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Abstract—We investigate the robustness of affine frequency
division multiplexing (AFDM) and orthogonal time frequency space
(OTFS) waveforms against passive eavesdroppers performing brute-
force demodulation to intercepted signals, under the assumption
that eavesdroppers have no knowledge of chirp parameters (in
AFDM) or the delay–Doppler grid configuration (in OTFS), such
that they must search exhaustively over possible demodulation
matrices. Analytical results show that the brute-force complexity
scales as O(

√
N) for OTFS and O(N2) for AFDM, where N is

the number of subcarriers, indicating that AFDM has superior
resilience over OTFS. Simulation results demonstrate that AFDM
is capable of preventing reliable demodulation at the eavesdropper
side with a bit error rate (BER) of 0.5, while OTFS allows partial
signal recovery under equivalent conditions.

Index Terms—AFDM, OTFS, physical layer security, eavesdrop-
per, parameter hopping, robustness.

I. INTRODUCTION

Network security has often been restricted to complex key-
based encryption schemes. However, keyless techniques, gener-
ally based on the signal-to-interference-plus-noise ratio (SINR)
optimization, have recently emerged as promising approaches
[1], [2], complementing traditional key-based methods. These
methods usually rely on the use of spatial diversity, and
relatively few studies address physical layer security (PLS)
inherent to the waveform itself. As a parallel development,
there has been a growing interest in affine frequency division
multiplexing (AFDM) [3], [4] and orthogonal time frequency
space (OTFS) [5], [6] over the past few years as two alternatives
to orthogonal frequency division multiplexing (OFDM) for next-
generation communication systems, as they better cope with
doubly dispersive channels [7], [8]. The performance of both
modulation schemes has been extensively compared in terms of
bit error rate (BER), peak-to-average power ratio (PAPR), and
capability of supporting integrated sensing and communication
(ISAC) [9], [10], in addition to among other functionalities such
as index modulation [11]–[13]. However, their robustness against
threats in the context of physical layer (PHY) security remains
a largely open topic.

For example, in AFDM, by leveraging permutations over
the chirp sequences [14], a novel PHY security approach was
presented in [15], which was shown to be virtually perfectly
secure even against quantum-accelerated eavesdroppers due to
the immense complexity in the combinatorial space. Alternatively,
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techniques to realize PHY security over the conventional AFDM
parameters (usually denoted as c1 and c2) are reported in [16]–
[19], via parameter hopping of (c1,c2). In [16], a pseudo-random
sequence is selected for the pre-chirp parameter c2 from a
codebook, whereas in [17], c2 is securely generated at both the
legitimate transmitter and receiver sides based on their common
hidden communication channel. In both studies, the security
enhancement is based on the parameter c2 only. Nevertheless,
c1 can also play a crucial role in PLS. In [18], [19], the authors
analyzed the range of (c1,c2) to guarantee security and then
evaluated the robustness of AFDM through simulations only.
Similarly, based on the modulation parameters of the OTFS
waveform, delay-Doppler precoding was proposed in [20] for
enhancing the security of OTFS. However, to the best of our
knowledge, beyond methods that improve the PHY security of
AFDM and OTFS [16]–[20], no study has evaluated the intrinsic
robustness of these waveforms against eavesdropping to date.

Therefore, in this paper, we analyze and compare the robust-
ness of AFDM and OTFS modulations against eavesdroppers
attempting to brute-force demodulate the leaked signals they
receive from legitimate users. We consider a malicious user
who performs blind demodulation by exhaustively testing all the
possible modulation parameters, i.e. the delay-Doppler grid size
(K,L) in OTFS, and the chirp parameters (c1,c2) in AFDM,
given that the number N of subcarriers is known. We then assess
the robustness in terms of the maximum number of attempts an
eavesdropper has to perform to demodulate the signal properly,
focusing on the parameter c1. We show that the brute-force
complexity of OTFS and AFDM scales as O(

√
N) and O(N2),

respectively.
The analysis proves that AFDM is significantly more robust

than OTFS against brute-force demodulation, because the chirp
parameters (c1,c2) are chosen within a continuous subset of
R2. In contrast, the delay-Doppler grid size (K,L) in OTFS
corresponds to the limited number of divisors of N . It should
be noted that the proposed study may serve as a reference
for all parameter hopping-based methods [16]–[18] to assess
their robustness, in addition to providing theoretical numerical
results. Furthermore, simulation results validate the theoretical
developments on the robustness and show the superiority of
AFDM over OTFS, showing that the BER of AFDM at the
eavesdropper remains flat and undecodable for any SNR range,
while it converges to a moderate signal recovery for OTFS, given
the same number of demodulation attempts.

The rest of the paper is organized as follows: Section II
presents both the AFDM and OTFS signal models, as well as
the eavesdropping scenario. The theoretical robustness analysis
is developed in Section III. Simulation results are provided in
Section IV, and conclusions are drawn in Section V.

II. SYSTEM MODEL

This section introduces the signal models of both AFDM and
OTFS modulations, with our considered scenarios which involve
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legitimate users and eavesdroppers attempting to demodulate the
communications of the former.

A. AFDM and OTFS Signals Models

Let us consider a multicarrier AFDM or OTFS signal consist-
ing of N subcarriers. Inspired by [21], [22], both waveforms
can be interpreted as a precoded OFDM modulation scheme,
whose transmitted signal can be expressed as

x=FH
N Qd, (1)

where the vector d ∈ CN contains the data randomly taken
from a constellation, and the matrix FH

N is the IDFT matrix of
size N×N containing the element 1√

N
e2jπ

mn
N at entry (n,m).

Then, the expression of the recoding matrix Q depends on the
considered modulation. For instance, we simply have Q=IN in
OFDM. In AFDM, it is given by

Q=FNΛc1FH
N Λc2 , (2)

where Λci =diag([e2jπci0
2

,..,e2jπci(N−1)2 ])∈CN×N , i=1,2,
with c1,c2∈R the so-called chirp parameters which can be set
to achieve full diversity in time and frequency selective channels
[3], [7], as described in the following.

In OTFS, the matrix Q is given by
Q=FN (FH

L ⊗IK), (3)
where K×L is the size of the delay-Doppler grid the data is
mapped on. Interestingly, note that in OTFS, the delay-Doppler
diversity is directly dependent on K and L, and in turn on
N since N =K×L. In contrast, it is related to c1 and c2 in
AFDM, independently of N .

Omitting the cyclic prefix (CP) or chirp-periodic prefix (CPP)
addition and removal, the general input-output relation in SISO
systems can be expressed as

y=
Lc−1∑
l=0

hl∆θlΠ
lx︸ ︷︷ ︸

Hx

+w, (4)

where y ∈ CN×1 is the vector of the received signal, and
w∈CN×1 is the vector of the additive white Gaussian noise with
independent and identically distributed samples wn∼CN (0,σ2).
In turn, H ∈ CN×N is the channel matrix, where hl is the
lth channel path coefficient (possibly null if the channel is
sparse), and Lc is the channel length. Moreover, ∆θl ∈CN×N

is the diagonal matrix containing the samples e2jπ
θln

N , where
θl∈ [0,θmax] is the normalized Doppler shift (integer of fractional
component), and θmax the maximum normalized Doppler shift.
Then, Π is the forward cyclic-shift matrix. Note that the full-
diversity property of AFDM holds if [3], [7], [23]:

2θmax+1

2N
≤c1, c2<<

1

N
. (5)

Furthermore, according to [3], to ensure both proper channel
estimation and data transmission, c1 should satisfy c1 <

1
4Lc

,
which is not proved in this paper for the sake of conciseness.
Note that more details on how c1 should be chosen in the

context of PLS can be found in [18], [19].

B. Scenario

We consider a scenario in which base stations (BSs) com-
municate with legitimate UEs of the network, while malicious
eavesdroppers attempt to brute-force demodulate the leaked

signals. These signals are assumed to be modulated using AFDM
or OTFS, as previously described, and the eavesdropper is aware
of the waveform it receives. Note that, even though we consider
a cellular system comprising BS and UEs, the model is general
enough to be extended to any type of communication, such as
cell-free, device-to-device (D2D), vehicular-to-everything (V2X),
side link, or multiple-input multiple-output (MIMO) systems.

We deliberately assume a worst-case scenario (from the point
of view of the legitimate stakeholders of the network) in which
the eavesdropper is synchronized with the leaked signals it
receives, and has a perfect knowledge of the channel H between
the transmitter (e.g. a BS or a UE) and itself, as well as the
number of subcarriers N . Note that this therefore limits CSI-
based PHY security approaches [17], which depend on the hidden
CSI from the eavesdroppers. It results in the capability of perfect
equalization, such that the equalized signal at the eavesdropper
can be expressed as:

x̂=Gy=x+Gw, (6)
where G∈CN×N is the equalization matrix such as GH=IN .

The demodulator then performs data recovery expressed as
d̂=Q−1FN x̂. In contrast, it is assumed that the modulation
parameters (i.e. c1 and c2 in AFDM, and K and L in OTFS),
and in turn the decoding matrix Q−1, are unknown to the
eavesdropper. Consequently, a brute-force demodulation strategy
is adopted to estimate the transmitted data d, which means that
it exhaustively tests all the possible values of the modulation
parameters until it recovers the data. Despite the exhaustive
search may seem to be an oversimplified method, it is optimal
in the sense of the maximum likelihood in blind estimation of
unknown parameters. In the following, we analyze the robustness
of OTFS and AFDM against such a brute-force demodulation.

III. ROBUSTNESS ANALYSIS

In this section, we evaluate the robustness of the OTFS and
AFDM modulation schemes in terms of the maximum number
of attempts, denoted by Ma, that an eavesdropper should carry
out to recover the transmitted data d̂ from x̂ in (6). It is worth
emphasizing that we assess the robustness of the waveforms,
independently of additional secure methods as presented in
[16]–[20], or independently of any other techniques that aim
to secure the transmission at the data level, e.g. by applying
a pseudo-random matrix to d directly. Since we focus on the
robustness of the waveform against brute-force demodulation,
we can deliberately omit the noise in this section, i.e. w→0 in
(6). In other words, Ma corresponds to the maximum attempts
the eavesdropper should make to find the decoding matrix Q′−1

such as Q′−1Q=IN , with a probability of 1, given that N is
known. The larger the number Ma, the stronger the waveform.
A. OTFS

In OTFS, the brute-force strategy consists in testing all
the possible decoding matrices Q−1 according to K (or L
equivalently), and keep the set of matrices Q′−1 (parametrized
by (K ′,L′)) leading to Q′−1Q=IN . The robustness of OTFS
is given in Proposition 1.

Proposition 1. Given an OTFS signal composed of N sub-
carriers and parametrized by (K,L), its robustness against
brute-force demodulation is given by

Ma=σ(N)≤2
√
N, (7)
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where σ(N) is the number of integer divisors of N .

Proof. Note that this result is a direct consequence of the so-
called Dirichlet divisor problem, whose more precise upper
bounds can be found in [24]. First, we can readily show from
(3) that the solution to Q′−1Q = IN is unique and is given
by (K ′,L′)=(K,L). Thus, the number of attempts performed
by an eavesdropper directly depends on the number of integer
divisors of N =K×L, due to the rectangular delay-Doppler
grid structure of OTFS. Then, since the number of divisors of N
is twice the number of divisors of N between 1 and

√
N , Ma

can be upper-bounded by 2
√
N , which concludes the proof.

We deduce from (7) that the robustness of OTFS exhibits
an inverse quadratic growth with respect to the number of
subcarriers, which then becomes weak for low N values.
Furthermore, in practice, Ma in (7) largely overestimates the
possible number of solutions for Q−1 because: i) we know from
Dirichlet that the average number of divisors σ(N) of N is
rather asymptotically equal to ln(N)+2γ−1≤ 2

√
N , where

γ is the Euler-Mascheroni constant i.e., Ma=2
√
N is a loose

upper bound, and ii) we know from [15] that only a subset of
all possible values (K,L) should be considered to guarantee
delay-Doppler diversity (e.g. we know that if K=1, OTFS is
exactly equivalent to OFDM).

B. AFDM

In AFDM, the brute-force demodulation involves an exhaustive
joint search of (c1,c2) in a continuous subset Ωc∈R2, which is
theoretically impractical within a reasonable time. In fact, Ma

tends to infinity due to the continuous nature of Ωc. However,
it can be assumed that the brute-force demodulation is made
possible regardless of a small error (c1+∆1,c2+∆2). Then,
Ma becomes finite and corresponds to the ratio of the area
defined by Ωc and the area (2·|∆1|×2·|∆2|) (more details are
provided in Theorem 1 below). More precisely, Ma depends
on whether c1 and c2 can be tested independently or not. In
a pure blind demodulation process, c1 and c2 must be tested
together, and then Ma =Mc1 ·Mc2 , where Mc1 and Mc2 are
the maximum numbers of attempts an eavesdropper should carry
out to reach c1±|∆1| (resp. c2±|∆2|) given that c2 is known
(resp. c1 is known). In a scenario where c1 and c2 can be tested
sequentially (e.g., if the constellation is known then the samples
of Λc2d appears as rotated constellation elements given that c1
is tested correctly), then Ma=Mc1+Mc2 .

An overall analysis of PLS in AFDM based on jointly
(c1,c2) design should be undertaken. However, despite not being
extensive, interesting PLS solutions based on c2 in AFDM have
already been proposed in [16]–[19]. In contrast, to the best of
our knowledge, no study on c1 has been proposed to date. In
general, an error on c1 prevents the possible demodulation, even
in a sequential test of c1 and c2. Thus, c1 is the most limiting
parameter in the exhaustive search of (c1,c2) allowing for a
brute-force demodulation by an eavesdropper. For this reason,
we focus on the robustness of AFDM with respect to (w.r.t.) c1
in this paper. It can be considered as a preliminary result for a
more general study involving both c1 and c2.

To evaluate Mc1 , we characterize the distance between c1
and a given value c′1 tested by the eavesdropper, resulting in the

failure of demodulation. To this end, the eavesdropper should
arbitrarily restrict the possible range of c′1 as c′1∈ [Dmin,Dmax],
where Dmin=

2θmax+1
2N according to the full-diversity condition

in (5), and 2θmax+1
2N < Dmax ≤ 1

4Lc
. In practice, from the

eavesdropper perspective, the lower the value of Dmax, the
lower the complexity, with the risk of missing the actual c1
value. Then, we express the robustness of AFDM in Theorem 1.

Theorem 1. Let us consider an AFDM signal composed of N
subcarriers and parametrized by (c1,c2). Given that c2 is known
or can be tested sequentially after c1, the robustness of AFDM
w.r.t. c1 against brute-force demodulation is given by

Mc1 =
π

2N

(
2NDmax−(2θmax−1)

)
(N−1)2. (8)

Proof. First, we express the samples xn of x in (1) for any
n=0,1,N−1 as

xn=
1√
N

N−1∑
m=0

dme2jπ(c1n
2+c2m

2+mn
N ), (9)

where m is the subcarrier index, and dm is the mth element of
the vector d.

By assuming that the eavesdropper attempts to brute force
the received AFDM signal using (c′1,c

′
2), the sample d̂k of d̂,

k=0,1,..,N−1, is given by the DAFT of xn as

d̂k=
1√
N

N−1∑
n=0

xne
−2jπ(c′1n

2+c′2k
2+ kn

N ). (10)

Then, by substituting (9) into (10), and defining ∆1=c1−c′1
and ∆2=c2−c′2, we obtain:

d̂k=
1

N

N−1∑
n=0

N−1∑
m=0

dme2jπ((c1−c′1)n
2+c2m

2−c′2k
2+

(m−k)n
N ) (11)

=
e2jπ∆2k

2

N

N−1∑
m=0

dme2jπc2(m
2−k2)

S1︷ ︸︸ ︷
N−1∑
n=0

e2jπ(∆1n
2+

(m−k)n
N ),

where S1 is defined for clarity.
It must be noted that S1 simplifies only for integer ∆1 values,

since it reduces to the sum of the N th roots of unity. In that
case S1=Nδm,k where δm,k is the Kronecker delta, and hence
d̂k = e2jπ∆2k

2

dk, where the term e2jπ∆2k
2

corresponds to
a phase rotation, which could be tested afterward. However,
the equality S1 = Nδm,k corresponds to either the perfect
match c′1=c1, which is unattainable because c1 is a continuous
variable, or ∆1 ∈N∗ and then c′1 /∈ [ 2θmax+1

2N ,Dmax], which is
inconsistent with the assumption c′1∈ [ 2θmax+1

2N ,Dmax]. Despite
the equality c′1=c1 (i.e. ∆1=0) cannot theoretically be achieved,
the eavesdropper can demodulate the received signal with an
acceptable error |∆1|<<1, which can be characterized by:∣∣∣e2jπ∆1n

2

−1
∣∣∣≤|ε|, (12)

where |ε|<<1 highlights the acceptable error level, depending
on other modulation parameters, but not dealt with in this paper
(e.g. we can reasonably assume that |ε| can take a higher value
for a low modulation and coding schemes (MCS) than high
MCS). Since (12) should hold for any n= 0,1,..,N−1, and
∆1<<1, we use the series expansion of the exponential function
to derive the upper bound of ∆1 with n=N−1 as

(12)⇔|∆1|≤
|ε|

2π(N−1)2
≤ 1

2π(N−1)2
, (13)
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TABLE I
BRUTE-FORCE DEMODULATION COMPLEXITY OF DIFFERENT WAVEFORMS BY

AN EAVESDROPPER.
Waveform Complexity

Attempts Demodulation
OFDM 1 O(N logN)
OTFS σ(N) O(KLlogL)
AFDM Mc1 .Mc2 or Mc1+Mc2 O(N logN)

where “1” can replace |ε| to obtain an upper bound that only
depends on N .

Notice that in this case, the demodulated data becomes
d̂k = e2jπ∆2k

2

dk(1 + ε). In AFDM, the brute-force strategy
w.r.t. c1 then consists in testing all possible values c′1 within
[ 2θmax+1

2N ,Dmax] with a step of 2|∆1| = 1
π(N−1)2 . Then, the

maximum number of attempts Mc1 corresponds to the ratio of
the range of the search set [ 2θmax+1

2N ,Dmax] and the step 2|∆1|,
leading to (8), which concludes the proof.

We deduce from (8) that the robustness of AFDM is quadrat-
ically proportional to the number of subcarriers N and also
linearly proportional to the size of the search set through Dmax.
Thus, AFDM should be much stronger than OTFS against passive
eavesdroppers, therefore limiting a brute-force demodulation of
a leaked signal in real-time. The complexity order of brute-force
demodulation in OFDM, OTFS, and AFDM is summarized in
Table I. It is expressed in terms of the number of attempts and the
corresponding flops for demodulation per attempt. Unlike OTFS,
Mc1 in (8) is independent of chirp parameters c1 and c2, hence
AFDM achieves both robustness against eavesdroppers and full
delay-Doppler diversity. Furthermore, note that c2 must also be
dechirped on top of c1 in AFDM to complete the demodulation,
thus strengthening the waveform, as addressed in [16]–[18].

IV. SIMULATION RESULTS

In this section, we validate the theoretically derived results
through simulations and we evaluate the performance of the
AFDM and OTFS waveforms in terms of the achievable BER
at the eavesdropper. The parameters used in all simulations are
summarized in Table II. Simulations have been performed using
MATLAB, and the results have been averaged over at least 103

independent Monte-Carlo runs.
Fig. 1 shows the BER versus the demodulation parameters

K ′ in OTFS (a), and c′1 in AFDM (b), for N ∈ {64,128}
and K ∈ {16,64}, and in an additive white Gaussian noise
(AWGN) environment such as SNR=25 dB. In Fig. 1(a), the
OTFS parameter K is set to K=16. The cardinality of the set
to be tested by the eavesdropper to properly demodulate the
OTFS signal is σ({64,128})={7,8}. We observe that the only
solution that minimizes the BER is K ′=K , which confirms the
weakness of OTFS against brute-force demodulation. We assume

TABLE II
SIMULATION PARAMETERS.

Parameter Value
Modulation QPSK
N {64,128}
(c1,c2) (0.02,10−3)
Lc 4
θmax 0.3
hl (Eq. (4)) CN (0,σ2

h= 1
4
)

Dmax 0.1
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(a) BER versus K′ in OTFS, for N={64,128} and K={16,64}. It can be
observed that the BER is minimum for K′=K.
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2∆1 ≈ 8.10−5, N = 64

2∆1 ≈ 2.10−5, N = 128

(b) AFDM BER versus c′1 for N={64,128} and c1=0.02. It can be observed
that the value of ∆1 matches the theoretical one.

Fig. 1. BER versus demodulation parameters K′ in (a) OTFS and (b) c′1 in
AFDM, for N={64,128}, where we set SNR=25 dB and QPSK modulation.

that the eavesdropper a priori knows c2 or can properly estimate
this pre-chirp parameter, so it is omitted in the simulations.

Thus, it focuses on brute-force demodulation by testing c′1
values. The range of c′1 values has been arbitrarily restricted
around c1±8.10−5 in Fig. 1(b) for the sake of clarity. We can
observe that the BER reaches a minimum value that spans over
2∆1 defined in (13). Moreover, other series of simulations show
that: i) no other local minimum is achieved when c′1 varies in
a wider range of values, and ii) the BER variations become
sharper as the constellation size increases. This validates the
analysis leading to the upper-bound in (13) and in turn (8).

To further validate the robustness analysis, Fig. 2 shows the
BER versus SNR (dB) achieved at the eavesdropper for OFDM,
AFDM, and OTFS modulations, using N = 128 subcarriers.
A four-tap channel (see parameters in Table II) is considered,
which is equalized at the receiver side using the MMSE equalizer,
before the brute-force demodulation. To compare OTFS and
AFDM against brute-force demodulation, we assume that the
eavesdropper can test Ma=σ(128)=8 values of K ′ in OTFS,
and in AFDM, it can test 8 (same attempts number as OTFS)
and 104 different c′1 values. The BER of OFDM, considering
only 1 attempt, is also shown as a benchmark. In AFDM, c′1
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Fig. 2. BER versus SNR (dB) achieved at eavesdropper considering OFDM (1
attempt), OTFS (8 attempts), and AFDM (8 and 104 attempts), with N=128
in multipath channel.

is randomly chosen within the set [ θmax

N ,0.1], with a minimum
spacing of 2∆1 between two attempts.

It can be observed that the BER of OFDM (1 attempt),
OTFS (8 attempts), and AFDM (104 attempts) decreases to zero
when the SNR increases, validating that the exhaustive possible
values of K ′ and c′1, respectively, work well. It implies that
the eavesdropper can demodulate the OTFS and AFDM signals.
Moreover, both OTFS and AFDM outperform OFDM, since they
are more robust than OFDM against a doubly dispersive channel.
In contrast, the BER of AFDM using 8 attempts keeps a value
of about 0.5, which shows that 8 attempts are largely insufficient
to brute-force demodulate the AFDM signal. This ultimately
proves that AFDM is much stronger than OTFS against passive
eavesdropping.

V. CONCLUSION

We investigated the robustness of both AFDM and OTFS
modulations against eavesdropping, in terms of the maximum
number of attempts required for a passive eavesdropper to
demodulate the signals via brute-force search, in the absence
of any additional PLS method. It was shown that, for a signal
composed of N subcarriers, the corresponding complexity scales
as O(

√
N) and O(N2) for OTFS and AFDM, respectively. This

result is due to the nature of the modulation parameters: in OTFS,
the delay-Doppler size (K,L) is chosen within the divisors of
N , whereas in AFDM, the chirp parameters (c1,c2) are selected
within a continuous subset of R2. The analysis, which can also
be used to assess the robustness performance of PLS techniques
in AFDM and OTFS, indicates that AFDM has an advantage
over OTFS in terms of privacy. Simulation results validated the
theoretical analysis through the BER, which showed that AFDM
significantly outperforms OTFS in terms of PHY security.
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