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 A B S T R A C T

Facilities Management (FM) companies can use load monitoring of electrical appliances (assets) to track energy 
consumption and predictive maintenance. Reliable algorithms are needed to automatically identify or verify 
appliances through their energy signatures to improve efficiencies during installation and inspection tasks. Most 
approaches rely on Voltage-Current (V-I) trajectory. These features are extracted from steady-state current and 
voltage signals. However, these methods often assume signals are uniformly sampled. In real-world conditions, 
this assumption does not always hold, leading to misclassified steady-state events when signals are noisy. 
This paper introduces a novel feature extraction and classification pipeline to ensure the validity of detected 
steady-state events. The approach measures the approximate entropy of current signals and their correlation 
with voltage to extract denoised features for appliance type classification. The proposed pipeline is evaluated 
on a large-scale real-world operational dataset spanning multiple appliance categories. We demonstrate that 
the extracted denoised features significantly improve the performance of Machine Learning (ML) models used 
for appliance type classification. Finally, we present a deployment framework for FM settings, enabling digital 
cataloguing of appliances informing businesses on sustainable choices for appliance requirements.
1. Introduction

Global energy demand is projected to rise by 25%, with electricity 
demand increasing by 58% by 2040 [1,2]. To meet sustainability 
targets, businesses must adopt tools for managing their power usage 
and improving energy efficiency [3]. Advances in Appliance Load 
Monitoring (ALM) [4], supported by Artificial Intelligence (AI) and 
Internet of Things (IoT) devices, enables usage of appliance-level data 
for monitoring energy consumption, predicting maintenance needs and 
inducing behavioural changes towards more efficient energy use [5].

Facilities Management (FM) companies lead this effort by deploy-
ing large scale digital infrastructures across sites such as restaurant 
chains, warehouses, hospitals, offices and casinos. These systems col-
lect and analyse electronic appliance-level data from a wide range of 
appliances—from lighting systems and HVAC units to kitchen equip-
ment. However, verifying that these appliances are correctly identified 
during the installation of ALM units remains a major challenge. Manual 
verification is time-consuming and prone to human error, particularly 
at sites containing hundreds of assets. Automated algorithms capable 
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of accurately verifying and classifying appliances based on their load 
signatures are therefore essential for improving installation efficiency 
and data reliability.

Developing such automated verification capabilities, however,
presents significant technical hurdles. Most existing approaches per-
form appliance identification using Voltage-Current (V-I) trajectory 
features extracted from steady-state signals [6,7]. These methods as-
sume that data are uniformly sampled and noise-free. In practice, 
however, signals collected from real-world FM systems are often non-
uniform due to compression or missing points. As a result, traditional 
steady-state detection algorithms can misclassify noise as valid steady-
state events, reducing classification accuracy. Similar to how advances 
in civil engineering employ self-sensing composite materials to provide 
reliable real-time data for structural health monitoring [8], our work 
addresses the need for dependable data validation in complex energy 
monitoring systems.
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To overcome these limitations, this study introduces a new denoised 
feature extraction and classification pipeline for automatically identify-
ing appliance types. The proposed approach measures the Approximate 
Entropy (ApEn) of steady-state current signals and their correlation 
with voltage to assess the regularity of load patterns. This enables the 
removal of noisy or irregular segments that could otherwise distort 
the extracted V–I trajectory features. Due to ApEn’s computational 
efficiency [9], this proposed extension of current steady-state detection 
algorithms enables an additional layer of effective noise filtering with 
minimal impact on pipeline performance.

This study therefore decreases the gap between methodological 
innovation and real-world deployment within the FM sector. Our ap-
proach complements recent advancements in AI and IoT driven energy-
efficient infrastructure, where deep learning and intelligent monitoring 
systems are used to enhance sustainability and operational decision-
making in smart buildings [10,11]. These studies emphasise the impor-
tance of robust data preprocessing and feature validation for reliable 
deployment—objectives that our denoised feature extraction and clas-
sification pipeline directly address. Our contributions in this paper are 
as follows:

1. Introducing a novel application of ApEn for detecting and re-
moving highly unstructured current and voltage based steady-
state events for extracting asset V-I trajectory features.

2. Developing a denoised V-I trajectory feature extraction approach 
as a new preprocessing method for handling non-uniformly sam-
pled signals in real world load monitoring data from assets 
operating in commercial environments.

3. Using the developed denoised asset feature extraction approach 
to enhance the performance of ML classification models uniquely 
trained and evaluated on large-scale FM asset load data spanning 
multiple commercially deployed appliances.

4. Proposing a new automated FM asset verification pipeline using 
denoised V-I trajectory feature based appliance load classifica-
tion supporting on-site ALM unit installation.

This paper is structured as follows. Section 2 outlines related work. 
In Section 3 the concepts of V–I Trajectories and Approximate Entropy 
are discussed. The FM commercial use case and challenges and de-
scribed in Section 4. Section 5 details the proposed feature extraction 
and classification pipeline. We discuss our experimental setup and 
provide analysis of the results in Section 6. In Section 7 we discuss 
the wider contributions of the proposed approach, potential deploy-
ment scenarios and industrial impacts within FM. The paper ends with 
conclusions and a discussion on future work in Section 8.

2. Related work

Appliance classification approaches can be found in the literature 
of NILM which refers to the task as Load Identification [7]. These 
approaches mostly rely on V-I Trajectories based features, typically 
extracted from the voltage and current steady-state waveforms [12] 
of the appliance’s operating load, and used as inputs to ML and DL 
algorithms for classifying its type.

Previous feature extraction approaches have been based on extract-
ing labelled hand-crafted features from the V-I Trajectory plots [13,14], 
meshing the plots into binary images to identify contour features using 
methods such as Elliptical Fourier Descriptors, Principle Component 
Analysis [15–18] or the use of mathematical feature extraction methods 
such as 2-D Fourier series [12]. The extracted features have then 
been used to train supervised ML classifiers based on Artificial Neural 
Networks, Linear Quadratic Discriminant Analysis, Support Vector Ma-
chine, Decision Trees, Naïve Bayes classifiers and Ensemble approaches 
such as Random Forests, Adaptive boosting and Gradient Boosting.

Recent developments in the field of DL, especially its successes in 
Computer Vision, have led to further interest in the treatment of V-I 
2 
Trajectories as 2D binary, colour images or 3D temporal spacial trajec-
tory images that can be used for training Convolutional Neural Network 
(CNN) based models [18–22]. The consensus view across these works is 
that CNNs are able to automatically extract useful latent features from 
V-I Trajectories without the need to perform manual feature extraction. 
While the results from supervised based approaches are promising, 
the introduction of a new/unknown type of appliance into the system 
would require these model to be periodicity retrained. Work done on 
unsupervised methods looks to tackle this issue through applications 
of clustering based ML and DL algorithms. Here approaches such as 
hierarchical clustering have been used to classifying appliance V-I 
Trajectories [23] and the combination of neural networks with density 
based clustering for extracting low dimensional features of V-I Trajecto-
ries which can be grouped as known or undefined appliance types [24]. 
More recently semi-supervised learning method have been explored 
in [25] to help identify appliances with limited labelled data. Across 
the aforementioned works, most of the approaches have been trained 
and tested on relatively small open source load data mostly gathered 
from consumer electronic appliances in controlled environments or 
simulated settings. Examples of these publicly available datasets in-
clude Reference Energy Disaggregation Data Set (REDD) [26], Plug 
Load Application Identification Dataset (PLAID) [27,28], Worldwide 
Household Industry Transient Dataset (WHITED) [29], together with 
others such as Controlled On/Off Loads Library (COOLL) [30], LIT [12] 
and BLOND [31]

The V-I trajectory extraction approaches adopted in previous works 
make an assumption that the signals data are uniformly sampled and 
of high frequency [7]. Based on this assumption, steady-state detection 
algorithms can rely on sliding window approaches to determine sharp 
increase and decrease in a signal (e.g. apparent energy) as the start and 
end of an event. In real-world applications, the signals data may not be 
uniformly sampled. This is often the results of data compression/re-
duction algorithms that record only the most important data points. 
In such environments, steady-state detection algorithms can misclassify 
noise as an event since the points that mark the sharp increase and 
decrease do not always signify a steady-state. Furthermore, because 
the publicly available open source datasets used in these works are 
small, the raw signals gathered are often short (< 10 s). This results in 
limited steady-state events that can be detected in a signal, leading to 
fewer V-I trajectories being extracted. The limited amount and diversity 
of samples therefore may not reflect the variety of appliance types 
and operating conditions found in real-world environments. Hence, 
the results reported by those authors may be too optimistic for such 
scenarios.

In the area of signal processing, many techniques have been in-
troduced for improving signal clarity and reliability. State-of-the-art 
methods include wavelet transform denoising for multi-resolution fil-
tering, empirical mode decomposition (EMD) and its variants (like 
EEMD and VMD) for adaptive decomposition of non-stationary signals, 
and Kalman filtering for real-time, model-based noise estimation [32–
34]. Additionally, DL based approaches such as Denoising Autoencoder 
(DAE) and CNN have shown good performance in learning complex 
noise characteristics directly from data [35]. In NILM, these techniques 
form the backbone of preprocessing and load disaggregation pipelines. 
However, while these methods focus on removing noise, they do not 
provide metrics to assess whether a detected event truly represents a 
valid steady-state. ApEn presents a complementary solution: instead 
of removing noise before event detections, ApEn quantifies signal reg-
ularity, providing a statistical measure of complexity in the current 
waveform which can be used to remove noise after event detections. 
By computing ApEn on the current waveform, NILM systems can verify 
whether it is a stable and repeatable load pattern—offering an addi-
tional layer of validation to reduce false positives and improve event 
detection reliability [36,37]. Importantly, ApEn is also computationally 
efficient, requiring only a short window of data and simple distance 
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Fig. 1. FM digital platform supported by load monitoring units.
comparisons between patterns [9]. This makes it a practical and scal-
able addition to large-scale appliance classification pipelines, where 
maintaining low-latency and high-throughput processing is critical.

Commercial applications for appliance load identification which are 
integral to monitoring the operation of facilities such as warehouses, 
hospitals or commercial kitchens has not been extensively explored. 
Previous work in [38] installed NILM system in three commercial 
building types (office, barracks and vehicle maintenance) and evaluated 
its ability to disaggregate electric loads pertaining to a combination 
of servicing and specialised appliances (computing equipment, light-
ing, sockets, vehicle service bays, battery chargers, heating systems). 
However, the analysis failed to identify specific loads which authors 
attributed to the number and complexity of loads (including hundreds 
of small and similar loads) making identification ambiguous, difficulty 
in interpreting small changes in power consumption, and inability 
to identify continuously operating loads. In [39] authors proposed 
an NILM method based on a transformer neural network multi-label 
classification model for commercial load monitoring. Here a publicly 
available dataset [40] based on data collected from smart meters 
deployed in different buildings was used where data on electricity 
consumption was recorded per building, high energy loads, and total 
electricity consumption per floor with loads related to air conditioning, 
lighting, and elevators. Both these examples although relevant have 
again been limited to specific and specialised appliance types. A large 
dataset on commercial electronic appliances similar to those found 
across the FM sector was recently published in [41]. Here electricity 
consumption data has been collected from three restaurant kitchens 
during daily operations where 45 types of consumer and commer-
cial electronic appliances were monitored. However, the individual 
appliance consumption data was collected at 0.2 Hz. This makes it 
unsuitable for V–I trajectories reconstruction which requires the instan-
taneous values of voltage and current to be able to plot the dynamic 
relationship between them.

Building on our initial work [42], we present and evaluate a feature 
extraction and classification pipeline to extract V-I trajectory features 
from correctly classified steady-state events. We use ApEn of the steady-
state current and correlation between steady-state current and voltage 
to determine the validity of a detected steady-state event for V-I trajec-
tory extraction. Using our proposed pipeline, we process a large scale 
FM dataset collected from commercial assets operating across several 
sites consisting of 86,268 samples of V-I trajectories based features from 
29 appliance types. We validate the correctness of extracted features in 
the processed data by using it to compare well known and state-of-the-
art ML algorithms in the task of appliance type classification. The next 
sections discusses in details our proposed pipeline.

3. Preliminaries

This section discusses the essential concepts and background infor-
mation that our paper is built upon. In particular, the first subsection 
3 
describes the ALM device which is the source of the data used for this 
study. Then, the second and third subsections explain the concepts of 
V–I trajectories and approximate entropy, which are core components 
of our feature extraction pipeline.

The UK FM industry is projected to be worth over $52 billion by 
2027 [43]. A major FM company Cloudfm Group Ltd has developed 
an industry-leading Internet of Things (IoT) based ALM unit called 
PRISM® that is supported by a digital platform called Mindsett which 
provides an end-to-end solution combining AI and data analytics visu-
alisation tools for appliance-level energy management and predictive 
maintenance.

3.1. Load monitoring data collection

The PRISM® ALM hardware unit connects directly to a site distri-
bution board. A single unit consists of 36 channels that can be used to 
connect different appliances. For each appliance, the signal information 
that the ALM unit collects includes: (i) Apparent Energy (VA), (ii) 
Real Energy (W ), (iii) Current of the Given Circuit (irms), (iv) Voltage 
Frequency (vfreq), (v) Voltage of the Power Supply (vrms), (vi) The 
fundamental harmonic of the voltage (vh1), and (vii) The harmonic 
data up to the 10th component (Hi1–Hi10, Hq1–Hq10). According 
to Cloudfm Group Ltd, through the use of this information along 
with the appliance type, a comparison can be made among different 
brands/models within an appliance type which has huge decision mak-
ing benefits for customers. In addition, other metadata includes: (i) The 
appliance type (thing_type), (ii) The channel in which the appliance is 
connected (channel), (iii) The unique identifier for an appliance (nid). 
Fig.  1 illustrates the overview of how the ALM unit is used as part of 
the company’s FM supporting digital platform.

3.2. V–I trajectories

In 2007, Lam et al. [23] demonstrates that unique appliance sig-
natures can be created by examining a curve made up of one phase 
current and voltage of the appliance in a steady-state event. The unique 
signature is often based on the shapes of the V–I Trajectories and as 
shown in Fig.  2, different appliance types exhibit different trajectory 
shapes. Earlier work describes the trajectory shapes using hand-crafted 
features (e.g. area of the curve, curvature of mean line). Recent devel-
opments treat the trajectory as images to be used with Convolutional 
Neural Networks (CNN) [13–15,17,18]. As mentioned, extraction of V–I 
trajectories from a raw signal is dependent on the detection of steady-
state events in that signal. Multiple approaches exists for determining 
steady-state events [13,44]. The most common is to detect a period 
in between a sharp increase and decrease in apparent energy. Fig.  3 
shows an example of a detected steady-state event and the resulting 
V–I trajectory.
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Fig. 2. Samples V–I Trajectories of Appliance Types.
Fig. 3. Detected Event and Resulting VI Trajectory. (a) The shaded pink area signify the detected steady-state event using apparent energy (VA). (b) The Extracted 
Current Waveform. (c) The Extracted Voltage Waveform. (d) The Extracted V–I Trajectory.
3.3. Approximate entropy

ApEn(𝑚, 𝑟,𝑁)(𝑢) = 𝜙𝑚(𝑟) − 𝜙𝑚+1(𝑟) (1)

where 𝜙𝑚(𝑟) = 1
𝑛

𝑛
∑

𝑖=1
𝑙𝑜𝑔𝐶𝑚

𝑖 (𝑟)

𝐶𝑚
𝑖 (𝑟) =

number of 𝑗 such that 𝑑 [𝐱(𝑖), 𝐱(𝑗)] ≤ 𝑟
𝑛

𝑑 [𝐱(𝑖), 𝐱(𝑗)] = max
𝑘

(

|𝐱(𝑖)𝑘 − 𝐱(𝑗)𝑘|
)

𝐱(𝑖) = [𝑢(𝑖), 𝑢(𝑖 + 1),… , 𝑢(𝑖 + 𝑚 − 1)]

𝑛 = 𝑁 − 𝑚 + 1

for 1 ≤ 𝑘 ≤ 𝑚; 1 ≤ 𝑖, 𝑗 ≤ 𝑛; 𝑚 ≤ 𝑁 ;

𝑟 ∈ R+; 𝑚 ∈ Z+

Approximate Entropy is a technique used for measuring the rate of 
regularity of a time series [45]. It was first introduced by Pincus back 
in 1991 [46]. Given a time series 𝑢, a sliding window of size 𝑚, and 
a filtering level 𝑟, the approximate entropy of 𝑢 is defined as Eq.  (1). 
4 
It measures the logarithmic likelihood that patterns in a time series 
will remain similar when extended by an additional data point [46]. 
Fig.  4 shows the ApEn values of a time series with repeating pattern 
and a time series that has less repeating pattern. Fig.  4a shows a sine 
wave with four repeating cycles created through 𝑦 = 𝑠𝑖𝑛(𝑥) where 
𝑥 = 360

8𝜋 𝑡; 0 < 𝑡 < 8𝜋. Fig.  4b is created by randomly shuffling the 
sequence in Fig.  4a to create a sequence with few repeating patterns. 
A time series with repeating patterns will result in an ApEn close to 
zero. In contrast, a time series with few repeating pattern will have high 
value of ApEn. Hence, ApEn provides a useful mechanism for measuring 
noise in a signal.

4. Commercial use case and challenges

To illustrate the scale of the industry, Cloudfm Group Ltd serves FM 
clients ranging from restaurants, warehouses, 24/7 outlets, commercial 
properties, manufacturing plants and international clients. The number 
of appliances (also termed assets) at these multi-site establishments 
can range from 10 to 14,000. For instance a client in the amusement 
and recreation sector, produces data from 13,755 appliances (over 150 
appliance types) operating on a 24 h day cycle across 40 sites in the UK. 
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Fig. 4. Approximate Entropy calculation of 𝑦 = 𝑠𝑖𝑛(𝑥) (a) and its randomised 
sequence (b).

Depending on the number of appliances to be monitored per site, the 
installation of multiple ALM units are required, with each supporting up 
to 36 channels for monitoring different appliances. For another client, 
a casual dining restaurant chain, 482 appliance types operate across 
101 spaces across 6 sites supported by 27 ALM units. Fig.  5 shows 
the logged entries for assets that includes meta information such as 
appliance category, type, phase information, circuit and distribution 
board they are connected to at a given site. Also shown are the ALM 
unit ids linked to a given distribution board and the assets connected 
to each channel of the ALM unit.

The process of installing ALM units starts when the FM mobilisation 
team sends installation surveyors to visit a given site to assess the 
number of ALM units that would be required, based on the number of 
distribution boards, the number of appliances that need to be monitored 
and their connectivity status via Wi-Fi coverage in the vicinity of each 
distribution board. Based on this initial assessment the distribution 
boards and assets each board is powering are logged into a shared 
data and workflows repository. Fig.  5 shows the logged entries for 
assets that includes meta information such as appliance category, type, 
phase information, circuit and distribution board they are connected 
to at a given site. The list of assets connected to each distribution 
board are normally pre-marked on the board by site operators. This is 
currently the only check for verifying that an asset of a particular type 
is connected to a board. During the on-site installation of ALM units, 
installation engineers visit the site to install the ALM units. Here they 
connect an ALM unit’s channels to a distribution board and check if 
the ALM unit is transmitting signals. They then recheck the shared data 
repository to determine if the channel number listed there corresponds 
to the correct asset name based on those which were marked on the 
distribution board. Following installation of the ALMs which usually 
takes place during non-trading hours, the mobilisation team liaises 
with the hardware and data science teams to check the quality and 
correctness of received data (frequency of data points, phase mapping, 
etc.).

Some commercial appliances relay on a three-phase power supply 
where the current and voltage from each phase needs to be correctly 
mapped to the ALM channels to monitor the asset load and perfor-
mance. Here mistakes can arise in how the phases are mapped. If this 
mapping is incorrect the installation engineer will have to revisit the 
site to correct it. During the mapping of phases, the placement of the 
Kct-16 current transformers used to monitor an asset’s current, power 
and energy may be positioned incorrectly to collect signal information 
resulting in incorrect data being transmitted. The asset lists on the 
distribution board can also be outdated depending on when the last 
update was done by the site. There can be shifts between the plugs, 
and assets can be replaced with different appliances than those that 
are listed resulting in incorrect signals. These signal anomalies have 
to be manually identified by the hardware and data analytics teams 
by examining patterns in the signal harmonics for specific asset data 
streams flagged as needing further inspection.
5 
For large or multi-site businesses with 100 s of connected assets 
requiring multiple ALMs to be deployed, the combination of these 
potential errors and manual inspection signal anomalies can prolong 
the installation process as there is no framework for consistently and 
sustainably verifying the correctness of each asset’s type. Automatically 
verifying that load signal information being collected corresponds to 
a correct, incorrect or unidentifiable asset type can enable the site 
engineer to quickly recheck asset lists and their connections to specific 
ALM unit channels saving cost and time.

5. Proposed feature extraction and classification pipeline

This section details our proposed feature extraction and classifica-
tion pipeline that has been applied on a real-world dataset provided by 
Cloudfm Group Ltd. Hence, the first part of this section discusses the 
original dataset and the cleaning procedure performed on the dataset 
to prepare for feature extraction. The second part details the feature 
extraction and ML pipeline.

5.1. Original dataset

Access to raw signals data collected from ALM units were provided 
which contained high frequency signals gathered from 391 appliances 
across 60 types over the span of six months from seven site locations. 
Locations comprised of various sites for a restaurant chain. The dis-
tribution of appliance type is highly imbalanced since a single location 
does not have all appliance types installed. The raw signals are grouped 
by the date and are separated into 1 week chunks. The appliance type 
label is stored in a different file which can be associated with the 
raw signal data by their channel in combination with their nid. The 
information in the label file, aside from the channel and nid, are entered 
manually by site engineers.

Data cleaning procedures were done on the label file and the files 
containing weekly raw signal data. For the label file, columns were 
stripped of leading and trailing spaces and rows with missing thing_type
were removed. This resulted in a reduction in the number of appliances, 
their unique types, and locations. For the files containing weekly raw 
signal data, columns with null values were dropped. Furthermore, 
information in the label file were then joined with the raw signal data 
based on their channel and nid. The raw signal data was the regrouped 
by the appliance channel and nid. In particular, the weekly data was 
separated into different files where each file contained the raw signal 
data of one appliance on a single day. This was done to isolate each 
appliance’s signals for more convenient processing in later stages of our 
preprocessing pipeline. In addition, the metadata information of each 
file was recorded as entries in a separate csv file.

5.2. Denoised V-I trajectories extraction approach

The feature extraction approach can be divided into two steps: (i) 
Extracting V–I Trajectories and (ii) Extracting shape features from V–I 
Trajectories. In the first step, for each of the per-appliance signal data 
files, outliers were removed from the apparent energy (VA) signal based 
on moving median replacement. More specifically, the signal is first 
divided into partitions. Then, a sliding window is used to replace points 
outside of (𝑄1−1.5𝐼𝑄𝑅,𝑄3+1.5𝐼𝑄𝑅) with the median of the window. 
These steps are repeated for partitions of sizes 12.5%, 25%, 50%, and 
100% of the signal length. Then, the filtered VA signal is fed into the 
steady-state detection algorithm outlined in [44]. Since the detection 
was done on a full day of data, multiple steady-state events could be 
detected for each signal data file. Here analyses was restricted to the 
first ten detected events due to computational resource constraints. For 
each of the events, the average of 2 cycles of voltage and current at 
the start and end of the event were extracted and marked as 𝑉 , 𝑉 , 𝐼 , 
𝑎 𝑏 𝑎
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Fig. 5. FM digital platform supported by load monitoring units.
Fig. 6. Characteristics of correctly and incorrectly detected events.
and 𝐼𝑏. Then, Eq.  (2) was used to calculate the steady-state voltage and 
current.

𝑉 = (𝑉𝑎 + 𝑉𝑏)∕2; 𝐼 = 𝐼𝑏 − 𝐼𝑎 (2)

𝐼𝑄𝑅 = 𝑄3 −𝑄1 (3)

ApEn(𝑚, 𝑟,𝑁)(𝐼) > 0.03 ∨ |corr(𝑉 , 𝐼)| < 0.5 (4)

where 𝑄1 = The first percentile of the signal.
𝑄3 = The third percentile of the signal.

corr(𝑉 , 𝐼) =
∑𝑁

𝑖=1(𝑉𝑖 − 𝑉 )(𝐼𝑖 − 𝐼)
√

∑𝑁
𝑖=1(𝑉𝑖 − 𝑉 )2

√

∑𝑁
𝑖=1(𝐼𝑖 − 𝐼)2

𝑚 = 2; 𝑟 = 0.2

As mentioned in Section 2, the steady-state detection algorithms can 
sometimes select the wrong data points as start and end points. We 
observed that these misclassified events result in steady-state current 
that is highly unstructured. To measure this, we calculate its approxi-
mate entropy (ApEn(𝐼)) and its correlation with the steady-state voltage 
(corr(𝑉 , 𝐼)). Our experiment showed that misclassified events tend to 
have the characteristics shown in Eq.  (4). This aligns with the work of 
Yan and Gao [9] in which a similar ApEn(𝐼) threshold was reported 
where for a healthy bearing, sampled at 26 kHz with 1000 data points, 
the ApEn(𝐼) value was approximately less than 0.038. Fig.  6 shows 
a comparison between steady-state current and voltage in correctly 
classified and misclassified events. Based on this, we discarded any 
events that matched the condition in Eq.  (4). Finally, shape features 
were extracted from plots created by the remaining steady-state voltage 
and current pairs. We discuss the details of this extraction process in 
the next section.

5.3. Rationale for approximate entropy and fixed threshold

We motivate our use of ApEn as a noise-robust statistical measure 
because of two factors. First, its computational efficiency is particularly 
suitable for large-scale FM applications. Its lightweight computation — 
based only on local distance comparisons within a short window — 
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ensures scalability and low-latency processing for both streaming and 
batch-mode feature extraction [9]. Second, ApEn’s ability to quantify 
complexity without relying on any assumed signal distribution or fre-
quency model makes it broadly applicable across different electrical 
environments and device types [46]. This is unlike conventional denois-
ing or filtering techniques such as wavelet transform, empirical mode 
decomposition, or Kalman filtering, which require prior assumptions 
about the signal’s spectral content or stationarity [32,33,45].

Building on this justification, we also opted to use a fixed ApEn 
threshold (0.03 in this study) rather than an adaptive one for three 
key reasons. First, empirical testing as detailed in Section 6.6 shows 
that this threshold effectively separated valid steady-state events from 
misclassified noisy segments across a wide range of datasets, appliance 
types and operating conditions, consistent with the findings of Yan and 
Gao [9]. Second, adaptive thresholding approaches typically require 
iterative recalibration or dynamic windowing, which introduces addi-
tional computational overhead and instability during batch processing 
of high-volume data streams [34,35]. Third, the non-uniform and high-
variance sampling characteristics of real-world signals can cause adap-
tive thresholds to fluctuate excessively, potentially discarding valid but 
temporally irregular events [38,39]. The fixed threshold therefore pro-
vides a balance between generalisation and computational simplicity—
maintaining interpretability, reproducibility, and consistent denoising 
performance across diverse datasets.

The effectiveness of using ApEn in this way aligns with broader 
findings in the energy-efficiency literature, where robust noise handling 
and feature selection have been shown to enhance the performance 
and scalability of ML-based monitoring systems. For example, Sheela 
et al. [10] demonstrated that incorporating noise-aware preprocessing 
significantly improves prediction accuracy in smart building energy 
management systems using ML and IoT frameworks. Similarly, our use 
of ApEn and fixed thresholding ensures that only statistically stable and 
physically meaningful steady-state events are retained for V–I trajec-
tory feature extraction, thereby improving classification reliability and 
reproducibility in real-world FM deployments.

5.4. V–I trajectories shape features extraction

A total of 10 features were extracted from the V–I Trajectories based 
on those identified in [44]: (i) Current Span (itc), (ii) Area (ar), (iii) 
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Fig. 7. Feature extraction and classification pipeline for asset verification.
Area with loop direction (lpa), (iv) Asymmetry (asy), (v) Curvature of 
mean line (M), (vi) Self-intersection (sc), (vii) Peak of middle segment 
(mi), (viii) Shape of middle segment (sh), (ix) Area of left and right 
segments (alr), and (x) Variation of instantaneous admittance (D). 
Aside from itc, the other features were calculated using normalised V–
I trajectories. Furthermore, for some features the calculation method 
adopted by Wang et al. [44] rely on the points in the trajectory to be 
sorted. Hence, prior to the calculation of those features, we sorted the 
points in the trajectory based on their distance and direction from each 
other. In particular, starting from the point with the maximum steady-
state voltage (vmax), the next point in the trajectory was the closest 
point in the same direction within a 40 degree angle.

5.5. Extracted dataset

Our proposed pipeline generated a dataset of 103,120 samples with 
43 appliance types. However, due to the imbalanced nature of the 
dataset, some appliance types made up less than 0.1% of the total 
samples (e.g. Blind Supply, Cooling Tunnel Condenser, External Illu-
minate Signage, etc.). We opted to remove those appliance types from 
the dataset. In addition, appliances labelled as Appliances, Mains, and
Sockets did not reflect an underlying appliance type. For those labelled 
as Appliances, we opted to split these into two based on their thing_name
which are Servery General and Post Mix Coke Machine. Appliances 
labelled as Mains and Sockets were removed from the dataset. The final 
dataset consisted of 86,268 samples with 29 appliance types. Table 
1 shows the distribution of the 29 classes which represent electronic 
appliances ranging from commercial chillers and pizza ovens to con-
sumer devices such as coffee machines, indoor lighting and fridges. 
These represent a fraction of the various appliance types found across 
FM clients business users.

5.6. Classification using V-I trajectory features

The extracted dataset comprising of the 10 V–I trajectory features 
was used to classify the 29 appliance type classes. Here data was used 
to train and evaluate different supervised ML classification models after 
which inference could be performed on the trained model to predict the 
class probabilities of extracted trajectory features of unseen appliance 
signals. Data normalisation, in particular Min-Max normalisation was 
also performed on the extracted features. Fig.  7 illustrates the entire 
feature extraction and classification pipeline.

6. Experiments and results

To verify the quality of the extracted denoised features dataset, we 
opted to train and test different classifiers in correctly identifying ap-
pliance types from the extracted V–I trajectories. This section outlines 
our experimental setup by discussing the algorithms used, our train/test 
splits creation strategy, evaluation metrics, hyperparameter tuning pro-
cedure, and cross validation strategy. We then present the results of 
how the algorithms perform, comparisons with other state-of-the-art 
approaches and public datasets.
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Table 1
Appliance type distributions of clean and noisy training set.
 Clean set Training set with Noise
 Noise samples Noise ratio 
 AC 2205 884 0.401  
 Bar power 1069 117 0.11  
 Chiller 485 243 0.503  
 Clean power 919 424 0.462  
 Coffee machine 394 107 0.272  
 Dishwasher 12 046 156 0.013  
 Distribution board 6359 540 0.085  
 Fire alarm 104 104 1.0  
 Fridge 796 177 0.223  
 Fryer 15 115 120 0.008  
 Glass washer 5227 83 0.016  
 Grease trap 276 1 0.005  
 Hand dryer 9351 411 0.044  
 Hoist 111 25 0.231  
 Ice machine 918 136 0.149  
 Indoor lighting 745 745 1.0  
 Microwave 1036 221 0.214  
 Oven 1645 41 0.025  
 Overdoor heater 539 539 1.0  
 Pasta boiler 6432 12 0.002  
 Pizza oven 8456 329 0.039  
 Post mix coke machine 1003 14 0.014  
 Power 366 366 1.0  
 Servery general 654 43 0.066  
 Servery power 1316 205 0.156  
 Walk in freezer 3221 119 0.037  
 Walk in fridge 377 248 0.659  
 Water heater 2641 126 0.048  
 Water pump 2462 59 0.024  

6.1. Algorithms for appliance type classification

The choice of ML classification algorithms are based on what have 
been proposed in the literature so that the results can be compared back 
to those sources. In particular, five algorithms are chosen: Decision 
Tree (DT), Random Forests (RF), k-Nearest Neighbours (kNN), Multi-
Layer Perceptron (MLP) and Extreme Gradient Boosting (XGB) which 
has been shown to perform well against other classical ML classifiers 
applied to Non-Intrusive Load identification from V-I Trajectories [12].

6.2. Train/test splits

We split the extracted 86,268 samples into training (70%) and 
testing (30%). Stratified sampling was adopted to ensure that the two 
splits had the same appliance type distribution as the original dataset. 
We used the training set to perform hyperparameter tuning and cross 
validation. The test set was used to determine the final performance 
of the best performing hyperparameters on unseen data. Furthermore, 
to demonstrate the efficacy of our approach, a training set with noise 
was created to illustrate the performance differences between models 
trained with and without noisy samples. The number of samples and 
class distribution in this new set was equal to the clean training set. 
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Table 2
Results on test set.

Training data Acc Precision Recall F1 mAP
Clean 0.906 0.884 0.841 0.860 0.871XGB With noise 0.887 0.831 0.738 0.755 0.785
Clean 0.903 0.890 0.841 0.863 0.863RF With noise 0.884 0.839 0.719 0.736 0.785
Clean 0.861 0.808 0.786 0.796 0.740DT With noise 0.840 0.695 0.667 0.665 0.631
Clean 0.875 0.775 0.779 0.775 0.765kNN With noise 0.866 0.690 0.708 0.697 0.686
Clean 0.748 0.700 0.636 0.641 0.705ML With noise 0.748 0.608 0.545 0.550 0.623
Table  1 shows the noise ratio of each appliance type class in the training 
set with noise.

Conventional classification metrics were used to measure the per-
formance of different models trained using data with and without 
noise removal. More specifically, Accuracy, Precision, Recall, F1-Score, 
and Mean Average Precision (mAP) and Average Precision (AP) where 
used. We primarily focus on AP and mAP as AP measures the area 
under the precision–recall curve for a specific appliance class, while 
mAP provides an overall measure by averaging AP across all appliance 
classes, offering a more comprehensive evaluation of classification 
performance.

6.3. Validity of the extracted dataset

Table  2 presents the performance of all classifiers on both clean 
and noisy test samples, revealing several key observations on the 
effectiveness of the extracted denoised dataset.

First, the mAP of all models trained with noise removed is larger 
than 60% while the highest performance achieved by XGB reaches 87%. 
This suggests that the extracted denoised dataset does consist of pat-
terns that are useful for classifying different appliance types, confirming 
the applicability of V–I trajectory features as a useful representation of 
electrical appliances.

Second, the average mAP across models dropped by approximately 
8.7% when noise was reintroduced, clearly demonstrating the benefit 
of the proposed denoising step in filtering out unstructured signal 
components. To further quantify this effect, model performance was 
analysed in terms of classification error reduction, defined as 1−𝑚𝐴𝑃 . 
This analysis highlights how much incorrect prediction each model 
eliminated after entropy-based denoising. The results show that XGB,
RF, and DT  reduced their classification errors by 40%, 36%, and 
30%, respectively, indicating that ensemble and hierarchical models are 
particularly effective at leveraging the cleaner and more statistically 
regular V-I trajectory features. In contrast, kNN and MLP achieved 
smaller reductions of 25% and 22%, reflecting their continued sensitiv-
ity to residual feature irregularities and local noise. These findings align 
with prior research showing that tree-based models are inherently more 
robust to outliers, capture non-linear feature dependencies more effec-
tively, and benefit from built-in regularisation mechanisms compared 
with distance-based or shallow neural approaches [19,21,44,47,48].

Third, while the denoising step substantially improves classifica-
tion performance, it also introduces a trade-off. Overly aggressive 
filtering, as applied to remove unstructured current and voltage seg-
ments (Section 5.2), may risk discarding valid yet temporarily irregular 
steady-state events. Such balancing between predictive accuracy, com-
putational efficiency, and potential data loss is a common consideration 
in AI-driven energy-efficient systems [11]. In this study, however, the 
observed performance gains and the resulting operational efficiency 
benefits far outweigh these risks.

Finally, the close alignment between cross-validation and test re-
sults further indicates strong generalisation capability of the models 
trained on the denoised dataset, reinforcing the stability and scalability 
of the proposed feature extraction and classification pipeline.
8 
6.4. Algorithm performances

Table  3 shows the various classifier performances on test samples 
for each class in the dataset. These results provide two performance 
insights of the algorithms tested. First, tree based methods (XGB, RF
and DT ) perform the best compared to kNN and MLP. An examination 
of the minority class (Fire Alarm) shows that XGB, RF and DT  all 
produce high AP for that class compared to the other two models. 
This suggests that the low performance of kNN and MLP is due to 
prediction bias towards the majority class. In the case of kNN, Table 
3 shows clearly that the appliance types with the highest AP are the 
majority classes Fryer and Hand Dryer while the lowest AP class is the 
minority class Fire Alarm. Secondly, when examining Table  3, the class 
type with the lowest AP across all four models is Servery General. Deeper 
analysis of the misclassifications of Servery General as shown in Table 
4 shows that they are mostly misclassified as Distribution Board and
Servery Power.

6.5. Hyperparameter tuning and cross validation

We performed hyperparameter tuning using a Bayesian Optimisa-
tion approached introduced by Bergstra et al. [47]. The optimisation 
process was run 20 times for each algorithms resulting in 20 differ-
ent tested configurations. For each hyperparameter configuration, we 
performed k-fold cross validation where k was set to 5. The best config-
uration was selected based on its average F1-Score across the different 
splits. Table  5 shows the performances of the best configuration of 
each model across the 5 splits. The values in parentheses represent 
the standard deviation which can be further used to determine the 
confidence interval by multiplying by 2. The best hyperparameter 
configuration was then used to train a model on the full training set 
and evaluated on the test set.

6.6. Thresholds sensitivity analysis

We analyse the sensitivity of the selected ApEn(𝐼) and corr(𝑉 , 𝐼) by 
performing a full 10 × 9 grid search over ApEn(𝐼) ∈ [0.01, 0.10] and 
|corr(𝑉 , 𝐼)| ∈ [0.1, 0.9] resulting in 90 combinations. For each pair, a 
subset of the training set with noise, and a DT  classifier was evaluated 
under 5-fold cross-validation. The mean and standard deviation of 
F1 scores were recorded to assess robustness. The optimal thresholds 
(ApEn(𝐼) = 0.03, |corr(𝑉 , 𝐼)| = 0.5) achieved the highest mean 𝐹1 =
0.72(±0.06), and lie within a broad plateau of stable performance (Fig. 
8). This region represents a good balance between excluding noisy 
signals and retaining sufficient valid samples for reliable learning.

6.7. Comparative performance analysis with existing approaches

We further validate our proposed denoised V–I trajectory extraction 
approach by adding it as part of the data preprocessing stage for De 
Beats [19], Liu [21] and Zhao [49]. Their works use deep learning 
approaches that utilise V–I trajectories as image inputs into CNNs and 
Vision Transformer (ViT). De Beats et al. [19] converts V–I trajectories 
to grey scale pixelated images. These images are then fed to a novel 
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Table 3
Individual classes AP.
 AC Bar power Chiller Clean power Coffee machine Dishwasher  
 XGB 0.862 0.810 0.922 0.917 0.883 0.920  
 RF 0.857 0.799 0.909 0.917 0.883 0.912  
 KNN 0.778 0.617 0.88 0.888 0.878 0.885  
 DT 0.67 0.612 0.79 0.902 0.755 0.852  
 MLP 0.665 0.584 0.845 0.846 0.797 0.771  
 Distribution board Fire alarm Fridge Fryer Glass washer Grease trap  
 XGB 0.813 0.983 0.862 0.944 0.903 0.848  
 RF 0.805 0.981 0.87 0.925 0.9 0.846  
 KNN 0.703 0.186 0.743 0.916 0.864 0.798  
 DT 0.617 0.896 0.654 0.904 0.802 0.691  
 MLP 0.619 0.75 0.64 0.89 0.777 0.633  
 Hand dryer Hoist Ice machine Indoor lighting Microwave Oven  
 XGB 0.946 0.840 0.808 0.910 0.914 0.898  
 RF 0.93 0.872 0.802 0.917 0.91 0.89  
 KNN 0.911 0.836 0.639 0.795 0.905 0.856  
 DT 0.901 0.607 0.571 0.78 0.896 0.76  
 MLP 0.919 0.576 0.5 0.659 0.865 0.717  
 Overdoor heater Pasta boiler Pizza oven Post mix coke machine Power Servery general 
 XGB 0.880 0.919 0.915 0.952 0.789 0.524  
 RF 0.875 0.916 0.912 0.909 0.774 0.523  
 KNN 0.854 0.903 0.894 0.891 0.579 0.233  
 DT 0.807 0.897 0.858 0.875 0.553 0.236  
 MLP 0.675 0.868 0.811 0.881 0.375 0.21  
 Servery power Walk in freezer Walk in fridge Water heater Water pump  
 XGB 0.646 0.946 0.865 0.909 0.918  
 RF 0.624 0.907 0.86 0.895 0.91  
 KNN 0.324 0.886 0.778 0.875 0.884  
 DT 0.388 0.863 0.657 0.784 0.889  
 MLP 0.284 0.876 0.744 0.81 0.874  
Table 4
Number of Servery General Misclassifications.
 AC Bar power Chiller Clean power Dishwasher Distribution board Fridge 
 XGB 1 1 – – 4 37 6  
 RF 1 1 – – 4 25 6  
 KNN 1 7 – 1 1 47 8  
 DT – 7 4 – 5 45 8  
 MLP – 3 – – 1 3 –  
 Glass washer Hand dryer Hoist Ice machine Indoor lighting Microwave Power 
 XGB – – 5 5 – 1 2  
 RF – – 3 3 – 1 1  
 KNN – – 1 6 – 1 4  
 DT 1 1 – 4 4 2 1  
 MLP – – 1 – – – 2  
 Servery power Walk in fridge Water pump  
 XGB 15 – –  
 RF 13 – –  
 KNN 32 – –  
 DT 20 2 –  
 MLP 4 – 1  
Table 5
Cross validation results.
 DT DT (Noise) KNN KNN (Noise) MLP MLP (Noise)  
 Acc 0.852 (±0.003) 0.817 (±0.044) 0.852 (±0.003) 0.817 (±0.044) 0.852 (±0.003) 0.817 (±0.044)  
 Precision 0.798 (±0.01) 0.707 (±0.094) 0.798 (±0.01) 0.707 (±0.094) 0.798 (±0.01) 0.707 (±0.094)  
 Recall 0.788 (±0.004) 0.685 (±0.065) 0.788 (±0.004) 0.685 (±0.065) 0.788 (±0.004) 0.685 (±0.065)  
 F1 0.792 (±0.007) 0.684 (±0.09) 0.792 (±0.007) 0.684 (±0.09) 0.792 (±0.007) 0.684 (±0.09)  
 RF RF (Noise) XGB XGB (Noise) Zhao etal Zhao etal (Noise) 
 Acc 0.852 (±0.003) 0.817 (±0.044) 0.901 (±0.002) 0.866 (±0.048) 0.622 (±0.028) 0.606 (±0.024)  
 Precision 0.798 (±0.01) 0.707 (±0.094) 0.878 (±0.006) 0.791 (±0.097) 0.801 (±0.011) 0.798 (±0.006)  
 Recall 0.788 (±0.004) 0.685 (±0.065) 0.841 (±0.003) 0.739 (±0.07) 0.472 (±0.045) 0.455 (±0.037)  
 F1 0.792 (±0.007) 0.684 (±0.09) 0.858 (±0.003) 0.749 (±0.1) 0.418 (±0.052) 0.356 (±0.043)  
 Liu etal Liu etal (Noise) De Beat etal De Beat etal (Noise)  
 Acc 0.671 (±0.025) 0.665 (±0.028) 0.737 (±0.046) 0.734 (±0.054)  
 Precision 0.835 (±0.01) 0.826 (±0.011) 0.815 (±0.024) 0.808 (±0.026)  
 Recall 0.529 (±0.039) 0.521 (±0.041) 0.661 (±0.064) 0.662 (±0.082)  
 F1 0.604 (±0.053) 0.598 (±0.069) 0.672 (±0.084) 0.67 (±0.105)  
9 
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Fig. 8. F1 Score by ApEn(I) and corr(V,I)
Table 6
Performance on Benchmark Datasets.
 Dataset Method F1 F1 (with Noise)
 PLAID2014 RF 0.985 (±0.001) 0.799 (±0.099) 
 PLAID2017 RF 0.992 (±0.001) 0.813 (±0.229) 
 PLAID2018 XGB 0.988 (±0.001) 0.792 (±0.171) 
 COOLL RF 0.998 (±0.001) 0.943 (±0.042) 
 WHITED RF 0.99 (±0.001) 0.937 (±0.045) 

CNN architecture to perform classifications [19]. Following a similar 
technique Zhao et al. [49] and Liu et al. [21] converts V–I trajectories 
to a coloured HSV image. Leveraging the power of transfer learning, 
an AlexNet model is then pre-trained [50] on ImageNet and fine tuned 
using the HSV images as input for appliance classifications. Zhao et al. 
uses this same HSV images as input into a ViT.

We trained the network of all three approaches on the same train-
ing and testing splits as outlined in Section 6.2. Table  5 shows that 
our trajectory extraction approach improves the F1 score of all three 
approaches. Performance is not as high compared to the ML models 
shown in Table  2, and we attribute this to two factors. First, for all 
three approaches, extensive hyperparameter searches were conducted 
to select the best performing configuration for their benchmarking 
datasets. Our experiment only selects the best proposed configurations 
from their works and applies them directly to our dataset. Second, 
due to these extensive hyperparameter optimisations, their models 
were able to achieve high performance with a relative small amount 
of training samples as compared with normal scenarios. CNNs and 
ViTs tend to require a much larger amount of data to achieve similar 
performances [48].

6.8. Comparative analysis with benchmark datasets

To further validate the proposed approach beyond the FM specific 
dataset used, it was evaluated on five available benchmark datasets re-
searchers have widely used to evaluate NILM based approaches. Specifi-
cally, PLAID2014, PLAID2017, PLAID2018, COOLL, and WHITED were 
used to train and evaluate the ML classifiers selected in Section 6.1. 
Table  6 reports the F1 scores of top-performing algorithms from cross-
validation on datasets with and without noise. The result shows that our 
approach achieves F1 scores of over 98% for each respective dataset. 
In comparison recent works on NILM approaches evaluated on these 
research datasets has achieved comparable mean F1 scores [12,22].
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6.9. Number of samples per appliance type

We also performed experiments to determine the number of samples 
for each appliance type that yield the highest AP. To achieve this, we 
created new training sets where the number of samples of a specific 
appliance type is set as a certain percentage of the number of instances 
of that appliance type in the clean training set. We then trained DT on 
these new training sets and evaluated their performances on the test 
set. The AP of each appliance type at different percentages levels is 
shown in Fig.  9. The result provides two useful insights. First, Fig.  9 
shows that the number of samples needed to achieve an AP of over 
80% varies between different appliance types. This can be attributed 
to the V–I trajectory signature variation of some appliance types being 
drastically different between brands. Second, with exception of Hand 
Dryer, the addition of more samples leads to an increase in AP for 
all other appliance types. In fact, the number of samples is strongly 
correlated with the AP in the positive direction (𝑟 = 0.371).

7. Discussion

This research introduces and demonstrates a new denoised voltage-
current feature extraction approach for improving modelling and clas-
sification of electronic appliance load signatures as part of a com-
mercially viable NILM system for supporting asset verification in FM. 
Compared to existing noise reduction and steady-state event detection 
algorithms, the novel application of ApEn is able to provide a sta-
tistically effective and computational efficient method detecting load 
instability and removal from steady-state appliance signal waveforms 
to improve the accuracy of feature extraction for load classification. 
The proposed approach was evaluated using both an FM appliance load 
dataset comprising of 29 assets operating in real world commercial 
properties as well as five popular benchmark research datasets. Our 
approach was shown to consistently improve asset classification per-
formances when applied across both traditional ML classifiers and a 
number of state-of-the-art DL approaches.

The FM appliance data used consisted of assets representing a 
variety of consumer and commercial appliance types beyond those 
found in existing available research datasets. We performed further 
analysis and comparisons of the dataset with three other FM datasets 
acquired using the ALM units described in section 3.1. These datasets 
were acquired from other client sites comprising of hireable commercial 
office spaces and multi site 12 and 24 h amusement/entertainment es-
tablishments. Across all these datasets we found that the recorded assets 
were reflective of similar types, makes and models found across similar 
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Fig. 9. AP of each appliance type at different number of samples.
Fig. 10. Deployment mechanism for V–I trajectory feature extraction pipeline.
commercial sites for which our approach was achieving comparable 
performances with accuracies and F1 scores of between 88% and 97%. 
This shows the relevance of the commercial dataset selected to validate 
our approach and its potential generalisability when deployed.

7.1. FM deployment scenario

In this section, we outline a mechanism for deploying our proposed 
pipeline and for model training and evaluation as part of the digital 
FM platform shown in Fig.  3. This approach aligns with broader efforts 
in smart building energy management systems that integrate machine 
learning and IoT for enhanced energy efficiency and automation in 
various environments, including those with resource-constrained de-
vices for data collection and control [10]. Given that the company’s 
infrastructure and products are built on top of Microsoft Azure, we 
recommend the use of Microsoft Azure Machine Learning (Azure ML) 
for the deployment [51]. Fig.  10 shows the flowchart of the mechanism.

We suggest the feature extraction be performed in batches where 
each batch contains all the new appliance data collected through the 
ALM units over a single day. These might be newly installed ALM 
units or the reconfiguring of existing units based on connecting new 
application channels for monitoring. This can allow the processing of 
multiple appliances to be done in parallel. The raw data collected from 
the ALM units would be stored and maintained in a data lake for pre-
processing. Once the V–I trajectory features have been extracted for the 
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batch, inferences for appliance classification can then be performed on 
the extracted batched features. The predicted labels of each appliance 
in the batch can then be used to flag any incorrectly classified appli-
ances or those that cannot be verified with a high enough confidence. 
These flagged appliances can then be checked by the hardware and data 
analytics teams.

To continually assess the performance of the trained classification 
model, an evaluation mechanism is needed. The creation of a new 
training and test set can be done automatically from the extracted V–
I trajectory features database. Once the new dataset is created, the 
current model can be evaluated on the test set. If its mAP drops below 
a threshold t, then a new model is trained on the updated (verified) 
training set. This training and evaluation mechanism minimises the 
cost of model retraining while the model is operating with acceptable 
performance levels. Future work will investigate more efficient model 
fine tuning approaches such as semi-supervised learning techniques. 
These algorithms learn the distribution characteristics of data by simul-
taneously using smaller amounts of labelled data with larger available 
unlabelled data where labelled data points are scarce or expensive to 
obtain [25,52].

Data collected on the newly verified assets would be stored where 
the labelled V–I features in combination with the other signal (see 
Section 3.1) and appliance information can be used to distinguish 
and catalogue different electronic appliance types. FM clients can use 
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this digital catalogue to compare and contrast Return on Investment 
(ROI), age/lifespan, power factor, and other energy related metrics 
between similar appliance makes and models in order to make informed 
purchasing or upgrade decisions considering, usage requirements, op-
erational, maintenance costs and net zero sustainability targets. The 
collected asset data can also be integrated with smarter digital in-
terventions for building infrastructures and their underpinning data 
systems. Computational simulation models can be used to visualise and 
comprehend the complex interplay between environmental variables 
and performance while using Large Language Models to interface with 
and explore real-time response strategies to different FM operational 
and energy consumption scenarios. Here, data and ML driven digital 
twins can model building infrastructures and connected assets to help 
simulate these scenarios and optimise performance against client re-
quirements and constraints for improving operational and maintenance 
efficiencies while contributing to reducing CO2 emissions [53,54].

7.2. Impact on ALM installation process for FM

The proposed asset classification pipeline can have a profound 
impact on the existing ALM installation process at Cloudfm Group Ltd . 
For a typical client site with 100 assets, the current installation process 
can take between 2–3 h. This can be longer for larger sites and does 
not include manual checking of misclassified or unverifiable assets 
requiring return visits to client sites for implementing corrections. 
This can extend the installation and verification process over several 
days. The trained asset classification model can significantly reduce 
the time needed for these processes in two ways. Firstly, immediately 
after installation of an ALM unit and confirmation it is transmitting 
signals, the model can start determining the appliance type after the 
first steady-state event has been detected which varies between appli-
ances starting from 10 min. In addition, each model’s inference after 
determining a steady-state event takes approximately 300 ms. This 
means that for some appliances, the model can perform classifications 
while the engineer connects other appliances to the ALM unit or installs 
other ALM units on-site. In this scenario, engineers can confirm the 
predictions with low confidence scores without having to revisit the 
site. Secondly, for appliances whose steady-state takes a longer time 
to determine, the engineer can perform manual tagging on-site and the 
model’s predictions can be cross-checked with the manual tags at a later 
time against any conflicting tags highlighted by the data science team. 
This reduces the number of appliances that need to be checked by the 
team.

The timely and correct installation of multiple ALMs units at client 
sites can start to have a positive impact on their operational efficiency 
and energy consumption. Data from the ALMs can be used to determine 
the digital fingerprint of its operation which can be used to track 
performance and raise an alarm if the asset starts to perform sub op-
timally to recommend a maintenance check by also comparing against 
similar asset types across several sites. Additionally the data acquired 
from ALM units can be used to identify operating inefficiencies and 
drive behaviour change in the interaction with operating staff. This can 
have a signifiant impact on reducing CO2 emissions of clients helping 
towards achieving the UK’s Net-zero targets.

8. Conclusion

This paper presents a new approach for ensuring V–I Trajecto-
ries are extracted correctly from non-uniformly sampled high volume 
commercial appliance data. The proposed approach applies approxi-
mate entropy to identify and remove unstructured current and voltage 
signals. These could otherwise be misclassified as steady-state events 
leading to poorly extracted V–I Trajectory features for identifying asset 
load signatures. ApEn provides and efficient and scalable approach for 
measuring and identifying noise misclassified as steady-state events 
12 
not previously applied for the processing of commercial operating 
appliance load signals for load classification and verification solutions.

Our denoised feature extraction approach is shown to significantly 
improve the classification of asset types when applied as a preprocess-
ing step in training ML pipelines on extensive real world data reflecting 
the variety of consumer and commercially operating appliances and 
units found across industry sectors covered by FM. The validity of 
the approach is further proven by evaluating its performance gain 
on multiple ML classification models, widely used publicly accessible 
datasets and comparison with state-of-the-art ML techniques as part of 
other NILM solutions.

The proposed approach can be used to benefit the FM sector in the 
automatic identification or verification of connected appliances across 
multi-site properties and buildings to improve installation of ALM units. 
The timely and correct installation of ALM units will directly contribute 
to monitoring the operating states of assets enabling preventive main-
tenance improving economic returns to clients while also improving 
their operating efficiencies impacting the environment through reduced 
energy consumption.

In addition to improving operational accuracy and cost efficiency, 
enhanced appliance classification accuracy contributes to broader sus-
tainability outcomes. Reliable identification and monitoring of assets 
enable more informed energy management decisions, reducing un-
necessary energy use and associated emissions. Consistent with re-
cent advances in sustainable machine learning applications [55–57], 
the proposed approach supports the long-term objectives of improved 
energy efficiency and reduced environmental impact.

This study was limited in its exploration of other relevant shape 
features as input to ML and DL algorithms. Future research directions 
will include building on the current feature extraction and classifica-
tion pipeline to include more shape features as well as process and 
combine other recorded signal parameters such as voltage harmonics. 
Furthermore, future work will also focus on quantifying how often valid 
but irregular steady-state events occur and assessing their potential 
impact on appliances with inherently variable load behaviours such as 
batteries. Converting the extracted data into nodes and edges of a graph 
and applying Graph Neural Networks (GNN) for appliance classification 
will also be explored.
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