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Facilities Management (FM) companies can use load monitoring of electrical appliances (assets) to track energy
consumption and predictive maintenance. Reliable algorithms are needed to automatically identify or verify
appliances through their energy signatures to improve efficiencies during installation and inspection tasks. Most
approaches rely on Voltage-Current (V-I) trajectory. These features are extracted from steady-state current and
voltage signals. However, these methods often assume signals are uniformly sampled. In real-world conditions,
this assumption does not always hold, leading to misclassified steady-state events when signals are noisy.
This paper introduces a novel feature extraction and classification pipeline to ensure the validity of detected
steady-state events. The approach measures the approximate entropy of current signals and their correlation
with voltage to extract denoised features for appliance type classification. The proposed pipeline is evaluated
on a large-scale real-world operational dataset spanning multiple appliance categories. We demonstrate that
the extracted denoised features significantly improve the performance of Machine Learning (ML) models used
for appliance type classification. Finally, we present a deployment framework for FM settings, enabling digital
cataloguing of appliances informing businesses on sustainable choices for appliance requirements.
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1. Introduction of accurately verifying and classifying appliances based on their load

signatures are therefore essential for improving installation efficiency

Global energy demand is projected to rise by 25%, with electricity
demand increasing by 58% by 2040 [1,2]. To meet sustainability
targets, businesses must adopt tools for managing their power usage
and improving energy efficiency [3]. Advances in Appliance Load

and data reliability.
Developing such automated verification capabilities, however,
presents significant technical hurdles. Most existing approaches per-

Monitoring (ALM) [4], supported by Artificial Intelligence (AI) and
Internet of Things (IoT) devices, enables usage of appliance-level data
for monitoring energy consumption, predicting maintenance needs and
inducing behavioural changes towards more efficient energy use [5].
Facilities Management (FM) companies lead this effort by deploy-
ing large scale digital infrastructures across sites such as restaurant
chains, warehouses, hospitals, offices and casinos. These systems col-
lect and analyse electronic appliance-level data from a wide range of
appliances—from lighting systems and HVAC units to kitchen equip-
ment. However, verifying that these appliances are correctly identified
during the installation of ALM units remains a major challenge. Manual
verification is time-consuming and prone to human error, particularly
at sites containing hundreds of assets. Automated algorithms capable
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form appliance identification using Voltage-Current (V-I) trajectory
features extracted from steady-state signals [6,7]. These methods as-
sume that data are uniformly sampled and noise-free. In practice,
however, signals collected from real-world FM systems are often non-
uniform due to compression or missing points. As a result, traditional
steady-state detection algorithms can misclassify noise as valid steady-
state events, reducing classification accuracy. Similar to how advances
in civil engineering employ self-sensing composite materials to provide
reliable real-time data for structural health monitoring [8], our work
addresses the need for dependable data validation in complex energy
monitoring systems.
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To overcome these limitations, this study introduces a new denoised
feature extraction and classification pipeline for automatically identify-
ing appliance types. The proposed approach measures the Approximate
Entropy (ApEn) of steady-state current signals and their correlation
with voltage to assess the regularity of load patterns. This enables the
removal of noisy or irregular segments that could otherwise distort
the extracted V-I trajectory features. Due to ApEn’s computational
efficiency [9], this proposed extension of current steady-state detection
algorithms enables an additional layer of effective noise filtering with
minimal impact on pipeline performance.

This study therefore decreases the gap between methodological
innovation and real-world deployment within the FM sector. Our ap-
proach complements recent advancements in Al and IoT driven energy-
efficient infrastructure, where deep learning and intelligent monitoring
systems are used to enhance sustainability and operational decision-
making in smart buildings [10,11]. These studies emphasise the impor-
tance of robust data preprocessing and feature validation for reliable
deployment—objectives that our denoised feature extraction and clas-
sification pipeline directly address. Our contributions in this paper are
as follows:

1. Introducing a novel application of ApEn for detecting and re-
moving highly unstructured current and voltage based steady-
state events for extracting asset V-I trajectory features.

2. Developing a denoised V-I trajectory feature extraction approach
as a new preprocessing method for handling non-uniformly sam-
pled signals in real world load monitoring data from assets
operating in commercial environments.

3. Using the developed denoised asset feature extraction approach
to enhance the performance of ML classification models uniquely
trained and evaluated on large-scale FM asset load data spanning
multiple commercially deployed appliances.

4. Proposing a new automated FM asset verification pipeline using
denoised V-I trajectory feature based appliance load classifica-
tion supporting on-site ALM unit installation.

This paper is structured as follows. Section 2 outlines related work.
In Section 3 the concepts of V-I Trajectories and Approximate Entropy
are discussed. The FM commercial use case and challenges and de-
scribed in Section 4. Section 5 details the proposed feature extraction
and classification pipeline. We discuss our experimental setup and
provide analysis of the results in Section 6. In Section 7 we discuss
the wider contributions of the proposed approach, potential deploy-
ment scenarios and industrial impacts within FM. The paper ends with
conclusions and a discussion on future work in Section 8.

2. Related work

Appliance classification approaches can be found in the literature
of NILM which refers to the task as Load Identification [7]. These
approaches mostly rely on V-I Trajectories based features, typically
extracted from the voltage and current steady-state waveforms [12]
of the appliance’s operating load, and used as inputs to ML and DL
algorithms for classifying its type.

Previous feature extraction approaches have been based on extract-
ing labelled hand-crafted features from the V-I Trajectory plots [13,14],
meshing the plots into binary images to identify contour features using
methods such as Elliptical Fourier Descriptors, Principle Component
Analysis [15-18] or the use of mathematical feature extraction methods
such as 2-D Fourier series [12]. The extracted features have then
been used to train supervised ML classifiers based on Artificial Neural
Networks, Linear Quadratic Discriminant Analysis, Support Vector Ma-
chine, Decision Trees, Naive Bayes classifiers and Ensemble approaches
such as Random Forests, Adaptive boosting and Gradient Boosting.

Recent developments in the field of DL, especially its successes in
Computer Vision, have led to further interest in the treatment of V-I
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Trajectories as 2D binary, colour images or 3D temporal spacial trajec-
tory images that can be used for training Convolutional Neural Network
(CNN) based models [18-22]. The consensus view across these works is
that CNNs are able to automatically extract useful latent features from
V-I Trajectories without the need to perform manual feature extraction.
While the results from supervised based approaches are promising,
the introduction of a new/unknown type of appliance into the system
would require these model to be periodicity retrained. Work done on
unsupervised methods looks to tackle this issue through applications
of clustering based ML and DL algorithms. Here approaches such as
hierarchical clustering have been used to classifying appliance V-I
Trajectories [23] and the combination of neural networks with density
based clustering for extracting low dimensional features of V-I Trajecto-
ries which can be grouped as known or undefined appliance types [24].
More recently semi-supervised learning method have been explored
in [25] to help identify appliances with limited labelled data. Across
the aforementioned works, most of the approaches have been trained
and tested on relatively small open source load data mostly gathered
from consumer electronic appliances in controlled environments or
simulated settings. Examples of these publicly available datasets in-
clude Reference Energy Disaggregation Data Set (REDD) [26], Plug
Load Application Identification Dataset (PLAID) [27,28], Worldwide
Household Industry Transient Dataset (WHITED) [29], together with
others such as Controlled On/Off Loads Library (COOLL) [30], LIT [12]
and BLOND [31]

The V-I trajectory extraction approaches adopted in previous works
make an assumption that the signals data are uniformly sampled and
of high frequency [7]. Based on this assumption, steady-state detection
algorithms can rely on sliding window approaches to determine sharp
increase and decrease in a signal (e.g. apparent energy) as the start and
end of an event. In real-world applications, the signals data may not be
uniformly sampled. This is often the results of data compression/re-
duction algorithms that record only the most important data points.
In such environments, steady-state detection algorithms can misclassify
noise as an event since the points that mark the sharp increase and
decrease do not always signify a steady-state. Furthermore, because
the publicly available open source datasets used in these works are
small, the raw signals gathered are often short (< 10 s). This results in
limited steady-state events that can be detected in a signal, leading to
fewer V-I trajectories being extracted. The limited amount and diversity
of samples therefore may not reflect the variety of appliance types
and operating conditions found in real-world environments. Hence,
the results reported by those authors may be too optimistic for such
scenarios.

In the area of signal processing, many techniques have been in-
troduced for improving signal clarity and reliability. State-of-the-art
methods include wavelet transform denoising for multi-resolution fil-
tering, empirical mode decomposition (EMD) and its variants (like
EEMD and VMD) for adaptive decomposition of non-stationary signals,
and Kalman filtering for real-time, model-based noise estimation [32—
34]. Additionally, DL based approaches such as Denoising Autoencoder
(DAE) and CNN have shown good performance in learning complex
noise characteristics directly from data [35]. In NILM, these techniques
form the backbone of preprocessing and load disaggregation pipelines.
However, while these methods focus on removing noise, they do not
provide metrics to assess whether a detected event truly represents a
valid steady-state. ApEn presents a complementary solution: instead
of removing noise before event detections, ApEn quantifies signal reg-
ularity, providing a statistical measure of complexity in the current
waveform which can be used to remove noise after event detections.
By computing ApEn on the current waveform, NILM systems can verify
whether it is a stable and repeatable load pattern—offering an addi-
tional layer of validation to reduce false positives and improve event
detection reliability [36,37]. Importantly, ApEn is also computationally
efficient, requiring only a short window of data and simple distance
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Fig. 1. FM digital platform supported by load monitoring units.

comparisons between patterns [9]. This makes it a practical and scal-
able addition to large-scale appliance classification pipelines, where
maintaining low-latency and high-throughput processing is critical.

Commerecial applications for appliance load identification which are
integral to monitoring the operation of facilities such as warehouses,
hospitals or commercial kitchens has not been extensively explored.
Previous work in [38] installed NILM system in three commercial
building types (office, barracks and vehicle maintenance) and evaluated
its ability to disaggregate electric loads pertaining to a combination
of servicing and specialised appliances (computing equipment, light-
ing, sockets, vehicle service bays, battery chargers, heating systems).
However, the analysis failed to identify specific loads which authors
attributed to the number and complexity of loads (including hundreds
of small and similar loads) making identification ambiguous, difficulty
in interpreting small changes in power consumption, and inability
to identify continuously operating loads. In [39] authors proposed
an NILM method based on a transformer neural network multi-label
classification model for commercial load monitoring. Here a publicly
available dataset [40] based on data collected from smart meters
deployed in different buildings was used where data on electricity
consumption was recorded per building, high energy loads, and total
electricity consumption per floor with loads related to air conditioning,
lighting, and elevators. Both these examples although relevant have
again been limited to specific and specialised appliance types. A large
dataset on commercial electronic appliances similar to those found
across the FM sector was recently published in [41]. Here electricity
consumption data has been collected from three restaurant kitchens
during daily operations where 45 types of consumer and commer-
cial electronic appliances were monitored. However, the individual
appliance consumption data was collected at 0.2 Hz. This makes it
unsuitable for V-I trajectories reconstruction which requires the instan-
taneous values of voltage and current to be able to plot the dynamic
relationship between them.

Building on our initial work [42], we present and evaluate a feature
extraction and classification pipeline to extract V-I trajectory features
from correctly classified steady-state events. We use ApEn of the steady-
state current and correlation between steady-state current and voltage
to determine the validity of a detected steady-state event for V-I trajec-
tory extraction. Using our proposed pipeline, we process a large scale
FM dataset collected from commercial assets operating across several
sites consisting of 86,268 samples of V-I trajectories based features from
29 appliance types. We validate the correctness of extracted features in
the processed data by using it to compare well known and state-of-the-
art ML algorithms in the task of appliance type classification. The next
sections discusses in details our proposed pipeline.

3. Preliminaries

This section discusses the essential concepts and background infor-
mation that our paper is built upon. In particular, the first subsection

describes the ALM device which is the source of the data used for this
study. Then, the second and third subsections explain the concepts of
V-I trajectories and approximate entropy, which are core components
of our feature extraction pipeline.

The UK FM industry is projected to be worth over $52 billion by
2027 [43]. A major FM company Cloudfm Group Ltd has developed
an industry-leading Internet of Things (IoT) based ALM unit called
PRISM® that is supported by a digital platform called Mindsett which
provides an end-to-end solution combining Al and data analytics visu-
alisation tools for appliance-level energy management and predictive
maintenance.

3.1. Load monitoring data collection

The PRISM® ALM hardware unit connects directly to a site distri-
bution board. A single unit consists of 36 channels that can be used to
connect different appliances. For each appliance, the signal information
that the ALM unit collects includes: (i) Apparent Energy (VA), (ii)
Real Energy (W), (iii) Current of the Given Circuit (irms), (iv) Voltage
Frequency (vfreq), (v) Voltage of the Power Supply (vrms), (vi) The
fundamental harmonic of the voltage (vhl), and (vii) The harmonic
data up to the 10th component (Hil-Hil0, Hql-Hq10). According
to Cloudfm Group Ltd, through the use of this information along
with the appliance type, a comparison can be made among different
brands/models within an appliance type which has huge decision mak-
ing benefits for customers. In addition, other metadata includes: (i) The
appliance type (thing type), (ii) The channel in which the appliance is
connected (channel), (iii) The unique identifier for an appliance (nid).
Fig. 1 illustrates the overview of how the ALM unit is used as part of
the company’s FM supporting digital platform.

3.2. V-I trajectories

In 2007, Lam et al. [23] demonstrates that unique appliance sig-
natures can be created by examining a curve made up of one phase
current and voltage of the appliance in a steady-state event. The unique
signature is often based on the shapes of the V-I Trajectories and as
shown in Fig. 2, different appliance types exhibit different trajectory
shapes. Earlier work describes the trajectory shapes using hand-crafted
features (e.g. area of the curve, curvature of mean line). Recent devel-
opments treat the trajectory as images to be used with Convolutional
Neural Networks (CNN) [13-15,17,18]. As mentioned, extraction of V-I
trajectories from a raw signal is dependent on the detection of steady-
state events in that signal. Multiple approaches exists for determining
steady-state events [13,44]. The most common is to detect a period
in between a sharp increase and decrease in apparent energy. Fig. 3
shows an example of a detected steady-state event and the resulting
V-I trajectory.
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Approximate Entropy is a technique used for measuring the rate of
regularity of a time series [45]. It was first introduced by Pincus back

in 1991 [46]. Given a time series u, a sliding window of size m, and
a filtering level r, the approximate entropy of u is defined as Eq. (1).

It measures the logarithmic likelihood that patterns in a time series
will remain similar when extended by an additional data point [46].
Fig. 4 shows the ApEn values of a time series with repeating pattern
and a time series that has less repeating pattern. Fig. 4a shows a sine
wave with four repeating cycles created through y = sin(x) where
x = %1;0 < t < 8z. Fig. 4b is created by randomly shuffling the
sequence in Fig. 4a to create a sequence with few repeating patterns.
A time series with repeating patterns will result in an ApEn close to
zero. In contrast, a time series with few repeating pattern will have high
value of ApEn. Hence, ApEn provides a useful mechanism for measuring
noise in a signal.

4. Commercial use case and challenges

To illustrate the scale of the industry, Cloudfm Group Ltd serves FM
clients ranging from restaurants, warehouses, 24/7 outlets, commercial
properties, manufacturing plants and international clients. The number
of appliances (also termed assets) at these multi-site establishments
can range from 10 to 14,000. For instance a client in the amusement
and recreation sector, produces data from 13,755 appliances (over 150
appliance types) operating on a 24 h day cycle across 40 sites in the UK.
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Depending on the number of appliances to be monitored per site, the
installation of multiple ALM units are required, with each supporting up
to 36 channels for monitoring different appliances. For another client,
a casual dining restaurant chain, 482 appliance types operate across
101 spaces across 6 sites supported by 27 ALM units. Fig. 5 shows
the logged entries for assets that includes meta information such as
appliance category, type, phase information, circuit and distribution
board they are connected to at a given site. Also shown are the ALM
unit ids linked to a given distribution board and the assets connected
to each channel of the ALM unit.

The process of installing ALM units starts when the FM mobilisation
team sends installation surveyors to visit a given site to assess the
number of ALM units that would be required, based on the number of
distribution boards, the number of appliances that need to be monitored
and their connectivity status via Wi-Fi coverage in the vicinity of each
distribution board. Based on this initial assessment the distribution
boards and assets each board is powering are logged into a shared
data and workflows repository. Fig. 5 shows the logged entries for
assets that includes meta information such as appliance category, type,
phase information, circuit and distribution board they are connected
to at a given site. The list of assets connected to each distribution
board are normally pre-marked on the board by site operators. This is
currently the only check for verifying that an asset of a particular type
is connected to a board. During the on-site installation of ALM units,
installation engineers visit the site to install the ALM units. Here they
connect an ALM unit’s channels to a distribution board and check if
the ALM unit is transmitting signals. They then recheck the shared data
repository to determine if the channel number listed there corresponds
to the correct asset name based on those which were marked on the
distribution board. Following installation of the ALMs which usually
takes place during non-trading hours, the mobilisation team liaises
with the hardware and data science teams to check the quality and
correctness of received data (frequency of data points, phase mapping,
etc.).

Some commercial appliances relay on a three-phase power supply
where the current and voltage from each phase needs to be correctly
mapped to the ALM channels to monitor the asset load and perfor-
mance. Here mistakes can arise in how the phases are mapped. If this
mapping is incorrect the installation engineer will have to revisit the
site to correct it. During the mapping of phases, the placement of the
Kct-16 current transformers used to monitor an asset’s current, power
and energy may be positioned incorrectly to collect signal information
resulting in incorrect data being transmitted. The asset lists on the
distribution board can also be outdated depending on when the last
update was done by the site. There can be shifts between the plugs,
and assets can be replaced with different appliances than those that
are listed resulting in incorrect signals. These signal anomalies have
to be manually identified by the hardware and data analytics teams
by examining patterns in the signal harmonics for specific asset data
streams flagged as needing further inspection.

Journal of Industrial Information Integration 50 (2026) 101040

For large or multi-site businesses with 100 s of connected assets
requiring multiple ALMs to be deployed, the combination of these
potential errors and manual inspection signal anomalies can prolong
the installation process as there is no framework for consistently and
sustainably verifying the correctness of each asset’s type. Automatically
verifying that load signal information being collected corresponds to
a correct, incorrect or unidentifiable asset type can enable the site
engineer to quickly recheck asset lists and their connections to specific
ALM unit channels saving cost and time.

5. Proposed feature extraction and classification pipeline

This section details our proposed feature extraction and classifica-
tion pipeline that has been applied on a real-world dataset provided by
Cloudfm Group Ltd. Hence, the first part of this section discusses the
original dataset and the cleaning procedure performed on the dataset
to prepare for feature extraction. The second part details the feature
extraction and ML pipeline.

5.1. Original dataset

Access to raw signals data collected from ALM units were provided
which contained high frequency signals gathered from 391 appliances
across 60 types over the span of six months from seven site locations.
Locations comprised of various sites for a restaurant chain. The dis-
tribution of appliance type is highly imbalanced since a single location
does not have all appliance types installed. The raw signals are grouped
by the date and are separated into 1 week chunks. The appliance type
label is stored in a different file which can be associated with the
raw signal data by their channel in combination with their nid. The
information in the label file, aside from the channel and nid, are entered
manually by site engineers.

Data cleaning procedures were done on the label file and the files
containing weekly raw signal data. For the label file, columns were
stripped of leading and trailing spaces and rows with missing thing type
were removed. This resulted in a reduction in the number of appliances,
their unique types, and locations. For the files containing weekly raw
signal data, columns with null values were dropped. Furthermore,
information in the label file were then joined with the raw signal data
based on their channel and nid. The raw signal data was the regrouped
by the appliance channel and nid. In particular, the weekly data was
separated into different files where each file contained the raw signal
data of one appliance on a single day. This was done to isolate each
appliance’s signals for more convenient processing in later stages of our
preprocessing pipeline. In addition, the metadata information of each
file was recorded as entries in a separate csv file.

5.2. Denoised V-I trajectories extraction approach

The feature extraction approach can be divided into two steps: (i)
Extracting V-I Trajectories and (ii) Extracting shape features from V-I
Trajectories. In the first step, for each of the per-appliance signal data
files, outliers were removed from the apparent energy (VA) signal based
on moving median replacement. More specifically, the signal is first
divided into partitions. Then, a sliding window is used to replace points
outside of (Q1—1.5IQR, O3 +1.5IQR) with the median of the window.
These steps are repeated for partitions of sizes 12.5%, 25%, 50%, and
100% of the signal length. Then, the filtered VA signal is fed into the
steady-state detection algorithm outlined in [44]. Since the detection
was done on a full day of data, multiple steady-state events could be
detected for each signal data file. Here analyses was restricted to the
first ten detected events due to computational resource constraints. For
each of the events, the average of 2 cycles of voltage and current at
the start and end of the event were extracted and marked as V,, V}, I,
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Fig. 5. FM digital platform supported by load monitoring units.
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Fig. 6. Characteristics of correctly and incorrectly detected events.

and I,. Then, Eq. (2) was used to calculate the steady-state voltage and
current.

V=WV, +V)/2s [=1,—1, )
IQOR=03-01 3
ApEn(m,r, N)(I) > 0.03 Vv |corr(V,I)| < 0.5 “4)

where Q1 = The first percentile of the signal.
03 = The third percentile of the signal.

>NV, - 1)

VEL® -7/l a, - D2
m=2;r=02

corr(V,I) =

As mentioned in Section 2, the steady-state detection algorithms can
sometimes select the wrong data points as start and end points. We
observed that these misclassified events result in steady-state current
that is highly unstructured. To measure this, we calculate its approxi-
mate entropy (ApEn(7)) and its correlation with the steady-state voltage
(corr(V, I)). Our experiment showed that misclassified events tend to
have the characteristics shown in Eq. (4). This aligns with the work of
Yan and Gao [9] in which a similar ApEn(I) threshold was reported
where for a healthy bearing, sampled at 26 kHz with 1000 data points,
the ApEn(l) value was approximately less than 0.038. Fig. 6 shows
a comparison between steady-state current and voltage in correctly
classified and misclassified events. Based on this, we discarded any
events that matched the condition in Eq. (4). Finally, shape features
were extracted from plots created by the remaining steady-state voltage
and current pairs. We discuss the details of this extraction process in
the next section.

5.3. Rationale for approximate entropy and fixed threshold

We motivate our use of ApEn as a noise-robust statistical measure
because of two factors. First, its computational efficiency is particularly
suitable for large-scale FM applications. Its lightweight computation —
based only on local distance comparisons within a short window —

ensures scalability and low-latency processing for both streaming and
batch-mode feature extraction [9]. Second, ApEn’s ability to quantify
complexity without relying on any assumed signal distribution or fre-
quency model makes it broadly applicable across different electrical
environments and device types [46]. This is unlike conventional denois-
ing or filtering techniques such as wavelet transform, empirical mode
decomposition, or Kalman filtering, which require prior assumptions
about the signal’s spectral content or stationarity [32,33,45].

Building on this justification, we also opted to use a fixed ApEn
threshold (0.03 in this study) rather than an adaptive one for three
key reasons. First, empirical testing as detailed in Section 6.6 shows
that this threshold effectively separated valid steady-state events from
misclassified noisy segments across a wide range of datasets, appliance
types and operating conditions, consistent with the findings of Yan and
Gao [9]. Second, adaptive thresholding approaches typically require
iterative recalibration or dynamic windowing, which introduces addi-
tional computational overhead and instability during batch processing
of high-volume data streams [34,35]. Third, the non-uniform and high-
variance sampling characteristics of real-world signals can cause adap-
tive thresholds to fluctuate excessively, potentially discarding valid but
temporally irregular events [38,39]. The fixed threshold therefore pro-
vides a balance between generalisation and computational simplicity—
maintaining interpretability, reproducibility, and consistent denoising
performance across diverse datasets.

The effectiveness of using ApEn in this way aligns with broader
findings in the energy-efficiency literature, where robust noise handling
and feature selection have been shown to enhance the performance
and scalability of ML-based monitoring systems. For example, Sheela
et al. [10] demonstrated that incorporating noise-aware preprocessing
significantly improves prediction accuracy in smart building energy
management systems using ML and IoT frameworks. Similarly, our use
of ApEn and fixed thresholding ensures that only statistically stable and
physically meaningful steady-state events are retained for V-I trajec-
tory feature extraction, thereby improving classification reliability and
reproducibility in real-world FM deployments.

5.4. V-I trajectories shape features extraction

A total of 10 features were extracted from the V-I Trajectories based
on those identified in [44]: (i) Current Span (itc), (ii) Area (ar), (iii)
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Area with loop direction (Ipa), (iv) Asymmetry (asy), (v) Curvature of
mean line (M), (vi) Self-intersection (sc), (vii) Peak of middle segment
(mi), (viii) Shape of middle segment (sh), (ix) Area of left and right
segments (alr), and (x) Variation of instantaneous admittance (D).
Aside from itc, the other features were calculated using normalised V-
I trajectories. Furthermore, for some features the calculation method
adopted by Wang et al. [44] rely on the points in the trajectory to be
sorted. Hence, prior to the calculation of those features, we sorted the
points in the trajectory based on their distance and direction from each
other. In particular, starting from the point with the maximum steady-
state voltage (vmax), the next point in the trajectory was the closest
point in the same direction within a 40 degree angle.

5.5. Extracted dataset

Our proposed pipeline generated a dataset of 103,120 samples with
43 appliance types. However, due to the imbalanced nature of the
dataset, some appliance types made up less than 0.1% of the total
samples (e.g. Blind Supply, Cooling Tunnel Condenser, External Illu-
minate Signage, etc.). We opted to remove those appliance types from
the dataset. In addition, appliances labelled as Appliances, Mains, and
Sockets did not reflect an underlying appliance type. For those labelled
as Appliances, we opted to split these into two based on their thing name
which are Servery General and Post Mix Coke Machine. Appliances
labelled as Mains and Sockets were removed from the dataset. The final
dataset consisted of 86,268 samples with 29 appliance types. Table
1 shows the distribution of the 29 classes which represent electronic
appliances ranging from commercial chillers and pizza ovens to con-
sumer devices such as coffee machines, indoor lighting and fridges.
These represent a fraction of the various appliance types found across
FM clients business users.

5.6. Classification using V-I trajectory features

The extracted dataset comprising of the 10 V-I trajectory features
was used to classify the 29 appliance type classes. Here data was used
to train and evaluate different supervised ML classification models after
which inference could be performed on the trained model to predict the
class probabilities of extracted trajectory features of unseen appliance
signals. Data normalisation, in particular Min-Max normalisation was
also performed on the extracted features. Fig. 7 illustrates the entire
feature extraction and classification pipeline.

6. Experiments and results

To verify the quality of the extracted denoised features dataset, we
opted to train and test different classifiers in correctly identifying ap-
pliance types from the extracted V-I trajectories. This section outlines
our experimental setup by discussing the algorithms used, our train/test
splits creation strategy, evaluation metrics, hyperparameter tuning pro-
cedure, and cross validation strategy. We then present the results of
how the algorithms perform, comparisons with other state-of-the-art
approaches and public datasets.

Table 1
Appliance type distributions of clean and noisy training set.

Clean set Training set with Noise
Noise samples Noise ratio

AC 2205 884 0.401
Bar power 1069 117 0.11
Chiller 485 243 0.503
Clean power 919 424 0.462
Coffee machine 394 107 0.272
Dishwasher 12046 156 0.013
Distribution board 6359 540 0.085
Fire alarm 104 104 1.0
Fridge 796 177 0.223
Fryer 15115 120 0.008
Glass washer 5227 83 0.016
Grease trap 276 1 0.005
Hand dryer 9351 411 0.044
Hoist 111 25 0.231
Ice machine 918 136 0.149
Indoor lighting 745 745 1.0
Microwave 1036 221 0.214
Oven 1645 41 0.025
Overdoor heater 539 539 1.0
Pasta boiler 6432 12 0.002
Pizza oven 8456 329 0.039
Post mix coke machine 1003 14 0.014
Power 366 366 1.0
Servery general 654 43 0.066
Servery power 1316 205 0.156
Walk in freezer 3221 119 0.037
Walk in fridge 377 248 0.659
Water heater 2641 126 0.048
Water pump 2462 59 0.024

6.1. Algorithms for appliance type classification

The choice of ML classification algorithms are based on what have
been proposed in the literature so that the results can be compared back
to those sources. In particular, five algorithms are chosen: Decision
Tree (DT), Random Forests (RF), k-Nearest Neighbours (kNN), Multi-
Layer Perceptron (MLP) and Extreme Gradient Boosting (XGB) which
has been shown to perform well against other classical ML classifiers
applied to Non-Intrusive Load identification from V-I Trajectories [12].

6.2. Train/test splits

We split the extracted 86,268 samples into training (70%) and
testing (30%). Stratified sampling was adopted to ensure that the two
splits had the same appliance type distribution as the original dataset.
We used the training set to perform hyperparameter tuning and cross
validation. The test set was used to determine the final performance
of the best performing hyperparameters on unseen data. Furthermore,
to demonstrate the efficacy of our approach, a training set with noise
was created to illustrate the performance differences between models
trained with and without noisy samples. The number of samples and
class distribution in this new set was equal to the clean training set.
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Training data Acc Precision Recall | F1 mAP

XGB Clean 0.906 0.884 0.841 0.860 0.871
With noise 0.887 0.831 0.738 0.755 | 0.785

RF Clean 0.903 0.890 0.841 0.863 0.863
With noise 0.884 0.839 0.719 0.736 | 0.785

DT Clean 0.861 0.808 0.786 0.796 0.740
With noise 0.840 0.695 0.667 0.665 | 0.631

KNN Clean 0.875 0.775 0.779 0.775 0.765
With noise 0.866 0.690 0.708 0.697 | 0.686

ML Clean 0.748 0.700 0.636 0.641 0.705
With noise 0.748 0.608 0.545 0.550 | 0.623

Table 1 shows the noise ratio of each appliance type class in the training
set with noise.

Conventional classification metrics were used to measure the per-
formance of different models trained using data with and without
noise removal. More specifically, Accuracy, Precision, Recall, F1-Score,
and Mean Average Precision (mAP) and Average Precision (AP) where
used. We primarily focus on AP and mAP as AP measures the area
under the precision-recall curve for a specific appliance class, while
mAP provides an overall measure by averaging AP across all appliance
classes, offering a more comprehensive evaluation of classification
performance.

6.3. Validity of the extracted dataset

Table 2 presents the performance of all classifiers on both clean
and noisy test samples, revealing several key observations on the
effectiveness of the extracted denoised dataset.

First, the mAP of all models trained with noise removed is larger
than 60% while the highest performance achieved by XGB reaches 87%.
This suggests that the extracted denoised dataset does consist of pat-
terns that are useful for classifying different appliance types, confirming
the applicability of V-I trajectory features as a useful representation of
electrical appliances.

Second, the average mAP across models dropped by approximately
8.7% when noise was reintroduced, clearly demonstrating the benefit
of the proposed denoising step in filtering out unstructured signal
components. To further quantify this effect, model performance was
analysed in terms of classification error reduction, defined as 1 —mAP.
This analysis highlights how much incorrect prediction each model
eliminated after entropy-based denoising. The results show that XGB,
RF, and DT reduced their classification errors by 40%, 36%, and
30%, respectively, indicating that ensemble and hierarchical models are
particularly effective at leveraging the cleaner and more statistically
regular V-I trajectory features. In contrast, kNN and MLP achieved
smaller reductions of 25% and 22%, reflecting their continued sensitiv-
ity to residual feature irregularities and local noise. These findings align
with prior research showing that tree-based models are inherently more
robust to outliers, capture non-linear feature dependencies more effec-
tively, and benefit from built-in regularisation mechanisms compared
with distance-based or shallow neural approaches [19,21,44,47,48].

Third, while the denoising step substantially improves classifica-
tion performance, it also introduces a trade-off. Overly aggressive
filtering, as applied to remove unstructured current and voltage seg-
ments (Section 5.2), may risk discarding valid yet temporarily irregular
steady-state events. Such balancing between predictive accuracy, com-
putational efficiency, and potential data loss is a common consideration
in Al-driven energy-efficient systems [11]. In this study, however, the
observed performance gains and the resulting operational efficiency
benefits far outweigh these risks.

Finally, the close alignment between cross-validation and test re-
sults further indicates strong generalisation capability of the models
trained on the denoised dataset, reinforcing the stability and scalability
of the proposed feature extraction and classification pipeline.

6.4. Algorithm performances

Table 3 shows the various classifier performances on test samples
for each class in the dataset. These results provide two performance
insights of the algorithms tested. First, tree based methods (XGB, RF
and DT) perform the best compared to kNN and MLP. An examination
of the minority class (Fire Alarm) shows that XGB, RF and DT all
produce high AP for that class compared to the other two models.
This suggests that the low performance of kNN and MLP is due to
prediction bias towards the majority class. In the case of kNN, Table
3 shows clearly that the appliance types with the highest AP are the
majority classes Fryer and Hand Dryer while the lowest AP class is the
minority class Fire Alarm. Secondly, when examining Table 3, the class
type with the lowest AP across all four models is Servery General. Deeper
analysis of the misclassifications of Servery General as shown in Table
4 shows that they are mostly misclassified as Distribution Board and
Servery Power.

6.5. Hyperparameter tuning and cross validation

We performed hyperparameter tuning using a Bayesian Optimisa-
tion approached introduced by Bergstra et al. [47]. The optimisation
process was run 20 times for each algorithms resulting in 20 differ-
ent tested configurations. For each hyperparameter configuration, we
performed k-fold cross validation where k was set to 5. The best config-
uration was selected based on its average F1-Score across the different
splits. Table 5 shows the performances of the best configuration of
each model across the 5 splits. The values in parentheses represent
the standard deviation which can be further used to determine the
confidence interval by multiplying by 2. The best hyperparameter
configuration was then used to train a model on the full training set
and evaluated on the test set.

6.6. Thresholds sensitivity analysis

We analyse the sensitivity of the selected ApEn(/) and corr(V, I) by
performing a full 10 x 9 grid search over ApEn(/) € [0.01,0.10] and
|corr(V, I)| € [0.1,0.9] resulting in 90 combinations. For each pair, a
subset of the training set with noise, and a DT classifier was evaluated
under 5-fold cross-validation. The mean and standard deviation of
F1 scores were recorded to assess robustness. The optimal thresholds
(ApEn() = 0.03, |corr(V,I)| = 0.5) achieved the highest mean F1 =
0.72(+0.06), and lie within a broad plateau of stable performance (Fig.
8). This region represents a good balance between excluding noisy
signals and retaining sufficient valid samples for reliable learning.

6.7. Comparative performance analysis with existing approaches

We further validate our proposed denoised V-I trajectory extraction
approach by adding it as part of the data preprocessing stage for De
Beats [19], Liu [21] and Zhao [49]. Their works use deep learning
approaches that utilise V-I trajectories as image inputs into CNNs and
Vision Transformer (ViT). De Beats et al. [19] converts V-I trajectories
to grey scale pixelated images. These images are then fed to a novel
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Table 3
Individual classes AP.
AC Bar power Chiller Clean power Coffee machine Dishwasher
XGB 0.862 0.810 0.922 0.917 0.883 0.920
RF 0.857 0.799 0.909 0.917 0.883 0.912
KNN 0.778 0.617 0.88 0.888 0.878 0.885
DT 0.67 0.612 0.79 0.902 0.755 0.852
MLP 0.665 0.584 0.845 0.846 0.797 0.771
Distribution board Fire alarm Fridge Fryer Glass washer Grease trap
XGB 0.813 0.983 0.862 0.944 0.903 0.848
RF 0.805 0.981 0.87 0.925 0.9 0.846
KNN 0.703 0.186 0.743 0.916 0.864 0.798
DT 0.617 0.896 0.654 0.904 0.802 0.691
MLP 0.619 0.75 0.64 0.89 0.777 0.633
Hand dryer Hoist Ice machine Indoor lighting Microwave Oven
XGB 0.946 0.840 0.808 0.910 0.914 0.898
RF 0.93 0.872 0.802 0.917 0.91 0.89
KNN 0.911 0.836 0.639 0.795 0.905 0.856
DT 0.901 0.607 0.571 0.78 0.896 0.76
MLP 0.919 0.576 0.5 0.659 0.865 0.717
Overdoor heater Pasta boiler Pizza oven Post mix coke machine Power Servery general
XGB 0.880 0.919 0.915 0.952 0.789 0.524
RF 0.875 0.916 0.912 0.909 0.774 0.523
KNN 0.854 0.903 0.894 0.891 0.579 0.233
DT 0.807 0.897 0.858 0.875 0.553 0.236
MLP 0.675 0.868 0.811 0.881 0.375 0.21
Servery power Walk in freezer Walk in fridge Water heater Water pump
XGB 0.646 0.946 0.865 0.909 0.918
RF 0.624 0.907 0.86 0.895 0.91
KNN 0.324 0.886 0.778 0.875 0.884
DT 0.388 0.863 0.657 0.784 0.889
MLP 0.284 0.876 0.744 0.81 0.874
Table 4
Number of Servery General Misclassifications.
AC Bar power Chiller Clean power Dishwasher Distribution board Fridge
XGB 1 1 - - 4 37 6
RF 1 1 - - 4 25 6
KNN 1 7 - 1 1 47 8
DT - 7 4 - 5 45 8
MLP - 3 - 1 3 -
Glass washer Hand dryer Hoist Ice machine Indoor lighting Microwave Power
XGB - - 5 5 - 1 2
RF - - 3 3 - 1 1
KNN - - 1 6 - 1 4
DT 1 1 - 4 4 2 1
MLP - - 1 - - - 2
Servery power Walk in fridge Water pump
XGB 15 - -
RF 13 - -
KNN 32 - -
DT 20 2 -
MLP 4 - 1
Table 5
Cross validation results.
DT DT (Noise) KNN KNN (Noise) MLP MLP (Noise)
Acc 0.852 (+0.003) 0.817 (£0.044) 0.852 (+0.003) 0.817 (+0.044) 0.852 (+0.003) 0.817 (+0.044)
Precision 0.798 (+0.01) 0.707 (+£0.094) 0.798 (+0.01) 0.707 (+0.094) 0.798 (+0.01) 0.707 (£0.094)
Recall 0.788 (+0.004) 0.685 (+0.065) 0.788 (+0.004) 0.685 (+0.065) 0.788 (+0.004) 0.685 (+0.065)
F1 0.792 (£0.007) 0.684 (+0.09) 0.792 (£0.007) 0.684 (+0.09) 0.792 (+0.007) 0.684 (+0.09)
RF RF (Noise) XGB XGB (Noise) Zhao etal Zhao etal (Noise)
Acc 0.852 (+0.003) 0.817 (+0.044) 0.901 (+0.002) 0.866 (+0.048) 0.622 (+0.028) 0.606 (+0.024)
Precision 0.798 (+0.01) 0.707 (£0.094) 0.878 (+0.006) 0.791 (£0.097) 0.801 (+0.011) 0.798 (+0.006)
Recall 0.788 (+0.004) 0.685 (+0.065) 0.841 (+0.003) 0.739 (£0.07) 0.472 (+0.045) 0.455 (+0.037)
F1 0.792 (+0.007) 0.684 (+0.09) 0.858 (+0.003) 0.749 (+0.1) 0.418 (+0.052) 0.356 (+0.043)
Liu etal Liu etal (Noise) De Beat etal De Beat etal (Noise)
Acc 0.671 (+0.025) 0.665 (+0.028) 0.737 (+0.046) 0.734 (+0.054)
Precision 0.835 (+0.01) 0.826 (+0.011) 0.815 (+0.024) 0.808 (+0.026)
Recall 0.529 (£0.039) 0.521 (£0.041) 0.661 (+£0.064) 0.662 (+0.082)
F1 0.604 (+0.053) 0.598 (+0.069) 0.672 (+0.084) 0.67 (+0.105)
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Table 6

Performance on Benchmark Datasets.
Dataset Method F1 F1 (with Noise)
PLAID2014 RF 0.985 (+0.001) 0.799 (+0.099)
PLAID2017 RF 0.992 (+0.001) 0.813 (+0.229)
PLAID2018 XGB 0.988 (+0.001) 0.792 (+0.171)
COOLL RF 0.998 (+0.001) 0.943 (+0.042)
WHITED RF 0.99 (+0.001) 0.937 (£0.045)

CNN architecture to perform classifications [19]. Following a similar
technique Zhao et al. [49] and Liu et al. [21] converts V-I trajectories
to a coloured HSV image. Leveraging the power of transfer learning,
an AlexNet model is then pre-trained [50] on ImageNet and fine tuned
using the HSV images as input for appliance classifications. Zhao et al.
uses this same HSV images as input into a ViT.

We trained the network of all three approaches on the same train-
ing and testing splits as outlined in Section 6.2. Table 5 shows that
our trajectory extraction approach improves the F1 score of all three
approaches. Performance is not as high compared to the ML models
shown in Table 2, and we attribute this to two factors. First, for all
three approaches, extensive hyperparameter searches were conducted
to select the best performing configuration for their benchmarking
datasets. Our experiment only selects the best proposed configurations
from their works and applies them directly to our dataset. Second,
due to these extensive hyperparameter optimisations, their models
were able to achieve high performance with a relative small amount
of training samples as compared with normal scenarios. CNNs and
ViTs tend to require a much larger amount of data to achieve similar
performances [48].

6.8. Comparative analysis with benchmark datasets

To further validate the proposed approach beyond the FM specific
dataset used, it was evaluated on five available benchmark datasets re-
searchers have widely used to evaluate NILM based approaches. Specifi-
cally, PLAID2014, PLAID2017, PLAID2018, COOLL, and WHITED were
used to train and evaluate the ML classifiers selected in Section 6.1.
Table 6 reports the F1 scores of top-performing algorithms from cross-
validation on datasets with and without noise. The result shows that our
approach achieves F1 scores of over 98% for each respective dataset.
In comparison recent works on NILM approaches evaluated on these
research datasets has achieved comparable mean F1 scores [12,22].

10

6.9. Number of samples per appliance type

We also performed experiments to determine the number of samples
for each appliance type that yield the highest AP. To achieve this, we
created new training sets where the number of samples of a specific
appliance type is set as a certain percentage of the number of instances
of that appliance type in the clean training set. We then trained DT on
these new training sets and evaluated their performances on the test
set. The AP of each appliance type at different percentages levels is
shown in Fig. 9. The result provides two useful insights. First, Fig. 9
shows that the number of samples needed to achieve an AP of over
80% varies between different appliance types. This can be attributed
to the V-I trajectory signature variation of some appliance types being
drastically different between brands. Second, with exception of Hand
Dryer, the addition of more samples leads to an increase in AP for
all other appliance types. In fact, the number of samples is strongly
correlated with the AP in the positive direction (r = 0.371).

7. Discussion

This research introduces and demonstrates a new denoised voltage-
current feature extraction approach for improving modelling and clas-
sification of electronic appliance load signatures as part of a com-
mercially viable NILM system for supporting asset verification in FM.
Compared to existing noise reduction and steady-state event detection
algorithms, the novel application of ApEn is able to provide a sta-
tistically effective and computational efficient method detecting load
instability and removal from steady-state appliance signal waveforms
to improve the accuracy of feature extraction for load classification.
The proposed approach was evaluated using both an FM appliance load
dataset comprising of 29 assets operating in real world commercial
properties as well as five popular benchmark research datasets. Our
approach was shown to consistently improve asset classification per-
formances when applied across both traditional ML classifiers and a
number of state-of-the-art DL approaches.

The FM appliance data used consisted of assets representing a
variety of consumer and commercial appliance types beyond those
found in existing available research datasets. We performed further
analysis and comparisons of the dataset with three other FM datasets
acquired using the ALM units described in section 3.1. These datasets
were acquired from other client sites comprising of hireable commercial
office spaces and multi site 12 and 24 h amusement/entertainment es-
tablishments. Across all these datasets we found that the recorded assets
were reflective of similar types, makes and models found across similar
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Fig. 10. Deployment mechanism for V-I trajectory feature extraction pipeline.

commercial sites for which our approach was achieving comparable
performances with accuracies and F1 scores of between 88% and 97%.
This shows the relevance of the commercial dataset selected to validate
our approach and its potential generalisability when deployed.

7.1. FM deployment scenario

In this section, we outline a mechanism for deploying our proposed
pipeline and for model training and evaluation as part of the digital
FM platform shown in Fig. 3. This approach aligns with broader efforts
in smart building energy management systems that integrate machine
learning and IoT for enhanced energy efficiency and automation in
various environments, including those with resource-constrained de-
vices for data collection and control [10]. Given that the company’s
infrastructure and products are built on top of Microsoft Azure, we
recommend the use of Microsoft Azure Machine Learning (Azure ML)
for the deployment [51]. Fig. 10 shows the flowchart of the mechanism.

We suggest the feature extraction be performed in batches where
each batch contains all the new appliance data collected through the
ALM units over a single day. These might be newly installed ALM
units or the reconfiguring of existing units based on connecting new
application channels for monitoring. This can allow the processing of
multiple appliances to be done in parallel. The raw data collected from
the ALM units would be stored and maintained in a data lake for pre-
processing. Once the V-I trajectory features have been extracted for the
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batch, inferences for appliance classification can then be performed on
the extracted batched features. The predicted labels of each appliance
in the batch can then be used to flag any incorrectly classified appli-
ances or those that cannot be verified with a high enough confidence.
These flagged appliances can then be checked by the hardware and data
analytics teams.

To continually assess the performance of the trained classification
model, an evaluation mechanism is needed. The creation of a new
training and test set can be done automatically from the extracted V-
I trajectory features database. Once the new dataset is created, the
current model can be evaluated on the test set. If its mAP drops below
a threshold ¢, then a new model is trained on the updated (verified)
training set. This training and evaluation mechanism minimises the
cost of model retraining while the model is operating with acceptable
performance levels. Future work will investigate more efficient model
fine tuning approaches such as semi-supervised learning techniques.
These algorithms learn the distribution characteristics of data by simul-
taneously using smaller amounts of labelled data with larger available
unlabelled data where labelled data points are scarce or expensive to
obtain [25,52].

Data collected on the newly verified assets would be stored where
the labelled V-I features in combination with the other signal (see
Section 3.1) and appliance information can be used to distinguish
and catalogue different electronic appliance types. FM clients can use
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this digital catalogue to compare and contrast Return on Investment
(ROI), age/lifespan, power factor, and other energy related metrics
between similar appliance makes and models in order to make informed
purchasing or upgrade decisions considering, usage requirements, op-
erational, maintenance costs and net zero sustainability targets. The
collected asset data can also be integrated with smarter digital in-
terventions for building infrastructures and their underpinning data
systems. Computational simulation models can be used to visualise and
comprehend the complex interplay between environmental variables
and performance while using Large Language Models to interface with
and explore real-time response strategies to different FM operational
and energy consumption scenarios. Here, data and ML driven digital
twins can model building infrastructures and connected assets to help
simulate these scenarios and optimise performance against client re-
quirements and constraints for improving operational and maintenance
efficiencies while contributing to reducing CO2 emissions [53,54].

7.2. Impact on ALM installation process for FM

The proposed asset classification pipeline can have a profound
impact on the existing ALM installation process at Cloudfm Group Ltd .
For a typical client site with 100 assets, the current installation process
can take between 2-3 h. This can be longer for larger sites and does
not include manual checking of misclassified or unverifiable assets
requiring return visits to client sites for implementing corrections.
This can extend the installation and verification process over several
days. The trained asset classification model can significantly reduce
the time needed for these processes in two ways. Firstly, immediately
after installation of an ALM unit and confirmation it is transmitting
signals, the model can start determining the appliance type after the
first steady-state event has been detected which varies between appli-
ances starting from 10 min. In addition, each model’s inference after
determining a steady-state event takes approximately 300 ms. This
means that for some appliances, the model can perform classifications
while the engineer connects other appliances to the ALM unit or installs
other ALM units on-site. In this scenario, engineers can confirm the
predictions with low confidence scores without having to revisit the
site. Secondly, for appliances whose steady-state takes a longer time
to determine, the engineer can perform manual tagging on-site and the
model’s predictions can be cross-checked with the manual tags at a later
time against any conflicting tags highlighted by the data science team.
This reduces the number of appliances that need to be checked by the
team.

The timely and correct installation of multiple ALMs units at client
sites can start to have a positive impact on their operational efficiency
and energy consumption. Data from the ALMs can be used to determine
the digital fingerprint of its operation which can be used to track
performance and raise an alarm if the asset starts to perform sub op-
timally to recommend a maintenance check by also comparing against
similar asset types across several sites. Additionally the data acquired
from ALM units can be used to identify operating inefficiencies and
drive behaviour change in the interaction with operating staff. This can
have a signifiant impact on reducing CO2 emissions of clients helping
towards achieving the UK’s Net-zero targets.

8. Conclusion

This paper presents a new approach for ensuring V-I Trajecto-
ries are extracted correctly from non-uniformly sampled high volume
commercial appliance data. The proposed approach applies approxi-
mate entropy to identify and remove unstructured current and voltage
signals. These could otherwise be misclassified as steady-state events
leading to poorly extracted V-I Trajectory features for identifying asset
load signatures. ApEn provides and efficient and scalable approach for
measuring and identifying noise misclassified as steady-state events
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not previously applied for the processing of commercial operating
appliance load signals for load classification and verification solutions.

Our denoised feature extraction approach is shown to significantly
improve the classification of asset types when applied as a preprocess-
ing step in training ML pipelines on extensive real world data reflecting
the variety of consumer and commercially operating appliances and
units found across industry sectors covered by FM. The validity of
the approach is further proven by evaluating its performance gain
on multiple ML classification models, widely used publicly accessible
datasets and comparison with state-of-the-art ML techniques as part of
other NILM solutions.

The proposed approach can be used to benefit the FM sector in the
automatic identification or verification of connected appliances across
multi-site properties and buildings to improve installation of ALM units.
The timely and correct installation of ALM units will directly contribute
to monitoring the operating states of assets enabling preventive main-
tenance improving economic returns to clients while also improving
their operating efficiencies impacting the environment through reduced
energy consumption.

In addition to improving operational accuracy and cost efficiency,
enhanced appliance classification accuracy contributes to broader sus-
tainability outcomes. Reliable identification and monitoring of assets
enable more informed energy management decisions, reducing un-
necessary energy use and associated emissions. Consistent with re-
cent advances in sustainable machine learning applications [55-57],
the proposed approach supports the long-term objectives of improved
energy efficiency and reduced environmental impact.

This study was limited in its exploration of other relevant shape
features as input to ML and DL algorithms. Future research directions
will include building on the current feature extraction and classifica-
tion pipeline to include more shape features as well as process and
combine other recorded signal parameters such as voltage harmonics.
Furthermore, future work will also focus on quantifying how often valid
but irregular steady-state events occur and assessing their potential
impact on appliances with inherently variable load behaviours such as
batteries. Converting the extracted data into nodes and edges of a graph
and applying Graph Neural Networks (GNN) for appliance classification
will also be explored.
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