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Abstract 

 
Equitable profit allocation in strategic alliances within technology supply chains remains a 

formidable challenge, exacerbated by the inability of conventional game-theoretic models  such as 

Nash bargaining and Stackelberg  to effectively analyze dynamic, knowledge-driven contributions. 

These models, constrained by their bilateral and static design, fail to capture the intricacies of 

multi-agent interactions. This study introduces a hybrid game-theoretic framework utilizing the 

Shapley value’s axiomatic fairness to allocate coalition profits by marginal contributions. The 

Shapley value surpasses equilibrium-based or power-centric approaches, offering superior 

suitability for complex multi-agent scenarios. Leveraging meticulously validated data  including 

knowledge investment, absorptive capacity, and coordination costs—this framework employs 

Monte Carlo simulations to deliver statistically reliable contribution estimates, thereby 

overcoming the shortcomings of prior methodologies. Applied to an automotive supply chain, the 

model demonstrates substantial profit gains attributable to optimized knowledge-sharing 
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processes. Absorptive capacity reflects the efficiency of organizational learning, coordination 

costs indicate potential frictions in collaborative processes, and knowledge investment captures 

the level of innovation intensity. The proposed model offers a robust, data-driven foundation for 

developing equitable profit-sharing mechanisms tailored to engineering management needs. At the 

policy level, it provides a scalable framework for strengthening supply chain resilience. This 

integrated approach contributes meaningfully to both the advancement of theoretical perspectives 

and the enhancement of practical strategies in supply chain management. 

Managerial Relevance Statement 

This study provides engineering managers and policymakers with a decisive analytical framework 

to resolve the enduring challenge of equitable value distribution in knowledge-intensive strategic 

alliances.  For engineering managers, the model transforms abstract knowledge contributions into 

quantifiable financial metrics, enabling precise calibration of profit-sharing mechanisms that 

reflect true marginal contributions. This allows for the design of dynamic governance structures 

that systematically reward knowledge investment and absorptive capacity while mitigating 

coordination inefficiencies. Policymakers can leverage this scalable framework to foster industrial 

ecosystems where transparent value allocation strengthens supply chain resilience and promotes 

sustainable innovation. By aligning economic incentives with collaborative behaviors across 

organizational boundaries, this approach enables more effective partnership structures in 

technology-driven sectors. This paper also contributes to the following SDGs: 8, 9, 12. 

Keywords: Knowledge Sharing, Absorptive Capacity, Shapley Value, Supply Chain Coalitions, 

Supply Technological Products, Strategic Alliance. 

 

1. Introduction  
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Strategic alliances within technology-intensive supply chains have become essential mechanisms 

for achieving sustained innovation, operational agility, and competitive advantage in dynamic 

global markets [1], [2], [18]. Central to these alliances is knowledge sharing (KS)  a deliberate and 

systematic process through which partner firms exchange expertise, proprietary know-how, and 

intellectual capital to co-create value and accelerate innovation [3], [14]. Despite its acknowledged 

strategic importance, ensuring a fair and transparent distribution of profits among alliance 

members with asymmetric contributions remains a persistent and insufficiently addressed 

challenge [4], [53]. 

Empirical evidence consistently shows that over 60% of strategic alliances underperform or fail 

due to incentive misalignments, especially when contributions to joint knowledge creation and 

innovation are difficult to observe, quantify, or reward equitably [4], [22]. Collaboration failures 

often originate from the absence of strong governance structures capable of addressing knowledge 

asymmetries and managing the intricate dynamics of coordination among diverse partners. With 

the increasing complexity of interorganizational relationships in knowledge-intensive 

environments, the development of rigorous and actionable models for fair profit allocation has 

become both a pressing theoretical concern and a practical necessity for effective management. 

This study addresses this gap by proposing a hybrid cooperative game-theoretic framework, 

grounded in the Shapley value, to guide profit allocation in strategic alliances based on the relative 

marginal contributions of each partner’s knowledge assets. Unlike traditional bargaining models 

such as Nash or Stackelberg [42], [44], which rely on dyadic and sequential assumptions, the 

Shapley value offers an axiomatic and symmetric approach that captures the dynamics of multi-

party, knowledge-driven coalitions [11], [12], [55]. Despite its theoretical elegance, its practical 
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application in contexts characterized by knowledge asymmetry, dynamic coordination costs, and 

heterogeneous absorptive capacities remains underexplored. 

Accordingly, this study poses a critical research question at the intersection of game theory and 

knowledge-based collaboration: 

How can we fairly distribute profits in strategic alliances where participants contribute differently, 

face high coordination costs, and create value together? 

To develop a model that is both theoretically sound and practically relevant, this research is 

anchored in two prominent perspectives from strategic management: the Resource-Based View 

(RBV) and Dynamic Capabilities Theory (DCT). The RBV conceptualizes knowledge as a 

strategic resource that is valuable, rare, and difficult to imitate, thereby reinforcing its central role 

in value appropriation within collaborative arrangements [49]. In parallel, the DCT emphasizes 

the organization's ability to sense, assimilate, and transform external knowledge, a capacity 

operationalized in this study as absorptive capacity (AC) [50]. Within the proposed framework, 

knowledge sharing (KS) denotes the flow of knowledge across organizational boundaries, 

absorptive capacity reflects the internal capability to process and integrate this knowledge, and 

coordination cost (CC) captures the transactional and organizational frictions that may diminish 

the net value derived from interorganizational collaboration [54]. 

This study posits that elevated levels of KS and AC enhance coalition performance by facilitating 

deeper knowledge integration and joint innovation. However, these gains are moderated by 

coordination costs, which act as structural constraints reducing the distributable value within 

alliances. By embedding these constructs within a cooperative game-theoretic model, this research 

not only offers a novel analytical lens but also establishes a rigorous foundation for evaluating 

fairness in knowledge-based coalitions. 
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The proposed model is empirically validated using data from the Iranian automotive supply chain, 

focusing on a strategic partnership between Mega Motor and three domestic gearbox suppliers. 

Monte Carlo simulation techniques are employed to estimate Shapley values under uncertainty 

and to analyze the sensitivity of profit allocation outcomes to varying knowledge contributions 

and coordination parameters. 

This study makes three key contributions. First, it advances cooperative game theory into the realm 

of knowledge-based alliance governance by integrating RBV and DCT within a formal allocation 

mechanism. Second, it delivers a validated, scalable decision-support tool that aligns financial 

outcomes with knowledge contributions—thereby enhancing the credibility, fairness, and 

sustainability of inter-firm collaboration. Third, it provides actionable insights for managers and 

policymakers operating in resource-constrained, innovation-driven industries. Results from the 

case study demonstrate that alliances structured around transparent knowledge-sharing 

mechanisms can achieve up to a 90% improvement in profit allocation fairness, underscoring both 

the strategic and economic significance of the proposed approach. 

 

2. Literature Review 

In knowledge-intensive supply chains, strategic collaboration depends not only on the exchange 

of knowledge but also on each partner’s ability to internalize and exploit that knowledge. 

Knowledge sharing refers to the inter-organizational process of transferring technical expertise, 

best practices, and intellectual capital, whereas absorptive capacity denotes the internal capability 

of a firm to recognize, assimilate, and apply this external knowledge [49], [50]. Although these 

constructs are frequently discussed in the literature, they are often treated ambiguously or 

interchangeably, despite their differing roles in the value creation process. 
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Knowledge sharing facilitates operational synergy and innovation, but without absorptive 

capacity, the transferred knowledge may not yield measurable benefits. The literature lacks 

integrated models that concurrently account for both knowledge sharing and absorptive capacity 

in alliance formation and profit allocation [54].  

In the context of this research, Knowledge Constructs denote the core conceptual pillars that 

underpin knowledge-based collaboration and value co-creation within supply chain systems. 

These constructs provide the analytical lens through which the dynamics of learning, coordination, 

and fairness can be systematically understood. Specifically, they encompass four interdependent 

dimensions that collectively capture how knowledge is produced, shared, internalized, and 

managed across organizational boundaries. 

First, Knowledge Sharing (KS) reflects the extent and quality of mutual knowledge exchange 

among supply chain partners, facilitating transparency, reducing uncertainty, and supporting 

collective problem-solving [19], [37]. 

Second, Absorptive Capacity (AC) represents an organization’s capability to identify, assimilate, 

and exploit external knowledge, thereby enhancing innovation potential and adaptive 

responsiveness [29]. 

Third, Knowledge Investment (KI) refers to the allocation of financial and intellectual resources  

such as R&D expenditure, employee development, and technological infrastructure  dedicated  to 

fostering the creation and maintenance of strategic knowledge assets [22], [23]. 

Finally, Coordination Cost (CC) denotes the transactional and administrative efforts required to 

align inter-organizational knowledge flows, including the time, communication, and managerial 

overheads associated with collaboration [27], [33]. 
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Collectively, these four constructs provide the theoretical foundation for examining how fairness 

and cooperative efficiency emerge in knowledge-driven interactions, serving as the building 

blocks of the analytical framework proposed in this study. 

2.1. Game-Theoretic Approaches to Profit Allocation in Strategic Alliances 

Game theory offers a formal structure to model collaborative behavior and resolve distributional 

conflicts in multi-agent settings. Classical models such as Nash bargaining [44] and Stackelberg 

leadership [42] have been widely applied to study power dynamics and negotiation outcomes in 

dyadic supply chain partnerships. However, these models assume either symmetry in negotiation 

power or sequential dominance, making them unsuitable for equitable allocation in horizontally 

structured, multi-party alliances with diverse knowledge contributions [54]. 

In this vein, the Shapley value, the Shapley value from cooperative game theory provides a well-

established method for distributing payoffs fairly among participants, based on the value each 

party adds to the coalition. The fairness of this approach has been formally proven and widely 

applied in fields such as distributed energy systems [46], logistics planning [3], and collaborative 

networks [23]. However, many existing applications overlook critical knowledge-related factors, 

including research and development efforts, AC, and coordination inefficiencies. This omission 

reduces their relevance in environments where knowledge is a primary driver of value creation. 

To overcome this shortcoming, the present study enhances the Shapley-based allocation 

mechanism by integrating empirically grounded indicators of KS and absorptive capacity into the 

model, enabling a more accurate and context-sensitive distribution of collaborative gains. 

2.2.  Knowledge Management in Supply Chains: Gaps in Value Distribution Modeling 
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Knowledge management (KM) in supply chains has been widely recognized for its role in 

enhancing innovation, transparency, and responsiveness [1], [32], [33]. Numerous studies have 

investigated how digitalization and information flow influence supply chain agility and 

performance. For instance, Schniederjans et al. [33] and Kumar et al. [17] demonstrate that KM 

practices improve process integration in the automotive sector. 

However, these works are primarily descriptive or system-level and fail to quantify how 

knowledge contributes to coalition value, nor do they propose formal mechanisms for allocating 

financial gains arising from knowledge interactions. This study builds on these empirical insights 

to offer a quantitative model linking knowledge parameters to profit allocation. 

2.3. Bridging Knowledge Constructs with Cooperative Game Theory  

The proposed model is conceptually grounded in two well-established theoretical paradigms in 

strategic management: the Resource-Based View (RBV) and the Dynamic Capabilities Theory 

(DCT). Rather than serving as mere background references, these frameworks are systematically 

embedded in the architecture, logic, and variables of the hybrid game-theoretic model. 

From the RBV perspective, organizational knowledge is regarded as a strategic, firm-specific 

resource that is Valuable, Rare, Inimitable, and Non-substitutable. Within the model, this view is 

operationalized through the variable knowledge investment (KI), which captures tangible 

innovation inputs such as R&D expenditures, technical expertise, and proprietary technologies. 

The marginal contribution of each partner to the coalition’s value is assessed based on this 

knowledge input, aligning directly with RBV’s assertion that firms with superior intangible 
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resources contribute disproportionately to value creation and should receive commensurate 

returns. 

In parallel, the model draws on DCT to reflect the dynamic nature of inter-organizational learning 

and adaptation. Specifically, the variable absorptive capacity (AC) is modeled as a dynamic 

capability representing a firm’s ability to acquire, assimilate, and apply external knowledge. Rather 

than treating AC as a static attribute, the model formulates it as an evolving function, influenced 

by factors such as cooperation intensity, knowledge compatibility, and equipment capability. This 

formulation captures the firm’s learning trajectory and reflects the temporal evolution of 

knowledge leverage in collaborative settings. 

Moreover, the concept of Coordination Cost (CC) is theoretically linked to DCT’s emphasis on 

integration and reconfiguration costs. It captures the frictional costs associated with aligning 

heterogeneous systems, processes, and cultures across coalition members. The model incorporates 

CC as an endogenous variable affecting coalition efficiency and value realization, reinforcing the 

DCT view that organizational adaptability entails real and measurable transaction costs. 

Crucially, these theoretical constructs are not presented as abstract notions but are embedded 

directly within the analytical foundation of the model. The Shapley value, employed as the 

mechanism for profit allocation, is calibrated based not only on measurable outcomes but also on 

strategic intangibles such as knowledge investment, absorptive capacity, and coordination cost. 

This approach enables a rigorous operationalization of fairness, supported by both theoretical 

justification and empirical validation. 
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This fusion of RBV and DCT with cooperative game theory ensures that the model captures both 

the strategic origins of knowledge-based value creation and the processual mechanisms through 

which this value is co-developed and shared. The result is a rigorous, theory-driven framework 

that enhances explanatory depth, analytical robustness, and managerial relevance in knowledge-

intensive supply chain alliances. 

2.4. Synthesis and Positioning of the Proposed Model 

The literature review underscores that knowledge sharing enhances operational performance [25], 

[27] , while game theory models profit allocation [26], [11]. However, extant studies are often 

confined to bilateral settings, neglecting critical variables such as absorptive capacity and 

coordination costs [7], [16], [19]. Traditional models like Nash and Stackelberg falter in 

knowledge-driven contexts due to static assumptions and hierarchical biases, and prior Shapley 

value applications primarily focus on resource allocation [3], [8], [24]. The proposed model 

integrates cooperative game theory with the Shapley value, quantifying marginal contributions 

using real-world data (e.g., Mega Motor’s $15 million investment) and validated through Monte 

Carlo simulation. This equitable and scalable framework optimizes technology-driven supply 

chains and enriches theoretical discourse by bridging knowledge management and profit 

allocation. Table 1 shows an overview of current literature.   
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Table 1 
COMPARATIVE ANALYSIS OF KNOWLEDGE-BASED PROFIT ALLOCATION MODELS IN SUPPLY CHAINS 
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3. Model Description and Problem Statement 

 

 

This section presents a hybrid cooperative game-theoretic framework integrated with the Shapley 

value to model knowledge sharing and equitable profit allocation in technology-driven supply 

chains, with a specific application to gearbox production in Iran’s automotive sector. The 
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methodology is structured to address the complexity of multi-agent interactions, capturing the 

dynamic contributions of knowledge investment, absorptive capacity, and coordination costs. The 

following subsections articulate the research design, data collection procedures, analytical 

approach, and the rationale for methodological choices, ensuring transparency and alignment with 

the study’s objectives. 

3.1 Research Design 

 
The research design adopts a mixed-methods approach, combining quantitative modeling with 

empirical validation to develop and test a profit allocation framework for knowledge-sharing 

coalitions. The quantitative component employs cooperative game theory to formulate a 

mathematical model that optimizes profit distribution based on marginal contributions, 

operationalized through the Shapley value. The empirical component validates this model using 

real-world data from a strategic alliance in Iran’s automotive supply chain, focusing on Mega 

Motor and its domestic partners. This design enables the integration of theoretical constructs—

such as knowledge sharing (KS), absorptive capacity (AC), and coordination costs (CC)—with 

practical insights, ensuring both analytical rigor and managerial relevance. The choice of a mixed-

methods approach is motivated by the need to bridge the gap between abstract game-theoretic 

models and their practical applicability in knowledge-intensive industries, where heterogeneous 

contributions and dynamic interactions necessitate a robust, data-driven framework. 

   3.2 Data Collection and Variable Operationalization 

A rigorous mixed-methods approach was employed for data collection between 2022 and 2025, 

focusing on the strategic alliance between Mega Motor and its three key domestic suppliers. To 
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ensure robustness, a triangulation strategy was adopted, leveraging multiple data sources including 

financial archives, project documentation, and primary interviews. 

3.2.1. Measurement of Key Variables 

The key variables KI and CC were measured using both quantitative and qualitative indicators to 

ensure construct validity and replicability of the model. 

 KI was operationalized from secondary data collected from SAPCO’s internal financial and R&D 

records between 2022 and 2025. KI represents the ratio of total knowledge-related expenditure 

(including R&D spending, employee training programs, and collaborative innovation funding) to 

total operating cost, calculated as: 

�� � = � �&�� +  Training  � +  Collaboration 

 TotalOperatingCost  �  

The normalization (0–1 scale) allows comparison across partners of different sizes and aligns with 

previous studies [53], [26]. 

CC was derived from both secondary and primary sources. It quantifies the ratio of inter-

organizational coordination overhead including administrative expenses, communication delays, 

and penalty costs to total operational budget: 



 � =  Admin �Cost � +  DelayCost � +  CommunicationCost 
�

 TotalOperationalBudget 
�  

Cost data were extracted from project accounting records, while time delays were converted to 

monetary terms using average hourly wage rates. The proportional weights of each cost component 
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were validated through semi-structured interviews with five senior managers from R&D and 

operations divisions. 

These definitions enable consistent measurement across coalition members and enhance empirical 

transparency for model replication. 

3.2.2. Quantitative Data and Construct Operationalization 

A comprehensive dataset of 427 structured operational observations was compiled from financial 

statements, project logs, and technical reports. The core constructs of the model were 

operationalized as follows: 

 Knowledge Investment (KI): This variable was measured as capitalized Research & 

Development (R&D) expenditures in million USD, directly extracted from audited 

financial statements and innovation project budgets. For instance, Mega Motor's 

investment was documented at $15 million, with suppliers averaging $2 million. 

 Coordination Cost (CC): This construct was quantified by aggregating explicit cost items 

directly attributable to inter-organizational collaboration management. These included 

documented expenses for dedicated coordination personnel, Enterprise Resource Planning 

(ERP) integration costs, and allocated overhead for joint project management, averaging 

$500,000 per partner with ±5% accuracy. 

 Knowledge Level (KL): This was constructed as a weighted composite index normalized 

to [0, 1], calculated using the Fuzzy TOPSIS technique. It integrated three indicators: 

Patent Intensity Index, Technical Certification Richness Index, and a Key Personnel 

Technical Competency Composite Score. 
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 Equipment Capability (EQ): This metric was assessed by computing the Overall 

Equipment Effectiveness (OEE), considering its three core components: Availability, 

Performance, and Quality Rate. 

 Cooperation Level (η): This dynamic variable was quantified using proxies derived from 

quantitative content analysis of meeting minutes and official correspondence. Indicators 

included the temporal density of joint meetings, volume of formal information exchange, 

and agreement maturity index, normalized to [0, 1]. 

3.2.3. Qualitative Data and Perceptual Validation 

In parallel, to gain strategic insights and validate the constructs perceptually, 23 in-depth, semi-

structured interviews were conducted with 12 key decision-makers (6 from Mega Motor, 6 from 

suppliers) using a purposive sampling protocol. Interviews focused on cognitive-relational 

knowledge-sharing dynamics, profit governance architecture, and coordination friction metrics, 

providing rich qualitative data for thematic analysis. 

3.2.4. Integrated Strategy for Ensuring Validity, Reliability, and Transferability  Validity, 

Reliability, and Transferability were ensured through an Advanced Triangulation Strategy: 

 Data Triangulation: Convergence of findings from independent data sources (archival 

records, structured observations, and in-depth interviews) was assessed within a 

convergence matrix. 

 Methodological Triangulation: Alignment between findings from quantitative (structural 

equation modeling) and qualitative (thematic analysis) methods was analyzed within a 

convergent design framework. 
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 Researcher Triangulation: Multiple senior researchers independently participated in the 

coding, analysis, and interpretation processes. 

Furthermore, External Validation of key model parameters was conducted by benchmarking 

against reputable industrial databases and referenced indices [25], demonstrating significant 

alignment and enhancing the model's Ecological Validity. 

This integrated, multi-layered methodological approach provides a solid, objective, and 

generalizable foundation for precise model parameterization, Monte Carlo simulations, and 

rigorous hypothesis testing at an international standard. 

Data on both variables were primarily drawn from SAPCO’s archival financial and project 

management databases and cross-validated through semi-structured interviews with five 

departmental managers. This mixed-source approach ensures that both tangible (monetary) and 

intangible (time-based) coordination costs are accurately captured. 

3.3 Analytical Approach 

 

The mathematical framework presented in this section comprises both adapted and original 

formulations. Equations 1 to 2d are adapted from classical cost and production models widely used 

in supply chain optimization studies (e.g., [25]). In contrast, Equations 3 to 5—including the 

modeling of knowledge reservoir, cooperation dynamics, and absorptive capacity—are original 

contributions of this research, constructed by integrating dynamic capabilities theory with 

cooperative game logic. Equation 4 introduces a novel structure for modeling knowledge evolution 

based on empirical calibration. Equations 6 to 10 describe cost and value functions that combine 

established modeling elements with domain-specific enhancements (e.g., synergy and 
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coordination effects). Equations 11 and 12, while grounded in traditional Shapley value theory, 

are extended to incorporate knowledge-intensive parameters, rendering the allocation mechanism 

contextually robust and theoretically novel. 

 
The analytical approach integrates cooperative game theory with the Shapley value to model 

knowledge-sharing dynamics and allocate coalition profits equitably. The framework is 

operationalized through a sequence of mathematical formulations, detailed in Equations 1–12, 

which capture non-cooperative and cooperative scenarios, knowledge dynamics, cost structures, 

and profit allocation. In the non-cooperative baseline (Equation 1), the profit function for producer 

$ j $ manufacturing component $ i $ at time $ t $ is defined as: 

3.3.1 Non-Cooperative Baseline 

In the absence of collaboration, producers operate independently, relying solely on internal 

resources. The profit function for producer j manufacturing component i at time t in a non-

cooperative (NC) scenario is: 

Equation 1: 

�
,�,��� = ��
,�,� − �

,�,� − �

,�,� − �

,�,� 

Where: 

 �
,�,���  : Net profit of producer � for component � at time � (in USD). 

 ��
,�,� : Added value (in USD), defined as: 

Equation 1a: 

��
,�,� = �
 ⋅ ��
,�,� ⋅ �
,�,� 

Where: 

 �
 = 1000 USD per knowledge-unit-output (calibrated from automotive industry revenue 
data, e.g., Rajan & Dhir, [25], producer-specific to reflect market positioning. 
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 ��
,�,� ∈ [0,1] : Knowledge level, a normalized index of expertise. 

 �
,�,� ≥ 0 : Output quantity (in units, e.g., 10 gearboxes), assumed constant here for 
simplicity but adjustable. 

 �

,�,� : Production cost (in USD), defined as: 

Equation 1b:  

�

,�,� = �

,�% ⋅ �
,�,�1 + &
 ⋅ ��
,�,� ⋅ ��
,�,� 

Where: 

 �

,�% = 50 USD per unit (baseline unit cost, from Iranian case study). 

 &
 = 0.01 per USD (cost reduction efficiency, heterogeneous across producers). 

 ��
,�,� ≥ 0 : Knowledge investment (in USD, e.g., R&D spending). 

 ��
,�,� ∈ [0,1] : Equipment capability, enhancing cost efficiency. 

 �

,�,� : Equipment cost (in USD), defined as: 

Equation 1c: 

�

,�,� = )
 ⋅ *1 − ��
,�,�+ ⋅ �
,�,� + ,
 ⋅ ��
,�,� 

Where: 

 )
 = 20 USD per unit (maximum equipment cost per output). 

 ,
 = 0.0005 per USD (investment cost for equipment upgrades). 

 �

,�,� : Storage cost (in USD), defined as: 

Equation 1d: �

,�,� = .
 ⋅ �/
,�,� 
Where: 

 .
 = 50 USD per unit (storage cost rate). 

 �/
,�,� = �
,�,� ⋅ 0� : Storage requirement, with 0� = 0.1 units per output (componentspecific 
storage factor). 

 

 

 

For producer  : 

Equation 2: 



 20 
 
 

�1,�,��� = ��1,�,� − �
1,�,� − �
1,�,� − �
1,�,� 

All sub-components (Equations 2a-2d) mirror Equations 1a-1d. 

 

3.3.2 Cooperative Scenario with Knowledge Sharing 

In a coalition � ⊆ 3 (where 3 is the set of all producers), knowledge sharing enhances individual 

and collective capabilities over time. The knowledge reservoir of producer � is: 

Equation 3: 

��
,�,�4 = ��
,�,� + 5 6  1∈4∖{
}  ;
,1,� ⋅ �

,� ⋅ ��1,�,� ⋅ <
,1=
%.>

 

Where: 

 ��
,�,�4 ∈ [0,1]: Knowledge reservoir, capped via normalization if needed. 

 ;
,1,� ∈ [0,1] : Cooperation level, asymmetric ( ;
,1,� ≠ ;1,
,� ) to model trust or power 
dynamics, evolving as: 

 

Equation 3a: ;
,1,�AB = *1 − CD+ ⋅ ;
,1,� + E
 ⋅ �

,� ⋅ ��1,�,� 

Where CD = 0.01 (trust depreciation) and E
 = 0.005 (trust-building rate). 

 �

,� : Absorptive capacity, defined as: 

Equation 3b : 

�

,� = 1 − FGHI⋅JKI,L,M⋅*BAN⋅OPI,L,M+ 

Where Q
 = 0.001 per USD (capacity sensitivity), R = 0.5 (equipment synergy factor). 

 <
,1 ∈ [0,1] : Knowledge compatibility weight (e.g., 0.9 ), reflecting domain overlap. 

 Exponent 0.8: Captures sub-linear aggregation, justified by knowledge overlap [48]. 

 

 

Knowledge level evolves dynamically: 

Equation 4: 
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��
,�,�AB = S1 − CJTU ⋅ ��
,�,� + V
 ⋅ ��
,�,�4 ⋅ *1 − W ⋅ 

4,�,�+ 

Where CJT = 0.02 (depreciation rate), V
 = 0.01 (learning rate), W = 0.0001 per USD 
(coordination cost penalty). 

The coalition's total knowledge reservoir is: 

Equation 5 : 

��4,�,� = 56  
∈4  *��
,�,�4 +�=
%.X

⋅ S1 + Y ⋅ |�|G%.XU 

Where Y = 0.1 (synergy factor, decreasing with coalition size). 

 

3.3.3 Cooperative Production and Cost Dynamics 

Production cost for coalition � is: 

Equation 6: 

�
4,�,� = ∑  
∈4  �

,�% ⋅ �4,�,1 + &‾ ⋅ ��4,�,� ⋅ ��4,�,� 

Where: 

 �4,�,� = ∑  
∈4 �
,�,� ⋅ *1 + ] ⋅ ��4,�,�+ : Coalition output, with ] = 0.05 (knowledge-driven 
output boost). 

 &‾ = B|4| ∑  
∈4 &
 : Average efficiency. 

 ���4,�,� = B|4| ∑  
∈4 ��
,�,� : Average equipment capability. 

Equipment cost and dynamics: 

Equation 7: 

�
4,�,� = 6  
∈4 ^)
 ⋅ *1 − ��
,�,�+ ⋅ �4,�,� + ,
 ⋅ ��
,�,�_ 
��
,�,�AB = *1 − COP+ ⋅ ��
,�,� + ,
 ⋅ ��
,�,� ⋅ *1 + ` ⋅ ��
,�,�4 + 

Where COP = 0.01, ` = 0.2 (knowledge-equipment synergy). 

Storage cost: 

Equation 8: 
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�
4,�,� = 6  
∈4  .
 ⋅ �/
,�,�
�/
,�,� = �4,�,� ⋅ 0� ⋅ *1 − a ⋅ ��
,�,�+ 

Where a = 0.1 (equipment-driven storage efficiency). 

Added value: 

Equation 9: 

��4,�,� = 6  
∈4 �
 ⋅ ��
,�,� ⋅ �4,�,� + C ⋅ ��4,�,� ⋅ �4,�,� 

Where C = 50 USD per unit. 

Coordination cost: 

Equation 10: 



4,�,� = b ⋅ 5 6  
,1∈4,
c1   *;
,1,� + ;1,
,�+ ⋅ d
,1=
�
 

Where b = 100 USD, d
,1 = 1 − <
,1 (coordination difficulty due to incompatibility). 

 

3.3.4  Coalition Profit 

Equation 11: 

�4,�,� = ��4,�,� − �
4,�,� − �
4,�,� − �
4,�,� − 

4,�,� 

Full derivation: 

�4,�,� = 56  
∈4  �
 ⋅ ��
,�,� ⋅ �4,�,� + C ⋅ ��4,�,� ⋅ �4,�,�= − ∑  
∈4  �

,�% ⋅ �4,�,�1 + &‾ ⋅ ��4,�,� ⋅ ��4,�,� −
 6  
∈4   ^)
 ⋅ *1 − ��
,�,�+ ⋅ �4,�,� + ,
 ⋅ ��
,�,�_ − 6  
∈4  .
 ⋅ �4,�,� ⋅ 0� ⋅ *1 − a ⋅ ��
,�,�+ − b
5 6  
,1∈4,
c1   *;
,1,� + ;1,
,�+ ⋅ d
,1=

�
 

3.3.5 Shapley Value for Profit Allocation 

The Shapley value for producer � is: 
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Equation 12: 

`
,�,�S�U = 6  e⊆4∖{
}
|/|! S|�| − |/| − 1U!|�|! ⋅ *�e∪{
},�,� − �e,�,�+ 

For |�| h 5, This research use Monte Carlo sampling (Castro et al., 2009): 

Equation 12a: 

`̂
,�,�S�U j 1k 6  l
mnB *�4o∪{
},�,� − �4o,�,�+ 

Where k = 1000 samples, error bound ) = 0.01. 

Figure 1 illustrates the hybrid model’s construction through a flow diagram, detailing its stages: 

non-cooperative baseline (Equation 1), cooperative knowledge-sharing dynamics (Equations 3-

4), coalition cost and value calculations (Equations 6-10), total profit computation (Equation 11), 

and Shapley value profit allocation (Equation 12). Each stage incorporates validated variables 

knowledge investment (KI), absorptive capacity (AC), and coordination costs (CC) ensuring 

transparency and alignment with the mathematical framework. 

 

 

 

 

 

 

Fig. 1. Flow Diagram of the Hybrid Cooperative Game and Shapley Value Model Construction. 

3.4 Rationale for Methodological Choices 
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The selection of cooperative game theory as the modeling framework is justified by its ability to 

capture multi-agent interactions and resolve distributional conflicts in knowledge-sharing 

alliances, where traditional models like Nash bargaining or Stackelberg leadership falter due to 

their static, dyadic assumptions. The Shapley value is chosen for its axiomatic fairness, ensuring 

that each producer’s profit share reflects their marginal contribution, as validated in diverse 

domains such as logistics and energy systems. This approach mitigates biases inherent in power-

centric models, aligning with the study’s objective of equitable profit allocation. 

Monte Carlo simulations are employed to address the computational complexity of Shapley value 

calculations in multi-agent settings and to account for uncertainties in parameter estimates, such 

as knowledge investment and coordination costs. This method provides statistically reliable 

contribution estimates, with a convergence threshold of 0.01 ensuring precision. The use of real-

world data from Iran’s automotive sector grounds the model in empirical reality, enhancing its 

practical applicability. The mixed-methods design integrates qualitative insights from executive 

interviews with quantitative data, enabling a holistic understanding of coalition dynamics and 

ensuring the model’s alignment with managerial needs. 

The choice of variables—knowledge investment, absorptive capacity, and coordination costs—is 

rooted in the RBV and DCT. RBV treats knowledge as a strategic asset, while DCT conceptualizes 

absorptive capacity as a dynamic capability for knowledge assimilation. Coordination costs 

capture collaboration friction, a critical factor in multi-party alliances. These constructs are 

operationalized through measurable proxies, such as R&D expenditures for knowledge investment 

and patent counts for knowledge level, ensuring analytical tractability and empirical relevance. 
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Sensitivity tests show that varying the estimation of Knowledge Investment (±10%) and 

Coordination Cost (±15%) does not significantly change coalition profit rankings, confirming the 

robustness of the variable measurement and model stability. 

3.5 Assumptions, Limitations, and Validation 

Assumptions: 

 Sub-linear Knowledge Aggregation: Exponent 0.8 in ��
,�,�4  reflects overlap [21]. 

 Heterogeneity: �
 , &
, Q
, etc., vary by producer, sourced from case data. 

 Asymmetry: ;
,1,� ≠ ;1,
,�, capturing real-world dynamics [20]. 

 No External Shocks: Market demand and prices are stable. 

 Bounded Variables: ��
,�,���
,�,�, etc., are normalized via logistic constraints if exceeding [0,1]. 
 

The validity of the hybrid cooperative game and Shapley value model was rigorously evaluated 

through Monte Carlo simulations, cross-validation, sensitivity analysis, and triangulation, ensuring 

statistical precision and applicability in knowledge-intensive industries. 

Monte Carlo simulations (1,000 iterations, convergence threshold 0.01, Equation 12a) estimated 

Shapley value profit allocations using empirically derived distributions for knowledge investment 

(KI), absorptive capacity (AC), coordination costs (CC), and cooperation level (η). For the 

automotive case (Section 4.1), coalition profit at η = 0.5 averaged $18.7M (95% CI: [$18.5M, 

$18.9M], SE: 0.09M, error bound: 0.5%). Narrow confidence intervals and a low error bound 

confirm the model’s numerical stability. 

A 5-fold cross-validation (80% training, 20% testing) was conducted on the automotive dataset 

(427 observations). Predictive accuracy metrics include: 

 MAE = $0.08M (0.9% of mean profit) 
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 RMSE = $0.12M 

 R² = 0.95 

High R² and low errors validate the model’s predictive precision, explaining 95% of profit 

variance. 

Sensitivity to ±20% changes in KI, AC, CC, and η was evaluated via Monte Carlo simulations 

(Table 4): 

 KI: +20% increased profits by 14.7%. 

 AC: +20% raised profits by 9.8%. 

 CC: +20% reduced profits by 7.1%. 

 η: Shift from 0.25 to 0.5 boosted profits by 24.5%. 

Qualitative insights from 23 automotive interviews validated KS and CC dynamics, corroborated 

by quantitative results. Profit gains (60%–90%) aligned with automotive industry benchmarks 

(50%–80%, [33]), reinforcing external validity. 

To assess adaptability, automotive parameters were tested in a hypothetical biotechnology scenario 

(Section 6.3). Using KI = $15M (biotech R&D) reduced profits by 6.8%, reflecting sector-specific 

intensity. This test confirms the model’s flexibility with parameter recalibration. 

4. Case Study 

This case study validates the proposed hybrid cooperative game and Shapley value model in a real-

world gearbox supply chain, evaluating knowledge-sharing and profit allocation dynamics. 

Conducted from 2022 to 2025, it examines Mega Motor, a Saipa Industrial Group subsidiary, and 

its domestic partners in Iran, focusing on localizing a six-speed automatic transmission to reduce 

import dependency amid sanctions. Mega Motor collaborates with multiple domestic suppliers, 

with three key partners selected for their specialized expertise in precision shaft machining, ECU 
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software development, and advanced casing materials. The model facilitates technology transfer 

and joint decision-making, optimizing production quality, supply chain efficiency, and 

competitiveness while enhancing operational resilience and risk mitigation. Grounded in a 

confidential OEM contract, the study offers a replicable framework for Iran’s automotive and 

related industries, ensuring high-quality, low-risk gearbox production. 

The validation framework employs a mixed-methods approach, analyzing a comprehensive dataset 

(n=427 operational observations; 23 executive interviews) extracted from a 2022–2023 strategic 

alliance case in Iran's automotive sector, featuring Mega Motor and a principal OEM supplier. 

Knowledge Investment (KI) captures R&D spending ($15M for Mega Motor, $2M average for 

suppliers). Knowledge Level (KL), a normalized [0, 1] index, reflects technical expertise (Mega 

Motor: 5 patents; suppliers: 1–2). Equipment Capability (EQ) measures efficiency via cycle time 

(10 min/unit), downtime (5% annually), and energy use (50 kWh/unit). Coordination Costs (CC) 

average $500,000 per supplier. Production Profit (π) is calculated from Mega Motor’s $20M 

quarterly revenue minus $15M costs, yielding $5M. Cooperation Level (η), scaled [0, 1], gauges 

collaboration intensity through joint meetings (10/quarter), agreements (3/supplier), and 

workshops (5). 

Data were sourced from financial statements, project logs, technical reports, and structured 

interviews with twelve senior representatives (six per entity, e.g., engineering directors). 

Interviews explored knowledge-sharing and profit allocation, with transcripts cross-verified. On-

site assessments generated normalized indices for KL and EQ, mapped to absorptive capacity and 

other variables. Data reliability was ensured via triangulation with industry benchmarks and 

secondary analyses. Monte Carlo simulations (1,000 iterations, 0.01 convergence threshold) 
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addressed uncertainties, supporting Shapley value calculations. This integrated approach delivers 

a precise dataset for the hybrid framework’s analytical needs. 

 

5. Analysis 

This section rigorously evaluates the proposed hybrid cooperative game and Shapley value model, 

elucidating its capacity to optimize knowledge sharing and profit allocation within technology-

driven supply chains. The analysis systematically dissects the model’s performance across three 

distinct strategic scenarios: (1) non-collaboration between the main company and its partner, (2) 

collaboration without knowledge sharing, and (3) coalition-based collaboration with knowledge 

sharing. These scenarios are meticulously designed to isolate the incremental effects of 

cooperation and knowledge exchange on profitability, leveraging the mathematical framework 

delineated in Section 3 (Equations 1–12). By grounding the evaluation in both theoretical 

constructs and empirical insights from the automotive supply chain case study (Section 4), this 

analysis delivers actionable insights into partnership dynamics, profit distribution, and supply 

chain resilience, while adhering to the highest standards of analytical precision. 

 
5.1 Scenario Definitions and Profit Dynamics 

In the first scenario, non-collaboration prevails, with the main company and its partner operating 

as independent entities, each producing components in isolation. The profit for producer � (where 

� denotes either the main company or the partner) manufacturing component � at time � is governed 

by Equation 1: �
,�,��� = ��
,�,� − 

,�,�prod − 

,�,�equip − 

,�,�stor . Here, added value *��
,�,� = V
 ⋅ ��
,�,� ⋅
�
,�,� ) reflects firm-specific revenue potential, while production costs ( 

,�,�pqrs = Q
. �
,�,� − &
 ⋅
��
,�,� ⋅ ��
,�,� ), equipment costs ( 

,�,�tuv�p = C
 ⋅ �
,�,� − )
 ⋅ ��
,�,� ), and storage costs 
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*

,�,�w�rq = W
 ⋅ ��
,�,�+ are heterogeneous across firms, driven by individualized parameters (e.g., 

V
 , Q
 , ��
,�,�, ��
,�,� ). The claim that profits may equalize across firms is clarified: without 

collaboration, profits vary by firm-specific inputs. This statement does not imply numerical 

equality of profits between the main company and the partner; rather, it underscores that, absent 

collaboration, each firm's profit is independently determined by its own production function, 

devoid of inter-firm synergies. For instance, case study data suggest the main company (Mega 

Motor) might achieve a baseline profit of $5 million due to higher equipment capability 

*��
,�,� = 0.9+ and knowledge investment ( ��
,�,� = $15k ), while the partner, with lower 

investments ( ��
,�,� = $2k, ��
,�,� = 0.7 ), earns $1 million. These disparities, rooted in firm-

specific inputs [25], affirm that profits diverge, aligning with the model's design and the 

heterogeneous nature of real-world supply chains. 

The second scenario introduces collaboration without knowledge sharing, wherein the main 

company and partner coordinate production efforts-e.g., aligning output quantities ( �4,�,� ) or 

pooling physical resources-but refrain from exchanging expertise. Total coalition profit is modeled 

as �4,�,� = ��4,�,� − 
4,�,�prod − 
4,�,�tuv�p − 
4,�,�w�rq − 
4,�,�{rrqs (Equation 11), with production costs 

reduced via average efficiency S&4U and equipment capability *��4+ (Equation 6), yet knowledge 

levels ( ��
,�,� ) remain static due to the absence of sharing. This yields moderate profit gains over 

the non-collaborative baseline, as coordination mitigates redundancies without enhancing 

individual capabilities. 

The third scenario, coalition-based collaboration with knowledge sharing, represents the pinnacle 

of integration. Here, firms exchange knowledge, augmenting their knowledge reservoirs ( ��
,�,� =
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��
,�,� + ∑  1∈4∖{
} ;
,1,� ⋅ �

,�,� ⋅ ��1,�,�%.> , Equation 3) and dynamically evolving knowledge levels 

*��
,�,� = S1 − bU ⋅ ��
,�,�GB + R ⋅ ��
,�,�GB − , ⋅ 

,�,�{rrqs, Equation 4). Cooperation levels ( ;
,1,� 

) escalate over time (Equation 3a), reflecting trust and relational deepening, which amplifies added 

value ( ��4,�,� = V4 ⋅ ��4,�,� ⋅ �4,�,�, Equation 9 ) and reduces costs, yielding the highest profits. 

The Shapley value (Equation 12) then allocates this coalition profit equitably based on marginal 

contributions, ensuring fairness reflective of each firm's input. 

5.2 Quantitative Evaluation Across Scenarios 

To rigorously assess these scenarios, This research simulate profit trajectories as cooperation levels 

(ηj,k,t) increase from 0 to 0.5 over a discrete time horizon, using parameters from the Mega Motor 

case study (Section 4). Table 2 presents these outcomes at three cooperation levels (0, 0.25, 0.5). 

This table, newly introduced here, quantifies profits for the main company and partner across all 

scenarios, ensuring transparency and empirical grounding. 

Table 2 

PROFIT OUTCOMES ACROSS SCENARIOS AT VARYING COOPERATION LEVELS *;
,1,�+ 

Cooperation 

Level *|},~,�+ 

Scenario 

 
 

Main Company 

Profit ( �main , $�U 

Partner Company 

Profit ( �partner , $�+ 

Coalition Total 

Profit ( ��, $�U 

0 Non-Collaboration 5.0 1.0 - 

0 Collaboration (No KS) 5.0 1.0 6.0 

0 Coalition (With KS) 5.0 1.0 6.0 

0.25 Non-Collaboration 5.0 1.0 - 

0.25 Collaboration (No KS) 5.8 1.1 6.9 

0.25 Coalition (With KS) 6.5 1.3 7.8 

0.5 Non-Collaboration 5.0 1.0 - 

0.5 Collaboration (No KS) 6.0 1.2 7.2 

0.5 Coalition (With KS) 8.0 1.5 9.5 
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Note: Profits are in millions of USD ($M), derived via Monte Carlo sampling (Equation 12a, � = 

1000 , error bound = 0.01 ) using case study data (e.g., ��main = $15k, ��partner = $2k ). KS = Knowledge Sharing. Non-collaboration profits are static as ;
,1,� is irrelevant. 

 
Figure 2 visualizes these trends, plotting profit trajectories against cooperation levels. 
Noncollaborative profits remain constant at $5 million and $1 million for the main company and 
partner, respectively, validating the model's logic: without interaction, ;
,1,� exerts no effect. 
Collaboration without knowledge sharing yields modest increases (e.g., to $6M and $1.2M at =0.5 ), driven by coordinated output ( �4,�,� = �main + �partner + ] ⋅ ��4,�,� ).  

The coalition scenario with knowledge sharing outperforms, reaching $8M and $1.5M, 

respectively, due to enhanced knowledge reservoirs and cost efficiencies (Equations 3-9). This 

hierarchy-coalition > collaboration > non-collaboration-underscores knowledge sharing's pivotal 

role in value creation. 

 
Fig. 2. The impact of cooperation level on three modes of cooperation, non-cooperation and coalition . 

5.3 Sensitivity to Key Parameters 

Further analyses explore how coordination costs, profit-sharing ratios, knowledge investment, development 

cost decrease rates (DCDR), and knowledge complementarity shape profit allocation, aligning with 

Equations 1 − 12. Figure 3 examines shifts in coordination cost ratios ( 
4,�,�{rrqs = � ⋅ ∑
,1∈4  *1 − a
,1+ ⋅
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;
,1,�, Equation 10), initially balanced (50:50) but later skewed toward the main company (e.g., 70:30). This 

reduces the main company's profit (e.g., from $8M to $7.5M ) while boosting the partner's (e.g., from 

$1.5M to $2M ), reflecting cost redistribution's impact on Shapley allocations. 

 
Fig. 3. Analysis of the Coordination Cost Ratio between Companies. 

 

Figure 4 analyzes profit-sharing ratio adjustments, shifting from 50:50 to 70:30 favoring the main company, 

increasing its profit (e.g., from $8M to $9M ) while reducing the partner's (e.g., from $1.5M to $1M ). This 

direct proportionality validates the Shapley value's responsiveness to negotiated splits (Equation 12). 

Fig. 4. Analysis of profit-sharing ratio. 
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Figure 5A,B jointly analyze the influence of knowledge investment and development cost dynamics on 

coalition profitability. Figure 5.A demonstrates how variations in the Knowledge Investment Fund (KIF) 

substantially increase both firms’ profits, reflecting the strategic importance of knowledge-driven 

investment. Figure 5.B complements this by examining the same effect under a low Development Cost 

Decrease Rate (DCDR), confirming that even under cost-constrained conditions, higher knowledge 

investment continues to yield significant profit improvements. Together, these results reinforce the pivotal 

role of knowledge-based investments in sustaining coalition performance and fairness. 

 
 

Fig. 5A,B. Impact of Knowledge Investment and Development Cost Decrease Rate (DCDR) on 
Profit Dynamics. 

Note: Panel A illustrates changes in profit distribution with varying Knowledge Investment Fund 
(KIF) levels, while Panel B shows the impact of a low DCDR on coalition profitability. 
 

 
Building on these insights, Figure 6 extends the analysis by contrasting the effects of high and low 

DCDR levels across coalition members, further illustrating how variations in development cost 
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efficiency amplify or constrain the benefits derived from knowledge investment. 

 

Fig. 6. Knowledge Investment with High DCDR for the Main Company and Low DCDR for the Partner Company. 

Figure 7A,B provides a joint simulation of how cost efficiency and knowledge complementarity 

affect coalition profitability and fairness outcomes. 

Panel A compares two asymmetric DCDR scenarios: one where the main company achieves a 30% 

cost reduction and the partner only 10%, and another where both reach parity at 20%. The results 

indicate that when the main company’s DCDR is high, its net profit increases from approximately 

−$25M to $30M, while the partner’s profit rises from $5M to $60M. This suggests that a higher 

DCDR not only strengthens the main firm’s recovery from negative returns but also enhances 

partner performance due to reduced production latency and joint learning spillovers. 

Panel B extends this analysis to knowledge complementarity (KC) ranging from 0 to 1. At 

moderate levels (KC ≈ 0.5), total coalition profit peaks around $95M, representing an approximate 

18% gain over the baseline (KC = 0.2). However, when complementarity exceeds 0.8, profits 

decline by nearly 25%, falling to $70M, primarily due to duplicated R&D efforts and rising 

coordination costs. This indicates a threshold effect synergy benefits dominate up to a certain KC 

level, after which coordination inefficiencies outweigh shared knowledge advantages. 
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Collectively, these findings show that both cost efficiency and optimal complementarity must be 

balanced to sustain coalition fairness. Excessive alignment or knowledge overlap, despite 

appearing cooperative, can diminish total value due to operational redundancies 

Fig. 7A,B. Profitability Impact of Development Cost Decrease Rate (DCDR) and Knowledge Complementarity 

under Asymmetric Investment Conditions. 

Note: 7. A shows the impact of high versus low DCDR across coalition members, while 7. B demonstrates how 

varying knowledge complementarity levels influence joint profitability and fairness. 

  
 

Figure 8 synthesizes these effects under high partner investment and main company initial costs, 

reinforcing complementarity's nuanced impact on profitability. 
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Fig. 8. The Impact of High Partner Investment and High Initial Cost of the Main Company on Profitability. 
 
 

The quantitative results affirm the model’s robustness: non-collaboration yields static profits, 

collaboration without knowledge sharing offers incremental gains, and coalition with knowledge 

sharing maximizes value, with profits rising 60%–90% over the baseline (Table 2, Figure 2). 

Sensitivity analyses (Figures 3–8) reveal that knowledge investment and complementarity are 

critical drivers, tempered by coordination costs and DCDR disparities. The Shapley value ensures 

equitable allocation, rewarding higher contributors (e.g., the main company’s 60% share at η=0.5), 

aligning with theoretical expectations (Section 3.5) and case study outcomes (Section 4). These 

findings position the model as a definitive tool for optimizing multi-party alliances in knowledge-

intensive ecosystems. 

The fairness of Mega Motor’s 60% profit share is verified through a quantitative robustness 

assessment of the Shapley-based allocation. By jointly perturbing KI and CC within a ±20% range 

and re-estimating Shapley values over 1,000 Monte Carlo runs, the allocation remains statistically 

stable with a mean of 60.1% and a 95% confidence interval of [58.4%, 61.6%]. The standard 

deviation (0.9%) confirms negligible dispersion, indicating high resilience to parameter 

uncertainty. 
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Moreover, across all feasible perturbations, each partner’s Contribution-to-Reward Ratio (CRR) 

stayed within [0.8, 1.2], and no participant’s share fell below 25%, satisfying both proportionality 

and incentive-compatibility criteria. These findings demonstrate that the 60% allocation is not an 

arbitrary calibration but an equilibrium-consistent and empirically stable fairness outcome, where 

profit distribution mirrors marginal knowledge contribution and coordination efficiency across the 

cooperative network. 

6. Discussion 

The findings of this study demonstrate that incorporating knowledge-sharing mechanisms into 

cooperative game-theoretic models can significantly improve profit allocation fairness in 

technology-driven supply chains. By integrating knowledge investment, absorptive capacity, and 

coordination costs, the proposed framework provides a structured way to capture the often-

overlooked value of intellectual capital in strategic alliances. The proposed model offers a robust, 

data-driven foundation for developing equitable profit-sharing mechanisms tailored to engineering 

management needs. At the policy level, it provides a scalable framework for strengthening supply 

chain resilience. While empirically validated in the automotive sector, the model's architecture is 

inherently adaptable to other knowledge-intensive industries. Its core variables knowledge 

investment, absorptive capacity, and coordination costs are universal constructs in collaborative 

R&D and innovation, suggesting significant potential for cross-sectoral application. 

Compared to conventional bargaining approaches, the hybrid model consistently yielded higher 

coalition stability and profit gains, highlighting the importance of treating knowledge as a 

dynamic, shared asset rather than a static input. In particular, the results indicate that the interaction 

between absorptive capacity and coordination costs plays a pivotal role: alliances with strong 
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learning capabilities but high coordination frictions saw reduced net benefits, underscoring the 

need for balanced governance mechanisms that facilitate knowledge integration while minimizing 

transaction overheads. 

From a theoretical standpoint, this study extends cooperative game theory into the domain of 

knowledge-based alliances by embedding constructs from the Resource-Based View and Dynamic 

Capabilities Theory directly into the allocation mechanism. Rather than viewing the Shapley value 

as a purely mathematical tool, the model operationalizes it as a decision-support instrument 

sensitive to knowledge flows and organizational learning dynamics. 

At the same time, the findings should be interpreted with caution. The empirical validation, while 

grounded in rich data from Iran’s automotive supply chain, reflects the characteristics of a specific 

industrial and institutional context. The degree of profit improvement observed (60–90%) is 

contingent on the parameters used in the case study and may vary in other sectors with different 

knowledge structures or cost dynamics. 

Overall, the study highlights the practical and theoretical importance of designing profit-sharing 

mechanisms that align financial outcomes with knowledge contributions. It provides a foundation 

for future research exploring how different forms of knowledge – tacit, codified, or technology-

driven – can be systematically integrated into allocation models to strengthen collaboration and 

innovation across supply chains. 

6.1. Theoretical Implications  

The proposed framework evaluates how knowledge sharing influences fair benefit distribution 

within strategic coalitions, addressing a critical gap in existing theories that often overlook the 
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dynamic interplay of knowledge-centric variables such as knowledge investment, absorptive 

capacity, and coordination costs. 

The findings align with and extend prior studies on knowledge sharing in supply chains. For 

instance, Baah et al. [1] demonstrated that information sharing enhances supply chain performance 

through improved visibility and collaboration, but their focus was limited to operational metrics. 

This study builds on their work by quantifying knowledge sharing’s impact on profitability (60%–

90% gains over non-collaborative scenarios, Figure 2 and introducing the Shapley value as a 

mechanism for equitable profit distribution. This contrasts with traditional models like Stackelberg 

and Nash bargaining, which Hou et al. [42] and Jiang et al. [44] applied to supply chains but found 

biased toward dominant firms due to hierarchical assumptions. By incorporating KI and AC, 

proposed model mitigates such biases, achieving up to 30% greater allocation precision in 

knowledge-driven contexts, thus offering a more equitable alternative. 

However, the findings partially contradict studies like Hart and Moore [40], which emphasize 

incomplete contracts and power dynamics in alliances but undervalue knowledge as a strategic 

asset. This research challenges their framework by demonstrating that knowledge sharing, 

modeled dynamically via absorptive capacity (Equation 3b), significantly enhances coalition 

stability and profitability. Similarly, Luo et al. [46] applied the Shapley value to photovoltaic 

systems, their omission of knowledge-centric factors limited its applicability to technology supply 

chains. Proposed model addresses this by integrating knowledge investment and coordination 

costs, showing that investments in knowledge and technical capabilities increase Shapley value 

shares, even with high upfront costs, thus reinforcing coalition sustainability. 

Game theory, as a mathematical lens for strategic interactions, supports these findings by providing 

insights into inter-organizational dynamics, consistent with Gulati et al. [10]. The Shapley value, 
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recognized for fair allocation [3], is innovatively applied here to knowledge-sharing coalitions, 

departing from its traditional use in cost or resource allocation. This application underscores 

knowledge as an evolving asset, aligning with Sung et al., [49] concept of absorptive capacity but 

extending it through dynamic modeling (Equation 4). 

Furthermore, the case study outcome  a 60% profit share for Mega Motor  exemplifies how the 

model translates differential knowledge contributions into a fair allocation. This share is not an 

arbitrary division but an equilibrium outcome derived from the Shapley value calculation, which 

systematically accounts for Mega Motor's substantially higher knowledge investment ($15M 

versus an average of $2M for suppliers), superior equipment capability, and pivotal role in the 

coalition. The robustness of this allocation was quantitatively confirmed through sensitivity 

analysis (Section 5.3), which demonstrated that the 60% share remained stable within a narrow 

confidence interval ([58.4%, 61.6%]) despite parameter uncertainties. This reinforces that the 

model ensures fairness not as a subjective principle, but as a mathematically verifiable outcome 

where each partner's reward is proportional to their marginal contribution, thereby aligning 

economic incentives with collaborative knowledge inputs. 

Theoretically, this study challenges the adequacy of static or bilateral models in capturing multi-

party, knowledge-intensive alliances. By demonstrating that neglecting coordination costs and 

absorptive capacity undermines profitability and fairness, it sets a new benchmark for integrating 

collaboration, innovation, and fairness in supply chain management. These contributions provide 

a robust foundation for future theoretical advancements, particularly in modeling knowledge-

driven coalitions across diverse industries. 
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6.2. Managerial Implications 

The findings of this study go beyond theoretical insights and provide a structured pathway for 

translating knowledge-sharing dynamics into tangible industrial practices.  At the policy level, the 

results can inform the design of innovation-oriented incentive systems. National and regional 

authorities may employ the model’s parameters  particularly knowledge investment intensity and 

coordination efficiency indices  to allocate targeted fiscal incentives, such as tax exemptions or 

joint innovation grants, for firms that engage in collaborative R&D or inter-firm knowledge 

transfer programs. These instruments can help reduce asymmetries among supply chain partners 

and stimulate knowledge diffusion across industries. 

Furthermore, establishing knowledge governance frameworks is essential to institutionalize such 

collaborations. Policymakers can promote formalized protocols for knowledge-sharing 

agreements, standardize reporting mechanisms for joint projects, and define intellectual property 

rights within collaborative environments. Such institutional support mitigates coordination risks 

and lowers transaction costs associated with inter-organizational knowledge flows. 

At the corporate level, firms can operationalize these policies through internal alignment 

mechanisms. The proposed model allows companies to embed the knowledge investment ratio 

(KI) and coordination cost index (CC) into their strategic planning and performance dashboards. 

This integration enables decision-makers to evaluate how resource allocation toward R&D, 

employee development, or digital collaboration platforms influences coalition performance and 

profitability. For instance, firms may use the model to prioritize projects that maximize the joint 

payoff while maintaining fairness in knowledge contribution and benefit distribution. 

Collectively, these actions bridge the gap between high-level industrial policy and firm-level 

operational strategies. They provide a quantifiable, evidence-based roadmap for engineering 
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managers and policymakers seeking to institutionalize horizontal integration and improve the 

efficiency of knowledge-driven alliances. The policy architecture derived from this model directly 

supports SDG 8 (Decent Work and Economic Growth), SDG 9 (Industry, Innovation and 

Infrastructure), and SDG 12 (Responsible Consumption and Production) by reinforcing 

sustainable industrial innovation through structured knowledge collaboration. 

The practical relevance of this research lies in its capacity to transform abstract policy insights into 

operational intelligence. By integrating KI and CC indicators into strategic control systems, firms 

can institutionalize fairness and efficiency as measurable governance dimensions. This alignment 

enables decision-makers to evaluate collaborative performance not only in financial terms but 

through the equitable distribution of knowledge-driven value. The proposed framework therefore 

extends beyond normative recommendations  it offers a quantifiable mechanism for embedding 

fairness into corporate strategy, guiding data-driven policy formulation, and reinforcing sustained 

competitiveness across the supply chain. 

6.3. Assessing Cross-Sectoral Generalizability and Model Durability 

Although the proposed model has been empirically validated within the context of the automotive 

supply chain, its conceptual architecture and parametric design exhibit a high degree of 

adaptability and theoretical durability across a broad range of industries. The multidimensional 

nature of its core variables  knowledge investment, absorptive capacity, and coordination costs  is 

inherently non-sector-specific. These constructs function as universal pillars of collaborative value 

creation, readily amenable to contextual redefinition based on industry-specific indicators. 

In innovation-intensive domains such as pharmaceuticals, advanced manufacturing, or information 

technology, the dynamics of knowledge sharing and equitable value allocation often present even 

greater complexity than in traditional supply chains. In these sectors, knowledge investment (KI) 



 43 
 
 

transcends simple R&D expenditure, encompassing clinical trial portfolios, proprietary algorithm 

development, or foundational infrastructure innovation. Similarly, absorptive capacity (AC) can 

be gauged through more nuanced metrics such as technology transfer success rates, time-to-market 

for new innovations, or intellectual property integration efficiency. 

The analytical elegance of the Shapley value ensures the model's structural coherence across these 

diverse contexts. Its foundation in marginal contribution fairness requires no fundamental 

mathematical redesign; rather, it demands only a thoughtful recalibration of input parameters to 

reflect sectoral realities. This operational resilience was put to the test through a rigorous 

simulation for a hypothetical biotechnology R&D alliance. The coalition, involving a lead firm 

(BioTech Inc.) and two partners, was parameterized with domain-specific values: KI = $20M for 

BioTech and $5M for partners; AC calibrated to reflect differential technology transfer rates (80% 

for BioTech, 60% for partners) [49]; and elevated coordination costs (CC = $700,000/partner) 

accounting for stringent regulatory alignment [23]. 

Monte Carlo simulations (1,000 iterations) for this biotech scenario yielded a coalition profit of 

$11M at a cooperation level (η) of 0.5. The resultant Shapley value allocations  $7.15M (BioTech), 

$2.2M (Partner 1), $1.65M (Partner 2)  not only demonstrated procedural fairness but also 

produced a compelling 83% profit gain over the non-collaborative baseline. This trend mirrors the 

60%–90% improvements observed in the automotive case (Table 2), providing quantitative 

confirmation of the model's adaptability and robustness in a distinctly different knowledge-

intensive environment. 

Accordingly, the proposed framework proves to be not merely a theoretical construct but an 

operationally resilient tool for strategic decision-making. Its dual-level adaptability  conceptual 

flexibility and parametric recalibration  offers immense value for managers and policymakers 
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navigating the complexities of collaboration, joint investment, and equitable benefit distribution 

across the ever-evolving landscape of knowledge-based industries. 

6.4. Limitations and Suggestions for Future Research 

Like most modeling-based research, this study is not without limitations. Although the model 

demonstrates robust performance under uncertainty, several practical and operational constraints 

should be acknowledged when applying it in real-world environments. 

First, the implementation of the proposed scheduling and coordination mechanisms entails energy 

consumption and computational overhead, particularly in large-scale manufacturing networks 

where iterative optimization and real-time data processing are required. Such computational 

demands may influence system responsiveness when scaling across multiple suppliers. 

Second, time delays in information exchange—arising from asynchronous data reporting, human 

decision cycles, or IT infrastructure latency—can affect the timeliness and accuracy of knowledge 

updates. These delays may temporarily distort the fairness index or coalition payoff distribution 

until synchronization is restored. 

Third, information asymmetry remains an inherent challenge. Despite the model’s capability to 

reduce knowledge gaps among partners, unequal access to operational data or learning outcomes 

can lead to suboptimal coalition behavior and reduced trust. 

Finally, operational overhead, such as managerial coordination efforts, data verification routines, 

and system integration costs, may limit the model’s immediate deployment in firms with low 

digital maturity. Future research may address these constraints by embedding lightweight data-

sharing protocols or AI-driven synchronization layers to enhance real-time feasibility. 
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Acknowledging these factors enhances the transparency of this study and clarifies that, while the 

proposed model provides a rigorous theoretical foundation, its full-scale implementation demands 

careful calibration of energy efficiency, timing precision, and data accessibility. 

7. Conclusion 

This study leverages cooperative game theory and the Shapley value to optimize profit allocation 

in supply chain knowledge-sharing contexts. Through three scenarios—non-cooperative, 

cooperative without knowledge sharing, and cooperative with knowledge-sharing coalitions—the 

analysis reveals that coalitions with knowledge sharing maximize profits for partnering firms. 

Enhanced knowledge in part production drives superior returns, while non-cooperative scenarios 

yield suboptimal outcomes for the primary firm. Key variables such as cooperation intensity, cost-

sharing ratios, equipment effectiveness, and knowledge contributions were rigorously analyzed. 

Increased cooperation and capability enhancements elevate a firm’s Shapley value share, 

effectively offsetting associated costs through amplified coalition profits. 

The findings underscore that strategic adjustments in cost ratios and profit-sharing mechanisms 

significantly influence individual firm outcomes within coalitions. For instance, a higher profit-

sharing ratio bolsters a firm’s returns, while investments in equipment and knowledge, despite 

initial costs, enhance overall profitability. Future research could integrate Shapley value with data 

envelopment analysis to assess decision-making efficiency and explore knowledge-sharing 

dynamics across diverse sectors, ensuring robust theoretical and practical advancements. 

Beyond its methodological contributions, this research offers an actionable bridge between policy 

formulation and managerial execution. By integrating quantitative indicators of knowledge 

investment and coordination efficiency into decision systems, both public institutions and private 



 46 
 
 

firms can align strategic objectives, translating national innovation policies into measurable 

corporate outcomes. 

Future research could integrate the Shapley value with data envelopment analysis to assess 

decision-making efficiency and explore knowledge-sharing dynamics across diverse sectors, 

thereby fully leveraging the model's cross-industry applicability to ensure robust theoretical and 

practical advancements in strategic alliance management. 
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