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Abstract.
Objective. This study assesses the signal quality of state-of-the-art dry electroencephalog-

raphy (EEG) under highly challenging, uncontrolled, real-world conditions and compares it to
conventional wet EEG. Approach. EEG data from 530 participants recorded during a public
exhibition were benchmarked against several established signal quality metrics, including spiking
activity, kurtosis, Auto-Mutual Information (AMI), spectral entropy, gamma-band power, and
parameters extracted using the Fitting Oscillations and One-Over F (FOOF) model. Addition-
ally, ICLabel decomposition was applied to quantify artifact influences across EEG channels. Dry
electrode results were compared with their equivalents extracted on two control datasets com-
prising 71 and 80 participants, respectively, recorded with wet EEG systems in laboratory, home,
or clinical surroundings. Main Results The analysis revealed condition-specific susceptibility to
artifacts for both EEG modalities. The dry EEG system exhibited substantial robustness in
moderate-noise scenarios, with artifact profiles comparable to controlled wet EEG recordings.
However, recordings obtained in highly dynamic conditions showed increased muscle artifacts
and broadband activity, notably in frontal and temporal regions. Wet EEG systems, under con-
trolled conditions, were overall less inflicted by artifacts, yet, fronto-central ocular and muscular
artifacts were consistently present. ICLabel analysis further confirmed these findings, indicat-
ing similar proportions of brain-related activity across systems (approximately 31–49.5%), but
highlighted increased vulnerability to movement and environmental artifacts in dry EEG dur-
ing dynamic tasks. Significance. In agreement with recent similar investigations, our findings
demonstrate that dry EEG caps have significantly matured, achieving signal quality comparable
to wet EEG systems even in challenging real-world conditions, provided appropriate artifact mit-
igation strategies are employed. These results affirm the practical readiness and broad feasibility
of dry EEG technologies for diverse Brain-Computer Interface (BCI) applications in naturalistic
environments.
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1. Introduction

Non-invasive EEG continues to be the most widely
used neuroimaging modality for BCI applications, ow-
ing to its portability, cost-effectiveness, and relatively
non-obtrusive nature. Traditionally, high-quality EEG
recordings are achieved through gel-based (“wet”) elec-
trodes, which significantly enhance signal conductivity
by applying gel in between the scalp and the electrodes’
surface to reduce the impedance of the skin-electrode
interface. Despite their superior Signal-to-Noise Ra-
tio (SNR), wet EEG systems face substantial practical
limitations on account of the gel application necessity,
including prolonged setup times, availability of an ex-
pert to apply the gel, potential user discomfort, need
for personal hygiene after use, and difficulty in main-
taining stable signal quality during extended recording
sessions [1].

In response to these challenges, dry EEG technol-
ogy has gained significant attention over the past 15
years. These systems, characterized by electrodes that
do not require conductive gel or saline solutions, al-
low for faster and autonomous preparation, enhanced
portability, significantly improved user comfort, and
minimal, seamless overall donning and doffing pro-
cedures, thereby facilitating the application of EEG-
based BCIs beyond strictly controlled laboratory con-
ditions [2]. Such advantages are critical for broadening
EEG-based BCI applications into everyday, real-world
environments, including consumer health monitoring,
mobile health applications (assistive technology, reha-
bilitation, etc.), as well as several non-health-related,
consumer-oriented applications (gaming, neuromarket-
ing, and others).

However, initial evaluations of dry EEG technolo-
gies reported several notable challenges, such as re-
duced signal quality, higher impedance, and suscep-
tibility to motion artifacts [2]. Despite these early is-
sues, advancements in sensor materials, electrode de-
signs, and adaptive signal processing techniques have
significantly improved their performance, making dry
EEG systems increasingly viable for practical BCI im-
plementations. Some comparative studies [3, 1], have
shown that current dry EEG technologies are capable
of reliably capturing event-related potentials (ERPs)
and other essential EEG features. Guger et al.[4] re-
ported comparable accuracy between dry and wet elec-
trodes in P300-based BCI spelling tasks, supporting
the practical usability of dry EEG systems in realistic
scenarios. Different studies [2, 5, 6] further underscored
these findings by demonstrating dry electrode reliabil-
ity in capturing clinically relevant EEG signals.

Recent research has increasingly focused on
evaluating dry EEG systems specifically within
Sensorimotor Rhythms (SMR) paradigms [7, 8, 9].
For example, one study conducted simultaneous

recordings using dry and wet electrodes during
motor imagery tasks, revealing that despite higher
impedance and susceptibility to noise, dry electrodes
could effectively capture SMR features critical for
successful BCI operation [7]. Another investigation
comparing active dry electrodes to active and passive
wet electrodes in EEG signal quality reported that
active dry systems provided comparable signal quality
and temporal stability, suggesting their suitability
for practical EEG applications, including those
demanding stable and prolonged monitoring [9].
A further comparative analysis of clinical EEG
recordings found that dry electrodes, despite a
modest SNR reduction, yielded statistically equivalent
signal quality indices—encompassing overall waveform
characteristics, artifact metrics and spectral noise
levels—compared to wet electrodes; with standard
preprocessing, the dry system supported sound
clinical interpretations [10]. A comprehensive review
additionally highlighted advancements in dry electrode
technology, emphasizing improvements in electrode
impedance, signal reliability, and practical usability,
affirming that state-of-the-art dry EEG systems are
increasingly competitive with traditional wet EEG
setups across multiple BCI paradigms [11].

The need for dry EEG systems is especially com-
pelling for long-term, continuous brain activity moni-
toring scenarios, such as seizure prediction in epilepsy
patients [12, 13], attention training interventions for
ADHD [14], driver fatigue monitoring [15], and cog-
nitive workload assessments [16]. These potential ap-
plications emphasize the added value that dry EEG
systems can bring to the neurotechnology market, pro-
vided that their quality is proven to be adequate.

While this literature has provided valuable
information on the competitiveness of dry EEG
technology, these investigations have been limited by
small participant numbers and confined to controlled
laboratory conditions, leaving uncertainties regarding
the practical usability of dry EEG out of the
lab. Consequently, there remains a substantial need
for well-powered, comprehensive validation of dry
EEG technologies, especially considering environments
characterized by high noise levels and likelihood of
artifact contamination.

More elaborately, electrical potentials recorded
from the scalp approximately lie within the rather mi-
nuscule [-150, +150] µV range, making EEG signals
particularly vulnerable to contamination from physi-
ological artifacts—such as ocular movements, muscle
activity, cardiac signals, and head movements [17, 18,
19, 20, 21]—as well as non-physiological interference,
including electromagnetic disturbances, technical mal-
functions, and external physical disruptions [19, 22].
Although robust EEG recording systems and standard-
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ized experimental protocols can significantly mitigate
these artifacts, completely avoiding contamination re-
mains practically impossible, especially in real-world
and uncontrolled environments. EEG data collected
outside laboratory conditions—with both wet and dry
EEG systems—often exhibit decreased SNR due to
persistent artifact contamination. While most modern
EEG devices, including those employed in this study,
include basic onboard artifact mitigation features, the
presence of residual noise is unavoidable. Here, we seek
to discern the extent to which the two compared EEG
sensor technologies (dry and wet) suffer contamination.
Furthermore, we determine and juxtapose the relia-
bility of the Motor Imagery (MI) correlates extracted
from the respective recordings.

To address these gaps in dry sensor assessment,
we evaluate the signal quality of a commercial dry
EEG solution in an unprecedentedly large cohort of
530 participants. Our analysis uses a broad set
of direct and indirect metrics for EEG quality and
the dry system is compared to two widely used,
research-grade, wet-EEG systems. Furthermore, the
dry recordings were collected at a public art/science
exhibition called “Mental Work” [23], held in a large,
very noisy public exhibition hall with no particular
space adaptations to accommodate the use of EEG in
its premises. This study has been largely motivated by
early (at this stage, qualitative and anecdotal) signs
during Mental Work that, in spite of dry electrode
signals having been—and still largely are—considered
a priori inferior to wet ones, and although dry EEG
data in this case were collected in highly noisy,
uncontrolled surroundings, the quality of the extracted
EEG signals acquired seemed largely comparable
to that of traditional wet-electrode systems. This
article attempts to put these impressions to the
test, providing a quantified, principled, reliable and
precise comparison of dry and wet EEG exploiting
the availability of big MI BCI datasets for both EEG
modalities.

What makes this work truly novel is reporting
on dry EEG readiness simultaneously with a very
large sample size and within a very challenging
real-world context. Unlike all prior dry-vs-wet
EEG comparisons—which, as already mentioned,
have been either conducted in tightly controlled
laboratory settings or on small cohorts, or both—
this work is the first to evaluate EEG signals
in a realistic setting substantially “polluted” with
noise and with a number of participants that is
more than an order of magnitude greater than the
field’s norms, thus greatly improving the reliability
of findings and informing on the maturity of this
technology to be deployed to realistic scenarios. We
focus on generic, paradigm-independent EEG signal

quality metrics, but additionally report open-loop
MI classification accuracy exploiting the underlying
paradigm of the Mental Work exhibition. Of note,
SMR BCI, being endogenous (thus, particularly
susceptible to user-generated, physiological artifacts)
and inherently low SNR, offers a very stringent stress-
test for electrode robustness, perhaps more so than
stimuli-driven, Event-Related Potential (ERP)-based
paradigms such as P300 and Steady-state Visually
Evoked Potentials (SSVEPs) on which the majority
of the relevant literature has focused. We further
aim to investigate whether standard artifact-detection
and removal pipelines remain valid on these extremely
noisy, real-world recordings and try to identify task-
and environment-specific artifact fingerprints—such as
fronto-temporal muscle bursts that hardly ever emerge
in the lab. These insights go well beyond a simplistic
conclusion such as “dry equals wet”, showing instead
how and where dry caps may fail or succeed in real-life
applications.

In summary, we hereby aim to determine whether
state-of-the-art dry EEG systems have matured
sufficiently to deliver signal quality comparable to wet
EEG systems under challenging real-world conditions.
Our comparative analysis provides critical insights into
the readiness of dry EEG caps for broad practical
deployment and their potential as reliable alternatives
to traditional wet EEG technology in diverse BCI
applications.

2. Materials and Methods

2.1. Datasets

We analyze five datasets derived from three large
SMR BCI databases, referenced consistently as Dry
Training, Dry Control, Wet Healthy 1, Wet AT 1,
and Wet Healthy 2. The main characteristics of all
datasets (participants, montage/reference, sampling
rate, hardware, environment) are summarized in
Table 1 and Fig. 1.

The Dry Training and Dry Control datasets
were obtained from a database comprising a total
of 530 participants who took part in a public event
titled “Mental Work”. This exhibition occurred
over several months between 2017 and 2018 at the
École Polytechnique Fédérale de Lausanne (EPFL),
Switzerland [23]. Visitors registered online to attend
scheduled BCI sessions, during which they wore dry-
electrode EEG headsets to operate a set of machines
inspired by the industrial revolution by means of a two-
class MI-based BCI control system (Fig. 1(a)).

Another two datasets, namely, Wet Healthy
1 and Wet AT 1, were acquired with g.USBamp
wet systems from N = 46 able-bodied volunteers
(Wet Healthy 1) and N = 25 individuals with
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Table 1. Summary of datasets: participants, demographics, channels, sampling, hardware, and recording environment.

Dataset Participants
Demographics
(mean age ± SD)

Channels
/ Reference Sampling Hardware

Environment
/ Notes

Dry Training N = 530 visitors
(public

exhibition)[23]

- 19 dry
(10–20): Fp1,
Fp2, Fz, F3, F4,
F7, F8, Cz, C3,
C4, C5, C6, T7,
T8, Pz, P3, P4,
O1, O2; ref =
avg ear-
lobes(Fig. 1(b1))

300 Hz; no
hardware filter

DSI-24
(Wearable

Sensing, San
Diego, USA)

Semi-controlled
booth inside
exhibition hall;
open-loop MI
calibration

Dry Control same N as above - Same as Dry
Training

Same as Dry
Training

Same as Dry
Training

In-the-wild
machine control
in large public
space (crowd,
movement,
EMI); close-loop
machine control

Wet Healthy 1 N = 46
able-bodied
(EPFL)[24]

41 ± 9 y; F/M:
10/36

16 wet
(10–20): Fz,
FC3, FC1, FCz,
FC2, FC4, C3,
C1, Cz, C2, C4,
CP3, CP1, CPz,
CP2, CP4; ref =
right ear-
lobe(Fig. 1(b2))

512 Hz with a
hardware

band-pass filter
(cut-offs at
0.1 Hz and

100 Hz) and
notch-filter (50

Hz)

g.USBamp
(g.Tec, Austria)

Controlled
laboratory;
calibration and
online MI runs

Wet AT 1 N = 25 AT
users

(SUVA/home)[24,
25]

56 ± 26 y; F/M:
3/22

Same as Wet
Healthy 1

Same as Wet
Healthy 1

Same as Wet
Healthy 1

Clinical/home
settings; less
controlled; MI
training for AT

Wet Healthy 2 N = 80 healthy
novices[26]

29.9 ± 11.5 y;
F/M: 41/39

119 wet
(extended
10–20); ref =
na-
sion(Fig. 1(b3));
subset of
channels used in
analysis

1000 Hz with a
hardware

band-pass filter
(cut-offs at
0.05 Hz and

200 Hz)

BrainAmp DC
(Brain Products,

Germany)

Controlled
laboratory;
publicly
available dataset

motor disabilities (Wet AT 1) undergoing MI-BCI
training as part of BCI research activities in EPFL;
both used the same 16-channel sensorimotor montage
with right-earlobe reference (Fig. 1b2). Participants
of the Wet AT 1 dataset presented with various
neurological conditions, including myopathy, spinal
cord injury, amputation, spinocerebellar ataxia, and
multiple sclerosis [25]. The Wet Healthy 1 dataset
was recorded in a controlled laboratory environment
at EPFL, Switzerland. In contrast, the Wet AT
1 dataset was collected in clinical or home settings,
mainly at the SUVA rehabilitation clinic in Sion,
Switzerland, and at the participants’ own residences,
under somewhat uncontrolled conditions, exposed to
many more noise sources compared to the laboratory
recordings. Nevertheless, these environments were still
notably less dynamic and noisy compared to those
encountered by the subjects during the Mental Work
exhibition. Core acquisition parameters are listed in
Table 1.

Lastly, an additional, publicly available high-
density SMR BCI dataset is used and referred to as
Wet Healthy 2. This includes N = 80 healthy novices
with no reported neurological disorders recorded with
119 electrodes (BrainAmp DC Amplifier) in the
lab [26]. For cross-dataset comparability, analyses use
only channels common to the Dry and Wet System 1
layouts (Table 1)

2.2. Ethics and Approval

This study includes three different databases. The
Mental Work data collection was approved by the
Cantonal Committee of Vaud (VD, Switzerland) for
Ethics in Human Research (CER-VD) under protocol
number 2017-01746 [23]. The able-bodied user and
AT patient data collection was also approved by CER-
VD under protocol number PB_2017–00295 (020-15
CCVEM) and earlier versions of it [25]. The collection
of Wet Healthy 2 data was approved by the local



2 MATERIALS AND METHODS 6

(a) Used machines at Mental Work Exhibition

(b) EEG Placement

Machine 1 Machine 2 Machine 3

(c) Trial Timeline

(b
2
) 

W
e
t 

S
y
s
te

m
 1

 

(b
3
) 

W
e
t 

S
y
s
te

m
 2

 

(b
1
)

 D
ry

 S
y
s
te

m
 

(c
1
) 

D
ry

S
y
s
te

m
 

(c
2
) 

W
e
t 

S
y
s
te

m
 1

 
(c

3
) 

W
e
t 

S
y
s
te

m
 2

 

Figure 1. Experimental apparatus and protocol of the three EEG systems. (a) Brain-actuated machines of Mental Work exhibition
(b) EEG channel layout and (c) trial timeline of the Dry system (b1, c1), Wet system 1 (b2, c2) and Wet system 2 (b3, c3).

ethics authority (Ethical Review Board of the Medical
Faculty of the University of Tübingen) [27]. Informed
consent was received from all human subjects, and all
experimental protocols were fully compliant with the
Declaration of Helsinki and in accordance with local
statutory requirements.

2.3. Experimental protocol

After registering with Mental Work, each participant
spent roughly 30 minutes collecting data for the
calibration of a binary (two-class) MI decoder.
Calibration took place inside a small, dedicated, semi-
controlled space within the exhibition hall, separated
from it by temporary thin walls, thus offering some
additional privacy and quietness compared to the
large main space devoted to machine control. During
calibration, subjects performed 30 cued, 4 s-long trials
per MI class (i.e., kinaesthetic imagination of left-

and right-hand, or foot movement), in blocks of three
runs, yielding a total of 60 MI training trials for each
participant (Fig. 1(c1)). After the MI BCI calibration,
always in the dedicated booth, subjects proceeded
with 2-3 minutes of closed-loop control of a basic
feedback graphical user interface displaying a moving
visualization bar in real-time, which users attempted
to move left or right using MI. These online runs
often only contain 4-5 trials and were, as a result,
excluded from analysis. Subsequently, participants
moved to the large exhibition space to engage with each
of the three machines controlled in closed-loop with
the participant-specific MI BCI model automatically
trained during the calibration phase. It must be
highlighted that, unlike a controlled lab environment,
the training booth was located within, and loosely
separated from, the busy, open-access exhibition hall
with abundant foot traffic, background conversation,
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Raw EEG (cued runs only)
Dry Training, Wet Healthy 1 + Wet AT 1, Wet Healthy 2

DC offset removal
per run & channel (mean subtraction)

Band-pass filter
2–40 Hz, Butterworth (2nd), zero-phase

Spatial filtering
cross-neighbour Laplacian

Welch windowing [28]
1 s windows, 50% overlap; internal 0.5 s, 50% overlap

Power Spectral Density(psd) features
0.5–30 Hz, 0.5 Hz resolution

(7 samples/trial in Dry Training)

Sensorimotor channels
Dry: Cz, C3, C4, C5, C6; Wet: Cz, C3, C4

Band selection
µ = 8–14 Hz, β = 18–24 Hz

Feature ranking (train folds)
top by r2 separability

Feature selection
keep best 10 features / CV iteration

Classifier
Quadratic Discriminant Analysis (QDA)

5-fold cross-validation (per run)
no shuffling; keep samples from same trial in same fold

Figure 2. Classification accuracy pipeline (MI decoding).

and electromagnetic interference from phones, lighting,
and other electronics.

During machine control, the participants of the
Mental Work Exhibition (referred to as “operators”)
wore the same dry EEG helmet, continuously recording
electrical brain activity in a wireless fashion. At the
beginning of the phase, participants sat facing a two-
meter-long mechanical setup (Machine 1, Fig. 1(a)),
consisting of a piston, a flywheel, and a horizontal
shaft. Participants use MI-based commands to move
the piston towards the flywheel, initiating rotation.
This rotation subsequently drove the shaft through a
bolt. This interaction was mediated by the trained
MI BCI algorithm following the similar setups of
previous work [25, 29] but adapted to the specific
channel layout of the dry EEG headset. Detection of
one class (i.e., when the posterior probability of this
mental class given the extracted and selected SMR

features would exceed a user-adjustable confidence
threshold—usually varying between 70%–90%) would
set the piston in motion, and the other class would
have no effect. After controlling the machine for some
time, BCI control introduced additional complexity,
involving more sophisticated machines (Machine 2 and
Machine 3, Fig. 1(a)) and task structures. Machines 2
and 3 require two participants to be controlled. They
were assigned roles as either “drivers” or “supervisors”.
Supervisors, through their own MI, could dynamically
adjust the probability thresholds, thereby making the
drivers’ task of controlling the machinery easier or
more challenging, and less predictable. Alternatively,
supervisors could instruct the BCI of the operator,
again via MI, to stop using imagery-based decoding
and instead switch to an alpha-wave-based algorithm.
In this scenario, supervisors also used MI to cue drivers
to relax and clear their minds entirely.

The datasets for both able-bodied participants
(Wet Healthy 1) and AT (Wet AT 1) users consist of
1 to 10 MI BCI sessions per subject. Each session
includes 3 to 4 calibration (open-loop) and/or online
(closed-loop) runs, with each run comprising 15 trials
for each MI task. The MI tasks recorded in the
database include right-hand, left-hand, both-hand,
both-feet MI, and a resting (idling) condition. The
experimental protocol is described in detail in [24, 25].
The duration of continuous feedback is fixed at 4
seconds for offline runs (Fig. 1(c2), whereas for online
runs, it varies between 2 and 8 seconds depending on
a subject-specific timeout.

The experimental protocol consisted of several
calibration and feedback runs for the Wet Healthy
2 dataset. During calibration runs, participants
performed imagined movements of the left hand, right
hand, or feet guided by visual cues (arrows). Each MI
task was presented in randomized order across trials,
with each trial comprising a 2-second fixation cross
epoch, a 4-second imagery period cued throughout by
an arrow, and, ultimately, a 2-second pause (inter-
trial interval). Each run consisted of 25 trials per MI
task, resulting in a total of 225 trials per participant.
Feedback runs involved online BCI control based on
real-time EEG processing, where participants received
visual feedback of their motor imagery performance
through cursor movements on the screen. Each
feedback trial lasted 9 seconds, comprising an initial
2-second fixation epoch, a 1-second directional cue
presentation epoch, then 4 seconds of continuous cursor
feedback followed by a 2-second indication of final BCI
decision (Fig. 1(c3)).

A detailed description of the experimental setup
and protocol generating each of the three datasets can
be found in [24, 25, 26]. It is critical to observe that,
aside from minor differences in timing and graphics, the
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Raw EEG (all datasets)

Zero-phase band-pass
Butterworth 4th order, 0.1–100 Hz

(reject DC; retain slow &
high-freq artifact content)

Time-domain matrices
(spike count, Kurtosis,

AMI, standard deviation,
peak amplitude)

1 s, non-overlapping

Frequency-domain matrices
(spectral entropy,

γ-band power)
1 s Hamming, 50% overlap

Trial-length segments
(averaged per subject)

for FOOF & ICLabel

Figure 3. Preprocessing pipeline for direct EEG quality assessment.

experimental protocol of all three datasets is identical.
For the purpose of direct comparisons across different
datasets, we retained only those channels in Wet
Healthy 2 that were common to both Dry EEG (Dry
Training, Dry Control) and Wet EEG System 1 (Wet
Healthy 1, Wet AT 1).

2.4. Indirect EEG quality assessment

The bulk of our benchmarking analysis focuses on
paradigm-independent metrics previously introduced
in the literature to directly assess the quality of EEG
signals, as elaborated below. However, exploiting the
fact that the available datasets have been derived in
a BCI context and contain labeled EEG during the
execution of motor tasks, we seize the opportunity
to also offer indirect evidence of comparative EEG
quality through open-loop MI BCI performance and,
specifically, by means of the popular and easily
interpretable classification accuracy measure.

Classification accuracy: A conventional MI
BCI processing pipeline is applied to all datasets
to ensure fair cross-dataset comparisons (Fig. 2).
Only cued runs that allow extraction of classification
accuracy are employed, effectively excluding the Dry
Control data of the dry EEG Mental Work dataset.
Classification accuracy was computed individually for
each run and then averaged per subject. We report
both the average accuracy across all runs and the
maximum accuracy (i.e., best run) achieved by each
participant.

Each participant’s classification accuracy was
compared against a subject-specific chance level
pchance(ni) = 0.5 + 0.506√

ni
(two-class, binomial distribu-

tion of classification decisions assumed following Müller
et al. [30]), where ni is that participant’s total number
of trials (pooled across runs/sessions). This evaluates
to ≈ 58% at ni = 40 and adapts with ni (higher for
fewer trials, lower for more); a participant was consid-
ered above chance if Acci ≥ pchance(ni).

2.5. Direct EEG quality assessment

We additionally sought to systematically quantify the
degree to which various common artifacts—such as
ocular, muscular, and environmental noise—affected
the signal integrity, thus directly evaluating the signal
quality that can be delivered by dry and wet EEG
technologies, as well as the comparative vulnerability of
these to noise. Towards this goal, several time-domain
and frequency-domain metrics were used. Prior to the
computation of the quality indices, raw EEG data were
pre-processed as shown in Fig. 3. No artifact removal
or impedance-compensation was applied. Independent
Component Analysis (ICA) and ICLabel were used
strictly to quantify artifact composition (not to clean
the signal), so that residual noise remains measurable
across datasets. It is important to emphasize
that subject-wise single-sample values are inputted
in ANOVA and other statistical testing (and are
further averaged per EEG system or per dataset for
comparative reporting), so that the data independence
assumption is satisfied.

Each of these metrics assesses specific character-
istics of the signal, allowing us to evaluate different
aspects of EEG signal quality. The battery of signal
quality measures applied here has been based on previ-
ous work [31, 32, 33, 34] where they have been success-
fully employed as part of advanced, state-of-the-art ar-
tifact removal methods (mainly to distinguish artifact-
contaminated from clean independent EEG compo-
nents). As such, they are widely used and validated
metrics for assessing EEG signal quality. The detailed
methods employed for each quality metric are outlined
below.

2.5.1. Time-Domain Quality Metrics
Spiking activity: Spiking activity quantifies brief
but large-magnitude transients mainly associated with
muscular artifacts or sudden electrode movements [33].
The presence of spiking activity within EEG segments
was quantified using a threshold-based method.
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Specifically, for a given EEG channel amplitude x(t),
a threshold T was computed dynamically as:
T = µ + kσ, where µ and σ represent the mean and
standard deviation of the signal segment, respectively.
A threshold level of five standard deviations (k=5)
above the mean was selected to robustly discriminate
high-amplitude transient artifacts from physiological
EEG signals, consistent with previously validated
artifact detection methodologies in EEG literature [35,
33, 36, 37]. This stringent threshold ensures minimal
false-positive detection, focusing predominantly on
muscular or movement-related EEG spikes. Samples
exceeding this threshold indicate high-magnitude
spikes or transient artifacts.

Kurtosis: Kurtosis κ (Eq. 1) was computed
to assess the amplitude distribution characteristics of
EEG signals over time [38]. Kurtosis κ quantifies the
degree to which data distributions are peaked or heavy-
tailed, helping to identify transient, high-amplitude
artifacts that differ significantly from regular EEG
activity. It is defined as

κ =
1
N

∑N
t=1[x(t) − µ]4

σ4 (1)

where x(t) is the EEG amplitude at time t, N
denotes the number of samples within each 1-second
window, µ the mean amplitude, and σ the standard
deviation. Kurtosis values significantly higher than
that of a Gaussian distribution (κ > 3) usually indicate
abnormal data segments potentially contaminated by
artifacts such as muscle bursts or electrode pops [31].

AMI: AMI (Eq. 2) measures nonlinear temporal
dependencies within the EEG data, serving as a robust
alternative to conventional autocorrelation measures.
AMI values outside normal ranges (τ = 100 ms for clean
EEG falls in the range of 0.15-0.40 bits) may reflect
abnormal temporal dynamics indicative of artifact
contamination [32]. For EEG signals represented as
discrete random variables X (original) and Y (time-
shifted by lag τ), AMI is defined as

I(X; Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
(2)

where p(x, y) denotes the joint probability distribution,
and p(x), p(y) represent marginal distributions. Here,
we used a lag offset of τ = 100 ms, as mentioned in [31],
where this choice is based on the observed temporal
dynamics of artifacts.

Standard Deviation: The standard deviation
σ (Eq. 3, unbiased estimate) was computed to
detect channels exhibiting unusually high amplitude
variability. This measure captures the magnitude
of signal fluctuations around the mean amplitude
and can indicate various artifacts, such as muscle

contractions (EMG artifacts), electrode displacement,
motion-induced noise or loose electrode contacts [31,
22]. If x(t) represents the amplitude at sample t, and µ
denotes the mean amplitude of the segment, σ denotes
the standard deviation for an EEG segment of length
N samples.

σ =

√√√√ 1
N − 1

N∑
t=1

[x(t) − µ]2 (3)

We identified abnormal channels by applying a ro-
bust threshold employing Median Absolute Deviation
(MAD), defined as σth = median(σ′)+srobust ·mad(σ′)
and srobust = 3 (3 standard deviations from the me-
dian), where σ′ here is the distribution of standard
deviation values retrieved by all 1-sec windows. This
method is less affected by outliers and ensures sensi-
tivity to subtle, but consistent deviations indicative of
artifacts [39].

Peak Amplitude: Peak amplitude for each EEG
segment was defined as PeakAmplitude = maxt |x(t)|.
Very high peak amplitudes indicate abrupt transient
artifacts such as strong muscular activity (e.g., jaw
movements) or mechanical forces applied to electrodes
(e.g., pops, presses, etc.) [40].

2.5.2. Frequency-Domain Quality Metrics
Spectral Entropy: Spectral entropy H (Eq. 4)
quantifies the uniformity of the Power Spectral Density
(PSD), calculated from the normalized PSD, p(f).
Higher entropy values indicate a broader and more
evenly distributed spectral content, often associated
with broadband noise, muscular artifacts, or other non-
specific interference in EEG signals.

H = −
∑

f

p(f) log2(p(f)), p(f) = P (f)∑
r P (r) (4)

where P (f) represents power spectral density at
frequency f , and p(f) = P (f)/

∑
r P (r) is the relative

power at f , i.e. the proportion of total spectral power
contributed by that frequency.

γ-band Power: γ-band power (above 30 Hz) [41]
is particularly sensitive to muscle artifacts and was
quantified by summing the PSD within the γ frequency
band: γP SD =

∑40
f=30 P (f). In order to identify trials

with abnormal γ-band power, a robust threshold was
defined as the median of γ-band power augmented by
three times its MAD. This robust measure minimises
the influence of extreme outliers, thereby providing a
more stable criterion of abnormality.

FOOF Analysis (1/f spectrum rule): To
evaluate the quality of EEG signals based on their
aperiodic spectral properties, we applied the FOOF
model, a spectral parameterisation method that
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(a) Dry EEG System (b) Wet EEG System 1 (c) Wet EEG System 2

Figure 4. Sorted mean (top row) and maximum (bottom row) classification accuracy across runs for all participants with the
(a) dry EEG system (Dry Training dataset), (b) wet EEG system 1 (Wet Healthy 1 and Wet AT 1 pooled together), and (c) wet
EEG system 2 (Wet Healthy 2 dataset). A dashed black line shows the subject-specific chance threshold, taking into account each
participant’s total number of trials.

decomposes EEG power spectra into distinct aperiodic
and periodic components [42]. Specifically, FOOF
conceptualizes the EEG power spectrum S(f) as
a combination of an aperiodic component reflecting
a characteristic 1/f -like behaviour and periodic
components represented by narrowband oscillatory
peaks rising above this aperiodic background: S(f) =
L(f) + G(f) + ϵ(f), where the aperiodic component
L(f) is modelled as: L(f) = offset − α log(f),
with α representing the aperiodic exponent. The
periodic component G(f) captures oscillatory peaks,
each characterized by a center frequency, amplitude,
and bandwidth, while ϵ(f) reflects residual noise. This
model-driven approach enables unbiased extraction
of periodic oscillations and underlying broadband
1/f -like characteristics without relying on predefined
frequency bands, thus providing objective comparisons
of EEG signal quality within and between subjects.
Parameters including the aperiodic component’s offset
and exponent were extracted from each channel’s PSD
computed over 1-second EEG segments, facilitating
the identification of substantial broadband artifacts or
noise contamination. All FOOF fits were performed
on each channel’s 0.5–30 Hz PSD using the Python
fooof package (v1.x). We constrained the oscillatory
peaks to have widths between 1 and 12 Hz, required a
minimum peak height of 0.1 µV2/Hz, and used a peak-
detection threshold of 2 standard deviations above the
aperiodic fit. We also limited the maximum number of
peaks to six and fixed the aperiodic mode to “fixed.”
Fit quality was assessed via the R2 reported by FOOF,
and any fits with R2 < 0.90 were visually inspected
(none were excluded).

ICLabel Artifact Contribution: In addition

to the aforementioned time- and frequency-domain
metrics, artifact contamination at the channel level was
assessed by computing the mean artifact contribution
derived from independent component (IC) analysis.
Following EEG preprocessing and ICA decomposition
using the extended infomax ICA algorithm [43], each
IC was automatically classified using the ICLabel
algorithm [44] into seven categories: brain activity,
muscle activity, eye movement, cardiac artifacts, line
noise, channel noise, and other sources. ICs categorized
as artifacts (classes 2–7) were averaged, and their scalp
projection weights were aggregated across trials, runs,
and subjects.

We then constructed a channel-by-subject ma-
trix of mean artifact contributions by stacking each
electrode’s aggregated IC scalp-map weights (from
artifact-labeled components) across trials and subjects
and expressing each channel’s mean weight as a per-
centage of the total artifact projection across the mon-
tage. The resulting channel-wise artifact maps pro-
vided quantitative estimates of the relative severity
of artifacts for each EEG channel, highlighting elec-
trodes predominantly affected by physiological and
non-physiological noise. High artifact contributions
indicate substantial contamination, informing subse-
quent decisions regarding channel inclusion or exclu-
sion in further EEG analyses.

Finally, for each subject, we computed a
1x7 vector of mean ICLabel class probabilities
(across all ICs and trials) and then averaged these
subject-level vectors to produce a concise group-
level matrix reflecting the relative prevalence of
brain, muscle, eye, cardiac, line noise, and other
components. All channel-wise artifact maps and class-
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Figure 5. Spike count results across all five datasets (Dry Training, Dry Control, Wet Healthy 1, Wet AT 1, and Wet Healthy
2). (a)–(c) Channel-wise average for each EEG system as shown in the panel titles. (d1) Comparison on the set of channels
common to all datasets with red asterisks indicating significant differences based on Mann–Whitney U tests (Bonferroni corrected).
(d2) Visualisation of dataset distributions (mean and standard deviation). Blue colour of the Dry Training distribution indicates
significance (p < 0.05) of the one-way ANOVA effect with factor “dataset”. Red colour of the Dry Control, Wet Healthy 1, Wet
AT 1 and Wet Healthy 2 distributions indicates a significant difference of the Tukey-Kramer post-hoc test comparing the respective
distribution with that of Dry Training. Cohen’s d effect sizes for panel (d2)—each dataset vs. Dry Training, with asterisks marking
Tukey–Kramer–adjusted p < 0.05—are summarized in Table 4 (sign indicates direction relative to Dry Training).

distribution matrices were obtained directly from the
standard EEGLAB and ICLabel pipeline using built-in
MATLAB functions [44].

2.6. Statistical Comparison between Dry and Wet
EEG Systems

To isolate electrode-technology effects eliminating the
confounding factor of different channel layouts across
datasets, we performed a common-channel analysis
restricted to C3, C4, Cz, Fz present across all systems.
To objectively evaluate differences in EEG signal
quality between dry and wet electrode systems, we then
applied a universal testing framework with explicit
effect-size reporting and corrections for multiple
comparisons: first, on these four common channels,
we compared the dry and wet datasets for each
metric using Mann–Whitney U. Given the independent
subject groups and the fact that the distributions of
metrics are not always normal, this non-parametric

test is appropriate. We report exact p-values after
Bonferroni correction (adjusted significance threshold
αcorr = 0.05/Ntests) and accompany each comparison
with the rank-biserial correlation (rrb) as an effect size,
facilitating interpretation of practical significance.

Second, to measure overall group-level differences
per metric, we conducted one-way ANOVAs on each
quality metric. The output variable instances are
the corresponding metric values of each participant,
averaged over channels and (data windows or trials)
within subject runs in each dataset. Significant
ANOVAs (p < 0.05) were followed by Bonferroni-
corrected post-hoc (using Tukey–Kramer HSD with
α = 0.05) pairwise comparisons. For each pairwise
comparison, we report the adjusted p-value and
Cohen’s d as an effect size, offering a clear sense of
the magnitude of differences.

Together, this approach—exact, corrected p-
values; explicit rank-biserial and Cohen’s d effect
sizes—ensures a transparent, statistically rigorous
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Figure 6. Kurtosis results across all five datasets. (a)–(c) Channel-wise average for each EEG system as shown in the panel
titles. (d1) Comparison on the set of channels common to all datasets with red asterisks indicating significant differences based
on Mann–Whitney U tests (Bonferroni corrected). (d2) Visualisation of dataset distributions (mean and standard deviation).
Blue colour of the Dry Training distribution indicates significance (p < 0.05) of the one-way ANOVA effect with factor “dataset”.
Red colour of the Dry Control and Wet AT 1 distributions indicates a significant difference of the Tukey-Kramer post-hoc test
comparing the respective distribution with that of Dry Training. Distributions shown in grey did not differ significantly from Dry
Training in the post-hoc comparisons. Cohen’s d effect sizes for panel (d2)—each dataset vs. Dry Training, with asterisks marking
Tukey–Kramer–adjusted p < 0.05—are summarized in Table 4 (sign indicates direction relative to Dry Training).

comparison of dry and wet EEG systems, emphasizing
both statistical validity and real-world relevance.

3. Results

Classification Accuracy: Fig. 4 contrasts the open-
loop (offline), cross-validated classification accuracy
achieved by participants wearing the dry-electrode
EEG system (panels a) and those using the wet
systems (panels b and c). When using the dry
EEG system (left panels), a substantial subset of
participants (324 out of 530, 61%) recorded mean
accuracies above this random classification threshold
(56.5% uniformly across participants for Dry Training
as all subjects have the same amount of data), with
several individuals reaching or surpassing 80–90%.
Nonetheless, a noticeable proportion of users (39%)

still fell below chance, confirming that a large portion
of the population may have struggled with MI
control [29] using the dry cap under the stressful and
noisy conditions in which these data were acquired.
Observing the maximum accuracy in the lower panel
further reveals that a solid majority of participants
(431 out of 570, 81%) were able to reach high
performance in at least one of their runs, implying
that with additional user training or more refined
signal processing and machine learning, the overall
classification outcome could improve for at least some
part of this cohort.

By comparison, the wet EEG systems (wet EEG
system 1 is the g.USBamp comprising Wet Healthy
1 and Wet AT 1 datasets, and wet EEG system
2 is the BrainAmp DC with dataset Wet Healthy
2) also show a wide range of performance levels.
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Figure 7. AMI results across all five datasets. (a)–(c) Channel-wise average for each EEG system as shown in the panel titles. (d1)
Comparison on the set of channels common to all datasets with red asterisks indicating significant differences based on Mann–Whitney
U tests (Bonferroni corrected). (d2) Visualisation of dataset distributions (mean and standard deviation). Blue colour of the Dry
Training distribution indicates significance (p < 0.05) of the one-way ANOVA effect with factor “dataset”. Red colour of the Dry
Control and Wet AT 1 distributions indicates a significant difference of the Tukey-Kramer post-hoc test comparing the respective
distribution with that of Dry Training. Distributions shown in grey did not differ significantly from Dry Training in the post-hoc
comparisons. Cohen’s d effect sizes for panel (d2)—each dataset vs. Dry Training, with asterisks marking Tukey–Kramer–adjusted
p < 0.05—are summarized in Table 4 (sign indicates direction relative to Dry Training).

Specifically, 57 out of 71 users (80%) and 52 out of
80 users (65%) exceeded the chance level threshold
for their mean accuracies, respectively, while the
corresponding maximum accuracies tend to be higher
at (69/71, 97% and 76/80, 95%). Because the
wet-electrode recordings were generally acquired in
a more controlled environment, the distribution of
accuracies is somewhat narrower—few participants
exhibit extremely low values. However, the shape
of the curves is broadly similar to the dry-electrode
case, indicating a comparable spread of individual
differences in BCI aptitude. More formally, by means
of a chi-squared statistical test for proportions, it
is found that the difference between the dry system
and the wet EEG system 1 in terms of the average
classification accuracy (61% vs. 80%) is significant
(p = 0.0015). The difference is also significant

(p = 0.0006) in terms of maximum accuracy (81%
vs. 97%). When compared to Wet EEG system 2,
no significant difference is found (p = 0.4871) for the
average accuracy (61% vs. 65%), but a significant one
(p = 0.0019) is noted for the maximum classification
accuracy (81% vs. 95%).

Collectively, our results demonstrate that mean
and peak accuracies achieved with the dry systems
are broadly comparable to those obtained with wet
electrodes, notwithstanding the fact that the latter
seem to maintain a competitive edge. To place these
findings in context, we further attempt a comparison
with earlier reports of MI-BCI performance collected
with wet sensors under exhibition-style conditions [45].
As reported thereby, a 40-trial open-loop MI training
(yielding a 70% chance-level threshold according to
Müller et al. [30]) resulted in 58.6% of the open-



3 RESULTS 14

(d2) Std Comparison

(a) Dry System

p = 0.0074

(b) Wet System 1 (c) Wet System 2

(d1) Std Comparison

)
µ

V
(

Figure 8. Standard deviation (SD) results across all five datasets. (a)–(c) Channel-wise average of the percentage of 1-second
windows with abnormal standard deviation for each EEG system as shown in the panel titles. (d1) Comparison of standard deviation
values on the set of channels common to all datasets with red asterisks indicating significant differences based on Mann–Whitney
U tests (Bonferroni corrected). (d2) Visualisation of dataset-dependent EEG standard deviation distributions (mean and standard
deviation). Blue colour of the Dry Training distribution indicates significance (p < 0.05) of the one-way ANOVA effect with factor
“dataset”. Red-coloured distributions indicate a significant difference of the Tukey-Kramer post-hoc test comparing the respective
distribution with that of Dry Training. Distributions shown in grey did not differ significantly from Dry Training in the post-hoc
comparisons. Cohen’s d effect sizes for panel (d2)—each dataset vs. Dry Training, with asterisks marking Tukey–Kramer–adjusted
p < 0.05—are summarized in Table 4 (sign indicates direction relative to Dry Training).

loop sessions by 99 healthy participants exceeding the
chance-level threshold with a recursive least squares
algorithm and a similar 62.5% with a band-power
estimation algorithm. Our results with a dry cap under
substantially harsher conditions achieved a practically
indistinguishable 61% figure on the same criterion out
of the 530 users/sessions included, with a comparable
amount of 60 trials per participant. This comparison
supports our claims of an emerging competitiveness of
dry EEG as opposed to traditional, wet sensors.

Spiking Activity:
Dry Control exhibits a vastly elevated spike

profile across frontal, central, and temporal electrodes,
whereas Dry Training is lower and more uniform; Wet
Healthy 2 exhibits the lowest spike counts, followed
by Dry Training, with Wet Healthy 1 and Wet AT 1
higher (Fig. 5(a)-(c)). On the four common channels
(C3, C4, Cz, Fz; Fig. 5d1), all pairwise Mann–Whitney
U tests were significant after Bonferroni correction
(padj < 0.0001), with rank–biserial correlations near
unity (Table 2). Fig. 5(d2) shows that group means
differ (one-way ANOVA on subject-level averages:
F (4, 1841) = 7909.732, p < 0.0001), and post-hoc
comparisons indicate significant differences among all

groups.

Kurtosis: Dry Control shows particularly high
kurtosis in several channels—most prominently at
frontal, central, and temporal electrodes. In Dry
Training, kurtosis is relatively moderate, peaking
slightly at frontal sites. The three wet datasets
generally exhibit kurtosis values comparable to those
of the Dry Training dataset (Fig. 6(a)–(c)). All
corrected Mann–Whitney U tests on the four common
channels (Fig. 6(d1)) were highly significant (padj <
0.0001), with rank-biserial correlations ranging from
moderate (|rrb| ≈ 0.53) to near-perfect (|rrb| ≥ 0.90),
reflecting substantial group differences (Table 2) both
in the statistical and effect size sense. The one-
way ANOVA analysis (Fig. 6(d2)) reveals a significant
difference (F (4, 1841) = 130.028, p < 0.0001) across
groups. Subsequent post-hoc pairwise tests further
clarify which datasets diverge (mainly Dry Control
and Wet AT 1), underscoring that these five recording
conditions differ meaningfully in their overall kurtosis.

AMI: According to Fig. 7(a)–(c), Dry Control’s
AMI appears relatively low to moderate across many
channels except frontal channels. By contrast, Dry
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Figure 9. Peak amplitude results across all five datasets. (a)–(c) Channel-wise average for each EEG system as shown in the
panel titles. (d1) Comparison on the set of channels common to all datasets, with red asterisks indicating significant differences
based on Mann–Whitney U tests (Bonferroni corrected). (d2) Visualisation of dataset distributions (mean and standard deviation).
Blue colour of the Dry Training distribution indicates significance (p < 0.05) of the one-way ANOVA effect with factor “dataset”.
Red-coloured distributions indicate a significant difference of the Tukey-Kramer post-hoc test comparing the respective distribution
with that of Dry Training. Distributions shown in grey did not differ significantly from Dry Training in the post-hoc comparisons.
Cohen’s d effect sizes for panel (d2)—each dataset vs. Dry Training, with asterisks marking Tukey–Kramer–adjusted p < 0.05—are
summarized in Table 4 (sign indicates direction relative to Dry Training).

Training, Wet AT 1, Wet Healthy 1, and Wet
Healthy 2 exhibit low AMI values across all the
channels. Fig. 7(d1), depicting the four common
channel comparisons, aligns with the findings on
the previous metrics, showing considerably and
statistically significant greater AMI for Dry Control
especially in Fz (padj < 0.0001, with rank–biserial
correlations from |rrb|≈0.20 to ≥0.90—except for the
comparison between Wet AT 1 and Wet Healthy 2,
see Table 2). The remaining four datasets are closer
to each other in this case. Turning to the one-
way ANOVA (Fig. 7(d2)), each participant’s mean
AMI (averaged over their channels) differs significantly
(F (4, 1841) = 611.095, p < 0.0001) across the five
conditions.

Standard Deviation: In the Dry System, Dry
Control features a noticeably higher percentage of
channels flagged as abnormal, particularly in frontal
and temporal electrodes, relative to Dry Training.
Wet Healthy 1 and Wet AT 1 differ mainly at

frontal–central sites, with higher abnormal rates for
the healthy group and Wet Healthy 2 shows moderate
abnormal percentages at frontal and occipital sites,
generally lower than those observed in Dry Control and
Wet Healthy 1 (Fig. 8(a)–(c)). In the four common
channels (Fig. 8d1), although Dry Control remains
the condition most influenced by high-amplitude noise,
Dry Training also shows significantly higher standard
deviation values, especially in frontal–central channels,
exceeding those of Wet AT 1, Wet Healthy 1, and Wet
Healthy 2. All Mann–Whitney U tests (Bonferroni-
corrected) on standard deviation at C3, C4, Cz and
Fz were highly significant (padj < 0.0001), with
rank–biserial correlations from moderate (|rrb| ≈ 0.27)
to maximal (|rrb| = 1.00) (Table 2). Turning
to one-way ANOVA (Fig. 8d2), each participant’s
mean standard deviation (averaged across all channels)
differs significantly (F (4, 1841) = 3.503, p = 0.0074)
among the five datasets. However, any dissimilarities
of the underlying distributions seem to be marginal,
as post-hoc comparisons do not show a significant
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Figure 10. Spectral Entropy results across all five datasets. (a)–(c) Channel-wise average for each EEG system as shown
in the panel titles. (d1) Comparison on the set of channels common to all datasets with red asterisks indicating significant
differences based on Mann–Whitney U tests (Bonferroni corrected). (d2) Visualisation of dataset distributions (mean and standard
deviation). Blue colour of the Dry Training distribution indicates significance (p < 0.05) of the one-way ANOVA effect with factor
“dataset”. Red-coloured distributions indicate a significant difference of the Tukey-Kramer post-hoc test comparing the respective
distribution with that of Dry Training. Cohen’s d effect sizes for panel (d2)—each dataset vs. Dry Training, with asterisks marking
Tukey–Kramer–adjusted p < 0.05—are summarized in Table 4 (sign indicates direction relative to Dry Training).

difference for any specific group pair.

Peak Amplitude: Several channels—particularly
frontal (F7, F8) and temporal—exhibit notably large
peak amplitudes in Dry Control. By contrast,
Dry Training shows comparatively moderate values
across most channels and is closely aligned with Wet
AT 1. Both Wet Healthy 1 and Wet Healthy 2
display low peaks across the majority of channels
(Fig. 9(a)–(c)). For four common channels, pairwise
Mann–Whitney U tests among all five datasets were
significant after Bonferroni correction (padj < 0.0001),
with rank–biserial correlations from moderate to near-
perfect (|rrb| = 0.54–1.00; Table 2). Mean peak
amplitudes differed significantly among datasets (one-
way ANOVA: F (4, 1841) = 13.367, p < 0.0001), and
post-hoc comparisons clarified which pairs diverged
most (e.g., Dry Training vs. Dry Control: padj =
0.0000, Cohen’s d = −0.24) (Table 4).

Spectral Entropy:

Dry Control recordings exhibit markedly smaller
spectral entropy, with values generally around or below
3.5 bits across most channels. The Dry Training
dataset shows moderate spectral entropy relative to
Dry Control. In contrast, all wet datasets (Wet
Healthy 1, Wet AT 1, Wet Healthy 2) exhibit higher
spectral entropy, consistently approaching or exceeding
values near 4.3–5 (Fig. 10(a)–(c)). For C3, C4, Cz, Fz
(Fig. 10d1), pairwise Mann–Whitney U comparisons
reveal consistent significant differences (Bonferroni-
corrected padj < 0.0001) across multiple dataset pairs
(Table 3). A one-way ANOVA on subject-level mean
spectral entropy (averaged across channels) confirms
group differences (F (4, 1841) = 1094.904, p < 0.0001;
Fig. 10d2).

γ-band power: Fig. 11(a)–(c) illustrate threshold-
based comparisons of γ-band power—namely, the
percentage of participants in each dataset whose γ-
band PSD at a given channel exceeds a robust
threshold. Dry Control shows remarkably higher
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Figure 11. γ-band power results across all five datasets. (a)–(c)
Channel-wise average of time windows with abnormal γ-band
power for each EEG system as shown in the panel titles. (d1)
Comparison of γ-band power on the set of channels common to
all datasets with red asterisks indicating significant differences
based on Mann–Whitney U tests (Bonferroni corrected). (d2)
Visualisation of dataset-dependent γ-band power distributions
(mean and standard deviation). Blue colour of the Dry Training
distribution indicates significance (p < 0.05) of the one-way
ANOVA effect with factor “dataset”. Red-coloured distributions
indicate a significant difference of the Tukey-Kramer post-hoc
test comparing the respective distribution with that of Dry
Training. Cohen’s d effect sizes for panel (d2)—each dataset vs.
Dry Training, with asterisks marking Tukey–Kramer–adjusted
p < 0.05—are summarized in Table 4 (sign indicates direction
relative to Dry Training).

γ-band components, especially at peripheral sites
(frontal, temporal, occipital). In Wet Healthy 1 and
Wet AT 1, abnormal γ appears in less than 20% of the
data across all channels; Wet Healthy 2 exhibits even
lower percentages, with small numerical differences.
On the four common channels (Fig. 11d1), all dataset-
based differences are statistically significant (padj <
0.0001), with rank–biserial correlations indicating very
strong separations (Table 3); in this view, Wet AT
1 is more affected than Wet Healthy 1. A one-way
ANOVA on each participant’s mean γ-band power
(averaged across channels) indicates group differences
(F (4, 1841) = 105.767, p < 0.0001; Fig. 11d2). Post-
hoc tests show that all groups differ significantly from
each other, with larger effect sizes for Dry Control and
Wet AT 1.

FOOF Analysis: The aperiodic component of the
spectrum of EEG is known to be modulated both by
various mental tasks [42] and linked to the signal’s

quality. Exactly how the signal integrity influences the
spectrum shape is not entirely understood, however,
empirical evidence [42] suggests that noise on EEG
may manifest either as a flatter spectrum (i.e., larger
aperiodic exponent as it appears in the FOOF model)
and potentially also larger offset (i.e., a negative value
closer to 0 given the logarithmic representation in
FOOF). Our results are consistent with this, as Dry
Control and Training caused on average a flattening of
the spectrum’s shape as shown by exponent values in
the range 1.5-2.0 or above, and concomitant elevation
of the offset relative to the wet electrodes (Wet
Healthy 1 and 2, and Wet AT 1), notwithstanding the
fact that all these differences are not so pronounced.
The second wet configuration (Wet Healthy 2) is
somewhat peculiar as it exhibited flatter spectra for
frontal channels, but, at the same time, the smallest
offset across all conditions (Fig. 12(a)–(c)). The
detailed four-channel comparison (Fig. 12(d1)) verifies
the same effects and highlights that differences are
statistically significant (Mann–Whitney U, Bonferroni-
corrected, padj < 0.0001) across several pairwise
dataset combinations (Table 3). Of note, the aperiodic
exponent results are in agreement with those on
spectral entropy, corroborating the sanity of this
analysis, as the two metrics convey the same type
of information. Fig. 12(d2) summarizes the one-way
ANOVA analyses across all five datasets, revealing
significant differences in overall group means for both
FOOF aperiodic exponent (F (4, 1841) = 673.852, p <
0.0001) and offset (F (4, 1841) = 2000.303, p <
0.0001).

ICLabel Artifact Contribution: The ICLabel
decomposition analysis revealed distinct, condition-
specific artifact patterns across EEG systems (Fig. 13).
In the Dry Training dataset (Fig. 13(a)), a moder-
ate artifact influence (maximum ≈ 1%) was most pro-
nounced over frontal (Fp1, Fp2) and occipital-temporal
(O2, T8) electrodes, while central electrodes (Cz, C3,
C4) exhibited relatively lower artifact contributions.
Class-wise, ICLabel attributed approximately 31% of
retained variance to brain activity, while the sec-
ond largest proportion of artifacts originated from the
“Other” category (29.5%), with moderate contribu-
tions from muscle (10.6%), line noise (13.5%), and oc-
ular (6.2%) sources. During the noisier Dry Control
condition (Fig. 13(b)), artifact magnitude significantly
increased, reaching above 1.5% prominently at bilat-
eral temporal sites (T7, T8, C5, C6) and frontal re-
gions. Nevertheless, the overall proportion of brain-
related ICs remained practically the same as for Dry
Training (33.5%), as also muscular artifacts did (9.2%).
Overall, it is shown that, except for peripheral channels
that are more considerably affected in Dry Control, the
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Figure 12. FOOF-derived offset and exponent of the aperiodic component of EEG across all five datasets. (a)–(c) Channel-wise
average for each EEG system as shown in the panel titles. (d1) Comparison on the set of channels common to all datasets with
red asterisks indicating significant differences based on Mann–Whitney U tests (Bonferroni corrected). (d2) Visualisation of dataset
distributions (mean and standard deviation). Blue colour of the Dry Training distribution indicates significance (p < 0.05) of the
one-way ANOVA effect with factor “dataset”. Red-coloured distributions indicate a significant difference of the Tukey-Kramer post-
hoc test comparing the respective distribution with that of Dry Training. Distributions shown in grey did not differ significantly
from Dry Training in the post-hoc comparisons. Cohen’s d effect sizes for panel (d2)—each dataset vs. Dry Training, with asterisks
marking Tukey–Kramer–adjusted p < 0.05—are summarized in Table 4 (sign indicates direction relative to Dry Training).

influence of noise remains largely similar to Dry Train-
ing. The only pronounced difference is a redistribu-
tion of noise type in favour of the “Other” category
(39% vs 29.5%), which should reflect the anticipated
greater scale of movement- and stress-related artifacts
in this condition, consistent with public, closed-loop
use of devices. In contrast, the controlled laboratory
Wet Healthy 1 dataset presented the cleanest artifact
profile, with contributions generally below 3%, dis-
tributed relatively uniformly across central and frontal
areas. ICLabel identified a high proportion of brain
components (49.5%) and lower percentages of muscle
(8%), ocular (4.5%), and channel noise (2.3%) sources
(Fig. 13 (c)). Finally, the semi-controlled Wet AT 1
recordings showed a distinct posterior-temporal arti-

fact distribution, with peak artifact levels around 1%
at parietal sites (CP4, CP2). The overall brain frac-
tion decreased to 41%, while eye-related artifacts no-
tably increased (5.7%), muscle activity was moderate
(10.5%), and a higher percentage (22.8%) was classified
as “Other”, suggesting mixed artifact sources typical of
clinical or home settings (Fig. 13 (d)). Finally, in the
high-density, fully controlled Wet Healthy 2 dataset
(Fig. 13(e)), artifact contributions were again quite
low overall (<1%), but showed a somewhat broader
spatial footprint than Wet Healthy 1, with mod-
est peaks at fronto-central (FC3/FC4) and parieto-
occipital (P3/P4, O1/O2) sites. ICLabel attributed
35.3% of the variance to brain sources, with the largest
single artifact category now being “Other”. Muscle and
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Figure 13. ICLabel summary across five analyzed EEG datasets. Top row: scalp topographies illustrating the spatial distribution of
artifact contributions across EEG channels. Dark red colors indicate higher artifact presence, while dark blue colours represent lower
artifact influence. Middle row: bar plots quantifying per-channel artifact contributions (%). Bottom row: bar charts representing
the overall percentage of retained variance classified into seven ICLabel categories (Brain, Muscle, Eye, Heart, Line Noise, Channel
Noise, Other). Columns correspond to (a) Dry Training, (b) Dry Control, (c) Wet Healthy 1, (d) Wet AT 1 and Wet Healthy 2
datasets.

channel-noise contributions were both under 5%, eye
artifacts rose to 8.3%, heart activity remained minimal,
and line-noise contributions were negligible. Overall,
the dry headset yielded component mixtures compa-
rable to wet recordings, but was more susceptible to
channel noise (during training) and to movement arti-
facts when used in the acoustically and electromagnet-
ically challenging exhibition environment.

4. Discussion

While several studies [7, 2, 4, 5, 6, 9, 1] have begun
to close the literature gap in benchmarking dry and
wet electrodes, they remain limited to small cohorts
(N<100), mostly ERP/SSVEPs paradigms, and fixed
lab setups. By contrast, this work contributes a MI
BCI comparison in a realistic and very challenging
(as far as noise and physiological artifact sources
are concerned) public exhibition setting, with half a
thousand users. We not only show that dry caps can
perform on par with wet systems, but we also map out
the residual artifact landscape that emerges when BCIs
are taken out of the lab—a critical step toward truly
“in-the-wild” neurotechnology.

4.1. Classification Performance: Dry vs. Wet

The classification accuracy results underscore that,
although wet EEG traditionally provides a high signal-
to-noise ratio in controlled settings, state-of-the-art

dry electrodes can deliver comparable performance.
Both systems show a portion of individuals who
readily achieve robust MI-based control, while others
remain below the threshold. The distinction is
that the dry-electrode recordings were obtained
under realistic—and often noisy—conditions, which
might have penalized average performance relative
to more standardized laboratory protocols used in
the majority of the wet-electrode dataset recordings.
Although the ensemble of these results still suggests a
marginal superiority of wet electrodes, the fact that a
substantial subset of the dry-system users 61% attained
above-chance classification, and that their maximum
accuracies approached the upper range of the wet-
system participants, supports the fact that the latest
dry technology is well-suited for BCI usage outside
traditional research facilities. This aligns with earlier
observations that user-to-user performance variability
is nowadays a more serious concern than the choice of
electrode type, especially when artifact detection and
user training are in place.

4.2. Comprehensive Signal–Quality Assessment

We further proceeded with a comprehensive assessment
across multiple EEG signal quality metrics, revealing
the critical roles of the recording environment,
electrode technology, and task-specific conditions in
shaping EEG signal integrity.

The markedly elevated spike profile in Dry Control
is most definitely reflecting the noisier conditions and
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Table 2. Mann–Whitney U tests (Bonferroni corrected) for time-domain metrics.
Metric Comparison C3 C4 Cz Fz

pcorr U rrb pcorr U rrb pcorr U rrb pcorr U rrb

Spike Count

Dry Training vs. Dry Control 0.00 0 1.00 0.00 0 1.00 0.00 0 1.00 0.00 0 1.00

Dry Training vs. Wet AT 1 0.00 0 1.00 0.00 0 1.00 0.00 0 1.00 0.00 0 1.00

Dry Training vs. Wet Healthy 1 0.00 242 1.00 0.00 953 0.99 0.00 390 1.00 0.00 241 1.00

Dry Training vs. Wet Healthy 2 0.00 42 332 –1.00 0.00 42 356 –1.00 0.00 42 334 –1.00 0.00 42 325 –1.00

Dry Control vs. Wet AT 1 0.00 131 175 –1.00 0.00 131 175 –1.00 0.00 131 175 –1.00 0.00 131 175 –1.00

Dry Control vs. Wet Healthy 1 0.00 230 868 –1.00 0.00 230 868 –1.00 0.00 230 868 –1.00 0.00 230 868 –1.00

Dry Control vs. Wet Healthy 2 0.00 38 160 –1.00 0.00 38 160 –1.00 0.00 38 160 –1.00 0.00 38 160 –1.00

Wet AT 1 vs. Wet Healthy 2 0.00 22 000 –1.00 0.00 22 000 –1.00 0.00 22 000 –1.00 0.00 22 000 –1.00

Wet Healthy 1 vs. Wet Healthy 2 0.00 38 720 –1.00 0.00 38 720 –1.00 0.00 38 720 –1.00 0.00 38 720 –1.00

Kurtosis

Dry Training vs. Dry Control 0.00 2 848 0.98 0.00 1 989 0.98 0.00 1 939 0.98 0.00 8 648 0.93

Dry Training vs. Wet AT 1 0.00 12 981 0.82 0.00 11 890 0.84 0.00 12 519 0.83 0.00 34 117 0.53

Dry Training vs. Wet Healthy 1 0.00 26 161 0.80 0.00 32 868 0.74 0.00 30 136 0.77 0.00 56 664 0.56

Dry Training vs. Wet Healthy 2 0.00 30 544 –0.44 0.00 29 256 –0.38 0.00 26 697 –0.26 0.00 34 507 –0.63

Dry Control vs. Wet AT 1 0.00 115 177 –0.76 0.00 111 647 –0.70 0.00 118 085 –0.80 0.00 124 454 –0.90

Dry Control vs. Wet Healthy 1 0.00 230 868 –1.00 0.00 230 868 –1.00 0.00 230 868 –1.00 0.00 230 868 –1.00

Dry Control vs. Wet Healthy 2 0.00 38 160 –1.00 0.00 38 160 –1.00 0.00 38 160 –1.00 0.00 38 160 –1.00

Wet AT 1 vs. Wet Healthy 2 0.00 20 645 –0.88 0.00 20 490 –0.86 0.00 20 220 –0.84 0.00 20 778 –0.89

Wet Healthy 1 vs. Wet Healthy 2 0.00 36 328 –0.88 0.00 34 376 –0.78 0.00 34 599 –0.79 0.00 36 788 –0.90

AMI

Dry Training vs. Dry Control 0.00 25 236 0.80 0.00 23 986 0.81 0.00 23 372 0.82 0.00 9 245 0.93

Dry Training vs. Wet AT 1 0.00 93 267 –0.28 0.00 87 200 –0.20 0.00 100 857 –0.38 1.00 75 260 –0.03

Dry Training vs. Wet Healthy 1 0.00 82 867 0.35 0.00 77 726 0.39 0.00 82 015 0.36 0.00 54 865 0.57

Dry Training vs. Wet Healthy 2 0.00 25 998 –0.23 0.00 27 558 –0.30 0.00 27 321 –0.29 0.02 24 603 –0.16

Dry Control vs. Wet AT 1 0.00 120 756 –0.84 0.00 119 136 –0.82 0.00 122 276 –0.86 0.00 127 528 –0.94

Dry Control vs. Wet Healthy 1 0.00 206 643 –0.79 0.00 206 131 –0.79 0.00 208 280 –0.80 0.00 220 259 –0.91

Dry Control vs. Wet Healthy 2 0.00 32 430 –0.70 0.00 33 463 –0.75 0.00 34 580 –0.81 0.00 35 603 –0.87

Wet AT 1 vs. Wet Healthy 2 0.75 10 743 0.02 0.69 11 319 –0.03 0.49 10 440 0.05 0.30 11 840 –0.08

Wet Healthy 1 vs. Wet Healthy 2 0.00 25 808 –0.33 0.00 28 065 –0.45 0.00 26 893 –0.39 0.00 28 224 –0.46

Standard Deviation

Dry Training vs. Dry Control 0.00 17 969 0.86 0.00 17 393 0.86 0.00 15 886 0.87 0.00 9 913 0.92

Dry Training vs. Wet AT 1 0.00 14 908 0.80 0.00 20 208 0.72 0.00 17 110 0.77 0.00 16 670 0.77

Dry Training vs. Wet Healthy 1 0.00 86 252 0.33 0.00 93 859 0.27 0.00 76 511 0.40 0.00 53 991 0.58

Dry Training vs. Wet Healthy 2 0.00 42 271 –0.99 0.00 42 048 –0.98 0.00 42 381 –1.00 0.00 42 288 –0.99

Dry Control vs. Wet AT 1 0.00 84 911 –0.29 0.00 84 025 –0.28 0.00 90 574 –0.38 0.00 110 998 –0.69

Dry Control vs. Wet Healthy 1 0.00 219 886 –0.90 0.00 219 351 –0.90 0.00 216 578 –0.88 0.00 222 723 –0.93

Dry Control vs. Wet Healthy 2 0.00 38 160 –1.00 0.00 38 152 –1.00 0.00 38 160 –1.00 0.00 38 160 –1.00

Wet AT 1 vs. Wet Healthy 2 0.00 22 000 –1.00 0.00 21 974 –1.00 0.00 22 000 –1.00 0.00 22 000 –1.00

Wet Healthy 1 vs. Wet Healthy 2 0.00 38 690 –1.00 0.00 38 643 –1.00 0.00 38 720 –1.00 0.00 38 694 –1.00

Peak Amplitude

Dry Training vs. Dry Control 0.00 6 266 0.95 0.00 5 669 0.96 0.00 7 271 0.94 0.00 4 307 0.97

Dry Training vs. Wet AT 1 0.00 7 668 0.89 0.00 11 091 0.85 0.00 8 727 0.88 0.00 10 654 0.85

Dry Training vs. Wet Healthy 1 0.00 58 543 0.54 0.00 57 289 0.55 0.00 44 125 0.66 0.00 38 563 0.70

Dry Training vs. Wet Healthy 2 0.00 41 581 –0.96 0.00 41 367 –0.95 0.00 42 015 –0.98 0.00 40 582 –0.91

Dry Control vs. Wet AT 1 0.00 99 085 –0.51 0.00 94 868 –0.45 0.00 101 142 –0.54 0.00 119 657 –0.82

Dry Control vs. Wet Healthy 1 0.00 225 890 –0.96 0.00 225 995 –0.96 0.00 225 098 –0.95 0.00 227 888 –0.97

Dry Control vs. Wet Healthy 2 0.00 38 160 –1.00 0.00 38 046 –0.99 0.00 38 160 –1.00 0.00 38 160 –1.00

Wet AT 1 vs. Wet Healthy 2 0.00 22 000 –1.00 0.00 21 829 –0.98 0.00 22 000 –1.00 0.00 21 960 –1.00

Wet Healthy 1 vs. Wet Healthy 2 0.00 38 615 –0.99 0.00 38 109 –0.97 0.00 38 648 –1.00 0.00 38 453 –0.99

increased movements during active machine operation.
The ordering among wet datasets (Wet Healthy 1
vs. Wet AT 1) is consistent with the fact that
the latter were recorded with the same system as
Wet Healthy 1, but in harsher (clinical or home)
conditions. Within the exhibition venue, the very good
performance of the dry cap during Dry Training in the
same overall setting of the Mental Work exhibition
venue must be attributed to the extra demands of
the machine BCI control task and the additionally
burdened surroundings (i.e., crowds observing in close

proximity, talking loudly, carrying cell phones, etc.)
during Dry Control. Taken together, the trends
(with Wet Healthy 2 lowest, closely followed by Dry
Training) further hint at the emerging competitiveness
of dry sensors under calibration-like conditions, when
environmental load is moderated. On the other hand,
the elevated kurtosis at frontal, central, and temporal
sites in Dry Control is compatible with episodic
large-amplitude transients (e.g., muscle bursts), while
Dry Training and the wet datasets show lower,
more uniform values. Despite some attenuation in
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Table 3. Mann–Whitney U tests (Bonferroni corrected) for frequency-domain metrics.

Metric Comparison C3 C4 Cz Fz
pcorr U rrb pcorr U rrb pcorr U rrb pcorr U rrb

Spectral Entropy
Dry Training vs. Dry Control 0.00 238056 –0.88 0.00 238942 –0.89 0.00 242022 –0.91 0.00 238318 –0.89
Dry Training vs. Wet AT 1 0.00 26379 0.64 0.00 25619 0.65 0.00 28753 0.61 0.00 21307 0.71
Dry Training vs. Wet Healthy 1 0.00 77476 0.40 0.00 75380 0.41 0.00 88017 0.31 0.00 58018 0.55
Dry Training vs. Wet Healthy 2 0.00 945 0.96 0.00 892 0.96 0.00 1083 0.95 0.00 641 0.97
Dry Control vs. Wet AT 1 0.00 1875 0.97 0.00 1875 0.97 0.00 1875 0.97 0.00 1875 0.97
Dry Control vs. Wet Healthy 1 0.00 990 0.99 0.00 990 0.99 0.00 990 0.99 0.00 990 0.99
Dry Control vs. Wet Healthy 2 0.00 2 1.00 0.00 2 1.00 0.00 2 1.00 0.00 2 1.00
Wet AT 1 vs. Wet Healthy 2 0.00 3834 0.65 0.00 3834 0.65 0.00 3834 0.65 0.00 3834 0.65
Wet Healthy 1 vs. Wet Healthy 2 0.00 1638 0.92 0.00 1638 0.92 0.00 1638 0.92 0.00 1638 0.92

Gamma PSD
Dry Training vs. Dry Control 0.00 36462 0.71 0.00 37703 0.70 0.00 21965 0.83 0.00 22330 0.82
Dry Training vs. Wet AT 1 0.00 13377 0.82 0.00 14 092 0.81 0.00 8394 0.88 0.00 8023 0.89
Dry Training vs. Wet Healthy 1 0.02 138675 –0.08 0.00 145254 –0.13 0.00 98523 0.23 0.00 96854 0.24
Dry Training vs. Wet Healthy 2 0.00 39464 –0.86 0.00 39531 –0.86 0.00 38378 –0.81 0.00 37 918 –0.79
Dry Control vs. Wet AT 1 0.00 47285 0.28 0.00 47 285 0.28 0.00 47 285 0.28 0.00 47285 0.28
Dry Control vs. Wet Healthy 0.00 215829 –0.87 0.00 215 829 –0.87 0.00 215829 –0.87 0.00 215829 –0.87
Dry Control vs. Wet Healthy 2 0.00 38073 –1.00 0.00 38 073 –1.00 0.00 38073 –1.00 0.00 38073 –1.00
Wet AT 1 vs. Wet Healthy 2 0.00 21985 –1.00 0.00 21985 –1.00 0.00 21 985 –1.00 0.00 21985 –1.00
Wet Healthy 1 vs. Wet Healthy 2 0.00 36709 –0.90 0.00 36709 –0.90 0.00 36709 –0.90 0.00 36709 –0.90

FOOOF Exponent
Dry Training vs. Dry Control 0.00 44 888 0.64 0.00 40 538 0.68 0.00 24 348 0.81 0.00 7 681 0.94
Dry Training vs. Wet AT 1 0.00 130 721 –0.79 0.00 131 405 –0.80 0.00 131 556 –0.81 0.00 120 167 –0.65
Dry Training vs. Wet Healthy 1 0.00 176 668 –0.38 0.00 170 551 –0.33 0.00 186 427 –0.45 0.00 160 422 –0.25
Dry Training vs. Wet Healthy 2 0.00 25 969 –0.22 0.00 32 102 –0.51 0.01 25 871 –0.22 0.00 9 557 0.55
Dry Control vs. Wet AT 1 0.00 126 079 –0.92 0.00 126 562 –0.93 0.00 128 439 –0.96 0.00 129 605 –0.98
Dry Control vs. Wet Healthy 1 0.00 210 517 –0.82 0.00 211 697 –0.83 0.00 223 814 –0.94 0.00 228 724 –0.98
Dry Control vs. Wet Healthy 2 0.00 31 627 –0.66 0.00 35 149 –0.84 0.00 33 475 –0.75 0.00 27 748 –0.45
Wet AT 1 vs. Wet Healthy 2 0.00 5 731 0.48 0.00 6 338 0.42 0.00 4 744 0.57 0.00 2 493 0.77
Wet Healthy 1 vs. Wet Healthy 2 0.53 18 596 0.04 0.00 25 743 –0.33 1.00 18 143 0.06 0.00 6 932 0.64

FOOOF Offset
Dry Training vs. Dry Control 0.00 106 696 0.16 0.01 111 827 0.12 0.00 63 786 0.50 0.00 77 266 0.39
Dry Training vs. Wet AT 1 0.00 131 411 –0.80 0.00 129 648 –0.78 0.00 130 992 –0.80 0.00 129 011 –0.77
Dry Training vs. Wet Healthy 1 0.00 152 402 –0.19 0.00 148 974 –0.16 0.00 164 265 –0.28 0.00 194 876 –0.52
Dry Training vs. Wet Healthy 2 0.00 42 374 –1.00 0.00 42 396 –1.00 0.00 42 400 –1.00 0.00 42 393 –1.00
Dry Control vs. Wet AT 1 0.00 115 130 –0.76 0.00 113 260 –0.73 0.00 121 716 –0.86 0.00 118 999 –0.81
Dry Control vs. Wet Healthy 1 0.00 144 481 –0.25 0.00 135 367 –0.17 0.00 186 267 –0.61 0.00 187 267 –0.62
Dry Control vs. Wet Healthy 2 0.00 38 136 –1.00 0.00 38 151 –1.00 0.00 38 158 –1.00 0.00 38 152 –1.00
Wet AT 1 vs. Wet Healthy 2 0.00 21 766 –0.98 0.00 21 765 –0.98 0.00 21 943 –0.99 0.00 21 821 –0.98
Wet Healthy 1 vs. Wet Healthy 2 0.00 38 694 –1.00 0.00 38 711 –1.00 0.00 38 718 –1.00 0.00 38 714 –1.00

Table 4. Cohen’s d for pairwise comparisons vs. Dry Training. Asterisks (*) denote significant Tukey–Kramer post-hoc differences
(adjusted p < 0.05).

Comparison (vs. Dry Training) Spike Kurtosis AMI SD PeakAmp SpEntropy γPSD FOOOF Exp/Offset

Dry Control −8.15∗ −1.00∗ −2.10∗ −0.06 −0.24∗ 2.29∗ 0.08 −0.54∗

Wet Healthy 1 −5.39∗ −0.31 −0.00 0.11 0.10 −0.82∗ 0.09 −0.25∗

Wet AT 1 −9.12∗ −0.50∗ 0.37∗ 0.06 0.02 −1.27∗ 0.08 −0.30∗

Wet Healthy 2 6.71∗ 0.29 0.18 0.10 0.10 −2.64∗ 0.07 0.29

magnitude, the kurtosis ordering mirrors the spike-
count pattern, suggesting similar context sensitivity.
Furthermore, the Dry Control has relatively higher
AMI at frontal sites, especially Fz, which is consistent
with stronger temporal dependencies in the presence

of environmental load and muscle/interference sources.
Conversely, the uniformly low AMI observed for Dry
Training, Wet AT 1, Wet Healthy 1, and Wet Healthy
2 reflects more stable, less autocorrelated activity. The
higher standard-deviation abnormality rates observed
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Figure 14. Different time-domain quality matrices after re-referencing to Fz for all five datasets. Panels show (a) spike count, (b)
kurtosis, (c) average AMI, (d) standard deviation, and (e) peak amplitude. Despite the known artifact sensitivity of Fz, the pre- and
post-reference matrices are virtually identical, with only slight variance in the standard-deviation panel, demonstrating that shape-
and distribution-based metrics are insensitive to reference selection.

for Dry Control, particularly at frontal and temporal
electrodes relative to Dry Training, suggest that active
machine operation and a noisy public environment lead
to larger amplitude variability. Compared to transient
metrics (i.e., spikes), the standard-deviation metric
may indicate a more persistent quality degradation,
consistent with the peripheral channels repeatedly
exhibiting high abnormal rates. Notably, standard
deviation is the first metric where both types of
dry data Dry Control and Dry Training) collectively
perform less favourably—albeit by a small margin—
than the wet datasets, suggesting that electrode
technology may play a relatively larger role here
than environmental noise alone. For peak amplitude,
large peaks at frontal and temporal sites in Dry
Control suggest abrupt bursts of signal, possibly tied
to movement or muscle artifacts in an active public
environment. The similarity between Dry Training
and Wet AT 1 indicates that, for this metric, the
environmental factor can be more critical than the
electrode technology alone. Higher spectral entropy
reflects spectra that follow the canonical 1/f structure
with expected neural peaks (e.g., α band), whereas

lower values are consistent with flatter, artifact-laden
spectra. In this light, the markedly lower entropy in
Dry Control aligns with heavier contamination, while
the wet datasets show consistently higher entropy.
Notably, Dry Training approaches Wet Healthy 1,
indicating that under a moderated environmental load,
the gap narrows. In contrast to spectral entropy,
the γ-band power metric seems heavily dependent on
the environmental conditions rather than the EEG
technology.

Notably, the spectral entropy analysis highlighted
lower entropy values in the Dry Control dataset,
indicative of lower signal quality, whereas wet-
electrode data displayed broader spectral complexity,
typical of richer neural information captured in
controlled environments. The findings from the
FOOF analysis further corroborate these observations,
demonstrating less favourable aperiodic exponent and
offset values in dry systems during active task
engagement (Dry Control) and clinical conditions
(Wet AT 1), underscoring a greater impact of
environmental influences compared to the inherent
technological shortcomings. The differential patterns
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Figure 15. Different frequency-domain quality matrices after re-referencing to Fz for all five datasets. Panels show (a) spectral
entropy, (b) γ-band power, (c) aperiodic exponent, and (d) Fitting Oscillations and One-Over F (FOOF). The near-perfect overlap
of native-reference and Fz-referenced results confirms that frequency-based metrics are similarly robust to the choice of reference
electrode.

observed in γ-band power also support the notion
that context-specific factors—such as participant
movement, muscular tension, and environmental
noise–critically downgrade the signal’s characteristics,
independent of the electrode type.

The central outcome of this analysis is again the
confirmation that state-of-the-art dry-electrode EEG
systems can indeed yield data quality comparable to
conventional wet-electrode setups. Specifically, our
results reveal that dry-electrode EEG recordings ob-
tained in intensely noisy and dynamic environments
(Dry Control) do experience heightened transient arti-
facts such as increased spike counts, elevated peak am-
plitudes, higher γ-band activity, and prominent broad-
band power as reflected in FOOF metrics. However,
dry-electrode recordings captured under moderately
noisy conditions (Dry Training) exhibit artifact profiles
approaching those observed in wet electrode recordings
conducted under controlled laboratory or clinical con-
ditions. This suggests that, in EEG electrode manu-
facturing technology, the electrode type alone does not
crucially limit EEG quality; rather, the environmental
conditions emerge as the most prominent factor im-
pacting the reliability of acquired EEG.

Along these lines, the investigation on the wet-
electrode datasets (Wet Healthy 1, Wet AT 1, and Wet
Healthy 2) demonstrates that wet electrodes and, even,
controlled laboratory environments do not guarantee

artifact-free recordings, with consistent evidence of
frontal-central contamination presumably arising from
ocular and facial muscle artifacts. This frontal (and,
more generally, peripheral) channel vulnerability of
wet systems contrasts with the dry-electrode recording
susceptibility to widespread temporal and central noise
profiles likely arising due to external interference and
participant movements. Hence, there currently seems
to be a less clear overall dominance of wet sensors over
dry ones, where both categories of sensors seem to have
their particular vulnerabilities, pros and cons.

ICLabel analysis further confirmed that the com-
position of artifact types and their severity differed
substantially across EEG systems and recording envi-
ronments. Although the proportion of brain-related
components remained relatively stable between the
dry-electrode datasets (Dry Training and Dry Control),
the noisier public exhibition environment substantially
amplified movement-related and mixed-source arti-
facts. Conversely, laboratory-based wet EEG record-
ings (Wet Healthy 1 and 2) demonstrated the cleanest
IC profiles, emphasizing the advantage of controlled
conditions in reducing artifact contamination. Semi-
controlled conditions (Wet AT 1) also presented mod-
erate artifact contamination, highlighting that envi-
ronmental factors and participant activities substan-
tially influence artifact distributions, regardless of elec-
trode technology. Collectively, these findings reinforce
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the importance of context-specific artifact mitigation
strategies when employing EEG systems in varied op-
erational settings. A like-for-like literature benchmark
for ICLabel proportions in large, in-the-wild SMR BCI
datasets is currently lacking. Our observed 31–49.5%
Brain range is, however, in line with literature report-
ing higher Brain shares (around 50%) in clean, resting-
state data and approximately 30% Brain components
in other task and environment contexts, reinforcing the
opinion that the recording context drives the observed
class mix of ICLabel; critically, increases in γ-power
and peak amplitude corroborate heavier contamination
in Dry Control. [44, 46, 47].

It must be further noted that, with the excep-
tion of the ICLabel analysis, where specific artifact
sources can be explicitly identified, we have deliber-
ately (mostly) avoided associating the examined qual-
ity metrics (and the corresponding EEG system per-
formance) with specific artifacts. The reason is that,
despite some relevant literature [31, 48] and existing
sound hypotheses (e.g., spikes in frontal channels that
can be relatively safely attributed more often than not
to eye blinks and movements), the exact EEG signa-
tures of various artifact sources are not very well es-
tablished yet. However, as this line of research con-
tinuously develops, we hope that the detailed metric
benchmarking offered in this manuscript will serve in
the future as a go-to resource to predict the suitabil-
ity or contraindication of a given EEG sensor type for
specific recording environments and mental tasks.

4.3. Limitations and Confounds

While this study offers a systematic and multifaceted
comparison of dry and wet EEG systems across diverse
recording environments, it is important to acknowledge
certain important limitations and confounds. The
datasets analyzed were not fully matched, most
critically, in terms of experimental conditions, but
also with regard to the number of subjects and the
participants’ characteristics (especially, the distinction
able-bodied vs. with motor disabilities).

Dataset Heterogeneity: Starting with what we view
as the most influential confounding factor, namely,
the ensemble of environmental conditions (likelihood
and intensity of noise in the surroundings) and task
demands (open- vs. closed-loop MI, control of visual
feedback or an actual device, performing MI with
a surrounding crowd or not, etc.), it is clear that
the respective conditions differed substantially across
datasets, ranging from dry EEG-based “machine con-
trol” sessions to wet open-loop calibration runs. It
is forthrightly acknowledged throughout our investiga-
tion that the five analyzed dataset groups (Dry Con-
trol, Dry Training, Wet Healthy 1, Wet AT 1, Wet

Healthy 2) cannot make a clear distinction between
dry and wet sensors per se, but rather represent com-
binations of sensor technology type (dry vs. wet) and
environmental conditions with increasing (albeit, not
strictly measurable) amounts of noise and artifacts, in
order: Wet Healthy 2, Wet Healthy 1, Wet AT 1, Dry
Training, Dry Control. We have assumed that Wet
Healthy 1 recordings had somewhat higher chances of
being affected by noise compared to Wet Healthy 2,
as, despite being recorded in a lab environment, the
majority of these served to prep users for BCI applica-
tion control [25] and often took place in open univer-
sity spaces, under tight and hectic schedules, and/or
with several operators present; conversely, Wet Healthy
2 data have been recorded with stricter experimental
protocols in the lab [26]. Furthermore, artifact con-
tamination in the Wet AT 1 dataset (obtained with
the gUSBamp wet system like Wet Healthy 1) is be-
lieved to be higher than in Wet Healthy 1 as the data
were recorded in much less controlled and hectic en-
vironments in the presence of other electronic devices
(clinic, end-user homes), while also several participants
of this group suffered from artifact-inducing conditions
such as spasms. Dry Training and Control, as already
explained, were recorded in the comparatively harsh-
est conditions in the Mental Work exhibition premises.
However, Dry Training took place in a loosely isolated
booth with a higher degree of privacy that must have
considerably mitigated the exhibition’s ambient noise
and the vulnerability to self-induced physiological ar-
tifacts. Consequently, we have considered that Wet
AT 1 and Dry Training correspond to similar levels of
artifact and noise contamination, while Dry Control
undoubtedly constitutes, by far, the toughest condi-
tion in that regard. These assumptions comply very
well with our findings, taking into account all aspects
and metrics of our analysis, notwithstanding that the
order of signal quality is, in the case of a few metrics,
slightly altered. Overall, in spite of the confounding
of sensor type and environmental noise in our data,
we strongly argue that the profound similarities be-
tween Dry Training and Wet AT 1 with respect to
noise vulnerability, as well as the availability of data
across the aforementioned large spectrum of potential
noise and artifact sources that allows meaningful in-
terpolations, give credibility to our main claim that
state-of-the-art dry sensors are nowadays competitive
to wet electrodes in real-world scenarios. We pinpoint
the fact that such confounding was inevitable, since
we did not have the chance to design a dedicated ex-
periment but, rather, resorted to leveraging historical
data and combine them in order to collect evidence to-
wards answering an important research question. We
postulate that what this study suffers from due to the
surrounding noise confound, it makes up thanks to the
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sheer amount of data we were able to accumulate, go-
ing well beyond the state-of-the-art in that respect.

Sample Size Difference: It must be additionally
highlighted that the total sample sizes dry vs. wet
differ substantially (530 dry vs. 71 + 80 = 151
wet). Nevertheless, this imbalance is largely countered
by the fact that wet recordings averaged more and
longer runs/sessions per participant, so that the
total available time of EEG data is approximately
balanced. Importantly, the sample size of the
minority group (wet, 151 participants) is anyway big
enough to yield reliable statistics. The recording
hardware and sampling rate also varied: dry data
were acquired at 300 Hz across 19 channels; Wet
Healthy 1 and Wet AT at 512 Hz over 16 channels;
and Wet Healthy 2 at 1000 Hz with 119 channels
(only the subset common with the other systems
was analyzed, though). However, by holding channel
overlap constant, offering direct comparisons on the
four channels that were common in all three layouts
and by applying identical quality-metric definitions, we
posit that these differences had no impact whatsoever
on the conclusions reached here.

Reference Montage Effects: Another potential
confounding factor could be the use of different
reference electrode location across datasets. In the
dry EEG system, channels were referenced to the
average of the two earlobe potentials. In Wet
Healthy 1 and Wet AT, the right earlobe was used
as reference, while in Wet Healthy 2, the reference
electrode was positioned at the nasion. We denote
that all three reference choices (which are all standard
choices in the field), despite not coinciding with one
another, are on neural-activity-neutral sites and, thus,
interchangeable. Additionally, they are all far enough
from the channels of interest so that their effect on the
recorded activity must be negligible, if at all present.
Most crucially, the vast majority of the quality metrics
used in this study—kurtosis, spiking activity, spectral
entropy, AMI, and FOOF parameters—are shape- or
distribution-based and, therefore, amplitude-invariant
and robust to referencing differences. We only included
a few amplitude-sensitive metrics (such as standard
deviation and peak amplitude), which, in theory, may
have very slightly attenuated amplitudes on the nearby
peripheral electrode sites. In practice, dedicated
inspection confirmed that peripheral channels exhibit
similar EEG amplitude distributions in all datasets.
Last but not least, when considering re-referencing to
a commonly available channel (to avoid any debate
over the influence of the reference), one must take
into account that a non-optimal site could introduce
additional artifacts or distortions, and/or lead to

losing significant information. Specifically, among
the available options (C3, C4, Cz, Fz) we exclude
the lateral electrodes C3 and C4, so that the only
remaining options are Cz and Fz. Cz is an active site
for motor-related neural activity and may not offer a
neutral baseline. The only other potential alternative,
Fz, is also problematic due to its susceptibility to
ocular and facial muscle artifacts (Fig. 8 supports
that Fz is susceptible to noise); re-referencing to Fz
could inadvertently spread noise across all electrodes,
thereby compromising the integrity of spatial signal
features. For all these reasons, we opted to retain
each dataset’s native reference configuration when
presenting our main results. However, for the sake
of completeness, we verified that re-referencing to
Fz would not significantly alter our findings and
conclusions. We re-computed all metrics after applying
a common Fz re-referencing across every dataset. As
shown in Fig. 14 and Fig. 15, the resulting time-
and frequency-domain measures remained virtually
unchanged. Only standard deviation plots showed
limited, localized differences, confirming that our
quality metrics are robust to the choice of reference,
even when re-referencing to an electrode prone to
ocular and facial artifacts (Fz).

4.4. Practical Implications and Future Directions

We wish to underline that this study does not aim
and cannot be used to assess specific products and
manufacturers. Given the discussion on confounds
above, it is clearly acknowledged that a strict statistical
comparison of systems is scientifically unattainable
with the data considered here. Instead, we use data
from these three commercial and popular systems (one
dry, two wet) in the EEG community opportunistically,
solely because the authors happened to have access to
a big amount of data from these particular products.
Considering that all these systems are competitive,
well-known and widely-used products in the BCI
industry, we take the assumption that they can
represent the respective state-of-the-art, and hence this
study assesses the current competencies of dry and wet
EEG technologies. However, by no means do we imply
that these are the sole products/manufacturers that
could potentially be employed for benchmarking, or
attempt direct system-to-system comparisons, and we
encourage other researchers to perform similar analyses
using other EEG recording devices.

Concluding, the comparative analysis presented
here confirms the practicality and effectiveness of dry-
electrode EEG systems, even when deployed in highly
challenging settings, such as public exhibitions or when
involving dynamic, real-world interaction. Although
specific channel vulnerabilities and artifact patterns
differ between electrode technologies, the overall
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data quality attainable by contemporary dry-electrode
systems proves sufficiently robust to match wet-
electrode benchmarks, especially provided appropriate
signal processing, artifact mitigation and online
adaptation [49, 50, 51] strategies are implemented.
Future developments could further enhance dry EEG
reliability by refining electrode designs and developing
sophisticated artifact mitigation algorithms tailored
explicitly to dynamic environmental conditions. Such
advances will ensure that dry EEG remains not only a
viable alternative but a preferred solution for mobile,
user-friendly, and scalable neuroimaging applications
in naturalistic and real-world scenarios.
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