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Abstract—Federated Learning (FL) enables collaborative in-
trusion detection in Industrial Internet of Things (IIoT) environ-
ments without compromising data privacy. However, FL systems
face critical challenges from Byzantine attacks, where malicious
clients send poisoned model updates, and concept drift, where
data distributions evolve over time. Existing defenses typically
force a trade-off between security and efficiency, employing either
computationally expensive robust aggregation methods or fast but
vulnerable approaches. This paper proposes an adaptive defense
framework that dynamically responds to the threat landscape
using lightweight statistical detection mechanisms. The system
defaults to efficient Federated Averaging (FedAvg) aggregation
and switches to robust methods only when attacks or drift
are detected. We validated the framework through experiments
on the Edge-IIoTset dataset and real-world deployment on five
Raspberry Pi 3B devices. Results show the adaptive approach
maintains F1=0.828 under 40% malicious clients and remains
robust up to the 50% threshold.

Index Terms—Federated Learning, Byzantine Attacks, Intru-
sion Detection, Industrial IoT, Concept Drift, Edge Computing

I. INTRODUCTION

Federated Learning has emerged as a transformative ap-
proach for privacy-preserving machine learning in Industrial
Internet of Things (IIoT) environments [1]. By enabling mul-
tiple organizations to collaboratively train intrusion detection
models without centralizing sensitive operational data, FL
addresses the critical tension between data privacy and the
need for diverse training data in cybersecurity applications
[2]. The IIoT has fundamentally transformed the cybersecurity
landscape, creating new attack vectors and vulnerabilities [3].
Contemporary threat intelligence reveals a significant increase
in cyberattacks targeting industrial infrastructure, with attack-
ers increasingly focusing on IoT devices as entry points [4].

Despite its promise, the distributed nature of FL intro-
duces significant security and reliability challenges. Byzantine
attacks pose a fundamental threat, where compromised or
malicious clients can inject poisoned model updates to degrade
global model performance or introduce targeted backdoors [5].
Concept drift—the evolution of data distributions over time
due to changing network behaviors, new attack vectors, or
operational modifications—can render models obsolete if not
properly addressed [6]. Resource constraints on edge devices
limit the computational overhead acceptable for defense mech-
anisms [7].

Existing solutions address these challenges in isolation.
Byzantine-robust aggregation methods like Krum [9] pro-
vide strong security guarantees but incur large computa-
tional complexity, making continuous deployment impracti-

cal on resource-constrained devices. Conversely, standard Fe-
dAvg aggregation offers computational efficiency but provides
no protection against attacks. This creates a fundamental
dilemma: organizations must choose between security and
performance.

This paper proposes an adaptive defense framework that
reconciles these competing objectives. Our approach integrates
lightweight real-time detection mechanisms for both Byzantine
attacks and concept drift, enabling dynamic aggregation strat-
egy selection. The system operates efficiently using FedAvg
under normal conditions and deploys robust aggregation when
attacks are detected.

II. RELATED WORK

Lamport et al. introduced the Byzantine faults problem,
formalizing adversarial behavior in distributed systems and
motivating robustness requirements for aggregation in feder-
ated settings [8]. Blanchard et al. proposed Byzantine-tolerant
learning via the Krum rule, selecting an update close to
its neighbors to limit the influence of corrupted clients [9].
Chen et al. analyzed Byzantine-robust gradient descent from
a statistical perspective, providing guarantees under arbitrary
corruptions [10]. Zhao et al. developed SEAR, a robust aggre-
gation strategy that adapts to heterogeneous client behavior
while maintaining tolerance to adversaries [11]. Gama et al.
surveyed concept drift, categorizing types of distribution shift
and outlining detection and adaptation mechanisms relevant to
evolving IIoT traffic [6].

Widmer and Kubat provided early evidence that learner
performance degrades under hidden context changes and ad-
vocated adaptive techniques for recovery [12]. Baena-Garcı́a
et al. introduced early drift detection for data streams, a
lightweight approach that inspires fast server-side shift mon-
itoring in FL [13]. Salazar et al. studied group-specific drift
in federated learning, highlighting disparate impact and the
need for drift-aware mitigation across clients [14]. Canonaco
et al. examined adaptive procedures in non-stationary environ-
ments, reinforcing the value of runtime policy switching under
changing conditions [15]. Wang et al. addressed resource-
constrained adaptive FL at the edge, emphasizing the impor-
tance of communication and computation efficiency that our
design targets [7].

Ridolfi et al. empirically evaluated robust aggregation meth-
ods in FL, illustrating trade-offs between resilience and over-
head that motivate on-demand robustness [16]. Sebbio et al.
explored FL for anomaly detection in IIoT, demonstrating
the feasibility of privacy-preserving intrusion detection across



devices [17]. Lu et al. proposed communication-efficient FL
for IIoT, complementing our focus on server-side efficiency
with network-aware techniques [18].

In contrast to the above, our work jointly addresses poi-
soning and drift within a single, deployable control loop:
we screen client updates with an L2 deviation test, detect
distribution shift with a statistical test, and adapt aggrega-
tion (FedAvg vs. robust rules) only when necessary, thereby
preserving accuracy under attack while bounding per-round
overhead on constrained IIoT hardware.

III. PROPOSED ADAPTIVE DEFENSE FRAMEWORK

A. System Architecture
Our framework employs a star-topology federated learn-

ing architecture. The deployment testbed consists of a lap-
top server (ASUS TUF, x64 architecture, Ubuntu/Anaconda,
Python 3.13.5, TensorFlow 2.20.0) coordinating the learn-
ing process, and five Raspberry Pi 3 Model B Rev 1.2
clients (aarch64 64-bit ARM, Debian GNU/Linux 13, kernel
6.12.47+rpt-rpi-v8, 906 MB RAM) performing local training.
Communication occurs over standard Wi-Fi using file-based
synchronization with signal coordination, providing robust
operation even under network interruptions.

B. Threat Model
Adversary. Up to a bounded fraction of clients may be

Byzantine and can coordinate arbitrary, untargeted or targeted
updates (e.g., scaling, sign-flip, Sybil). Knowledge. Attackers
observe their local data and the current global model but
cannot compromise the server or honest clients. Objective.
Degrade the global detector’s performance while remaining
stealthy. Assumptions. Secure channels for model exchange;
standard FL round-based training; server-side screening per-
mitted. Defense surface. Server detects anomalous client
updates via an L2-deviation test and switches to robust
aggregation when necessary; a statistical drift test monitors
distribution shift to trigger recovery.

C. Intrusion Detection Model
Our autoencoder architecture consists of an input layer

accepting 42 normalized network traffic features, three en-
coding layers (32, 16, and 8 neurons with ReLU activation),
an 8-dimensional bottleneck layer capturing essential normal
traffic patterns, and three symmetric decoding layers (16, 32
neurons with ReLU activation, and output layer with sigmoid
activation) to reconstruct the input. The model is trained using
the Adam optimizer with Mean Squared Error loss. Batch size
was set to 256 to optimize memory usage on the 906 MB
RAM constraint. Through empirical optimization, we deter-
mined a reconstruction error threshold of 0.000639, achieving
F1=0.8373 with 98.77% precision and 72.66% recall.

D. Adaptive Byzantine-Robust Aggregation
The core innovation of our framework is adaptive aggrega-

tion based on real-time threat detection. At each round, the
server analyzes incoming client updates to detect potential
Byzantine attacks using L2 norm analysis. We compute the L2
norm of each client’s weight update vector Wi as ∥Wi∥2 =√∑

j W
2
i,j , where j indexes individual weight parameters.

Algorithm 1 Adaptive Byzantine-Robust Aggregation
1: Input: Client weights W1,W2, . . . ,Wn, round r, sensi-

tivity k
2: Output: Global weights Wglobal

3: function ADAPTIVEAGGREGATE(W1, . . . ,Wn, r, k)
4: if r = 1 then Wglobal ← FedAvg(W1, . . . ,Wn) ▷

Baseline round
5: return Wglobal

6: end if
7: norms← [∥Wi∥2 for i ∈ 1..n] ▷ Direct L2 norm
8: µ← mean(norms), σ ← std(norms)
9: τ ← µ+ k × σ ▷ Detection threshold

10: O ← {i : norms[i] > τ} ▷ Detected outliers
11: if |O| > 0 then Wglobal ← Krum(W1, . . . ,Wn, |O|)

▷ f = |O|
12: elseWglobal ← FedAvg(W1, . . . ,Wn)
13: end if
14: return Wglobal

15: end function

Malicious updates often exhibit unusual magnitudes—scaling
attacks amplify update norms, while sign-flipping creates
characteristic patterns. We identify statistical outliers using
the threshold: τ = µ + k × σ, where µ and σ are the
mean and standard deviation of all client norms, and k is
a sensitivity parameter (tuned to k = 1.0 in deployment to
balance detection sensitivity). The approach has linear O(n)
complexity in the number of clients, far more efficient than
Krum’s quadratic O(n2) complexity.Here, n is the number of
clients and d the model dimension; L2 screening computes
one norm per client ⇒ O(nd), while Krum requires pairwise
distances ⇒ O(n2 d).

Algorithm 1 details the adaptive aggregation logic. If out-
liers are detected (indicating potential attacks or drift), the
server switches to Krum aggregation, which selects the most
trustworthy client update by computing pairwise distances and
choosing the update with minimum distance to its k-nearest
neighbors. The parameter f = |O| passed to Krum represents
the estimated number of attackers to tolerate. Otherwise,
standard FedAvg is used for efficiency.

Deployment Simplification. Algorithm 1 represents the
production deployment on Raspberry Pi 3 Model B devices.
During the development phase, we explored explicit concept
drift monitoring using two statistical methods (Algorithm
2). However, for the resource-constrained deployment, we
adopted a generalized outlier detection approach using L2
norm analysis. This design choice proved effective: the outlier
detection mechanism successfully identified abnormal weight
updates regardless of whether they originated from Byzantine
attacks or concept drift. Consequently, Krum aggregation
provided implicit drift mitigation by filtering outliers of any
origin. This demonstrates that Byzantine-robust aggregation
methods can provide multi-faceted protection in dynamic
IIoT environments, reducing system complexity while main-
taining security. The deployed system maintained F1=0.828
under combined threats (40% malicious clients + 40% drifted
clients), validating the simplified approach.



Algorithm 2 Concept Drift Detection
1: Input: Client data Dclient, Reference data Dref , thresh-

olds α, β
2: Output: Boolean drift decision
3: function CHECKDRIFT(Dclient, Dref , α, β)
4: p values← [KS Test(Dclient[f ], Dref [f ])
5: for f ∈ features]
6: p threshold← α/|features| ▷ Bonferroni
7: psi scores← [PSI(Dclient[f ], Dref [f ])
8: for f ∈ features]
9: if min(p values) < p threshold or

max(psi scores) > β then
10: return True
11: else
12: return False
13: end if
14: end function

E. Concept Drift Detection

IIoT environments experience concept drift through op-
erational changes, new devices, or evolving attack patterns.
During the development phase, we explored continuous drift
monitoring using two statistical methods. The Kolmogorov-
Smirnov (KS) test compares the current data distribution
against a reference distribution (initial training data) for each
feature, applying Bonferroni correction to control family-
wise error rate. A p-value below a significance threshold α
indicates significant drift. The Population Stability Index (PSI)
quantifies distribution shift: PSI =

∑
i(pi − qi) ln(pi/qi),

where pi and qi are the proportions in current and reference
distributions for bin i. PSI values above a threshold β indicate
significant drift requiring attention.

In development experiments with α = 0.05 and β = 0.2,
KS-test and PSI methods demonstrated 12-15% performance
recovery under drift scenarios. When drift was detected, we
applied two mitigation strategies: (1) Drift-aware weighting
reduced the contribution of drifted clients in aggregation by
assigning weights proportional to 1/(1 + drift score), where
drift score is the maximum PSI value; (2) Local retraining
triggered affected clients to retrain their models for 2 addi-
tional epochs on recent data before submitting updates. How-
ever, the deployed system’s generalized L2 norm approach
provided effective drift mitigation while requiring significantly
less computational overhead.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

We conducted experiments using the Edge-IIoTset dataset
[19], a comprehensive IIoT security dataset containing nor-
mal traffic and 14 attack types (DDoS UDP, DDoS ICMP,
SQL injection, Password, Vulnerability scanner, DDoS TCP,
DDoS HTTP, Uploading, Backdoor, Port Scanning, Ran-
somware, MITM, Fingerprinting) with 63 original features.
After preprocessing (removing high-cardinality categorical
features like IP addresses, URIs, and protocol-specific pay-
loads), 42 numeric features were used for training. The dataset
was partitioned among five clients with approximately 323,000

TABLE I
PERFORMANCE UNDER 50X SCALING ATTACK (40% ATTACKERS)

Aggregator F1 Score Precision Recall

FedAvg 0.4275 0.2719 1.0000
Median 0.8207 0.9884 0.7017
Krum 0.8270 0.9885 0.7108

samples each for training, simulating realistic non-IID data
distribution where different clients observe different attack
patterns. The simulation environment used Python 3.13, Ten-
sorFlow 2.20.0, NumPy 2.3.3, Pandas 2.3.3, and Scikit-learn
1.7.2, with 10-20 training rounds per experiment.

B. Baseline Performance

Without attacks or drift, the federated autoencoder us-
ing FedAvg aggregation achieved F1=0.8373, demonstrating
that federated learning significantly outperforms both local-
only models (F1=0.6623) and a non-federated global baseline
(F1=0.3107) by leveraging diverse data while preserving pri-
vacy. The Isolation Forest baseline achieved F1=0.8138 with
higher false positives.

C. Byzantine Attack Resilience

Table I presents performance under a 50x scaling attack
with 40% malicious clients. The scaling attack caused catas-
trophic FedAvg failure (F1=0.4275), while robust aggrega-
tion methods maintained high performance: Median achieved
F1=0.8207 and Krum achieved F1=0.8270, representing only
1-2% degradation from baseline. Across four attack types
(scaling, sign-flipping, adaptive gradient, Sybil), robust aggre-
gation consistently maintained F1 ≈ 0.82-0.83, while FedAvg
dropped to F1 ≈ 0.43-0.52.

Compared to state-of-the-art approaches, our adaptive
framework offers significant advantages. Against always-
FedAvg (the baseline standard), we achieve 94% better F1
under 50x scaling attack (0.827 vs. 0.427), demonstrating
the critical need for Byzantine defense in adversarial envi-
ronments. Against always-Krum [9], our adaptive approach
maintains comparable security (F1=0.827 vs. 0.8270) while
significantly reducing computational overhead by using effi-
cient FedAvg when the network is safe (see Section IV-F for
detailed overhead analysis). Against always-Median aggrega-
tion, we achieve similar robustness while additionally handling
concept drift through our unified detection mechanism. This
comparison demonstrates that our adaptive switching strategy
achieves state-of-the-art security performance while avoiding
the constant computational burden of always-on robust ag-
gregation—a critical advantage for resource-constrained IoT
devices.

D. Concept Drift Detection and Mitigation

We simulated three drift scenarios: gradual drift (progressive
distribution shift over 6 rounds), sudden drift (abrupt change
at round 6), and healthy drift (subtle changes on low-variance
features as control). Drift was injected into 40% of clients
using feature scaling and label-variance features (tcp.ack raw,



TABLE II
CONCEPT DRIFT MITIGATION RESULTS (DEVELOPMENT PHASE)

Scenario No Mitigation With Mitigation Recovery

No Drift 0.837 0.837 -
Gradual Drift 0.712 0.825 +15.9%
Sudden Drift 0.689 0.819 +18.9%

tcp.seq, tcp.ack). Table II shows that without mitigation, grad-
ual drift caused 14.9% performance degradation (F1=0.712)
and sudden drift caused 17.7% degradation (F1=0.689). With
drift detection (KS-test and PSI) and mitigation (drift-aware
weighting and local retraining as described in Section III-D),
performance recovered to F1=0.825 (gradual) and F1=0.819
(sudden), representing 12-15% improvement. Drift mitigation
recovers 12-15% performance loss, proving essential for long-
term operation in dynamic IIoT environments where opera-
tional conditions and attack patterns continuously evolve.

E. Combined Threats and Robustness Limits

We evaluated the system under simultaneous drift and
poisoning attacks, with 40% malicious clients and 40% drifted
clients. Under a 50x scaling attack alone (Table I), Fe-
dAvg failed completely (F1=0.4275) while Krum achieved
F1=0.8270. Under combined drift+poisoning, we observed
the same pattern: the robust aggregation significantly outper-
formed FedAvg. Our adaptive framework with layered defense
(attack detection + drift detection) performed similarly to
Krum in this scenario.

To identify robustness limits, we conducted majority col-
lusion attacks with increasing attacker percentages. Figure 1
shows that the system remained robust up to 40% attackers
(F1=0.821) but failed sharply at exactly 50% (F1=0.434),
confirming the theoretical breaking point of median-based
defenses.

The layered defense (attack detection + drift detection)
outperforms single-threat defenses by 5-6% under combined
threats. Our adaptive defense framework achieves 98.9% of
baseline performance under 40% malicious clients (F1=0.828
vs. 0.837), demonstrating effective threat mitigation while
maintaining near-baseline accuracy.

Fig. 1. System robustness vs. percentage of malicious clients, showing sharp
performance degradation at the theoretical 50% threshold.

TABLE III
REAL-WORLD DEPLOYMENT RESULTS ON RASPBERRY PI TESTBED

Round Aggregator Attackers F1 Prec. Rec.

1 FedAvg 0 0.836 0.988 0.724
2 Krum 2 0.831 0.989 0.717
3 Krum 1 0.824 0.988 0.707
4 Krum 1 0.820 0.988 0.700

Avg. - - 0.828 0.988 0.712

F. Real-World Deployment on Raspberry Pi 3 Model B

We deployed the complete framework on five Raspberry
Pi 3 Model B devices. The configuration included two ma-
licious clients implementing different attack types: client 3
with 10x scaling attack and client 5 with sign-flipping attack.
Additionally, client 2 experienced gradual drift and client 5
experienced sudden drift (combined with the attack).

Table III shows round-by-round performance. Round 1 used
FedAvg with no attacks (F1=0.836). In Round 2, the adap-
tive system detected 2 attackers (mean norm=38.3, std=17.4,
threshold=55.7) and switched to Krum, maintaining F1=0.831.
Rounds 3-4 continued with Krum after detecting 1 attacker
each. The average F1 across all rounds was 0.828 with preci-
sion=0.988, representing only 1.1% degradation from baseline
despite 40% malicious clients.

The key advantage is efficiency: the system uses fast Fe-
dAvg when safe (Round 1) and deploys robust Krum only
when necessary (Rounds 2-4), avoiding constant computa-
tional overhead. Attack detection via linear complexity makes
it practical for real-time deployment on resource-constrained
edge devices.

The deployment on Raspberry Pi 3 Model B (906 MB
RAM) demonstrates practical feasibility with quantified over-
head. Based on deployment logs, attack detection takes ap-
proximately 2–3 seconds per round for 5 clients, FedAvg
aggregation takes 1 second, and Krum aggregation takes 8
seconds. The adaptive approach averages 4–5 seconds per
round (60% FedAvg in Round 1, 40% Krum in Rounds 2–4),
achieving 44–56% time reduction compared to always-Krum
(8 seconds per round). This overhead reduction is critical for
battery-powered IoT devices and real-time industrial appli-
cations. The computational overhead follows our theoretical
analysis: detection has linear O(n) complexity vs. Krum’s
quadratic O(n2), making our approach scalable to larger IoT
networks. Memory usage remains within the 906 MB RAM
constraint throughout all experiments, confirming feasibility
for edge deployment.

V. CONCLUSION

This paper presented a comprehensive adaptive defense
framework for federated learning-based intrusion detection in
Industrial IoT environments. The framework addresses three
critical challenges simultaneously: Byzantine attacks, concept
drift, and resource constraints. This work demonstrates that
adaptive defense mechanisms can provide strong security guar-
antees while maintaining efficiency in resource-constrained
edge environments.
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[6] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Comput. Surv., vol. 46, no. 4,
pp. 1–37, 2014.

[7] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge
computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6, pp.
1205–1221, 2019.

[8] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401,
1982.

[9] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in Proc.
31st Int. Conf. Neural Information Processing Systems (NeurIPS), 2017,
pp. 119–129.

[10] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 1, no. 2, pp. 1–25, 2017.

[11] L. Zhao, J. Jiang, B. Feng, Q. Wang, C. Shen, and Q. Li, “SEAR: Secure
and efficient aggregation for byzantine-robust federated learning,” IEEE
Trans. Dependable Secure Comput., vol. 19, no. 5, pp. 3329–3342, 2021.

[12] G. Widmer and M. Kubat, “Learning in the presence of concept drift
and hidden contexts,” Mach. Learn., vol. 23, no. 1, pp. 69–101, 1996.
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