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Abstract—Dynamic metasurface antennas (DMAs) are promis-
ing alternatives to fully digital (FD) architectures, enabling
hybrid beamforming via low-cost reconfigurable metasurfaces.
In DMAs, holographic beamforming is achieved through tunable
elements by Lorentzian-constrained holography (LCH), signif-
icantly reducing the need for radio-frequency (RF) chains and
analog circuitry. However, the Lorentzian constraints and limited
RF chains introduce a trade-off between reduced system complex-
ity and beamforming performance, especially in dense network
scenarios. This paper addresses resource allocation in multi-
user multiple-input-single-output (MISO) networks under the
Signal-to-Interference-plus-Noise Ratio (SINR) constraints, aim-
ing to minimize total transmit power. We propose a holographic
beamforming algorithm based on the Generalized Method of
Lorentzian-Constrained Holography (GMLCH), which optimizes
DMA weights, yielding flexibility for using various LCH tech-
niques to tackle the aforementioned trade-offs. Building upon
GMLCH, we further propose a new algorithm i.e., Adaptive
Radius Lorentzian Constrained Holography (ARLCH), which
achieves optimization of DMA weights with additional degree
of freedom in a greater optimization space, and provides lower
transmitted power, while improving scalability for higher number
of users. Numerical results show that ARLCH reduces power con-
sumption by over 20% compared to benchmarks, with increasing
effectiveness as the number of users grows.

Index Terms—Dynamic metasurface antennas, Holographic-
MIMO, XL-MIMO, reconfigurable intelligent surfaces.

I. INTRODUCTION

ASSIVE multiple-input multiple-output (MIMO) tech-

nology has been one of the key actors of 5G and be-
yond wireless communication networks [2]. Recently, with the
reveal of anticipated requirements for sixth-generation (6G)
communication systems, massive MIMO is evolving into ex-
tremely large massive MIMO systems to address the substan-
tial increases associated with key performance indicators of
6G [3], [4]. While massive MIMO has demonstrated remark-
able robustness in real-world applications [5], the complexity
and challenges associated with evolving conventional MIMO
structures into large-scale antenna arrays have driven signifi-
cant interest in emerging technologies, such as reconfigurable
intelligent surfaces (RIS) and Holographic MIMO (HMIMO)
with their prominent features of holographic beamforming and
dynamic reconfigurability of individual array elements. These
technologies aim to address the practical limitations of current
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systems with their advantages, including low manufacturing
costs, low complexity of hardware architecture, and reduced
power consumption [6]—[8]. One particular example of dif-
ferent types of architectures for HMIMO is called dynamic
metasurface antennas (DMAs). DMAs consists of an array of
metasurface elements which are excited by the reference waves
supplied by a waveguide or microstrip [9] and the objective
waves are generated through the aperture via beamforming
with the help of reconfigurability of the physical properties
of metamaterial elements, such as tunable polarizability [10].
This structure is already shown to be an effective solution
for MIMO, when they are combined with digital precoders,
where array of metasurfaces are grouped within the array of
waveguides (microstrips) and each of them is connected to
the digital precoders via single radio-frequency (RF) chain.
This allows beamforming to be performed partially in digital
and analog domain through tunable metasurface antennas, and
yields low size, weight, and power-consuming structures for
MIMO applications [11], [12].

The fundamental distinction of DMA-based beamforming
compared to conventional architectures, such as fully-digital
(FD) and hybrid analog/digital beamforming, lies in the re-
configurability of each individual metamaterial element that is
achieved by shifting the resonance state to tune the amplitude
and phase required for beamforming [12]-[14]. Additional
adjustments to the beamforming can be made by modifying
the amplitude and phase shifts of reference waves guided by
microstrips or waveguides, which are controlled by the digital
precoders through the RF chains. In the DMA architecture, the
digital precoders are connected to the group of metasurface el-
ements, allowing the number of required RF chains and power
amplifiers to be reduced to match the number of microstrips or
waveguides rather than the individual antenna elements. This
feature of DMA based architectures offers low complexity for
the transmitter side, especially for large-scale arrays. On the
other hand, the reduction in the number of RF chains can
dictate the decrease in the degree of freedom (DoF) in terms of
independent beamforming parameters [1]. The performance of
FD architectures can be considered as an optimal benchmark
for evaluating DMA-based architectures, with the performance
gap between FD and DMA architectures presenting the trade-
off between reducing the number of RF chains and achieving
optimal beamforming performance [1], [11], [15]. Despite con-
cerns about DoF, DMA-based beamforming architectures have
so far demonstrated strong performance compared to FD archi-
tectures in various applications. These include downlink and
uplink wireless information transfer (WIT) systems, optimiz-
ing parameters such as achievable sum-rate, spectral efficiency,
and channel capacity [16]-[19], as well as RF wireless power



transfer (WPT) systems, optimizing RF harvested energy and
transmitter power consumption [20]-[22]. In addition, recent
studies have investigated reconfigurable holographic surfaces
under more practical conditions, showing robustness in terms
of energy and spectral efficiency even when realistic hardware
impairments such as transceiver non-idealities, power amplifier
nonlinearities, and RF chain distortions are taken into account
[23], [24].

In works [16]-[22], different approaches have been pro-
posed for obtaining beamforming in DMA-assisted digital
precoding setups for single user and multi-user communi-
cation networks. These approaches include the alternating
optimization of digital precoding vectors, and analog DMA
weights, which are representing tunability of metasurfaces. A
unique characteristic of metasurfaces, known as Lorentzian
resonance, enabling analog-domain beamforming with DMA,
is also a challenging aspect for the implementation of resource
allocation algorithms in wireless communication networks,
yet to be explored in terms of the drawbacks and benefits
associated with the tunability of metasurfaces. In conventional
architectures, beamforming is achieved by aligning the phases
of array elements relative to the target direction, while main-
taining constant amplitudes across the aperture. Consequently,
the ideal weights for beamforming adhere to the structure
of a constant-modulus complex circle. On the other hand, in
DMA systems, the metasurface elements behave as Lorentzian
resonators, where the amplitude and phase responses are intrin-
sically coupled through a single tunable parameter determined
by the element’s resonant electrical length and resonance
frequency [10]. Physically, this resonant electrical length fixes
a relationship between the stored reactive energy and the
radiated field of each element, so that any change in phase
inevitably alters its amplitude response to the incident field,
unlike in conventional arrays, where amplitude and phase can
be tuned independently [12]. By controlling the resonance state
of the metasurface elements, different forms of beam steering
can be realized in DMA-based applications.

Based on the reconfigurability of metasurfaces via their
resonance frequencies, in [10] three methods were first in-
troduced for achieving a single beam steering in a desired
direction using a 1D metasurface array: Amplitude-Only
Hologram (AOH), which controls variable amplitudes with
constant phase near resonance frequency; Binary Amplitude
Hologram (BAH), which toggles metasurfaces between on
and off states; and the Lorentzian-Constrained Hologram
(LCH)) which selects amplitudes [0 - 1] and phases ([0, 7])
over the available region defined by a non-constant offset
complex circle, namely, the Lorentzian circle. These three
approaches were initially studied in [11] within a MIMO
system employing DMA-assisted digital precoding, where the
LCH demonstrated superior performance in beamforming and
average sum-rate maximization over AOH and BAH. More
recently, [25] compared these methods in multiuser MISO
communication networks with SINR guarantees, showing that
LCH outperforms AOH and BAH in terms of channel gain,
power efficiency, and beamforming.

Being superior to AOH and BAH, LCH faces challenges
in implementing beamforming algorithms for DMA-assisted

architectures due to Lorentzian constraint, where the available
weights are restricted by the Lorentzian-circle. Mapping-
based solutions for projecting ideal unconstrained weights
onto the Lorentzian-circle were first introduced in [26] for
single beam-steering using a 1-D metasurface array. In [26],
the Generalized Method for LCH (GMLCH) was also imple-
mented, exploring mappings from unitary modulus weights
to the Lorentzian modulus circle, parameterized by the map-
ping center (o) on the Lorentzian circle’s imaginary axis.
Three cases were compared based on different mapping cen-
ters («): Lorentzian-Constrained Phase Hologram (LCPH)
(v = 0), Lorentzian-Constrained Euclidean Hologram (LCEH)
(v = 0.5), and Lorentzian-Constrained Unitary Shift Holo-
gram (LCUSH) (o = 1.0), corresponding to the bottom,
center, and top points of the Lorentzian circle, respectively.
These mappings lead to different beamforming waveforms,
particularly in terms of main-beam gain and grating-lobe
behavior in single-beam setups. However, their impact on
interference suppression in multiuser WIT systems remains
an open question.

Different resource allocation problems have been inves-
tigated for the joint optimization of digital precoders and
DMA weights with a particular LCH method. In these works,
LCUSH is the most commonly used mapping method [18],
[19], [21], [27], while LCEH has also been utilized in [11],
[22]. In [22], Semi-Definite Programming (SDP) based on
LCEH was employed to optimize DMA weights for beam-
forming in MISO-WPT systems, where LCEH is achieved
by first solving the problem with a relaxed Lorentzian con-
straint and then projecting the obtained ideal weights onto the
Lorentzian circle. On the other side, a common approach to ob-
tain LCUSH involves first optimizing DMA weights on a uni-
tary modulus circle using a manifold optimization technique
such as Riemannian gradient, where the Lorentzian constraint
is relaxed to phase-only weights with constant amplitude and
arbitrary phase. Then, the ideal unconstrained weights are
projected onto the Lorentzian circle by adding the imaginary
term associated with the Lorentzian constraint (o« = 1.0). This
method has been applied in [18], [19], [27], where manifold
optimization with LCUSH was integrated into Alternating
Optimization (AO) for weighted sum rate maximization in
WIT networks. In comparison to these works, LCH involving
the search for optimal weights on a unitary modulus circle
has also been utilized in [20], [25], [28]. However, instead
of a separate projection step, the imaginary term associated
with the Lorentzian constraint is explicitly involved in the
cost function, yielding DMA weights in a closed-form manner.
Particularly, in [20] AO based on manifold optimization was
utilized for sum harvested power maximization problem. In
[28], Majorization-Minimization method was used for the
optimization of DMA weights to achieve weighted sum rate
maximization in a multi-user MISO-SWIPT network. In [25],
successive convex approximation and alternating direction
method of multipliers (ADMM) based AO algorithm was
proposed to optimize digital precoders and DMA weights for
minimizing total transmit power with SINR guarantees in XL-
MIMO networks, comparing the performance of AOH and
BAH with LCH but without addressing different mapping



methods for LCH. More recently, [29] proposed a codebook
design for a single-user MISO setup, highlighting the subopti-
mality of Lorentzian mapping for LCH systems by comparing
LCPH and LCEH, but it did not address digital precoding or
multi-user beamforming.

As highlighted in related works, different Lorentzian-
mapping approaches are widely used in the literature, and the
need for projection is not specific to SDP-based or manifold-
based formulations. Rather, it stems from the physical tun-
ability of DMA elements governed by Lorentzian resonance.
While beamforming ideally requires weights of the form e7¢,
the Lorentzian-constrained response inherently follows z +2€]¢
structure. This structural mismatch requires a mapping or pro-
jection step in all Lorentzian-constrained DMA beamforming
designs. To the best of our knowledge, this challenge has
not been explicitly analyzed or systematically compared in
wireless communication networks. Our work addresses this
gap by introducing a unified and extensible framework that
formalizes and improves the projection process. Particularly,
we consider a multi-user downlink system where the objective
is to minimize total transmit power of DMA-aided setup while
satisfying SINR constraints [1]. Using GMLCH and an SDR-
based algorithm, we jointly optimize the digital precoders and
DMA weights, enabling different LCH types within a single
framework, whereas prior works typically designed separate
algorithms for each case. For example, [25] proposed an SCA-
ADMM method for the SINR guaranteed networks but did not
allow comparisons across mapping strategies of LCH. Build-
ing on this foundation, we further propose a novel method
called Adaptive Radius Lorentzian-Constrained Holography
(ARLCH), which achieves enhanced optimization of DMA
weights with better beamforming performance by leveraging
additional degrees of freedom through the relaxation of the
Lorentzian-circle diameter and dynamic adjustment of the
mapping center within the optimization process. Our contri-
butions can be summarized as following:

o We develop a novel optimization algorithm based on SDP
and AO for holographic beamforming using GMLCH in
multi-user DMA-aided MISO! networks. The optimiza-
tion equations are derived to optimize digital precoding
vectors for fixed DMA weights, and to optimize relaxed
DMA weights without Lorentzian constraints using Semi-
Definite Relaxation (SDR) for fixed digital precoding
vectors. The SDR solution provides an optimal boundary
without Lorentzian constraints, which is then integrated
with GMLCH to apply different LCH methods.

o With the integration of GMLCH into convex optimization
tools in the proposed algorithm, we obtain a unified
platform to compare different LCH types (LCPH, LCEH,
LCUSH) in the context of multiuser beamforming with
QoS guarantees, a point not investigated systematically
in the literature before. Using this approach, we provide
the comparisons for the performance gap depending on
the parameters of GMLCH with respect to the optimal

'We use the term MISO since receiver users have a single antenna.
However, DMA-aided MISO networks are often termed MIMO, as DMA act
as HMIMO surfaces with MIMO-like two-dimensional precoding although a
single antenna receiver is considered [18], [25].

boundaries of DMA, and conventional FD architectures.
Our results show that different mappings affect the per-
formance gap, with LCEH outperforming LCUSH, and
LCPH by providing better beamforming, especially for
higher user numbers.

e We compare GMLCH against the ADMM-SCA-based
baseline method in [25]. Our results demonstrate that
while the method in [25] performs similarly to GMLCH
(v = 1.0, LCUSH), GMLCH (« = 0.5, LCEH) achieves
significantly better results. This highlights the robustness
of our proposed optimization approach and highlights the
critical role of selecting the appropriate mapping center
in Lorentzian mapping.

o We further demonstrate that relaxing the radius of the
Lorentzian circle (i.e., the amplitude of the Lorentzian
constraint) while preserving its form enables dynamic
adjustment of the mapping center. This flexibility en-
hances beamforming capabilities in DMA-assisted pre-
coding structures. Unlike previous works that constrain
optimization within the unitary circle, we propose a
novel approach, ARLCH, which significantly improves
performance in SINR-guaranteed networks for randomly
located multi-user scenarios. We used GMLCH as bench-
marking tool for our novel ARLCH approach in order to
show performance gain against different schemes avail-
able in literature. Furthermore, we conduct Monte-Carlo
simulations for multi-user setups. The results show that
ARLCH outperforms the best GMLCH method (LCEH),
with its advantage growing as the number of users grows.

Building upon the same SDP formulation for obtaining
unrestricted DMA weights, this paper significantly extends
our preliminary work in [1] by: (i) integrating the GMLCH
into an alternating optimization framework for joint design
of digital precoders and DMA weights; (ii) proposing a
novel adaptive mapping algorithm, ARLCH, which enhances
Lorentzian mapping and beamforming performance; and (iii)
presenting extensive simulation results that analyze the impact
of various Lorentzian-constrained weighting schemes, LCEH,
LCPH, and LCUSH, none of which were studied in [1] or, to
the best of our knowledge, in prior literature.

The remainder of the paper is organized as follows: Sec-
tion II presents the system model, Section III the optimization
problems via SDP, Section IV the GMLCH and proposed
ARLCH schemes, while Sections V and VI provide discus-
sions and numerical results, respectively.

Notation: A matrix is denoted by the boldface capital W with
rank(W), Tr(W), WT, W and Vec(W) representing its
rank, trace, transpose, Hermitian conjugate, and vectorization,
respectively. A vector is denoted by the boldface lower-case
w, with |[w]||, w7, and w indicating its Euclidean norm,
transpose, and Hermitian conjugate, respectively. The unit
vector in the direction of w is denoted by W, while the
scalar is represented by w, and |w| is its absolute value. The
operator Re(-) denotes the real part of a complex number.
The Kronecker product is indicated by ®, and the symbol o
denotes Hadamard product.
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Fig. 1. DMA aided Multi-user downlink MISO system.

II. SYSTEM MODEL & PROBLEM FORMULATION

We consider a multi-user downlink MISO system, where the
base station (BS) is equipped with DMA-aided beamforming
architecture, as shown in Fig. 1. In addition, benchmark
solutions are provided for the scenario in which the BS utilizes
an FD architecture. In this system, the BS serves K users,
each equipped with a single antenna and requesting a certain
level of SINR, in a generic Line-of-Sight (LoS) spherical wave
channel model that covers near-field users. Moreover, perfect
knowledge of the channel is assumed.

A. Signal Processing for DMA Architecture

The DMA-based architecture comprises of N, microstrips
each containing N, metasurface-based intrinsic elements,
yielding N £ N.N; of total elements. In this setup, each
microstrip is connected to the digital beamformer through
a single RF chain and the complex amplitudes of the ref-
erence wave for each microstrip are controlled by digital
beamforming vectors w,,, € CN*! for all symbols s,, with
m € M, where M = min(K, N;). The radiated pattern of in-
dividual elements is further adjusted with their corresponding
dynamically configurable weights (Q € CN*"r). Hence, the
transmitted signal for DMA is

M M
X = Z Xm = Z HQw,5m, (1)

m=1 m=1
where, H is a diagonal matrix with elements
Hi Nt (i—n)Nept = e 4tl@iti8) where d;; is the

position of the [-th element along the i-th microstrip, and
«y, B; are its attenuation and propagation constants [15].
Matrix Q includes the inter-connectivity of the individual
elements to the excitation ports, with their frequency-
dependent response to the external excitation, i.e., the
Lorentzian resonance response,

. (b
Q{q]Jr;j :@6[0,27@}. 2

In (2), the amplitudes and phases of the individual elements
q are dependent on each other, and the phases are limited to
the range [0, 7r]. Based on this, Q can be defined in a block-
diagonal form, as described in [18] with

ifi=n
if i # n.

gig €Q

QU-1)Netin = {O 3)

Furthermore, we use the near-field channel model based on
spherical wave propagation given in [18] with the path-loss
modelling defined in [30]. Accordingly, the radiation pattern
of the elements is well-approximated with:

2g+ 1) cos? (1)), 0< ¢ < /2

4)
0, m/2<yY <7

oo
where 1 is the angle measured from the Boresight of the array,
g is the measure of antenna gain. As the elements with Ge(%))
radiate over the free-space, propagation of electromagnetic
waves towards user position (ry) from the (¢,])-th element of
the uniform planar array (UPA) (r; ;) can be expressed for the
near-field channel as follows:

Gald)——

—jBollrr—ri |l 5
drlrr —rig| S

Tk (i’ ! ) =
where A\, and [y are the free-space wavelength and
wavenumber, respectively. The entries 74 (4,1) are the el-
ements of the channel vector ~;, € CN*1) je., Y £
['Yk(la 1), 7(1,2), oo e (N, No)] H~

Finally, by inserting the antenna aperture distributions from
(1) into the channel model given in (5), the received signal at
User k can be formulated as

M
Yk = '7]? Z HQWmSm + ng, (6)

m=1

where ni, ~ CN(0,0%) denotes the additive white Gaussian
noise (AWGN) at User k.

B. Problem Formulation

Given that optimization aim of the downlink beamforming
problem is to minimize the total transmit power under the
constraints of given sets of SINR for different users, and
with x,, = HQw,,s,, and assuming unit-power symbols

E[|sim|?] = 1 for all m, the problem can be expressed as
M
e 2
minimize > [HQw, | (7a)
m=1
HH 2
st — i HQw | > 6., Yk, (7b)
>y EHQu, [+ of
g €Q, Vn, (7¢)
where 41, ..., represent the SINR thresholds that must be

guaranteed for each user, and a,ﬁ is the noise power for the
k-th user. In (7), g, is the DMA weight of the [-th element
along the i-th microstrip, given by n = (i — 1)N,. + [, and
n € N. For FD-based architecture, the problem in (7) can be
simplified with x,,, = w,,. The global optimum solutions for
the digital precoding vectors w,, can be obtained by solving
the tractable form of the problem via SDR [31].

III. BEAMFORMING OPTIMIZATION SOLUTION
FOR DMA

The solution of problem (7) requires joint design of the
digital precoders and the DMA weights. Since constraint (7c)



is not tractable and difficult to handle directly, we adopt an
alternating optimization approach in a more tractable form
using convex optimization tools by relaxing this constraint.
Specifically, we decouple the problem into two SDR subprob-
lems: one for the digital precoders (w,,,) and one for the DMA
weights (Q), both derived from a relaxed form of (7). The
Lorentzian constraint (7¢) is then enforced externally through a
projection step within each iteration, as detailed in Section IV.
The resulting SDR formulations are solved using the CVX
convex optimization toolbox [32].

A. Substage 1: Optimizing the Digital Precoder

When Q is fixed, the total transmitted power Prx can be
derived as follows:

M M
PTX == Z Tr(Xﬂ’L) = Z Tr (HQWm(Hme)H)
m=1 m=1
(3)

M
= TH(ZW,),
m=1

where Z = (HQ)” HQ. Moreover, the received power at User
k due to the m-th beamforming vector of the DMA (Pry,k,m)
can be derived as a function of W,,, according to

PRx,k,m = Tr(’YI?HQWmW{;LI(’YIg{HQ)H)

= Tr(Py W), ®

where Py, = (vFHQ)?~/HQ and W,, = w,,,wZ. Then,
combining (8) and (9), optimization problem (7) can be
reformulated in SDP relaxation form as

M
inimi Tr(ZW
minimize mz::l t(ZW,,,)
M
st Tr(PyWy) = 6, > Te(PyWoy,) — drofp >0, VE,
i3
W,, =0, Vm.

(10)

After solving the SDP problem defined in (10), the digital

precoding vectors w,, € CN*1 can be obtained via eigen-

value decomposition of the corresponding matrix W,,,. This

solution is globally optimal, as the optimal W,,, is guaranteed

to be rank-one under the considered formulation, as shown in
[31].

B. Substage 2: Optimizing the DMA Weights

When w,,, for Vm is fixed, utilizing the identity AT Qb =
(bT ® AT) Vec(Q) [18], x;,, can be rewritten as:

X, = HQw,, = (w;, ® H) vec(Q). (11)

Then, by defining A,,, = (w, ®H)H € CE*N and the
vector q = vec(Q) € CL*1, where L = N2N,, the total
transmitted power Pry can be derived as follows:

M M
PTx = Z Tr (Xm) = Z Tr (AfiquAm) . (12)
m=1 m=1

By defining G € CV*!, obtained by removing all the zero
elements from q, and A,, € CN*Y | formed by removing the
rows corresponding to the indices of the removed elements in
q, (12) can be rewritten as:

M
Pro= > Tr (AfGd"A,,) =
m=1
where B,, = Am.&fg and Q =qq”.

Following the derivations for Pry, the received power at
User k due to the m-th beamforming vector of the DMA
Py k,m can be derived similarly. Given the fact that a’Qb =
(b” ® aT’) vec(Q), y,m given in (6) can be defined and
reformulated as

M=

Tr (BmQ) C(3)

m=1

=cy.q, (14)

H
where ci,n = (W5 ® (vf/H))" € CL*. Furthermore,
the modified vectors, obtained by removing zero elements

as described above, can be defined as ¢j ., € CN*1 and
q € CV*1, Then, Pryx,k,m can be further simplified as:
P = Tr (&1,@(E,8)") = Tr (Crn@) . (15)

where Ckm = 6k7mégm.
Finally, by combining (13) and (15), the optimization prob-
lem is formulated as

M
minimize Z Tr(B., Q)
Q m=1

M
S.t. Tr(ék,kQ) — 0 Z Tr(ék’mQ) — 5;47,% >0, Vk,
mzk
Qo
(16)
For given digital precoding vectors {w} }Vm € M, the
solution of (16) yields the optimal matrix Q* € CN*N_ The
problem in (16) is relaxed by omitting the rank-one constraint.
To recover the beamforming vector G* € CV*!, we employ
a best rank-one approximation using the eigenvalue decompo-
sition of Q*, extracting the dominant eigenvalue—eigenvector
pair, as detailed in [33].
Next, the solution vector q* must be mapped onto the
Lorentzian circle in (2) as represented by

q*G(CNX1 _>(‘i€QN><1’ (17)

For this mapping step, we employ various forms of
Lorentzian mapping, which are presented in detail in Sec-
tion IV. The overall solution framework involves solving the
individual problems (10) and (16) in an alternating manner:
the digital precoding vectors are iteratively updated toward
optimality, while the DMA weights are optimized through
constrained projection using the selected Lorentzian mapping.
This alternating optimization procedure is summarized in
Algorithm 1, which integrates both the precoder updates and
Lorentzian-constrained weight mappings introduced in this
work. The optimization procedure outlined in Algorithm 1,
along with the Lorentzian mapping step, ensures that the
resulting DMA weights adhere to the Lorentzian resonance



Algorithm 1 Proposed algorithm for solving problem (7)

1: Initialize: Q(©);

2: Solve (10) to calculate {W(O)} N

3: Update {w(® }A;l and P\ based on {W( 0)}m 5

4: fort=1,...,T do

5; Solve (16) to calculate Q* € CN*N based on
{wlt-n} .

6: Calculate @* € CV*! based on Q* € CN*N;

7: Calculate q with Lorentzian mapping ((17)) of q
(CN>< 1.

8: Update Q® for problem (7) based on q and (3);

9: Solve (10) to calculate {W(t)}i\::l based on Q®);
10:  Update {w(t)}le and P{" based on {W(t)}jf:l,
i: it P < PU then

12: {W(f)} = {W<t>}f:1; Q) « QW;
13: f) — PT(X),

14: end 1f

15: end for

i16: Output: {w(H}"" Q) p{l)

response introduced in (2). This resonance model imposes a
sinusoidal variation in the amplitudes of the DMA weights
as a function of their phases, whereas beamforming typically
requires phase alignment, as assumed in the channel model.
Therefore, the convergence and effectiveness of Algorithm 1
critically depend on the method used to project from ideal
phase alignment to the Lorentzian-constrained domain with
amplitude variation. The impact of this projection and different
mapping strategies will be explored in the following section.

It should be noted that during Step 7 of Algorithm 1,
the SINR constraints previously satisfied in Step 5 may be
temporarily violated due to the Lorentzian mapping. This
is immediately addressed in Step 9, where Problem (10) is
solved to re-optimize the digital precoder set {w,,} for the
updated Lorentzian-constrained weights, thereby fully restor-
ing the SINR constraints. Consequently, the final output of
each iteration of Algorithm 1 yields Lorentzian-constrained
DMA weights and corresponding digital precoding vectors that
jointly satisfy the SINR requirements. Finally, the alternating
execution of Algorithm 1 effectively drives the convergence
of digital precoder vectors toward their optimal solution,
while simultaneously optimizing the DMA weights toward
high-quality suboptimal solutions supported by the proposed
mapping schemes.

IV. LORENTZIAN MAPPING FOR ANALOG
BEAMFORMING

In this section?, we present the various methods for
Lorentzian mapping, as represented in (17), to obtain the
optimal Lorentzian-constrained points q € QN*! for the
DMA weights from ideal weights obtained via the solution
of SDR problem q* € CV*1,

2For simplicity, the tilde notation is omitted throughout this section.

During the conduction of Algorithm 1, Step 6 solves the
SDR problem, yielding a solution in the form of:

= |q,, Vn € N, (18)

where |g;| € R and ¢} € [0,27] denote the amplitude
and phase of the n-th element of the solution vector q*,
respectively. Since the SDR approach relaxes the Lorentzian
constraint, q* is not strictly confined to a constant, unitary,
and Lorentzian circular manifold (i.e, Lorentzian circle). We
refer to these weights as ideal or unrestricted. These represent
optimal phase alignments dictated by user spatial locations
and the underlying channel model. When Algorithm 1 is
executed without enforcing Lorentzian mapping (i.e., omitting
Step 7), the solution closely approximates the unconstrained
performance boundary. However, this unconstrained solution
does not reflect the physical tunability limitations of DMAs,
which are governed by Lorentzian resonance behavior as
defined in (2). To address this, the final step of our algorithm
includes a Lorentzian mapping process that projects the ideal
weights onto a Lorentzian-constrained circle. This projection
step is common in DMA beamforming applications [18], [19],
[21], [22], [27], although each prior study adopts different
projection schemes and optimization strategies to derive the
ideal (unrestricted) weights.

In this section, we first present a unified projection frame-
work, named GMLCH, which standardizes this mapping pro-
cess onto the Lorentzian circle for a fixed mapping center. This
framework enables comparative evaluation of several projec-
tion strategies used in the literature, such as LCUSH, LCPH,
and LCEH, as previously discussed in detail in the Introduction
section. Subsequently, we propose a novel adaptive Lorentzian
mapping method, i.e., ARLCH, which improves beamforming
performance by minimizing the discrepancy between ideal and
physically feasible weights through dynamic phase optimiza-
tion on a relaxed Lorentzian circle with an adaptive radius,
while strictly preserving the unitary amplitude of Lorentzian
constraint described in (2).

e,

A. Generalized Method for Lorentzian-Constrained Hologra-
phy

GMLCH projects ideal weights onto a Lorentzian circle of
unitary amplitude (r = 0.5), parameterized by its center in
real and imaginary axis with (z.,y.), as shown in Fig. 2a.
This mapping is applied to the unitary form of the solution
vector g* in (18), representing the ideal weights of individual
DMA elements:

G, = 7% = cos(a}) + 7 sin(@}),
where ¢} is the corresponding phase for n-th element.

As presented in Fig. 2a, GMLCH can be defined as finding
the intersection points between the Lorentzian-constrained
circle and lines drawn from the ideal weights q;, to the pre-
defined center (x,y.). Based on the given expression in (19),
the equation of the line passing through the ideal weight of
the n-th element ¢} and (z.,y.) can be defined by:

ta) =+ | =t

Vn € N, (19)

Vn € N.
(20)

Z‘C) + Y|
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Fig. 2. Mapping of ideal DMA weights onto the Lorentzian circle (r = 0.5) via GMLCH, parameterized by (zc,yc). (@) GMLCH with any (zc, yc) (b)
LCPH with (zc, %) = (0.0,0.0), (¢) LCEH with (z¢, ye) = (0.0,0.5), and (d) LCUSH with (z¢,ve) = (0.0, 1.0).

The function representing the Lorentzian-constraint can then
be defined as a function of phases ¢ as

j+ei?
o) = (25)-
Then for the given mapping center (z,y.), the phases (¢y,)
of Lorentzian mapped points can be obtained by solving the
problem defined as
On = 2in [If(#) = in(Re(f(@))] ¥n €N

¢€[0,2m

21

(22)

Based on these equations, GMLCH can be expressed as an
operator

q = M(q"; ze, ye), (23)

where the input is the set of ideal weights q* and the output
is the Lorentzian-constrained DMA weight vector q. The
operator M(-) applies the mapping to each element n € N
with respect to the chosen mapping center (z,y.): first,
the phase ¢; of the ideal weight ¢ is used to solve the
one-dimensional minimization problem in (22), yielding the
Lorentzian-constrained phase ¢,,. The final DMA weights q
are then constructed by substituting these phases into (21).
Three specific cases of this generalized mapping, previously
introduced, can now be examined.

1) Lorentzian-Constrained Phase Hologram: The first case
corresponds to setting the mapping center at the origin, i.e.,
M(§*;xze = 0,y. = 0), which yields LCPH as illustrated in
Fig. 2b. In this case, the phases of the Lorentzian-constrained
DMA weights match those of the ideal weights, while the
amplitudes vary depending on the phases and the elements in
the lower half-plane are mapped to zero.

2) Lorentzian-Constrained Euclidean Hologram: In LCEH,
illustrated in Fig. 2c, GMLCH is applied with M(q*;z. =
0,y. = 0.5). This mapping seeks for the optimal points on
the Lorentzian-constrained circle that minimize the Euclidean
distance to the ideal weights.

3) Lorentzian-Constrained Unitary Shift Hologram: With
application of GMLCH via M(q*;2z. = 0,y. = 1.0), the
resulting mapping LCUSH, depicted in Fig. 2d, determines
Lorentzian-constrained point*s (q;,) using the phases of the
ideal weights (q,) as Z +€2m”. This corresponds to applying
a unitary shift along the imaginary axis to the ideal weights.

B. Adaptive Radius Method for Lorentzian Mapping

A novel approach will be presented in this section, where
the radius of Lorentzian-constrained circle (r) will be used as
an additional DoF for achieving optimal mapping. Starting
by revisiting (21), the equation for Lorentzian-constrained
DMA weights can be defined in terms of the diameter of the
Lorentzian circle, i.e., D = 2r, as

f(6.D) =D (j +2ej¢) |

In (24), D corresponds to the peak amplitude of tunable
DMA weights and its value is determined by the intrinsic
parameters of metasurfaces. As noted in the literature [12],
the extraction of D can be achieved through experimental
setups or electromagnetic simulations based on the chosen
metasurface element, though this is beyond the scope of
this paper. In this paper, the tunability of the elements is
constrained to a unitary Lorentzian circle, as defined in (2)
with D = 1. This constraint directs the optimization algorithm
in substage 2 (16) to find the DMA weights having amplitudes
ranging from O to 1 and phases linked with them through the
Lorentzian mapping. On the other hand, restricting D to a
specific value has also impact on the Lorentzian mapping and
relaxing it before mapping can lead to enhanced searching
space for Lorentzian-constrained DMA weights (q € QV*1)
based on the ideal weights (q* € CV*1). Once the mapping is
conducted with relaxed D, the amplitudes of tunable weights
can be normalized with it to ensure the unitary condition
provided with (2). But, relaxing D before Lorentzian mapping
leads to different optimal points on Lorentzian circle, then
performing optimization strictly on the Unitary Lorentzian-
circle. This effect of value of D on the Lorentzian mapping
is graphically illustrated in Fig. 3, where the mapping is
performed for the given D together with (x¢,y.) = (0, D/2).
Following the illustration of mapping of ideal weights onto
Lorentzian circles with various diameters in Fig. 3a, the
mapping for a specific diameter (D = 1.5) is compared to the
unitary Lorentzian circle mapping in Fig. 3b. The normalized
form of the mapped weights for D = 1.5 is shown on the
unitary Lorentzian circle in Fig. 3c. The comparison in Fig.
3c highlights that unitary and non-unitary mappings result in
different optimal points on the unitary Lorentzian circle.

(24)



7 N
/ - = \ ﬁ |
’ - ~ N, e .". .
. e \\ \ 1 1 . - ..\ \
7
1 *_“/ o8N V) b.‘ * *_‘ _— <.
] X © Ny ] _*_ 1 .= ,.
S Mrmes 1y P A sl (@
= AT ) & o ® 0 WalaW
RS - :§I 0 R ’._. Q. II// i \\\\
0 i e SO A T RAE AN
174 ® /N © Jd i \ S,
, ] 1
'y o H H ) / . [l \
H ST ° i \ ®
o ¢ i i ® P
1 1 . . 1
0 1 0 1 -1 0 1
= Lor. Circ. (r = 0.5) © Ma 9(?:(4‘ )( — 05 ®@ldeal Weig. @ Ideal Weig. R@) _ o Gire, (r=0.5) R{G)
e et (% W Map. Weig. (r = 0.5) B Map. Weig. (" =05) = Lor. Circ. (r = 0.75) — Lor. Cir. (= 0.5) M Map. Weights, (- = 0.5)
= LorCirc.(Var.r) ¢ Map.Cent. (Var.7) o Map. Weig. (Var. r) B Map. Weig. (r = 0.75) @ Ideal Weights M Map. Weights, (+ = 0.75)

(a)

(b) (c)

Fig. 3. (a) Lorentzian mapping with various diameters (D). (b) Comparison of Lorentzian mapping with D = 1.5 against unitary Lorentzian mapping. (c)
Final form of mapped weights in (b), where Lorentzian mapping with D = 1.5 is normalized to satisfy the unitary condition.

Based on this idea, we present here a new mapping
method, i.e., Adaptive Radius Lorentzian-Constrained Holog-
raphy (ARLCH), where the optimization algorithm aim is
to find optimal diameter for the Lorentzian-circle (D) along
with the phases of tunable weights (¢,,) so that the distance
between DMA weights and ideal weights can be minimized.
The mapping problem can be redefined using (24) as,

infq" — f(@,D
min[lq” — f(®, D),

where ® = {¢1, d2,...,¢n} is the set of angles for tunable
N DMA elements. The optimization problem in (25) differs
from (22), which the minimization requires a multivariable
optimization approach. To efficiently solve this problem with
respect to the multiple variables ® and D, an AO strategy
can be implemented, where each variable is optimized while
keeping the other fixed. This approach ensures convergence to
a local minimum and is commonly used in problems involving
coupled variables.

When ® = {¢1,d9,...,¢n} is fixed in (25), the problem
reduces to finding the projection of the unitary DMA weights,
q, onto the ideal weights q*, where q is defined as:

. J+exp(jP)

a=—>5
This problem can be solved analytically, as described in the
following lemma.

Lemma 1: The optimal diameter of the Lorentzian circle,
D*, which minimizes the distance between the ideal weights
q* and the DMA weights under the unitary Lorentzian condi-
tion, g, can obtained with:

(25)

(26)

Re(g”q*)

qa-q

D* = 27)
Proof: See Appendix.

In the second stage of AO of (25) for a given value of
D = D*, the problem reduces to finding the optimal phase
points ¢,, for a fixed diameter of the Lorentzian circle. This
can be solved using a method similar to that in (22), by
identifying the intersection points between the Lorentzian-
constrained circle of diameter D D*, and the lines

Algorithm 2 Algorithm for ARLCH
Require: g* (18) and its phases ®* = {¢7,5,..., 0%}
residual error €, maximum iterations 7y,

1: Define cost function as E(®, D) = ||q* — f(®, D)||”

2: Initialize ®(©) + &*, £ < 0,

3: Calculate ¢(© using (26) for &),

4: for t =1,2,..., Thax do

5: Compute D® for given *~1, q* based on (27).

6. Compute & for given D) by solving (29),
7: Compute ¢ using (26) for &),
8
9

Compute E() « E(®®, DM),

cif (B — ECD)/EW| < ¢ then
10: Df — D(t)’ (I)f — @(t)’ q(f) — Q(t)
11: Update Algorithm 1, Step 7, @ < /).
12: Break.
13: end if
14: end for

connecting the ideal weights ¢} to the center of circle at
xe = 0,y. = D*/2. Given the ideal weights ¢} = a7, + jyr,
where 27, and y; are the real and imaginary parts, respectively,
the equations for these lines are derived as:
D*/2 D*

* )
> 2

Yn = Vn € N.

In(x) =+ (28)

The optimal phase points on Lorentzian-circle of diameter
D = D* can then be determined by searching for the inter-
section points with the solution of following one-dimensional

optimization problem:
n = min [[f(¢,d) —In (Re (f(¢, ),

where ¢,, represents the optimal phase point for n-th element.
Finally, solving the individual subproblems of (25) in an alter-
nating manner for fixed ® and D, using the solutions provided
in (27) and (29), leads to the computation of the Lorentzian-
constrained DMA weights, denoted as q in (17). The algorithm
for this approach, which conducts the Lorentzian mapping with
ARLCH, is presented in Algorithm 2. Note that the final form
of DMA weights are obtained on the unitary Lorentzian circle

Vn e N, (29)



with (26) using the phases ® optimized within the ARLCH
(Step 11, 2). Hence, q adheres the relation defined with (2).

V. DISCUSSION AND COMPLEXITY ANALYSIS
A. Discussion over Proposed Algorithm

Having defined the techniques for optimizing DMA weights,
the proposed beamforming algorithm in Algorithm 1 can be
summarized as an AO with three key stages: (i) determining
the ideal (unconstrained) DMA weights q* € CV*! (Steps 5—
6), (i1) mapping these weights onto the Lorentzian-constrained
set @ € QN*! (Step 7), and (iii) computing the digital
precoding vectors {w}f‘fil (Steps 9-10). For GMLCH with
a predefined mapping center, Step 7 of Algorithm 1 solves
(22), whereas for ARLCH with a dynamic Lorentzian circle
diameter, Algorithm 2 is executed. As discussed previously,
until now in the literature, the effect of mapping center
on beamforming in wireless communication networks has
not been investigated in detail for multi-user MISO/MIMO
networks. The integration of GMLCH with SDP based ap-
proach presented in this paper for the AO of digital precoding
vectors and DMA weights paves the way for flexibility of
using different approaches such as LCPH , LCEH, LCUSH.
We further propose a novel technique with ARLCH. This
Lorentzian mapping approach enables an additional DoF with
the relaxed diameter of Lorentzian-circle and it provides dy-
namic adjustments to the mapping center based on the distance
between the ideal weights and the Lorentzian-constrained
weight vectors, thereby enhancing beamforming performance
compared to the GMLCH method. In the numerical results, we
evaluate the performances of GMLCH and ARLCH in terms
of power efficiency with different parameters such as SINR
level, number of users, position of users.

On the other hand, we implemented the method proposed in
[25] as a benchmark for optimizing DMA weights (Q) with
fixed digital precoding vectors. To optimize DMA weights
using this technique, Steps 5-7 of Algorithm 1 are replaced
by the approach presented in [25, Algorithm 1, Step 11].
In this technique, the optimization of Lorentzian-constrained
DMA weights is carried out using ADMM, which solves two
subproblems derived from the augmented Lagrangian. The first
subproblem computes the ideal weights in the complex domain
without any constant modulus constraints, aiming to minimize
the transmitted power while satisfying the SINR requirements.
The second subproblem projects these ideal weights onto the
unit circle, minimizing a combination of the transmitted power
and the deviation from the previously obtained ideal solution
using augmented Lagrangian problem. Finally, the Lorentzian-
constrained DMA weights are constructed by summing the
imaginary j-term, associated with the Lorentzian condition,
with the weights optimized on the unit circle. Based on that,
one can expect this method to yield results similar to GMLCH
(e, ye) = (0,1.0), i.e., LCUSH approach presented in IV-A3.
Hence, ADMM-SCA approach is utilized for benchmarking of
LCUSH, serving as a baseline for our subsequent analysis on
the impact of different mapping centers with GMLCH and the
robustness of our proposed method (ARLCH) with flexible-
diameter optimization.

B. Complexity Analysis

The complexity of proposed algorithm with Algorithm 1 is
mainly driven by the complexity associated with solution of
SDP problems using CVX toolbox. The worst-case complexity
of the proposed algorithm can be determined in reference to
the complexity of SDP using an interior point method, which
is given with O(max{m,n}*nz log(1/¢)), where m is the
number of constraints, n denotes the number of optimization
variables, and € represents the accuracy [33]. Using this, the
number of optimization variables can be determined with
n = N; for SDP problem in (10) and n = N for SDP problem
in (16), where the number of constraints (m) in both SDP
problems is equal to the number of users (/). Therefore, the
overall complexity remains polynomial in both the problem
size n and the number of constraints m, ensuring compu-
tational feasibility. For mapping DMA weights in GMLCH
and ARLCH, the problem reduces to solving one-dimensional
search problems, as defined in (22) and (29), respectively. Each
search has a complexity of O(N), where N is the number of
DMA elements.

Using the benchmarking method from [25], the worst-case
complexity for optimizing DMA weights via the ADMM-
SCA method is O(N3®log(1/e)). Although the SDP-based
approach adopted in our algorithm requires a higher compu-
tational complexity, it offers greater flexibility, particularly in
enabling optimization with a predefined mapping center and
supporting various DMA weight optimization strategies. It is
important to note that the primary objective of this paper is to
investigate how the choice of mapping center and optimiza-
tion technique affects overall performance within the MISO
downlink network in terms of transmitted power efficiency.
Designing more computationally efficient implementations of
the proposed methods remains an important direction for
future research.

VI. NUMERICAL RESULTS

In this section, we provide numerical results for demon-
strating the effectiveness of our proposed approach. First in
Section VI-A, we investigate performance of the proposed
LCH methods for single user scenario () = 1) and examine
its robustness, and convergence in terms of global optimality
against benchmarking methods and generic optimization prob-
lems. Besides LCH methods, we also solve the same scenarios
by using FD-architecture, DMA - Unrestricted weights, and
Hybrid-MIMO. These problems can be used to investigate the
optimality of SDP based approach for (K = 1), in which both
problems have the same DoF in terms of optimization variables
and constraints. Then, in Section VI-B, we provide simulation
results for multiple users scenario (K > 1), compare LCH
methods in different scenarios by also highlighting the effect
of number of users on the performance gap between FD-based
architectures and DMA-based architectures due to the DoF
limitations associated with the reduced number of RF chains
and Lorentzian-constraints.

For numerical simulations, we consider a downlink multi-
user MISO cell, where BS equipped with DMA or traditional
MIMO architectures centered in the xy-plane, and the users in



the network are distributed in near-zone within a half-circular
region defined by a radial distance range of 0.1dr < p < 1dg

and an angular span of —85° §2 6 < 85°. Here, dr is the
2[’DMA

Fraunhofer distance, i.e., dp 2 for effective array length
of Lpma and wavelength \. The effective array size is given by
Loma = /[(Ne — 1)d,]? + [(N, — 1)dy]?, where N, and N,
are the number of elements along the horizontal and vertical
directions with inter-element spacings d, and d,, respectively.

Throughout the experimental study, we set the frequency as
f = 28 GHZ?, noise power as o? = —75dBm. Optimization
trials are performed to minimize the transmitted power of the
BS while ensuring the minimum SINR requirement is satisfied
for each user. In the numerical simulations, this requirement
is defined uniformly across all users as SINRpin x = 9. For
DMA, spacing of antenna elements d, and RF chains d,, are
set to A/2 for the initial studies, whereas the results for varied
antenna spacing d, are also provided. For FD and Hybrid-
MIMO, spacing of antenna elements in both directions d, and
d, are set to \/2.

In the following simulations, we evaluate and compare five
different LCH methods according to the method of optimiza-
tion of DMA weights. The methods considered are as follows:

1) LCPH: Solved with SDR and GMLCH for (z.,y.) =
(0,0),

2) LCEH: Solved with SDR and GMLCH for (z.,y.) =
(0,0.5),

3) LCUSH: Solved with SDR and GMLCH for (z.,y.) =
(0,1.0),

4) Baseline Method: Solved with ADMM-SCA approach
proposed in the reference paper [25],

5) Proposed Method: Solved with SDR and ARLCH.

These methods are compared under identical conditions to
ensure a fair evaluation of their effectiveness in optimizing
DMA performance. It should be noted that, for all methods
optimizations of digital precoding vectors are performed by
solving problem (10).

A. Single User

In this section, we consider X = 1 and assume identical
frequency characteristics for all elements of DMA with H =
Inxn. For both FD and DMA architectures, we consider a
16x16 UPA with d, = d, = \/2. Here, number of RF chains
and number of antenna elements per microstrip for DMA are
set as N; = 16 and N, = 16, respectively. When K = 1,
solving the DMA problem without Lorentzian constraints
(DMA-Unrestricted weights) yields nearly the same nDoF
as that of FD in terms of the optimization variables of the
beamforming vectors. Hence, the results of the optimization

3 Although the operating frequency is fixed in this paper, the proposed al-
gorithm remains effective across different frequencies. At higher frequencies,
faster phase variations (proportional to B9 = 27 f /c) cause stronger amplitude
fluctuations in Lorentzian-constrained DMAs making the projection step more
critical. The ARLCH algorithm inherently adapts to such variations, as its cost
function minimizes the mismatch between ideal and Lorentzian-constrained
weights irrespective of frequency. Nevertheless, large deviations from the
design frequency of DMAs are ultimately limited by the intrinsic frequency
selectivity of the Lorentzian response. A detailed study of this effect requires
measurement-based modelings, which is beyond the scope of this paper.
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Fig. 4. Beamforming optimizations with different LCH techniques for § =
30dB, K = 1 and users located at p = 0.5dr and 6 € [0°, 85°]. (a) Required
transmit power versus user angle (6). (b) Transmit power relative to that of
the FD case versus user angle (6).

problem for FD can be used to assess the optimality of the
proposed approach under the idealized setting of the DMA
setup with H = Iy n [1].

In the first study, we performed simulations with different
LCH techniques, i.e., LCUSH, the baseline method ADMM-
SCA, and the proposed method ARLCH for realizations of
the single-user scenario with varied positions of the user in a
fixed range of p = 0.5dp, while the angle of the users changes
in 6 € [0°,85°] with 1° resolution. Simulations are conducted
for a minimum SNR requirement of J;, = 30dB. In Fig. 4a,
the minimized transmit power (Pry) achieved under different
optimization setups is plotted as a function of the angle of the
user. The results in Fig. 4 reveal that the transmitted power
required to obtain 30 dB of SNR for a single-user scenario
in this setup increases when the position of the user gets
broader with respect to the normal direction of DMA. This
increase can be related to the smaller antenna gains of the
individual elements for wider angles. Numerically, LCUSH
performs very similar to the baseline method (ADMM-SCA)
at all angles, where Pry increases from 0.04 mW to 10.8 mW
as the angle changes from 0° to 85°. However, within the same
angular range, the proposed method (ARLCH) outperforms
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Fig. 5. Optimized beamforming weights with various LCH methods in single
user scenario with § = 30dB. (a) User position at p = 0.5dg, 8 = 50°. (b)
User position at p = 0.5dp, 6 = 80°.

both methods, with Pry changing approximately from 0.04
mW to 5.4 mW, and the performance of ARLCH is getting
much better as the angle of the user increases.

To further support the robustness of the proposed approach,
the ratio of transmit power obtained using various DMA con-
figurations to that of the FD case (PRMA/PLD) is illustrated
in Fig. 4b for the same simulation paramaters. In these results,
optimization trials for DMA-Unrestricted weights with trans-
mit power values shown in Fig. 4a provide the same values
(with (PRMA /PP = 1)) for all angular positions, meaning
that proposed algorithm with AO yields the global optimum
solution when DoF limitations (due to Lorentzian constraints)
are relaxed. On the other hand, when the available regions
of DMA weights are reduced to the Lorentzian-circle with
LCH methods, in all optimization methods of LCH, perfor-
mance gap can be observed due to the phase and amplitude
limitations introduced on the DMA weights. As depicted in
Fig. 4b, the optimization of DMA weights through the adaptive
adjustment of the Lorentzian-circle diameter in the proposed
ARLCH method significantly reduces the performance gap
compared to the other two approaches, i.e., LCUSH and the
baseline method, which both perform optimization over a
fixed unitary Lorentzian circle. Numerically, the power ratio
(PRMA/PED) for ARLCH falls within the ranges 1.00-1.42
for 6 € [0°,10°], 1.42-1.63 for 6 € [10°,70°], and 1.62-1.00
for 6 € [70°,90°]. In contrast, the power ratios for LCUSH
and baseline method are nearly identical to each other and
consistently higher than those for ARLCH rising from 1.00
to 1.62 in the region # € [0°,10°], and oscillating between
1.62 and 2.00 in the range 6 € [10°,90°]. The performance
gap trends in Fig. 4b stem from how DMA weight amplitudes
are optimized. Although different optimization tools are used,
both LCUSH and the baseline method (ADMM-SCA) first
determine weights on constant-amplitude manifolds for phase
alignment, then to satisfy the Lorentzian constraint these
are adjusted by adding the j term, without considering the
amplitude profile of the Lorentzian circle. While the resulting
phase mismatch is relatively small, both methods suffer from
amplitude fluctuations caused by the Lorentzian circle’s sinu-
soidal profile, unlike the original constant-amplitude manifold.
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Fig. 6. Normalized received signal vectors at the user terminal with various
LCH methods in single user scenario with § = 30dB. (a) User position at
p = 0.5dp, 8 = 50°. (b) User position at p = 0.5dg, § = 80°.

Because their projection strategies are similar, LCUSH and
the baseline yield comparable results, highlighting both the
robustness of our optimization tools and the impact of the
mapping scheme on performance. In contrast, ARLCH adapts
the Lorentzian diameter before projection, providing a balance
between amplitude and phase matching, which enables direct
control over the projected amplitudes and yields superior
performance.

To further support these observations, Fig. 5 and Fig. 6
show the distributions of the optimized DMA weights Q and
the corresponding normalized received signal vectors, which
refer to received signal contribution at the user terminal from
each antenna element. For LCH schemes, the received signal
vector is defined as y = ~ o (HQw), and for FD as
y = v ow, where o represents element-wise product. Results
are shown for UE1 (p = 0.5dE, 6 = 50°) and UE2 (p = 0.5dp,
6 = 80°), correspond to two key trends from Fig. 4b: ARLCH
outperforms LCUSH and ADMM-SCA at both locations but
matches FD and DMA-Unrestricted only at higher user angles.
As shown in Fig. 5, when beamforming requires a full-
circle phase distribution, as in UEI, the projected weights
on the Lorentzian circle for LCUSH and baseline method
are spread across all ¢, € [0,2n], resulting in scattered
element weights. From Fig. 6 we observe that ARLCH, by
restricting amplitude fluctuations, confines the received signal
vector elements closer to the optimal points of FD and DMA-
Unrestricted weights, whereas larger magnitude variation of
received signal elements in LCUSH and baseline method arise
from magnitude variations in the complex DMA weights,
which reduce constructive interference and power efficiency.
While ideal beamforming relies mainly on phase alignment
with minimal amplitude variation, the Lorentzian constraint
in LCH-type schemes enforces a sinusoidal amplitude profile,
inherently increasing these variations. ARLCH mitigates this
effect by improving the alignment and power efficiency over
the other two methods. For UE2, as shown in Fig. 5 for the FD
and DMA-Unrestricted cases, the ideal beamforming weights
are concentrated within specific angular regions, making them
better-suited for amplitude control under the ARLCH scheme.
By reducing the dynamic range of DMA weight amplitudes
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Fig. 7. Convergence history of LCH methods for single user scenario with
6 =30dB at p = 0.5dg, 6 = 80°.

to 0-0.1, ARLCH produces received signal vectors that are
tightly clustered around the optimal phase points in Fig. 6,
yielding results almost identical to FD and DMA—Unrestricted
cases due to minimized amplitude fluctuations. This shows
the importance of amplitude control in achieving optimal
beamforming performance. In contrast, because LCUSH and
baseline method lack amplitude control, their optimized DMA
weights span amplitudes from 0 to 1, resulting in larger-
diameter received signal vectors, degraded constructive inter-
ference at the user terminal, and higher transmitted power
compared to ARLCH.

Next, the convergence performance of the proposed method
is illustrated in Fig. 7, in comparison with the other two LCH
approaches for one of the simulations points of Fig. 4. All
three LCH methods converge to their final values within a
computationally reasonable number of iterations, achieving
a residual error on the order of 10~* in fewer than 10
iterations. ARLCH outperforms LCUSH and baseline method
in terms of the final transmitted power values (PPMA), which
highlights the effectiveness of the proposed approach. On the
same hardware and tolerance settings, the wall-clock runtimes
per instance were: LCUSH 117.28s, baseline 116.07s and
ARLCH 119.25s; for ARLCH, approximately 10s of this
total is spent in the inner AO loop for the Lorentzian-mapping
step, which is reasonable given the observed transmit-power
gains. Having shown the dependency of performance achieved
with various LCH methods on the user positions, particularly
angular sweep, the simulations are extended with 1000 re-
alizations of Monte-carlo simulations for single user setup,
where the randomly chosen positions of the user lie in the
region defined with 0.1dg < p < 1dp and —85° < 0 < 85°.
In Fig. 8, average of transmitted power values obtained at
1000 different positions of a single user as a function of
required minimum SNR values ranging from 0 to 40 dB are
illustrated for ARLCH. For all cases, the mean transmitted
power increases linearly with increasing SNR, where ARLCH
always outperforms both LCUSH and baseline method across
all SNR values. Numerically, LCUSH and baseline method
yield nearly identical mean transmitted power values, ranging
from 9.5 x 10~*mW to 9.5mW as the SNR increases from 0
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Fig. 8. Mean transmitted power versus minimum SNR requirement at X = 1
for different LCH and benchmarking cases.
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Fig. 9. Mean transmitted power versus minimum SINR requirement at K = 2
for different LCH and benchmarking cases.

dB to 40 dB. On the other side, the ARLCH method enables
the performance gap relative to the FD case narrowing down,
with mean transmitted power varying from 6 x 10~4mW to
6.1 mW over the same SNR range.

B. Multiple Users

We demonstrated the robustness of proposed algorithm in
VI-A relative to the FD with the assumption of identical
frequency characteristics of elements of DMA (H = Inxn)-
In this section, we now consider the DMA elements with
varying frequency selectivity, characterized by an attenuation
constant v = 0.6 m ™! and a phase constant 3 = 827.67m™ 1,
corresponding to the frequency response of a microstrip line
fabricated on Duroid 5880 with a 30-mill substrate thickness
at 28 GHz. Throughout this section, we present results for
Monte-Carlo simulations with 1000 realizations for randomly
distributed multiple users within the same region described in
VI-A.

As for the initial studies, we consider a similar setup for
both the DMA and FD architectures as used in the previous
section, utilizing a 16 x 16 UPA with inter-element spacing
de = dy = A/2. In the first study, shown in Fig. 9,
the average transmitted power over 1000 realizations of the
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Fig. 10. Ratio of transmitted power (P%SUSH/ PTAXRLCH) over 1000 realiza-
tions with d; = 30dB for all k£, and K = 2. The realizations of User 1 are
represented with circles, while those of User 2 are represented with diamonds.

two-user scenario (K = 2) is plotted as a function of the
minimum SINR guarantees within the network. Similar to the
K = 1 scenario presented in the previous section, LCUSH
and baseline method exhibit nearly identical performance,
with average transmitted power increasing from approximately
0.057mW at 0, = 5 dB to 81 mW at d;, = 35 dB. In contrast,
the proposed ARLCH algorithm performs significantly better,
with average transmitted power increasing from 0.045 mW to
66.0 mW as the SINR threshold increases from 5 to 35dB. The
performance gap between ARLCH and the other two LCH-
based approaches remains nearly constant across different
SINR values, with ARLCH achieving approximately 20%
lower transmitted power in all cases with the same SINR
requirements.

In Fig. 9, the proposed scheme and various DMA configura-
tions are further compared with a Hybrid-MIMO baseline. The
results indicate that DMA with unrestricted weights achieves
nearly identical performance to Hybrid-MIMO, which is ex-
pected since, without Lorentzian constraints and owing to
the low attenuation loss of the selected microstrip material,
both architectures share the same DoF and number of RF
chains. In contrast, LCH schemes exhibit a performance gap
due to the inherent amplitude—phase coupling of metasur-
face elements. This figure shows that the proposed ARLCH
method effectively reduces this gap through more efficient
beamforming. While Hybrid-MIMO relies on complex analog
circuitry with phase shifters, DMAs can achieve comparable,
or even superior performance, using low-cost, reconfigurable
metasurface elements, owing to their ability to accommodate
a larger number of antenna elements within a given aperture
through subwavelength spacing down to A/6 — A\/10 [18].
However, this feature is not considered here to ensure a fair
comparison between Hybrid-MIMO and DMA under the same
number of antenna elements.

To further investigate benefits of ARLCH, Fig. 10 illustrates
the ratio of transmit power required by LCUSH relative to
the proposed method across 1000 independent realizations of
randomly distributed users. The results reveal that ARLCH
outperforms LCUSH in the majority of the realizations, with
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Fig. 11. Mean transmitted power versus number of users with §;, = 30dB.

LCUSH requiring higher transmitted power to achieve the
same SINR targets. These cases are illustrated with warm
colors of colormap in the figure. In parallel with the ob-
servations for K = 1 in Fig. 4, the performance differ-
ence between the two LCH-based methods is affected by
the specific user locations. Numerically, the transmit power
ratio (PECUSH/PARLCH) is concentrated around 110%-130%
for the vast majority of realizations, with some instances
exhibiting even larger gaps, reaching up to 150%.

Results presented up to now including both K = 1, and
K = 2 scenarios can also be examined for the comparison
of LCUSH with the baseline method (ADMM-SCA). Our
approach for achieving different types of LCHs in a gen-
eralized method, consisting of integration of SDR problems
with GMLCH, achieves identical performance to the baseline
ADMM-SCA method in terms of transmitted power, when
the mapping center of GMLCH is set to (x¢,y.) = (0,1.0)
(LCUSH). These results validate our discussions in V-A.
For the remainder of the paper, we proceed with the LCUSH
method to achieve holographic beamforming for the mapping
center (z,y.) = (0,1.0), which, as detailed in Section I, is
one of the most commonly used LCH configurations in the
literature.

Results in Fig. 8 and Fig. 9 can be also evaluated in terms
of the performance gap between the LCH methods and the
FD case. With K = 2, this gap is observed to be larger
than the one obtained in the single-user scenario. This is
attributed to the reduced DoF of the DMA, as discussed
in our previous study [1]. On the other hand, the proposed
method in this paper enables reduction in this performance gap
with an improvement within in the Lorentzian-mapping. To
investigate this further, we performed Monte Carlo simulations
with the same setup as in previous simulations as a function
of number of users (K) within the network. For this analysis,
minimum SINR guarantee is selected as 0 = 30dB for
all k € K. In parallel with the findings of [1], the results
presented in Fig. 11 demonstrate that the performance gap
between DMA and FD increases with the number of users.
However, our results in here further reveal that this gap is also
dependent on the specific LCH method utilized for achieving
optimization of DMA weights. Notably, the proposed ARLCH
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Fig. 12. Mean transmitted power versus antenna spacing (d), and number
of elements (N.) at K = 4.

scheme achieves superior performance as the number of
users increases, outperforming all other techniques. Moreover,
ARLCH results in a smaller performance gap relative to the
FD case than other methods, highlighting its scalability and
robustness in multi-user scenarios.

Furthermore, the comparison of GMLCH techniques in
Fig. 11 provide valuable insight into the impact of the map-
ping center. This factor has not been rigorously investigated
in the existing literature. However, the results show that
the performance of different LCH types differs significantly,
which becomes even more prominent as the number of users
increases. Numerically, LCUSH outperforms LCPH for all
cases, achieving approximately 12.7% and 16.8% decrease
in transmitted power for K > 6 and K > 8, respectively.
In all cases, LCEH always achieves lower transmitted power
compared to both LCUSH and LCPH. The performance gap
between LCEH and LCUSH increases with the number of
users, indicating improved relative efficiency of LCEH in
more demanding scenarios. Specifically, the transmitted power
reduction achieved by LCEH relative to LCUSH scales from
13.9% for K = 1 to 17% for K = 8. As discussed in
Section I, LCUSH is the most commonly used LCH type in
the literature; therefore, the superior performance of LCEH
over LCUSH shown here is particularly noteworthy. On the
other hand, the proposed ARLCH method achieves even better
performance than LCEH, with the performance gain increasing
as the number of users grows. Specifically, the transmit power
reduction achieved by ARLCH relative to LCEH reaches
16.7% for K = 6 and 29.1% for K = 8. This comparison
highlights the advantage of ARLCH in leveraging additional
degrees of freedom introduced by the adaptive optimization of
the Lorentzian-circle diameter prior to Lorentzian mapping, as
proposed in this work.

Until now, the effectiveness of ARLCH has been demon-
strated for element spacing of d, = A/2. To further assess
its performance, we now investigate denser element spacings,
which are common in DMA designs. Thanks to high-dielectric
microstrips and offset placement of metasurface elements,
DMAs can physically support subwavelength spacings down
to d, = A/4 — A/6 [10], [12]. While mutual coupling is not

explicitly modeled at the algorithmic level, it can be mitigated
through hardware design, and it is often disregarded in DMA
system-level optimization studies [18], [21], [22], [25].* We
therefore perform this analysis under an idealized setting
where mutual coupling is not considered, consistent with prior
works. Monte Carlo simulations were conducted for K = 4
with a minimum SINR target of 30 dB, considering four
element spacings: d, = A\, A\/2, /4, \/6. With aperture size
and RF chains (/V; = 16) fixed, these correspond to array sizes
of 16 x 8, 16 x 16, 16 x 32, and 16 x 48, respectively. Although
denser antenna spacing increases the number of elements and
DoF within a fixed aperture, it can also introduce grating lobes
that must be suppressed. The results in Fig. 12 show that
transmit power decreases with denser spacing due to the higher
DoF across all schemes, demonstrating the robustness of the
proposed beamforming algorithm in handling these effects.
However, the relative performance of different LCH schemes
diverges under this setting. LCPH performs worst because, by
design, it forces the phases of the DMA weights to match
those of the ideal weights while clipping all elements in the
lower half-plane to zero. This results in a higher fraction of
non-radiating elements, and the degradation becomes more
severe at denser spacings. LCUSH activates more elements
and therefore outperforms LCPH, while LCEH achieves the
lowest transmit power among GMLCH schemes due to its
smoother magnitude profile. Importantly, ARLCH consistently
outperforms all three GMLCH variants, with gains increasing
from about 15% at d, = X to nearly 20% at d,, = \/6. This
advantage stems from its adaptive mapping that better balances
amplitude—phase relations, leading to lower grating lobes and
reduced transmit power while maintaining the SINR targets.
These findings confirm the robustness of ARLCH under denser
DMA configurations and highlight the critical role of mapping
strategies in practical system design.

VII. CONCLUSION

In this paper, we proposed a multiuser beamforming
algorithm for DMA-assisted systems based on a unified
Lorentzian-constrained holography (GMLCH) framework,
which integrates LCPH, LCEH, and LCUSH within a single
convex optimization setup for consistent benchmarking. Build-
ing on this, we introduced the Adaptive Radius Lorentzian-
Constrained Holography (ARLCH), which dynamically adapts
the Lorentzian circle radius and center to reduce projection
mismatch. Numerical results demonstrate that ARLCH con-
sistently achieves lower transmit power and superior scala-
bility compared to other GMLCH schemes, narrowing the
performance gap with fully digital architectures. Beyond these
contributions, several directions remain open for future work.
A key step is the implementation on physical DMA hardware,
where practical impairments, mutual coupling, and real-life

4In DMAs, mutual coupling arises from guided-mode interactions within
the waveguide and radiated fields in air [34]. Its accurate characterization
requires electromagnetically compliant channel modeling, which substantially
increases analytical complexity. While coupling typically becomes relevant
at spacings below \/2, optimal design of DMA spacing based on high-
dielectric microstrip materials can mitigate its effect. Hence, in most multiuser
studies, coupling is treated as a hardware-level design issue rather than part
of algorithm level beamforming optimization.



limitations of tunability parameters of metasurfaces must be
considered. Moreover, extending our framework to account for
imperfect CSI and to support uplink transmission scenarios
would strengthen its practical relevance. Another promising
direction is the integration of our Lorentzian-constrained opti-
mization with learning-based beamforming strategies, enabling
real-time adaptation in complex propagation environments.
Finally, given the increasing importance of sustainability,
applying ARLCH to optimize energy efficiency in large-scale
metasurface networks is a natural and impactful extension.

APPENDIX
PROOF OF LEMMA 1

Starting with revisiting (24), based on q defined in (26)

f(®,D) = Dq, (30)

and using (30) , the cost function in (25) can be expanded as
a function of D as:

E(D) = ||q* — Dq|*
=(q" - Da)"(q" — Dq)
= (q")"q* - D(q")"a - D§" q* + D*¢"q

= (a")"qa* —2DRe(@"q") + D’a"g. (3D
Taking the derivative of (31) with respect to D:
dE(D “H % “H A

% = —2Re(q"q") + 2Dq" 4, (32)

and setting it to zero and optimal value for D* can be obtained

as
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