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Abstract

In periodic wave motion, particles beneath the wave undergo a drift in the direction of

wave propagation, a phenomenon known as Stokes drift. While extensive research has been

conducted on Stokes drift in water wave �ows, its counterpart in electrohydrodynamic �ows

remains relatively unexplored. Addressing this gap, we investigate Stokes drift beneath

periodic traveling irrotational waves on a dielectric �uid under the e�ect of normal electric

�elds. Through numerical simulations utilizing conformal mapping, we compute particle

trajectories and analyze the resultant Stokes drift behaviors beneath periodic traveling

waves. Our �ndings indicate that variations in the electric �eld impact particle velocities

while maintaining trajectory shapes. Moreover, the kinetic energy associated with a particle

depends on its depth location and is a non-decreasing convex function in a �xed frame and

a constant in a moving frame, as observed in water wave �ows.

1 Introduction

The study of particle trajectories beneath surface water wave dates back to 1839 with
Stokes [46], whose results indicated that particles beneath a periodic wave undergo
a drift in the direction of wave propagation, later called Stokes drift. In this way, he
conjectured that particle paths are not closed.
The study of particle trajectories and Stokes drift is of signi�cant physical and

mathematical interest, with relevance to a wide range of applications. These include
submarine operations and the transport of particles such as oil spills, gas bubbles,
suspended sediment, and biological material. Moreover, Stokes drift contributes to
the transport of heat, salt, and other natural or anthropogenic tracers, including mi-
croplastic pollution, in the upper ocean layer [3, 50].
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The literature on Stokes drift and particle trajectories for water waves is vast and
well established, including experimental investigations, numerical studies and rigor-
ous mathematical analysis. Among the experimental works, we mention the �ndings
of Longuet-Higgins [37], who determined the trajectory of a particle on the surface
and found loop-shaped orbits with a drift in the direction of wave propagation. In
addition, we refer to the work of Van den Bremer and Breivik [50], which provides a
comprehensive review of the �uid mechanics of Stokes drift and its applications. A
review of numerical strategies for computing particle trajectories is presented in [41],
while additional details on Stokes drift and the characteristics of subsurface particle
orbits beneath Stokes waves can be found in [40].
Constantin [8] rigorously proved Stokes' conjecture, demonstrating both the drift

and the loop-shaped particle paths without any assumption of the depth regime. Con-
stantin and Villari [9] obtained similar results for linear waves with a known velocity
�eld. Two years later, Constantin and Strauss [10] showed that, in the presence of a
uniform current, particles may in fact exhibit no drift.
More recently, signi�cant progress has been made on particle trajectories beneath

free-surface waves in reduced models [2, 5, 18, 19, 32]. For irrotational �ows, Carter
et al. [6] used the nonlinear Schrödinger equation to describe the surface of a Stokes
wave and study the particle paths beneath it, obtaining results consistent with those
for Stokes waves described by the Euler equations. Vanneste and Young [51] decom-
posed the Stokes drift into a solenoidal component and a remainder that is small
for waves with slowly varying amplitudes, which simpli�es the analysis of drift and
trajectories. Abrashkin and Pelinovsky [1] analyzed Stokes drift beneath Stokes and
Gerstner waves and showed a relation between them: the quadratic approximation
of particle trajectories beneath a Stokes wave is a superposition of the vorticity �ow
of the Gerstner wave and the shear �ow of Stokes drift. Weber [53] demonstrated
that the Stokes drift beneath a Gerstner wave vanishes using a nonlinear Lagrangian
formulation.
Stokes drift can be observed not only in surface gravity waves but also in other types

of waves, such as vertically con�ned internal modes, oceanic Kelvin and Rossby waves,
or acoustic waves (see [50] and references therein). In this paper we focus on Stokes
drift beneath a Stokes wave in electrohydrodynamic (EHD) �ows. A Stokes wave is a
periodic traveling wave with a symmetric pro�le that rises and falls exactly once per
wavelength.
Electrohydrodynamics (EHD) is a topic of study that examines the coupling between

the motion of charged �uids and electric �elds, with particular attention to interfaces
between �uids, which arise frequently in practical applications. EHD has numerous
applications in chemical engineering, for example, in coating processes [33, 27], cool-
ing systems for high-power devices [24], and electrospray technology [48], due to the
relative ease with which �uid �ows can be manipulated arti�cially. A natural question
that arises is how an electric �eld might in�uence the phenomenon of Stokes drift. To
provide a broader context and intuition, we therefore include a brief review of elec-
trohydrodynamic �ows and wave motion. The readers may also refer to [7, 43] for

2



more details. There were two major early achievements in the literature on interfacial
waves by Taylor & McEwan [47] and Melcher & Schwarz [38] respectively. The for-
mer work theoretically and experimentally demonstrated that the interface between
a conducting �uid and a dielectric could be destabilized due to normal electric �elds
perpendicular to the undisturbed interface (i.e. vertically). Meanwhile, the latter
work considered the problem with tangential electric �elds parallel to the undisturbed
surface and showed by performing a linear stability analysis that short waves could be
regularised under this setting. Since then, many authors have continued to investigate
the role of electric �elds in (de)stabilizing various interfacial �uid con�gurations [39].
For the problem of vertical electric �elds, the most general setting concerns two im-
miscible �uids, with an interface in between, of perfect dielectric of di�erent electric
permittivities (see [13] for details). Some assumptions are usually made to simplify
the problem. One common setup is to consider the upper layer to be a hydrodynami-
cally passive region of dielectric and the lower layer to be a conducting �uid, see e.g.
[44, 16, 42, 25, 30, 31, 14]. The other common assumption is to let the upper layer be
conducting gas while the lower layer is a dielectric �uid, which reduces the physical
con�guration to a one-layered problem, see e.g. [22, 23, 17, 21]. A direct question in
the present context is how electric �elds a�ect the Stokes drift. To �ll this gap in the
literature, we investigate the Stokes drift of a charged particle beneath an irrotational
Stokes wave under normal electric �elds in the same one-layered physical con�gura-
tion in this paper. The two major physical assumptions (inviscid �uid and perfectly
conducting gas) are justi�ed as follows. The viscous e�ect on wave drift is most pro-
nounced near boundaries and has a limited impact on the bulk �uid, as demonstrated
by Longuet-Higgins [35]. Since this study does not focus on boundary layers, the �uid
is assumed to be inviscid. For investigations near boundaries, viscous e�ects cannot be
neglected. On the other hand, the primary objective of this study is to investigate the
electric e�ect on Stokes drift. To achieve this, it is necessary to establish a signi�cant
contrast in permittivities between the two layers, as in chemical engineering; other-
wise, the electrohydrodynamic e�ects are minimal. Such a consideration motivates the
assumption that the gas layer is perfectly conducting.
We highlight that, although the modeling equations used in this work are the same

as in [17], the phenomena under investigation di�er. That reference focuses on the
�ow structure beneath nonlinear periodic waves in the presence of a linearly sheared
current, introducing a constant vorticity as an additional parameter in the dynamical
system for particle trajectories and motivating a bifurcation analysis with respect to
this parameter. By contrast, the �ow considered here is irrotational, and our interest
lies in Stokes drift: particles beneath the wave experience a net drift in the direction
of wave propagation.
In this article, we use conformal mapping and pseudo-spectral numerical methods

to compute particle trajectories and evaluate Stokes drift. The rest of the work is
structured as follows: The mathematical formulation is presented in Section 2. The
linear case and the properties of Stokes drift are reviewed in Section 3. The numerical
method for the nonlinear problem is given in Section 4. Results are presented in
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Section 5, and concluding remarks are provided in Section 6.

2 Mathematical Formulation

We consider an inviscid and incompressible dielectric �uid of permittivity ϵ0 bounded
by wall electrodes on top and bottom, imposed with a constant voltage di�erence
inbetween, and surrounded by a conducting gas. In this case, the �uid is conditioned
to the action of a normal electric �eld (E⃗ = ∇V ), in which V is a voltage potential.
We may let V = 0 on top and V = −V0 on bottom without losing generality.
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Figure 1: Sketch illustrating the physical context of the problem.

Let U⃗ = ∇ϕ represent the irrotational velocity �eld of the �uid motion, where ϕ
is a velocity potential. We denote the �uid surface by η(x, t) which is assumed to
be a traveling wave with phase speed c. The functions η(x, t) and ϕ(x, y, t) are
assumed to be λ-periodic in the x variable and of the form η(x, t) = η(x − ct) and
ϕ(x, t) = ϕ(x− ct, y) A schematic is depicted in Figure 1. By introducing the change
of variables X = x− ct and Y = y, we can express the �uid surface as η(x, t) = η(X).
Then, following the approach in [17], we can express the Euler governing equations in
dimensionless form by selecting h,

√
h/g and V0 as the reference length, time and

voltage potential, in terms of the electric �eld and velocity potentials as follows

∆ϕ = 0 in − 1 < Y < η(X), (1)
∆V = 0 in − 1 < Y < η(X), (2)

−cηX + ϕXηX = ϕY for Y = η(X), (3)
ϕY = 0 for Y = −1, (4)
V = 0 for Y = η(X), (5)
V = −1 for Y = −1. (6)

In addition to governing equations, we have the dynamic boundary condition:

−cϕX +
1

2
(ϕ2X + ϕ2Y ) + η +Me = B, (7)
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where B is the Bernoulli constant and Me represents the Maxwell stress tensor given
by

Me =
Eb

2(1 + η2X)

[
(1− η2X)(V

2
Y − V 2

X)− 4ηXVXVY
]
=
Eb

2
|∇V |2. (8)

The parameter Eb represent the nondimensional Electric Bond number de�ned as
follows

Eb =
ϵ0V

2
0

ρgh3
, (9)

where ρ denote the density of the dielectric �uid and g the gravitational acceleration.
In the wave-moving frame, the trajectory (X(t), Y (t)) of a �uid particle in the

dielectric �uid is governed by the dynamical system
dX

dt
= ϕX(X, Y )− c,

dY

dt
= ϕY (X, Y ).

(10)

In this frame, the trajectory coincides with the streamline of the �ow.
The system (10) can be easily obtained by noting that if (x0, y0) is the initial position

of a particle in the �xed frame (x, y), where the wave moves to the left or right at a
constant velocity, its trajectory (x(t), y(t)), t ≥ 0, is obtained as the solution of{

x′(t) = ϕx(x− ct, y),

y′(t) = ϕy(x− ct, y),
with initial data (x(0), y(0)) = (x0, y0). (11)

Thus, the trajectory (x(t), y(t)) in the �xed coordinates (x, y) corresponds to the
trajectory (X(t), Y (t)) in the wave�moving frame coordinates, given by

X(t) = x(t)− ct, Y (t) = y(t),

where (X(t), Y (t)) is the solution of (10).

2.1 Stokes Drift

In this section, we recall some properties and results on Stokes drift for water waves
that are known in the literature.
For a solution (X(t), Y (t)) of the ODE system (10) with the initial condition

(X0, Y0), where Y0 ∈ [−1, η(X0)], the time required for this solution to travel a single
wavelength, i.e. reach X = X0 − λ, is called the drift time and is denoted by τ(Y0).
This represents the time that a particle takes to traverse one period in the moving
frame. The drift time can also be interpreted as the Lagrangian period, that is, the
time for a particle to return to its original height in the �uid [28].
Constantin [8] proved the following formula to calculate the drift time of a particle

trajectory

τ(Y0) =

∫ λ/2

−λ/2

dX

c− ϕX(X, Y0)
(12)
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Furthermore, Li and Yang [34] has shown that the drift time must satisfy the following
inequality

λ

c
< τ(Y0) ≤

∫ λ/2

−λ/2

1

c− ϕX(X, η(X))
dx, (13)

where λ/c is the Eulerian wave period.
Following the established notation, we de�ne the Stokes Drift as the distance be-

tween the points (x(0), y(0)) and (x(τ(Y0)), y(τ(Y0))), where x(t) = X(t) + ct and
y(t) = Y (t). As we can see at Li and Yang [34], a direct implication from (13) is that
the Stokes Drift is always positive. It is important to note, however, that this con-
clusion holds only for perfectly periodic waves with a zero mean free-surface level. In
realistic scenarios (whether in laboratory or oceanic conditions) the Stokes drift may
exhibit both positive and negative values due to the in�uence of boundary layers [28]
or the presence of a non-zero mean surface elevation, which is common under natural
ocean conditions [4, 29].
In our upcoming numerical experiments, we will investigate the properties of Stokes

drift in the context of EHD �ows. Additionally, we aim to analyze certain geometric
characteristics of particle trajectories. To achieve this, we introduce the following three
parameters:

1. d1 is the Stokes drift of the trajectory;

2. d2 is the horizontal distance between the leftmost and rightmost points of the
trajectory, de�ned d2 = x(t2) − x(t1), where x(t1) = min

t∈[0,τ(Y0)]
x(t) and x(t2) =

max
t∈[0,τ(Y0)]

x(t).

3. d3 is the vertical distance between the lowest and highest points of the trajectory,
de�ned as is the distance between d3 = y(t4)− y(t3), where y(t3) = min

t∈[0,τ(Y0)]
y(t)

and y(t4) = max
t∈[0,τ(Y0)]

y(t).

Figure 2 presents a schematic representation of the parameters d1, d2, and d3.

Figure 2: Geometric parameters indicating the aspect ratio of a trajectory.

6



3 Linear theory

In this section, we present the linear theory to derive an explicit formula for the
velocity �eld of the dynamical system (10).
A trivial solution for the governing equations (1)-(7) is

η̄0(X) = 0,

ϕ̄0(X, Y ) = 0,

V̄0(X, Y ) = Y,

which is perturbed by a small disturbance measured by a parameter ε (≪ 1), namely
η(X) = εη̂,

ϕ(X, Y ) = εϕ̂,

V (X, Y ) = Y + εV̂ .

Here, ε is a small parameter that measures the wave amplitude. Solving Laplace
equations with boundary conditions as described in (1)-(7) yields

η̂(X) = R{AeikX},
ϕ̂(X, Y ) = R{BeikX cosh(k(Y + 1))},
V̂ (X, Y ) = R{MeikX sinh(k(Y + 1))}.

(14)

Here, A, B, and M are unknown constants, and k = 2π/λ is the wavenumber. By
linearizing the dynamic and kinematic boundary conditions, we obtain{

B = −iAc
sinh(k) ,

M = −A
sinh(k) ,

the linear speed

c2 =
tanh(k)

k
− Eb, (15)

and the linear velocity �eld

ϕ̂X(X, Y ) =
kAc cos(kX) cosh(k(Y + 1))

sinh(k)
, (16)

ϕ̂Y (X, Y ) =
kAc sin(kX) sinh(k(Y + 1))

sinh(k)
. (17)

From this point on, we only consider the positive value of c, i.e., the right moving
waves. Note that there exists a critical value E∗

b such that waves are destabilized by
the electric �eld when Eb > E∗

b as the wave speed no longer admits a real solution.
In the particular case λ = 2π (i.e., k = 1), we have E∗

b = tanh(1). To obtain a more
accurate description of the limiting behavior of τ , which tends to in�nity as Eb → E∗

b ,
a nonlinear theory is required.
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4 The nonlinear problem: conformal mapping and

numerical method

To solve the dynamical system (10), we consider the velocity �eld solution of the
full nonlinear Euler equations (1)-(7) by employing the conformal mapping formula-
tion presented in [17], combined with the trajectory computation strategy outlined in
[45]. These approaches are based on the conformal mapping introduced by [15], which
provided the foundation for the development of pseudospectral numerical methods for
free-surface hydrodynamic problems in various contexts.
The numerical methodology applied in our study consists of three main steps:

1. Construct the conformal mapping suitable for the problem.

2. Reformulate the Euler equations (1)-(7) in canonical coordinates. This reformu-
lation allows us to determine a free-surface wave solution and the velocity �eld in
the �uid domain for a given Eb.

3. Solve the dynamical system (10) in canonical coordinates, then map the corre-
sponding trajectory back to the physical domain.

For further details, we refer the reader to [17] and [45]. Here, we summarize only the
key aspects of each step.

1) Construct the conformal mapping suitable for the problem

First, we construct a conformal mapping

Z(ξ, ζ) = X̃(ξ, ζ) + iỸ (ξ, ζ),

which maps the strip of width D and length L,

{(ξ, ζ) ∈ R2 | −L
2
< ξ <

L

2
,−D < ζ < 0},

onto the physical domain of a wavelength λ,

{(X, Y ) ∈ R2 | −λ
2
< X <

λ

2
,−1 < Y < η(X)}.

This mapping �attens the free surface and satis�es the boundary conditions

Ỹ (ξ, 0) = η(X̃(ξ, 0)), and Ỹ (ξ,−D) = −1.

Using algebraic manipulations, the Fourier transform, and the assumption that Z
is conformal, we obtain the following expressions:
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X̃(ξ, ζ) = −F−1
kj ̸=0

[
i cosh(kj(D + ζ))

sinh(kjD)
F [Y](kj)

]
+ ξ, (18)

Ỹ (ξ, ζ) = F−1
kj ̸=0

[
sinh(kj(D + ζ))

sinh(kjD)
F [Y](kj)

]
+

Ŷ(0) + 1

D
ζ + Ŷ(0). (19)

where Y(ξ) = η(X̃(ξ, 0)) and F [·] denotes the Fourier transform:

� F [f(ξ)] = f̂(kj) =
1
L

∫ L/2
−L/2 f(ξ)e

−ikjξ dξ;

� F−1[f̂(kj)] = f(ξ) =
∑

j∈Z f̂(kj)e
ikjξ;

where kj = 2π
L j.

2) Reformulating the Euler equations in canonical coordinates.

We impose that the free surface has the same wavelength in both coordinate systems,
i.e., L = λ. This condition leads to the relation:

D =
1

L

∫ L/2

−L/2
Y(ξ) dξ + 1. (20)

Let ψ be the harmonic conjugate of ϕ, and de�ne

ϕ̃(ξ, ζ) = ϕ(X̃(ξ, ζ), Ỹ (ξ, ζ)), ψ̃(ξ, ζ) = ψ(X̃(ξ, ζ), Ỹ (ξ, ζ)).

Denoting X(ξ) as the horizontal component of the conformal map evaluated at
ζ = 0, the free surface in the canonical coordinate system corresponds to the curve
(X(ξ),Y(ξ)). The kinematic (3) and Bernoulli (7) conditions reduce to:

−c2
2

+
c2

2J
+Y +

Eb

2D2J
−B = 0, (21)

where J = X2
ξ + Y2

ξ is the Jacobian of the mapping evaluated at ζ = 0. We can
rewrite Equation (21) as

1

2

(1
J
− 1

)(
c2 +

Eb

D2

)
+Y −B = 0. (22)

It is noted that there is a term in Eb

2D2 , which has been absorbed into the Bernoulli
constant B. In this way, for any electri�ed periodic wave solution with pro�le Y (D
the associated depth in the canonical plane) and speed c in the presence of electric
�elds of strength Eb, the wave pro�le must be the same as a classic Stokes wave with
speed cs where

c2s = c2 +
Eb

D2
. (23)
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Increasing the electric Bond number (Eb) would lead to a decrease in the value of the
wave speed.
Equation (21) involves four unknowns: Y, c, B, and D. To complete the system,

we impose three additional conditions:

1. Fixed wave height:
Y(0)−Y(L/2) = H. (24)

2. Zero-mean wave pro�le in the physical space:∫ 0

−L/2
YXξ dξ = 0. (25)

3. Depth condition (20).

The equations (21), (24), (25), and (20) are discretized spectrally, with derivatives
computed via the Fast Fourier Transform (FFT) and integrals approximated using the
trapezoidal rule. The periodicity of the wave motion is automatically guaranteed under
this scheme, as is the mass conservation. The resulting system is solved numerically
using Newton's continuation method. All calculations employ 1024 Fourier modes,
with L = 2π.

3) Solve the dynamical system (10) in canonical coordinates, then map the
corresponding trajectory back to the physical domain.

The trajectory (X(t), Y (t)), which is the solution of the ODE system (10), cor-
responds to the image of a trajectory (ξ(t), ζ(t)) in the canonical domain under the
conformal mapping. Speci�cally, we have

(X(t), Y (t)) = (X̃(ξ(t), ζ(t)), Ỹ (ξ(t), ζ(t))), (26)

where (ξ(t), ζ(t)) is determined by the system
dξ

dt
=

1

J

(
ϕ̃ξ − cỸζ

)
,

dζ

dt
=

1

J

(
ϕ̃ζ + cỸξ

)
.

(27)

where J(ξ, ζ) = X̃2
ξ + Ỹ 2

ξ is the Jacobian and the velocity potential ϕ̃(ξ, ζ) is given by

ϕ̃(ξ, ζ) = F−1
k ̸=0

[
cosh(kj(D + ζ))

cosh(kjD)
Φ̂(kj)

]
, (28)

with Φ = −C[Ψ], where the operator C[·] is de�ned as C[·] := F−1[i coth(kjD)F [·]].
Additionally, the stream function satis�es Ψ = cY.
Particle trajectories are computed numerically by integrating (27) in the canonical

domain usinglab the fourth-order Runge-Kutta method. The resulting trajectories
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are then mapped onto the physical domain, yielding the trajectory (X(t), Y (t)) in
the moving frame. To analyze the particle paths in the �xed frame, we apply the
transformation

x(t) = X(t) + ct, y(t) = Y (t).

Furthermore, as mentioned at the beginning of Section 2.1, the drift time is obtained
numerically by determining the time required for a particle, initially located at (X0, Y0)
with Y0 ∈ [−1, η(X0)], to travel one wavelength in the �xed frame, that is, to reach
X = X0 − λ. This computation is performed using equation (27) for nonlinear waves
and equation (10), with the velocity �eld derived from the linear theory, for linear
waves.

5 Numerical results

In this section, we present the results of numerical experiments for various electric
Bond numbers (Eb).The objective is to understand the electric e�ect in the Stokes
drift.
We �x the depth at 1, and set the wavelength (λ) to 2π. We focus on this

intermediate-depth regime and control the wave pro�le through the steepness param-
eter s = H/λ. We conduct a similar work for waves in shallow-water regime λ = 20π
and deep-water regime (λ = 0.2π) in Appendix A.
It is noted that, based on the linear wave speed from (15), again with this set of

parameters, the electric Bond number Eb must satisfy Eb ≤ E∗
b such that c admits a

real solution, in which E∗
b = tanh 1 is the critical value as previously introduced.

5.1 Particle trajectories and Stokes drift

In this subsection, we explore the geometric parameters of the particle path, drift
time, and wave speed for various values of Eb. Unless stated otherwise, the free-surface
wave is �xed with a steepness of s = 0.09 that guarantees us a strongly nonlinear wave
pro�le with height H ≈ 0.5655. Similar to a remark made by [22] for the case of
in�nite depth, two electri�ed solutions may share the same wave pro�le as long as

c21 +
Eb1

D2
1

= c22 +
Eb2

D2
2

, (29)

due to equation (22) and (23). The value of the depth in the canonical domain does
not vary provided the surface displacement is unchanged, and therefore, the main
response to a change in Eb may be re�ected in the wave speed. This is con�rmed
by our numerical computations for three di�erent values of Eb as shown in Figure 3,
where the wave pro�les for a �xed steepness look identical and the associated wave
speed decreases as Eb increases. To further support this observation, we evaluated
the pairwise distances ∥Yi − Yj∥2 between the solutions shown in Figure 3. The
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computed distances are of the order of 10−15, which is comparable to numerical error.
The numerical evidence shows that these three wave pro�les are identical, and the
di�erence is only subject to numerical error.

- 0
-0.2

-0.1

0

0.1

0.2

0.3

0.4

Figure 3: Wave pro�le for di�erent values of Eb for a �xed steepness s = 0.09.

The dynamical system (10) is solved with the initial condition beneath the trough
at (π, Y0). Figure 4 displays the trajectory of a particle starting from initial position
(π,−0.5627), Y0 ≈ −0.5627 corresponds to a depth of ζ = −D/2 in the canonical
domain, for the cases where Eb = 0, 0.3, and 0.7615. We observe that higher values
of Eb result in slower particle motion. The dependence of the drift time on Eb is
examined in Figure 5.
The left graph in Figure 5 shows the wave speed (c), while the right graph shows the

drift time (τ ) for various values of Eb. The particle's initial depth is Y0 ≈ −0.5627,
which corresponds to a depth of ζ = −D/2 in the canonical domain. For the linear
solution, Y0 = −0.5 (corresponding to (ξ0, ζ0) = (π,−D/2)) and the trajectories are
computed explicitly using linear theory. Note that, while the variation of Eb does
not a�ect the wave pro�le, the particle initial depth Y0 remains identical regardless
of Eb value. We observe that increasing Eb leads to a decrease in wave speed and an
increase in drift time. Additionally, Figure 6 shows that the drift time is larger near
the free surface and decreases as we move from the trough toward the bottom, a result
previously established for for Eb = 0 [34] and still valid for Eb ̸= 0.
We recall the inequality (13), which holds for water wave �ow when Eb = 0. This

inequality establishes lower and upper bounds for the drift time of a particle initially
located at depth Y0. As shown previously, when an electric �eld is introduced, the
drift time also depends on the �eld intensity Eb. A natural question then arises: does
inequality (13) still hold when Eb ̸= 0?
To address this question, we computed τ(Y0) under two distinct conditions: (i) by

�xing Y0 = −0.5627 and varying Eb; and (ii) by �xing Eb = 0.7 and varying Y0. The
corresponding results are presented in Figure 7. In the left panel, where Y0 is �xed
and Eb varies, we observe that the drift time τ(Y0) remains bounded, consistent with
the prediction of inequality (13). The right panel displays the variation of τ(Y0) with
depth for a �xed electric Bond number Eb = 0.7, suggesting that inequality (13) may

12
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Figure 4: Snapshots of the trajectory of a particle starting from the same initial position,

(π,−0.5627), for the cases where Eb = 0 (red), 0.3 (blue), and 0.7615 (green). τ⋆ represents the

drift time of the particle for Eb = 0 and black dot the initial position of the particle.
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Figure 5: Speed (c) and drift time (τ) as functions of the electric Bond number (Eb). Results are

shown for the linear theory (dashed lines) and the nonlinear theory (solid lines). Vertical lines

indicate the critical value of Eb predicted by the linear theory (tanh 1).

also hold in this electri�ed setting. In addition, although not shown in the the text to
avoid repetition, we performed an additional numerical simulation for the limit case
Eb = 0.76159 ≈ tanh(1). These simulations indicate that as Eb → E∗

b , the lower
bound of inequality (13) increases, while the inequality itself remains valid.
To analyze the geometric parameters (d1, d2, d3) of the particle trajectories, we �rst

compute their values for the case Eb = 0, denoted as (d⋆1, d
⋆
2, d

⋆
3), and use them as

a reference to compare the results for other values of Eb. The parameters di were
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Figure 6: Drift time as a function of Y0 for various values of Eb.

0 0.15 0.3 0.45 0.6 0.75
5

10

15

20

25

-1 -0.8 -0.6 -0.4 -0.2
16

17

18

19

Figure 7: Comparison between the upper (UB) and lower (LB) bounds of inequality (13), originally

established for water waves, and their counterparts in electrohydrodynamic (EHD) �ows. Left:

variation of the drift time τ(Y0) with the electric Bond number Eb for a �xed initial depth Y0 =

−0.5627. Right: variation of τ(Y0) with depth for a �xed electric Bond number Eb = 0.7.

computed for a particle initially located at (π,−0.5627), where Y0 ≈ −0.5627 corre-
sponds to a depth of ζ = −D/2 in the canonical domain. The relative deviation of
the trajectory parameters with respect to the reference case Eb = 0 is de�ned as

Er(di) =
|di − d⋆i |

|d⋆i |
, i = 1, 2, 3.

As shown in Figure 8, the relative deviation of the geometric parameters d1, d2, and
d3 remain small, which suggests that the trajectory shape is largely preserved as Eb

increases, although the particle motion slows down. This can be explained by noting
that in the canonical domain, the velocity �eld of ODE (27) can be written as a
component that is independent of Eb, multiplied by the wave speed c. Therefore,
variations in Eb only rescale c, leaving the particle paths unchanged while modifying
only the parametrization speed along them. For completeness, a detailed derivation of
this result is provided in Appendix B.
In summary, Figure 9 highlights the main results of this section and illustrates again

that Eb a�ects only the parametrization of the particle trajectories. The �gure also
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Figure 8: Relative deviation of the trajectory parameters d1 (left), d2 (center), and d3 (right) with

respect to the reference case Eb = 0, as a function of Eb.

Figure 9: Red solid line: free surface wave for Eb = 0.76; black solid line: free surface wave for

Eb = 0; thin brown solid line: bottom at y = −1. Particle trajectories beneath the free-surface wave

are shown for Eb = 0 (black) and Eb = 0.76 (red). At t = 0, all particles are positioned at x0 = π

and at the indicated depth y0. These initial points are marked as blue squares. Trajectories within

the �uid body form rightward loops, while the one at the bottom display back-and-forth motion.

shows that the particle drift is largest at the free surface and decreases with depth.
Particles located at the bottom exhibit a back-and-forth motion: initially moving to
the left, then turning to the right, and �nally returning to the left, with their net
displacement after one period ending to the right of (π,−1). Moreover, since that
our numerical simulation indicates that Eb only a�ects the parametrization of the
trajectories, the known decay of the geometric parameters d1, d2, and d3 with depth,
established for classical water waves [40], are expected to remain valid in the context
of EHD �ow.
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5.2 On the kinetic energy

The total kinetic energy of a �uid particle initially located at (X0, Y0) over a drift
time in the moving frame is given by

E(X0, Y0) =

∫ τ(Y0)

0

[(
dX

dt

)2

+

(
dY

dt

)2
]
dt. (30)

By changing to the �xed frame, where X = x− ct and Y = y, the total kinetic energy
over a drift time period in this frame is

E(X0, Y0) =

∫ τ(Y0)

0

[(
dX

dt
+ c

)2

+

(
dY

dt

)2
]
dt. (31)
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Figure 10: Top-left: Kinetic energy in the �xed frame for various wave steepness values as a function

of the particle's initial depth (Y0). Top-right: a zoomed-in graph for s = 0.001. Bottom: Kinetic

energy in the moving frame.

For water wave �ows, it is known that [11, 12, 34]:

1. E(X0, Y0) is a constant given by cλ/2.

2. E(X0, Y0) is a convex, non-decreasing function that depends solely on Y0.
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In the absence of an electric �eld, decreasing the wave steepness results in smaller
kinetic energy as shown in Figure 10. For s = 0.001, E is signi�cantly lower than
in the other cases, warranting a zoomed-in �gure for clarity. Moreover, Figure 10
(bottom) illustrates that our numerical approach reproduces well the result known for
water waves, namely E(X0, Y0) = cλ/2.
In addition, we want to numerically con�rm the physical intuition that a decrease in

steepness s leads to lower kinetic energy in the context of EHD �ows. To this end, we
compute the total kinetic energy of 100 simulations, each corresponding to a particle
initially located at X0 = π with a distinct value of 0 Y0 uniformly sampled within the
interval [−1, η(X0)]. Figure 11 illustrates that varying Eb (Eb = 0, 0.3, 0.7) preserves
the known kinetic energy properties of water wave �ows. Increasing Eb leads to a
decrease in kinetic energy in both frames.
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Figure 11: Kinetic energy in the �xed frame (left) and the moving frame (right) as a function of

the particle's initial depth (Y0) for di�erent values of Eb.

6 Discussion

In this work, we investigated the in�uence of the electric Bond number (Eb) on the
Stokes Drift of a particle beneath a Stokes wave. Our numerical experiments indicate
that increasing Eb reduces wave speed and increases drift time. Additionally, the
electric �eld slows down the particle trajectory while preserving its shape. Further,
numerical results indicate that: (i) the inequality (13), and (ii) the property that drift
time is larger near the free surface and decreases with increasing depth, both originally
established for water waves, remain valid for EHD �ows.
We also examined the kinetic energy properties of particle trajectories under periodic

waves within the EHD �ow framework. Our results indicate that kinetic energy is a
non-decreasing convex function in the �xed frame and remains constant in the moving
frame, as its behaviour in water wave �ows without an electric �eld.
Beyond these speci�c �ndings, our study highlights a broader implication: for the

physical con�guration considered here, the electric �eld in�uences the system solely
through its e�ect on the wave speed. This feature may prove advantageous in engineer-
ing applications where wave retardation is desirable, for instance in scenarios requiring
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controlled particle transport or reduced mixing. The situation may, however, be dif-
ferent in the converse con�guration, where the �uid layer is perfectly conducting and
the gas layer is dielectric. In that case, the electric �eld may alter not only the wave
speed but also the geometry of particle trajectories, a problem that will be the subject
of future investigation.
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A Shallow and deep-Water regime

In this appendix, we aim to summarize the results obtained for waves in the shallow-
water and deep-water regimes. We consider λS = 10π and λD = 0.5 as wave length
for shallow-water and deep-water regime, respectively. The same numerical methods
previously applied to intermediate-water wave (λ = 2π) regimes were used, and we
investigated the variation of the drift time τ with Eb variation, as well the geometric
parameters of the orbit and the total kinetic energy of the particles.
Our numerical experiments show analogous results for waves in intermediate-water

regime. The drift time τ as function of the eletric Bond number Eb is crescent, as
we can see in Figure 12. Table 1 shows the order of the relative deviation of the
trajectory parameters d1, d2 and d3 with respect to the reference case Eb = 0 in both
regimes. The order of the relative deviation for the intermediate water wave regime is
additionally presented in this table as a scale for comparison.

Er(d1) Er(d2) Er(d3)
Shallow-water 10−6 10−10 10−8

Intermediate-water 10−10 10−6 10−6

Deep-water 10−6 10−10 10−10

Table 1: Order of the relative errors in three di�erent regimes.
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Figure 12: Drift time in function of Eb. Left: Shallow-water regime. Right: Deep-water regime.

For the total kinetic energy of the particles, our results are presented in Figure 13
for shallow and deep-water regimes. As we can see in these �gure, in �xed frame
E(X0, Y0) is a convex and non-decreasing function and in moving frame E(X0, Y0) is a
constant function equal to cλ/2. Furthermore, the total kinetic energy of the particles
in both regimes and frames of reference is lower for stronger electric �elds.
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di�erent values of Eb. Up: Shallow-water regime. Down: Deep-water regime Left: Fixed frame.

Right: Moving frame.

B Reparametrization of the ODEs for Particle Tra-

jectories

For completeness, we provide here a detailed explanation showing why the shape of
the particle trajectories is una�ected by the electric Bond number Eb. We show that
variations in Eb only correspond to a reparameterization of the trajectories.
From equation (28), the potential can be written as

ϕ̃(ξ, ζ) = F−1
k ̸=0

[
cosh(kj(D + ζ))

cosh(kjD)
Φ̂(k)

]
= −cF−1

k ̸=0

[
cosh(kj(D + ζ))

cosh(kjD)
i coth(kjD)Ŷ(kj)

] (32)

This implies that:
ϕ̃ξ(ξ, ζ) = −cL(Y(ξ), ζ)) (33)

ϕ̃ζ(ξ, ζ) = −cM(Y(ξ), ζ)) (34)

where
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L(Y(ξ), ζ)) := −F−1
k ̸=0

[
cosh(kj(D + ζ))

cosh(kjD)
coth(kjD)kjŶ(kj)

]
,

M(Y(ξ), ζ)) := F−1
k ̸=0

[
kj sinh(kj(D + ζ))

cosh(kjD)
i coth(kjD)Ŷ(kj)

]
.

Substituting (33) and (34) into (27), we obtain
1

c

dξ

dt
= − 1

J

(
L+ Ỹζ

)
,

1

c

dζ

dt
= − 1

J

(
M− Ỹξ

)
.

(35)

Note that L and M do not depend on Eb. As shown in equation (23), for an
electri�ed periodic wave with pro�le Y (depth D) and speed c, the pro�le coincides
with that of a classical Stokes wave with speed

c2s = c2 +
Eb

D2
.

If we now introduce the new parameter θ = ct, then system (35) is reparametrized
in terms of θ instead of t. The trajectories (ξ(t), ζ(t)) remain exactly the same curves
in the (ξ, ζ)-plane; the e�ect of changing Eb is only to modify the parametrization
speed along these trajectories.
Therefore, the presence of the electric �eld does not alter the shape of the particle

paths. It only changes the rate at which the particles move along them.
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