University of Essex

Research Repository

The effect of normal electric fields on the Stokes drift

Accepted for publication in Physics of Fluids

Research Repository link: https://repository.essex.ac.uk/42353/

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers
may not be reflected in this version. For the definitive version of this publication, please refer to the
published source. You are advised to consult the published version if you wish to cite this paper.
https://doi.org/10.1063/5.0308949

www.essex.ac.uk

University of Essex



The effect of normal electric fields on the Stokes
drift

Luiz P. Palacio!, Marcelo V. Flamarion*?, Tao Gao®, Roberto Ribeiro-Jr!

"UFPR/Federal University of Paran4, Departamento de Matematica, Centro Politécnico, Jardim

das Américas, Caixa Postal 19081, Curitiba, PR, 81531-980, Brazil
2Departamento Ciencias-Seccién Matematicas, Pontificia Universidad Catolica del Pert, Av.
Universitaria 1801, San Miguel 15088, Lima, Peru

corresponding author*: mvellosoflamarionvasconcellos@pucp.edu.pe
3School of Mathematics, Statistics and Actuarial Science, University of Essex, Colchester CO4 3SQ,
United Kingdom

Abstract

In periodic wave motion, particles beneath the wave undergo a drift in the direction of
wave propagation, a phenomenon known as Stokes drift. While extensive research has been
conducted on Stokes drift in water wave flows, its counterpart in electrohydrodynamic flows
remains relatively unexplored. Addressing this gap, we investigate Stokes drift beneath
periodic traveling irrotational waves on a dielectric fluid under the effect of normal electric
fields. Through numerical simulations utilizing conformal mapping, we compute particle
trajectories and analyze the resultant Stokes drift behaviors beneath periodic traveling
waves. Our findings indicate that variations in the electric field impact particle velocities
while maintaining trajectory shapes. Moreover, the kinetic energy associated with a particle
depends on its depth location and is a non-decreasing convex function in a fixed frame and
a constant in a moving frame, as observed in water wave flows.

1 Introduction

The study of particle trajectories beneath surface water wave dates back to 1839 with
Stokes [46], whose results indicated that particles beneath a periodic wave undergo
a drift in the direction of wave propagation, later called Stokes drift. In this way, he
conjectured that particle paths are not closed.

The study of particle trajectories and Stokes drift is of significant physical and
mathematical interest, with relevance to a wide range of applications. These include
submarine operations and the transport of particles such as oil spills, gas bubbles,
suspended sediment, and biological material. Moreover, Stokes drift contributes to
the transport of heat, salt, and other natural or anthropogenic tracers, including mi-
croplastic pollution, in the upper ocean layer [3] 50].



The literature on Stokes drift and particle trajectories for water waves is vast and
well established, including experimental investigations, numerical studies and rigor-
ous mathematical analysis. Among the experimental works, we mention the findings
of Longuet-Higgins [37], who determined the trajectory of a particle on the surface
and found loop-shaped orbits with a drift in the direction of wave propagation. In
addition, we refer to the work of Van den Bremer and Breivik [50], which provides a
comprehensive review of the fluid mechanics of Stokes drift and its applications. A
review of numerical strategies for computing particle trajectories is presented in [41],
while additional details on Stokes drift and the characteristics of subsurface particle
orbits beneath Stokes waves can be found in [40)].

Constantin [8] rigorously proved Stokes’ conjecture, demonstrating both the drift
and the loop-shaped particle paths without any assumption of the depth regime. Con-
stantin and Villari [9] obtained similar results for linear waves with a known velocity
field. Two years later, Constantin and Strauss [10] showed that, in the presence of a
uniform current, particles may in fact exhibit no drift.

More recently, significant progress has been made on particle trajectories beneath
free-surface waves in reduced models |2, Bl 18] 19, [32]. For irrotational flows, Carter
et al. [6] used the nonlinear Schrodinger equation to describe the surface of a Stokes
wave and study the particle paths beneath it, obtaining results consistent with those
for Stokes waves described by the Euler equations. Vanneste and Young [51] decom-
posed the Stokes drift into a solenoidal component and a remainder that is small
for waves with slowly varying amplitudes, which simplifies the analysis of drift and
trajectories. Abrashkin and Pelinovsky [1] analyzed Stokes drift beneath Stokes and
Gerstner waves and showed a relation between them: the quadratic approximation
of particle trajectories beneath a Stokes wave is a superposition of the vorticity flow
of the Gerstner wave and the shear flow of Stokes drift. Weber [53] demonstrated
that the Stokes drift beneath a Gerstner wave vanishes using a nonlinear Lagrangian
formulation.

Stokes drift can be observed not only in surface gravity waves but also in other types
of waves, such as vertically confined internal modes, oceanic Kelvin and Rossby waves,
or acoustic waves (see [50] and references therein). In this paper we focus on Stokes
drift beneath a Stokes wave in electrohydrodynamic (EHD) flows. A Stokes wave is a
periodic traveling wave with a symmetric profile that rises and falls exactly once per
wavelength.

Electrohydrodynamics (EHD) is a topic of study that examines the coupling between
the motion of charged fluids and electric fields, with particular attention to interfaces
between fluids, which arise frequently in practical applications. EHD has numerous
applications in chemical engineering, for example, in coating processes [33, 27], cool-
ing systems for high-power devices [24], and electrospray technology [48], due to the
relative ease with which fluid flows can be manipulated artificially. A natural question
that arises is how an electric field might influence the phenomenon of Stokes drift. To
provide a broader context and intuition, we therefore include a brief review of elec-
trohydrodynamic flows and wave motion. The readers may also refer to |7, 43| for



more details. There were two major early achievements in the literature on interfacial
waves by Taylor & McEwan [47] and Melcher & Schwarz [38] respectively. The for-
mer work theoretically and experimentally demonstrated that the interface between
a conducting fluid and a dielectric could be destabilized due to normal electric fields
perpendicular to the undisturbed interface (i.e. vertically). Meanwhile, the latter
work considered the problem with tangential electric fields parallel to the undisturbed
surface and showed by performing a linear stability analysis that short waves could be
regularised under this setting. Since then, many authors have continued to investigate
the role of electric fields in (de)stabilizing various interfacial fluid configurations [39).
For the problem of vertical electric fields, the most general setting concerns two im-
miscible fluids, with an interface in between, of perfect dielectric of different electric
permittivities (see [I3] for details). Some assumptions are usually made to simplify
the problem. One common setup is to consider the upper layer to be a hydrodynami-
cally passive region of dielectric and the lower layer to be a conducting fluid, see e.g.
[44], 16], 42], 25], 30, 31, 14]. The other common assumption is to let the upper layer be
conducting gas while the lower layer is a dielectric fluid, which reduces the physical
configuration to a one-layered problem, see e.g. |22, 23, 17, 21]. A direct question in
the present context is how electric fields affect the Stokes drift. To fill this gap in the
literature, we investigate the Stokes drift of a charged particle beneath an irrotational
Stokes wave under normal electric fields in the same one-layered physical configura-
tion in this paper. The two major physical assumptions (inviscid fluid and perfectly
conducting gas) are justified as follows. The viscous effect on wave drift is most pro-
nounced near boundaries and has a limited impact on the bulk fluid, as demonstrated
by Longuet-Higgins [35]. Since this study does not focus on boundary layers, the fluid
is assumed to be inviscid. For investigations near boundaries, viscous effects cannot be
neglected. On the other hand, the primary objective of this study is to investigate the
electric effect on Stokes drift. To achieve this, it is necessary to establish a significant
contrast in permittivities between the two layers, as in chemical engineering; other-
wise, the electrohydrodynamic effects are minimal. Such a consideration motivates the
assumption that the gas layer is perfectly conducting.

We highlight that, although the modeling equations used in this work are the same
as in [17], the phenomena under investigation differ. That reference focuses on the
flow structure beneath nonlinear periodic waves in the presence of a linearly sheared
current, introducing a constant vorticity as an additional parameter in the dynamical
system for particle trajectories and motivating a bifurcation analysis with respect to
this parameter. By contrast, the flow considered here is irrotational, and our interest
lies in Stokes drift: particles beneath the wave experience a net drift in the direction
of wave propagation.

In this article, we use conformal mapping and pseudo-spectral numerical methods
to compute particle trajectories and evaluate Stokes drift. The rest of the work is
structured as follows: The mathematical formulation is presented in Section [2l The
linear case and the properties of Stokes drift are reviewed in Section [, The numerical
method for the nonlinear problem is given in Section [ Results are presented in



Section [f, and concluding remarks are provided in Section [6]

2 Mathematical Formulation

We consider an inviscid and incompressible dielectric fluid of permittivity ¢y bounded
by wall electrodes on top and bottom, imposed with a constant voltage difference
inbetween, and surrounded by a conducting gas. In this case, the fluid is conditioned
to the action of a normal electric field (E = VV), in which V is a voltage potential.
We may let V' =0 on top and V' = —V{, on bottom without losing generality.

V=0 wall electrode

Conducting gas

Ap=0, AV =0

lo 1z

Dieletric fluid
|
V=-V wall electrode y=—h

Figure 1: Sketch illustrating the physical context of the problem.

Let U = V¢ represent the irrotational velocity field of the fluid motion, where ¢
is a velocity potential. We denote the fluid surface by n(x,t) which is assumed to
be a traveling wave with phase speed ¢.  The functions n(z,t) and ¢(z,y,t) are
assumed to be A-periodic in the z variable and of the form n(z,t) = n(z — ct) and
P(z,t) = ¢(x — ct,y) A schematic is depicted in Figure [l By introducing the change
of variables X = x —ct and Y = y, we can express the fluid surface as n(x,t) = n(X).
Then, following the approach in [I7], we can express the Euler governing equations in
dimensionless form by selecting h, y/h/g and Vj as the reference length, time and
voltage potential, in terms of the electric field and velocity potentials as follows

Ap=0 in —1<Y <nX), (
AV =0 in —-1<Y <n(X), (
—cnx + ¢xnx = ¢y for Y =n(X), (3
oy =0 for Y =—1, (
V=0 for Y =nX), (
V=-1 for YV =-1 (

In addition to governing equations, we have the dynamic boundary condition:
1
_C¢X+§(¢§(+¢%)+U+Me:Ba (7)
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where B is the Bernoulli constant and M, represents the Maxwell stress tensor given
by

Ey 2 2 2 Ly 2
e= 7~ | — Vo = Vx) —4dnxVx Wy | = —|VV|% 8
sy (= TR0 = V) = dnx Vel | = 9V (8)
The parameter Ej represent the nondimensional Electric Bond number defined as
follows V2
60 0
E, = 9

where p denote the density of the dielectric fluid and g the gravitational acceleration.
In the wave-moving frame, the trajectory (X(¢),Y(¢)) of a fluid particle in the
dielectric fluid is governed by the dynamical system

dX

E - ¢X(X7 Y) — G

(10)
dy
i oy (X,Y).

In this frame, the trajectory coincides with the streamline of the flow.

The system ([10]) can be easily obtained by noting that if (g, yo) is the initial position
of a particle in the fixed frame (x,y), where the wave moves to the left or right at a
constant velocity, its trajectory (x(t),y(t)), t > 0, is obtained as the solution of

{x'(?f)z (2 —ct,y),
(t) = ¢y(x — ct,y),

Thus, the trajectory (x(t),y(t)) in the fixed coordinates (x,y) corresponds to the
trajectory (X (t),Y (t)) in the wave-moving frame coordinates, given by

X(t) = 2lt) — ct, V(1) = y(t),
where (X (t),Y(¢)) is the solution of ([L0]).

with initial data (2(0),y(0)) = (z0, vo). (11)

2.1 Stokes Drift

In this section, we recall some properties and results on Stokes drift for water waves
that are known in the literature.

For a solution (X(t),Y(t)) of the ODE system ([10) with the initial condition
(Xo, Yp), where Yj € [—1,71(Xp)], the time required for this solution to travel a single
wavelength, i.e. reach X = Xy — ), is called the drift time and is denoted by 7(Yj).
This represents the time that a particle takes to traverse one period in the moving
frame. The drift time can also be interpreted as the Lagrangian period, that is, the
time for a particle to return to its original height in the fluid [28].

Constantin [8] proved the following formula to calculate the drift time of a particle

trajectory Vo
dX
T7(Y[ :/ 12
0 a2 = ox(X, 1)) (12
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Furthermore, Li and Yang [34] has shown that the drift time must satisfy the following
inequality

A Yy) < v L
ARRLOLY Wrres oo it )
where A/c is the Eulerian wave period.

Following the established notation, we define the Stokes Drift as the distance be-
tween the points (2(0),y(0)) and (x(7(Yp)),y(7(Yp))), where z(t) = X(¢) + ct and
y(t) = Y (t). As we can see at Li and Yang [34], a direct implication from is that
the Stokes Drift is always positive. It is important to note, however, that this con-
clusion holds only for perfectly periodic waves with a zero mean free-surface level. In
realistic scenarios (whether in laboratory or oceanic conditions) the Stokes drift may
exhibit both positive and negative values due to the influence of boundary layers [28§]
or the presence of a non-zero mean surface elevation, which is common under natural
ocean conditions [4], 29].

In our upcoming numerical experiments, we will investigate the properties of Stokes
drift in the context of EHD flows. Additionally, we aim to analyze certain geometric
characteristics of particle trajectories. To achieve this, we introduce the following three
parameters:

1. dy is the Stokes drift of the trajectory;

2. ds is the horizontal distance between the leftmost and rightmost points of the

trajectory, defined dy = z(t3) — x(t1), where x(t;) = [1(r)ni(r}1/ )]x(t) and x(ty) =
t€|0,7(Yo

max ().
tG[O,T(Yo)]
3. ds is the vertical distance between the lowest and highest points of the trajectory,

defined as is the distance between d3 = y(t4) — y(t3), where y(t3) = [10111(111/ ; y(t)
t€|0,7(Yo

and y(t4) = e y(2).

Figure [2| presents a schematic representation of the parameters dy, ds, and ds.

Figure 2: Geometric parameters indicating the aspect ratio of a trajectory.



3 Linear theory

In this section, we present the linear theory to derive an explicit formula for the
velocity field of the dynamical system .
A trivial solution for the governing equations ([I)-(7) is

?O(X) - 07
¢0(X7 Y) - 07
WO(X,Y) =Y,

which is perturbed by a small disturbance measured by a parameter € (< 1), namely

n(X) =en,
P(X,Y) =¢e9,
VX, Y)=Y +¢&V.

Here, € is a small parameter that measures the wave amplitude. Solving Laplace
equations with boundary conditions as described in — yields

(X) = R{Ae™},
P(X,Y) = R{Be* X cosh(k(Y + 1))}, (14)
V(X,Y) = R{Me* sinh(k(Y +1))}.

Here, A, B, and M are unknown constants, and k = 27/\ is the wavenumber. By
linearizing the dynamic and kinematic boundary conditions, we obtain

the linear speed

— Ey, (15)
and the linear velocity field
. kAccos(kX) cosh(k(Y +1))

ex(XY) = sinh(k) ’ (16)
by (X.Y) = kAc sm(k)S(l)ni?:)(k(Y + 1)) (17)

From this point on, we only consider the positive value of ¢, i.e., the right moving
waves. Note that there exists a critical value Ej such that waves are destabilized by
the electric field when E, > Ej as the wave speed no longer admits a real solution.
In the particular case A = 27 (i.e., k = 1), we have E} = tanh(1). To obtain a more
accurate description of the limiting behavior of 7, which tends to infinity as £ — £,
a nonlinear theory is required.



4 The nonlinear problem: conformal mapping and
numerical method

To solve the dynamical system ([10]), we consider the velocity field solution of the
full nonlinear Euler equations (I])-(7) by employing the conformal mapping formula-
tion presented in [17], combined with the trajectory computation strategy outlined in
[45]. These approaches are based on the conformal mapping introduced by [15], which
provided the foundation for the development of pseudospectral numerical methods for
free-surface hydrodynamic problems in various contexts.

The numerical methodology applied in our study consists of three main steps:

1. Construct the conformal mapping suitable for the problem.

2. Reformulate the Euler equations — in canonical coordinates. This reformu-
lation allows us to determine a free-surface wave solution and the velocity field in
the fluid domain for a given Ej,.

3. Solve the dynamical system in canonical coordinates, then map the corre-
sponding trajectory back to the physical domain.

For further details, we refer the reader to [17] and [45]. Here, we summarize only the
key aspects of each step.

1) Construct the conformal mapping suitable for the problem

First, we construct a conformal mapping

Z(€.¢) = X(§,Q) +iY (£,0),
which maps the strip of width D and length L,
L L
onto the physical domain of a wavelength A,
5 A A

{(X,Y) e R7| —5 < X < 5,—1 <Y <n(X)}.
This mapping flattens the free surface and satisfies the boundary conditions

Y(£,0) = n(X(£,0), and Y(¢,—-D)=—1.

Using algebraic manipulations, the Fourier transform, and the assumption that Z
is conformal, we obtain the following expressions:



R(e.0) = ~Fihy | T I E )| + ¢ 19
V6.0 = Fibo | Mty L FIYI) |+ T YO, 9

where Y (§) = 17(5((5, 0)) and F[-| denotes the Fourier transform:
o FIF)) = f(ky) =+ [117, F(©e e de;

. f*l[f(km = f(&) = Xjez F(kj)e™;

2) Reformulating the Euler equations in canonical coordinates.

We impose that the free surface has the same wavelength in both coordinate systems,
i.e., L = \. This condition leads to the relation:

1 L/2
=1 Y©dc+1 (20)
—L/2

Let 1 be the harmonic conjugate of ¢, and define

$(,¢) = d(X(£,0),Y(£,0), (¢ =w(X(£0),Y(£0)).

Denoting X(£) as the horizontal component of the conformal map evaluated at

¢ = 0, the free surface in the canonical coordinate system corresponds to the curve
(X(£),Y(£)). The kinematic (3)) and Bernoulli (7)) conditions reduce to:

—c? c? Ey
— Y — B =0, 21
5 o3t T opey (21)

where J = Xg + Yg is the Jacobian of the mapping evaluated at ¢ = 0. We can
rewrite Equation (21)) as

1/1 E,

b (i 1) ( —) Y-B-= 22

>(5 e+ )+ 0. (22)
It is noted that there is a term in %, which has been absorbed into the Bernoulli

constant B. In this way, for any electrified periodic wave solution with profile Y (D
the associated depth in the canonical plane) and speed ¢ in the presence of electric
fields of strength FEj, the wave profile must be the same as a classic Stokes wave with
speed cg where

ci=c"+—. (23)



Increasing the electric Bond number (E;,) would lead to a decrease in the value of the
wave speed.

Equation (21)) involves four unknowns: Y, ¢, B, and D. To complete the system,
we impose three additional conditions:

1. Fixed wave height:
Y(0)—-Y(L/2)=H. (24)

2. Zero-mean wave profile in the physical space:

0
YX, d¢ = 0. (25)
—L/2

3. Depth condition (20]).
The equations , , , and are discretized spectrally, with derivatives

computed via the Fast Fourier Transform (FFT) and integrals approximated using the
trapezoidal rule. The periodicity of the wave motion is automatically guaranteed under
this scheme, as is the mass conservation. The resulting system is solved numerically

using Newton’s continuation method. All calculations employ 1024 Fourier modes,
with L = 27.

3) Solve the dynamical system (10)) in canonical coordinates, then map the
corresponding trajectory back to the physical domain.

The trajectory (X (¢),Y(t)), which is the solution of the ODE system (10)), cor-
responds to the image of a trajectory (£(¢),((¢)) in the canonical domain under the
conformal mapping. Specifically, we have

(X(1),Y () = (X((t),¢(1)), Y (£(), (1)), (26)
where (£(t),((t)) is determined by the system
d¢ 1 /- ~
- == —cYe ),
fglé 7 (¢5 c) 1)

1 /- 5
dt — J (¢<+CY§)'
where J(£,() = X? + 3752 is the Jacobian and the velocity potential ¢(&, ¢) is given by

oe.0) = Frly |t )| 25)

with ® = —C[¥], where the operator C[-] is defined as C[-] := F~![i coth(k;D)F[]].
Additionally, the stream function satisfies ¥ = cY.

Particle trajectories are computed numerically by integrating in the canonical
domain usinglab the fourth-order Runge-Kutta method. The resulting trajectories
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are then mapped onto the physical domain, yielding the trajectory (X (t),Y(¢)) in
the moving frame. To analyze the particle paths in the fixed frame, we apply the
transformation

x(t) = X(t) +ct, y(t)=Y(t).

Furthermore, as mentioned at the beginning of Section 2.1} the drift time is obtained

numerically by determining the time required for a particle, initially located at (Xo, Yp)
with Yy € [—1,7(Xj)], to travel one wavelength in the fixed frame, that is, to reach
X = Xy — A. This computation is performed using equation for nonlinear waves
and equation (10)), with the velocity field derived from the linear theory, for linear
waves.

5 Numerical results

In this section, we present the results of numerical experiments for various electric
Bond numbers (Ejp).The objective is to understand the electric effect in the Stokes
drift.

We fix the depth at 1, and set the wavelength (A) to 2m. We focus on this
intermediate-depth regime and control the wave profile through the steepness param-
eter s = H/A. We conduct a similar work for waves in shallow-water regime \ = 207
and deep-water regime (A = 0.27) in Appendix [A]

It is noted that, based on the linear wave speed from ([15)), again with this set of
parameters, the electric Bond number Ej must satisty £, < Ej such that ¢ admits a
real solution, in which E; = tanh1 is the critical value as previously introduced.

5.1 Particle trajectories and Stokes drift

In this subsection, we explore the geometric parameters of the particle path, drift
time, and wave speed for various values of Fj. Unless stated otherwise, the free-surface
wave is fixed with a steepness of s = 0.09 that guarantees us a strongly nonlinear wave
profile with height H ~ 0.5655. Similar to a remark made by [22] for the case of
infinite depth, two electrified solutions may share the same wave profile as long as

E E
2, =0l 2, b2
Cl+ D% CQ+ D% y

(29)
due to equation and . The value of the depth in the canonical domain does
not vary provided the surface displacement is unchanged, and therefore, the main
response to a change in Fjp may be reflected in the wave speed. This is confirmed
by our numerical computations for three different values of Ej, as shown in Figure [3]
where the wave profiles for a fixed steepness look identical and the associated wave
speed decreases as FEj increases. To further support this observation, we evaluated
the pairwise distances ||Y; — Y;[|2 between the solutions shown in Figure 3] The

11



computed distances are of the order of 107, which is comparable to numerical error.
The numerical evidence shows that these three wave profiles are identical, and the
difference is only subject to numerical error.

0.4

Ey=0

— — —By=03 |
E, = 0.7615

0.3f

- 0 ™

Y

Figure 3: Wave profile for different values of Ej, for a fixed steepness s = 0.09.

The dynamical system is solved with the initial condition beneath the trough
at (m,Yp). Figure { displays the trajectory of a particle starting from initial position
(m, —0.5627), Yy ~ —0.5627 corresponds to a depth of ( = —D/2 in the canonical
domain, for the cases where E, = 0, 0.3, and 0.7615. We observe that higher values
of B} result in slower particle motion. The dependence of the drift time on Ej is
examined in Figure [5

The left graph in Figure |5 shows the wave speed (¢), while the right graph shows the
drift time (7) for various values of Ej. The particle’s initial depth is Yy ~ —0.5627,
which corresponds to a depth of ( = —D/2 in the canonical domain. For the linear
solution, Yy = —0.5 (corresponding to (&y, (o) = (m, —D/2)) and the trajectories are
computed explicitly using linear theory. Note that, while the variation of Ej does
not affect the wave profile, the particle initial depth Y remains identical regardless
of Ej, value. We observe that increasing FEj, leads to a decrease in wave speed and an
increase in drift time. Additionally, Figure [ shows that the drift time is larger near
the free surface and decreases as we move from the trough toward the bottom, a result
previously established for for £, = 0 [34] and still valid for Ej, # 0.

We recall the inequality , which holds for water wave flow when Ej, = 0. This
inequality establishes lower and upper bounds for the drift time of a particle initially
located at depth Y. As shown previously, when an electric field is introduced, the
drift time also depends on the field intensity Ej. A natural question then arises: does
inequality still hold when Ej # 07

To address this question, we computed 7(Y)) under two distinct conditions: (i) by
fixing Yy = —0.5627 and varying Fj; and (ii) by fixing £, = 0.7 and varying Y. The
corresponding results are presented in Figure [7] In the left panel, where Yj is fixed
and Ej, varies, we observe that the drift time 7(Y() remains bounded, consistent with
the prediction of inequality (13). The right panel displays the variation of 7(Y;) with
depth for a fixed electric Bond number Ej = 0.7, suggesting that inequality may

12
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Figure 4:

Snapshots of the trajectory of a particle starting from the same initial position,
(m, —0.5627), for the cases where E, = 0 (red), 0.3 (blue), and 0.7615 (green). 7* represents the
drift time of the particle for Ej, = 0 and black dot the initial position of the particle.

80
60

S a0t
20

_ —
0 e —— R R
0.175 0.35 0.525 0 0.2 0.4 0.6 0.8
Eb Eb

Figure 5: Speed (c¢) and drift time (7) as functions of the electric Bond number (Ej). Results are
shown for the linear theory (dashed lines) and the nonlinear theory (solid lines).  Vertical lines
indicate the critical value of Ej predicted by the linear theory (tanh 1).

also hold in this electrified setting. In addition, although not shown in the the text to
avoid repetition, we performed an additional numerical simulation for the limit case
E, = 0.76159 ~ tanh(1). These simulations indicate that as E, — Ej, the lower
bound of inequality increases, while the inequality itself remains valid.

To analyze the geometric parameters (dy, do, d3) of the particle trajectories, we first
compute their values for the case E, = 0, denoted as (dj, d5, d5), and use them as
The parameters d; were

a reference to compare the results for other values of Ej.
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15¢

Ey=0
E,=0.3
E,=0.7

101

S 0.8 0.6 0.4 0.2
Yo

Figure 6: Drift time as a function of Yy for various values of Ej.

5 16
0 015 03 045 0.6 0.75 -1 -08 -06 -04 -02

E, Yo

Figure 7: Comparison between the upper (UB) and lower (LB) bounds of inequality (L3)), originally
established for water waves, and their counterparts in electrohydrodynamic (EHD) flows. Left:
variation of the drift time 7(Yy) with the electric Bond number Ej for a fixed initial depth Yy =
—0.5627. Right: variation of 7(Yp) with depth for a fixed electric Bond number Ej = 0.7.

computed for a particle initially located at (m, —0.5627), where Yy ~ —0.5627 corre-

sponds to a depth of ( = —D/2 in the canonical domain. The relative deviation of
the trajectory parameters with respect to the reference case Ej, = 0 is defined as
d; — dr
Er(dz) - M, Z - 1,273.
|d7]

As shown in Figure [§] the relative deviation of the geometric parameters dy, d, and
ds remain small, which suggests that the trajectory shape is largely preserved as Ej
increases, although the particle motion slows down. This can be explained by noting
that in the canonical domain, the velocity field of ODE (27) can be written as a
component that is independent of Ej, multiplied by the wave speed c. Therefore,
variations in Fj only rescale ¢, leaving the particle paths unchanged while modifying
only the parametrization speed along them. For completeness, a detailed derivation of
this result is provided in Appendix [B]

In summary, Figure[9 highlights the main results of this section and illustrates again
that Ej affects only the parametrization of the particle trajectories. The figure also
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Figure 8: Relative deviation of the trajectory parameters d; (left), da (center), and ds (right) with
respect to the reference case £y = 0, as a function of Ej,.
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Figure 9: Red solid line: free surface wave for E;, = 0.76; black solid line: free surface wave for
Ep = 0; thin brown solid line: bottom at y = —1. Particle trajectories beneath the free-surface wave
are shown for F = 0 (black) and Ep = 0.76 (red). At ¢t = 0, all particles are positioned at zg = 7
and at the indicated depth yg. These initial points are marked as blue squares. Trajectories within
the fluid body form rightward loops, while the one at the bottom display back-and-forth motion.

shows that the particle drift is largest at the free surface and decreases with depth.
Particles located at the bottom exhibit a back-and-forth motion: initially moving to
the left, then turning to the right, and finally returning to the left, with their net
displacement after one period ending to the right of (7w, —1). Moreover, since that
our numerical simulation indicates that Ej, only affects the parametrization of the
trajectories, the known decay of the geometric parameters dy, ds, and ds with depth,
established for classical water waves [40)], are expected to remain valid in the context
of EHD flow.
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5.2 On the kinetic energy

The total kinetic energy of a fluid particle initially located at (X, Yy) over a drift
time in the moving frame is given by

B(Xo, Vo) = /O o [(%)2 + (%)2] dt. (30)

By changing to the fixed frame, where X = x — ¢t and Y = y, the total kinetic energy
over a drift time period in this frame is

TY0) | /dX 2 Ay \ 2
X,.Y,) = kel -
5( 0; o) /o [(dt +C> +<dt)

%10

dt. (31)
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Figure 10: Top-left: Kinetic energy in the fixed frame for various wave steepness values as a function
of the particle’s initial depth (Yp). Top-right: a zoomed-in graph for s = 0.001. Bottom: Kinetic
energy in the moving frame.

For water wave flows, it is known that |11, 12, [34]:
1. E(Xy,Yp) is a constant given by cA/2.

2. £(Xo, Yp) is a convex, non-decreasing function that depends solely on Yj.
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In the absence of an electric field, decreasing the wave steepness results in smaller
kinetic energy as shown in Figure [I0] For s = 0.001, £ is significantly lower than
in the other cases, warranting a zoomed-in figure for clarity. =~ Moreover, Figure 10
(bottom) illustrates that our numerical approach reproduces well the result known for
water waves, namely F(Xo, Yy) = cA/2.

In addition, we want to numerically confirm the physical intuition that a decrease in
steepness s leads to lower kinetic energy in the context of EHD flows. To this end, we
compute the total kinetic energy of 100 simulations, each corresponding to a particle
initially located at Xy = 7w with a distinct value of 0 Y uniformly sampled within the
interval [—1,7(Xp)]. Figure |[11|illustrates that varying Fj, (Ey = 0,0.3,0.7) preserves
the known kinetic energy properties of water wave flows. Increasing FEj leads to a
decrease in kinetic energy in both frames.

05
3
0.4
25
7203 =
Ny ~ B =0
S o E,=03
ii 0.2 iﬁ/ 2 E,=0.7
w0 S
0.1
15
0
-1 -0.8 -0.6 -0.4 -0.2 0 -1 -0.8 -0.6 -0.4 -0.2 0
Yy Yy

Figure 11: Kinetic energy in the fixed frame (left) and the moving frame (right) as a function of
the particle’s initial depth (Yp) for different values of Ej.

6 Discussion

In this work, we investigated the influence of the electric Bond number (£;) on the
Stokes Drift of a particle beneath a Stokes wave. Our numerical experiments indicate
that increasing Fj reduces wave speed and increases drift time. Additionally, the
electric field slows down the particle trajectory while preserving its shape. Further,
numerical results indicate that: (i) the inequality (13)), and (ii) the property that drift
time is larger near the free surface and decreases with increasing depth, both originally
established for water waves, remain valid for EHD flows.

We also examined the kinetic energy properties of particle trajectories under periodic
waves within the EHD flow framework. Our results indicate that kinetic energy is a
non-decreasing convex function in the fixed frame and remains constant in the moving
frame, as its behaviour in water wave flows without an electric field.

Beyond these specific findings, our study highlights a broader implication: for the
physical configuration considered here, the electric field influences the system solely
through its effect on the wave speed. This feature may prove advantageous in engineer-
ing applications where wave retardation is desirable, for instance in scenarios requiring
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controlled particle transport or reduced mixing. The situation may, however, be dif-
ferent in the converse configuration, where the fluid layer is perfectly conducting and
the gas layer is dielectric. In that case, the electric field may alter not only the wave
speed but also the geometry of particle trajectories, a problem that will be the subject
of future investigation.
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A Shallow and deep-Water regime

In this appendix, we aim to summarize the results obtained for waves in the shallow-
water and deep-water regimes. We consider A\g = 10w and A\p = 0.5 as wave length
for shallow-water and deep-water regime, respectively. The same numerical methods
previously applied to intermediate-water wave (A = 2m) regimes were used, and we
investigated the variation of the drift time 7 with Fj variation, as well the geometric
parameters of the orbit and the total kinetic energy of the particles.

Our numerical experiments show analogous results for waves in intermediate-water
regime. The drift time 7 as function of the eletric Bond number Ej is crescent, as
we can see in Figure [12] Table [I] shows the order of the relative deviation of the
trajectory parameters dp, do and dz with respect to the reference case E, = 0 in both
regimes. The order of the relative deviation for the intermediate water wave regime is
additionally presented in this table as a scale for comparison.

E.(dy) | E.(dy) | E,(d3)
Shallow-water 10°° 10719 11078
Intermediate-water | 10719 | 107° 1070
Deep-water 107° 1071 [10710

Table 1: Order of the relative errors in three different regimes.

x 107

2.8
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Eb Eb

Figure 12: Drift time in function of Ej. Left: Shallow-water regime. Right: Deep-water regime.

For the total kinetic energy of the particles, our results are presented in Figure
for shallow and deep-water regimes. As we can see in these figure, in fixed frame
E(Xo, Yp) is a convex and non-decreasing function and in moving frame E(Xj, Yp) is a
constant function equal to ¢\/2. Furthermore, the total kinetic energy of the particles
in both regimes and frames of reference is lower for stronger electric fields.
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Figure 13: Total kinetic energy of particles as a function of the particle’s initial depth (Yp) for
different values of FEj. Up: Shallow-water regime. Down: Deep-water regime Left: Fixed frame.
Right: Moving frame.

B Reparametrization of the ODEs for Particle Tra-
jectories

For completeness, we provide here a detailed explanation showing why the shape of
the particle trajectories is unaffected by the electric Bond number Ej. We show that
variations in Ej only correspond to a reparameterization of the trajectories.

From equation (28), the potential can be written as

cosh(k;(D +()) -
cosh(k;D) (k)]

3E.Q) = Fi [

(32)
= —¢ kio lcosils:}ingjg)C)) z'coth(k:jD)Y(kj)]
This implies that: 3
Pe(§,¢) = —cL(Y(£), Q) (33)
Oc(€,¢) = —eM(Y(€),0)) (34)

where
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g1 [cosh(k;(D +()) . N
L(Y(€),¢)) = —Frz [ Cosﬁ(ij) coth(ij)ij(kj)_ ,
, [kysinh(k;(D +¢)) . o
MOY(6).0) = Fily 2o dcorb( DY ()
Substituting and into (, we obtain
1d¢ 1 ~
ca =7 £+ %)

1d¢ 1

(35)

v = M)

Note that £ and M do not depend on Ej. As shown in equation (23)), for an

electrified periodic wave with profile Y (depth D) an
with that of a classical Stokes wave with speed

d speed ¢, the profile coincides

If we now introduce the new parameter 6 = ct, then system (35]) is reparametrized
in terms of @ instead of t. The trajectories (£(t), ((t)) remain exactly the same curves

in the (&, ()-plane; the effect of changing FEj is only
speed along these trajectories.

to modify the parametrization

Therefore, the presence of the electric field does not alter the shape of the particle
paths. It only changes the rate at which the particles move along them.

25



	Introduction
	Mathematical Formulation
	Stokes Drift

	Linear theory
	The nonlinear problem: conformal mapping and numerical method
	Numerical results
	Particle trajectories and Stokes drift
	On the kinetic energy

	Discussion
	Shallow and deep-Water regime
	Reparametrization of the ODEs for Particle Trajectories

