

1    **Supporting information for: Contributions of benthic microalgal biofilms to sediment**  
2    **organic carbon stocks across a salt marsh gradient**

3

4    Graham J C Underwood<sup>1\*</sup>

5    Nicola J. D. Slee<sup>1</sup>

6    Jessica C. J. Underwood<sup>2</sup>

7    Christopher I. D. Underwood<sup>3</sup>

8    James L. Pinckney<sup>4</sup>

9

10    <sup>1</sup>School of Life Sciences, University of Essex, Colchester, Essex, U.K. CO4 3SQ

11    <sup>2</sup>School of Archaeology, Geography and Environmental Science, University of Reading,  
12    Reading, U.K. RG6 6AX.

13    <sup>3</sup> Independent Scientist, Bristol. 29 Kensington Rd, BS5 7NB, U.K.

14    <sup>4</sup>Estuarine Ecology Laboratory, Department of Biological Sciences, and School of the Earth,  
15    Ocean, and Environment, University of South Carolina, Columbia, SC 29208, USA

16    \*Corresponding Author. Graham J C Underwood, [gjcu@essex.ac.uk](mailto:gjcu@essex.ac.uk)

17

18 **Supplementary methods**

19 *Benthic microalgal pigment, carbohydrate and total organic carbon concentrations.*

20 Chemosystematic photosynthetic pigment concentrations were determined for a subset of  
21 samples collected in 2018 using high-performance liquid chromatography (HPLC) (Higgins et  
22 al., 2011). Sediment samples were lyophilized and extracted in 90% acetone (1 mL) for 18–20 h  
23 at -20 °C. The synthetic carotenoid β-apo-8'-carotenal (Sigma) was used as an internal standard.  
24 A Shimadzu 2050 HPLC equipped with a monomeric (Rainin Microsorb–MV, 0.46 x 10 cm, 3  
25 µm) and a polymeric (Vydac 201TP54, 0.46 x 25 cm, 5 µm) reverse-phase C18 column in series  
26 was the stationary phase. The mobile phase was a nonlinear binary gradient of 80% methanol  
27 and 20% 0.50 M ammonium acetate, and 80% methanol and 20% acetone (Pinckney et al.,  
28 2001). A photodiode array detector (PDA) was used to obtain absorption spectra and  
29 chromatogram peak areas ( $440 \pm 4$  nm). Pigment peaks were identified by comparing retention  
30 times and absorption spectra with those of pure carotenal and Chlorophyll standards (DHI,  
31 Denmark). ChemTax (version 1.95) was used to estimate the relative concentrations of major  
32 algal groups (e.g., diatoms, cyanobacteria, green algae) based on measured photopigment  
33 concentrations (Pinckney et al, 2001; Higgins et al, 2011). The matrix randomization procedure  
34 (60 simulations, Higgins et al. 2011) was applied to the initial ratio matrix derived from Lewitus  
35 et al. (2005).

36 Sediment total and colloidal carbohydrate concentrations were determined on subsamples  
37 of freeze-dried sediments (between 100 – 200 mg for colloidal, 10 mg for total carbohydrate),  
38 using the phenol sulphuric acid assay with a glucose standard (Dubois et al. 1956), with a  
39 modification in that samples were maintained at 100 °C after the reaction step to ensure

40 maximum hydrolysis of polysaccharides and complex carbohydrates (Aslam et al. 2012).  
41 Colloidal carbohydrates were extracted using a 1-hour extraction time at a salinity of 25 and 25  
42 °C, followed by centrifugation at 3,000 g for 15 minutes (Bellinger et al. 2005; Hanlon et al.,  
43 2006). Values were calculated as  $\mu\text{g}$  glucose equivalents  $\text{g}^{-1}$  freeze-dried sediment.

44 Freeze-dried sediment samples from 2023 were measured for total carbon (TC), total  
45 inorganic carbon (TIC), and total organic carbon (TOC) on a Skalar Primacs mcs model  
46 2MC10900 coupled to a Formacs HT model 2CA16910-02 carbon analyzer (Skalar Analytical  
47 B.V., Beda, NL). Homogenized samples were passed through a 2 mm sieve and placed in  
48 pretreated (550°C for 3-5 hours) quartz crucibles, heated to 1000 °C in the presence of a catalyst  
49 (cobalt oxide), and  $\text{CO}_2$  liberated (total carbon) measured at 4.2  $\mu\text{m}$  by IR detection and  
50 recalculated to TC content according to the calibration standard. TIC in parallel samples was  
51 converted to  $\text{CO}_2$  by adding concentrated phosphoric acid. TOC was calculated by  $\text{TOC} = \text{TC} -$   
52 TIC, and values expressed as % w/w content.

53

54 *Near infrared Spectroscopy (NIR)*

55 Near-infrared (NIR) spectroscopy was conducted on the 2023 dried sediment samples  
56 using an approach similar to Yang (2020). Freeze-dried sediment samples were ground to ensure  
57 homogeneity and spread in Petri dishes resting on a white surface. The measuring window of a  
58 NeoSpectra™ hand-held spectrometer (Si-Ware, Menlo Park, CA, USA) was placed on the  
59 sample, ensuring full contact between the sediment surface and the measuring window, and  
60 scans taken across the spectral wavelength range of 1,300–2,500 nm, with a resolution of 16 nm,  
61 over a 10-second scan under low-light conditions ( $100 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$ ). All scans were

62 calibrated using the Neo-Spectra reference calibration plate provided. Samples with insufficient  
63 sediment material to ensure this coverage were omitted.

64 NIR spectral data (wavelengths in nm against reflectance percentages, Figure S6ab) for  
65 the sediments were used in a Principal Components Analysis (PCA) to determine differences  
66 between habitat types. The PCA was conducted on spectra pretreated with the Savitzky-Golay  
67 (SG) smoothing filter (window size = 11, first order derivative), a standard approach to  
68 emphasise peaks in NIR spectral data (Yang 2020; Walden et al. 2024). Principal components 1  
69 and 2 sample scores from the SG-PCA were used in regression analyses to determine how NIR  
70 spectra corresponded to biofilm properties and organic carbon contents across the different  
71 habitat types.

72

### 73 *Modelling approaches*

74 The spatial distribution of four different habitat types (USM, SpS, SpT, MF) across the  
75 North Inlet Estuary was mapped (Fig. 1) based on LIDAR data and the relationship between the  
76 distribution of habitats across the tidal frame (North American Vertical. Data 1988) from low to  
77 high water. The upper and lower tidal height bounds for the USM, SpS, SpT, and MF habitat  
78 types were determined from the sample heights from the 2018 and 2023 data (Figure S6A) and  
79 information from Morris et al. (2005). The NOAA tidal height data were directly comparable  
80 with detailed ROV and LIDAR of tidal elevations and habitat types of the NIE by Wang et al.  
81 (2023), with a mean difference of  $\pm 0.06$ m. Using lm() and poly() functions in R, polynomial  
82 curve fitting determined the relationship between sediment %TOC and tidal elevation (Equation  
83 1), and sediment bulk density and tidal elevation (Equation 2). Sediment bulk density varied with  
84 habitat type (Figs. S2a, S3e, Kruskal-Wallis  $\chi^2 = 106.25$ , df = 5, p < 0.001) and there was a

85 significant polynomial relationship between sediment bulk density and tidal height ( $r^2 = 65.6\%$ ,  
86 excluding ChM and ChS habitats). The best fit was determined by comparing polynomial models  
87 with ANOVA.

88 [Equation 1]

89 
$$\%TOC = -0.603 * (\text{tidal height})^3 - 2.456 * (\text{tidal height})^2 - 2.114 * (\text{tidal height}) + 4.055$$
  
90 where (tidal height) is NOAA tidal height in metres.  $r^2 = 73.0$

91

92 [Equation 2]

93 
$$\text{Sediment bulk density} = 1.5938 * (\text{tidal height})^4 + 0.5042 * (\text{tidal height})^3 + 1.2838 * (\text{tidal}$$
  
94 
$$height)^2 + 0.11686 * (\text{tidal height}) + 0.1356. r^2 = 65.6$$
  
95 where (tidal height) is NOAA tidal height in metres.

96

97 Using the relationships between %TOC and tidal height (Equation 1) and corresponding  
98 sediment bulk density values (Equation 2) and the distribution of habitat zones within the tidal  
99 height range, the sediment TOC stocks ( $\text{g C m}^{-2}$  to a depth of 10 cm) across the NIE was derived  
100 from the NOAA height data, using the “Raster Calculator” in QGIS. TOC was estimated in the  
101 top 10 cm of sediment, based on the relatively even profiles of total carbohydrate (Figure 2) and  
102 %LOI to that depth. Each pixel was categorized into a habitat type based on its tidal height.  
103 Areal values of TOC (per hectare,  $\text{ha}^{-1}$ ) were determined by overlaying a grid of 100m x 100m  
104 squares across the NIE site, summing the individual habitat pixel values  $\text{ha}^{-1}$  to obtain an  
105 integrated TOC stock per hectare capturing habitat heterogeneity. The mean number of pixels  
106 was 8,886, the median was 10,087, and the maximum count was 10,094 pixels. This model was  
107 applied to tidal heights in the range of -0.785 to 0.981 m above the vertical datum (NAVD 88:

108 North American Vertical Datum of 1988), which captured most of the salt marsh habitat (Morris  
109 et al. 2005). Pixels with a height outside of this range received a ‘null’ value. Hence, hectare  
110 grids placed around the main water channels have many null values and hence a lower averaged  
111 carbon stock. This allowed us to model TOC stocks for individual habitats at a scale of  
112 approximately 1 m<sup>2</sup> and capture the heterogeneity of the marsh at m<sup>2</sup> and ha spatial scales.

113 The contribution of BMA-organic carbon to total sediment organic carbon stock was  
114 estimated from the measured contributions of colloidal carbohydrates to %TOC in different  
115 habitats (Table 1), literature values of the proportions of extracellular and intracellular carbon  
116 produced by cultured estuarine benthic diatoms (Smith and Underwood 2000; Aslam et al. 2012)  
117 and cell carbohydrate : protein: lipid ratios, and relationships between total carbohydrate,  
118 protein, and lipid content of microalgae (Courtois de Viçose et al. 2012) (Equation 3). These  
119 factors were combined with the Total Organic carbon model to field measurements for each  
120 habitat type to obtain concentrations of BMA total organic carbon (g BMA TOC m<sup>-2</sup> to a depth of  
121 2.5 cm) across the NEI. A depth of 2.5 cm was chosen for determining BMA TOC stock, based  
122 on the profile data for Chl *a* and colloidal carbohydrate (Figure 2).

123 [Equation 3].

124 BMA TOC stock 25mm = sediment TOC in 5 mm (Equ.1 and 2) \* habitat value for percent TOC  
125 from colloidal carbo. (Table 1) / 0.544 (ratio of colloidal to total carbohydrate in BMA<sup>1</sup>) then /  
126 0.47 (ratio of ratios of carbohydrate, protein, lipids in cells<sup>2</sup>), multiply sum \* 5 (to allow for 2.5  
127 cm depth)

128 <sup>1</sup>Smith and Underwood, 2000; Aslam et al., 2012; <sup>2</sup>Courtois de Viçose, et al., 2012.

129  
130

131

132 **Supplementary results**

133 **Table S1.** Sample dates, site names and codes, site elevation and codes, sample size and habitat  
 134 types sampled in 2018 and 2023 in the North Inlet Estuary, South Caroline, USA (see Figure 1).

| Habitat type <sup>1</sup> | Site code | Site name                              | Elevation (m)<br>mean $\pm$ st.dev. | Sample size | Sampling date |
|---------------------------|-----------|----------------------------------------|-------------------------------------|-------------|---------------|
| USM                       | CLS       | Clambank sand                          | 0.59 $\pm$ 0.02                     | 10          | 26/07/2018    |
| SpS                       | CSP       | Clambank short <i>Sporobolus</i>       | 0.54 $\pm$ 0.03                     | 10          | 26/07/2018    |
| ChS                       | DSD       | Debidue sand flat                      | -0.47 $\pm$ 0.02                    | 10          | 27/07/2018    |
| ChM                       | DNM       | Debidue new mudflat                    | -0.21 $\pm$ 0.04                    | 10          | 27/07/2018    |
| MF                        | BBC       | Bread and Butter Creek                 | -0.59 $\pm$ 0.14                    | 10          | 28/07/2018    |
| MF                        | OLC18     | Oyster Landing mudflat                 | -0.21 $\pm$ 0.11                    | 40          | 02/08/2018    |
| USM                       | LPS       | Lonesome Pine flat                     | 0.78 $\pm$ 0.05                     | 19          | 23/02/2023    |
| MF                        | OLC23     | Oyster Landing mudflat                 | -0.24 $\pm$ 0.29                    | 19          | 25/02/2023    |
| SpS                       | OSP       | Oyster Landing short <i>Sporobolus</i> | 0.43 $\pm$ 0.02                     | 19          | 26/02/2023    |
| SpT                       | MSP       | Marsh boardwalk tall <i>Sporobolus</i> | 0.19 $\pm$ 0.17                     | 19          | 27/02/2023    |
| USM                       | MBS       | Marsh boardwalk_upper flat             | 0.80 $\pm$ 0.02                     | 19          | 27/02/2023    |

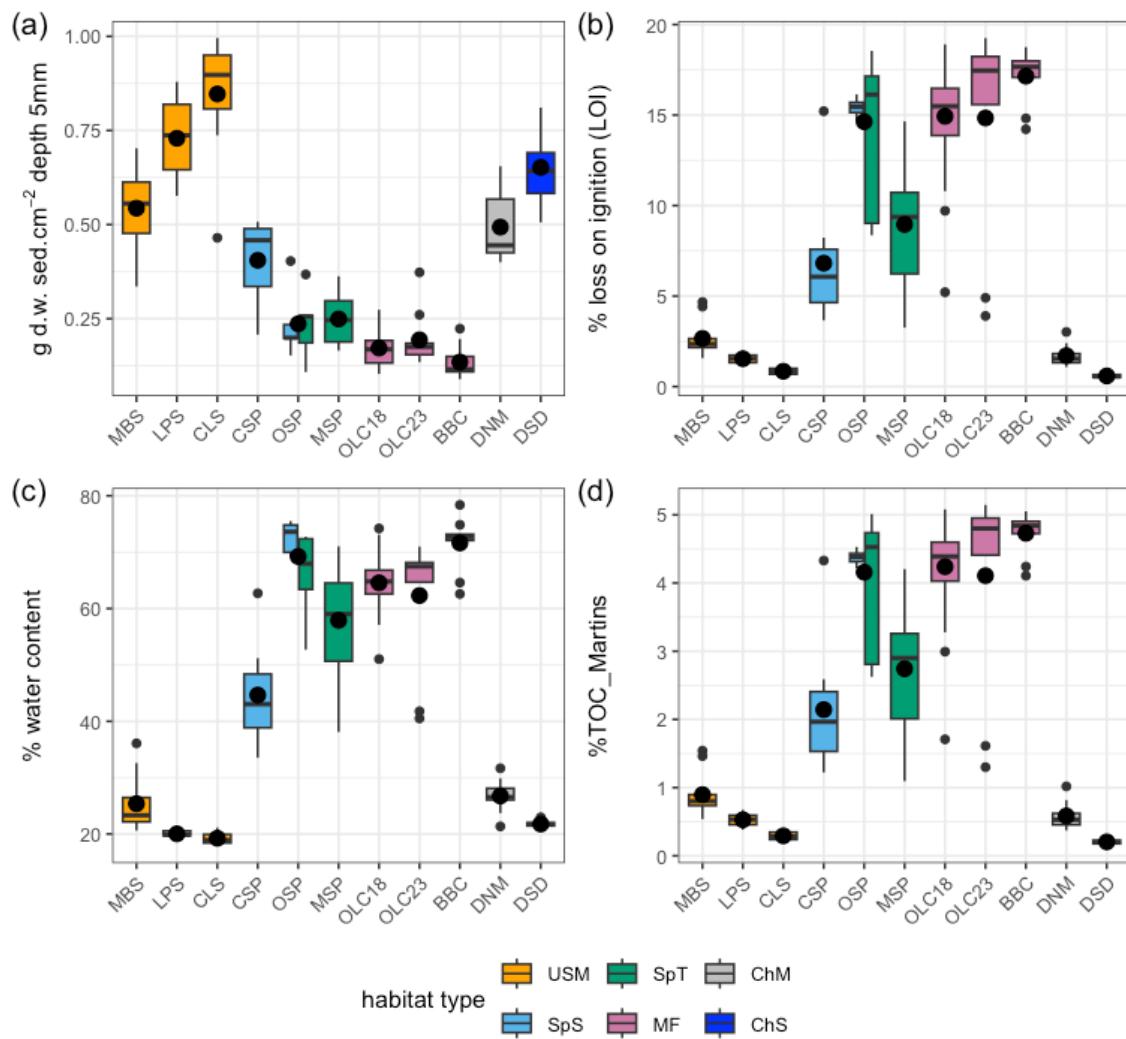
135 <sup>1</sup>USM, upper salt marsh; SpS, short *Sporobolus*; SpT, tall *Sporobolus*; MF, mudflat; ChS, main  
 136 channel sand; ChM, main channel mud

138 **Table S2.** Environmental variables (average, stan. deviation) during the two periods of study.  
 139 Data (8 days prior to, and including the period of field work) obtained from NERR programme  
 140 monitoring stations (see Fig. 1) at Oyster Landing (2018, 2023), Clambank (2018) and Debidue  
 141 Creek (2018), from <https://northinlet.sc.edu/environmental-monitoring/> , na = data not available

| Variable                                               | year | n =  | Oyster<br>Landing | Clambank     | Debidue Creek |
|--------------------------------------------------------|------|------|-------------------|--------------|---------------|
| Air temp. (°C)                                         | 2018 | 1151 | 26.7 (1.96)       | na           | na            |
|                                                        | 2023 | 864  | 16.8 (4.83)       |              |               |
| Rainfall (mm<br>per 15 min)                            | 2018 | 1151 | 0.224 (1.3)       | na           | na            |
|                                                        | 2023 | 864  | 0.001 (0.014)     |              |               |
| Water temp.<br>(°C)                                    | 2018 | 1151 | 28.4 (1.39)       | 28.7 (0.88)  | 28.3 (1.01)   |
|                                                        | 2023 | 864  | 16.8 (2.50)       | na           | na            |
| Salinity                                               | 2018 | 1151 | 20.9 (8.9)        | 30.0 (3.26)  | 19.3 (9.49)   |
|                                                        | 2023 | 864  | 31.4 (2.09)       | na           | na            |
| % O <sub>2</sub> saturation                            | 2018 | 1151 | 49.5 (17.5)       | 60.9 (20.27) | 58.5 (16.8)   |
|                                                        | 2023 | 864  | 84.1 (15.95)      | na           | na            |
| pH                                                     | 2018 | 1151 | 7.16 (0.38)       | 7.48 (0.26)  | 7.34 (0.30)   |
|                                                        | 2023 | 864  | 7.68 (0.20)       | na           | na            |
| PO <sub>4</sub> <sup>3-</sup> (μmol. l <sup>-1</sup> ) | 2018 | 7    | 0.37 (0.088)      | 0.19 (0.148) | 0.24 (0.054)  |
|                                                        | 2023 | 6-48 | 0.33 (0.021)      | 0.28 (0.04)  | 0.21 (0.038)  |
| NH <sub>4</sub> <sup>+</sup> (μmol. l <sup>-1</sup> )  | 2018 | 7    | 15.09 (5.03)      | 7.94 (6.125) | 9.13 (1.677)  |
|                                                        | 2023 | 6-48 | 2.82 (0.21)       | 3.34 (0.422) | 3.00 (0.54)   |
| NO <sub>2</sub> <sup>-</sup> (μmol. l <sup>-1</sup> )  | 2018 | 7    | 0.36 (0.075)      | 0.20 (0.159) | 0.31 (0.047)  |
|                                                        | 2023 | 6-48 | 0.10 (0.002)      | 0.10 (0.004) | 0.10 (0.002)  |
| NO <sub>3</sub> <sup>-</sup> (μmol. l <sup>-1</sup> )  | 2018 | 7    | 0.94 (0.242)      | 0.68 (0.531) | 1.30 (0.227)  |
|                                                        | 2023 | 6-48 | 0.26 (0.01)       | 0.48 (0.07)  | 0.29 (0.058)  |

142

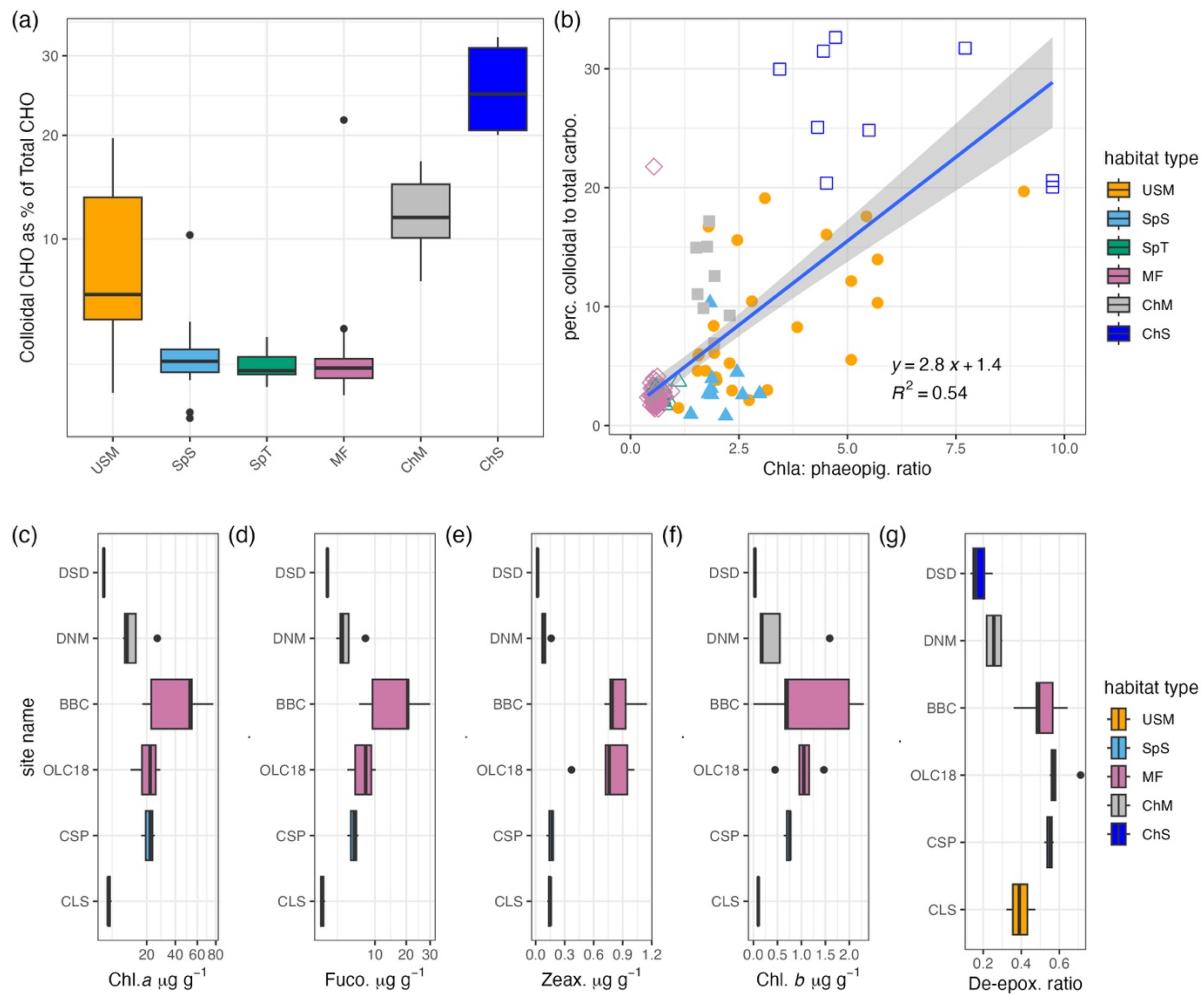
143


144 **Table S3.** Relative taxonomic composition derived from 2018 HPLC pigment data using  
 145 ChemTax. Significant differences ( $p < 0.05$  or less) in relative algal taxonomic composition  
 146 between sediment types for each algal group, and between significant  $\beta$  coefficients indicated by  
 147 different superscripts<sup>A,B</sup>. n.a. = not applicable. Linear regression models for predicting sediment  
 148 colloidal carbohydrate concentrations, based on the equation:  $\log_{10} ([\text{coll. carbo.}]) = \alpha + \beta$   
 149  $\log_{10} ([\text{chl. a}]) + 1$  for the complete data set (ALL) and for each sediment type. Mean  $\pm$  standard  
 150 error (n) of regression parameters, and significance of  $\beta$  value indicated. \* $p < 0.05$ , \*\* $p < 0.01$ ,  
 151 \*\*\* $p < 0.001$ , ns =  $p > 0.05$ . Regression parameters for model of Underwood & Smith (1998)  
 152 also given.

| Sed. type                | Relative taxonomic composition <sup>1</sup> (%)                        | $\alpha$ (intercept) | $\beta$ (slope)                   | $\beta$ sig. | years         |
|--------------------------|------------------------------------------------------------------------|----------------------|-----------------------------------|--------------|---------------|
| ALL                      | n.a.                                                                   | $1.76 \pm 0.03$      | $0.55 \pm 0.026$ (180)            | ***          | 2018,<br>2023 |
| USM                      | Diat:80.3 <sup>A</sup> Grn:12.6 <sup>A</sup> ,<br>Cyn 6.9 <sup>A</sup> | $1.91 \pm 0.03$      | $0.27^{\text{A}} \pm 0.051$ (48)  | ***          | 2018,<br>2023 |
| SpS                      | Diat:81.6 Grn:17.1,<br>Cyn 1.3 <sup>B</sup>                            | $2.10 \pm 0.15$      | $0.37^{\text{AB}} \pm 0.106$ (19) | ***          | 2023          |
| SpT                      | n.a.                                                                   | $1.76 \pm 0.09$      | $0.54^{\text{AB}} \pm 0.065$ (24) | ***          | 2018,<br>2023 |
| MF                       | Diat:77.3 Grn:17.5,<br>Cyn 5.2 <sup>A</sup>                            | $1.58 \pm 0.15$      | $0.70^{\text{B}} \pm 0.102$ (69)  | ***          | 2018,<br>2023 |
| ChS                      | Diat:86.8 Grn:12.3,<br>Cyn 0.9 <sup>B</sup>                            | $1.16 \pm 0.37$      | $1.05^{\text{BC}} \pm 0.356$ (10) | **           | 2018          |
| ChM                      | Diat:93.0 <sup>B</sup> Grn:6.2 <sup>B</sup> ,<br>Cyn 0.8 <sup>B</sup>  | $2.70 \pm 1.71$      | $-0.83 \pm 2.270$ (10)            | ns           | 2018          |
| Underwood & Smith (1998) |                                                                        | $1.40 \pm 0.06$      | $1.02^{\text{C}} \pm 0.045$ (172) | ***          |               |

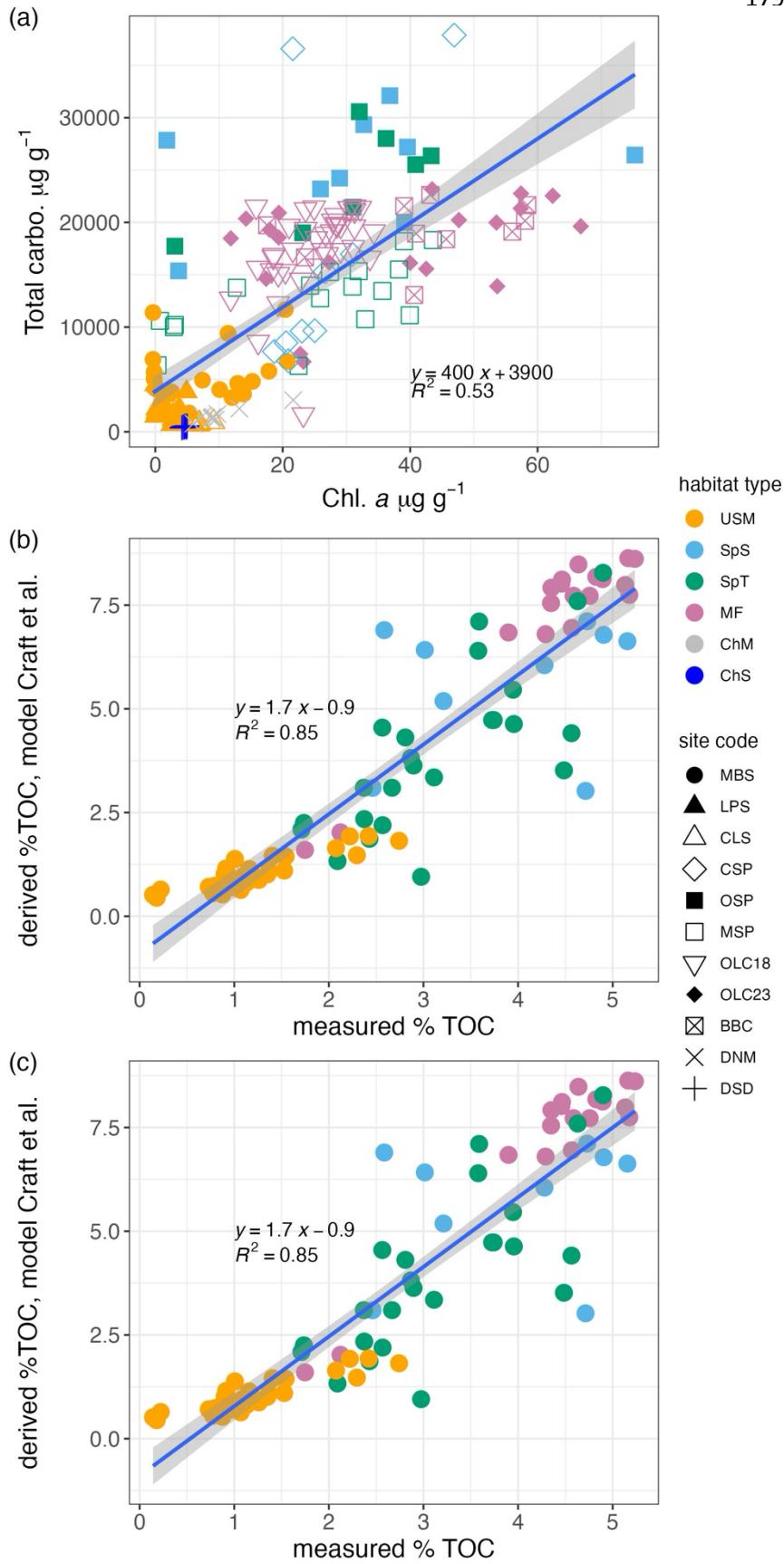

153 <sup>1</sup>Diat = diatoms, Grn = includes chlorophytes, euglenophytes, Cyn = cyanobacteria..




155 **Figure S1.** Example habitats in the North Inlet Estuary (NIE), South Carolina, U.S.A., sampled  
 156 in this study; (a) upper salt marsh (USM) habitat, with stands of short *Sporobolus* (SpS) in the  
 157 background , site LPS; (b), Short *Sporobolus* habitat (SpS), site OSP; (c) minicore sampling  
 158 syringes (diameter 2 cm) in short *Sporobolus* habitat (SpS), site OSP; (d) tall *Sporobolus* habitat  
 159 (SpT), with adjacent mudflat, site OSP; (e) mudflat habitat (MF) with tall *Sporobolus* habitat  
 160 (SpT), site BBC; (d) main channel mudflat (ChM), site DNM. For Site codes, see Table 1.  
 161 (photographs, a, b, c, taken in Feb. 2023; d, e, f, taken in July 2018).

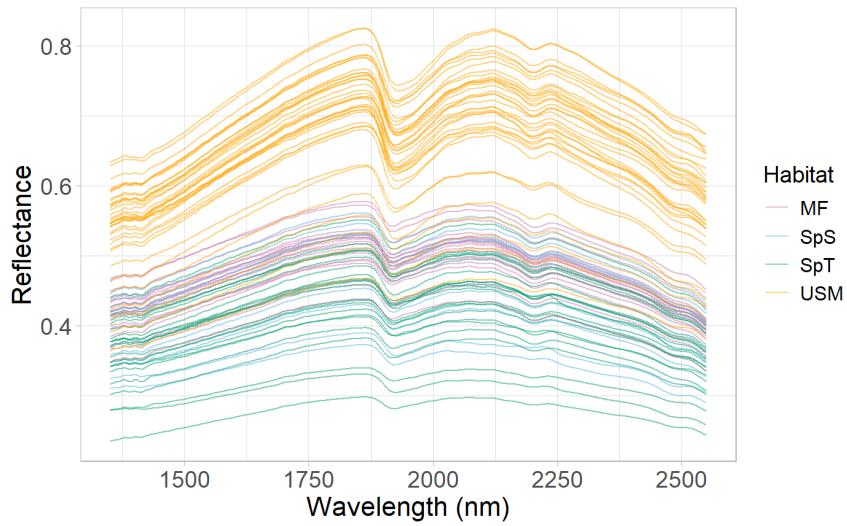


162 **Figure S2.** Boxplots of (a) sediment bulk density (g dry weight of sediment cm<sup>-2</sup>, depth 5 mm);  
163 (b) sediment organic matter (% loss on ignition, LOI); (c) sediment % water content; (d) derived  
164 %TOC - model Martins et al. (2022), in the top 5 mm of sediment in 11 sites in the North Inlet  
165 Estuary, SC, in 2018 and 2023 (mean values indicated by point).

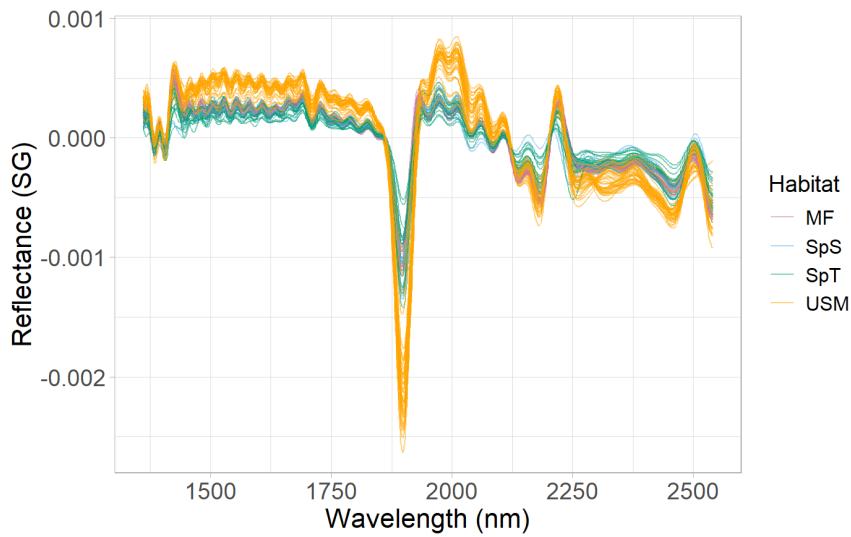



167 **Figure S3.** Boxplots of areal values (m<sup>-2</sup>, to a depth of 5 mm) of (a) sediment Chl *a*; (b)  
168 colloidal carbohydrates, and (c) total carbohydrates; (d) sediment % water content, and (e)  
169 sediment bulk density, (f) height in the tidal range (North American Vertical Datum 1988), for  
170 each habitat type sampled in the in the North Inlet Estuary in 2018 and 2023 (mean values  
171 indicated by point).



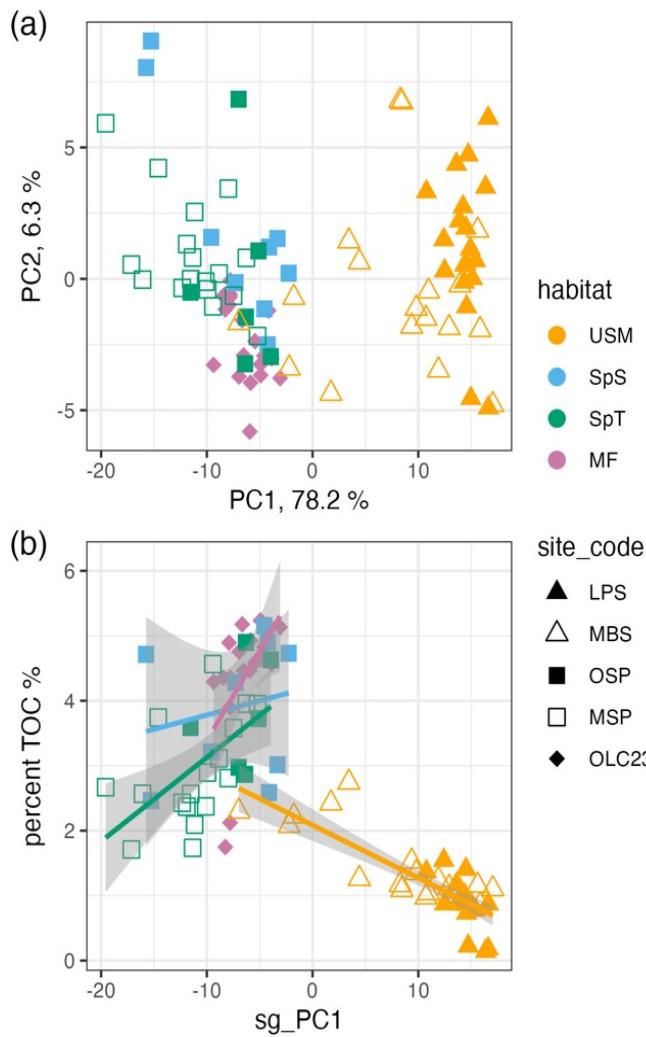

172

173 **Figure. S4.** (a) Boxplot of contribution of colloidal carbohydrate to total carbohydrate (% of  
 174 total), (b) the relationship between the colloidal contribution to total carbohydrate (%) and Chl. *a*  
 175 : phaeopigment ratios (spectrophotometry) in biofilms across the NIE sampled in 2018 and 2023.  
 176 (d-f) boxplots of total chlorophyll *a* + Chl *a* isomers, Fucoxanthin, Zeaxanthin and chlorophyll *b*  
 177 content (measured by HPLC) and (g) de-epoxidation ratios (Diatoxanthin / (Diatoxanthin +  
 178 Diadinoxanthin) content) in the top 5 mm of sediment from sites sampled in 2018.




**Figure S5. (a)**  
 Relationship between sediment Chl. *a* and sediment total carbohydrate content ( $\mu\text{g g}^{-1}$ ) across all sites and habitat types in the top 5 mm of sediment in North Inlet Estuary, S.C., in 2018 and 2023. (b)  
 Relationship between derived %TOC values from Craft et al. (1991) and (c) Maxwell et al. (2023) models with direct measures of %TOC in the top 5 mm of sediment from samples taken in 2023.

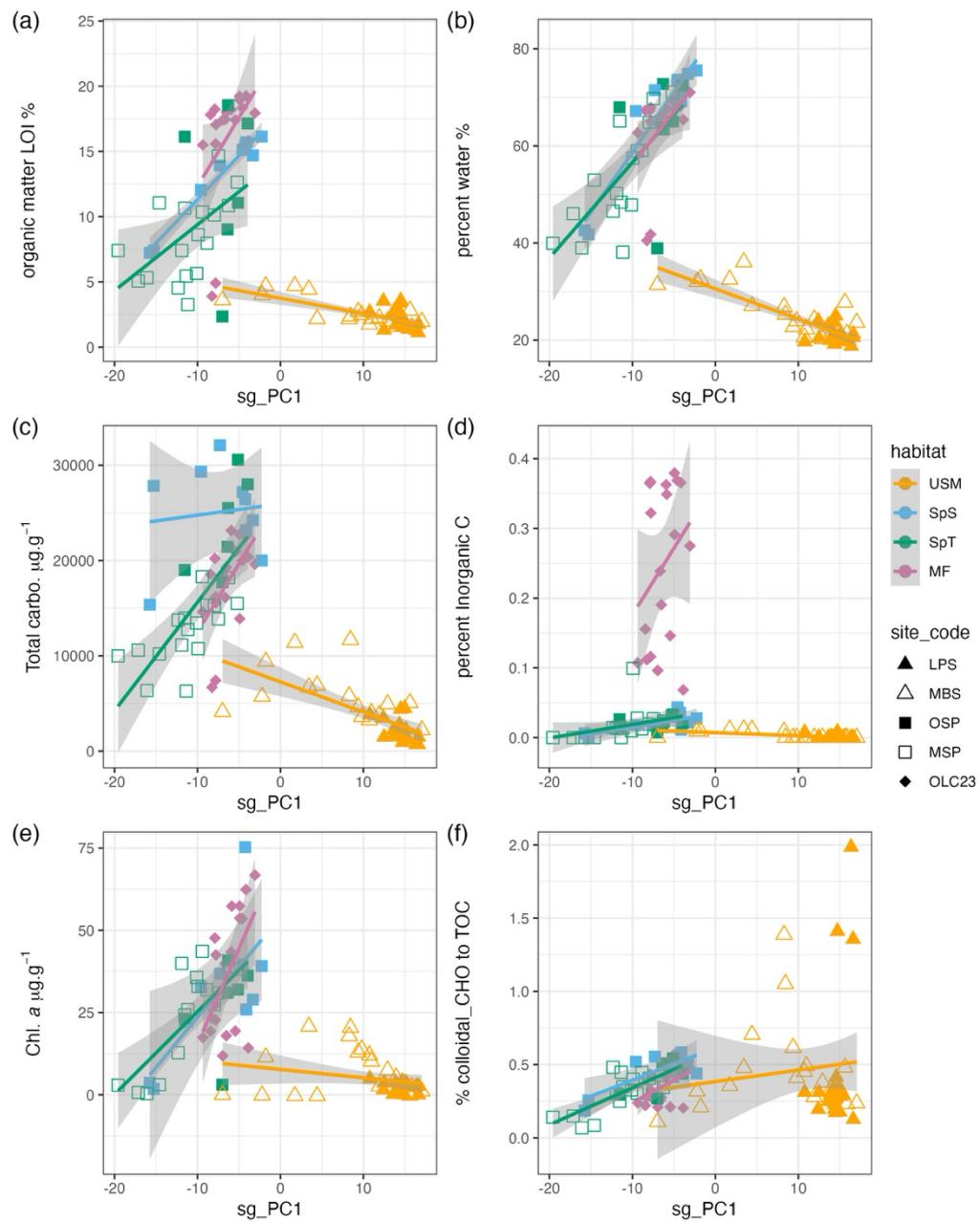
(a)



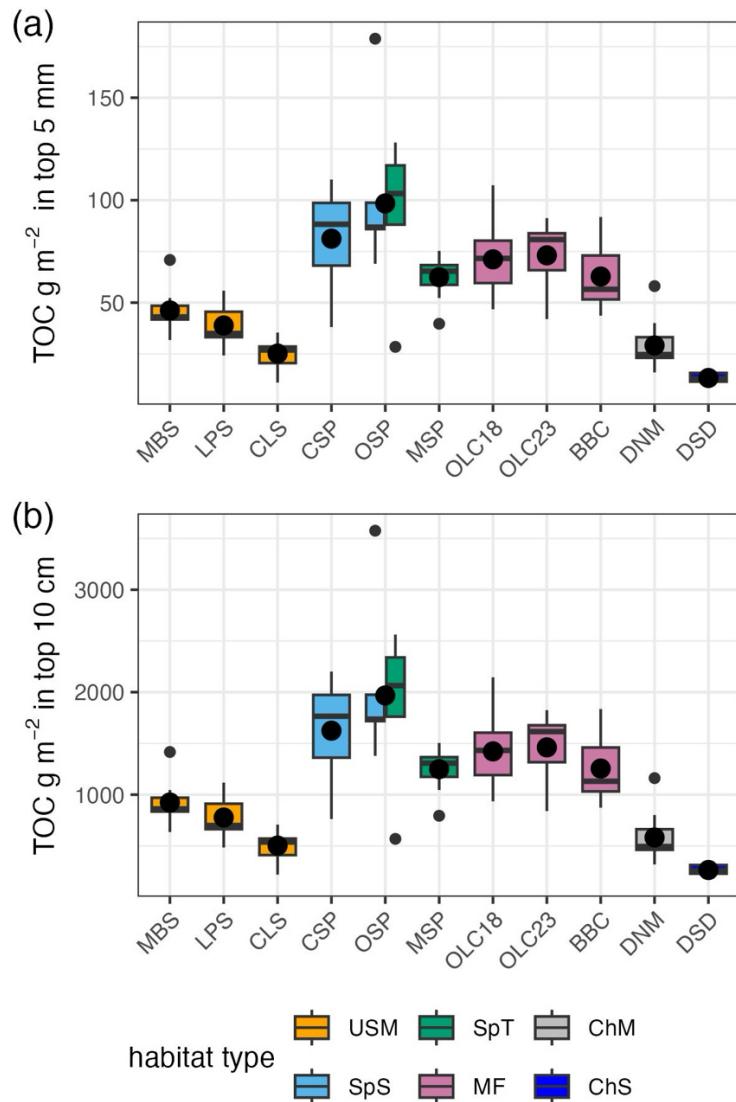

(b)



199


200 **Figure S6** (a), Individual spectral scans (NIR reflectance) for sediment samples from four  
201 different habitat types in the North Inlet Estuary, South Carolina, sampled in February 2023. (b)  
202 Individual spectra transformed using 1<sup>st</sup> order derivative Savitzky Golay-smoothing. These data  
203 were used in the PCA (see Fig. 4a).




204

205 **Figure S7** (a) Principal Components 1 and 2 (explaining 83.5% of the variance) from PCA of  
 206 Savitzky Golay-smoothed NIR spectra for dried sediments from 2023; (b) relationship between  
 207 PCA component 1 scores (PC1) of NIR scan data and %TOC for sediment samples from four  
 208 habitats from North Inlet Estuary, S.C. sampled in 2023 (regression lines and 95% confidence  
 209 limits shown for each habitat type).

210



211 **Figure S8 (a-f).** Relationships between Principal Component Analysis component 1 scores  
 212 (PC1) of NIR scan data for sediment samples from 2023, coded by habitat and (a) sediment  
 213 organic matter (%LOI); (b) %water content; (c) sediment total carbohydrate; (d) percent total  
 214 inorganic carbon; (e) sediment Chl *a*; (f) % contribution of colloidal carbohydrate to TOC.  
 215 Individual regression lines (with 95% confidence limits) for each habitat type shown.



218 **Figure S9.** Boxplots of sediment Total Organic Carbon stock ( $\text{g C m}^{-2}$ ) in (a) the top 5 mm  
 219 sediment and (b) scaled to the top 10 cm depth of sediment, at different sites in the North Inlet  
 220 Estuary, South Carolina, U.S.A. (mean values indicated by point).

222 **Supplementary references**

223 Aslam, S. N., Cresswell-Maynard, T., Thomas, D. N., and Underwood, G. J. C. 2012. Production  
224 and characterisation of the intra- and extracellular carbohydrates and polymeric substances (EPS)  
225 of three sea ice diatom species, and evidence for a cryoprotective role for EPS. *Journal of*  
226 *Phycology* 48: 1494–1509.

227 Courtois de Viçose, G., Porta, A., Viera, M. P., Fernández-Palacios H., Izquierdo, M. S. 2012.  
228 Effects of density on growth rates of four benthic diatoms and variations in biochemical  
229 composition associated with growth phase. *Journal of Applied Phycology* 24: 1427-1437.

230 Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. 1956. Colorimetric  
231 method for determination of sugars and related substances. *Analytical Chemistry* 28: 350-56.

232 Hanlon, A. R. M., Bellinger, B., Haynes, K., et al. 2006. Dynamics of extracellular polymeric  
233 substance (EPS) production and loss in an estuarine, diatom-dominated, microalgal biofilm over  
234 a tidal emersion-immersion period. *Limnology and Oceanography* 51: 79–93.

235 Lewitus, A., White, D., Tymowski, R., Geesey, M., Hymel, S., and Noble, P. 2005. Adapting the  
236 CHEMTAX method for assessing phytoplankton taxonomic composition in Southeastern U.S.  
237 estuaries. *Estuaries* 28:160-172.

238 Pinckney, J. L., Richardson, T. L, Millie, D. F., and Paerl, H. W. 2001. Application of  
239 photopigment biomarkers for quantifying microalgal community composition and in situ growth  
240 rates. *Organic Geochemistry* 32: 585-595.

241 Smith, D. J., and Underwood, G. J. C. 2000. The production of extracellular carbohydrate  
242 exopolymers (EPS) by estuarine benthic diatoms: the effects of growth phase and light and dark  
243 treatment. *Journal of Phycology* 36: 321-333.

244