance, when the BSG
is the BCG of a massive halo, the excess can reach factors of
order 5 (e.g. M19). In contrast, isolated galaxies, as well as those
in low-mass groups, will tend to be surrounded by an underden-
sity of faint neighbours relative to the average across all BSGs.
This suggests a positive correlation between halo mass and faint-
galaxy excess. If BSG apparent magnitude is taken as a proxy for
mass, then a corresponding dependence on BSG magnitude is also
expected.

A second effect arises from the magnitude gap: haloes hosting
brighter BCGs tend to have larger gaps between the first and second
brightest members (G. Gozaliasl et al. 2014). This is thought to
reflect the halo’s formation history'® (A. A. Dariush et al. 2010; A.
Z. Vitorelli et al. 2018) and implies that the faint galaxy apparent
magnitude distribution depends on the BCG’s luminosity. Again, if
apparent magnitude is used as a proxy for absolute magnitude, this
translates to a correlation between the faint-galaxy distribution and
the BSG apparent magnitude.

We investigate these two effects separately in the following
sections. We adopt the linear form for the faint galaxy apparent

16 arge magnitude gaps may also be associated with isolated groups located
away from the dense nodes of the cosmic web (S. Zarattini et al. 2023).
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Figure 11. Left: mean faint galaxy number density (n(mag)) for oyt = —0.1 (blue dashed), 0.4 (blue dotted), and the fiducial value o r = 0.139 (red dashed)
using the ‘linear’ model. The area under each curve in the range 24.5 < map < 27 is fixed to Njqg.27 = 80.34 galaxies per arcmin?. The green solid curve shows
(n(map)) for the ‘full’ model (see Table 1). Right: residual multiplicative biases as a function of o, r using the linear model. Grey and blue points, black dashed
line, and shaded regions are as in Fig. 7. Biases are shown relative to the regression model prediction at the fiducial parameter value.

magnitude distribution (see Table 1 and Section 8.7) and include
neighbouring galaxies up to a limiting magnitude of mj, = 27.

9.1 Including a dependence of faint galaxy excess on BSG
magnitude

We consider a model in which the mean number of faint galaxies
within 6, arcsec of a BSG is conditional on the apparent magnitude
of the BSG as follows:

(Ng, (mapb)) = Bn10 Pmmans, (40)

where mapp i the apparent magnitude of the BSG, b, = 0 for a
constant mean density for all BSGs and By, is given by

_ Niia277 (0, /60)*(ctm 1, — b) (10745%m> — 1020em» )

Bn = Qi (10245Cmb—bm) — (200mp—bm)) S

so that the mean excess across all BSGs is held equal to the
fiducial excess (see derivation in Appendix A). We include all faint
galaxies within 6, = 3 of the BSG and up to a limiting magnitude
mym = 27. The number density of faint galaxies per arcmin? is Niao7
(see Section 8.7) and the slope of the BSG apparent magnitude
distribution is o, , = 0.36 (see Table 1).

We justify the use of this empirical relation in Appendix B, finding
an approximate value for b,, ~ 0.3. In practice, its value will depend
on the survey parameters, in particular the survey depth and filters,
and will need to be determined from observational data, such as
the Euclid deep field. For a positive by, the number density of faint
galaxies is greater for a brighter BSG, as is supported in the literature
(e.g. S. Zarattini et al. 2021; K. Simotas et al. 2023). In Fig. 12, we
plot the relationship between the number of faint galaxies within
3 arcsec of a BSG (N3) and the apparent magnitude of the BSG for
a range of by, values, together with barplots showing the frequency
density of N3 across the sample.

The multiplicative biases are shown in Fig. 13 for values of by,
between 0 and 0.5. Also shown are the biases when we implement the
same distribution of excesses provided by equation (40), but with zero
correlation between <Ng, (m AB,b)> and the BSG apparent magnitude.
This is achieved in practice by drawing a different random magnitude
for the BSG than that used to obtain <N9r(m AB,b)>.

Assuming a linear relation between the multiplicative bias and
b, we find a statistically significant slope (p-value = 0.0004) when
fitting a linear regression model to the mean of m; and m; as a
function of by, with dAm/db, = (8.3 & 1.5) x 1073. In contrast,

when we preserve the same distribution of faint galaxy excesses
across BSGs but remove the correlation with BSG magnitude, the
slope is consistent with zero (p-value = 0.24). This latter result
is expected given the linear response of the multiplicative bias
to a uniform change in faint galaxy excess across the sample,
demonstrated in Section 8.2 and Fig. 6. Nevertheless, the zero-
correlation test provides a useful check that confirms the correlation
between the mean faint galaxy density and BSG magnitude is the
factor driving the residual biases, rather than differences in the
overall N3 distribution relative to the fiducial case. To ensure that
residual biases remain at least a factor of 5 below the top-level
Euclid requirement, calibration simulations must therefore model
this correlation accurately, constraining the parameter by, to within
+0.05 of its true value.

9.2 Including a dependence of the faint galaxy magnitude
distribution on BSG magnitude

In this section, we explore the effect of a correlation between
BSG apparent magnitude and the magnitude distribution of the
surrounding faint galaxies. We adopt a simple model in which
the conditional slope of the faint galaxy apparent magnitude dis-
tribution, oy ¢, varies linearly with the BSG apparent magnitude
MAB,b:

O fic = O fifid — Be(MaBb — MAB byp), (42)

where apy, .50 = 0.139 is the fiducial slope (see Table 1), map p;p is
the ‘pivot’ magnitude (see below), and B, controls the strength of
the correlation. When B. = 0, the slope is independent of the BSG
magnitude. We fix mag p;p = 23.5 (chosen close to the median BSG
magnitude'”) so that approximately half the galaxy sample has an
associated faint galaxy magnitude slope below the fiducial value, and
half above.

For each BSG, the mean number of faint galaxies is held constant
at the field value (i.e. with f.x = 0) by re-normalizing the distribution
using equation (39) with oy ¢ = ot r.c. Thus, while the distribution
of faint magnitudes varies with BSG brightness, the mean number of
faint galaxies is fixed for each BSG at the fiducial value.

However, because the BSG number density itself varies with
magnitude, the overall faint galaxy apparent magnitude distribution

17The median BSG magnitude is ~ 23.4 and the mean ~ 23.7.
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920z Arenuer g uo 1sanB Aq Z69Z9E8/9E | ZIEIS/E/SHS/PIIME/SEIULY/WOO dNO"dlWapede//:sdny Wolj papeojumoq



16 L. M. Voigt

10 A 10 A 10 o e
8 1 8 1 8 1
LN )
6 -
=3
4 o o0 o e o
[ X ) [ ] 00000 & 0
2 - © G0N ¢ ¢ CUEHNEEDSNEENNNED
0 eme comomam
20 22 24 20 22 24 20 22 24
Mag, b Mag, b Mag, b
0.7 0.7 0.7 1
0.6 0.6 0.6 1
0.5 A 0.5 A 0.5 A1
oy
‘»n 0.4 0.4 0.4 1
o
0 0.3 0.3 A 0.3 A
0.2 A 0.2 A 0.2 A1
0.1 0.14 0.14
0.0 — 0.0 — T T 0.0 —
0 5 10 0 5 10 0 5 10
N3 N3 N3

Figure 12. Top panels: Number of faint galaxies within 3 arcsec of each BSG (N3) as a function of the BSG apparent magnitude, for three values of the
correlation parameter: by, = 0.1 (left), 0.2 (middle), and 0.3 (right). The red lines show (NN3) as a function of BSG magnitude, while grey dots represent N3 for
individual BSGs. The horizontal blue dashed lines indicate (N3) for by, = 0. Bottom panels: Distribution of N3 across all BSGs. Grey bars show the distribution
for the fiducial setup with by, = 0, while red-outlined bars show the distributions for the corresponding by, > 0 cases. The overall mean excess is fixed to zero.
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Figure 13. Residual multiplicative biases as a function of by,, the parameter defining the correlation between the mean faint galaxy excess and BSG apparent
magnitude (left-hand plot; see equation (40)). Also shown are the biases obtained using the same distribution of excesses among BSGs, but with zero correlation
with the BSG magnitude (right-hand plot). Grey and blue points, black dashed lines, and shaded regions are as in Fig. 7. Biases are shown relative to that
predicted by the regression model fit at the fiducial parameter value (i.e. at by, = 0).

across the BSG sample will differ from the fiducial (uncorrelated,
B. = 0) case. Fig. 14 compares the overall faint galaxy distribution
with the fiducial case for different B, values, along with distributions
associated with the brightest and faintest BSGs. Across the range
tested, the total distribution is very close to fiducial. None the less,

MNRAS 545, 1-22 (2026)

because even small changes in the faint distribution can affect shear
biases (see Section 8.7 and Fig. 11), we perform a sensitivity test
designed to isolate the impact of the correlation itself from that
of changes in the overall faint magnitude distribution. Specifically,
we compute biases using the same distribution as that obtained when
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Figure 14. Faint galaxy apparent magnitude distribution for B, = —0.2 (top left), 0.1 (top right), 0.2 (bottom left), and 0.3 (bottom right) for BSG apparent
magnitudes mag p = 20 (blue dashed) and 24.5 (blue solid). The red solid line shows the faint galaxy distribution across all BSGs when using equation (42)

with mag v;p = 23.5. The fiducial case (B. = 0) is shown with a black dotted line.
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Figure 15. Dependence of the faint galaxy apparent magnitude slope on BSG
magnitude for B, = —0.2 (red dashed), O (black dotted), 0.1 (blue solid),
and 0.3 (green dashed—dotted) with mag b;p = 23.5 (see equation (42)). For
B. = 0, the slope is fixed at the fiducial value (am f = 0.139; see ‘Fiducial
Linear’ model in Table 1).

B. # 0, butremove the correlation with BSG magnitude by randomly
reassigning BSG magnitudes when generating the faint population.
This ensures that any difference in biases between the two cases
arises solely from the correlation, rather than from a shift in the
global faint galaxy magnitude distribution.

We explore correlation strengths in the range B. € [—0.2, 0.35].
Fig. 15 illustrates how the conditional slope oy, . varies with BSG
magnitude for representative B, values. To connect B, with an
observable quantity, Fig. 16 shows, for each B, the mean faint galaxy
magnitude as a function of BSG magnitude, binned in quantiles of
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Figure 16. Relationship between faint galaxy magnitudes and BSG magni-
tudes for different B. values (colours and linestyles as in Fig. 15). All faint
galaxies within 3 arcsec of a BSG are included. Results are shown with ~100
BSGs per bin. Best-fitting regression parameters and correlation coefficients
are given in Table 5.

~ 100 BSGs each. The relationship is approximately linear'®; Table 5

8The distribution of magnitude gaps between the brightest and second-
brightest galaxies in a halo is commonly studied (e.g. S. More 2012; S.
Zarattini et al. 2021). However, since our analysis excludes neighbours
brighter than 24.5, a direct comparison is not possible. Nevertheless, the
linear relation observed between BCG absolute magnitude and magnitude
gap in previous work (e.g. G. Gozaliasl et al. 2014) motivates the form of
equation (42).
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Table 5. Best-fitting linear regression parameters
for the relation between faint galaxy magnitudes,
mag,f, and BSG magnitudes, m g p, for different
B values (see Fig. 16). Also shown is Pearson’s
correlation coefficient r.

B. Slope Intercept r

—-0.2 0.27 19.48 0.37
0 0.00 25.97 0.00
0.1 —0.14 29.10 —0.19
0.3 —0.27 32.3 —0.38

provides the regression slope, intercept, and Pearson’s correlation
coefficient for each B..

Fig. 17 shows the multiplicative biases versus B., both with (r # 0)
and without ( ~ 0) the correlation between oy, f and BSG magnitude
included in the simulations. We find that with r & O there is no
evidence for a linear regression slope different from zero (p-value
= 0.8). This demonstrates that any differences in the overall faint
galaxy apparent magnitude distribution (i.e. across all BSGs) from
the fiducial case has a negligible impact on the biases. However,
when we include the correlation between the faint-end magnitude
slope and the BSG magnitude there is a significant effect (p-value
= 0.007) with slope —(2.0 £ 0.8) x 1073, Assuming the relation
shown in Fig. 16, our results suggest that B, must be constrained
to within 0.2 to ensure biases are a factor of 5 below the Euclid
requirement.

10 DISCUSSION

We have investigated the impact of undetected galaxies on shear
calibration, focusing on how various properties of the faint population
influence multiplicative biases. Using independent image simula-
tions!® and a noise-bias-free machine learning shape measurement
code (L. M. Voigt 2024), we confirm previous findings that failing
to account for faint blends leads to unacceptably large biases. In our
fiducial simulations, this bias reaches m; ~ —8 x 1073 — well above
the Euclid top-level requirement of |m;| < 2 x 1073,

Consistent with previous studies (e.g. M19), we find that calibra-
tion simulations must include faint galaxies to a limiting magnitude
map ~ 27.07%4 in order to capture the dominant contributions
to blending-induced bias.?® However, we find that galaxies need
only be included out to projected separations 6, ~ 1.03032 arcsec
(approximately 10 pixels for Euclid) from each BSG, compared to
the ~2.5 arcsec inclusion radius found by M19. This difference may
arise from the smaller postage stamps used in our setup (M19 use
64 by 64 pixels), and suggests that calibration simulations should be
adapted to the specifics of the shear measurement pipeline.

Our study builds on previous work by systematically varying
key properties of the faint galaxy population that have not yet
been explicitly explored in this context. Specifically, we examine
the size—magnitude relation, the slope of the apparent magnitude

19We generate PSF-convolved galaxy images using an independent image-
generation pipeline, providing a useful verification of results obtained by
H17, M19, and H21, who use the GalSim galaxy simulation toolkit (B. T.
P. Rowe et al. 2015).

20This agrees with the finding in M19 that the required limiting magnitude is
largely insensitive to the choice of shear measurement method.
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distribution,”! and correlations between faint galaxy properties and

those of the BSG, including its position, orientation, and brightness.
Crucially, where possible, we quantify biases in terms of parameters
that can in principle be measured directly from survey data.

In Table 6, we summarize which properties of the faint population
significantly impact multiplicative biases over the range of values
explored. We refer to these as the ‘critical’ parameters and provide
constraints on how precisely each one must be determined to suppress
residual biases to at least a factor of 5 below Euclid’s top-level
requirement. We note that even stricter thresholds may be required
to accommodate multiple systematics in shear measurement.

As expected, blending biases depend sensitively on the mean faint
galaxy density in the vicinity of BSGs, which we define as the
excess over the mean density of faint galaxies across the field. We
find that this excess must be constrained to within £0.05 to reduce
residual biases sufficiently. Furthermore, a correlation between the
local faint galaxy density and the BSG apparent magnitude can
induce large residual biases if unaccounted for. We model this relation
(Appendix B), described by the parameter by, (equation (40)), and
find that it must be known to within at least £0.05 of its true value.

In addition, the slope of the faint galaxy apparent magnitude
distribution — measured across all BSGs and with the mean faint
galaxy number density held constant — has a pronounced impact.
Shallower slopes (i.e. a higher fraction of relatively bright faint
galaxies) increase the absolute magnitude of the bias, while steeper
slopes reduce it. Our results indicate that the slope must be known
to within £0.08 to limit residual biases. We also examine the impact
of a linear relation between the slope and BSG apparent magnitude.
This correlation has a statistically significant effect on shear biases
and requires the parameter B, (equation (42)) to be determined to
within 0.2 to keep residual biases under control.

Faint galaxy orientations and positions must also be taken into
account. Radial and tangential alignments of faint galaxies with
respect to the BSG centre, as well as anisotropy in their spatial
distribution relative to the BSG major axis, all substantially alter
the biases. By contrast, correlations between the shears of faint
galaxies and the BSG, as well as parallel alignments of their intrinsic
orientations, do not have a measurable impact. Across the parameter
ranges explored, variations in the slope or normalization of the
size-magnitude relation also do not substantially affect the biases,
indicating robustness to moderate uncertainties in size—magnitude
modelling.

Any shear estimator that does not explicitly account for flux
contamination from unresolved neighbours is likely to exhibit
similar sensitivities to faint blends as those described above. Our
results thus inform the design of calibration simulations used by
shape-measurement pipelines, identifying the critical faint-galaxy
properties that must be included in, for example, the Euclid Flagship
Simulation (D. Potter, J. Stadel & R. Teyssier 2017; Euclid Collab-
oration 2025b), which plays a central role in modelling detection,
selection, and shape-measurement systematics.

Furthermore, our work highlights the need to measure faint-
galaxy properties directly from deep-field data in order to achieve
the required precision on these critical parameters (see Table 6).
While theoretical models and N-body simulations provide valuable
insights into large-scale galaxy distributions (e.g. M. Vogelsberger
et al. 2014), they are less reliable for capturing the small-scale

21H17 also examine the slope of the apparent magnitude distribution, but here
we fix the mean galaxy number density to isolate the effect of the distribution
shape from changes in projected number density.
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Figure 17. Residual multiplicative biases as a function of B, both with (left) and without (right) the correlation between the faint-end slope and BSG magnitude
included. At a given B, the overall distribution of faint galaxy magnitudes across all BSGs is the same in both cases. Grey and blue points, black dashed lines,
and shaded regions are as in Fig. 7. Biases are shown relative to that predicted by the regression model fit at the fiducial parameter value (i.e. at B, = 0).

Table 6. Summary of the linear regression model fits used to quantify the dependence of
multiplicative biases on faint galaxy parameters. For each parameter, we fit a simple linear
regression model and test the null hypothesis Hy : B = 0 (no dependence of bias on the parameter)
against the alternative Hy4 : B # 0, where 8 is the slope of the best-fitting regression line. We report
the two-sided p-value from this test. The parameters are grouped into two subtables: those with
p<0.05, referred to as critical because they show a statistically significant dependence of shear
bias on the parameter, and those with p > 0.05, for which no significant dependence is detected
over the range explored. For all parameters we list the fiducial value adopted in the simulations and
the range of values included in the regression fit. For the critical parameters we additionally report
the constraint required to keep the residual multiplicative bias below 4 x 107#, corresponding to
a factor of 5 more stringent than the top-level Euclid requirement.

(a) Critical parameters (p<0.05)

Parameter p-value Constraint Fiducial Range explored

fex 4 x 1077 +0.05 0 [-1,2]

Ay radial 0.001 +0.06 0.5 [0.5,1]

Ay tangential 0.002 +0.06 0.5 [0.5,1]

Elxp] 0.03 £2.7° 45° [30°, 45°]

Qm.f 0.002 +0.08 0.139 [—0.1,0.4]

bm 0.0004 +0.05 0 [0,0.5]

B 0.007 +0.2 0 [—0.2,0.35]
(b) Non-critical parameters (p > 0.05)

Parameter p-value Fiducial Range explored

kmax 0.5 00 [3,23]

o f 0.07 —0.033 [—0.1,0]

fre 0.2 1 [0.4,1.6]

Ay parallel 0.2 0.5 [0.5,1]

Py 0.25 1 [0,1]

distributions of faint-galaxy positions, magnitudes, and orientations
that matter for blending. These challenges stem from uncertainties
in the galaxy—halo connection and the impact of baryonic physics on
galaxy formation and clustering.

To constrain biases from contaminants as faint as mag ~ 27, deep
fields must reliably detect galaxies to at least this limit. The Euclid
Deep Survey, although covering most of the faint range (map ~
24.5-26.5), may fall short of capturing the full contribution from the
faintest blends. This highlights the importance of complementary
ultra-deep data sets such as the Hubble Ultra Deep Field (HUDF)
or Hubble eXtreme Deep Field, which reach i’ ~29. Previous

simulation-based studies have drawn on HUDF data to model faint-
galaxy clustering (M19), but our results emphasize the need for
tighter quantitative constraints on parameters such as clustering
excess, magnitude slope, and local correlations with BSG properties.
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APPENDIX A: DERIVING THE FAINT-GALAXY
EXCESS - BSG BRIGHTNESS CORRELATION
NORMALIZATION PARAMETER

Here we derive the parameter By, which quantifies the excess
number of faint galaxies around a BSG as a function of its apparent
magnitude.

The mean total number of faint galaxies within a radius 6, (in
arcsec) of a BSG, integrated over all BSGs (per arcmin?), is

2.5
(No, tor) = / (No, (map.b)) no(map.p) dmag,p, (A1)
20

where (Np, (mag.p)) is defined in equation (40) and ny(mag,p) is the
BSG number density per arcmin® per unit magnitude.

Substituting <Ngr (mABAVb)> in terms of By, and b, into equation
(A1) gives

BmAm,b

o —boh 10(]024«5(‘1nl.b*bm) _ 1020(05m.b*bm)). (A2)
m, m

<N0,.,1m> =

Alternatively, expressing <NG,,101> in terms of the fiducial mean
number of faint galaxies within 6,,

7T92N . 24.5
(No, 1) = %Tﬁdﬂ/ ny(MaB.b) dMAB b, (A3)
20
with
24.5 A b (1024.501“,‘1, _ 1020am1b)
/ No(Mapp) dMagp = —— (A4)
20 ’ ’ Om b In 10

Equating the two expressions for <N9,,m[> then yields equation
(41), giving the required form of By,.

APPENDIX B: RELATIONSHIP BETWEEN
NUMBER OF SATELLITES IN A FIXED
APERTURE AND HALO MASS

In this Appendix, we present an approximate derivation of the
relationship between the number of satellites within a fixed circular
aperture of radius R around a BCG and the host halo mass. This
modelling does not enter into the main analysis, but is used to justify
the form of the relation provided in equation (40) and to obtain an
approximate value for by,.

Within the halo occupation framework, the total number of
satellites (above a fixed luminosity threshold) residing in a halo
of mass M scales approximately as

(Naatior) ¢ (Mano)* (B1)

with o ~ 0.9-1 (A. Vale & J. P. Ostriker 2006). Under the
assumption that satellites follow the dark matter distribution, the
number of satellites enclosed within a fixed aperture grows more
slowly with halo mass, since a smaller fraction of satellites falls
within the aperture at higher halo masses due to the increasing halo
size.

Satellite galaxies are often assumed to follow the same spatial
distribution as the dark matter (e.g. I. Zehavi et al. 2011, see also
comments in the final paragraph of this Section), typically modelled
by a Navarro—Frenk—White (NFW) profile (J. F. Navarro, C. S. Frenk
& S. D. M. White 1997), with density at radius r given by

8c0c
(r/ro +r/r)?

where p. = 3H(z)?/(8w G) is the critical density of the Universe at
redshift z, H(z) is the Hubble parameter, G is Newton’s gravitational

p(r) = (B2)
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M(< 3 arcsec) (Mg)

Mag0 (M)

Figure B1. 3D halo mass enclosed within a 3 arcsec radius at z = 1 (blue
solid) using the mass—concentration relation from H. Shan et al. (2017)
(equation (B4)). The red dashed curve shows the best-fitting power law:
M (< 3 arcsec) « M;g‘o, with «g = 0.25. For reference, the dotted black line
shows the one-to-one relation, M(< 3 arcsec) = Mpgo. At low halo masses,
ra0o falls within the aperture, so the enclosed mass approaches the total halo
mass.

constant, 8. is the characteristic overdensity??, given by

200 3
7 3 In(l4+¢)—c/(+¢)
and r,, the scale radius, is related to the virial radius rpg and the
dimensionless concentration parameter ¢ via ryy = Crs.
We adopt a relationship between the virial mass, Myp®, and
concentration from H. Shan et al. (2017), such that

(M) = Co Mo ™ , (B4)
1012M,,

(B3)

with Cy = 6.61 and y. = 0.15 for galaxies in the redshift range
0.4 < z < 0.6. These parameter values were determined by H. Shan
etal. (2017) based on the Canada—France—Hawaii Telescope (CFHT)
Stripe 82 Survey, covering haloes in the mass range 5 x 10'?-2 x
10"Mg. We allow for an evolution with redshift using the relation
from J. S. Bullock et al. (2001), given by

c(Mogp) o< (1 4+2)7". (B5)

Integrating equation (B2) and assuming spherical symmetry, the
3D halo mass enclosed within a fixed radius R is

3 R R/rs
M(< R) = 4mé.pcr, {ln (1 + r—s> — TR/’J . (B6)
In our fiducial setup, we use an aperture with radius 3 arcsec,
corresponding to R &~ 24kpc at z =1 (the median redshift for
Euclid).

Using equations (B3)-(B6), we plot in Fig. B1 the 3D mass en-
closed within 3 arcsec of the halo centre as a function of virial mass.>*
We find that a power law provides a reasonable approximation to the
distribution, such that

M(< R) o< (M20)*" (B7)

22Defined such that the mean overdensity within r2o9 is 200 times the critical
density.

23 My is the mass enclosed within ragp.

24The halo mass is truncated at g, so that M (< 3 arcsec) tends to Magq as
the halo mass decreases and 99 < R.
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22 L. M. Voigt

with ag ~ 0.25 for R = 3 arcsec and z = 1. Thus, we can write the
mean number of satellites within radius R as

(Nsa(< R)) ¢ (Mooo)** " . (B3)

We now relate (Ng(< R)) to the BCG apparent magnitude.
Assuming all galaxies lie at the same redshift, the BCG luminosity
is related to its apparent magnitude by

LBCG X 10—0-4"11\3. (B9)

We find that this relation is only marginally shallower if we instead
use a realistic redshift distribution. Adopting a sub-linear relation
between BCG luminosity and halo mass,

Lgcg & (Mago)™-, (B10)

with B ~ 0.3 (S. Brough et al. 2008, and references therein), we
obtain

(Nsat(< R)) X 10_0»401R0¢lmmAB//3L. (Bll)

Using representative values of ag = 0.25, oop = 0.9, and B = 0.3,
and assuming the number of satellites within R corresponds to the
projected number, we find b,, ~ 0.3 (see equation (40)).

We emphasize that the above derivation provides only a rough
estimate and the actual relation will likely differ from the one
provided here. For simplicity, we have shown the enclosed 3D mass,
whereas observations correspond to satellite counts in projected
apertures. Other factors may also affect the satellite number density—
magnitude relation. For example, we assume satellites follow the dark
matter distribution, but simulations suggest they are less centrally
concentrated (e.g. L. Gao et al. 2004), although the picture is complex
(e.g. L. Sales & D. G. Lambas 2005; J. Chen et al. 2006; J. Chen
2008, and references therein). In addition, the inner density profiles
of dark matter haloes may be more cuspy than the NFW profile
(e.g. A. A. Dutton & A. V. Maccio 2014), which would increase the
enclosed mass at small radii and modify the halo mass dependence.
Studies also suggest a more complex redshift dependence of the
concentration parameter than the simple (1 + z)~! scaling adopted
here (e.g. J. C. Muifioz-Cuartas et al. 2011). Finally, we note that only
a proportion of BSGs will be BCGs, so the comparison to equation
(40) is approximate. It will therefore be important to determine by,
empirically from deep field surveys.
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