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Abstract—This paper investigates the fundamental theoreti-
cal limits of applying compressed sensing (CS) to high-speed
maneuvering radar target detection and parameter estimation.
Through rigorous mathematical analysis, we examine the signal
characteristics, dictionary design constraints, and reconstruc-
tion performance bounds for targets exhibiting complex motion
including acceleration and jerk. Our analysis reveals critical
limitations in achieving the restricted isometry property (RIP) for
realistic parameter spaces, with dictionary coherence exceeding
practical thresholds. We derive Cramér-Rao lower bounds for
parameter estimation and demonstrate that while CS offers the-
oretical computational advantages through separable dictionary
structures, the inherent signal characteristics of maneuvering
targets violate key CS assumptions. The findings suggest that
compressed sensing may not be the optimal framework for this
class of radar problems, providing theoretical justification for
alternative approaches.

Index Terms—Cramér-Rao bounds; Compressed sensing; Dic-
tionary coherence; Maneuvering targets; Parameter estimation;
Radar signal processing

I. INTRODUCTION

The detection and parameter estimation of high-speed ma-
neuvering targets represents one of the most challenging
problems in modern radar signal processing [1], [2]. Tra-
ditional coherent integration methods suffer from range mi-
gration and Doppler spreading effects when targets exhibit
complex motion profiles including high acceleration and jerk
components [3], [4]. Compressed sensing (CS) has emerged
as a promising framework for radar applications, offering
the potential to reconstruct sparse signals from significantly
fewer measurements than required by the Nyquist criterion
[5], [6]. The application of CS to radar problems has shown
success in various scenarios, including synthetic aperture radar
imaging [7], [8] and ground moving target indication [9], [10].
However, the fundamental question remains: are high-speed
maneuvering radar targets amenable to compressed sensing
techniques? This paper provides a comprehensive theoretical
analysis addressing this question through systematic mathe-

matical investigation of signal models, dictionary design, and
performance bounds.

The inherent sparsity characteristics of maneuvering target
scenarios present both opportunities and challenges for com-
pressed sensing methodologies [11], [12]. While the number
of targets in a surveillance volume is typically much smaller
than the total number of possible range-Doppler cells, creating
natural sparsity in the measurement domain, the time-varying
nature of target trajectories introduces dynamic dictionary
elements that complicate traditional CS reconstruction algo-
rithms [13], [14]. Furthermore, the non-stationary behavior of
maneuvering targets violates the fundamental assumption of
sparse representation stability that underlies most CS recovery
guarantees [15], [16]. Recent advances in adaptive and online
compressed sensing have begun to address these temporal
variations, but their application to radar systems with stringent
real-time processing requirements remains largely unexplored
[17], [18].

The critical challenge lies in developing computationally
tractable algorithms that can simultaneously handle the dual
requirements of sparse recovery and real-time tracking per-
formance [19]. Conventional CS approaches typically assume
static or slowly-varying sparse support, making them poorly
suited for scenarios where target signatures evolve rapidly
due to complex kinematic profiles [20], [21]. This motivates
the investigation of specialized dictionary learning techniques
and adaptive sparse recovery methods that can exploit the
underlying physical constraints of target motion while main-
taining the computational efficiency necessary for practical
radar implementation [22], [23]. The theoretical framework
developed in this work establishes fundamental limits on
CS performance for maneuvering targets and provides design
principles for next-generation radar processing architectures.

In general, the main contributions are threefold:

1) We develop a comprehensive signal model for complex
maneuvering targets and analyze their sparsity charac-
teristics.979-8-3315-6576-3/25/$31.00 ©2025 IEEE
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2) We derive theoretical limits for dictionary design and
establish conditions under which the RIP can be satis-
fied.

3) We provide Cramér-Rao lower bounds for parameter
estimation and demonstrate fundamental limitations of
the CS approach for this problem class.

This paper is organized as follows: Section II introduces
the signal model for maneuvering radar targets, formulates the
compressed sensing problem, and highlights the challenges of
range migration and Doppler spreading. Section III presents
the proposed separable dictionary structure, analyzes its mu-
tual coherence, and demonstrates fundamental RIP limitations
in maneuvering scenarios. Section IV derives Cramér–Rao
lower bounds to establish theoretical limits for parameter es-
timation accuracy. Section V develops a hierarchical sparsity-
adaptive matching pursuit algorithm tailored to the problem
structure. Section VI reports simulation results and perfor-
mance evaluation, while Section VII concludes the paper with
key insights and implications.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Maneuvering Target Signal Model

Consider a pulsed radar system transmitting linear fre-
quency modulated (LFM) signals. For a maneuvering target
with complex motion, the received signal after pulse com-
pression can be expressed as:

s(t,m) = A0sinc
(
B

[
t− 2R(mTr)

c

])
e−j

4πfcR(mTr)
c (1)

where A0 is the target amplitude, B is the signal bandwidth,
Tr is the pulse repetition interval, c is the speed of light, fc is
the carrier frequency, and R(mTr) represents the time-varying
range:

R(mTr) = R0 + v ·mTr +
1

2
a(mTr)

2 +
1

6
g(mTr)

3 (2)

where R0, v, a, and g denote the initial range, radial veloc-
ity, acceleration, and jerk, respectively. Typically, the signal
exhibits two critical phenomena that challenge traditional
processing:

• Range Migration: The target moves across multiple range
cells during the observation period.

• Doppler Spreading: Non-linear motion creates a time-
varying Doppler frequency.

B. Compressed Sensing Formulation

In the CS framework, we seek to represent the signal as:

y = ΦΨx+ n (3)

where y ∈ Cm are the measurements, Φ ∈ Cm×n is the
measurement matrix, Ψ ∈ Cn×p is the sparsifying dictionary,
x ∈ Cp is the sparse coefficient vector, and n represents
additive noise. For maneuvering targets, the dictionary atoms
are parameterized by the four-dimensional parameter vector
θ = [R0, v, a, g]

T :

ψθ(t,m) = e−j 4πfc
c [R0+v·mTr+

1
2a(mTr)

2+ 1
6 g(mTr)

3] (4)

III. DICTIONARY DESIGN AND COHERENCE ANALYSIS

A. Separable Dictionary Structure

A key insight is that the dictionary can be decomposed into
separable components. Define:

Ψ = Ψrange ⊗Ψvelocity ⊗Ψaccel ⊗Ψjerk (5)

where ⊗ denotes the Kronecker product. This structure reduces
storage complexity from O(N4) to O(4N), where N is the
number of quantization levels per parameter. Fig. 1 illustrates
the signal characteristics for different target motion types.
As shown in Fig. 1(a)-(c), complex maneuvering targets ex-
hibit highly non-linear range evolution, time-varying velocity
profiles, and complex Doppler frequency patterns. The range
migration analysis in Fig. 1(d) demonstrates that constant
velocity targets can migrate over 600 m during a 3-second
observation period, while the phase evolution in Fig. 1(e)
shows the rapid variations that characterize complex maneu-
vers. Most critically, the spectral analysis in Fig. 1(f) reveals
that energy is distributed across a wide frequency range rather
than concentrated in a few spectral bins, directly challenging
the sparsity assumption fundamental to compressed sensing
approaches.

B. Mutual Coherence Analysis

The mutual coherence between dictionary atoms is defined
as:

µ(Ψ) = max
i ̸=j

|⟨ψi, ψj⟩|
∥ψi∥2∥ψj∥2

(6)

For maneuvering targets, we derive the coherence between
atoms with parameters θ1 and θ2:

µ12 =

∣∣∣∣∣ 1M
M−1∑
m=0

e−j 4πfc
c ∆R(mTr)

∣∣∣∣∣ (7)

where ∆R(mTr) = ∆R0 + ∆v · mTr + 1
2∆a(mTr)

2 +
1
6∆g(mTr)

3.
Our analysis reveals that for realistic parameter ranges,

µ(Ψ) > 0.3, significantly exceeding the practical coherence
threshold of 0.1 required for reliable CS reconstruction.

C. Restricted Isometry Property (RIP)

The RIP constant δs for sparsity level s is defined such that:

(1− δs)∥x∥22 ≤ ∥ΦΨx∥22 ≤ (1 + δs)∥x∥22 (8)

for all s-sparse vectors x.

Theorem 1. For the maneuvering target dictionary with
sensing rate ρ = m/p, the RIP constant satisfies:

δs ≥ 1− ρ+ 2s

√
log p

m
µ(Ψ) (9)



Fig. 1: Comprehensive analysis of maneuvering target signal characteristics. Top row shows (a) range evolution, (b) velocity
profiles, and (c) instantaneous Doppler frequency for different motion types. Bottom row displays (d) range migration over
extended observation periods, (e) signal phase evolution for complex maneuvering, and (f) spectral distribution demonstrating
energy spreading across frequency bins. The complex maneuver case clearly illustrates the challenge posed by non-linear phase
evolution and distributed spectral content.

Proof sketch: The bound follows from the Johnson-
Lindenstrauss lemma applied to the coherent dictionary struc-
ture, with the coherence term dominating for highly correlated
atoms. □

This result shows that high dictionary coherence fundamen-
tally limits the achievable RIP constant, explaining why CS
reconstruction fails for maneuvering targets even at moderate
sensing rates.

IV. PARAMETER ESTIMATION BOUNDS

We derive the Fisher Information Matrix (FIM) for the
parameter vector θ = [R0, v, a, g]

T . The (i, j)-th element of
the FIM is:

[F]i,j =
2

σ2
Re

{
∂sH

∂θi

∂s

∂θj

}
(10)

For the signal model in (1), we compute:

∂s

∂R0
= −j 4πfc

c
s(t,m) (11)

∂s

∂v
= −j 4πfc

c
mTr · s(t,m) (12)

∂s

∂a
= −j 4πfc

c

(mTr)
2

2
· s(t,m) (13)

∂s

∂g
= −j 4πfc

c

(mTr)
3

6
· s(t,m) (14)

The resulting CRLB for parameter θi is:

var(θ̂i) ≥ [F−1]i,i (15)

Our analysis reveals that velocity estimation benefits most
from increased observation time, while range estimation is
primarily limited by bandwidth and SNR.

The CRLB analysis results are presented in Fig. 2. As
demonstrated in Fig. 2(a), the range estimation accuracy ex-



Fig. 2: Cramér-Rao lower bound analysis and system performance evaluation. Top row: (a) Range parameter CRLB versus SNR
showing identical performance across target ranges, (b) velocity parameter CRLB versus observation time demonstrating T−3/2

scaling, and (c) range parameter CRLB independence from system bandwidth. Bottom row: (d) CRLB variation across target
ranges for all parameters, (e) Fisher Information Matrix structure revealing parameter coupling patterns, and (f) comparative
performance analysis across system configurations showing velocity estimation dominates the error budget.

hibits the expected 1/SNR dependence, with all target ranges
achieving identical performance bounds due to the range-
independent nature of the estimation problem. Fig. 2(b) reveals
that velocity estimation benefits significantly from extended
observation times, following the theoretical T−3/2 scaling law.
Notably, Fig. 2(c) shows that range estimation accuracy is
fundamentally limited by SNR rather than system bandwidth,
indicating that increased bandwidth provides diminishing re-
turns for range parameter estimation.

The FIM structure in Fig. 2(e) illustrates the coupling
between parameters, with strongest correlation observed be-
tween range and velocity parameters, as expected from the
signal model analysis. The system configuration comparison
in Fig. 2(f) demonstrates that velocity estimation dominates the
overall parameter estimation error budget, being approximately
three orders of magnitude larger than range estimation errors.
Table I summarizes the theoretical performance bounds for

different system configurations.

TABLE I: Cramér-Rao Lower Bounds for Different Configu-
rations

Parameter Basic Enhanced High-End
Range (m) 2.13e-5 1.85e-5 1.71e-5

Velocity (m/s) 0.85 0.42 0.31
Acceleration (m/s²) 1.2 0.78 0.45

Jerk (m/s³) 2.1 1.4 0.89

V. RECONSTRUCTION ALGORITHM AND ANALYSIS

We propose a modified matching pursuit algorithm that
adapts to the hierarchical parameter structure, see Algorithm 1.
The hierarchical sparsity-adaptive matching pursuit algorithm
is designed to efficiently reconstruct maneuvering target sig-
nals by exploiting their hierarchical parameter structure. Start-
ing with zero initialization, it iteratively computes correlations,



identifies the most significant support set, and updates the solu-
tion through least-squares fitting. The residual is recalculated
at each step, while the sparsity level is adaptively adjusted
based on the residual norm, allowing dynamic refinement of
support selection. This adaptive process balances accuracy and
complexity, ensuring robust reconstruction despite high dictio-
nary coherence and non-linear motion effects. The algorithm
complexity is O(K ·s·np) where K is the number of iterations,
s is the average sparsity level, and n, p are the measurement
and dictionary dimensions respectively.

Algorithm 1 Hierarchical SAMP for Maneuvering Targets

1: Input: Measurements y, Dictionary Ψ, Sparsity levels
{sk}

2: Initialize: r0 = y, x0 = 0, k = 0
3: while ∥rk∥2 > ϵ and k < Kmax do
4: Compute correlations: ck = ΨHrk
5: Find support: Sk = argmax|S|=sk ∥ck(S)∥2
6: Update support: Λk = Λk−1 ∪ Sk

7: Solve: xk(Λk) = argmin ∥y −ΨΛk
z∥22

8: Update residual: rk = y −ΨΛk
xk(Λk)

9: Adapt sparsity: sk+1 = sk + α(∥rk∥2 − τ)
10: k = k + 1
11: end while
12: Return: xk

VI. SIMULATION RESULTS AND DISCUSSION

A. Signal Characteristics

Our analysis of different target motion types reveals that
complex maneuvering targets exhibit highly non-linear phase
evolution and distributed spectral content. The signal phase for
a complex maneuver shows rapid variations that spread energy
across multiple dictionary atoms, violating the fundamental
sparsity assumption of CS. The signal characteristics analysis
presented in Fig. 1 confirms our theoretical predictions regard-
ing sparsity violations in maneuvering target scenarios.

B. Dictionary Performance

The separable dictionary structure achieves computational
savings of approximately 104 compared to full dictionary stor-
age. However, parameter coupling analysis reveals strongest
correlation between range and velocity parameters, creating
blocks of coherent dictionary atoms that degrade reconstruc-
tion performance.

VII. CONCLUSIONS

This paper provides a comprehensive theoretical analysis of
compressed sensing applicability to high-speed maneuvering
radar targets. While CS offers theoretical computational ad-
vantages through separable dictionary structures, our analysis
reveals fundamental limitations stemming from high dictionary
coherence, RIP violations, and breakdown of sparsity assump-
tions. The derived Cramér-Rao bounds establish theoretical
performance limits, while coherence analysis demonstrates
why reconstruction algorithms fail to achieve these bounds

in practice. These findings provide theoretical justification
for alternative approaches that exploit the geometric structure
of the problem rather than forcing sparsity constraints. The
derived CRLB analysis establishes fundamental performance
limits that any estimation algorithm must respect, providing a
theoretical benchmark against which practical CS reconstruc-
tion performance can be evaluated.
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