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Abstract i

Abstract

A brain–computer interface (BCI) is an advanced neurotechnological system that enables

direct communication between the brain and the external environment by bypassing con-

ventional neuromuscular pathways. This capability offers valuable insight into the assess-

ment of awareness in acute clinical states. Clinically, diagnosing disorders of consciousness

(DOC) remains a significant challenge, largely because current practice relies heavily on

behavioral indicators of consciousness—markers that are often ambiguous and prone to

misinterpretation. To address these limitations, electrophysiological and neuroimaging

techniques have been explored, with electroencephalography (EEG) standing out for its

non-invasiveness, portability, high temporal resolution, and robustness. As a result, EEG-

based methods and BCI-inspired protocols have emerged as promising tools for improving

the diagnosis and prognosis of DOC, particularly in detecting cognitive motor dissociation

(CMD), a condition frequently overlooked by standard clinical scales. Despite this prom-

ise, the clinical translation of these approaches remains constrained, primarily due to a

shortage of sufficiently powered validation studies.

In this thesis, I evaluate the effectiveness of several popular EEG-based methods and

systematically compare the performance of deep and shallow classification models on

a large, novel dataset acquired using a motor imagery (MI)-based command-following

paradigm in accessing awareness with DOC patients. Specifically, I extracted measures

including classification accuracy, brain rhythms, effective connectivity and the perturba-

tional complexity index PCI, from MI, idling and functional electrical stimulation FES
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epochs. These were contrasted against Coma Recovery Scale–Revised (CRS-R) scores, the

current clinical gold standard. Furthermore, state-of-the-art deep learning models (EE-

GNet, DeepConvNet, and EEGConformer) were evaluated alongside a shallow classifier,

employing leave-one-trial-out cross-validation scheme on the full and windowed trial seg-

ments. In addition, analysis was evaluated at the sessional level to account for variability

in diagnostic states.

The findings confirm that EEG contain valuable information regarding the state of

awareness of DOC patients. In particular, the classification accuracy and the µ-/β-band

separability of MI power spectral density(PSD) features, as well as centro-parietal δ-

band connectivity during MI and resting, correlate statistically significantly with CRS-

R. Moreover, metric-specific thresholds separating awareness from non-awareness could

be determined. I further provide useful insights on the ability of these metrics to detect

CMD and rectify the false-negative vulnerability of CRS-R. At the same time, this work

highlights the risk of statistical misuse of such metrics, which can lead to over-optimistic

assessments of latent awareness. Furthermore, the thesis also reveals that deep learning

architectures may be prone to overestimation of results when applied to DOC populations.

This research supports the potential of open-loop BCI DOC diagnosis and highlights

the need for further development, validation and standardization to establish clinically

deployable systems.

Keywords: disorders of consciousness, electroencephalography, brain-computer interface,

command following, motor imagery, functional electrical stimulation, neuromarkers of

awareness, statistical criteria
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Chapter 1

Introduction

1.1 Background

A Brain-Computer Interface (BCI) is a cutting-edge neuro-technological system designed

to establish a direct communication channel between neural activity and external systems,

circumventing traditional neuromuscular output pathways. This property makes BCIs

particularly valuable for probing and assessing consciousness or awareness in acute clinical

conditions. The concept of consciousness and/or awareness has a rich, multifaceted history

spanning religion, philosophy, psychology, neuroscience, and, more recently, artificial in-

telligence. Its interpretation has evolved over centuries, shaped by cultural, spiritual, and

scientific frameworks.

In Christian theology, awareness is often understood as spiritual proximity to God,

moral uprightness, and the capacity for supernatural insight into human existence [11].

Similar perspectives are echoed in Islamic texts, where awareness (taqwa) encompasses

moral consciousness and spiritual vigilance [12]. In Hindu philosophy, particularly in the

Mandukya and Aitareya Upanishads [13], awareness is articulated through states of con-

sciousness such as waking, dreaming, and deep sleep. Buddhism, by contrast, frames

awareness primarily as mindfulness—a sustained, nonjudgmental attention to present ex-
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perience [14].

In ancient philosophical traditions, the Greeks and Egyptians linked consciousness to

the soul, and awareness to functions of the heart and brain. Aristotle, for example, ex-

plored these ideas through discussions on perception, mental imagery, intellect, and the

soul [15, 16]. Later philosophers such as John Locke and David Hume expanded on these

foundations, with Locke associating consciousness with the continuity of self and Hume

highlighting its fleeting, perceptual nature. Psychology later introduced more structured

distinctions, and neuroscience advanced these into empirically testable domains.

Sigmund Freud famously categorized awareness into three levels: the conscious, pre-

conscious, and unconscious. Although largely based on introspective methods, his work

marked a shift toward understanding consciousness as both a subjective phenomenon

and a response to external stimuli—an early bridge between psycho-analytic and neuro-

cognitive models. However, contemporary theories of consciousness [17] often divide the

phenomenon into three major frameworks:

• Global Workspace Theory (GWT): posits that consciousness arises when informa-

tion is broadcast across various neural systems, enabling coordinated and flexible

behavior.

• Higher-Order Theories (HOT): suggest that consciousness depends on the brain’s

ability to represent its own mental states—a meta-cognitive mechanism.

• Integrated Information Theory (IIT): proposes that consciousness corresponds to the

degree of integrated information generated by a system, reflecting its ability to unify

diverse inputs into a coherent experience.

These theoretical models have been refined through advances in neuroscience and have

influenced the development of artificial intelligence. In both fields, consciousness is increas-

ingly understood as emerging from complex processes involving perception, cognition, and
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internal representation—attributes once attributed to the soul or mind. This convergence of

philosophical, religious, and scientific perspectives continues to inform the interdisciplinary

inquiry into the neural correlates and computational models of consciousness, reinforcing

the idea that the brain is the central organ of conscious experience.

1.2 Consciousness in Clinical Dimension

Consciousness and awareness, though integral to our daily life, are inherently subjective

with interpretations varying across disciplines and individuals based on physiological, psy-

chological, and clinical backgrounds [18]. Nevertheless, in the clinical setting and according

to the latest widely acceptable definitions [1], awareness refers to the content of one’s sub-

jective experience, including external awareness–such as the ability to perceive, feel and

be cognizant of events and stimuli [19], and internal awareness (e.g., stimuli-independent

inner thoughts and speech). Consciousness (or “conscious awareness”), on the other hand,

can be defined as the state of simultaneously exhibiting wakefulness/arousal (i.e., being

awake, alert, vigilant and attentive) and awareness of one’s self and surroundings.

Hence, as demonstrated by Laureys [20], the clinical spectrum of consciousness is dir-

ectly related to the content of awareness. Individuals with high ability to perceive and

understand exhibit higher levels of both consciousness and awareness, while patients who

lack the innate ability to follow commands show significantly reduced levels of both. Dis-

orders of Consciousness (DOC) is the clinical condition characterized by disruptions across

both the awareness and consciousness components.

However, some clinical patients retain cognitive awareness while experiencing complete

or partial motor paralysis. Such individuals are capable of thinking, understanding, per-

ceiving, and hearing, but are unable to produce reliable voluntary movements—whether

overt or subtle—that would signal their conscious state. This condition is referred to as

Cognitive Motor Dissociation (CMD). Evidence suggests that CMD exists along a spec-
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trum, ranging from a complete absence of motor output to the presence of weak or incon-

sistent voluntary movements. Patients who demonstrate partial or intermittently visible

movements are classified as having clinical Cognitive Motor Dissociation (cCMD) [21].

Clinical diagnosis of DOC relies predominantly on behavioral assessment tools, which

inherently require responses to externally delivered commands such as “open your eyes,”

“say your name,” “move your foot” etc. Consequently, the diagnostic framework is deeply

dependent on observable motor behavior.

DOC most commonly arises from Acquired Brain Injury (ABI) such as traumatic or

cerebrovascular accidents, but may also result from neurodegenerative processes or pharma-

cological side-effects. Clinically, DOC is categorized into four principal states: coma [22],

Vegetative State (VS)/Unresponsive Wakefulness Syndrome (UWS) [23], Minimally Con-

scious State (MCS)+ and MCS- [24], and emergence from Minimally Conscious State

(eMCS) [24, 25]. Here, MCS+ denotes a higher level of preserved awareness compared to

MCS-.

Although eMCS is often considered part of the DOC continuum, patients at this stage

may demonstrate clear signs of regained awareness. It represents a transitional phase

between MCS and full functional recovery, as illustrated in Figure 1.1. Patients remain

classified within DOC until they meet the formal emergence criteria on the Coma Re-

covery Scale-Revised (CRS-R), specifically: the presence of functional communication or

functional object use.

However, this classification is subject to debate because the CRS-R emergence criteria

can fail to capture cognitive recovery in patients with significant praxic, aphasic, dysexec-

utive, or motor impairments. Such constraints may prevent the expression of the required

behaviors despite meaningful improvements in consciousness. As a result, some patients

may remain artificially positioned below the CRS-R threshold, not because of impaired

awareness, but because their motor system is unable to manifest it.
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Figure 1.1: DOC spectrum rhythms adapted from [1]

1.3 Prognosis, Detection and Diagnosis of DOC

Prognosis of DOC—that is, the prediction of likely clinical outcomes—plays a critical role

in guiding treatment decisions and informing end-of-life care or planning [26]. However,

prognostication in this context remains a significant challenge due to the complex nature

of consciousness and the limitations of current assessment methods [27, 26]. Accurate

prediction often depends on preceding steps, such as detection and diagnosis.

Detection refers to the real-time identification of whether a patient is aware or conscious,

particularly in cases where behavioral signs are absent or ambiguous. Diagnosis, on the

other hand, involves classifying the patient’s state of consciousness—such as coma, UWS

or MCS- based on observable clinical or neurophysiological factors.

While these processes are conceptually distinct, in clinical practice they often rely on

overlapping methods, including:

• Behavioral scales (e.g., CRS-R, Glasgow Coma Scale (GCS), Motor Behaviour Tool

(MBT))

• Neuroimaging and Electrophysiology (e.g., Electroencephalography (EEG), func-

tional Magnetic Resonance Imaging (fMRI), Positron Emission Tomography (PET))
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• BCIs

Together, detection, diagnosis, and prognosis form an integrated framework that sup-

ports evidence-based decision-making and improving the management of DOC patients.

1.4 Neuro-imaging and Electrophysiology

Brain imaging and studies employing functional or electrophysiological brain imaging

have emerged as the most promising approach to correcting the challenges of behavi-

oral scales [28, 29]. They have provided mounting evidence that covert awareness may be

concealed by a patient’s inability to produce voluntary motor output spontaneously, or in

response to commands and/or stimulation, a situation identified as CMD [30, 31]. Cases

of CMD where the afflicted individual is known (or likely) to maintain high-level cognitive

function are referred to as Locked-in Syndrome (LIS) (complete or incomplete, depending

on whether there is residual motor activity, and/or spared communication channels).

fMRI initially dominated the field due to its high spatial resolution and early landmark

studies [32, 33, 34]. More recently, the more practical, portable, and cost-effective EEG

has gained increasing attention [35, 36, 37, 38]. Hybrid approaches combining multiple

imaging modalities have also been proposed [39, 40]. Overall, while fMRI provided the

foundation for early breakthroughs, EEG continues to gain widespread adoption due to

its portability, affordability, reliability and superior temporal resolution; these properties

are critical for producing impactful neuroimaging-based DOC diagnostic tools that are

inexpensive, practical and logistically compliant with daily use in hospitals.

1.5 Brain-Computer Interfaces(BCIs)

A BCI is an advanced neurotechnological system that facilitates direct communication

between the brain and external devices by bypassing conventional neuromuscular path-
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ways. It operates by capturing brain signals, extracting and selecting informative fea-

tures, and applying machine learning (ML) algorithms/models to interpret these features

into actionable outputs. These outputs enable functions such as external device control,

therapeutic interventions, and clinical decision-making, without requiring voluntary motor

input. A closed-loop BCI system typically comprises the following sequential components:

• Signal acquisition: This initial stage involves recording neural signals from human

subjects. Acquisition is mostly performed using non-invasive methods like EEG,

magnetoencephalography (MEG), or functional near-infrared spectroscopy (fNIRS),

which offer safer and more accessible alternatives, albeit with lower signal fidelity.

Invasive techniques—such as intra-cortical or electrocorticographic electrodes, which

provide high spatial and temporal resolution are also explored and relevant.

• Feature extraction: Given the complexity and dimensionality of raw brain signals, it

is crucial to distill relevant information that reflects cognitive or motor intent. This

step involves signal transformation techniques (e.g., time-frequency analysis, wave-

let decomposition) to capture discriminative characteristics suitable for downstream

analysis.

• Feature selection: Not all extracted features contribute equally to performance. In

this stage, statistical or algorithmic methods are employed to identify a subset of

features that offer optimal separability between classes or states, thereby improving

classification accuracy and reducing computational burden.

• Classification and ML analysis: Machine learning models are trained to recognize

patterns within the selected features. These models—ranging from linear or shallow

classifiers to deep learning architectures—translate neural activity into predefined

outputs corresponding to user intentions or states.

• Post-processing: The output of the classification stage is refined through smoothing,
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filtering, or error correction techniques. This step ensures temporal consistency and

enhances the reliability of the BCI system in real-time applications.

• Feedback: The final component involves returning the system’s output to the user

or an external device. Feedback may be provided through various modalities—such

as visual cues, auditory signals, tactile stimulation, or direct control of assistive

technologies—closing the control loop and facilitating user adaptation and learning.

1.6 Deep-learning and Accuracy of predictions

Historically, shallow models [41, 42] have dominated both classical computing and, more

specifically, the ML classification paradigms. Within the BCI domain, these approaches

provided the basis for decades of research. The landscape began to shift about a decade ago

with the introduction of deep learning architectures. In the context of classical BCI, this

transition was marked by the development of EEGNet [7], followed by DeepConvNet [8]

as the study of perceptrons and layered architectures advanced into convolutional neural

networks. More recently, the introduction of attention mechanisms in deep learning [43]

has led to the rise of transformer-based architectures, with the EEGConformer [9] emerging

as one of the most popular models in contemporary EEG and BCI research. Although deep

learning models have consistently demonstrated superior classification accuracy compared

to their shallow counterparts, they are highly data-intensive. Effective generalization and

model stability typically require large quantities of high-quality data [44, 45, 46].

However, EEG recordings are characteristically noisy [47], highly variable across sub-

jects [48, 49], and often limited in volume [45], which increases computational burden

and necessitates extensive hyperparameter tuning [8, 50]. Because of the substantial cost

associated with this offline optimization, such models are usually trained once and sub-

sequently deployed in real-time (online) applications for diagnostic use. Yet, patient vari-

ability—particularly in DOC—poses a significant barrier to effective online deployment.
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Pretrained models rarely generalize well to new patients, largely due to the absence of

sufficiently large, high-intensity datasets within this clinical domain [34, 38, 51].

This limitation underpins the decision to conduct the analyses in this thesis offline,

consistent with prevailing practices reported in the literature [36, 52, 53]. Although on-

line decoding would be preferable—owing to its real-time responsiveness and potential

therapeutic value—the classification accuracies achievable with the limited data typically

available from DOC patients are insufficient for training a reliable online model. Prior

studies indicate that a threshold below 70% classification accuracy leads to frustration

and abandonment, while above 70-80% enables stable online operation [54, 55]. However,

in the DOC population, and as observed in this work, such performance levels are rarely

attained. This shortfall renders current online paradigms impractical for diagnostic use

and raises concerns regarding the validity of closed-loop BCI implementations in DOC.

However, it is important to emphasize that online protocols represent a desirable future

direction. Following the diagnosis of retained awareness, the logical next step would be to

restore functional communication pathways—an overarching goal of BCIs. However, such

interventions extend beyond the diagnostic scope addressed in this thesis.

This challenge underscores a fundamental limitation of traditional BCI systems, which

must operate under strict real-time constraints, limited available trials, and pronounced

inter- and intra-subject variability—all within an environment where the quantity and

quality of data are intrinsically restricted.

1.7 Limitations to Clinical diagnosis of DOC

Over the years, several constraints have limited the accuracy and reliability of clinical

diagnosis in patients with DOC. These include:

(a) An over-reliance on the behavioral assessment tools has shifted the diagnostic frame-

work towards measuring observable behaviors alone, rather than actual awareness.
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While these tools—such as the CRS-R—are clinically standardized, they provide

limited sensitivity to CMD, making them prone to misdiagnosis.

(b) Although BCI-inspired and other neuro-imaging methods have shown promise in

research contexts, they have not been widely adopted in clinical practice. This is

primarily due to a lack of robust validation, limited reproducibility and discrepancies

between reported results and real-world clinical utility.

(c) As a consequence of (b), many state-of-the-art techniques proposed in literature have

not been independently replicated, leading to skepticism regarding the reliability of

proposed neurophysiological biomarkers for awareness.

1.8 Motivations

The diagnosis of DOC traditionally relies on standardized behavioral scales such as the

CRS-R and the GCS [3, 56, 57]. While widely adopted, these instruments have significant

limitations and are particularly vulnerable to diagnostic errors, especially false negatives

(type II errors) [58, 59, 60]. To address these shortcomings, alternative behavioral scales,

such as the MBT [61], have been proposed. Nevertheless, the heavy reliance of all beha-

vioral assessments on motor output contributes substantially to the 37–43% misdiagnosis

rate reported in the literature [62, 56, 63]. Crucially, some patients may show no overt

behavioral signs of awareness yet demonstrate clear evidence of command-following when

assessed with neuroimaging [64, 32, 34, 65, 66]. This condition, known as CMD, under-

scores the fundamental limitations of behavior-based diagnostics.

To address these shortcomings, and improve DOC diagnostic accuracy, researchers

have increasingly turned to neuroimaging-based approaches. Early breakthroughs were

achieved with fMRI, whose high spatial resolution enabled landmark demonstrations of

covert command-following [32, 33, 34]. However, despite its strengths, fMRI is costly,
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logistically demanding, and not easily deployable at the bedside. In contrast, EEG has

emerged as a more practical alternative due to its portability, lower cost, bedside applic-

ability, and superior temporal resolution [35, 36, 37, 38]. Hybrid approaches that combine

imaging modalities have also been explored [39, 40]. Despite these developments, a press-

ing clinical need remains for a neurophysiological diagnostic tool that: (i) does not rely on

overt behavior, (ii) enables reliable detection of covert awareness at the bedside, and (iii)

is scalable for routine clinical use.

EEG, with its non-invasiveness, high temporal fidelity, and bedside applicability, is well

positioned to meet these requirements, and BCIs have emerged as a promising framework

for detecting volitional brain activity in DOC patients. Yet, despite encouraging results,

clinical adoption of BCIs for CMD diagnosis remains limited. A major barrier is the lack

of standardized, validated metrics, which undermines reproducibility and prevents robust

clinical translation. This leads to a critical research question: can existing state-of-the-art

EEG-based methods be reliably replicated and validated to detect CMD in DOC patients

using a novel dataset, while achieving results consistent with prior literature?

Beyond this challenge, the classical BCI pipeline— comprising signal acquisition, pre-

processing, feature extraction, classification, post-processing, feedback, and application—is

conceptually well established. However, considerable variability exists in the methodolo-

gical choices within this pipeline. Some studies rely on shallow machine learning classifiers,

whereas others employ deep learning architectures. This methodological heterogeneity has

produced a diverse but fragmented body of evidence, raising persistent concerns about re-

producibility, interpretability, and clinical relevance. These limitations highlight a second

key research gap: (i) do deep learning methods confer unique diagnostic advantages over

shallow classifiers for CMD detection in DOC?, (ii) do shallow models remain clinically

relevant in the era of deep learning?, and (iii) how best to balance accuracy, interpretab-

ility, and reproducibility in clinical BCI applications. This motivates the second critical

research question: do deep learning methods developed for motor imagery (MI)-based EEG
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analysis offer added diagnostic value when applied to DOC?

1.9 Thesis Objectives

Motivated by these gaps, the overall goal of this thesis is to advance the diagnosis of

awareness in DOC by validating different aspects of state-of-the-art BCI-inspired protocols

on a novel patient dataset.

This work is thus structured around two main objectives;

1. Objective 1 – Validation of state-of-the-art EEG-based diagnostic metrics

• Replicate and validate existing EEG-based metrics of diagnosing awareness

(these include classification accuracy, brain rhythms and their separability

between conditions, effective connectivity, spectral slope, Perturbational Com-

plexity Index (PCI) using a novel dataset of 28 DOC patients recorded in the

Intensive Care Unit (ICU) with a MI-based command-following EEG paradigm.

• Assess the consistency of these metrics with clinical gold-standard assessments

(CRS-R scores).

• Assess the discriminant threshold between aware and non-ware.

2. Objective 2 - Evaluation of deep learning approaches for EEG-based diagnosis

• Compare shallow classifiers with state-of-the-art deep learning architectures

tailored for EEG analysis.

• Assess differences in classification performance, interpretability, and clinical rel-

evance.

• Determine whether deep learning provides added diagnostic value beyond es-

tablished shallow approaches in the context of DOC analysis.
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1.10 Thesis Arrangement

The experiments presented in this thesis were conducted, and the thesis was written, with

a view toward realizing the clinical adoption and usage of BCI-inspired neuro-imaging

protocols in DOC populations. Thus, the structure, contents and contributions of each

Chapter is as follows:

• Chapter 2 provides a comprehensive literature review of relevant methods, al-

gorithms, and theoretical foundations underpinning this thesis, with particular em-

phasis on EEG, BCI, DOC, and related methodologies. Each section is structured to

present the necessary background while explicitly linking to the research objectives

of this work.

• Chapter 3 outlines the common dataset, experimental setup, protocols, data pro-

cessing procedures, and methodological approaches employed throughout the thesis.

• Chapter 4 presents the validation of diagnostic metrics, incorporating the specific

methodological needs, associated results, and a critical discussion of the findings.

• Chapter 5 introduces the deep learning architectures and models applied in this

study, alongside the experimental results and an in-depth discussion specific to these

approaches.

• Chapter 6 provides a general discussion and synthesis of the research findings, fol-

lowed by the conclusions and recommendations for future work. This chapter also

outlines the key limitations of the present study.

1.11 Contributions to Knowledge

This thesis advances the diagnosis of awareness in DOC via BCI-inspired protocols by;
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• Validating of EEG-based neuro-markers using a novel dataset from a real ICU envir-

onment.

• Establishment of quantitative thresholds for diagnosing awareness in DOC.

• Evaluation of deep learning against traditional EEG classifers, thus providing

context-specific insights into the added value of deep learning.

1.12 Conclusion

The complexity of consciousness and awareness indicates that these constructs are more

accurately represented as a continuum rather than as discrete, easily bounded states. De-

termining an individual’s position along this continuum—which itself contains sub-spectra,

as exemplified by the heterogeneity of the MCS [24, 1]—is inherently challenging and

complicates behavioral diagnostic efforts. Although the CRS-R remains the clinical gold

standard, its assessments are not immune to type I and type II errors.

These limitations have motivated the exploration of neuroimaging techniques augmen-

ted by advanced computational algorithms. However, rather than producing diagnostic

convergence, these approaches have often increased variability, largely due to lack of valid-

ation across methods and datasets. For example, in ML–based classification, some research-

ers advocate for deep-learning architectures [8, 7, 9, 49, 67], whereas others report superior

performance using shallow classifiers [55, 48, 67]. While the capabilities of deep learning are

well documented, their advantages within EEG BCI-inspired diagnostic paradigms remain

contested.

Therefore, there is a pressing need to rigorously validate the proposed metrics and

systematically evaluate the perceived strengths—or lack thereof—associated with different

components of the EEG-based diagnostic pipeline for DOC, which this thesis addresses.
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Chapter 2

State-of-the-Art

This chapter presents an in-depth analysis and critical review of the relevant literature on

awareness and consciousness. It specifically focuses on the role of BCIs in the assessment

of consciousness, examining the methods, algorithms, and approaches employed in signal

acquisition, mental task selection, and the refinement of these tasks for diagnostic purposes.

Although most of these concepts were introduced in Chapter One, this chapter further

provides a more comprehensive and detailed evaluation of the key research areas directly

related to the objectives of this thesis.

2.1 EEG and the Brain

During human development, spontaneous neural activity in the brain can be observed

between the 17th and 23rd weeks of fetal gestation [68]. It is therefore widely known that

from the prenatal stage and throughout the human lifespan, the brain continuously gener-

ates and transmits electrical signals. These signals serve either as outputs driving physiolo-

gical functions or as representations of the body’s internal state [69, 70]. Consequently,

the ability to record or measure these signals—either invasively or non-invasively—provides

valuable insight into the functional condition of the human brain [47].
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Neurons, the fundamental units of the brain, operate through the movement of key

ions such as sodium (Na+), potassium (K+), calcium (Ca2+), and chloride (Cl−) across

their membranes via specialized ion channels [71, 69]. At rest, the interior of a neuron

maintains a negative electrical potential relative to the external environment, typically

around –70 mV. This resting potential is maintained until a stimulus raises the membrane

potential to a critical threshold, typically around –55 mV [69, 72]. Once this threshold

is exceeded, voltage-gated sodium channels open, allowing Na+ ions to flow into the cell,

rapidly depolarizing the membrane to approximately +30 to +40 mV. This change triggers

an action potential, which propagates along the axon, away from the cell body and toward

the axon terminals, transmitting neural information as a wave of depolarization [73, 69, 72].

When synchronized across populations of neurons, these action potentials produce bio-

electrical signals that can be detected on the scalp as weak voltage fluctuations using

EEG [47, 74]. It is important to note that altered neuronal excitability can significantly

affect brain function. Hyperexcitability, where neurons fire action potentials excessively

in response to minimal stimuli, may reduce the threshold for activation and contribute to

disorders such as spasticity or epilepsy [75]. Conversely, hypoactivity or unresponsiveness

to stimuli can elevate the activation threshold, potentially leading to DOC, such as coma

or UWS [65].

EEG is particularly suited for detecting these brain signals, which are typically in the

microvolt to millivolt range [47, 76]. The effective sampling of these signals is constrained

by the Nyquist theorem [77, 78], which states that the sampling frequency must be at least

twice the highest frequency present in the signal to prevent aliasing [77, 78]. This makes

EEG an effective non-invasive tool for monitoring real-time brain activity, particularly in

clinical and research applications related to consciousness.

EEG a widely used neuroimaging technique for recording the electrical activity gener-

ated by neural tissues in the human brain. It operates by measuring voltage fluctuations

on the scalp surface using conductive electrodes, typically arranged according to the con-
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ventional 10–20 system. An example of such a device is shown in Figure 3.1F. Despite

its utility, EEG is highly susceptible to artifacts, which makes robust signal-cleaning pro-

cedures essential when used in research or clinical practice [79, 80]. It also suffers from

relatively poor spatial resolution, since the recorded signals often represent a summation

of postsynaptic potentials referenced to an electrode [81]. Being non-invasive, EEG cannot

capture deep brain activity such as subcortical potentials [82]. In practice, it can also be

time-consuming to set up and may be uncomfortable for participants to wear. Nevertheless,

these limitations are outweighed by its advantages. EEG remains the de facto non-invasive

neuroimaging tool due to its portability, cost-effectiveness, reliability, and suitability for

bedside use in clinical environments.

2.1.1 History of EEG and brain waves

Brain electrical activity was first discovered by English Physician and Scientist–Richard

Caton in 1875 [83, 2]. Working with exposed cortical surfaces of cats and rabbits, Caton

observed that a sensitive galvanometer detected weak electric currents varying in direction.

These currents were recorded as they passed through electrodes placed on both the skull

and the brain’s gray matter. Although rudimentary, Caton’s findings marked the first

documentation of what would later be known as electroencephalographic EEG activity.

Building on Caton’s work, Adolf Beck advanced the field by identifying the rhythmic

oscillatory nature of brain activity. He also observed that these rhythms diminished or

disappeared when an animal was exposed to stimuli, such as light, or when it engaged in

a task. This phenomenon, now referred to as desynchronization, arousal, activation, or

alpha-blocking, highlighted the functional responsiveness of brain waves to sensory input

and cognitive engagement. Later, Napoleon Cybulski contributed further by integrating a

photographic recording system into the galvanometer setup. This innovation allowed brain

electrical activity to be visualized in graphical form, enabling more precise analysis and
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archiving of EEG signals.

However, the first successful recording of EEG signals from the intact human scalp

was achieved in 1924 by Hans Berger, a German neurologist. Using modified radio equip-

ment for signal amplification, Berger demonstrated that the brain’s weak electrical currents

could be recorded non-invasively, without penetrating the skull. He noted that the recor-

ded electrical activity varied with physiological states such as sleep, anesthesia, hypoxia,

and neurological disorders. Berger also introduced the term electroencephalogram EEG

and systematically laid the scientific and methodological foundations for modern EEG

technology and its applications in both clinical and research contexts [84, 85].

2.1.2 Brain waves classification

Brain waves typically appear as sinusoidal patterns and are most prominently observed

during relaxed states, particularly when the subject has their eyes closed. These baseline

oscillations often reflect a phenomenon known as desynchronization, which represents the

attenuation of rhythmic activity in response to cognitive or sensory engagement. EEG

signals are measured in volts, typically ranging from 0.5 to 100 µV when recorded on

the scalp [47, 83]. Through power spectral analysis, particularly, Fast Fourier Transform

(FFT) the raw EEG signal can be decomposed into its constituent frequency components.

Although EEG signals exhibit a continuous spectral distribution, their dominant frequency

content generally lies between 0 and 40 Hz. In this study, analysis was restricted to the

0–24 Hz frequency band, as higher frequencies do not reliably reflect meaningful EEG

activity associated with motor-related processes and are more susceptible to noise and ar-

tifacts [86, 87]. Although conventional EEG wave classification extends into the gamma

range (30–200 Hz), these higher-frequency components are particularly prone to contam-

ination from muscle activity, electrical interference, and other non-neural sources [87, 80].

For this reason, gamma-band activity is not included or reported in this thesis.
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Based on this distinction, brain waves are classified into four primary categories:

• Delta: 0 - 4 Hz.

• Theta: 4 - 8 Hz.

• Mu: 8 - 14 Hz.

• Beta: 14 - 24 Hz.

A typical illustration of this is presented below:

Figure 2.1: EEG brain rhythms adapted from [2] From top - δ(0-4)Hz, θ(4-8)Hz, µ(8-14)Hz,

β(14-24)Hz

2.1.3 EEG Recording

As illustrated in Figure 2.2 the EEG, when compared to other neuroimaging techniques

such as PET, fMRI, exhibits relatively poor spatial resolution. However, this limitation is
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Figure 2.2: EEG linear map

offset by its superior temporal resolution, enabling the capture of neural dynamics that oc-

cur within milliseconds of stimulus onset. This makes EEG especially suitable for studying

fast-paced brain processes in real time.

One of the strengths of EEG lies in its ability to simultaneously record electrical activ-

ity from multiple regions of the brain. To achieve this, electrodes are strategically arranged

on the scalp—either covering the entire head or focusing on a specific Region of Interest

(ROI). The human brain is anatomically divided into two hemispheres—left and right–

and further segmented into functional regions such as the frontal cortex (responsible for

decision-making, personality, and speech), the motor cortex (governing voluntary move-

ments and fine motor control) and the parietal cortex (involved in sensory integration,

spatial awareness, and hand-eye coordination) [72, 88].

EEG measures the brain’s electrical activity by recording the potential difference

between two electrodes, typically an active and a reference electrode. These signals are
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extremely weak (in the microvolt range) and require amplification for accurate digitization

and analysis. A standard EEG setup consists of several key components, including an EEG

cap (with embedded electrodes), conductive gel or paste (to reduce impedance), amplifiers,

measuring tape (for correct electrode placement), syringes (for gel application), and other

accessories, as depicted in Figure 2.3. EEG caps can be either wet (requiring gel) or dry,

with ongoing research exploring the relative performance of both. Electrode systems are

typically multi-channel, ranging from as few as 2 up to 256 electrodes. For the purposes

of this thesis, a 16-channel montage was employed.

A

B

D
E

C

Figure 2.3: EEG recording equipment: (A) 64 channels antNeuro EEG cap, (B) antNeuro

eego mylab amplifier, (C) Signa electrode gel, (D) syringe, and (E) measuring tape

To ensure high quality recordings, electrodes must be functional and capable of cap-

turing clean signals. These electrodes—typically 1 to 3mm in diameter—must exhibit

skin-electrode impedance below 5kΩ. Conductivity is enhanced through proper gelling

and accurate electrode placement. Correct positioning is not only critical for signal fidelity

but also for the accurate topographical interpretation of EEG data.
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To standardize electrode placement, the International 10–20 System was introduced in

1958 by the International Federation of Societies for Electroencephalography and Clinical

Neurophysiology [89]. In this system, electrodes are placed at intervals representing 10%

or 20% of the total front-to-back or side-to-side distance of the skull. Electrode sites are

labelled according to brain regions: F (frontal), C (central), T (temporal), P (parietal),

and O (occipital). Odd numbers denote the left hemisphere, while even numbers refer to

the right hemisphere [89] (see Figure 2.3A and Section 3.3). For the experiments in this

thesis, electrodes were primarily concentrated over the motor cortex.

Maintaining low and balanced electrode impedance is essential, as high impedance

can degrade signal quality and increase susceptibility to external noise. Impedance values

should be below 5kΩ and balanced within 1kΩ across electrodes [83]. Impedance monitoring

devices are typically used to ensure these standards are met.

Equally, EEG is a differential measurement of voltage, thus, the choice and location of

the reference electrode are critical. The reference can be placed at a central scalp site, or on

neutral sites such as the earlobe, mastoid, nose, or chin. However, no universal consensus

exists regarding optimal reference placement, largely due to volume conduction—the spread

of electrical activity from other physiological sources throughout the body [2].

EEG signals must be amplified to be compatible with acquisition hardware and to

ensure an adequate signal-to-noise ratio for storage and analysis. Amplification is often

accompanied by filtering, which can be performed either in hardware or as part of pre-

processing. A high-pass filter is used to eliminate slow-drifting signals and DC offsets,

while a low-pass filter removes high-frequency noise, ensuring that only relevant EEG

components are retained for analysis.
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2.1.4 Artifacts

One of the major challenges in EEG is the presence of artifacts, or unwanted noise, in the

recorded signal. Since the primary ROI is the brain, any electrical activity arising from

non-cerebral sources—whether from within the body or the external environment—that

contaminates the EEG recording is considered an artifact. Artifacts are broadly classified

into two categories: physiological and extraphysiological [47].

Physiological artifacts originate from the human body but are unrelated to brain activ-

ity. Common examples include ocular artifacts (e.g., eye movements and blinks), muscle

artifacts (e.g., clenching of the jaw, chewing, or swallowing), and occasionally cardiac arti-

facts—the electrical activity of the heart—especially if the electrodes are positioned near

large arteries or poorly shielded [47, 90, 91]. Although cardiac artifacts were unlikely

to interfere in the experiments reported in this thesis, they remain a potential source of

contamination in some EEG protocols.

In contrast, extraphysiological artifacts are induced by external sources such as re-

cording equipment, electromagnetic interference, and environmental factors. For instance,

powerline interference—typically observed at 50 Hz (or 60 Hz depending on the regional

electrical standard)–can be introduced if electrode cables are inadequately shielded or

routed near other electronic devices. Additional sources include movement artifacts, loose

or poorly attached electrodes, and faulty amplifiers or analogue-to-digital conversion hard-

ware. Physical disturbances like pressing on the electrodes during recording can also in-

troduce significant signal distortions [47, 80, 92].

Due to the fact that artifacts can mimic or obscure genuine neural activity, their identi-

fication, mitigation, and removal are a critical pre-processing step in EEG analysis. Failing

to manage artifacts properly can lead to erroneous interpretations of brain dynamics and,

in clinical applications, may result in inappropriate or misleading conclusions. Therefore,

a systematic and rigorous approach to artifact handling is essential for ensuring signal
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quality and the validity of subsequent analyzes.

2.1.5 Artifact processing in EEG signals

The handling of artifacts in EEG signal processing typically falls into two broad strategies:

artifact rejection and artifact correction (or cancellation) [47, 80, 92]. Artifact rejection

involves identifying and discarding contaminated segments of the EEG signal, while artifact

correction aims to retain as much of the original signal as possible by selectively removing

the artifacts, effectively "cleaning" the data for further analysis.

Several techniques have been proposed in the literature for artifact removal, with vary-

ing degrees of complexity and effectiveness. The most widely used methods include:

• Independent Component Analysis (ICA): ICA is a statistical technique that decom-

poses the mixed EEG signal into a set of independent components. By identifying

and isolating components associated with artifacts (e.g., eye blinks, muscle activity),

the remaining components can be recombined to reconstruct a cleaned EEG signal.

ICA is particularly effective for short epochs and time-locked analyses [79, 93].

• Regression-Based Artifact Removal: This method estimates the artifact by applying

a regression model using reference signals (e.g., EOG for eye movements). A common

regressor is derived using complex regression coefficients, and the estimated artifact

is then subtracted from the EEG signal [94, 95].

• Use-of-filters: Band-pass filters or common average referencing (CAR) are used to

attenuate signals outside the desired frequency range. For example, powerline noise

at 50/60 Hz can be removed using notch filters [96, 97]. However, filtering is less

effective for broadband artifacts, as it can distort the signal of interest, especially

when the artifacts overlap with meaningful brain frequencies.
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• Manual rejection of artifacts: In this approach, EEG segments are visually inspec-

ted, and sections contaminated by artifacts are manually marked and excluded from

further analysis. Although this method can be accurate, it is time-consuming and

introduces subjectivity [98, 47].

Among automated pipelines for EEG preprocessing, regression-based and component-

based techniques are most common. Although both assume linear, instantaneous mixing of

source signals, they differ in their approaches: regression relies on observed physiological

reference signals to model artifacts, whereas ICA assumes statistical independence and

separates sources based on the underlying data structure.

In this thesis, ICA-based artifact removal was employed for the preprocessing and clean-

ing of EEG signals, following the framework described by Daly et al. [79]. This approach

enabled effective isolation of neural activity from typical artifacts, thereby enhancing the

quality of the signal for subsequent analysis.

2.1.6 EEG Feature Extraction

The design of EEG systems typically involves a preprocessing stage followed by feature

extraction and classification. After preprocessing, relevant features must be extracted

from the EEG signals before they can be classified to determine the task being performed

or infer the user’s mental state.

A feature is a measurable attribute or characteristic of the EEG signal that provides

discriminative information for classification [99]. For example, the signal power at a specific

electrode can serve as a feature. These features are usually assembled into a vector, referred

to as a feature vector, that serves as input to ML classifiers.

The main sources of information used for feature extraction are:

• Temporal information: This captures the EEG signal values over specific time inter-

vals or windows, illustrating how the signal evolves over time.
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• Spatial Information: This involves selecting and analyzing signals from specific elec-

trode sites or brain regions, providing location-based insights into brain activity.

• Spectral information: This relates to the power distribution of EEG signals across

different frequency bands. In practice, this involves transforming the signal into the

frequency domain and using the power in specific bands (e.g., delta, theta, alpha,

beta) as features.

In modern EEG analysis pipelines, it is common to convert EEG signals into their

spectral representations as feature extraction. Several methods are employed to achieve

this, including:

1. FFT:

This is a computationally efficient algorithm towards estimating the Power Spec-

tral Density (PSD) of EEG signals. It is based on an optimized implementation of

the Discrete Fourier Transform (DFT), which transforms time-domain signals into

frequency-domain representations. The squared magnitude of the Fourier coefficients

corresponds to the signal energy, and when averaged, yields the PSD. Compared to

DFTs, PSD estimation provides more stable and precise results, albeit at the cost of

reduced spectral resolution [100, 96]. Consequently, the FFT alone is insufficient for

characterizing the temporal dynamics of EEG signals.

To obtain PSD estimates, the spectrogram method is commonly employed. This in-

volves segmenting the signal into overlapping windows and applying the FFT within

each window to generate a time–frequency representation. A tapering window func-

tion, such as the Hann or Hamming window, is applied to reduce spectral leakage and

mitigate edge effects [96]. The FFT is then computed for each windowed segment,

squared, and averaged to estimate the PSD. The process proceeds as follows:

Let x[y] be the original EEG signal, where y = 0, 1, . . . , −(N − 1) and w[y] be the
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window function, Then the nth windowed segment is given by:

xn[y] = x[y + nR] · w[y], n = 0, 1, 2, . . . (2.1)

where:

• R is the hop size (i.e., the number of samples shifted for each window),

• n is the window index, and

• y is the sample index within each window.

For each segment xn[y] the FFT is then applied:

Xn[f ] =
N−1∑
y=0

x[y + nR] · w[y] · e−j2πfy/N (2.2)

where:

• f is the frequency bin index (ranging from 0 to N − 1),

• Xn[f ] is the complex spectrum of the nth window at frequency f .

The spectrogram is obtained by computing the squared magnitude of the resulting

complex spectrum:

S[n, f ] = |Xn[f ]|2 (2.3)

Here, S[n, f ] is a 2D matrix representing signal power over time (indexed by f ). This

time-frequency representation enables detailed analysis of transient brain activities

and is particularly suited for processing EEG signals. In this thesis spectrogram was

used to analyze time series in the frequency spectrum.

2.1.7 Brain Connectivity

Brain connectivity analysis plays a critical role in the diagnosis and understanding of DOC.

Investigating the interactions and communication pathways within the brain can provide
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valuable insights into the underlying neural mechanisms associated with various levels of

consciousness in clinical populations. Brain connectivity is typically classified into three

main categories:

1. Structural connectivity: This refers to the anatomical connections—primarily the

white matter tracts—that physically link different brain regions [101]. Also known

as the neural pathways, structural connectivity is commonly studied using diffusion

magnetic resonance imaging (dMRI) and tractography [102]. It delineates the fixed

channels through which neural signals are transmitted across the brain.

2. Functional connectivity: This examines the statistical dependencies or temporal cor-

relations between neural signals from different brain regions, indicating areas that

exhibit synchronized activity [103]. Unlike structural connectivity, it does not imply

any direct or causal interaction but rather captures the degree of functional integ-

ration. Functional connectivity is often assessed through methods such as Pearson

correlation, coherence analysis, and mutual information [104, 105].

3. Effective connectivity: This describes the directed, causal influence that one neural

region exerts over another. It goes beyond co-activation to infer the directional flow of

information within neural networks. Unlike structural and functional connectivity, ef-

fective connectivity aims to uncover the causal architecture of brain interactions [103].

It is typically measured using approaches such as Granger causality [106], dynamic

causal modeling (DCM), and entropy-based methods [107]. Among these, Granger

causality is widely applied in the literature and is employed in this thesis to compute

effective connectivity, forming the foundation of the connectivity analyses presented

herein.

Effective connectivity was originally developed as a method to analyze spike trains

recorded from multi-electrode time series data [108]. It was conceptualized as a way to
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understand how activity in one neural region influences another, either at the synaptic or

cortical level [109]. While functional and effective connectivity may appear conceptually

similar, they fundamentally differ in both methodology and neurophysiological interpret-

ation. Functional connectivity captures statistical associations between signals, whereas

effective connectivity aims to infer directed, causal relationships based on underlying gen-

erative models of brain dynamics. In essence, effective connectivity involves a fusion of two

mathematical constructs: one describing how brain regions influence each other over time

(temporal dynamics), and another characterizing the network structure of these directional

influences. For example, if region A is directionally connected to region B, then the past

activity of A provides predictive information about the future activity of B—indicating

influence, though not necessarily causation in the classical sense.

Granger causality is one of the most widely used statistical frameworks for estimating

effective connectivity. Suppose we have three variables: Xt, Yt and Wt, to determine

whether Yt Granger-causes Xt+1, we compare two models:

1. A baseline model predicting Xt+1 using past values of Xt and Wt.

2. An extended model predicting Xt+1 using past values of Xt, Yt and Wt.

If the extended model significantly improves prediction accuracy over the baseline

model, then Yt is said to Granger-cause Xt+1. This inference rests on two core condi-

tions:

• Temporal precedence: Yt must precede Xt+1 in time

• Informational uniqueness: Yt must contain predictive information not already

present in Xt and Wt.

This relationship can be modeled using a linear autoregressive framework:

Xt+1 =
p∑

i=1
αiXt−i +

q∑
j=1

γjYt−j +
r∑

k=1
βkWt−k + ϵt (2.4)
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where: p, q, r are the lag orders for X, Y, W respectively and ϵt represents the error

term(assumed to be white noise).

While Granger causality offers a valuable statistical framework for inferring directional

relationships, real-world brain systems are often nonlinear and characterized by complex

multivariate interactions. In practice, estimating effective connectivity using Granger caus-

ality typically involves fitting a Multivariate Autoregressive model (MVAR) model of order

p to the multi-channel time series, followed by comparing the prediction error variances of

the full and reduced models to quantify directional influence. Significant connections are

then identified through appropriate statistical testing. Thus, Granger causality–based con-

nectivity analysis fundamentally relies on the accurate estimation of an underlying MVAR

model as its first step. A general MVAR model is expressed as:

Zt =
p∑

i=1
AiZt−i + ϵt (2.5)

where: Zt = [Xt, Yt, Wt, ...]T is a vector of time series variables, Ai are the coefficient

matrices capturing interactions at lag i and ϵt is a multivariate white noise process. The

MVAR framework enables the decomposition of the system into eigenmodes, each charac-

terized by its own oscillation frequency, damping time, and excitation profile. These eigen-

modes—and their corresponding confidence intervals—can be estimated from the model

parameters, providing insight into the dynamic structure of brain connectivity [110].

For this thesis, the model order p for the MVAR model, was selected to satisfy the

inequality:
n(p + 1)
NWS

< 0.1 (2.6)

where:

• n: Number of samples

• p: Model order
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• S: Sampling rate

• N : Number of trials

• W : Window size

This criterion ensures a sufficient ratio between the number of model parameters and the

available data to avoid overfitting and maintain model reliability.

While the MVAR framework effectively models complex systems—including indirect

interactions between brain regions—it operates in the time domain and assumes station-

ary signals. However, many brain systems exhibit frequency-specific causal interactions

that are not fully captured by time-domain Granger causality. To address this, the Dir-

ected Transfer Function (DTF) extends Granger causality into the spectral domain. DTF

mathematically defined as:

DTFj → i(f) = |Hij(f)|2∑
k |Hik(f)|2 , H(f) =

(
I −

p∑
i=1

Aie
−j2πfi

)−1

(2.7)

Here:

• H(f) is the transfer function derived from MVAR coefficients

• DTFj→i(f) represents the normalized causal influence from channel j to channel i at

frequency f .

DTF values range from 0 to 1, indicating the strength of directional influence across

frequency bands. Peaks in specific frequency ranges reveal frequency-selective causal path-

ways between brain regions.

Having explored the foundational concepts of EEG, brain rhythms, artifacts, feature ex-

traction and connectivity, it is essential to contextualize these elements within a modern,

integrative framework. The BCI paradigm provides such a platform—offering a rapidly

evolving interdisciplinary domain that combines signal processing, neuroscience, engineer-

ing, and ML. In BCI systems, artifacts pose a significant challenge, as they can degrade
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performance by introducing non-neural interference into the signal. Since BCIs are predom-

inantly based on brain activity recorded through EEG (or other neuroimaging modalities),

robust preprocessing is crucial. This step ensures that the extracted features accurately

represent the user’s cognitive or motor intentions, a necessity particularly in real-time ap-

plications, which BCIs encourage. Effective feature extraction serves as the bridge between

raw brain signals and the accurate classification of user intent. By transforming complex

EEG data into meaningful representations, feature extraction enables ML models to inter-

pret neural patterns with higher precision and reliability.

Traditionally, BCIs have focused on localized features, such as power in specific elec-

trode channels. However, emerging approaches based on brain connectivity provide a more

holistic view of brain function. Measures of functional and effective connectivity capture

the interaction between spatially distributed brain regions, offering deeper insight into the

dynamic networks of the brain. These methods are particularly valuable for decoding

complex cognitive states, as they reflect coordinated activity across neural systems.

Incorporating connectivity-based features into BCI frameworks not only enhances sys-

tem responsiveness but also improves interpretability—a key factor for clinical, assistive,

and neurorehabilitation applications. By leveraging the brain’s intrinsic communication

pathways, such approaches can elevate BCI performance and broaden its application scope.

2.2 BCIs in Consciousness/Awareness

BCIs which encompasses both invasive and non-invasive approaches- most notably EEG-

are gaining increasing relevance in contemporary society due to its diverse applications,

clinical potential and associated benefits. Active BCIs have been used to control external

devices, ranging from entertainment scenarios such as gaming [111, 112, 113] and virtual

racing [114, 115, 116], to high-demand tasks including military applications [117, 118]. In

the healthcare domain, they provide essential tools for enabling communication in patients
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with severe disabilities [64, 119, 120, 121] and supporting motor restoration [122, 123, 124].

In parallel, passive BCIs are increasingly applied to monitor user states, cognitive workload,

and patient conditions in clinical settings [125, 126].

The emerging framework of BCIs is fundamentally based on signal processing tech-

niques. Each step previously discussed -EEG acquisition, artifact handling, feature extrac-

tion, and connectivity analysis - constitutes an integral component of this comprehensive

pipeline, collectively ensuring the reliability, efficiency, and effectiveness of BCI systems.

While artifacts must be meticulously minimized to preserve signal integrity, features need

to be extracted in a way that accurately reflects the user’s cognitive or motor intent. Ad-

ditionally, connectivity analysis offers a deeper understanding of the brain’s internal com-

munication pathways, enabling the detection of distributed neural patterns that enrich the

interpretation of user states and experiences.

As outlined in the preceding chapter, a BCI fundamentally serves as a communication

and control bridge between the brain and external systems that does not involve muscles.

By employing ML algorithms to decode brain signals into actionable outputs, facilitate

interaction with external devices or interfaces—without requiring overt muscular activity

or physical movement. While not primarily an imaging paradigm, BCI systems function as

real-time neurophysiological interfaces structured around three fundamental components:

signal acquisition, user control (or volitional intent), and the feedback mechanism [127,

128]. These core elements collectively distinguish BCIs from other neurotechnological

systems. This intersection of components positions BCI as a particular promising approach

for the detection, diagnosis, and even prediction of awareness in patients with DOC.

Beyond the choice of neuroimaging modality, the efficacy and clinical value of

consciousness-assessment systems are strongly shaped by the design of the experimental

protocol. This encompasses the method of signal acquisition, the mode of patient en-

gagement or stimulation, and the interpretability and clinical relevance of the resulting

data [129, 60]. The specific neuroimaging technology used in this thesis to acquire neural
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data is EEG.

A BCI on the other hand is defined as a system that records and decodes neural signals

reflecting user intent, translates these signals into commands for an external device or

application, and provides real-time sensory feedback to the user—thereby establishing a

closed control loop [127]. The feedback component is essential for facilitating user learning

and adaptive control [128].

Although many studies in DOC research employ BCI-based paradigms, the majority do

not incorporate feedback mechanisms [32, 34, 36, 130, 131, 132, 38]. Notable exceptions in-

clude the closed-loop implementations reported by Coyle et al. [133] and Guger et al. [134].

However, these remain isolated cases, and the diagnostic benefit or added clinical value of

the closed-loop component was not clearly established. The omission of closed-loop sys-

tems is primarily due to the limited and inconsistent ability of DOC patients to engage in

sustained learning or volitional control. As a result, closed-loop BCI protocols are typically

considered more appropriate for post-diagnostic rehabilitation or communication following

demonstrable recovery of awareness, rather than for the initial detection of consciousness.

2.2.1 Signal Acquisition

Signal acquisition can be conducted via either invasive or non-invasive methods [127, 128,

135]. Invasive techniques involve the direct implantation of electrodes on or within the

brain to capture high-fidelity neural signals [136, 137, 138]. In contrast, non-invasive

methods—such as EEG or fNIRS—place sensors externally on the scalp or skin surface [139,

140]. While invasive methods often offer higher spatial and temporal resolution, they are

associated with surgical risks and ethical considerations [141]. Non-invasive approaches,

although less precise, are safer, more accessible, and widely used in clinical and bedside

applications. Both modalities offer distinct advantages and limitations, and their suitability

depends on the specific use case, patient condition, and ethical constraints. However, in
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DOC literature, the non-invasive approach seems to be mainly preferred.

2.2.2 Mental task

By mental task or user control, I refer to the degree of the participant’s involvement in

generating brain signals. This can be understood as the specific thought patterns or cog-

nitive activities that produce the neural activity used for analysis. Also known as the BCI

paradigm, user control can be either active—where the participant intentionally engages

in specific cognitive tasks—or passive, where brain signals are extracted and analyzed

without requiring deliberate participation. An additional intermediate category has also

been proposed, particularly in the context of awareness diagnosis [53, 59].

Active paradigms are designed to deliberately prompt participants to engage in goal-

directed mental tasks. For example, patients may be instructed to perform specific cognit-

ive operations (e.g., MI or mental arithmetic), after which the system evaluates whether

the expected neural correlates are present. These paradigms aim to detect volitional brain

activity and are frequently applied in command-following assessments, where patients are

asked to comprehend instructions and produce discernible neural responses, or to discrim-

inate between target and non-target stimuli. Such approaches are particularly valuable

when assessing individuals with severely limited motor or cognitive capabilities.

Commonly employed paradigms include MI [142, 120], Steady-State Visually Evoked

Potentials (SSVEP) [143], P300 [144], auditory stimulation [59], slow cortical poten-

tials [64], and hybrid modalities [145].

2.2.3 Feedback and Refinement

The feedback mechanism is a key distinguishing feature in the classification of BCI systems.

It refers to the way a BCI communicates information back to the user, thereby establishing

a closed-loop protocol within the system. Without feedback, learning and effective control
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of a BCI are often unsuccessful. However, as mentioned earlier in Sections 1.9 and 2.2,

while learning is not the objective of this work, DOC patients typically do not exhibit

the stable, sustained volitional control or learning capacity [53, 146] required for effective

feedback-based interaction, even over intervals longer than 1 s [52, 147, 133]. Therefore,

feedback-driven protocols are generally viewed as appropriate only after awareness has

been reliably established—serving rehabilitative or communicative purposes—rather than

as tools for the initial detection of consciousness.

Nevertheless, in a true BCI, feedback is delivered to the user in real time, typically

in the form of control over external devices or as an adaptive mechanism to promote

mutual learning, motivation, and sustained engagement. A system that incorporates this

mechanism is termed a closed-loop BCI, whereas one that lacks feedback is referred to as

an open-loop BCI.

Feedback can be implemented through three primary modalities:

1. Visual feedback: Achieved via screen-based cues such as bars, cursor movements, or

dynamic visual effects. For instance, a bar may progressively grow taller or shorter

depending on how well the participant achieves the mental task target.

2. Auditory feedback: Delivered through sound-based cues, such as tonal variations,

voice prompts, or verbal instructions that inform the user whether the desired target

has been achieved.

3. Tactile feedback: Implemented using wearable devices or equipment that provide

vibratory or haptic signals to convey system behavior, activity, or state.

In this thesis, Functional Electrical Stimulation (FES) was applied (overt hand exten-

sion movement) as a motivational paradigm and to keep the patients engaged. This is

based on the assumption that externally induced muscle contractions might engage affer-

ent sensory–motor pathways comparable to those recruited during voluntary movement
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or motor imagery. If this were the case, the resulting feedback could theoretically evoke

Sensorimotor Rhythms (SMR) in the corresponding motor cortical areas, thereby serving

as an additional marker of motor-system integrity. However, as shown in Chapter 4, the

empirical results did not support this assumption, indicating that FES-evoked responses

do not reliably mirror the neural patterns associated with voluntary motor imagery.

Figure 2.4: Closed-loop BCI Architecture

Aside the feedback protocol, the refinement and effective utilization of feedback play

a crucial role in the development and application of BCI systems. Fundamentally, the
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interpretability and transparency of the BCI architecture are paramount to its successful

deployment and broader adoption. Figure 2.4 illustrates the standard components of a

typical BCI architecture: - signal acquisition, pre-processing, feature extraction, feature

selection, classification, post-processing, feedback, and end-usage/application. Of these

components, only feature selection and classification remain to be discussed, as the others

have been covered in preceding sections.

2.2.4 Feature Selection

As illustrated in Figure 2.4, classification is a fundamental component of the BCI sys-

tem architecture. However, not all extracted features are suitable for direct input into

classifiers [55, 41]. This necessitates dimensionality reduction, a critical step in most ML

pipelines, aimed at enhancing class separability and improving computational efficiency.

The challenge of handling high-dimensional data is well-recognized in the machine learn-

ing community [148]. Feature selection addresses this challenge by reducing dimensionality

through the elimination of irrelevant or redundant features—those that contribute little to

class discrimination. This not only reduces computational complexity and enhances clas-

sification accuracy, but also helps prevent overfitting [149]. Importantly, feature selection

achieves this without compromising the integrity of the original data’s principal attributes.

In essence, feature selection is the process of identifying an optimal subset of features

from the original dataset that maximizes inter-class separability. While both feature ex-

traction and feature selection are methods of dimensionality reduction, feature selection

maintains the original data structure, whereas feature extraction transforms the data into

a new feature space. Feature selection is particularly valued for its ability to enhance pat-

tern recognition, improve classifier performance, and reduce model complexity. According

to literature, feature selection methods can be broadly categorized into approaches based

on:
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• Statistical analysis [150, 151],

• Manifold learning [152, 153],

• Information theory [154, 155], and

• Rough set theory [156, 157].

In this thesis, Fisher Score (FS) (statistical) analysis was used to assess the discriminab-

ility of features across mental states. The FS was computed using the standard expression:

FS = |µ1 − µ2|√
s2

1 + s2
2

, (2.8)

where µ1, µ2 are the means and s1, s2 are the standard deviations of the two mental classes

contrasted (in this thesis either MI vs Rest or FES vs Rest).

2.2.5 Classification

Artificial Intelligence (AI) and ML, are rapidly becoming ubiquitous tools, transcending

disciplinary boundaries and reshaping the paradigms of data-driven research and applica-

tion. As their adoption broadens, ML models are increasingly viewed not just as applied

mathematical tools, but as an interplay of both science and art—requiring domain insight,

design precision, and iterative refinement.

Broadly, ML frameworks are classified into two main categories: supervised learning

and unsupervised learning. Supervised learning involves learning from labeled datasets,

where each input is paired with a corresponding output label, enabling the model to infer

relationships for future prediction tasks [158]. In contrast, unsupervised learning seeks

to discover hidden structures or patterns in unlabeled data, operating without predefined

outputs [159]. These paradigms differ fundamentally in their objectives and methodologies.

Unsupervised learning techniques commonly include clustering (e.g., k-means, hier-

archical clustering) and dimensionality reduction (e.g., PCA, t-SNE), which reveal latent
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data groupings or compress data representations. Supervised learning, on the other hand,

typically focuses on classification and regression tasks. This thesis was conducted within

the supervised learning framework, specifically employing classification to predict discrete

labels based on EEG-derived features.

Classification is the process of predicting whether a data instance belongs to a partic-

ular category or class [160]. For instance, in BCI applications, classification may involve

predicting whether a subject is performing left-hand or right-hand motor imagery based

on EEG features, or if the patient is aware or not based on collated EEG features. Several

standard methods are employed to assess the performance and generalizability of classific-

ation models:

1. Hold-Out Validation: The dataset is randomly split into two parts—typically, two-

thirds are used for training the model, and the remaining one-third for testing its

performance.

2. k-Fold Cross-Validation: The dataset is divided into k mutually exclusive, equally

sized subsets (folds). The model is trained on k–1 folds and tested on the remaining

fold. This process is repeated k times, each time with a different fold used for testing.

The overall classification accuracy is computed as the average accuracy across all k

trials.

3. Leave-One-Out Cross-Validation (LOOCV): A special case of k-fold cross-validation

where k equals the number of samples. Each individual data point is used once

as the test set, while the rest serve as the training set. Though computationally

expensive, LOOCV is particularly useful for small datasets, as it maximizes the

use of available data for training. In this thesis, LOOCV was initially considered for

classification analysis. However, due to the use of sliding windows in the computation

of PSDs, adjacent samples in the dataset are temporally correlated and therefore

not statistically independent. Over a given trial, multiple windowed segments may
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correspond to the same class label, and treating these as independent samples would

risk biasing the evaluation. To address this, classification was performed using leave-

one-trial-out (LOTO) cross-validation, even when classification was conducted at

the single-sample (PSD window) level rather than only at the whole-trial level. In

effect, this adjustment ensures that all correlated samples within a trial are excluded

together during testing, thereby preventing data leakage across training and test sets.

Under these conditions, LOTO cross-validation becomes functionally equivalent to

LOOCV for the purposes of this analysis.

2.3 Neuro-imaging and BCI-inspired diagnostic paradigms

for DOC

As earlier stated, the diagnosis of DOC is primarily conducted using standardized clinical

assessment tools such as the CRS-R and the GCS [3, 56, 57], which are shown in Figure 2.5.

These tools consist of ordinal scales that assign scores based on the patient’s ability to

perform specific tasks in response to structured and standardized stimuli. The scoring

is determined by the degree of behavioral responsiveness, with higher scores indicating

greater levels of consciousness.

The CRS-R, for example, comprises sub-scales assessing auditory, visual, motor, oro-

motor, communication, and arousal functions. Within each sub-scale, items are arranged

hierarchically, and scores represent progressively more complex or intentional behaviours.

However, because these are ordinal measures, the intervals between scores are not ne-

cessarily equal—meaning that a score of 2 does not quantitatively double the level of

consciousness reflected by a score of 1.

Despite their widespread acceptability and use, behavioral scales have several method-

ological limitations:
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A B

Figure 2.5: Behavioral scale (A) CRS-r [3] and (B) GCS [4].
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• Non-linearity: score progression does not reflect linear or proportional changes in

neural function.

• Motor and sensory dependence: accurate scoring requires preserved motor output

or sensory input, which may be absent in patients with severe impairments, who

nevertheless maintains awareness [32].

• Subjectivity and variability: inter-rater variability and inconsistent interpretation of

ambiguous responses can affect diagnostic accuracy [161, 162, 163].

• Behavioral inference: these tools infer consciousness from overt behavior, potentially

overlooking covert awareness in patients unable to respond overtly [34, 164].

DOC, most commonly arising from ABI such as traumatic or cerebrovascular accidents,

but also from neurological diseases or pharmacological side-effects, is primarily classified

into four categories: coma [22], VS or UWS [23], MCS+/MCS- [24], and eMCS [24, 25].

Coma is clinically identified by the absence of both the components of awareness and

consciousness. UWS is characterized by preserved wakefulness but absent awareness. MCS-

reflects minimal but reproducible signs of awareness, while MCS+ indicates more complex

but still inconsistent evidence of awareness. Last, eMCS is identified by the recovery of

functional communication and/or object use.

However, the clinical golden standard diagnostic tools used for these diagnosis have

significant limitations, including being prone to both type I and, especially, type II er-

rors [58, 59, 60]. In an effort to address the limitations of these main assessment tools, al-

ternative behavioral scales have been proposed such as the Motor Behavior Tool MBT [61].

However, the reliance on assessment through behavior contributes largely to the 37-43%

of clinical misdiagnosis as reported in literature [62, 56, 63]. The emphasis of clinical

evaluation on the behavioral outputs in DOC patients has opened the door to the pos-

sibility of many false-negative diagnoses, namely, patients who may lack behavioral signs
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of awareness, but can otherwise (usually, through neuroimaging-based assessment) exhibit

clear evidences of command-following [64, 32, 34, 65, 66]. This condition has been termed

CMD [32]. In recent clinical spheres, the CMD has also been proposed as a DOC classific-

ation [25].

To improve DOC diagnostic accuracy, researchers have explored various techniques,

with brain imaging emerging as the most promising approach. Although fMRI initially

dominated the field due to its high spatial resolution and early landmark studies [32, 33, 34],

the more practical, portable, and cost-effective EEG has gained increasing attention [35,

36, 37, 38]. Hybrid approaches combining multiple imaging modalities have also been

proposed [39, 40]. Overall, while fMRI provided the foundation for early breakthroughs,

EEG continues to gain widespread adoption due to its portability, affordability, reliability

and superior temporal resolution; these properties are critical for producing impactful

neuroimaging-based DOC diagnostic tools that are inexpensive, practical and logistically

compliant with daily use in hospitals.

Beyond the imaging modality itself, another critical distinction lies in the protocol

design [129, 60]. The category of paradigms that can be termed as “active” attempt to

assess awareness by prompting patients to perform various cognitive tasks and subsequently

determining whether the anticipated brain activity is observed. The most demanding

among these, ask patients to follow commands, leading to BCI-inspired protocols [60].

In contrast, passive paradigms assess spontaneous or, more often, stimulus-evoked brain

responses without active participation or high-order cognitive requirements, such as evoked

potentials, EEG reactivity and sleep patterns [165, 129]. Intermediate paradigms have also

been proposed, involving some minimal cognitive processing [53, 59], but not as cognitively

challenging as with command following and BCI-inspired ones, where subjects must sense,

comprehend and respond to verbal commands and/or discriminate target from non-target

stimuli. While passive paradigms minimize the patient’s cognitive workload and hence

may be better suited for detecting MCS, active paradigms are thought to provide a more
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definitive indicator of consciousness and awareness [60]. The use of ML-based metrics is

gaining prominence, often in conjunction with BCI-inspired protocols such as SMR and

P300 [129, 60].

A variety of open-loop BCI protocols have been proposed, mainly mirroring the popular

BCI paradigms originally designed for communication and control [127]; namely, command-

following based on MI and SMRs [166, 167, 168] and event-related potentials such as

P300 [169, 60], but not limited to these [59, 170, 38]. It is important to clarify that these

approaches are not fully-fledged BCI systems as formally defined in the literature. A true

BCI operates as a closed-loop system, continuously acquiring neural signals, decoding them

in real time, generating outputs and delivering feedback to the brain. In contrast, the BCI-

based diagnostic paradigms for DOC lack this closed-loop feedback mechanism, borrowing

only the open-loop BCI procedures. In BCI for control, these are meant to collect the

EEG data labeled with the underlying mental task that are needed to produce (by and

large, with supervised ML requiring such labeled data) the BCI’s mental task decoder

model; the latter is necessary for subsequent closed-loop BCI operation [114, 171, 172].

In the diagnosis of DOC, the ML decoder and other relevant statistical models are built

so as to recognize the neural correlates of the requested cognitive tasks; evidence of these

indicates that the patient has been able to follow commands, and must therefore present

with some level of spared awareness. For this reason, I find that the term BCI for these

systems is a misnomer, and prefer to refer to them here as “BCI-inspired” paradigms.

However, evidence of consciousness derived with an open-loop BCI paradigm does imply

that re-establishment of communication with the patient may be possible through the

corresponding closed-loop protocol, with relatively minor modifications and by means of

the same decoder trained for diagnosis.

BCI-inspired diagnostic paradigms have gained traction largely due to their potential

to reveal CMD in patients who are unable to exhibit reliable behavioral responses. The

pioneering works of Owen et al. [32] and Monti et al. [34] first demonstrated that high-
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resolution fMRI could rectify the misdiagnosis of patients classified as UWS by standard

clinical scores. Building on these findings, Cruse at al. [36] employed a bedside EEG-

based protocol in which patients diagnosed with VS were instructed to imagine moving

their right hand and toes. Remarkably, 9 out of 16 patients exhibited task-specific brain

activity consistent with command following, leading to their classification as CMD. These

findings paved the way for the development of several other SMR-based BCI-inspired dia-

gnostic paradigms [132, 130, 133, 131, 173]. Notably, Coyle et al. [133] recruited four MCS

patients and proposed an auditory feedback paradigm that implemented a closed-loop

BCI, although no evidence of learning was provided. However, extending such protocols

to other diagnostic categories—particularly UWS, which represents the critical boundary

between awareness and unawareness—remains a substantial challenge. Similarly, Eliseyev

et al. [173] examined a closed-loop BCI with auditory feedback in ICU patients as well

as healthy controls. Their findings indicated that only conscious participants were able to

engage with and control the BCI task, underscoring the difficulty of translating closed-loop

paradigms to unresponsive patient populations. For instance, Holler et al. [130] reported

difficulties in diagnosing DOC based solely on classification accuracy, primarily due to the

absence of reliable ground truth in this patient population. In contrast, Guger et al. [131]

argued that using MI protocols, classification accuracy could serve as a practical, quantifi-

able metric for assessing covert awareness; however, the results of this study were derived

by an extremely limited sample. Chatelle et al. [132], emphasizing the commercial trans-

lation of BCI-based diagnostic tools, reported a lack of correlation between BCI-derived

responses and clinical behavioral assessments, highlighting the complexity of reliably in-

terpreting these neural signals in clinical settings.

Bodien et al. [174] investigated command-following in DOC patients using both EEG

and fMRI. Participants engaged in MI tasks, and the study revealed that 25% of the

patients who lacked behavioral evidence of command following exhibited covert signs of

consciousness, thus, CMD. Similarly, Edlow et al. [38] employed an auditory cue-based
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command-following protocol for the ICU applied to patients with severe Traumatic Brain

Injury (TBI). Their findings suggested that EEG can reliably detect CMD in acute set-

tings, potentially enhancing diagnostic accuracy and preventing premature withdrawal of

care. In Claassen et al. [52], a prognostic method for predicting outcomes in DOC was

proposed. Goldfine et al. [175] focused on the diagnostic utility of EEG in differentiating

VS and MCS. In a recent, comprehensive review, Galiotta et al. [60] highlighted the lack

of standardized analytical methods and protocols in BCI-inspired research targeting DOC

populations, recommending that future developments prioritize diagnostic applications.

This recommendation aligns with the perspective of Annen et al. [176], who additionally

noted that the absence of oculomotor control in most DOC patients limits the effective-

ness of visually guided BCI systems. They further argued that task-based BCI paradigms,

despite their challenges, provide more robust indicators of consciousness. Finally, they

advocated for the use of empirically adjusted chance levels instead of theoretical ones, as

the latter fails to account for reallocation effects commonly observed in DOC patients.

2.4 Deep-learning Models in EEG Classification

Traditionally, EEG-based BCIs have relied on handcrafted features, where researchers ex-

plicitly design mathematical rules to extract relevant information from neural signals. Clas-

sification, feature extraction, and spatial filtering techniques—which improve the signal-

to-noise ratio in EEG—have been central to this process. Shallow approaches such as

Linear Discriminant Analysis (LDA), Common Spatial Filter (CSP), Filter Bank Common

Spatial Pattern (FBCSB), have built upon these principles and remain widely used due to

their effectiveness, computational efficiency, and relative simplicity. More recent shallow

methods, particularly those based on Riemannian geometry, bypass assumptions of covari-

ance equality by directly modelling covariance structures of EEG signals before applying

linear projections like LDA. These methods have shown strong robustness and improved
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generalization in classification tasks.

In parallel, deep learning models—including EEGNet [7], DeepConvNet [8], and EEG-

Conformer [9]—have emerged as compelling alternatives. Unlike shallow models, they auto-

matically learn hierarchical feature representations from raw or minimally processed data,

and in many cases outperform traditional approaches in terms of classification accuracy.

However, their reliance on large-scale datasets remains a critical limitation in BCI, where

data is inherently scarce, heterogeneous, and subject-specific. Consequently, while deep

models often report strong accuracy, their reproducibility and consistency—particularly in

relation to neurophysiological interpretability—remain subjects of ongoing debate. This

tension between shallow and deep models continues to shape the trajectory of BCI research,

particularly in clinically sensitive domains such as DOC diagnosis.

Most shallow learning models in BCI, such as CSP, and Riemannian geometry methods

are grounded in covariance-based approaches. They compute covariance matrices for the

assigned classes, identify directions of maximum separability—often by solving an eigen-

value problem—and apply spatial filtering to enhance discriminability. The extracted log-

variance features are then projected onto a linear subspace, where classification is achieved

by maximizing inter-class differences along the most separable directions. These methods

are often combined with linear classifiers like LDA that exploit class mean differences under

a shared covariance assumption.

By contrast, EEGNet introduces a lightweight deep learning architecture specifically

tailored for EEG analysis. It incorporates depthwise and separable convolutions for spatial

and temporal filtering, employs dropout and batch normalization for regularization, and

concludes with a dense classification layer. Although compact, EEGNet mimics aspects of

spatial filtering used in shallow paradigms while maintaining a minimal parameter count,

making it computationally efficient. DeepConvNet, on the other hand, adopts a hier-

archical feature-extraction strategy directly from raw EEG signals. It integrates temporal

convolutions for frequency-specific features, spatial convolutions to capture inter-channel
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dependencies, non-linear pooling operations, and a dense classification layer. This archi-

tecture enables the modeling of complex non-linear patterns, but it is significantly heavier

than EEGNet and considerably more computationally demanding.

The introduction of attention mechanisms in deep learning [43] has further advanced

model architectures by enabling the capture of long-range dependencies through vector em-

beddings in high-dimensional space. Building on this principle, EEGConformer integrates

convolutional operations with self-attention. Specifically, it applies initial convolutional

layers to extract local temporal features, introduces self-attention layers to capture global

dependencies, and then fuses both feature types before passing them to a dense classifica-

tion layer. This hybrid design leverages the strengths of both convolution and attention,

allowing for more effective modeling of spatial-temporal dynamics in EEG data. While

the attention mechanism substantially improves representational capacity, like other deep

learning models, EEGConformer remains highly data-dependent—an ongoing limitation in

BCI research, where sufficiently large datasets are rarely available.

2.5 Conclusion

The current gold standard for clinical diagnosis of DOC—the CRS-R—like other behavioral

assessment tools, fails to reliably identify patients with CMD. This limitation leads directly

to both Type I and Type II diagnostic errors, contributing to the 34–40% misdiagnosis rate

widely reported in the literature [177, 56, 63]. These shortcomings highlight the need for

diagnostic protocols that do not rely on overt behaviour but instead target neural markers

of cognitive processing—thereby enabling more accurate detection of awareness.

This realization motivated the introduction of neuroimaging methods into the DOC

diagnostic landscape, including fMRI and EEG. However, the substantial financial, logist-

ical, and technical constraints associated with bedside fMRI, coupled with the superior

temporal advantages of EEG for neural/cognitive assessment [178, 179], have made EEG
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the most widely adopted modality. Yet, signal acquisition alone is insufficient. The field

required computational tools capable of transforming raw neural data into interpretable

outputs, giving rise to the use of BCIs within the DOC domain—systems originally de-

signed for communication, rehabilitation, and motor learning [127, 64, 144].

Beyond signal acquisition, a functional BCI requires an associated imaging

paradigm—such as MI, SSVEP, or P300—and a feedback mechanism that relays system

outputs back to the user in real time. These paradigms, broadly categorized as active,

passive, or intermediate, are central to system design because they determine the cognitive

demands placed on the user and the interpretability of the resulting neural responses. In

the context of DOC, active paradigms have consistently been shown to provide stronger

evidence of preserved awareness.

However, because most DOC patients cannot sustain the volitional control required

for learning-based or feedback-driven communication, closed-loop systems cannot be at

present implemented at the bedside. As a result, the majority of neuroimaging protocols

used for diagnosis in DOC research do not constitute true BCIs; rather, they are more

accurately described as BCI-inspired systems, employing BCI-like decoding methods in

open-loop without the defining feedback component.
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Chapter 3

General Materials and Methods

In this chapter, I present the general materials and methods employed throughout this

thesis. It is important to note that specialized methods tailored to the validation of ana-

lyzed metrics or the comparison of analytical pipelines are described in detail within their

respective chapters. Accordingly, this chapter is limited to outlining the participant data,

the experimental tools used for data collection, the experimental protocol of the BCI-

inspired paradigm, and the preprocessing steps applied during experimental analysis.

3.1 Introduction

This chapter outlines the methodological framework that underpins this thesis. The first

and second objectives are to validate, as well as compare state-of-the-art metrics and ana-

lytical pipelines on a novel dataset, employing a BCI-inspired MI–EEG paradigm. To this

end, data collection was conducted under formal ethical approval, followed by systematic

preprocessing, before subsequent integration into method-specific pipelines.

Data acquisition remains a central challenge in BCI research. High-quality recordings

require participants to engage with EEG systems for extended durations, which can be

burdensome and contribute to limited recruitment and retention. Additionally, the inherent
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variability of neural activity—both within and across individuals—further complicates the

establishment of robust datasets. These constraints frequently lead researchers to rely

on publicly available repositories which, while valuable, are often suboptimal for specific

protocols or experimental designs.

In this work, these limitations are addressed through the collection of a novel dataset

obtained at the ICU of Lausanne University Hospital, using a protocol developed specific-

ally for this study. This dataset forms the basis for all subsequent analyses.

It is important to note that BCI experiments are inherently collaborative, typically

involving engineers, clinicians, neuroscientist, neuro-psychologists, etc. Accordingly, the

dataset used in this thesis had already been acquired by clinicians at Lausanne University

Hospital using the study design described here and subsequently shared with the University

of Essex BCI laboratory through my supervisor, who designed, implemented the protocol,

experimental setup, took part in the data collection and co-owns the data. The data are

therefore co-owned by both institutions. All raw data were anonymised at the point of

collection and uploaded to a secure, access-controlled server at the University of Essex.

The remainder of this chapter introduces the general methodological framework, begin-

ning with a description of the data collection procedures and associated ethical approvals.

3.2 Participants and data

Twenty-eight (28) patients (8 female, age 53.5±16.6, range 20-75) with varying levels of

awareness within the spectrum of DOC, admitted to the Acute Neurorehabilitation Unit

of the University Hospital of Lausanne (CHUV), Switzerland were analyzed in this study.

The experimental protocol complied with the Helsinki Declaration and was approved by

the ethical committee of the Canton of Vaud, Switzerland (No. 142/09). Written consent

to participate in the study was obtained from relatives of the participants. At the end of

the first stage of pre-processing, data from one participant were discarded because over
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20% of the subject’s trials (intervals where the subject is commanded to engage into some

motor/cognitive task) could not be cleaned by means of a state-of-the-art EEG artifact

removal method [79]. I report in this thesis 179 "runs" (continuous blocks of multiple

command-following trials) in 62 recording sessions acquired from these 28 DOC patients.

Multiple sessions within subjects correspond to recordings on different days, dictated by

the patients’ acute clinical status, which led in several cases to higher CRS-R scores in

subsequent session (see Table 3.1). This consideration further motivates the use of session-

wise analyses throughout this thesis, as a single clinical assessment of a patient’s level

of awareness can be reasonably assumed to correspond only to the EEG data acquired

within the same recording session. All patients were assessed by clinical neurologists and

underwent repeated behavioral evaluations using the CRS-R [3] during their hospital stay.

Based on these assessments, the neurology team assigned each recording session to one

of seven categories derived from the corresponding CRS-R scores: Coma, UWS, MCS-

, MCS+, eMCS, LIS, and Healthy. Although LIS is not considered a DOC state, it is

frequently used in the literature as a conscious comparison group, particularly in studies

aimed at characterizing or detecting CMD and related DOC conditions.

Table 3.1: Demographics and clinical assessment of patients
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1 S1,1 M/62 TBI 4 13 MCS- 2 3 3 3 0 2
2 S2,1 F/75 CVI 2 5 UWS 0 1 2 1 0 1
3 S3,1 M/59 CVI 3 3 UWS 0 1 0 1 0 1

Continued on next page
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Table 3.1 (continued)
4 S3,2 3 11 MCS- 2 3 2 2 0 2
5 S3,3 3 15 MCS+ 3 3 3 3 1 2
6 S4,1 F/32 CVI 3 9 MCS+ 3 2 2 1 0 1
7 S4,2 3 11 MCS+ 3 3 3 1 0 2
8 S4,3 2 11 MCS+ 3 3 2 1 0 2
9 S4,4 2 7 MCS- 0 2 2 1 0 2
10 S4,5 3 7 MCS- 0 2 2 1 0 2
11 S4,6 3 8 MCS- 0 3 2 1 0 2
12 S4,7 1 8 MCS- 0 3 2 1 0 2
13 S4,8 3 11 MCS+ 3 3 2 1 0 2
14 S5,1 M/54 Anoxic 3 17 MCS+ 3 3 5 3 2 1
15 S6,1 M/75 CVI 3 20 eMCS 4 4 6 2 2 1
16 S7,1 M/33 TBI 2 3 UWS 0 0 0 1 0 2
17 S8,1 F/48 CVI 3 18 eMCS 3 4 6 3 0 2
18 S8,2 3 18 eMCS 3 4 6 3 0 2
19 S9,1 M/66 Healthy 3 23 Healthy 4 5 6 3 2 3
20 S9,2 3 23 Healthy 4 5 6 3 2 3
21 S10,1 M/71 Anoxic 3 6 UWS 0 1 2 2 0 1
22 S10,2 3 10 MCS- 2 2 2 3 0 1
23 S10,3 3 11 MCS+ 2 3 2 3 0 1
24 S10,4 1 17 MCS+ 3 3 5 3 1 2
25 S10,5 2 17 MCS+ 3 3 5 3 1 2
26 S11,1 F/24 TBI 4 7 UWS 2 1 2 1 0 1
27 S11,2 4 11 MCS- 2 3 3 1 0 2
28 S12,1 M/56 Anoxic 2 15 MCS+ 3 2 5 2 1 2
29 S13,1 F/53 CVI 3 10 MCS+ 3 2 2 1 0 2
30 S13,2 3 13 MCS+ 3 2 5 1 0 2
31 S13,3 3 13 MCS+ 3 2 5 1 0 2
32 S14,1 M/58 TBI 3 14 MCS+ 3 3 3 2 1 2
33 S14,2 3 17 MCS+ 3 5 3 3 2 1
34 S14,3 3 17 MCS+ 3 5 3 3 2 1
35 S14,4 3 22 eMCS 4 5 6 3 2 2
36 S15,1 M/51 Anoxic 3 20 eMCS 4 4 6 3 1 2

Continued on next page
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Table 3.1 (continued)
37 S15,2 3 20 eMCS 4 4 6 3 1 2
38 S16,1 M/60 CVI 3 23 eMCS 4 5 6 3 2 3
39 S17,1 M/24 TBI 3 21 MCS+ 4 5 5 3 2 2
39 S17,2 TBI 3 21 MCS+ 4 5 5 3 2 2
41 S18,1 F/20 Anoxic 3 21 eMCS 4 5 6 3 2 1
42 S18,2 3 22 eMCS 4 5 6 3 2 2
43 S19,1 M/54 CVI 4 6 UWS 0 1 2 1 0 2
44 S20,1 M/66 CVI 3 14 MCS+ 3 3 5 1 0 2
45 S21,1 M/73 TBI 2 10 MCS- 2 3 2 1 0 2
46 S21,2 2 11 MCS- 2 3 3 1 0 2
47 S22,1 M/70 CVI 3 18 LIS 4 5 2 2 2 3
48 S22,2 3 18 LIS 4 5 2 2 2 3
49 S22,3 3 18 LIS 4 5 2 2 2 3
50 S23,1 M/23 TBI 3 5 UWS 0 0 3 1 0 1
51 S24,1 F/50 CVI 3 4 UWS 0 0 2 1 0 1
52 S25,1 M/43 TBI 3 0 Coma 0 0 0 0 0 0
53 S26,1 M/59 Anoxic 3 6 UWS 1 0 2 1 0 2
54 S27,1 M/72 CVI 4 15 MCS+ 3 3 4 2 1 2
55 S28,1 M/66 TBI 3 10 MCS+ 1 1 5 2 0 1
56 S28,2 3 12 MCS- 2 2 5 2 0 1
57 S28,3 3 13 MCS+ 2 2 5 3 0 1
58 S28,4 3 14 MCS+ 2 3 5 3 0 1
59 S28,5 3 12 MCS- 2 2 5 2 0 1
60 S28,6 3 13 MCS- 2 2 5 2 0 2
61 S28,7 3 13 MCS- 2 2 5 2 0 2
62 S28,8 3 13 MCS- 2 2 5 2 0 2

Subjects with blue-colored rows are those recorded with 512 Hz (g.USBamp) sampling frequency. The

rest were recorded with 500 Hz (g.Nautilus). TBI = traumatic brain injury, CVI = cerebovascular injury.
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3.3 Experimental apparatus

Figure 3.1 illustrates the study’s experimental setup. Patients were lying down on their

beds in the hospital ward of the acute neurorehabilitation unit during each recording

session. An active, 16-channel EEG electrode montage concentrated on the motor cortex

according to the 10-20 EEG sensor positioning system (Figure 3.1 D&F) was used for data

acquisition. EEG data were captured either with a g.Nautilus wireless amplifier at 500 Hz

sampling rate or with a wired g.USBamp amplifier at 512 Hz (g.tec Medical Engineering,

Austria, Figure 3.1 B). In both cases, a [0.1, 100] Hz hardware bandpass filter was enabled.

Electrode position FCz was used as ground and the right earlobe as reference in all cases.

Two bipolar FES electrodes (Figure 3.1 E) were placed on the patient’s origin and insertion

points of the extensor digitorum muscle of the most affected side, as determined by the

supervising neurologist, so that a full hand extension movement was achieved. A laptop

PC (Figure 3.1 C) was used to present the protocol and for the temporary storage of EEG

data.

3.4 Experimental protocol

As shown in Table 3.1, data was collected in 1 to 8 sessions (average 2.2±1.90) for each

patient. Each session consisted of 1 to 4 runs (average 2.9±0.57, the minimum target

set was 3 runs but it was not always possible due to the patient’s condition) and each

run lasted approximately 6 minutes. Short breaks were interleaved between consecutive

runs. Each of these runs had 15 "motor trials" and 15 "rest trials", presented in random

order. An inter-trial interval was imposed between trials whose duration randomly varied

between 4 s and 6 s. Before starting each session, patients were awakened and asked to

attempt unilateral hand movements of the most affected side or remain at rest. Each trial

lasted 4 seconds and began with an auditory cue via loudspeakers delivered in French to
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Figure 3.1: Experimental setup:(A) FES device,(B) g.USBamp amplifier,(C) Protocol

presentation/recording computer,(D) EEG cap and g.Nautilus amplifier,(E) FES elec-

trodes,(F) EEG layout [5].

the patient: "Ne bougez pas" ("Do not move") for rest trials, or "Bougez" ("Move") for

motor trials, respectively. During movement trials, patients were instructed to attempt

a hand and palm extension movement, even if they were unable to overtly produced any

movement, and repeat the attempts until the trial’s end.

The movement trials were immediately followed by FES. The stimulation was trans-

mitted via a MotionStim 8 FES device (Medel, Germany) at a fixed frequency of 35 Hz.

It lasted 2 s and was delivered as a 1 s linear ramp-up of the stimulator’s duty cycle, from

10% to 100%, then 1 s of continuous stimulation. The FES amplitude varied between 8

and 15mA. It was defined individually for each patient and session via ’trial-and-error’ at
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the beginning of the session, starting at 5 mA and increasing the amplitude slowly by 1 mA

steps until the had extension movement could be achieved, thus using the minimum possible

amplitude and the least obtrusive stimulation that is able to produce overt movements.

Figure 3.2 shows the corresponding visualization of the experimental protocol.

Figure 3.2: Experimental trial timeline visualization.

3.5 Preprocessing, Feature extraction and selection

The data was processed on a per-session basis to account for variability in awareness levels

across sessions of the same participant, given the acute condition of the recruited patients.

This variability is evident in the clinical CRS-R scores and diagnosis shown in Table 3.1.

For instance, subject S3 exhibited increasing levels of awareness in all three of his recorded

sessions, with substantial improvement between the first two sessions, critical enough to

alter the neurological, CRS-R-based diagnosis from UWS, to MCS- and, eventually, MCS+.

The movement, rest, and corresponding FES epochs were then extracted and analyzed for

each metric. The extracted epochs were labeled and subjected to artifact removal using

the Fully Online and Automated Artifact Removal for BCI (FORCe) method [79]. The

first second of the movement and rest epochs was discarded in order to eliminate any effect

of the auditory cues on the EEG, so that only the last 4 s of these epochs was fed to
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subsequent processing. Sessions with less than 80% successfully cleaned EEG trials were

excluded due to excessive artifacts, leading to the removal of 1 subject from the analyzed

dataset (3 sessions, 9 runs, not reported in Table 3.1). For the remaining subjects, less

than 1% of the epoch-of-interest data were found to contain non-rectifiable artifacts. All

participatory recorded data are reported in Table 3.1.

Each run was treated with DC removal for all channels and a cross-neighbour Laplacian

spatial filter was applied to enhance signal localization. When neighboring channels were

unavailable, the remaining available neighbors were used for the Laplacian derivation. To

evaluate SMR, the PSD of the EEG signal was computed for each channel individually in

1 s overlapping, sliding windows with shift of 62.5 ms or 100 ms (for 512 Hz and 500 Hz

sampling frequency, respectively), using the Welch periodogram method [180]. The internal

Welch PSD parameterization involved 0.5 s windows with 50% overlap for a sampling fre-

quency of 512 Hz (g.USBamp) and 40% overlap for 500 Hz (g.Nautilus). This resulted in

all cases in a 2 Hz frequency band resolution of the PSD spectrum which was confined to

the [4,48] Hz range of interest, covering the θ (4-8 Hz), µ (8-12 Hz), and β (16-30 Hz) bands,

which are neurophysiologically relevant with respect to motor and cognitive tasks.

The extracted PSD is used to evaluate whether SMR and other brain rhythms contain

information on awareness, but also form the candidate spatio-spectral feature space giving

rise to classification accuracy as a possible neuromarker. However, the extracted PSDs are

only applicable to the first objective, as the second objective pipelines are fed pre-processed

EEG signals directly. Towards this end, PSD features undergo a feature selection step

before being fed to the training of a ML decoder, replicating the open-loop processing of

a MI BCI. Specifically, for each session, the 6 best features, defined as those exceeding

the 5th percentile after FS ranking were selected for classification. I employ a conventional

definition of FS as FS = |µ1−µ2|√
s2

1+s2
2
, where µ1, µ2 are the means and s1, s2 are the standard

deviations of the two mental classes contrasted (either MI vs Rest or FES vs Rest). I

excluded features corresponding to (particularly vulnerable to artifacts) channel Fz, and
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frequencies beyond the physiologically significant for motor tasks µ (8-14 Hz) and low β

(18-24 Hz) bands.

3.6 Conclusion

Despite the broader challenge of data scarcity in BCI research, the dataset used in this

thesis offers significant novelty due to its scale and its inclusion of patients spanning the

entire DOC spectrum, alongside healthy controls, all recorded in a real-time ICU envir-

onment. The imaging paradigm and measurement protocol were specifically designed to

elicit only the epochs relevant for extracting SMR for subsequent analysis. Moreover, in

accordance with current best practices, the dataset underwent rigorous preprocessing, in-

cluding noise removal, PSD extraction, and feature generation tailored to the BCI-inspired

methodology employed in this work. At the end, analysis was conducted for each metric

as shown in the Table 3.2;
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Table 3.2: Summary of metrics evaluated across MI, FES, and Rest conditions.

✓ Metric MI FES Rest

Classification Accuracy

(LDA, EEGNet, DeepConvNet,

EEGConformer)

✓ ✓

Effective Connectivity

(DTF)

✓ ✓ ✓

µ-band Separability ✓ ✓

β-band Separability ✓ ✓

Perturbational Complexity Index

(Lempel–Ziv & Kolmogorov)

✓ ✓ ✓

Spectral Slope ✓ ✓ ✓

Feature Significance

(After FDR/Bonferroni correction

in 1, 3, 5 & 7 Hz)

✓

CRS-R thresholds

(10, 12, 13)

Chance-level Based Accuracy

(CBA)

✓ ✓
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Chapter 4

Validating state-of-the-art EEG-based

Metrics for Diagnosing Awareness

BCI-inspired neuroimaging paradigms have increasingly generated empirical evidence sup-

porting the use of neuro-imaging techniques for the detection of CMD. Yet, despite these

advances, clinical translation remains elusive, largely due to methodological and validation

gaps. The experiments presented in this chapter are designed to answer the first research

objective. It is also designed as a necessary step toward bridging the divide in clinical adop-

tion, providing systematic validation of candidate EEG-based metrics in contexts directly

relevant to clinical practice. This chapter presents the experimental analyses, evaluation

procedures, results, and an in-depth discussion of the findings that collectively advance the

case for clinically deployable BCI-based diagnostics.

4.1 Introduction

Victims of traumatic brain injury or cerebrovascular accidents are often prone to neurolo-

gical complications. Among these, one of the most debilitating is a disorder of conscious-

ness (DOC), which impairs a patient’s awareness of themselves and their environment.
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Tragically, DOC can also arise from non-traumatic causes, such as pharmaceutical abuse.

Within neuroimaging and BCI-inspired frameworks, the diagnosis of DOC is informed

by a set of established neurophysiological markers. These include ML-based classification

accuracy [168, 131, 53] contrasting a motor task with an alternative condition (rest in this

thesis), brain connectivity measures [181, 182, 183] (specifically effective connectivity in

this work), separability metrics [184, 185, 186], the PCI [187, 188, 189], spectral slope [190,

191, 192], feature significance analyses [193, 194, 195], and behavioral thresholds derived

from the CRS-R. Although this list is not exhaustive, it encompasses the most widely

adopted approaches currently used in the field.

Classification accuracy refers to the performance obtained when labeled neural data

from two experimental conditions—typically a motor-related task and a control condition

(e.g., rest)—are input into either shallow [53, 196] or deep-learning classifiers [197, 198].

The resulting classification accuracy is evaluated against chance-level bounds, and per-

formance exceeding these bounds is interpreted as evidence of preserved awareness. In

parallel, functional and effective connectivity analyses examine interactions between dis-

tributed brain regions. Depending on the regions involved, these interaction patterns can

be neuroscientifically interpreted to infer motor intent, task engagement, or the presence

of conscious processing. Connectivity-based measures have therefore proven to be valuable

indicators in clinical contexts. Separability analysis (though sometimes proposed under dif-

ferent names like decodability, classification separability, representational differentiation)

aims to quantify the discriminability of task-related neural activity—often expressed in

terms of SMR—relative to a control condition such as rest. Awareness is inferred when the

discriminant capacity between conditions reaches statistical significance. Notably, separ-

ability is conceptually related to feature selection in ML, although in this context the dis-

criminant power is assessed explicitly for statistical significance between conditions rather

than being used solely to optimise classifier performance.

Beyond these approaches, the Perturbational Complexity Index (PCI) has been pro-
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posed as an alternative neurophysiological marker of awareness, although it has been ap-

plied predominantly in studies involving anesthetized subjects. In this framework, neural

time-series data are transformed—often via time–frequency methods such as the Hilbert

transform—binarised, and then analysed to compute spatiotemporal complexity. The res-

ulting index ranges from 0 to 1, with higher values indicating greater levels of consciousness.

Spectral slope approaches model neural dynamics using logarithmic frequency represent-

ations and polynomial fitting to estimate the degree of continuous cortical interaction. A

steeper (i.e., more negative) spectral slope indicates a relative dominance of low-frequency

activity and has been associated with reduced arousal or levels of consciousness, whereas

a flatter spectral slope reflects relatively greater high-frequency activity and is typically

linked to higher arousal states [199]. A further statistical method involves segmenting

neural data into task and control conditions and applying parametric hypothesis testing

under the null assumption that both conditions arise from the same distribution. After cor-

recting for multiple comparisons using False Discovery Rate (FDR), awareness is inferred

when the alternative hypothesis is accepted. To strengthen robustness, some studies re-

quire significance to persist across consecutive frequency bins (e.g., up to 7 Hz), a procedure

commonly referred to as feature significance analysis.

In clinical practice, the evaluation of consciousness continues to rely heavily on CRS-R

scores, despite their known methodological and diagnostic limitations. To address this,

classification outcomes in this thesis are assessed using permutation-based chance-level

bounds, herein termed CBA, providing a statistically rigorous basis for interpreting de-

coding performance beyond arbitrary accuracy thresholds. While neuroimaging and BCI-

inspired approaches have shown increasing promise, their uptake in clinical settings remains

limited. This continued dependence on the CRS-R appears to stem less from its adequacy

and more from the lack of alternative methods that are both sufficiently validated and re-

producible. As a result, many proposed techniques fail to converge toward clinical adoption,

hindered by heterogeneous protocols and the absence of robust validation frameworks. By
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adopting a statistically principled evaluation strategy, this thesis aims to contribute toward

bridging this gap between methodological innovation and clinical applicability.

In this context, the present chapter seeks to systematically validate several state-of-the-

art EEG-based metrics for diagnosing awareness in DOC, including classification of mental-

state versus rest conditions, brain rhythm analysis, effective connectivity, perturbational

complexity index (PCI), spectral slope, and complexity measures.

4.2 Data Analysis

I report in this Chapter a two-class classification accuracy of both MI vs Rest and FES

vs Rest task pairs, pooling all PSD samples of all corresponding epochs in a session.

Classification accuracy is estimated using a leave-one-trial-out cross-validation approach

with LDA decoders. A random classification accuracy (chance) level with 99% confidence

is determined by performing 100 repetitions of the cross-validated classification procedure,

each time randomly permuting the class labels [6]. Increasing the number of permutations

improves the resolution of the estimated null distribution and is, in principle, advantageous

for characterizing chance-level effects. However, permutation testing primarily aims to

establish a stable estimate of the null distribution rather than to achieve arbitrarily high

precision in p-value estimation. Given the high computational burden imposed by the size

of the dataset, I resorted to using 100 permutations which are sufficient to derive a chance-

level threshold with α = 0.99 by means of the acquired set of 100 random accuracy samples.

The chance level is then obtained as the 99th percentile of the resulting distribution of

random classification accuracy values.

Previous research supports the use of PCI as a diagnostic metric for assessing awareness

in DOC patients [187, 188, 200, 201]. Although PCI is conventionally derived from Trans-

cranial Magnetic Stimulation (TMS) responses and most often studied with respect to loss

of awareness and consciousness following anaesthesia administration, given the obvious
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analogy with awareness in DOC, I applied an identical approach to the data. Lempel-Ziv

complexity (LZc) [202] quantifies the rate at which new patterns appear within a time

series, and is widely employed to assess the complexity of an EEG signal [187, 203, 188].

I computed the LZc for each channel. The process involved calculating the absolute value

of the Hilbert transform of the EEG signal and obtaining its mean for each channel. The

signal was then binarized by assigning a value of 1 where the signal exceeded the mean, and

0 otherwise, following the approach proposed by [188]. For each channel, a binary sequence

was generated and a corresponding dictionary of unique substrings was constructed. The

LZc was defined as the number of distinct substrings in this dictionary. To account for

inherent signal structure, LZc is normalized by dividing the LZc of the original signal by

the average LZc computed from 50 randomly shuffled versions of the same signal.

Additionally, given that LZc captures the rate of emergence of new patterns, I also

opted to estimate a variant of the LZc known as Kolmogorov complexity (KVc) [204] which

reflects the re-constructibility of a substring or sequence. With the same binarized data

used in the computation of LZc, I assessed whether new segments of the binary sequence

could be reconstructed from previously encountered parts. Each time a new segment could

not be generated from the existing sequence, the complexity counter was incremented. The

final complexity value was normalized using the theoretical upper bound for information

growth, given by n/log2(n) (where n is the sequence length).

I also computed effective connectivity across the task conditions to investigate the

directional information flow between brain regions during the respective mental tasks.

Specifically, I employed DTF [205] to estimate the frequency-domain connectivity, using

MVAR [206] within windows corresponding to the length of each trial. The model order

was set at 44, determined using Schwarz’s Bayesian Information Criterion [207].

The optimal model order was then estimated using the function arorder.m [110, 208],

defined as: [popt, sbc] = arorder(v, pmin, pmax, selector) where v is the windowed EEG

data, popt is the optimal order and sbc is a vector of Schwarz Bayesian Criterion(SBC)
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values whose minimum corresponds to the selected order. This process is typically repeated

across multiple data windows, and the final model order is chosen based on the most

frequently occurring optimal value or the one minimizing model variance across windows.

After adopting this process, a model order of "44" was chosen and used for the effective

connectivity analysis in this research.

DTF connectivity was computed over the frequency range of [1,40] Hz, at a resolution

of 1 Hz. This approach yielded directed connectivity matrices for all possible pairs of

EEG channels (excluding Fz), with each matrix capturing the pairwise interactions across

frequency bands.

Finally, following [190], I computed the “spectral slope” for each channel. This metric is

quantified as the slope (i.e., first order coefficient) of the linear polynomial that represents

the linear fit to a channel’s log-transformed PSD spectrum. The spectral slope is first

computed separately for each epoch, and the final metric value is acquired as the average

of all epochs of the same type in a session. The linear fit is estimated with regular,

maximum-likelihood linear regression.

4.3 Data Evaluation

To assess the clinical relevance of the aforementioned popular EEG-based metrics for aware-

ness in DOC using the novel dataset, I applied a battery of statistical approaches across

the board, along with certain metric-specific methodologies, especially with regard to the

use of classification accuracy in this context. It must be highlighted that, in this line of

research, one is always faced with the inevitable issue of the absence of any “hard” and re-

liable ground truth. In other words, there is no widely accepted method or measure of any

sort that can infer a patient’s level of awareness precisely and without reasonable doubt, so

that it can be used to exactly evaluate the suitability of the examined EEG-based metrics.

The CRS-R clinical scale is, among the measured variables available, the one that is most
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well-established and considered (here, and in general) to best approximate the unavailable

ground truth; however, its known deficiencies, especially concerning false negative diagnosis

(i.e., inability to detect CMD), are precisely why objective neuroimaging-based metrics are

sought. Given this issue, the general principle followed for evaluation is to adopt CRS-R

and the thereby derived neurological diagnosis as a “virtual ground truth”, but also take

into account their limitations. More specifically, I require that an EEG metric exhibits a

notion of statistically significant agreement with CRS-R in order to be accepted as relevant,

but I do not demand absolute or even strong agreement, and interpret individual session

deviations from the projected CRS-R values on their own merits.

More elaborately, to examine the relationship between the selected metrics and total

CRS-R scores per session, I computed the corresponding correlation coefficient and its

significance with a = 0.05. The statistical significance of these correlations was assessed

with Student’s t-tests to accept or reject the hypothesis that the linear fit to the data has

a slope β=0, and thus no correlation between the dependent and independent variables.

For connectivity, I computed the correlation with CRS-R individually for each source,

target channel, and frequency band triplet and applied FDR correction for multiple com-

parisons. Only DTF connectivity from channel C3 to channel CP1 within sub-bands of the

δ band (specifically, 1, 2 and 4 Hz) survived this test for the MI and Rest conditions (not for

FES). Based on this finding, I subsequently submit to further analysis only this particular

effective connectivity variable, namely, the full-δ-band C3 → CP1 DTF connectivity, where

full-δ is derived as the average of the corresponding original DTF estimates in [1, 4] Hz.

Additionally, for metrics exhibiting significant correlation with CRS-R, I studied several

partitions of the CRS-R scores into two distinct groups, “aware” vs “unaware”, each based

on a CRS-R threshold th ∈ [7, 19] with CRSR <= th mapped to the “unaware” group

and CRSR > th to the “aware” one. Alternatively, I also tested such partitions based

on the neurologists’ diagnosis (which, in turn, was mainly based on the CRS-R score, but

also took into account other potentially available scales such as MBT and GCS, as well as
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the overall clinical picture of the patient); specifically, for this type of grouping, patients

diagnosed as Coma or UWS are always placed into the unaware group, while LIS, eMCS

and the healthy control are always placed in the aware group. Finally, the three possible

partitions resulting from placing MCS- and MCS+ in either of the two groups are defined.

For each of these partitions, an unpaired, two-sided t-test comparing the two groups (aware

vs unaware) was then performed on all metrics.

I repeated this analysis using the sub-scale component items of CRS-R scores (Aud-

itory, Visual, Motor, Oro-Motor, Communication, Arousal), which enables us to identify

approximate levels of EEG metric values at which awareness can be distinguished from

non-awareness, and link these with CRS-R and its sub-scales. Furthermore, to assess

whether there were significant differences across the finer, CRS-R-based diagnostic groups

for each metric, a one-way Analysis of Variance (ANOVA) was also conducted. This test

was applied independently to all evaluated metrics to determine whether the means differed

significantly between the seven formal awareness groups in Table 3.1.

Last but not least, in spite of the fact that the lack of actual ground truth does not

allow for formal and precise assessment of the examined metrics’ diagnostic value, I find

it useful towards judging their overall potential to define methodologies able to produce a

final binary inference on a subject’s current possession of concealed awareness. To do so, I

derive a metric-specific threshold, above which the subject is inferred to be, to some degree,

aware. In other words, this threshold determines a cut-off value of the metric in question

indicating a possible case of CMD. Only metrics that have been adequately shown to be

relevant in previous analysis (i.e., showing at least one of the following signs: i. significant

correlation with CRS-R, ii. significant ANOVA outcome, iii. existence of significant aware

vs unaware group splits) are subjected to this process. For this subset of metrics, the

threshold is extracted by splitting the total metric’s range across the whole dataset into 100

equidistant levels and checking whether, for any of these levels, the distribution differences

of the two groups formed by considering all sessions above/below the level in question
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are statistically significant with an unpaired, two-sided t-test. Effectively, the underlying

assumption of this approach is that, if a threshold able to significantly discriminate CMD

from DOC exists, it must correspond to the value that creates the most separable groups

possible on its left (DOC, unaware) and right (CMD, aware). If multiple metric values

satisfy this condition, the one with the smallest p-value is selected as the CMD-critical

threshold. Equipped with this tool, I present each metric’s prediction on the CMD status

of each session, and thus also the percentage of sessions diagnosed with CMD by each

metric.

This threshold-based approach to make CMD predictions is compared to another three

such methods: First, simple CRS-R thresholding, using three thresholds on the total CRS-

R scores (namely, 10, 12 and 13) justified by the literature and by the preceding group-

splitting analysis. Second, specifically for the classification accuracy metric, by labeling

as CMD all sessions where the derived accuracy exceeds the session-wise chance-level with

99% confidence. As previously mentioned, I term this approach, which I introduced in

my previous work [6] and is very similar to the statistical inference applied by [38], as

CBA (Chance-level-Based Accuracy). Lastly, I also make CMD predictions using the

individual PSD feature values using a similar approach to that described in [34, 193].

This involves statistically testing each candidate PSD feature to determine whether its

values tend to differ significantly between a target (in this case MI) and a control (here,

Rest) mental task. A session is classified as aware/CMD by this feature significance (FS)

method when any particular feature pops up as significantly differing between the two

conditions after correction for multiple comparisons. Two correction methods are applied,

conservative Bonferroni correction and the less strict FDR correction (FS-BF and FS-FDR,

respectively). To make this approach less susceptible to false positive decisions, I further

test the cases that a number N of consecutive frequency bands of the PSD on a particular

channel must be singificant in order to infer CMD. I report results for N = 1, 3, 5, 7, and

a = 0.05 throughout. Although there is no way to strictly quantify the accuracy of any of
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these methods to detect CMD, these comparisons provide interesting insights, especially

with regard to the tendency of each criterion to be conservative or optimistic in diagnosing

covert awareness.

4.4 Results

A B

Figure 4.1: Classification Accuracy (A) MI vs Rest and (B) FES vs Rest with leave-one-

trial-out cross-validation for all subject sessions. The horizontal red line illustrates the

expected value of the random chance level for 2-class problems, while the session-wise lines

indicate the permutation-based chance level with 99% confidence [6].

Figure 4.1A presents the 2-class classification accuracy for the MI vs Rest and Fig-

ure 4.1B for the FES vs Rest taskset, with red lines on top of each bar indicating the

session-wise random classification level. It is observed that, with regard to MI epochs, the

accuracy of 17 (out of total 62, 27%) sessions across 12 different (out of total 28, 43%) sub-

jects exceeds the chance level, whereas for FES epochs the corresponding figure concerns

25 sessions (40%) across 18 subjects (64%). As argued in my previous work [6], I posit

that the condition of exceeding the dataset-specific chance classification level (called here

CBA) may be a more reliable measure of awareness in DOC than the absolute value and

other common usages of classification accuracy in this context. Notably, coma patient S25

who unequivocally had no awareness (Table 3.1), did not exceed the chance level by large
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margins in either MI or FES epoch classification. Conversely, the healthy control subject

demonstrated above-chance and consistently high, well-above the chance level, classific-

ation accuracy in both MI- and FES-based decoding. Hence, the CBA metric exhibits

sound response for the available “negative” (coma) and “positive” (healthy) controls. This

does not hold true for the conventional 1/N (50% in this case) chance-level threshold often

employed in the literature [134], which is shown to be over-optimistic.

Figure 4.2: Classification Accuracy MI vs Rest with leave-one-session-out cross-validation

for all subject sessions. The horizontal red line illustrates the expected value of the random

chance level for 2-class problems, while the session-wise lines indicate the permutation-

based chance level with 99% confidence [6].

Similar to Figure 4.1, but employing a Leave-one-session-out cross validation (LOSO)

cross-validation across all subject sessions, Figure 4.2 depict the two-class classification

accuracies for the MI versus Rest taskset. Red horizontal markers above each bar represent

the session-specific chance-level thresholds derived from random permutations. Accuracy
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exceeded chance in 34 of 62 sessions (51.6%). Interestingly, the coma patient S52, clinically

confirmed to be unaware, was classified as aware, whereas the second session of healthy

control S20 was classified as unaware. Overall, the LOSO accuracies fluctuate around the

50% baseline expected for a two-class problem, suggesting that the classification results

largely reflect chance-level performance rather than reliable task-specific decoding.

A
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Figure 4.3: Topographic SMR distribution of three different sessions. (A-B) Healthy con-

trol session S9, 1. (C-D) Session S4, 8 of potential CMD patient. (E-F) Coma patient

control session S25, 1. Top panels show the topographic distribution of µ rhythms and

bottom panels of β rhythms. The strength of SMR is represented by the average Fisher

Score separability of PSD features (Fisher-95, as described in Chapter 3, 3.5) between

MI and Rest within the µ (8-14 Hz) (top) and β (bottom) bands, as colour-coded in the

colourbars.



74 CHAPTER 4. Validating state-of-the-art EEG-based Metrics

Figure 4.3 illustrates the topographic SMR distribution of 3 sessions of interest, two

corresponding to the control participants (healthy S9, coma S25) and one to the diagnosed

MCS patient S4 that is found by the CBA method (and other EEG metrics, see below)

to possess covert awareness. These scalp maps reinforce the expectation that participants

with high accuracy and, in general, signs of awareness (above-chance accuracy), were in-

deed able to generate neurophysiologically relevant SMR brain patterns and, thus, were

likely following the protocol’s commands. On the contrary, the coma patient who is not

expected to follow commands or engage in motor attempts, simultaneously exhibits well

below-chance classification accuracy and complete absence of SMR modulation. This fully

corroborates the soundness of the classification outcome. Furthermore, the patterns of both

the healthy control S9 and of the assumed CMD patient S4 show the anticipated for motor

tasks of the upper limbs laterality within the MI-relevant bands (µ, β) [209, 114]. It is

also noteworthy that, as also expected, there seems to exist direct proportionality between

the strength and spread of Event-Related Synchronization/Desynchronization (ERD/ERS)

and accuracy across all sessions. This additionally highlights that even DOC patients that

likely maintain latent awareness may be limited in their ability to elicit and maintain

strong SMR modulation, equivalent to that observed in most healthy subjects performing

MI. However, spared SMRs, despite feeble, do follow the same trends as in healthy brains,

both in terms of somatotopic organisation and of frequency specificity.

Figure 4.4 presents the ERD/ERS heatmaps for the corresponding subjects whose to-

pographic maps are shown in Figure 4.3. These heatmaps were computed from a single

experimental run for each session. A key advantage of ERD/ERS analysis is that it ex-

presses task-related changes in EEG power within specific frequency bands relative to a

baseline period, typically defined as the few seconds preceding event onset and recorded

from the same electrode derivations [210]. This normalization facilitates the visualization

and interpretation of task-induced modulations in neural oscillatory activity.

In the absence of any definite ground truth, I make use of the correlation between the
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Figure 4.4: ERD/ERS maps of the three different sessions. (A) Healthy control S9, 1. (B)

Subject S4, 8, (C) Coma patient S25, 1.
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Figure 4.5: Correlation between CRS-R and various metrics as shown by the panel titles

using MI, FES, and Rest epochs, as well as regression-based prediction of CRS-R using the

metrics. The CRS-R-based diagnosis of each subject-session is colour-coded as indicated by

the legend. For the classification accuracy panels, subject-session points whose accuracy

exceeds the chance threshold (see Figure 4.1) are represented with filled markers, while

those below the threshold are unfilled.

evaluated EEG-based metrics and the CRS-R scores to assess their prowess in reflecting

awareness. Strong, statistically significant correlation suggests that a given metric tends

to agree with CRS-R, while lack thereof indicates the contrary. For metrics fulfilling the

basis of significant correlation with CRS-R, I subsequently discuss further the extent to
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which specific occasions of disagreement can be regarded as evidence that the metric in

question can rectify CRS-R’s false negative vulnerability, or simply highlight ’the said

metric’s own shortcomings. In addition, CRS-R scores were estimated using a regression-

based framework in which the derived metrics were combined as an ensemble. Model

performance was evaluated under two conditions: (i) using the full set of metrics and (ii)

restricting the model to statistically significant metrics only. The resulting correlations

between predicted and actual CRS-R scores are presented in the bottom two rows of

Figure 4.5, with corresponding p-values of 0.0006 and 0.0009 for the full and reduced

metric sets, respectively.

Figure 4.5 summarizes the key correlations results. The top-left panel shows a

significant positive correlation between MI vs Rest classification accuracy and CRS-R

(r = 0.28, p = 0.03). Notably, several subjects with above-threshold classification ac-

curacy exhibited low CRS-R scores, potentially indicating false negatives, as hypothesized

in the literature [32, 62, 56]. This finding supports the hypothesis that covert awareness

may exist in patients with impaired motor function. In contrast, the FES vs Rest clas-

sification accuracy showed no significant correlation with CRS-R (r = −0.05, p = 0.68).

The second row of Figure 4.5 illustrates the correlation between δ-band C3 → CP1 effect-

ive connectivity and CRS-R scores across MI, FES, and Rest conditions. While effective

connectivity during FES showed no significant relation to CRS-R, in both MI and Rest

significant negative correlations are found (r = −0.26, p = 0.043 and r = −0.25, p = 0.046,

respectively).

The observed negative correlations have, in some contexts, been interpreted as reflecting

pathological hyperconnectivity, such as in neuroticism, where neural networks become

excessively coupled yet lack meaningful information exchange [211]. In contrast, Demertzi

et al. [212] argue that negative correlations in brain activity arise from neural inhibitory

mechanisms that regulate global and local network interactions. From this perspective,

anticorrelations are considered a physiological marker of preserved consciousness, whereas
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their absence may indicate a loss of subjective experience.

The final two rows of Figure 4.5 show the correlation between brain rhythm separability

(quantified as the FS between the distributions of a particular brain rhythm–channel and

frequency band pair–for the MI vs Rest or FES vs Rest mental classes) and CRS-R scores.

Significant positive correlations were observed for MI vs Rest in both the µ-band (r =

0.42, p = 7.19×10−4) and β-band (r = 0.28, p = 0.02), suggesting that higher sensorimotor

rhythm modulation during MI may reflect greater levels of residual awareness. In contrast,

separability in the FES vs Rest condition showed no significant correlation with CRS-R

(r = 0.08, p = 0.55 and r = −0.18, p = 0.15, respectively) in either frequency band. For

the sake of completeness, Figure 4.6 illustrates the corresponding plots for metrics that

did not satisfy any of the statistical criteria assessing the degree of affinity with CRS-R set

here (complexity, slope of spectrum).

Complementing Figure 4.5 to provide a full overview, Table 4.1 reports the correlation

(to four decimal places) between all metrics with CRS-R scores across MI, FES and Rest

conditions. Overall, complexity and slope metrics did not show significant correlations

in any condition. However, four key metrics (classification accuracy, C3→CP1 δ-band

connectivity, µ-, and β-band separability) exhibited significant correlations with CRS-R

during MI. One-way ANOVA analysis for these five metrics revealed significant group

differences with regard to the 7 CRS-R-based diagnostic groups defined (Table 4.1). In

contrast, MI-based Lempel-Ziv complexity yielded no significant correlation with CRS-R,

leading to rejection of the hypothesis that group means differ significantly. Lempel-Ziv

complexity during Rest is the only metric and condition combination yielding a marginally

non-significant correlation with CRS-R (p = 0.0524). As shown in both Figure 4.5 and

Table 4.1, none of the examined metrics during FES correlated significantly with CRS-

R. The ANOVA results also suggest that accuracy and separability carry information

on the differentiation of the levels of awareness, but, again, only during MI. Effective

connectivity does not exhibit significant differences across diagnostic groups despite its
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Table 4.1: Overview of metrics’ correlations with CRS-R and one-way ANOVAs with CRS-

R group as factor. Blue-colored cells indicate statistical significance.

Metric Correlation ANOVA

CRS-R CRS-R grouping

p-value r-value p-value F statistic

MI

Classification Accuracy 0.0307 0.2700 1.378e06 8.57

Effective Connectivity(C3→CP1, δ-band) 0.0430 -0.2579 0.8430 0.4

µ Separability 7.1866e-04 0.4182 1.40341e-16 33.7

β Separability 0.0191 0.2969 4.57512e-08 11.08

Slope 0.1800 0.1725 0.8372 0.46

Lempel-Ziv Complexity 0.6436 0.0599 0.0524 2.24

Kolmogorov Complexity 0.8675 -0.0216 0.1264 1.75

FES

Classification Accuracy 0.6623 -0.0566 0.2816 1.28

Effective Connectivity(C3→CP1, δ-band) 0.1007 -0.2104 0.9154 0.34

µ Separability 0.5184 0.0836 0.0696 2.09

β Separability 0.1417 -0.1888 0.7882 0.52

Slope 0.1824 0.1716 0.6922 0.46

Lempel-Ziv Complexity 0.3166 0.1293 0.0741 2.05

Kolmogorov Complexity 0.3652 0.1170 0.2156 1.44

Rest

Effective Connectivity(C3→CP1, δ-band) 0.0464 -0.2539 0.8125 0.49

Slope 0.2622 0.1446 0.7751 0.54

Lempel-Ziv Complexity 0.4126 0.1059 0.1239 1.76

Kolmogorov Complexity 0.6385 0.0609 0.2528 1.35
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Figure 4.6: Correlation between CRSR and average effective connectivity for various met-

rics as shown by the panel titles using MI, FES, and Rest epochs. The CRSR-based

diagnosis of each subject-session is colour-coded and the same as indicated by the legend

in Figure 4.5.

significant correlation with CRS-R.

Table 4.2 reports correlations between CRS-R sub-scales (Auditory, Visual, Motor,

Oro-motor, Communication, Arousal) and the different metrics benchmarked here. The

MI classification accuracy correlation was significant only for the oro-motor and commu-

nication sub-scales. MI and Rest effective connectivity correlated significantly with the

oro-motor and communication sub-scales, too. MI µ separability showed robust signific-

ance across all six sub-scales, and MI β separability was significant for motor, oro-motor,

and marginally non-significant for communication. Finally, during FES, neither µ- nor β-

band separability correlates significantly with CRS-R, although β separability comes close

with respect to the oro-motor sub-scale.
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Table 4.2: Correlation of CRS-R unit sub-scales with different metrics. Blue-coloured cells

indicate significant correlation.

Unit Scale Classification Accuracy Connectivity - C3→CP1, δ-band Separability

MI FES MI Rest FES µ MI β MI µ FES β FES

p-value r-value p-value r-value p-value r-value p-value r-value p-value r-value p-value r-value p-value r-value p-value r-value p-value r-value

Auditory 0.0959 0.2134 0.5751 -0.0726 0.2383 -0.1520 0.2553 -0.1467 0.3597 -0.1183 0.0300 0.2758 0.2735 0.1413 0.5499 0.0774 0.4530 -0.0971

Visual 0.0988 0.2116 0.5793 -0.0718 0.1060 -0.2073 0.1112 -0.2043 0.2363 -0.1526 0.0055 0.3488 0.0627 0.2378 0.8460 0.0252 0.1976 -0.1659

Motor 0.1420 0.1886 0.6136 0.0654 0.0600 -0.2402 0.0654 -0.2355 0.1097 -0.2051 0.0052 0.3510 0.0270 0.2809 0.7594 0.0397 0.1856 -0.1703

Oro-motor 0.0360 0.2668 0.6052 0.0669 0.0124 -0.3157 0.0163 -0.3039 0.0337 -0.2701 0.0101 0.3245 0.0180 0.2996 0.8819 0.0193 0.0511 -0.2489

Communication 0.0160 0.3048 0.8250 0.0287 0.0379 -0.2644 0.0309 -0.2743 0.0928 -0.2154 0.0044 0.3574 0.0520 0.2479 0.1727 0.1754 0.3840 -0.1125

Arousal 0.1865 0.1700 0.3762 0.1143 0.8431 0.0257 0.8331 0.0273 0.8398 0.0262 0.0027 0.3740 0.0686 0.2328 0.3550 0.1195 0.3994 -0.1089
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Figure 4.7 presents an analysis aimed at identifying metrics that could discriminate

between awareness and unawareness. Towards this, using again CRS-R as a surrogate

for ground truth, session data are split into two groups based on some CRS-R threshold,

and the hypothesis that a metric’s values in the two resulting groups come from the same

distribution is tested. Rejecting the hypothesis implies that the said metric tends to take on

different values depending on the level of awareness, and thus could form a useful diagnostic

predictor. Previous studies have proposed CRS-R thresholds of 10 [213] and 12 [3, 214] for

splitting groups, motivating the investigation of a broader range of thresholds in [7, 19],

including an assessment of individual CRS-R sub-scales. The classification accuracy of MI

showed significant differences at thresholds 13, 18, and 19. Effective connectivity during

MI, Rest and FES conditions was significant across thresholds 11–16 for both MI and Rest,

and 11-13 for FES. µ- and β-band separability in the MI condition were significant from

thresholds 13 to 19, while β separability in the FES condition reached significance only at

thresholds 11 and 12. No significant effects were observed at any threshold for FES-based

classification accuracy, and µ separability. Notably, µ-band separability during MI became

significant at the threshold of 13 with p < 0.01, but not at lower thresholds, suggesting

this may represent a critical boundary for distinguishing covert awareness.

Further similar analysis with CRS-R sub-scales (Figure 4.7), revealed that MI classific-

ation accuracy was significant only at higher thresholds, particularly near the upper bound.

It must be noted that too small or high CRS-R thresholds reduce the reliability of these

findings, as the imbalance between the two groups grows accordingly. Both µ- and β-band

separability MI consistently showed significant group differences across various sub-scales.

Additionally, effective connectivity during MI and Rest conditions also demonstrated sig-

nificant differences specifically with the motor, oro-motor, and communication sub-scales.

Interestingly, while β-band separability in the FES condition was significant when con-

sidering total CRS-R scores, it did not reach significance with most individual sub-scales.

In addition to this, FES-based classification accuracy, µ- and β-band separability did not
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At threshold = 12 At threshold = 13

Figure 4.7: Metric and condition ability to discriminate between awareness and unawareness.

The heatmaps illustrate the p-values of unpaired, two-sided t-tests as coded in the colourbars,

where red shades correspond to no statistically significant difference (p ≫ 0.05), blue to statist-

ically significant difference (p ≪ 0.05) and white indicates marginal significance (p ≈ 0.05). Each

cell visualises the p-value of an unpaired, two-sided t-test of the hypothesis that the means of

two groups of values of the metric/condition indicated by the cell’s column label come from the

same distribution. The metric’s value derived by a single subject-session is assigned to group

“unaware” if the corresponding session is associated with a CRS-R value CRSR ≤ th and to

group “aware” otherwise (CRSR > th). The CRS-R threshold th used for each t-test is shown in

the corresponding cell’s row label. The numbers (X, Y ) in each cell show the cardinality of each

compared group pair for the particular test. The top-left panel splits groups according to the

total CRS-R. The middle and right panel of the first row show the mean and standard deviation

of the group values for each metric for CRS-R thresholds th = 12 and th = 13, respectively.

Statistical significance is shown with asterisks (∗ for α = 0.05, ∗∗ for α = 0.01). The second and

third row show heatmaps where group splitting relies on a CRS-R sub-scale as appears in the

title.
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exhibit significant two-group difference with any CRS-R sub-scale.

Table 4.3: Statistical significance (unpaired, two-sided t-test) of differences between “un-

aware” and “aware” groups in terms of Classification Accuracy, C3→CP1, δ-band Con-

nectivity and µ/β-band Separability for different group splitting criteria. Blue-coloured

cells indicate significant group differences.

Unit Scale Classification Accuracy Connectivity - C3→CP1, δ-band Separability

MI FES MI Rest FES µ MI β MI µ FES β FES

p-value p-value p-value p-value p-value p-value p-value p-value p-value

CRS-R ≤ 10 0.3131 0.0692 0.2878 0.3465 0.4053 0.1472 0.6507 0.9743 0.5469

vs

CRS-R > 10

CRS-R ≤ 12 0.2012 0.5302 0.0206 0.0205 0.0372 0.0607 0.3134 0.5848 0.0487

vs

CRS-R > 12

CRS-R ≤ 13 0.0268 0.6967 0.0125 0.0129 0.0263 0.0065 0.0449 0.5269 0.0945

vs

CRS-R > 13

Coma, UWS, MCS- 0.0261 0.8349 0.2578 0.1966 0.2769 0.0771 0.2930 0.6503 0.2334

vs

MCS+, LIS, eMCS, Healthy

Coma, UWS 0.8320 0.3861 0.4615 0.4800 0.6260 0.1349 0.2859 0.7598 0.2500

vs

MCS-, MCS+, LIS, eMCS, Healthy

Coma, UWS, MCS-, MCS+ 0.219Although conventional4 0.6533 0.1194 0.1096 0.2413 0.0033 0.0470 0.5732 0.1417

vs

LIS, eMCS, Healthy

Table 4.3 summarizes the results concerning the ability of different EEG metrics to

statistically significantly separate between aware and unaware groups, as these can be

ostensibly defined by means of different CRS-R thresholds or diagnosis-based groupings.

As shown, the commonly proposed CRS-R threshold of 10 did not lead to statistically

significant group differences for any metric. At threshold 12, significance emerged for MI,

FES and Rest effective connectivity, as well as β-band separability under FES. Threshold

13 exhibited stronger and broader significance, including MI classification accuracy, µ
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and β separability, though excluding FES β separability. In the group analysis using

the neurological diagnosis grouping to distinguish between awareness and unawareness,

MI classification accuracy was significant when MCS- and MCS+ were assigned to either

groups. Conversely, both µ and β separability showed significant awareness discrimination

ability when MCS- and MCS+ were grouped together.

Figure 4.8A compares the percentage of sessions in the dataset where the participant

would have been diagnosed as exhibiting covert awareness (CMD) with different metrics

and statistical approaches as explained in the Methods. Table 4.4 provides the respective

information per session. It is evident that inferring CMD on the grounds of individual

spatiospectral components found to be significantly different between MI and Rest through

common statistical testing seems extremely optimistic, as 90-100% of sessions are classified

as CMD, even after correction (Bonferroni or FDR), and after demanding a large range

of clustered bands to be simultaneously significant. When requiring 7 Hz-wide clusters of

significance, the percentage of CMD drops with this method drops to approximately 65%,

which, however, may be inconsistent with the method’s neurophysiological basis, as the

range of µ- and β sub-bands usually modulated by the MI of able-bodied users is typically

narrower [114]. The type of statistical correction used seems to have little effect on the

diagnosis with this methodology.

Attempting to infer CMD by means of thresholding the total CRS-R score is more

conservative, as it yields 70% CMD for the threshold of 10 examined in the literature [213]

and approximately 40-60% for the thresholds of 12 and 13 that I found here to best split

many EEG metrics in two groups. Moving to the EEG-derived metrics thresholded based

on optimal two-group separation, the classification accuracy obtained from classifying MI

against Rest is consistent with the CRS-R thresholds and detects 60% CMD in the dataset,

while the equivalent for FES vs Rest is much lower, at 10%. This is the case for all other

EEG measures, too, with β separability for MI slightly higher at 20%, suggesting that the

thresholding method used here is rather conservative. The CBA statistical approach on
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A

B

C

Figure 4.8: Diagnosis of CMD (covert awareness) by different metrics. (A) Percentage of

sessions diagnosed as CMD by each metric. (B) Agreement rate heatmap for all metric

pairs encoded as percentage of sessions with common CMD inference, as colour-coded

by the colourbar. (C) Reduced version of the agreement rate heatmap including metrics

exhibiting at least one agreement rate in the range [20, 80].
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accuracy produces CMD detection estimates in the range 30-40%, thus seemingly being

more conservative than CRS-R, but less than the approach of thresholding each EEG

metric with the sample-wide group-separating thresholds.

Table 4.4: CMD diagnosis by metrics

Sub,

Ses

CRS-R

Diagnosis
MI

CBA

MI
FES

CBA

FES

Separability Connectivity CRS-R FDR Bonferroni

µ MI β MI β FES MI FES Rest >10 >12 >13 1 3 5 7 1 3 5 7

S1,1 MCS- X X X X X X X X X X X

S2,1 UWS X X X X X X X X X X X

S3,1 UWS X X X

S3,2 MCS- X X X X X X X X X X X X

S3,3 MCS+ X X X X X X X X X X X

S4,1 MCS+ X X X X X X X X

S4,2 MCS+ X X X X X X X X X X X

S4,3 MCS+ X X X X X X X X X X X

S4,4 MCS- X X X X X X X X X

S4,5 MCS- X X X X X X X X X

S4,6 MCS- X X X X X X X X X X

S4,7 MCS- X X X X X X X X X

S4,8 MCS+ X X X X X X X X X X X X X

S5,1 MCS+ X X X X X X X X X X X X

S6,1 eMCS X X X X X X X X X X X

S7,1 UWS X X X X X X X X X

S8,1 eMCS X X X X X X X X X X X X

S8,2 eMCS X X X X X X X X X X X

S9,1 Healthy X X X X X X X X X X X X X X X X

S9,2 Healthy X X X X X X X X X X X X X X X X X

S10,1 UWS X X X X X X X X X X X

S10,2 MCS- X X X X X X X X X

S10,3 MCS+ X X X X X X X X X X X

S10,4 MCS+ X X X X X X X X X X X X X X

S10,5 MCS+ X X X X X X X X X X X X X

S11,1 UWS X X X X X X X X X X

S11,2 MCS- X X X X X X X

Continued on next page
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Table 4.4 (continued)

S12,1 MCS+ X X X X X X X X X X X X X X X

S13,1 MCS+ X X X X X X X X X X X X X X

S13,2 MCS+ X X X X X X X X

S13,3 MCS+ X X X X X X X X X X

S14,1 MCS+ X X X X X X X X X X X X X X X

S14,2 MCS+ X X X X X X X X X X

S14,3 MCS+ X X X X X X X X X X

S14,4 eMCS X X X X X X X X X X X X X

S15,1 eMCS X X X X X X X X X X X X

S15,2 eMCS X X X X X X X X X X X X X

S16,1 eMCS X X X X X X X X X X X X X

S17,1 MCS+ X X X X X X X X X X X X X

S17,2 MCS+ X X X X X X X X X X X X

S18,1 eMCS X X X X X X X X X X X X X

S18,2 eMCS X X X X X X X X X X X X

S19,1 UWS X X X X X X X X X X

S20,1 MCS+ X X X X X X X X X X X X X

S21,1 MCS- X X X X X X X X

S21,2 MCS- X X X X X X X X

S22,1 LIS X X X X X X X X X X

S22,2 LIS X X X X X X X X X X X X X

S22,3 LIS X X X X X X X X X X X X

S23,1 UWS X X X X X X X X X X X

S24,1 UWS X X X X X X

S25,1 Coma X X X X X X X X

S26,1 UWS X X X X X X X X

S27,1 MCS+ X X X X X X X X X X X X X X

S28,1 MCS+ X X X X X X X X X

S28,2 MCS- X X X X X X X X X X X X

S28,3 MCS+ X X X X X X X X X

S28,4 MCS+ X X X X X X X X X X

S28,5 MCS- X X X X X X X

S28,6 MCS- X X X X X X X X X X

Continued on next page



4.4 Results 89

Table 4.4 (continued)

S28,7 MCS- X X X X X X X X X X X X

S28,8 MCS- X X X X X X X X

cell marked indicates metric diagnosed the session as aware and empty indicates otherwise, that is

unaware. Also, Sub, Ses indicates Subject, Session, MI implies Classification Accuracy MI and FES

indicates Classification Accuracy FES.

Figure 4.8B depicts a heatmap expressing the percentage of agreement between all pairs

of the diagnostic metrics considered here. The high agreement rate between the CRS-R-

thresholding methods, and those based on statistically testing individual PSD features

and correcting with FDR or Bonferroni is anticipated, as these share the same underlying

inference mechanism and only differ on the strictness imposed for detecting CMD (i.e.,

cut-off CRS-R value and number of consecutive bands required, respectively). Given that

these feature-testing measures are the most optimistic ones, while, on the contrary, all

EEG-based metric except for Accuracy MI and CBA are rather stringent and pessimistic

(at least with the way thresholds have been defined), it is not surprising that these two

clusters of approaches show no particular agreement. For the same reason, as the EEG-

based metrics are shown to be very parsimonious in inferring CMD, the high agreement

in-between these clusters most likely reflects the large amount of negative inferences in both

cases, rather than a true agreement of these different aspects of EEG activity in detecting

awareness. It is thus more meaningful to examine a smaller version of the heatmap involving

only the metrics with comparable overall CMD inference rates in the range 20-80%, as

shown in Figure 4.8C. Disregarding again the expected high agreement between pairs of

congener metrics (CRS-R thresholding, 7 Hz-wide clusters of significant PSD features on the

same channel after Bonferroni or FDR correction), the 32 remaining pairs exhibit a fairly

narrowly distributed agreement around 50% (precisely, 52.9% ± 8.7%) with minimum at

33.9% (two pairs: CRS-R-10 with β separability MI, and CBA FES with Bonferroni PSD

significance) and maximum at 72.6% between CBA and β separability MI. The overall
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moderate agreement rate advocates in favour of the hypothesis that these metrics may

express different facets of awareness and, in that regard, be complementary to each other.

A B C D E

F G H I J

K L M N O

P Q R S T

U

Figure 4.9: Percentage of predicted awareness across CRS-R clinical groups per metric -

(A) Accuracy MI, (B) CBA MI, (C) Accuracy FES, (D) CBA FES, (E) µ separability MI,

(F) β separability MI, (G) β separability FES, (H) Effective Connectivity MI, (I) Effective

Connectivity FES, (J) Effective Connectivity Rest (K) CRS-R >10 (L) CRS-R >12 (M)

CRS-R >13 (N) FDR1 MI (O) Bonferroni 1 MI (P) FDR3 MI (Q) Bonferroni 3 MI (R)

FDR5 MI (S) Bonferroni 5 MI (T) FDR7 MI (U) Bonferroni 7 MI.

Figure 4.9 contrasts the CMD inference of all metrics considered with the clinical cat-

egorization of patients into seven main groups (coma, UWS, MCS-, MCS+, eMCS, LIS,

healthy). The reader is reminded that this clinical diagnosis was performed by the clin-

ical neurologists for each session on the basis, mainly, of the CRS-R scores, but took into
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account also the MBT, the individual CRS-R subscales, and other information on the pa-

tient’s medical record and physical condition. Using statistical significance of individual

features with correction (Figures 4.9N-U) is shown again to be overly optimistic, likely

leading to many false positives as the coma patient S25 and all, or nearly all, sessions

thought to reflect UWS (S2, S3, S7, S10, S11, S19, S23, S24, S26) are found to be aware

even with the strictest requirements. This method fails in a few cases to diagnose awareness

in the patients believed to be LIS, thus being prone not only to many false positives, but

simultaneously also to false negatives. Thresholding the total CRS-R score (Figures 4.9K-

M) seems to strike an excellent balance, where the coma and UWS patients are diagnosed

as unaware, the healthy control and the LIS patients as aware, and awareness is detected

in the spectrum of MCS with increasing percentages, as reasonably expected. Of course,

the performance of CRS-R thresholding here is biased, as the diagnosis was done mainly

based on CRS-R to begin with. Connectivity, µ separability MI and β-separability FES

are evidently again extremely conservative, raising further suspicions that the statistical

procedure used for defining the thresholds may be too strict; however, β-separability MI

(Figure 4.9F), a metric showcasing robust relation with CRS-R even when removing outliers

(see Discussion), exhibits sound behaviour with the same thresholding approach. Specific-

ally, it succeeds in diagnosing coma and most of the UWS cases, as well as to identify the

healthy participant. However, it misses the LIS case and finds awareness in a few UWS

patients (which, however, could also be an advantage, see Discussion). Overall, it is more

conservative in the spectrum of MCS compared to CRS-R. It must be noted though that

the latter effect does not necessarily constitute erroneous prediction: in the absence of

ground truth and with the known CRS-R limitations, there is no way to conclude beyond

doubt whether it is CRS-R that is overly optimistic, or separability that is too pessimistic

(or, whether both are true to some extent). Classification accuracy for MI (Figure 4.9A)

and FES (Figure 4.9C) are definitely far off being good indicators of awareness, for opposite

reasons: accuracy MI is extremely optimistic detecting awareness for the coma patient and
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most of the UWS cases, while accuracy FES lies at the opposite extremity misdiagnosing

the LIS and one of the healthy control sessions, despite finding covert awareness in a few

UWS patients. CBA MI and FES, on the other hand, emerge as the methods-of-choice,

closely following the trends and logic of the CRS-R scores and the resulting diagnostic

predictions. More elaborately, both these methods diagnose correctly the controls (coma,

healthy), get the (believed to be) LIS patient right in about half of their sessions, find

awareness in about 5-45% of the MCS cases (with CBA in the MI condition being the

more conservative of the two) and in 20% (MI) or 40% (fes) of the labeled UWS sessions.

Overall, CBA MI and FES, closely followed by β separability MI, are the metrics that can

be distinguished for complying well with the CRS-R-based diagnostics.

Figure 4.10: Classification Accuracy MI vs Rest with leave-one-trial-out cross-validation

for all subject sessions extracting a single PSD sample from each 4 s trial. The horizontal

red line illustrates the expected value of the random chance level for 2-class problems, while

the session-wise lines indicate the permutation-based chance level with 99% confidence [6].

Additionally, analyses were repeated after excluding healthy control sessions, restricting

the dataset to DOC patients only. This was done to assess robustness as discussed in

section 4.5 to characterize variability in consciousness and awareness within the DOC
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population, rather than to discriminate patients from healthy individuals, and to assess the

impact of this restriction on both classification and regression analyses. The overarching

aim of this supplementary analysis was to evaluate whether the correlation between a given

EEG metric and CRS-R remains robust even when removing the extreme consciousness

points. This approach tests the utility of the metric in capturing more subtle awareness

differences (e.g., within the narrower UWS-MCS+ spectrum). As shown in Figure 4.11,

Figure 4.12, and Tables 4.5 and 4.6, most previously observed significant effects diminish

when healthy controls are removed, suggesting that the quest for better neuromarkers of

awareness must continue.
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Figure 4.11: Correlation after excluding the healthy control between CRS-R and vari-

ous metrics as shown by the panel titles using MI, FES, and Rest epochs. The CRS-R-

based diagnosis of each subject-session is colour-coded as indicated by the legend. For the

classification accuracy panels, subject-session points whose accuracy exceeds the chance

threshold (see Figure 4.1) are represented with filled markers, while those below the

threshold are unfilled.
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Table 4.5: Overview of correlations with CRS-R and one-way ANOVAs with CRS-R group

as factor after removing the healthy control. Blue-colored cells indicate significance.

Metric Correlation ANOVA
CRS-R CRS-R grouping

p-value r-value p-value F statistic
MI

Classification Accuracy 0.4009 0.1104 0.1124 1.88
Effective Connectivity(C3→CP1, δ-band) 0.0598 -0.2445 0.8161 0.44

µ Separability 0.0095 0.3322 0.2331 1.42
β Separability 0.4005 0.1105 0.7131 0.58

Slope 0.1743 0.1777 0.5927 0.75
Lempel-Ziv Complexity 0.8246 -0.0292 0.1639 1.65
Kolmogorov Complexity 0.6925 -0.0521 0.0928 2

FES
Classification Accuracy 0.2542 -0.1495 0.5512 0.8

Effective Connectivity(C3→CP1, δ-band) 0.1504 -0.1879 0.9261 0.27
µ Separability 0.6959 -0.0515 0.9022 0.31
β Separability 0.1392 -0.1932 0.6896 0.61

Slope 0.1605 0.1835 0.5789 0.77
Lempel-Ziv Complexity 0.7041 0.0500 0.2078 1.49
Kolmogorov Complexity 0.5543 0.0779 0.2062 1.5

Rest
Effective Connectivity(C3→CP1, δ-band) 0.0676 -0.2376 0.7954 0.47

Slope 0.2625 0.1469 0.6750 0.63
Lempel-Ziv Complexity 0.7366 0.0443 0.2015 1.51
Kolmogorov Complexity 0.6408 0.0615 0.1793 1.59
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At threshold = 12 At threshold = 13

Figure 4.12: Metric and condition ability to discriminate between awareness and unawareness

after excluding the healthy control. The heatmaps illustrate the p-values of unpaired, two-sided

t-tests as coded in the colourbars, where red shades correspond to no statistically significant

difference (p ≫ 0.05), blue to statistically significant difference (p ≪ 0.05) and white indicates

marginal significance (p ≈ 0.05). Each cell visualises the p-value of an unpaired, two-sided t-test

of the hypothesis that the means of two groups of values of the metric/condition indicated by

the cell’s column label come from the same distribution. The metric’s value derived by a single

subject-session is assigned to group “unaware” if the corresponding session is associated with a

CRS-R value CRSR ≤ th and to group “aware” otherwise (CRSR > th). The CRS-R threshold

th used for each t-test is shown in the corresponding cell’s row label. The numbers (X, Y ) in each

cell show the cardinality of each compared group pair for the particular test. The top-left panel

splits groups according to the total CRS-R. The middle and right panel of the first row show the

mean and standard deviation of the group values for each metric for CRS-R thresholds th = 12

and th = 13, respectively. Statistical significance is shown with asterisks (∗ for α = 0.05, ∗∗ for

α = 0.01). The second and third row show heatmaps where group splitting relies on a CRS-R

sub-scale as appears in the title.
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Table 4.6: Statistical significance (unpaired, two-sided t-test) of differences between “un-

aware” and “aware” groups in terms of Classification Accuracy, C3→CP1, δ-band Con-

nectivity and µ/β-band Separability for different group splitting criteria, after removing

the healthy control from the dataset. Blue-coloured cells indicate significant group differ-

ences.

Unit Scale Classification Accuracy Connectivity- C3→CP1, δ-band Separability

MI FES MI Rest FES µ MI β MI µ FES β FES

p-value p-value p-value p-value p-value p-value p-value p-value p-value

CRS-R < 10 0.4893 0.1186 0.7112 0.7608 0.8372 0.2792 0.7146 0.8635 0.3140

vs

CRS-R ≥ 10

CRS-R < 12 0.2465 0.3094 0.0119 0.0110 0.0245 0.0642 0.2592 0.6668 0.0454

vs

CRS-R ≥ 12

CRS-R < 13 0.2012 0.5302 0.0206 0.0205 0.0372 0.0607 0.3134 0.5848 0.0487

vs

CRS-R ≥ 13
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4.5 Discussion

The main purpose of this study has been to put to the test some of the most popular, state-

of-the-art EEG-based metrics and statistical inference methods that have been proposed

for the diagnosis of covert awareness in DOC patients, using a sizable, novel dataset collec-

ted with a standard command-following MI paradigm [168, 6]. Although, in the absence of

factual, precise and reliable ground truth any relevant judgment remains rather inconclus-

ive, by leveraging statistical criteria relying on the CRS-R clinical scale–widely acceptable

as the closest surrogate to the unavailable ground truth–such as a metric’s statistically

significant correlation with CRS-R and the existence of CRS-R thresholds that lead to two

statistically distinct and separable groups of metric values, my results indirectly provide

evidence in support of the case that some of these approaches do indeed have diagnostic

potential. More specifically, I found that classification accuracy during MI, effective con-

nectivity in the δ band between scalp locations C3→CP1 during MI, Rest and potentially

also FES, as well as µ- and β-band PSD separability during MI showed clear signs of asso-

ciation with CRS-R. On the contrary, a range of other metrics that have been proposed as

possible neuromarkers of awareness and consciousness, such as Lempel-Ziv or Kolmogorov

complexity, as well as the spectral slope did not pass the battery of tests imposed here in

any of the examined task conditions (MI, FES, Rest). As complexity measures have been

mainly implicated with awareness in the context of general anaesthesia and brain stimula-

tion, the respective lack of association with CRS-R suggests that the neural underpinnings

of awareness may in fact differ fundamentally between DOC and anaesthetized individuals,

as well as between spontaneous and evoked brain activity. Overall, the merits of command

following protocols and of several EEG-based metrics that can be derived on this basis in

assessing awareness are largely confirmed by the data.

However, it needs to be underlined that the quality of the relevant evidence is often

weak. For example, the correlation with CRS-R for several metrics becomes statistically
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insignificant after removing the healthy control (Figure 4.11 and Table 4.5), who represents

the high-consciousness extremity in the dataset. This indicates that currently used EEG

metrics can be successful in capturing pronounced differences in awareness, but probably

lack, in general, the sensitivity to reliably distinguish between more subtly different states

within the spectrum of awareness. The separability of the µ-band rhythms between MI

and Rest is the most robust metric in that regard, aligning with literature which posits

that the separability of brain rhythms reflects cortical activation and may serve as a reli-

able indicator of awareness [215, 168]. Effective connectivity and β-band separability also

remain fairly consistent when disregarding the able-bodied subject, as shown by comparing

Table 4.3 to Table 4.6, Table 4.1 to Table 4.5, Figure 4.5 to Figure 4.11 and Figure 4.7 to

Figure 4.12.

It is interesting to contrast the results extracted in the “active” MI epochs with those

obtained from the “passive” FES intervals, as both these conditions are expected to elicit

SMRs in cortical regions that are largely monitored by the same EEG channels, but differ

significantly in the type of cognitive processing involved (motor planning and execution

versus sensory stimulation) and, obviously, also with respect to the element of volition (act-

ive vs passive) which can be linked to awareness. The ensemble of the relevant results shows

that, in contrast to the MI task, none of the salient EEG metrics could be associated with

FES, with the marginal exception of β-band separability. Nevertheless, the classification

during FES against Rest yielded subjects with above-chance accuracy (CBA FES), and, in

fact, more than the equivalent metric during MI (CBA MI); overall, CBA FES was found

to be similar (in spite of being less parsimonious) to CBA MI in detecting CMD for patients

within the MCS spectrum. Both these methods were able to predict correctly all controls

and showed meaningful trends, such as that more patients are found to be aware when the

clinical diagnosis was MCS+ than when it was MCS- (Figures 4.9B and D). A possible

explanation for the lack of direct association with CRS-R scoring is that the FES condition

elicits separable, sensory-induced SMRs that, unlike in the active MI condition, may not
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directly reflect conscious awareness, or only to a lesser degree (i.e., states of relative aware-

ness with reduced cognitive capacity akin to the higher-degree motor dissociation defined

by Edlow et al. [38]. Since the sensory SMR responses do not reflect intentional activity

and volitional control, could potentially lead to overestimation of awareness [216]. This

distinction aligns with the findings of Monti et al. [34], who emphasized that intentional

cortical modulation provides a more reliable indicator of consciousness. My results further

reinforce this view and support the utility of MI-based, command following paradigms in

awareness detection as opposed to protocols relying entirely on evoked responses of the

brain to stimulation. On the other hand, the sound and similar to CBA MI performance

of CBA FES in inferring CMD across different CRS-R-based diagnostic groups, shows that

passive protocols have their own merits, and are probably promising for diagnosing CMD

in cases where the patient’s spared cognitive abilities are compromised [59, 217].

In command following MI paradigms and, more generally, in BCI-inspired protocols

for DOC diagnosis, classification accuracy has so far undoubtedly been the prevalent met-

ric [60]. Often, thresholds defined on accuracy to detect awareness are arbitrary, or loosely

justified from a statistical standpoint [134], which may lead to highly controversial conclu-

sions [218]. Here, although I provide weak evidence that the raw classification accuracy

may indeed carry information on awareness based on its correlation with CRS-R and other

CRS-R-based statistical criteria (notably, the relation accuracy-CRS-R virtually disap-

peared after removing the healthy control from the dataset), I argue against absolute and

universal accuracy thresholds. Instead, I recommend dataset/session-specific thresholds

based on the statistical estimation of chance levels. In particular, I have used a method

termed here as CBA which computes a chance level separately for each session at the 99%

level of significance using repeated classification with random permutation of data labels,

which has been found to be more reliable than accepting the hypothesis of a binomial

distribution of classification decisions [219].

By means of CBA, I found that evaluating classification accuracy against chance-level
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bounds offers a more parsimonious and better balanced (in terms of false positive and

false negative errors) assessment compared to all other methods. Based on my results,

CBA is probably able to prevent possible overestimation of CMD (false positives) that I

show may be likely with the assessment of significance at the individual feature level, as

sometimes proposed in the relevant literature [193]. In addition to this, CBA seems to

be less conservative than most of the other EEG metrics examined (see Figure 4.8A and

Figure 4.9), thus largely avoiding also false negatives.

Importantly, CBA is shown to be very robust when considering the (admittedly, few)

control cases present in the dataset, the only instances where the available clinical diagnosis

can actually be taken as the ground truth. In detail, the subject diagnosed with coma (S25),

which is firmly determined to lack awareness beyond any doubt by the clinicians, produced

classification accuracy below the CBA threshold during both MI and FES. Conversely,

the healthy control (S9), as well as the participant thought to be LIS (S22), were always

found to be aware. With the exception of β-band PSD separability that only fails to detect

awareness in the ostensible LIS case, all other EEG-based metrics (including the accuracy

estimates thresholded for optimal two-group separability rather than with the chance level,

and the approaches using statistical significance of individual PSDs) failed this critical test.

Furthermore, these metrics were shown to be either too conservative or too optimistic in

finding covert awareness in the spectrum spanning UWS to eMCS. Overall, motivated

by my results and similar recommendations in the literature [219, 38], I postulate that

CBA-type of evaluation should be the standard statistical inference approach when BCI-

inspired paradigms (command following or stimulation-based alike) are employed, which

rely on classification accuracy as the main diagnostic metric.

However, even in this case, there is a need of standardization of the criteria for selecting

methodological details and chance-level thresholds. For example, Edlow et al. [38] adopt

an almost identical to CBA procedure, but differ in the definition of the accuracy value

that represents the chance level at certain confidence. In this work, for a certain confidence
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level α, I choose as session-wise chance-level accuracy threshold the corresponding percent-

ile of the distribution of classification accuracy outcomes obtained with repetitive random

permutation. This is illustrated in Figure 4.1 and Figure 4.10 as the session-specific limit

denoted with red on top of each bar, where the bar height represents the actual accuracy

estimate of a session. Specifically, I have used here the 99th percentile of the random per-

mutation distribution, corresponding to confidence α = 0.01. I find that this approach and

confidence threshold are both straightforward (in terms of their statistical interpretation)

and, importantly, conservative enough to prevent over-optimistic CMD diagnosis. The

CBA-equivalent of Edlow et al. [38] for the same confidence α = 0.01 used here produces

very similar, but not identical results: the control participants are identified correctly as

aware (healthy, S9) or unaware (coma, S25), and 16 (instead of 17 with my own defini-

tion) out of 62 sessions are flagged as CMD. Out of these 16, 14 are the exact same ones

diagnosed as CMD with my own method; two are not included by my own CBA MI, and

one session is classified as aware by the CBA of Edlow et al. [38], but not by mine. For

α = 0.05, which is the less strict value reported in Edlow et al. [38], the thereby defini-

tion of CBA is again able to correctly infer both controls in the dataset (coma, healthy)

and fully agrees with my own CBA MI regarding the 17 cases found to be CMD with my

approach. However, it additionally finds latent awareness in another 7 sessions, for a less

conservative 39% CMD detection rate compared to 27% here. While, again, there is no

way to prove or disprove one or the other method or threshold, it becomes clear that there

is great need in this field to reach a consensus and standardize both the general statistical

framework and the confidence levels that should be used.

Figure 4.10 depicts the classification accuracy MI versus Rest when extracting a single

PSD estimate from the 4 s MI epoch of each trial (i.e., without sliding, overlapping win-

dows). It is easy to see that in this case only 4 sessions are found to exceed the chance level

(though, all four are meaningful cases, corresponding to the healthy control, two MCS and

one eMCS session). There are two reasons behind this effect. First, trial-wise classification
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greatly reduces the classification problem’s sample size, as a result of which the chance level

estimates with 99% confidence become particularly high. Second, DOC patients, even when

aware and vigilant, are shown to be largely unable to sustain MI for long periods of time,

while the resulting SMR modulation is less consistent than that of healthy individuals;

PSD estimation on the full trial length may thus average out short within-trial intervals of

high-quality ERD/ERS, with other trial segments exhibiting no SMR modulation whatso-

ever, thus reducing the overall separability of the PSD features between MI and Rest and,

therefore, also the classification accuracy. Based on these findings, it seems not advisable

to extract EEG neuromarkers of awareness in intervals much greater than 1 s at least as far

as command following protocols are concerned that require greater vigilance, attention and

cognitive ability. On a crucial technical note, classification accuracy should still be evalu-

ated with leave-one-trial-out, rather than leave-one-sample-out cross-validation (i.e., EEG

feature vectors coming from close nearby–potentially overlapping–short windows must al-

ways remain in the same fold, since they are not independent), as otherwise there is great

risk of inflated accuracy [220] and, therefore, also false positive CMD decisions.

A strong relation between an accuracy-based index and separability, as found in Fig-

ures 4.8 and 4.9 for CBA MI and both µ- and β-rhythm separability during MI, is by no

means peculiar; in fact, it is anything but, as the classified features must be separable

enough to be classifiable [114]. What is very interesting, however, is that separability

aligns much more with CBA MI (µ 75.8%, β 72.6%) than it does with the absolute clas-

sification accuracy during MI (43.5% and 50.0%, respectively). In addition to this, CMD

diagnosis was also very similar between these two approaches (Figure 4.9). This finding

further substantiates the conclusions reached here, in my previous work and in the liter-

ature [168, 219, 6, 38] suggesting that separability indices and session-specific chance-level

thresholding on accuracy are better indicators of covert awareness than other types of

thresholding of the raw accuracy value. One reasonable explanation for the possible un-

suitability of accuracy used as index of awareness without considering chance levels is that
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it tends to saturate around the expected value (for 2-class problems) of 50%. DOC patients,

including those thought to potentially have CMD and be able to follow commands, will

rarely manage adequate SMR modulation so as to achieve accuracy levels well above the

statistical chance level, as also found in the data (Figure 4.1A). Hence, thresholding must

happen in the crowded region around and below the chance level (here, around 50%-60%)

where the estimated accuracy is bound to be unreliable, especially given the small amount

of data usually available. This problem is unknown in the main branch of BCI literature

and practice concerned with assistive technology [114, 171], where patients are either able

to achieve accuracy well-above the chance threshold or are not considered at all as users

of the technology. In the DOC context, thresholding with the chance level threshold of

the specific dataset at hand and using conservative confidence intervals (i.e., as with the

CBA MI approach investigated here with formal 99% significance level) provides a statist-

ically sound and more trustworthy way to define a meaningful, data-driven, session-specific

threshold within this region, potentially addressing to some extent the high uncertainty of

the diagnostic problem.

My analysis also identified CRS-R thresholds that seem to create two statistically sig-

nificantly separable groups in many of the investigated EEG-based measures (Table 4.3).

When this was the case, I took it as evidence of existing association between the respect-

ive metrics and CRS-R. A useful byproduct of this analysis is that it also elucidates the

issue of finding optimal thresholds for detecting CMD by means of the traditional (purely

clinical) CRS-R approach. Although a range of values emerged across different metrics,

I noticed that the CRS-R threshold of 13 consistently appeared as a salient value. This

observation contrasts with commonly reported thresholds in the literature, such as 10 [221]

and 12 [3, 214]. Furthermore, it led to CMD predictions closer to those obtained with CBA

MI than the other two thresholds. Although it is quite clear that there can be no definitive

and universal threshold separating awareness from unawareness on the grounds of CRS-R

alone, this observation could better inform clinical diagnosis where CRS-R scoring is part
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of the evidence taken into account. Similarly, my findings imply the existence of a trans-

itional awareness range between 12 and 14 in the CRS-R scale, thus highlighting a possible

focus group for future research.

Another interesting result is that, when the group splitting was based on the neurolo-

gists’ diagnosis rather than on numerical CRS-R thresholds (Table 4.3), the classification

accuracy metric during MI became statistically significant only when the splitting criterion

was set to be between MCS- and MCS+. In contrast, µ and β separability during MI were

significant only when both MCS- and MCS+ were placed together in the “unaware”/non-

CMD group. When comparing coma and UWS against all other diagnoses, no metric could

be significantly split into two groups. Two conclusions can be drawn from these observa-

tions. First, it seems that the examined EEG-based metrics, accuracy included, may be

in fact limited in their ability to detect what definitely is the most crucial transition for

a patient, namely, the transition from UWS to the MCS. Consequently, this is another

argument in favour of CBA, as CBA does not rely on any fixed threshold on accuracy, but

on how the derived accuracy compares to the chance level in the same session. Second, it

seems that different EEG metrics may in fact better specialise in different regions of the

spectrum of awareness, thus showing complementarity to each other.

Sub-scale-specific analysis of the CRS-R revealed that the motor sub-scale correlated

significantly with two metrics, the oro-motor sub-scale with six, and the communica-

tion sub-scale with five, whereas auditory, visual, and arousal sub-scales each correlated

with three metric. Of note, when significant correlation was observed, it was for the

same EEG metrics that correlated with the total CRS-R. The prominence of motor and

language/communication-related sub-scales in my findings corroborates that EEG activity

in DOC predominantly reflects the participant’s engagement with the process of following

commands, rather than the processing of the afferent signals caused by the stimuli present

in my protocol (auditory cue stimulation, vibrotactile during FES). The relatively lower

degree of association of the motor CRS-R sub-scale with EEG compared to the commu-
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nication and oro-motor sub-scales can be explained by the fact that, during delivery of the

CRS-R, the motor responses of the patient may be compromised, which is clearly the main

motivation of resorting to EEG protocols in the first place. This further underscores the

notion that at least certain crucial aspects of latent awareness may be better assessed by

active, command-following paradigms, rather than passive ones.

The main motivation for adopting neuroimaging techniques in the assessment of aware-

ness has been the educated belief that common clinical instruments such as GCS and

CRS-R have a tendency towards Type II errors, particularly because they heavily rely on

motor responses that may be impaired or completely absent in patients with DOC (the

condition referred to as CMD). The hope is that motor intentions will be evident in the

patient’s brain activity even in the absence of overt motor output, as has been shown in

relevant BCI studies, and thus prove that a patient is following commands; thus, they must

be aware and conscious, at least to some extent. I argue that the fixation on coping with

false negatives in this field may have encouraged a certain amount of neglect for Type I

errors (false positives) and for the fact that any CMD inference method must carefully

trade both types of errors off. This has also potentially led to a bias towards methods that

may not be parsimonious enough in detecting awareness. For example, I have highlighted

above how diagnosing CMD on the basis of single EEG feature values being significantly

different between two conditions, as for example in the work of Curley et al. [193], may be

overoptimistic (hence, likely commit several Type I/false positive errors) even after correct-

ing for multiple comparisons or applying additional constraints (such as the requirement of

several adjacent PSD bands being simultaneously significant on a particular EEG channel).

Although some discount of false positives may be justified given that false negatives could

have much more severe repercussions for patient care in this context (e.g., unfortunate de-

cisions to remove life support on the grounds of undetected latent awareness), future EEG

paradigms should be able to deal with both situations. One recommendation for assessing

a method’s performance on both types of errors is to include, not only healthy (false neg-
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ative) controls, as is often the case [174], but also coma patients as definitive false positive

controls in the cohort studied. Another fruitful avenue is to include qualitative, instead of

only quantitative/statistical criteria when making inference. For example, a certain PSD

feature found to be significantly different between hand MI and Rest must be also tested

for neurophysiological relevance (i.e., whether it lies within the anticipated for MI µ or β

frequency bands, and on scalp locations corresponding to the contra/ipsi-lateral to the MI

employed regions of the sensorimotor cortex, see Figure. 4.3). A significant PSD feature

with irrelevant to MI characteristics (e.g., 40 Hz on a peripheral channel) could very likely

be the result of artifact contamination or represent some other kind of noise. This sort of

tests can be automated [172].

Given the inevitable focus on avoiding false negatives, it is important to ask the question

how the EEG metrics identified here as relevant perform in this domain. In other words,

how successful they can be in identifying covert awareness in patients thought, based on

the clinical team’s opinion, to belong to some point in the spectrum of MCS. As shown

by my analysis on Figure 4.9, most metrics seem to operate at either of two extremities:

either they find CMD in most of the clinically assessed as MCS sessions, but at the great

expense of pervasive false positives for nearly all coma and UWS ones; or, on the contrary,

they are unable to detect latent awareness in MCS, while getting the coma and UWS right.

It is thus worth to focus only on the four methods proven to strike a good balance between

Type I and II errors and be able to perfectly classify both the aware and unaware controls:

CRS-R thresholding, CBA MI and FES, and β separabiity during MI. To begin with, CRS-

R thresholding with values in the region 10-13 is shown to be a tough competitor to beat

for the EEG metrics, as it successfully reveals awareness in all eMCS sessions for all three

thresholds, as also in 50-90% of cases in the MCS+ category, and many in the MCS- class,

which is only missed for the most conservative CRS-R threshold of 13. CBA MI and FES,

as well as β separability, apart from potentially misdiagnosing 20-40% of the UWS sessions,

exhibit similar CMD detection rates with one another for all MCS levels, and these rates
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are in most cases the same or lower than those obtained with directly thresholding the

total CRS-R score. Hence, if the clinical diagnosis can be trusted, at a first glance, no

superiority of the best EEG approaches over simple CRS-R thresholds can be established.

Of course, it must be underlined again that the clinical diagnosis is mainly made on the

basis of CRS-R, which therefore has an unfair advantage in these comparisons.

However, exactly because CRS-R (and, as a consequence, a CRS-R-based diagnosis)

cannot be fully trusted, it is reasonable to assume that some of the sessions diagnosed as

UWS might have in fact been CMD. There are, in particular, several interesting patient

cases in the dataset with this profile (Table 4.4 and also Figures 4.1 and 4.5): S4, S10 and

S19 for CBA MI, S2, S4, S11, S23, S24, S28 for CBA FES and S2, S4, S10 and S28 for

β-band separability during MI. While for half of these eight patients (S2, S19, S23, S24)

there is a single session marked by a disagreement between CRS-R and EEG with no way

to tell which one is right, the remaining four patients (S4 MCS+, and S10, S11, S28 UWS)

can be distinguished by the fact that they have performed several sessions, where only the

EEG metrics are able to detect signs of awareness early on; only after one or more sessions

(where, except for S4, there is an improving trend in recovering awareness) does the CRS-R

scale manage to confirm CMD, already spotted by the EEG much earlier. It is therefore

clear that the greatest added value of EEG-based diagnosis of DOC is indeed their ability

to correct potential false negatives in the highly uncertain and contested region between

UWS and MCS. Another important conclusion from this analysis is that repeated testing

can be critical for diagnosing CMD, as also argued by Halder et al. [217]. In addition to

this, it appears that different EEG metrics may act best in tandem in order to uncover

CMD that has been missed by the clinical assessment.
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4.6 Conclusion

The absence of a definitive ground truth in DOC research necessitates reliance on the

CRS-R as the best available clinical reference. However, this reliance inevitably renders

any derived findings open to debate, particularly given that the primary motivation of this

field is to address the very limitations of the CRS-R, notably its susceptibility to type I and

type II diagnostic errors. In the absence of an alternative, widely accepted standard—as

also argued by [221]—it is currently more appropriate to focus on developing diagnostic

frameworks that distinguish awareness from unawareness, rather than attempting to pre-

dict precise scores, spectral positions, or fine-grained consciousness states. Such predictive

efforts are constrained by the scarcity of reliable ground truth and limited dataset avail-

ability. In this context, and contrary to the commonly adopted classification threshold of

10, this work proposes a more conservative threshold of 13, which demonstrated greater

consistency across multiple independent metrics.

In further support of the diagnostic potential of EEG-based, BCI-inspired approaches,

this study aligns with prior work [176, 60] in emphasizing the advantage of active paradigms

for eliciting neural signatures associated with volitional engagement and cognitive pro-

cessing. Nevertheless, the extraction of task-related epochs should be restricted to dura-

tions of approximately 1 s, reflecting probably the limited clinical capacity of DOC patients

to sustain motor imagery beyond this timeframe.

Importantly, the findings of this work also suggest that the field’s strong focus on mitig-

ating type I errors in CRS-R-based diagnosis may have inadvertently reduced sensitivity to

type II errors, which are equally detrimental in clinical decision-making. Existing neuro-

physiological metrics appear to specialize unevenly, with some favoring the detection of

covert awareness (type II correction) and others emphasizing the exclusion of false posit-

ives (type I correction). As a result, these approaches remain limited in their ability to

capture transitional states along the awareness continuum. To address this limitation, this
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thesis introduces the CBA framework, conceptually aligned with [38], which avoids reliance

on fixed thresholds and instead evaluates classified neural responses relative to empirically

derived chance levels.

Taken together, the results presented here provide strong evidence that EEG signals

encode meaningful markers of consciousness in DOC patients. Specifically, classification

accuracy, separability in the µ and β frequency bands, and δ-band effective connectivity

between central and parietal regions demonstrate notable concordance with CRS-R assess-

ments. Among these, the proposed CBA framework offers a more robust and principled

means of differentiating awareness from unawareness, particularly in the absence of an

absolute diagnostic ground truth.
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Chapter 5

Comparing Shallow vs Deep

Architectures for EEG-based DOC

decoding

Deep learning models have demonstrated remarkable success in fields such as computer

vision, medical imaging, natural language processing, and other domains where the

task involves identifying complex patterns, hierarchies, and subtle features within high-

dimensional datasets. Their ability to automatically extract and represent features at

multiple levels of abstraction has made them the dominant paradigm in these areas. How-

ever, can these advantages be directly translated to EEG-based BCI applications for the

diagnosis of DOC? While DOC diagnosis similarly requires decoding intricate neural pat-

terns, the data available in this domain are often limited in size, heterogeneous, and highly

variable across sessions and patients. These constraints raise concerns about the feasib-

ility and reliability of deep learning approaches in such clinical contexts. This chapter

addresses this question by comparing/juxtaposing the shallow model employed in Chapter

4 against three state-of-the-art deep learning architectures—EEGNet, DeepConvNet, and

EEGConformer—thereby enabling a systematic comparison of their relative strengths and
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limitations in the context of DOC diagnosis.

5.1 Introduction

The real appeal of BCI lies in their ability to facilitate direct interaction with neural

activity independent of muscular control. However, their rapid adoption—particularly in

clinical contexts—has at times outpaced the establishment of methodological standards

and validated protocols. Regardless of the application, whether for control, monitoring,

gaming, or clinical diagnosis, the performance of the classifier is critical: reliable accuracy

is indispensable for practical utility.

In recent years, the advent of deep learning has transformed classification across mul-

tiple fields, including computer vision, medical imaging, and natural language processing.

Within the BCI domain, deep learning architectures began to emerge roughly a decade

ago, gradually complementing and, in some instances, challenging the dominance of tradi-

tional shallow models. Despite promising advances, their impact in BCI applications has

so far been moderate, constrained largely by data limitations and variability inherent to

neuro-imaging.

In this chapter, I extend this line of inquiry by applying the state-of-the-art deep learn-

ing models with architecture designed specifically for EEG signals—EEGNet [7], DeepCon-

vNet [8], and EEGConformer [9]—to the EEG DOC patient dataset used in this thesis.

Their performance is systematically compared against the validated shallow model presen-

ted in Chapter 4, providing a direct comparison of their relative strengths and limitations

in this challenging clinical setting.

Prior to conducting this comparative analysis, it was anticipated that deep learning

models would struggle to achieve reliable performance with the present dataset, particu-

larly under within-subject cross-validation schemes, given the limited number of trials per

class (typically fewer than 100). Nevertheless, session-wise deep learning analyses were con-
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ducted to enable a direct comparison with the corresponding shallow ML results presented

in Chapter 4. Furthermore, EEGNet has been explicitly designed to perform robustly in

low-data EEG settings [7], and both DeepConvNet and EEGConformer have been widely

adopted in the literature, with several studies reporting strong performance even in con-

strained data scenarios [222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233]. For these

reason, their inclusion is essential to provide a comprehensive and contextually grounded

evaluation.

Accordingly, model performance was evaluated using multiple cross-validation

strategies, namely: (i) Leave-one-trial-out cross validation (LOTO), implemented in a

session-wise manner with entire trials as inputs; (ii) LOSO, also trial-based, where all tri-

als from one session were held out; and (iii) a leave-one-sample-out scheme, conducted

session-wise using 1-s windows as inputs.

5.2 Methods

For the analysis presented in this chapter, the participants (subjects), experimental appar-

atus, and protocol are the same as described in Sections 3.2, 3.3, and 3.4, as well as in the

introductory paragraph of Section 3.5. Consistent with the findings reported in Chapter 4,

where classification of the FES condition against rest did not yield significant results, the

present analysis is constrained to the MI vs Rest condition.

Following the artifact removal method described by [79] and the preproccessing method

described in Section 3.5, each run was first cleaned, subjected to DC offset removal across

all channels, and processed with a cross-neighbor Laplacian spatial filter to improve signal

localization. In cases where neighboring channels were unavailable, the Laplacian deriva-

tion was computed using the remaining available neighbors.

Unlike shallow models, which rely on handcrafted features such as PSDs across fre-

quency bands, deep learning models directly process the raw EEG signals. Accordingly,
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the continuous EEG data were segmented into MI and rest epochs, which were then fed

directly to the classifiers. Prior to classification, each epoch was normalized across all trials

per channel using Z-score standardization, in line with the requirements of deep learning

models.

For each input format, data splits were generated using precomputed leave-one-trial-

out cross-validation schemes. In the context of this thesis, a trial refers to either (i) a

4-second window of a given task condition or (ii) an entire run (i.e., a continuous block of

multiple command-following tasks). By contrast, a sample denotes a 1-second segment of a

task condition, or a single run further subdivided into overlapping 1-second windows. This

distinction is necessary because two complementary approaches—trial-level and sample-

level analysis—were adopted in this chapter.

In the first approach, the entire 4-second trial was directly fed into the classification

pipeline as a single input instance. In the second approach, each trial was decomposed into

overlapping 1-second sliding windows, with a shift of 62.5 ms or 100 ms for 512 Hz and

500 Hz sampling rates, respectively. This yielded 32 samples per trial at 512 Hz and 50

samples per trial at 500 Hz. A trial in this context was therefore defined as the collection

of all its constituent samples.

For each fold of cross-validation, one trial (i.e., all 32 or 50 samples, depending on

the sampling rate) was held out as the test set, while the remaining trials were used for

training. Predictions were obtained for all held-out samples and subsequently aggregated

via a softmax operation to yield a trial-level prediction. Finally, accuracies were averaged

across folds to compute the session-level accuracy. This approach is consistent with the

methodology described in the second paragraph of 3.5 and produced the results reported

in 4.4.

The EEG data were organized into an array of shape (N, C, T ) where N represents the

number of trials, C the number of channels, and T the number of time samples. To ensure

compatibility with two-dimensional convolutional neural networks, the array was reshaped
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to (N, 1, C, T ). This conforms to the expected input format of Conv2D layers, defined as

(batch, in − channels, height, width), analogous to image data. Here, the batch dimension

corresponds to the number of trials (N), the height to the number of channels (C), and the

width to the number of time samples (T ). The additional singleton dimension (1) specifies

the input channel, indicating that EEG represents a single modality, similar to a grayscale

image. Each input sample was associated with its corresponding label, and the sampling

frequency was also provided as model input.

The training optimization and hyperparameters was standardized across all three mod-

els. Model optimization was performed using the Adam optimizer with a learning rate

of 0.0002 and exponential decay parameters β1= 0.05 and β2= 0.999. Training was con-

ducted with a batch size of 64, while testing was performed using a batch size of 1. A

dropout rate of 0.5 was applied to mitigate overfitting, and early stopping with check-

pointing was employed to preserve the best-performing model weights. For reproducibility,

random seeds were fixed across Python, NumPy, and PyTorch to control for sources of

randomness such as weight initialization, data shuffling, and dropout masks, ensuring that

experiments could be exactly replicated on the same hardware. In addition, CUDA Deep

Neural Network (CuNN) was run in deterministic mode, and Compute Unified Device Ar-

chitecture (CUDA) optimizations were enabled to enforce reproducible behavior. At the

end of training, as expected, the number of trainable parameters varied substantially across

architectures. EEGNetv4 was the most lightweight model, with 4,090 parameters at 500

Hz and 4,202 parameters at 512 Hz. By comparison, DeepConvNet was larger, comprising

562,927 trainable parameters, while the EEGConformer contained 225,642 parameters.

All experiments were executed on a single NVIDIA GeForce GTX 1050 Graphics Pro-

cessing Unit (GPU) (driver version 577.57) using the CUDA backend for GPU-accelerated

computations. Final model performance is reported as the mean classification accuracy

across all cross-validation folds.
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5.2.1 EEGNetv4

Figure 5.1: The EEGNetv4 architecture adapted from [7]

The EEGNetv4 pipeline used in this thesis is adapted from [7], and as illustrated

in Figure 5.1, represents a compact Convolutional Neural Networks (CNN) architecture

specifically designed for EEG data. Its structure incorporates both temporal and spatial

convolutions (Conv2D and DepthwiseConv2D), conceptually comparable to conventional

shallow EEG analysis. However, the features are learned automatically, and the network

mitigates overfitting by constraining the number of trainable parameters.

The temporal convolution is defined as;

Conv2d(1 → F1, kernel = (1, Lt), padding=’same-ish’) (5.1)

This operation examines each channel independently over a temporal window of 4

seconds or 1 second (for sample/window-wise analysis), which is sufficiently large to capture

oscillatory context while avoiding overly global representations. The convolution automat-

ically learns temporal features across all frequency bands, eliminating the need for manual
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band selection. Batch normalization is then applied to stabilize activations and accelerate

training.

The depthwise spatial convolution across channels is formulated as:

Conv2d(F1 → F1 × D, kernel = (C, 1), groups = F1) (5.2)

This layer learns spatial patterns by combining electrodes for each temporal feature

independently. Depthwise convolution ensures that each temporal feature has its own

spatial filter, reducing parameter count and preventing unnecessary feature mixing. Batch

normalization is again applied, followed by the Exponential Linear Unit (ELU) activation,

chosen for its smooth nonlinearity and robust gradient propagation, which is particularly

suitable for the small-amplitude activations characteristic of EEG. Temporal downsampling

is performed via average pooling, which reduces computational load and provides invariance

to small temporal shifts. Dropout is also applied to mitigate overfitting by randomly

deactivating neurons during training.

The subsequent separable temporal convolution block further refines the learned fea-

tures. A depthwise temporal convolution is applied:

Conv2D(F1 × D → F1 × D, kernel = (1, Lsep), groups = F1 × D) (5.3)

with kernel length approximately 0.125 seconds (i.e., Lsep = round(0.125×sfreq)). This

operation refines each temporal feature map independently, capturing short-range temporal

dynamics efficiently without inter-channel mixing.

A pointwise (1×1) convolution follows:

Conv2D(F1 × D → F2), F2 = F1 × D (by default) (5.4)

which integrates information across feature maps and increases representational ca-

pacity. This is succeeded by the same sequence of operations as the first block: batch

normalization, ELU activation, average pooling for temporal downsampling, and dropout

regularization.
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For classification, the resulting feature maps are flattened and passed through a linear

layer, ensuring dimensional consistency after pooling and appropriate device placement to

prevent CPU/GPU mismatches. Additional preprocessing safeguards include:

• Leave-One-trial-Out (LOTO) cross-validation, with metrics aggregated across ses-

sions.

• Z-score normalization using training set statistics, transferred to the test set; degen-

erate standard deviations are clamped to maintain numerical stability.

• Temporal padding to ensure that the length of the temporal axis is at least pool1 ×

pool2, preventing underflow during pooling.

• Logging and skipping of invalid or empty folds to avoid propagation of NaN values.

Overall, a widely cited advantage of EEGNet is its strong performance in low-data

regimes despite being a deep learning model. As originally demonstrated by Lawhern

et al. [7], EEGNet achieves parameter efficiency through a compact architectural design

with a markedly reduced number of trainable parameters, thereby mitigating overfitting.

This characterization is further supported by Roy et al. [234], who position EEGNet as a

benchmark architecture for training deep models on single-subject EEG data. Similarly,

Schirrmeister et al. [8] report that EEGNet performs competitively, and often compar-

ably, to more complex architectures when data availability is limited. Additional studies

highlight its versatility [235], reproducibility, and suitability for transfer learning [236].

Nevertheless, EEGNet assumes relative signal stationarity within fixed temporal win-

dows, which may limit its adaptability in dynamic or real-time applications [237, 238]..

This limitation is not prohibitive in the context of the present work, as the primary ob-

jective is the development of accurate diagnostic BCI-inspired protocols for DOC, rather

than real-time deployment. Furthermore, EEGNet has been shown to be sensitive to hy-

perparameter selection [239] and may exhibit reduced performance when applied to highly
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complex or heterogeneous feature representations. To achieve optimal performance, prior

work recommends rigorous preprocessing, including artifact rejection, band-pass filtering,

and regularization strategies such as dropout (typically set to 0.5), weight decay, and

cross-validation [7].

Conceptually, EEGNet closely mirrors traditional EEG signal processing pipelines: its

learned temporal filters resemble band-pass filtering, depthwise spatial convolutions cap-

ture spatial patterns analogous to common spatial patterns (CSP), and separable temporal

convolutions refine short-term temporal dynamics. This strong inductive bias, coupled with

extreme parameter efficiency—often fewer than 5,000 trainable parameters per time win-

dow, compared to hundreds of thousands in many deep architectures—renders EEGNet

a robust and practical baseline for deep learning in EEG research, particularly in data-

constrained clinical settings.

5.2.2 Deep ConvNet

The DeepConvNet pipeline described in this thesis is adapted from [8] with minimal modi-

fications. As illustrated in Figure 5.2, the architecture consists of four sequential convolu-

tional blocks. The first block performs temporal convolutions to learn frequency-selective

filters, followed by a spatial convolution that captures distributed spatial patterns across

electrodes. Pooling is subsequently applied to reduce temporal resolution and normalize

the resulting feature maps. Both the deep and shallow ConvNet variants automatically

adapt their kernel and pooling sizes to the sampling frequency of the data—500 Hz and

512 Hz, respectively. Time-consistent “same-ish” padding was applied, and trials were

right-padded as necessary to survive repeated pooling operations. For the DeepConvNet,

temporal kernel and pooling sizes were scaled as follows:

• Temporal kernel size: k-time = round(10 × sf/250), yielding approximately 20–21

at 500–512 Hz. Odd values (≥ 3) were enforced to allow symmetric padding.
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• Pooling size: p-time = max(2, round(3 × sf/250)), yielding approximately 6 at

500–512 Hz.

The four convolutional blocks are described as follows:

• Block 1 (temporal + spatial): A temporal convolution with kernel (1, k) learns

frequency-selective filters, conceptually analogous to traditional band-pass filtering

but optimized in a data-driven manner. This is followed by a spatial convolution

with kernel (C, 1), which captures spatial relationships across electrodes, functionally

similar to CSP. Each convolutional stage is followed by batch normalization, an ELU

activation, max pooling (kernel = (1, p)) for temporal downsampling and invariance,

and dropout regularization to mitigate overfitting.

• Blocks 2–4: Each subsequent block consists of a temporal convolution (kernel =

(1, k)), followed by batch normalization, ELU activation, max pooling, and dropout.

The number of channels increases progressively across blocks (50 → 100 → 200),

expanding the network’s representational capacity with depth.

• Classifier: The final feature maps are flattened and passed through a linear classific-

ation layer mapping to two classes.

In this architecture, temporal convolutions function as learned band-pass filters, while

spatial convolutions extract physiologically meaningful montages through contrastive

weighting of electrodes. The combination of ELU activations with batch normalization

stabilizes training on low signal-to-noise EEG data. Max pooling reduces the sequence

length and provides temporal invariance; however, because four successive pooling layers

are applied, the temporal axis must remain at least p4 in length. Accordingly, trials were

padded during preprocessing to prevent underflow.
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Figure 5.2: The DeepConvNet architecture adapted from [8]

DeepConvNet is generally more susceptible to overfitting than EEGNet when applied

to small datasets [7, 234], primarily due to its substantially larger parameter count [8].

Its effective performance is therefore strongly contingent on the use of robust regular-
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ization strategies, including batch normalization, weight decay, dropout, careful hyper-

parameter optimization, transfer learning, and appropriate within-subject or cross-subject

cross-validation schemes [239]. Despite these challenges, DeepConvNet represents one of

the earliest architectures to demonstrate end-to-end deep learning directly on raw EEG

signals [235] and has served as a benchmark model in studies involving larger datasets.

Prior work suggests that when the number of trials per subject is limited (e.g., fewer

than approximately 100 trials), EEGNet may provide a more appropriate and stable altern-

ative [7, 234]. In contrast, DeepConvNet, with an approximate parameter count of 570,000

and comparatively weaker inductive bias, is better suited to scenarios where sufficient data

are available to support effective generalization. However, several studies [222, 231] con-

tinue to employ DeepConvNet even in small-sample settings, typically in conjunction with

extensive regularization and validation strategies.

5.2.3 EEGConformer

Based on the description in [9], the EEGConformer architecture was adapted for this work

with minimal modifications. As illustrated in Figure 5.3, the networkk consists of a con-

volutional front-end, followed by self-attention layers, and concludes with a classification

module. Short 1-D or 2-D convolutions were applied over time-and in some cases, across

channels-to extract local patterns, such as transient rhythms or event-related deflections.

These convolutional layers act as learned band-pass/time–frequency filters, generating com-

pact feature maps that serve as input to subsequent attention modules.

Each Conformer block integrates multiple complementary components which are sum-

marized as follows:

• Feed-Forward Network (FFN) with residual connection: Expands and reprojects

features, enhancing the network’s representational capacity.

• Multi-Head Self-Attention (MHSA): Captures global temporal dependencies across
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the entire trial, allowing the network to model delayed or phase-related interactions.

The multi-head design enables simultaneous attention to multiple temporal scales

and patterns.

• Depthwise Separable Convolution Module: Captures local time–frequency structure

and short-range temporal continuity that attention mechanisms alone may overlook.

• Layer Normalization and Residual Connections: Stabilize training, preserve gradient

flow, and facilitate the construction of deeper networks.

• Attention-Convolution Synergy: By combining MHSA and convolutional modules,

the network simultaneously models long-range temporal dependencies and local EEG

motifs, reflecting the dual temporal structure characteristic of EEG signals.

The output sequence from the final Conformer block is pooled and flattened before being

passed through a linear layer mapping to two classes. This operation transforms sequence-

level representations into trial-level logits suitable for classification. Convolutions in both

the front-end and depthwise modules capture localized EEG features, such as ERD/ERS

rhythms, while attention layers integrate information across the entire trial. Residual

connections and layer normalization further enhance stability, gradient propagation, and

generalization, making EEGConformer particularly well-suited for low signal-to-noise EEG

data.

EEGConformer constitutes a substantial methodological progression in EEG decod-

ing, reflecting a shift from exclusively convolutional architectures toward hybrid models

that integrate neuro-inspired feature extraction with transformer-based attention mech-

anisms [9]. This design alleviates the restricted receptive fields inherent to conventional

convolutional networks and enables the modeling of long-range temporal dependencies in

neural signals [9]. At the same time, the reduced inductive bias of transformer components

increases the model’s flexibility, but also renders it considerably more data-intensive.
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Figure 5.3: The EEGConformer architecture adapted from [9]

The architecture has attracted considerable attention due to its strong theoretical

foundations, competitive performance across a range of EEG decoding benchmarks, and

the introduction of attention-driven representations into BCI research. Nevertheless, EE-

GConformer is computationally demanding, typically comprising between 0.5 and 1 mil-

lion trainable parameters [9], and is therefore more susceptible to overfitting, particu-

larly in limited-data settings [236]. Its performance is also highly dependent on careful

hyperparameter tuning. Despite these challenges, studies have shown that, when prop-

erly trained, EEGConformer can achieve state-of-the-art accuracy in major EEG decoding

tasks [9]. Moreover, its compatibility with emerging self-supervised and large-scale pre-

training paradigms has further increased its adoption [136], even in studies with relatively

modest sample sizes [223, 224, 227].

Consequently, although EEGConformer offers substantial representational power, its

optimal use lies in specialized applications—ideally leveraging transfer learning—where

capturing global temporal structure and complex interdependencies is essential.

In summary, the table below provides a comparative overview of the three models.
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Table 5.1: Comparison of EEGNet, DeepConvNet, and EEGConformer architectures for

EEG-based decoding.

Feature EEGNet [7] DeepConvNet [8] EEGConformer [9]

Core Design

Philosophy

Domain-optimised compact

CNN. Uses depthwise and

separable convolutions to

hardcode efficient

EEG-specific feature

(temporal → spatial)

processing [7].

Generic deep CNN. A

standard deep learning stack

applied to EEG for

hierarchical feature

learning [8].

Hybrid CNN–Transformer.

Combines CNN local feature

extraction with transformer

global self-attention for

long-range context

modelling [9].

Parameter

Efficiency

Extremely high

(approximately 2K–5K

parameters)[7]. The key

strength. Minimal trainable

weights.

Very low (approximately

570K parameters). Large,

dense layers with many

trainable weights [8].

Moderate to low

(approximately 500K–1M

parameters) [9]. More

efficient than DeepConvNet

but larger than EEGNet.

Complexity depends on

transformer depth.

Inductive Bias Strong and explicit.

Architecture mirrors standard

EEG analysis pipelines

(temporal filtering → spatial

filtering) [7].

Weak and generic. Learns

hierarchical representations

but must discover

EEG-specific structure from

data [8].

Hybrid. Strong local bias

from CNN front-end; weak

global bias from transformer

attention mechanisms [9].

Performance with

small datasets

(<100 trials per

class)

Excellent. Default

recommendation. Low

parameter count naturally

resists overfitting and works

well with basic

regularization [7].

Poor (unless heavily

engineered). Highly prone to

overfitting [7]. Requires

aggressive regularization, data

augmentation, or

pre-training [239].

Poor from scratch, excellent

with pre-training.

Transformer components are

data-hungry and require

large-scale pre-training

followed by

fine-tuning [9, 236].

Continued on next page
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Feature EEGNet [7] DeepConvNet [8] EEGConformer [9]

Key Strengths 1. Robust benchmark baseline

2. High efficiency and

training stability

3. Generalizable across EEG

paradigms

4. Well-suited for transfer

learning [7, 240, 236]

1. High representational

capacity

2. Strong performance when

data is abundant

3. Serves as a foundational

proof-of-concept for

end-to-end deep EEG

4. Early-layer filters are

interpretable [8, 235]

1. Superior performance on

complex tasks

2. Ability to model long-range

temporal dependencies

3. Attention mechanisms

provide enhanced

interpretability

4. Ideal for pre-training and

self-supervised learning

paradigms [9, 43, 236]

Primary

Criticisms

1. Limited capacity for very

complex/long-range features

2. Can be simplistic for tasks

needing deep hierarchy [67]

1. Severely overfits with small

data-hungry

2. Computationally expensive

3. Parameter-inefficient for

EEG-specific

4. Deep layers are less

interpretable [7, 234]

1. Computationally heavy to

train

2. Requires large-scale

pre-training for effectiveness

3. Complex hyperparameter

tuning

4. Attention maps are not

automatically clear []

Interpretability Good (first layers). Temporal

kernels = bandpass filters;

spatial kernels = scalp

topographies. Deeper layer

fusion is less clear [7].

Good (first layers). Similar to

EEGNet for early layers.

Higher-layer features become

abstract and hard to map [8].

Novel but complex. Attention

weights show which time

points interact, potentially

revealing connectivity, but

require careful validation [9]

Ideal use cases 1. Standard baseline for any

new task

2. Studies with limited data

3. Rapid prototyping and

transfer learning [234, 240]

1. Offline analysis of

large-scale EEG datasets

2. Research on advanced

regularization techniques

3. As a pre-trained feature

extractor (transfer

learning) [8, 239]

1. Complex tasks with

long-range dependencies

(sleep staging, seizure

prediction, cognitive state)

2. Downstream tasks with

access to large pre-training

3. When attention-based

interpretability is a goal [9]

Continued on next page



5.3 Results 127

Feature EEGNet [7] DeepConvNet [8] EEGConformer [9]

Recommended You need a reliable, efficient,

and reproducible baseline

that works “out of the box”

with limited data

You have a very large dataset

or are explicitly studying how

to regularize deep CNNs for

EEG

You have resources for

pre-training/fine-tuning and

your task explicitly benefits

from global context modeling

The cross-validation accuracies obtained from three state-of-the-art deep learning mod-

els were compared against the PSD-based LDA classifier introduced in Chapter 4. Cross-

validation was conducted at two levels of data partitioning: (i) trial-wise, in which entire

trials were excluded from training, and (ii) sample-wise, where individual temporal win-

dows within trials were held out.

5.3 Results

Figure 5.4 shows a 2-class classification accuracy for MI vs Rest across all subjects using

full trials, comparing three state-of-the-art deep learning models (EEGNet, DeepConvNet,

and EEGConformer) with a shallow model. All three deep learning models achieved ac-

curacies above the 50% random chance level. However, when assessed against the stricter

binomial threshold, only 29 sessions (47%) with EEGNet exceeded this level, compared

to all 62 sessions (100%) with both DeepConvNet and EEGConformer. In contrast, the

shallow model surpassed the permutation-based chance level in only 5 sessions (8.1%). Not-

ably, coma subject S25, 1 exceeded the random chance bound with EEGNet but not the

binomial threshold, while both DeepConvNet and EEGConformer classified this subject

above both thresholds. Similarly, the healthy subject S9, 1 and S9, 2 failed to exceed the

binomial threshold with EEGNet but did so with the other two deep models, suggesting less

consistent performance with EEGNet. Interestingly, several DOC patients outperformed

the healthy control when analyzed with the deep learning models—a characteristic absent

in the shallow model.
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C D

A B

Figure 5.4: Classification Accuracy MI vs Rest with leave-one-trial-out cross-validation

for all subject sessions with full trials (A) EEGNet (B) DeepConvNet (C) EEGConformer

(D) Shallow Model. The horizontal red line illustrates the expected value of the random

chance level for 2-class problems, the horizontal dashed line indicates a 45 trials/2-class

BCI binomial chance level with 99% confidence [10] while the session-wise lines in (D)

indicate the permutation-based chance level with 99% confidence [6]

Figure 5.5 presents the results obtained using windowed segments of the EEG signals,

which were processed by the deep learning models and, in the case of the shallow model,

as PSD features. With this approach, 55 sessions (89%) exceeded the binomial chance

level using EEGNet, 51 sessions (82%) with DeepConvNet, and all 62 sessions (100%) with

EEGConformer. In sharp contrast, only 17 sessions (27%) surpassed the permutation based

threshold with the shallow model. Unlike the full-trial analysis, where the coma subject

failed to exceed the binomial threshold under EEGNet, the windowed-segment approach
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Figure 5.5: Classification Accuracy MI vs Rest with leave-one-trial-out cross-validation

for all subject sessions with windowed smaples (A) EEGNet (B) DeepConvNet (C) EE-

GConformer (D) Shallow Model. The horizontal red line illustrates the expected value

of the random chance level for 2-class problems, the horizontal dashed line indicates a 45

trials/2-class BCI binomial chance level with 99% confidence [10] while the session-wise

lines in (D) indicate the permutation-based chance level with 99% confidence [6]
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revealed the opposite pattern: the subject failed only with DeepConvNet. Furthermore,

several DOC patients were classified with higher accuracy than healthy control by the deep

models. Notably, DeepConvNet achieved both levels of control but also classified a number

of DOC patients more accurately than healthy subject. This inconsistency was absent in

the shallow model, which consistently classified the coma subject below both random and

permutation-based thresholds, while placing the healthy subject above the DOC group.

C D

BA

Figure 5.6: Classification Accuracy MI vs Rest with leave-one-session-out cross-validation

for all subject sessions with full sessional runs (A) EEGNet (B) DeepConvNet (C) EEG-

Conformer (D) Shallow Model. The horizontal red line illustrates the expected value of

the random chance level for 2-class problems, the horizontal dashed line indicates a 45

trials/2-class BCI binomial chance level with 99% confidence [10] while the session-wise

lines in (D) indicate the permutation-based chance level with 99% confidence [6]

Figure 5.6 presents the classification results obtained using a leave-one-session-out cross-
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validation scheme. This strategy was adopted under the hypothesis that training on all

remaining sessions would provide sufficient data for the models to generalise to the held-

out session. However, across all three deep learning architectures—and, as expected, the

shallow classifier—no session achieved performance exceeding the corresponding random

or binomial chance-level thresholds. Consequently, classification performance across all

sessions is consistent with chance-level prediction.

Figure 5.7: Regression predictive performance of CRS-R with classification accuracies of

the models as the metric.

To further investigate model behaviour, Figure 5.7 presents the regression performance

of these models under the leave-one-session-out cross-validation scheme, using classifica-

tion accuracy as the predictive variable. Consistent with the classification results, the

regression outputs exhibit substantial variability and appear largely random. Notably, the

coma control (red marker) is consistently assigned predicted values above the threshold of

10, thereby being incorrectly classified as aware, while the healthy control is repeatedly

predicted at levels comparable to the coma patient. These patterns further underscore the

lack of reliable generalisation under this validation framework.
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5.4 Discussion

The sole aim of this chapter has been to compare state-of-the-art deep learning pipelines

with a classical shallow model, using the sizeable novel dataset employed in this thesis and

derived by a standard command-following MI paradigm [6, 168]. In other words, I have

attempted to study whether the classification accuracy metric extracted with deep neural

network models yields an added value when it comes to inferring CMD in DOC. The clas-

sification accuracy results obtained with both the full-trial and the sample/window-based

analysis with deep learning models are very consistent and exhibit the same characterist-

ics. First, all deep learning models resulted in much higher average accuracy compared to

LDA; this is true also for the vast majority of the individual session results. Second, this

effect is clearly correlated with the size and expressiveness of the model, with the EEGCon-

former (which is equipped with both transformer-like, far-sighted, attention-based features

and the ability to extract spatial/spectral/temporal dependencies through convolution)

outperforming the DeepConvNet (which is only capable of the latter), while they both

significantly outperform the shallower EEGNet architecture. As a result, the accuracy of

most of the individual sessions exceeds the statistical significance threshold for most of the

sessions and, again, increasingly so for the deeper and more expressive models. It must

be noted that chance levels were extracted here with a binomial distribution assumption

for classification outcomes despite this assumption’s known limitations, due to the great

computational burden of using random shuffling of labels with deep models.

While at a first, superficial glance the above observations may lead to the conclusion

that deep learning can indeed have great impact in diagnosing command-following beha-

viour in DOC, the other emerging commonalities of these results tell an entirely different

story. Specifically, the accuracy extracted with the deep models with respect to the control

subject/sessions seems to be erratic and completely unreasonable. On the one hand, in all

cases but two (EEGNet trial-wise and DeepConvNet sample-wise) the deep models found
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the coma control participant, S25, 1, to show signs of awareness, as the corresponding

accuracy is well above chance. Even more strangely, the coma patient accuracy results

are in fact shown to exceed the performance of the healthy control and of patients clin-

ically diagnosed to be somewhere in the MCS spectrum and, thus, aware to some extent.

On the other hand, the results become even more counterintuitive when it comes to the

healthy control sessions, S9, 1 and S9, 2. Not only does the EEGNet miss the (beyond any

doubt) full-awareness state of the healthy control in the trial-wise classification scenario,

but, overall, the sensible outcomes of the shallow model, where the healthy control sessions

vastly exceed the accuracy of all other subjects, is not replicated at all by the deep archi-

tectures: in all these cases, the performance of the healthy subject lies somewhere close to

the average accuracy of the studied population.

First, it is worth to highlight that, also the results of this chapter, underline the need

for large control groups on both sides of the awareness spectrum (coma, healthy) that

I have inferred in the previous chapter, since, absent these controls, the findings here

could have been easily misinterpreted as being favourable to the use of deep learning in

DOC. Importantly, these paradoxical control-session findings cannot be blamed on the

limitations induced by the binomial assumption to extract chance levels, as the the erratic

behaviour regards the absolute accuracy values and not only their relation to the chance

level definition used.

Clearly, on the grounds of a complete failure of deep neural network models to correctly

classify the control patients, and of their overall overoptimistic tendency to diagnose almost

all sessions as CMD (which I have postulated is sign of a weak diagnosing capacity, prone

to false positives, also for other EEG metrics in chapter 5), it is my strong opinion that

these results cannot be taken at face value. It is thus crucial to interpret these outcomes

and identify potential causes explaining the unanticipated behaviour. Towards this goal,

I have come up with two hypotheses, which may have acted individually or in tandem to

produce such confusing findings.



134 CHAPTER 5. Comparing Shallow vs Deep Architectures

First, it is observed that the aforementioned correlation between the depth and ex-

pressiveness of the models and the average accuracy obtained indicates overfitting caused

by data leakage. However, this cannot be a typical case of data leakage, as all results were

acquired with LOTO cross-validation (and the corresponding code has been subjected to

meticulous testing for bugs), keeping dependent samples in the same fold and thus prevent-

ing data leakage overestimating accuracy, exactly like it has been done for the LDA model.

Nevertheless, it is possible that data leakage could still have occurred because adjacent

and, in general, nearby trials of EEG are only a few seconds apart and thus still somewhat

auto-correlated; hence, still, not entirely independent. While LOTO cross-validation is

shown to be enough for eliminating any effect of such small dependency for shallow mod-

els with low expressiveness (and, thus, no big tendency to overfit), the profound learning

capacity and expressiveness of deep models probably renders them able to discover very

subtle similarities of even slightly correlated samples that appear in both the training and

testing folds, so that data leakage is not avoided. This hypothesis is consistent with the

observed effect where larger models showcased higher accuracy.

Second, I conjecture that the difference of feeding PSD samples to the shallow model

and time-domain signals to the deep models may also, partly or fully, explain the ostensible

overfitting effect. Furthermore, all 16 recorded channels were fed to the deep models, while

the too frontal channel Fz was rejected for the shallow model analysis, which could have also

played a role. The PSD input to the shallow model effectively guarantees that LDA only

attempts to classify SMR rhythms between Rest and MI, in accordance with the relevant

neurophysiological background in the context of a command-following protocol involving

MI tasks. On the contrary, the deep models, being able to process the raw data and

implementing their own, embedded feature extraction, are not constrained to exploiting any

particular feature domain and brain phenomenon. This opens the door to the exploitation

of features that may be differentially modulated within the periods labeled as either Rest

or motor attempt, but in fact have no relation to command following and, consequently,
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to awareness. For example, it could be that remnants of the auditory cue in the trial data,

which are different between the two tasks (“Bougez”, “Ne bougez pas”), despite the fact

that the first second of each epoch was discarded for this very reason, are classified with

high accuracy giving the false impression that MI is successfully distinguished from idling,

even for the coma patient. Another possibility is that artifacts which were not completely

removed by the FORCe method and are correlated with the class labels generate “fake”

separability, unrelated to the command-following task, especially in view of the fact that

the highly vulnerable to artifacts Fz channel was maintained in the processing pipeline in

this case. Of note, class-correlated artifacts are a known issue in SMR BCI. For example,

able-bodied participants often tend to assume specific body postures when performing

specific MI tasks (e.g., lean their head/body right for right-hand MI, and left for left-hand,

which can induce muscular and movement artifacts). Similar effects might have occurred

in this protocol, especially since many subjects tended react to the FES stimulation with

movements, often lasting several seconds. Again, since state-of-the-art artifact removal has

been performed, I believe that these potential issues had no effect on the LDA classifier,

but artifact residuals may have been spotted by the deep models to inflate their accuracy

estimates.

I further note that my original intuition suggested that the deep learning models would

fail to exhibit higher (or, at least, considerably higher) accuracy, because, in order to enable

direct comparisons with the shallow model results, all classification tasks were forced to

only exploit session-specific data (i.e., a mere 45 trials per class); I thus believed that

the overfitting tendency of large models in conjunction with the provision of very small

data would prevent these models to achieve high classification accuracy, which is obviously

not the case. Irrespective of the aforementioned discussion where I lay out why I am

convinced that the–eventually–high accuracy observed is anyway bogus, I must stress that

a, probably, fairer evaluation of the added value deep learning can contribute to this

particular application would entail leave-one-subject-out cross-validation, so that the big
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dataset used here can be leveraged and provide, hopefully, adequately big data for the

deep models to learn maybe subtle, but actually consciousness-related patterns that a

shallow model will miss, while also avoiding data leakage due to trial dependencies. This

investigation has been left as future work due to time limitations of training many versions

of deep architectures. Nevertheless, it must be already discussed that a big question

pertaining to this transfer learning approach is the extent to which SMR patterns are

transferrable among individuals and, especially, DOC patients. Current transfer learning

and domain adaptation approaches applied to MI BCI seem to yield improvements, but

those seem to be, so far, rather limited [241, 242]. In any case, future work along this line

of research is expected to elucidate these points in the DOC context.

Figure 4.10 (in this chapter, Figure 5.4D) depicts the classification accuracy MI versus

Rest when extracting a single PSD estimate from the 4 s MI epoch of each trial (i.e.,

without sliding, overlapping windows). It is easy to see that in this case only 4 sessions

are found to exceed the chance level (though, all four are meaningful cases, corresponding

to the healthy control, two MCS and one eMCS session). There are two possible reasons

behind this effect. First, trial-wise classification greatly reduces the classification problem’s

sample size, as a result of which the chance level estimates with 99% confidence become

particularly high. Second, DOC patients, even when aware and vigilant, are shown to be

largely unable to sustain MI for long periods of time, while the resulting SMR modulation

is less consistent than that of healthy individuals; PSD estimation on the full trial length

may thus average out short within-trial intervals of high-quality ERD/ERS, with other trial

segments exhibiting no SMR modulation whatsoever, thus reducing the overall separability

of the PSD features between MI and Rest and, therefore, also the classification accuracy.

Based on these findings, it seems not advisable to extract EEG neuromarkers of awareness

in intervals much greater than 1 s at least as far as command following protocols are

concerned that require greater vigilance, attention and cognitive ability.

Finally, as evidenced by Figures 5.6 and 5.7, the deep learning architectures generally
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failed to discriminate MI from rest under this validation scheme, even when trained with

comparatively more data within the LOSO transfer learning scheme. This outcome suggests

that the underlying neural representations are insufficiently separable in this context, a

limitation that is likewise observed with the shallow classifier. Moreover, any weak or

session-specific separability that may exist does not appear to transfer across sessions,

further limiting the generalisability of these models.

5.5 Conclusion

Deep learning models have demonstrated remarkable success in domains characterized by

large, well-annotated datasets. However, in fields such as BCI and BCI-inspired EEG

research, data availability is often severely limited and marked by substantial inter- and

intra-subject variability. Under such conditions, deep architectures are generally assumed

to perform suboptimally. EEGNet, a domain-specific architecture, challenges this assump-

tion to some extent by incorporating strong inductive biases tailored to EEG signals.

In parallel, numerous studies have reported promising results using generic convolutional

neural networks and, more recently, transformer-based architectures. These mixed findings

have broadened the range of acceptable modeling frameworks and underscored the need

for systematic validation of deep learning models on clinically realistic EEG datasets.

As demonstrated by the results presented in this chapter, model expressiveness increases

with architectural complexity. At face value, this expressiveness might be misinterpreted

as evidence of meaningful awareness-related signal decoding. However, examination of

control conditions reveals that these models fail to generalise reliably, indicating substantial

overfitting, even when data augmentation strategies embedded within the architectures are

employed.

Moreover, increasing the amount of training data through LOSO cross-validation does

not improve robustness; instead, predictive performance becomes increasingly unstable



138 CHAPTER 5. Comparing Shallow vs Deep Architectures

and approaches randomness. This outcome highlights the lack of transferable discrim-

inative features within the highly variable within-subject structure of DOC EEG data.

Consequently, in this setting, shallow models demonstrate superior reliability and inter-

pretability compared to more complex deep learning architectures.
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Chapter 6

Conclusion & Future Work

The diagnosis of DOC remains a significant clinical challenge, with current behavioral

scales prone to diagnostic errors. However, the findings presented here confirm that EEG

carries valuable information regarding the state of awareness in DOC patients. Specific-

ally, classification accuracy and the µ/β-band separability of MI PSD features, together

with centro-parietal δ-band connectivity during MI and resting states, show statistically

significant correlations with CRS-R scores. Furthermore, metric-specific thresholds could

be established to reliably distinguish awareness from non-awareness. These results provide

important insights into the ability of EEG-based metrics to detect CMD and to reduce

the false-negative limitations of CRS-R. At the same time, this work cautions against po-

tential statistical misuse of these metrics, which could otherwise lead to over-optimistic

interpretations of latent awareness.

6.1 Introduction

As discussed in Chapter 1, the primary aim of this research was to evaluate the effectiveness

of widely used EEG-based approaches for diagnosing awareness, alongside state-of-the-art

deep learning models for neural feature classification. This evaluation was conducted using
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a large, novel dataset acquired from 28 DOC patients in a real-world ICU setting. In line

with prior literature, an active paradigm was adopted—specifically, a MI-based command-

following EEG protocol. The focus of this thesis is strictly diagnostic; prognostic outcomes

related to recovery or survival were intentionally excluded.

A range of contemporary EEG-derived metrics was extracted, including classification

accuracy, brain rhythm power and separability across task conditions, effective connectiv-

ity, spectral slope, and the PCI. These metrics were computed from MI, rest, and FES

epochs. While not exhaustive, this set encompasses, to the best of my knowledge, the

most promising neurophysiological markers currently proposed for awareness detection in

DOC. All metrics were subsequently contrasted with CRS-R scores, the current clinical

gold standard for assessing awareness following ABI. In addition, classification perform-

ance achieved using deep learning pipelines was systematically compared against that of

conventional shallow models within the DOC population.

The results demonstrate that EEG signals contain clinically meaningful markers of

awareness. As shown by the regression analyses in Chapter 4, an ensemble of relevant

EEG-based metrics significantly predicts session-wise CRS-R scores. Importantly, this

work also indicates that the neural mechanisms underlying DOC differ fundamentally

from those characterizing other neurological conditions, supporting the view that DOC

should be investigated as a distinct clinical entity. Even within this focused framework,

substantial inter- and intra-subject variability persists, which limits the effectiveness of

transfer learning approaches. This variability in transfer learning context, is particularly

detrimental to shallow classifiers, which struggle to capture sufficiently stable patterns to

generalize to unseen patients, as evidenced by the results in Chapter 4.

A persistent challenge in DOC research is the limited availability of large-scale data-

sets. Although the dataset used in this thesis—comprising 28 subjects and 62 recording

sessions—is novel and comparatively large for this domain, it remains insufficient to sup-

port robust generalization, especially for data-hungry deep learning architectures. This
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limitation leaves many findings open to debate. The challenge is further compounded by

the absence of a reliable ground truth, which forces continued reliance on the CRS-R,

despite its known limitations. Together, data scarcity and pronounced neural variability

directly constrain the applicability of deep learning methods in this field.

Another key observation from this work is that the strong emphasis on correcting type II

errors in CRS-R-based diagnosis may have inadvertently led to insufficient attention to

type I errors. While minimizing false negatives is critical given the clinical implications

of withdrawal-of-care decisions, a clinically acceptable diagnostic framework must address

both error types. This consideration motivated the introduction of the CBA framework in

this thesis. In the absence of a trusted ground truth, CBA provides a principled diagnostic

approach by evaluating neural classification performance relative to empirical chance levels

rather than fixed thresholds. The results in Chapter 4 demonstrate that CBA offers su-

perior robustness for distinguishing awareness from unawareness.

Based on the findings of this research, it is recommended that ML pipelines for DOC

diagnosis prioritize well-regularized shallow models, given the high variability and limited

data volumes characteristic of this domain. Furthermore, chance-level–based classification

accuracy emerges as one of the most reliable indicators of awareness. Looking forward,

meaningful progress will require coordinated, multi-centre data collection efforts to es-

tablish shared DOC datasets. While ethical considerations and data governance remain

significant challenges, such collaboration is essential. Ultimately, convergence on robust

diagnostic markers must precede any large-scale efforts toward predictive modelling or

prognosis in DOC.

6.2 Contributions to Knowledge

This thesis advances the diagnosis of awareness in DOC using BCI-inspired protocols by:

• Validating EEG biomarkers in a real ICU environment: Multiple state-of-the-art
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EEG-based diagnostic metrics are validated using a novel dataset spanning the full

DOC spectrum, collected in a real-world ICU setting.

• Integrating multi-metric biomarkers for consciousness assessment: Rather than

relying on a single biomarker, this work systematically evaluates and contrasts a

range of complementary EEG-based metrics to assess awareness.

• Establishing quantitative thresholds for awareness: The study proposes data-driven,

metric-specific thresholds to discriminate between aware and unaware states, con-

tributing toward more objective and clinically interpretable criteria for consciousness

assessment.

• Evaluating deep learning against shallow EEG classifiers: A methodological compar-

ison of deep learning architectures and conventional shallow classifiers is conducted,

providing context-specific insight into their relative performance in DOC diagnosis.

• Providing context-aware insights into classification in DOC: Instead of presuming

the superiority of deep learning approaches, this work offers empirical evidence on the

limitations and applicability of deep models in clinical EEG-based DOC assessment.

6.3 General Conclusion

In this thesis, As was discussed in Chapter 1, the motivating aim of this research was to

evaluate the effectiveness of several widely used EEG-based methods for the diagnosis of

awareness, as well as state-of-the-art deep learning models with classifying neural features,

by applying them to a large novel dataset collected from 28 DOC patients in a real ICU

environment. And as proposed in literature, I adopted the active paradigm-the MI-based

command-following EEG protocol. Also, I focus exclusively on diagnosis, without discuss-

ing here the prognosis of emergence from DOC and/or survival. Specifically, I extracted
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state-of-the-art EEG-based metrics, such as classification accuracy, brain rhythms and their

separability between mental task conditions, effective connectivity, spectrum slope and PCI

from MI, rest and FES epochs. Although this is not an exhaustive list, it contains, to the

best of my knowledge, the most promising metrics introduced so far in this line of research.

I then contrasted these measures to CRS-R scores, the current gold-standard clinical meas-

ure of awareness following ABI. I also compared the classification accuracies achieved via

the deep learning pipelines to the shallow pipeline with respect to DOC population.

Overall, my findings reinforce the conclusion that EEG signals carry meaningful mark-

ers of consciousness in DOC patients. I deduce that, classification accuracy, µ- and β-band

separability, and δ-band effective connectivity between central and parietal brain regions

show clear evidence of agreement with the CRS-R assessment and ability to discrimin-

ate groups with different levels of awareness when applied to MI and, in some cases, rest

intervals, but not during FES epochs. On the contrary, measures like Kolmogorov and

Lempel-Ziv complexity [188, 243] or the slope of the EEG spectrum [190, 203] that have

been proposed by other studies as putative neuromarkers of awareness and/or conscious-

ness were not found to be relevant here. Importantly, extending my previous preliminary

work [6], I postulate that, in order to avoid overly optimistic results regarding the inference

of latent awareness and CMD, the usage of classification accuracy as a marker of aware-

ness in DOC should be determined by means of subject/session dataset-specific statistical

bounds that are common in BCI and ML literature, such as the statistical thresholds of

“chance-level” classification, rather than on generic, population-wide thresholds on the

accuracy value. I also posit that, given the peculiarities of EEG datasets—which may

increase the risk of data leakage—together with the methodological differences between

architectures (i.e., providing pre-computed PSD features to shallow models versus feeding

raw time-domain signals, sometimes containing artifact-laden channels, to deep learning

models), shallow architectures may in fact offer greater reliability and dependability for

diagnosing DOC populations. Their relative robustness may stem from the reliance on
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neurophysiologically relevant features, rather than on representations learned directly from

potentially noisy raw signals.

This research supports the potential of open-loop BCI DOC diagnosis and highlights

the need for further development, validation and standardization to establish clinically

deployable systems.

6.4 Limitations and Future Work

While this work offers valuable insights into the diagnosis of awareness in DOC populations,

several limitations should be considered. First, the dataset is unbalanced in terms of the

CRS-R-based diagnostic categories at first test and very limited in the inclusion of controls

(with only one healthy control and one clinically diagnosed coma patient). These limita-

tions reflect logistical constraints of bedside studies in the hospital and my dependence on

the uncontrolled influx of traumatic and cerebrovascular brain injury incidents with DOC

at the acute neurorehabilitation unit of CHUV, Lausanne. For the same reason, although

a target of 3 runs per session was pursued, the goal was not achieved in all cases (there

exist two sessions with only 1 run and 8 sessions with two runs, see Table 3.1). These

imbalances may impact the generalization of results. Future studies with larger and more

balanced control groups and individual participant data are necessary to validate these

findings. Along the same lines, although with 28 recruited patients over 62 EEG sessions

this investigation is well-powered relatively to the majority of related studies, much lar-

ger recruitment in the future will help remove uncertainty from the conclusions reached

here [174].

Admittedly, while I strongly believe that DOC diagnostic analyses are best conduc-

ted on a session-based and subject-specific basis—since this accounts for inter- and intra-

subject reallocation effects—alternative cross-validation schemes could still be explored.

In particular, cross-subject validation may prove more beneficial for deep learning models,
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given their capacity to generalize across larger and more diverse training sets. Another pos-

sible strategy would be to use healthy control sessions as the training data while reserving

DOC sessions for testing. Deep models could potentially leverage it to learn feature-specific

discriminant patterns more effectively.

The single most important caveat of this work, and of this overall line of research in

general [130], is undoubtedly the lack of ground truth. Researchers in this field are called

to evaluate and enhance the effectiveness of imaging-based paradigms for the diagnosis

of DOC with no strict and formal procedure to secure the integrity of and compare the

novel methods’ predictions on a participant’s state of awareness. This is a particularly

significant problem also with regard to the introduction of elaborate machine learning and

deep learning approaches (the application of the latter being also limited by the conven-

tionally small size of neuroimaging datasets in DOC research), as most of these models

can only be trained in a supervised way and thus require strict ground truth labels. In the

current landscape, CMD is not often judged by the appearance of known (as previously

studied in conscious, able-bodied populations) neural markers of a certain task, state, or

response [32, 60]. However, this methodology is very vague, often, qualitative and open

to interpretations; even when quantified it becomes an issue of defining thresholds, the

determination of which is similarly debatable, as also shown here.

Here, I attempted to gauge the value of candidate EEG correlates of awareness through

their actual mathematical correlation and various other measures of association between

these metrics and CRS-R. While at first sight this may seem counterintuitive given that it

is CRS-R itself that EEG paradigms for DOC are trying to rectify (mainly, its suspected

vulnerability with false negative errors), there is a sound reasoning behind this approach

which is based on the well accepted effectiveness of CRS-R in the medical world: the idea

has been to require from an EEG metric to show significant correlation with CRS-R, the

current golden standard, as proof of relevance, and subsequently also examine to what

extent these metrics seem, first, to confirm individual cases of MCS (i.e., agree with CRS-
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R on the existence of covert awareness in marginal occasions) or refute CRS-R-based UWS

diagnoses, thus potentially being able to correct false negative errors. Clearly, without

actual, precise knowledge on the patient’s awareness, this type of analysis will always be

highly conjectural.

One possible escape from this deadlock is to longitudinally monitor patient out-

comes [38, 174]. Specifically, emergence from DOC or even improvement of responsiveness

captured by CRS-R and other scores constitutes fairly strong evidence in favour of the hy-

pothesis that an early CMD diagnosis was correct; similarly, a plateau in or deterioration

of a patient’s clinically assessed awareness (absent concomitant diseases) would indicate

the opposite. Another promising approach entails exploiting the looming complementar-

ity of EEG metrics highlighted in this thesis. The assumption would be that agreement

between several metrics and/or fusion of individual metric predictions could greatly in-

crease the confidence in EEG-based diagnosis [213]. Furthermore, different metrics can

become the features of a machine learning model predicting CMD or even a specific degree

of awareness. However, this approach requires large datasets that are logistically hard to

collect [174].
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