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Abstract

We explore how information from covariates can be incorporated into the CUSUM-
based real-time monitoring procedure for explosive asset price bubbles developed in
Homm and Breitung (2012). Where dynamic covariates are present in the data gen-
erating process, the false positive rate of the basic CUSUM procedure, which is based
on the assumption that prices follow a univariate data generating process, under the
null of no explosivity will not, in general, be properly controlled, even asymptoti-
cally. In contrast, accounting for these relevant covariates in the construction of the
CUSUM statistics leads to a procedure whose false positive rate can be controlled
using the same asymptotic crossing function as employed by Homm and Breitung
(2012). Doing so is also shown to have the potential to significantly increase the
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1 Introduction and Motivation

Asset price bubbles tend to be characterised by a sudden and explosive increase in the price

of an asset without a corresponding increase in the fundamental value of the asset (thereby

representing a misallocation of resources), followed by a subsequent destruction of value

through a price collapse. Bubbles often presage economic recessions; indeed, the 2007/08

Global Financial Crisis (GFC) was preceded by suspected price bubbles in the U.S. housing,

commodity and stock markets. In the aftermath of the GFC, policymakers have considered

new rules for macroprudential regulation and intervention. Crucial to the effectiveness of

these is the availability of econometric methods which can monitor the behaviour of prices

in asset markets in real-time, rapidly and accurately detecting emerging price bubbles.

The majority of the bubble detection literature has focused on one-shot tests for detect-

ing the presence of historic asset price bubbles. The seminal contributions in this area were

made by Phillips, Wu and Yu (2011) [PWY] and Phillips, Shi and Yu (2015) [PSY], who

proposed tests for the presence of bubble episodes based on the maximum of sequences of

recursive univariate augmented Dickey-Fuller [ADF] unit root statistics applied to overlap-

ping sub-samples of the data. Other contributions based on sub-sample based methods in-

clude: Homm and Breitung (2012) [HB], Harvey et al. (2016), Astill et al. (2017), Phillips

and Shi (2018) and Harvey et al. (2019, 2020).

Although primarily designed as one-shot tests and date-stamping procedures for his-

torical bubbles, some of these approaches can also be implemented sequentially to provide

methods to monitor for the emergence of a bubble in real-time; most notably the BSADF

statistic of PSY (defined as the maximum of a backward-recursive sequence of subsample

ADF statistics computed over all possible subsamples ending at the last available date in

the full data sample, subject to a minimum subsample length). By implementing tests se-

quentially, however, a critical value which diverges with the sample size (satisfying the rate

condition given in equation (11) on page 1055 of PSY), needs to be used to control the false

positive rate [FPR] of the monitoring procedure, defined as the probability of incorrectly

declaring a bubble during the monitoring period; see Section 3.2 of PSY. This rate condition

implies a theoretical FPR (by which we mean the FPR of the procedure in large samples)

of zero. In practice, PSY (p.1066) recommend obtaining the critical value by Monte Carlo
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simulation, yielding a real-time monitoring procedure with a controlled, but non-zero, FPR.

This procedure is, however, infeasible in the case where the innovations display time-varying

volatility. To allow for possible time-varying volatility, Phillips and Shi (2020, Section 5)

propose a wild bootstrap monitoring procedure, based on the BSADF statistic, whose FPR

can be controlled at a specified level across a monitoring period of a given length. This pro-

cedure is implemented at the end of the chosen monitoring period, and so is not run in real-

time; it may, however, be possible to modify this procedure to be implemented in real-time.

A different strand of the literature, which we focus on in this paper, has developed ded-

icated real-time monitoring procedures for asset price bubbles, designed so that the prac-

titioner can fix the theoretical FPR at a given (non-zero) level. These split the data into

a training sample and a monitoring period. HB use a CUSUM-based detector where a se-

quence of CUSUM statistics, calculated from the first differences of the data in real-time

over the monitoring period, are compared against a theoretical crossing function (such that

the critical value becomes larger the further into the monitoring sequence one is). In a dif-

ferent approach, Astill et al. (2018) use a method based on comparing the maximum value

of statistics computed in the training sample and monitoring period. Both of these pro-

cedures are designed for the case where the innovations are unconditionally homoskedas-

tic and assume that no relevant covariates exist. To deal with the first issue, Astill et al.

(2023a) [AHLTZ] propose standardising the CUSUM statistics used in the HB procedure

by a nonparametric kernel-based spot variance estimator at each monitoring point. They

show that a monitoring procedure based on these standardised CUSUM statistics has a the-

oretically controlled FPR even where the innovations are unconditionally heteroskedastic.

As we will show, failure to account for relevant dynamic covariates in the data generating

process (DGP) can lead to spurious over-rejection in both the HB and AHLTZ procedures.

It seems eminently plausible that information additional to the asset price series under

test could usefully be deployed in bubble detection methods. Indeed, the literature suggests

several potential covariates that might aid in identifying periods of explosive behaviour. For

equities, dividend discount type models (Diba and Grossman, 1998; PSY) link prices to the

risk-free rate of interest, whilst the capital asset pricing model (Kim and Kim, 2016) can

embed time-varying volatility. Pricing equations for commodity spot prices (Tsvetanov et

2



al., 2016) indicate inventories (Kilian and Murphy, 2014) play a role. Finally, given bubble

behaviour in real estate may precede equity (Caballero et al., 2008) and commodity market

bubbles (Phillips and Yu, 2011), potential housing market covariates such as interest rates,

disposable income and mortgage finance (White, 2015) may be particularly useful.

Despite these considerations, the majority of contributions in the bubble testing liter-

ature, and all of those described above, are purely univariate, using information from the

price series under consideration alone. Two notable exceptions are Shi and Phillips (2023)

and Astill et al. (2023b) [ATKK]. In the context of detecting house price bubbles, Shi and

Phillips (2023) develop BSADF -type statistics applied to the (cumulated) residuals from

a first-stage IVX regression (see, e.g., Kostakis et al., 2015) which filters out market fun-

damentals from an observed price-to-rent series, and use these in a monitoring procedure

based on the approach of Phillips and Shi (2020), discussed above. More relevant to the

present setting, ATKK adapt the covariate augmented Dickey-Fuller [CADF] unit root test

proposed by Hansen (1995) to develop versions of the historical bubble testing procedures

of PWY and PSY, allowing information from covariates to be exploited. Hansen (1995)

shows that the inclusion of relevant (stationary) covariates in the CADF regression reduces

the error variance relative to a univariate ADF regression and so can lead to more precise

estimation of the model. ATKK show that the resulting covariate augmented variants of

the PWY and PSY tests can in some cases display significantly higher power to detect his-

torical asset prices bubbles than their univariate counterparts from PWY and PSY.

Given the policy need for real-time monitoring procedures that can detect emerging

bubbles as rapidly as possible, the findings in ATKK suggest it is worth exploring if the

incorporation of additional information from covariates can both improve the efficacy of

real-time bubble monitoring procedures to detect emerging bubble episodes, while also de-

livering a controlled FPR under the null. Motivated by the CUSUM approach of Kramer,

Ploberger and Alt (1988) [KPA], developed for detecting structural changes in dynamic

models, we propose CUSUM type real-time monitoring statistics based on recursive resid-

uals from a regression of the first differences of the price series under test on relevant co-

variates. Like AHLTZ, we implement the procedures using a nonparametric kernel-based

spot variance estimator at each time point to allow for time-varying volatility in the inno-
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vations. We also allow for serial correlation in the innovations, something also not allowed

under the assumptions in HB.

We demonstrate that the resulting CUSUM statistic retains the same (pivotal) limiting

distribution under the constant parameter unit root null as HB’s original CUSUM statistic

attains under the regularity conditions in their paper. Consequently, a covariate augmented

monitoring procedure with a theoretically controlled FPR can be constructed by appealing

to large sample results from Chu et al. (1996). Monte Carlo simulations show that for

a wide range of potential DGPs our proposed covariate augmented CUSUM monitoring

procedure, implemented using a standard BIC criterion to decide whether or not to include

a candidate covariate, performs well in practice. In particular, and unlike the univariate

CUSUM-based monitoring procedures, the finite sample FPRs of the covariate augmented

procedures are well controlled when a genuine covariate is present in the DGP. Moreover,

where the covariate enters the DGP, the true positive rate [TPR], defined as the cumulative

probability of detecting a bubble present in the monitoring period, is much superior to the

univariate procedures. Additionally, the impact on finite sample performance is very small

in the case where the candidate covariate does not enter the DGP.

The remainder of the paper is organised as follows. Section 2 outlines the DGP we

work with and the assumptions under which we will operate. Section 3 gives a brief

description of the standard CUSUM procedure of HB. Section 4 outlines our proposed

covariate augmented CUSUM monitoring procedure for covariates that are allowed to have

non-zero means and details its large sample behaviour. The results from our Monte Carlo

simulation study are reported in Section 5. Section 6 concludes. A supplementary appendix

details: the analogous procedure for the case where it is known that the covariates are mean

zero; proofs of the technical results given in the paper; additional simulation results, and

an empirical illustration using the dataset of Welch and Goyal (2008).

2 The Model and Assumptions

Let {yt} be generated according to the following data generating process [DGP],

yt = µ∗ + ut (1)

ut =

 ut−1 + vt t = 1, . . . , ⌊τT ⌋

(1 + δ)ut−1 + vt t = ⌊τT ⌋+ 1, . . . , ⌊λT ⌋
(2)
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where 1 ≤ τ ≤ λ, λ > 1 and ⌊.⌋ denotes the integer part of its argument. The initial

condition u0 is assumed to be ofOp(1). Under (2), ut follows the time-varying AR(1) process

∆ut = δtut−1 + vt, t = 1, . . . , T, . . . , ⌊λT ⌋ (3)

where ∆ := (1 − L) is the usual first difference operator in the lag operator, L. The AR

coefficient δt can be seen to change from 0 to δ ≥ 0 at time t = ⌊τT ⌋+ 1.

In the context of (1)-(2) we will be concerned with two sub-sample periods of the series

yt. The first of these is the period t = 1, ..., T , which will form the training sample in our

analysis, and the second is the period t = T + 1, ..., ⌊λT ⌋, which will form the monitoring

period for our procedure. Our model imposes that yt follows a unit root process over the

training sample t = 1, ..., T , while over the monitoring period yt again follows a unit root

process over the sub-period t = T + 1, ..., ⌊τT ⌋, but crucially is subject to potentially ex-

plosive behaviour in the period t = ⌊τT ⌋+ 1, ..., ⌊λT ⌋ if δ > 0.1 In total, at the end of the

monitoring period, there are ⌊λT ⌋ observations. When δ > 0, if τ = 1 then the explosive

regime will begin at the start of the monitoring period. In the context of monitoring for

explosive autoregressive behaviour during the monitoring period, our implicit null hypoth-

esis is given by H0 : δ = 0, with the corresponding alternative hypothesis, H1 : δ > 0.

With respect to the error process, vt, in (2), we allow vt to be serially correlated,

heteroskedastic and (potentially) related to an (m×1) vector of covariates, xt. In the same

spirit as Hansen (1995), we achieve this by assuming that vt satisfies Assumption 1.

Assumption 1. Let vt be generated by the pth order heteroskedastic autoregressive exoge-

nous [ARX(p)] process

α(L)vt = β(L)′[xt − cx] + εt, εt = σtηt (4)

where α(z) := 1−
∑p

k=1 αkz
k, β(z) :=

∑q
k=0 βkz

k, and where xt := (x1,t, ..., xm,t)
′ is an m-

vector of stochastic covariates with constant mean vector cx. Let the mean-centred vector of

1The DGP in (1)-(2) does not consider the case where the explosive regime collapses before the moni-

toring period ends. It could be extended to allow either an instantaneous collapse (as in, e.g., PWY), or

a stationary collapse regime (as in, e.g., Harvey et al., 2016). However, when monitoring for an emerging

explosive regime in real-time, the nature of any post-explosive collapse has no bearing on the detection

properties of the monitoring procedure, so we specify a non-collapsing explosive regime for simplicity.
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covariates be denoted wt := xt−cx =: (w1,t, ..., wm,t)
′. The innovations, ηt, form a sequence

of serially uncorrelated conditionally heteroskedastic innovations with mean zero and unit

(unconditional) variance, with σt a (deterministic) time-varying volatility function, such

that εt has time-varying unconditional variance, σ2
t .

Remark 2.1. In (4), the lag polynomial β(L) allows for, but does not require, lags of the

covariate xt to enter the DGP. Compared to Equation (5) of Hansen (1995,p.1150), β(L),

however, excludes the possibility of leads of the covariate entering (4). This is a consequence

of the fact that our interest in this paper is on developing real-time monitoring procedures,

whereby lead variables would be unavailable to the practitioner; see also Remark 4.1 of

ATKK (p.347). Notice that the variables in xt are not relevant covariates if β(L) = 0. ♢

Remark 2.2. Following the bulk of the econometric bubble detection literature, we model

asset prices with the time-varying AR model in (1)-(2). As discussed in PWY and Breitung

and Kruse (2013), inter alia, this is often motivated as an approximation to the rational

bubble model where the observed asset price, yt, is equal to the sum of the fundamental

price, ft, of the asset, assumed to be a martingale (I(1)) process, and a bubble component,

Bt, which is zero other than in its bubble phase when it is a submartingale (explosive AR(1)

process). Under Assumption 1, the error term, vt, in (1)-(2) is related to a set of covariates.

This therefore entails the implicit assumption that the covariates would be related to both

ft and Bt in the rational bubble model. It is, however, possible that a given covariate

could be related to only the error term driving one of these components. If this were the

bubble component then, as noted by a referee, we would not expect any power gains from

incorporating that covariate into the CUSUM bubble detection procedure. ♢

Under the null hypothesis H0 : δ = 0, we have that ∆yt = vt for the full sample period

t = 1, . . . , ⌊λT ⌋, and so from (4) we then have that

∆yt = µ+

p∑
k=1

αk∆yt−k +

q∑
k=0

β′
kxt−k + εt, (5)

where µ := −
∑q

k=0 β
′
kcx and where the first summation term is understood to be present

only when p > 0. Notice that the intercept term µ = 0 if either cx = 0, such that
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the covariates have mean zero, or β(L) = 0, such that xt are not relevant covariates.2

This is a heteroskedastic autoregressive model in ∆yt augmented by the level and (up

to) q lags of the m covariates. Defining gt := (1,∆yt−1, . . . ,∆yt−p, x
′
t, x

′
t−1, ..., x

′
t−q)

′ and

φ := (µ, α1, . . . , αp, β
′
0, β

′
1, . . . , β

′
q)

′, the null model (5) can be written more compactly as

∆yt = φ′gt + σtηt, t = 1, . . . , T, . . . , ⌊λT ⌋ (6)

For the subsequent analysis, we need to formalise our assumptions on the covariates,

xt, and the other elements comprising (4). These are now stated in Assumption 2, with

some discussion of these conditions then given in Remarks 2.3-2.8.

Assumption 2. Let the {(ηt, wt)} sequence be defined on a complete probability space, and

denote the natural filtration generated by the random vector sequence {(ηt, wt+1)} by {Ft}.

Assume that:

(a) For t = 1, . . . , T, . . . , ⌊λT ⌋, σt = σ(t/T ) where the function σ(·) is non-stochastic,

has support [0, λ], is differentiable, is uniformly bounded by a constant M , and is

such that σ(.) ⩾ ϵ∗, for some ϵ∗ > 0. Furthermore, the derivative of σ(·) is Lipschitz

continuous over (0, λ).

(b) Let ηt be a martingale difference sequence [MDS] with respect to the filtration Ft,

with conditional variance ht := E(η2t |Ft−1) > 0 satisfying the condition that E(ht) =

plim
T→∞

(1/⌊Tλ⌋)
∑⌊Tλ⌋

t=1 ht = 1.

(c) {ηt} is a strong mixing process with mixing coefficients of size −r/(r − 2), for some

r > 2, and E|ηt|2r <∞.

(d) α(z) ̸= 0 for all |z| ⩽ 1.

(e) For all 0 ≤ κ ≤ λ: plim
T→∞

(1/⌊Tκ⌋)
∑⌊Tκ⌋

s=1 gsg
′
s is positive definite with finite elements;

plim
T→∞

(1/⌊Tκ⌋)
∑⌊Tκ⌋

s=1 gsg
′
s/σ

2
s = lim

T→∞
(1/⌊Tκ⌋) E(

∑⌊Tκ⌋
s=1 gsg

′
s/σ

2
s) =: Θ(κ), where Θ(κ)

is a positive definite matrix with all elements finite and continuous in κ. Furthermore,

we assume that the covariances between ht and gt and between ht and gtg
′
t are zero,

for all t = 1, . . . , T, . . . , ⌊λT ⌋.
2The constant term in (5) entails that statistics based on the residuals from estimating this model will

be exact invariant to a non-zero mean, should it be present, in ∆yt, and hence to a linear trend in yt.
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(f) The vector wt satisfies lim sup
T→∞

1
⌊Tλ⌋

∑⌊Tλ⌋
t=1 E∥wt∥2+δ <∞, for some δ > 0, where ∥ · ∥

denotes the Euclidean norm.

Remark 2.3. The monitoring procedure of HB assumes vt is homoskedastic, while ATKK

allow for conditional heteroskedasticity, but impose unconditional homoskedasticity, in the

context of their covariate augmented PSY and PWY tests. These assumptions are arguably

rather strong given that time-varying volatility appears to be a common feature in many

financial time series. For example, many empirical studies report strong evidence of struc-

tural breaks in the unconditional variance of asset returns; see, among others, McMillan and

Wohar (2011), Calvo-Gonzalez et al. (2010), and Vivian and Wohar (2012). To allow for

such features, Assumption 2(a), which coincides with Assumption 2 of AHLTZ, specifies the

unconditional volatility function of the regression errors, σt, to have a flexible nonparamet-

ric structure which allows for, inter alia, smooth transition breaks in volatility and trending

volatility. The case of constant volatility, where σt = σ, for all t, also satisfies Assumption

2(a) with σ(s) = σ, for all s ∈ [0, λ]. Although discrete jumps in volatility are not formally

allowed under Assumption 2(a), this is not restrictive in practice because one can always

approximate discontinuities in σ(·) arbitrarily well using smooth transition functions.3 ♢

Remark 2.4. Assumption 2(b) specifies that ηt is a conditionally heteroskedastic MDS.

Allowing for conditional heteroskedasticity is desirable with financial data and, hence,

this represents an important relaxation of the conditions required by AHLTZ who impose

conditional homoskedasticity on their equivalent of ηt in their Assumption 1. The MDS

condition in Assumption 2(b) implies that the exogeneity condition E(gtηt) = 0 holds.

Assumption 2(c) additionally imposes that ηt is strong mixing. This assumption is made

because we need to restrict the amount of dependence in {η2t − 1} (this process no longer

being a MDS when conditional heteroskedasticity is present in ηt) for the purposes of

estimating the unconditional volatility function, σt; see, for example, Lemma A.3 in the

appendix. The final condition in Assumption 2(e) rules out any correlation between the

regressors in (6), gt, and the conditional variance of ηt and also rules out correlation between

3Under Assumption 2(a), σt depends on T , and as such {yt} formally constitutes a triangular array

of the type {yT,t : t = 0, 1, .., ⌊λT ⌋;T = 0, 1, ...}. However, because the triangular array notation is not

essential, the subscript T will be suppressed in our exposition.
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the elements of the design matrix gtg
′
t and the conditional variance of ηt. Where ηt is

conditionally homoskedastic, this condition is rendered redundant. Moreover, this condition

is also not needed in the case where an intercept term is not included in (5); see section

A.1 of the supplementary appendix. ♢

Remark 2.5. Assumption 2(d) rules out the presence of unit or explosive autoregressive

roots in ∆yt under the null hypothesis. Assumption 2(e) allows the covariance matrix of

the covariates to display very general patterns of time-variation. This condition is weaker

than the conditions placed on σt under Assumption 2(a) because any heteroskedasticity

arising from the covariates does not show up in the limiting null distribution of the CUSUM

statistics that our monitoring procedure is based on and, hence, does not need to be

estimated or corrected for. Notice that time-variation in the correlation between εt and

the covariates is also permitted. ♢

Remark 2.6. Under Assumptions 2(e) and 2(f) we can make use of the weak convergence

result established in Lemma A.10 in the supplementary appendix, which is an extension of

Lemma 3 of KPA to our context and plays an important role in the proof of our main results.

In Assumption 2(e), the condition that plim
T→∞

(1/⌊Tκ⌋)
∑⌊Tκ⌋

t=1 gtg
′
t is positive definite with

finite elements rules out the possibility of asymptotic collinearity between the regressors in

gt. Taken together with the exogeneity condition implied by Assumption 2(b), this ensures

least squares [LS] estimation of φ in Lemma A.1 is consistent under the null hypothesis,

H0 : δ = 0. Likewise, the analogous condition on plim
T→∞

(1/⌊Tκ⌋)
∑⌊Tκ⌋

t=1 gtg
′
t/σ

2
t is required

in the context of weighted least squares [WLS] estimation of φ; see Lemma A.6. ♢

Remark 2.7. An analogous moment condition to Assumption 2(f) is imposed for all the

covariates (and the error terms) in KPA; notice that we do not need to directly impose

this condition on the lagged differences ∆yt−k, k = 1, ..., p, in our regression model in

(6), because Assumption 2(c) implies that the lagged differences will satisfy an equivalent

moment condition, which is stronger than Assumption 2(f). The stronger moment condition

in Assumption 2(c) is needed for the proof of Lemma A.3 in the appendix, which is required

in connection with estimation of the (unknown) variance function, σ2
t . ♢
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Remark 2.8. Our specification for the covariates is more general than is imposed by

KPA, who impose a global homoskedasticity assumption, or by Hansen (1995), Chang et

al. (2017) [CSS] and ATKK in the context of their covariate unit root testing methods.

For example, the (covariance) stationarity assumption required to hold on the covariates

by Hansen (1995) is not imposed by our assumptions as we allow for unconditional het-

eroskedasticity. Moreover, a version of the unconditionally homoskedastic finite-order sta-

tionary vector autoregressive model specified for the covariates in CSS and ATKK, gener-

alised to allow for the possibility of unconditional heteroskedasticity, is also permitted un-

der our assumptions. The assumption made in Hansen (1995), CSS and ATKK that the co-

variates are weakly dependent is not required for our analysis, albeit the strength of depen-

dence allowed is restricted by Assumption 2(e) which, for example, rules out covariates with

(near-) unit roots. As argued in Hansen (1995), in many cases the first differences of rele-

vant financial and/or macroeconomic time series will be natural covariates to consider. ♢

3 CUSUM-based Bubble Detection Procedures

Under the assumption that vt in (2) is a mean zero, serially uncorrelated and condition-

ally homoskedastic process with unconditional variance σ2, and for a training sample t =

1, ..., T , as in (1)-(2), HB propose testing for explosive behaviour in the monitoring period

using the CUSUM statistic:

St
T :=

1

σ̃t

t∑
j=T+1

∆yj (7)

where t > T is the monitoring observation. In (7), σ̃2
t is an estimate of σ2 which is consistent

under H0; HB use σ̃2
t := (t− 1)−1

∑t
j=2 (∆yj)

2. If St
T is computed sequentially at dates t =

T + 1, ..., ⌊λT ⌋, then under the null hypothesis, H0, of no explosive behaviour, as T → ∞,

T−1/2S
⌊Tr⌋
T ⇒ W (r)−W (1), 1 < r ≤ λ (8)

where “⇒” denotes weak convergence of the associated probability measures, and where

W (·) is used generically to denote a standard Brownian motion defined on the interval [0, λ].

Using Theorem 3.4 of Chu et al. (1996), HB show that under H0, the result in (8)

implies that, for any λ > 1,

lim
T→∞

Pr
(
|St

T | > ct
√
t for some t ∈ {T + 1, ..., ⌊λT ⌋}

)
≤ exp (−bα/2) (9)
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where ct :=
√
bα + log(t/T ). The CUSUM monitoring procedure proposed in HB then

rejects H0 if S
t
T > ct

√
t for some t > T , with an explosive episode signalled at the first time

point t in the monitoring period for which such an exceedance occurs.4 For such a (one-

sided upper tail) test the appropriate asymptotic setting for bα used to compute ct that

would deliver size of at most α = 0.05 would be bα = 4.6 (as this value of bα would deliver

a two-sided test with size at most α = 0.10 from the result in (9)).5

Astill et al. (2018) show that the procedure based on St
T does not have a controlled FPR,

even in large samples, in the case where vt = σtϵt with the volatility function, σt, displaying

time-variation of the form specified by Assumption 2(a) and ϵt a MDS with unit conditional

variance. Based on this, AHLTZ replace St
T with the modified CUSUM statistic,

SV t
T :=

t∑
j=T+1

∆yj
σ̂j,N

, t > T (10)

where σ̂2
j,N is a kernel smoothing estimator for the spot variance σ2

j := σ2(j/T ), defined,

for j ⩾ N + 1, as

σ̂2
j,N :=

N∑
s=0

ks (∆yj−s)
2 , with ks :=

K
(

s
N

)∑N
s=0K

(
s
N

) (11)

where the kernel function, K(·), and bandwidth, N , satisfy the conditions stated in As-

sumption 3, below. AHLTZ establish that the CUSUM monitoring procedure based on

SV t
T is able to control the FPR when vt exhibits time varying volatility of the form spec-

ified in Assumption 2(a), while retaining power close to the standard CUSUM procedure

of HB when the innovations are homoskedastic.

4Notice that the upper tail decision rule implies that the CUSUM procedure is designed to pick up

positive asset price bubbles, but will not reject against negative price bubbles. A version of the procedure

designed to detect the latter could be developed by using the corresponding lower tail decision rule, while

a detection procedure for either type of bubble would use the corresponding two tail decision rule.
5 These asymptotic settings for bα assume a monitoring period of infinite length, and monitoring proce-

dures based on these settings for bα can be extremely conservative in practice, particularly during the early

stages of the monitoring period. HB, therefore, provide finite sample settings in their paper (Table 8, p221),

reporting values of bα that deliver a monitoring procedure with an expected FPR of α ∈ {0.10, 0.05, 0.01}

by the end of the monitoring period for various lengths of the training and monitoring period, assuming

the series yt is an exact unit root process driven by NIID(0,1) innovations.
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Henceforth, we will refer to a monitoring procedure based on the St
T statistic as the

(standard) CUSUM monitoring procedure and that based on the SV t
T statistic as the

CUSUMV monitoring procedure.

The validity of both CUSUM and CUSUMV relies on the assumption that ∆yt is serially

uncorrelated under H0. This assumption is obviously violated if vt is generated by (4) with

p > 0, but is also, in general, violated (even if p = 0) when β(L) ̸= 0 if, for example, either

the covariates, xt, are serially correlated, or q > 0, or both. The large sample results in (8)

and (9) will not hold for St
T or SV t

T in such cases. Consequently implementing CUSUM and

CUSUMV using the critical values from HB would result in monitoring procedures where the

(theoretical) FPR would not be at the level expected by the practitioner. We next develop

covariate augmented analogues of the CUSUM and CUSUMV procedures which account

for the influence of the covariates xt, as well as any serial correlation arising from α(L).

These will be shown to retain the large sample results in (8) and (9). Later, in section 5,

we will use Monte Carlo simulation to investigate the degree of spurious detections suffered

by the univariate procedures when covariates are present in the DGP, and show that these

are well controlled by the covariate augmented procedures.

4 A Covariate Augmented CUSUM Monitoring Procedure

CUSUM tests for structural change in the parameters of homoskedastic weakly dependent

dynamic regression models have been developed in KPA who base their approach on a

statistic constructed from a standardised cumulated sum of recursive LS residuals. We

will adapt this approach to our setting to develop a real-time bubble monitoring procedure

which has a theoretically controlled FPR when vt is generated according to (4). We discuss

the construction of the CUSUM monitoring statistic by first considering the infeasible case

where the volatility function, σt, is known, and then discuss the feasible version of this,

based on nonparametric estimation of σt.

A key difference between our setting and that considered in KPA is that we allow for

the presence of heteroskedasticity in both the covariates, xt, and in disturbances, εt, in

the null regression (5), of the form specified in Assumption 2. Except in the special case

where the intercept term is excluded from the null regression (recall that this may be done

where the covariates all have mean zero), which is discussed separately in Section A.1 of
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the supplementary appendix, the presence of unconditional heteroskedasticity necessitates

constructing the CUSUM monitoring statistics from recursive WLS residuals, rather than

the conventional recursive LS residuals which suffice under unconditional homoskedasticity.

It is also worth clarifying at this point that the methods outlined in this section apply

provided that the vector of regression variables, gt, in the null regression model, (6), contains

at least one element (even if this is just an intercept term). Where this is not the case, no

regression estimation is needed and the appropriate monitoring procedure is that given in

section 2.2 of AHLTZ.

Our proposed CUSUM monitoring statistic is based on recursive WLS estimation of the

(null) regression in (6), which contains 1 + p+ (q + 1)m regressors. To that end, consider

the infeasible WLS transformation of (6), based on the true volatility function σt, given by

∆yt
σt

= φ′ gt
σt

+ ηt, t = 1, . . . , T, . . . , ⌊λT ⌋. (12)

The (infeasible) WLS estimator for φ at time t in the monitoring sample from this regression

is then given by

φW
t :=

 t∑
j=max(p+2,q+1)

gjg
′
j

σ2
j

−1 t∑
j=max(p+2,q+1)

gj∆yj
σ2
j

 , t = T + 1, . . . , ⌊λT ⌋

with the associated (infeasible) recursive residuals based on the WLS estimate defined as

eWt := ∆yt − (φW
t−1)

′gt, t = T + 1, . . . , ⌊λT ⌋. (13)

It is established in the proof of Theorem 1 that, under the null hypothesis, the associated

infeasible sequence of CUSUM statistics SWM t
T :=

∑t
j=T+1 e

W
j /σj, t = T + 1, ..., ⌊λT ⌋,

satisfies T−1/2SWM
⌊Tr⌋
T ⇒ W (r) − W (1), 1 < r ≤ λ, where it is recalled that W (·)

generically denotes a standard Brownian motion on [0, λ], such that we recover the usual

limiting distribution in (8).

To obtain a feasible version of SWM t
T we need to replace σj by a nonparametric es-

timate thereof. Nonparametric estimation of the variance function in time series models

has been considered by, among others, Xu and Phillips (2008), Cavaliere et al. (2017) and

Harvey et al. (2019), whereby a nonparametric kernel smoothing estimation procedure

is applied to the squares of regression residuals from the model at hand. In the present
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real-time monitoring setting, however, nonparametric estimation of the variance function

is nonstandard in two ways. First, because the monitoring takes place in real-time, only

data up to and including each time point in the monitoring period will be available to the

practitioner, and so as a consequence the smoothing is naturally performed using a one-

sided kernel. Second, because new data will continue to arrive in real-time as the moni-

toring proceeds, the vector of regression residuals needs to be updated at each successive

time point in the monitoring period.

As a consequence of the second issue discussed above, we will need to make use of the

double array of ordinary least squares [OLS] residuals from estimating (5), defined as:

f ∗
i,t := ∆yi − (φ̂t)

′gi, i = max(p+ 2, q + 1), . . . , t, t = T + 1, . . . , ⌊λT ⌋ (14)

where

φ̂t :=

 t∑
j=max(p+2,q+1)

gjg
′
j

−1 t∑
j=max(p+2,q+1)

gj∆yj

 , t = T + 1, . . . , ⌊λT ⌋. (15)

Using the OLS residuals in (14), we can then define the sequence of nonparametric

variance estimators across times j = N +max(p+ 1, q), ..., t, when standing at time t, as

σ̃2
j,N,t :=

N∑
s=0

ks(f
∗
j−s,t)

2, ks :=
K
(

s
N

)∑N
s=0K

(
s
N

) . (16)

in which ks, s = 0, ..., N , is a sequence of weights, which are defined based on some

kernel function K(·) and a window size N , precise conditions on which will be given in

Assumption 3, below. Because of the unavailability of future data, this nonparametric

variance estimator uses a left-sided, truncated kernel. Only the N most recent observations

are used in the calculation of the estimator and the weights are not dependent on t.

Based on the nonparametric variance estimates in (16), we can then define the feasible

WLS estimator of φ at time t as,6

φ̂W
t :=

 t∑
j=N+max(p+1,q)

gjg
′
j

σ̃2
j,N,t

−1 t∑
j=N+max(p+1,q)

gj∆yj
σ̃2
j,N,t

 , t = T + 1, . . . , ⌊λT ⌋.

6The change in the lower summation indices, relative to φW
t , arises because the calculation of φ̂W

t

requires variance estimates which can only be computed from j = N +max(p+ 1, q) onwards.
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Defining the feasible WLS recursive residuals as

êWj := ∆yj − (φ̂W
j−1)

′gj, j = T + 1, . . . , ⌊λT ⌋

a feasible version of the sequence of SWM t
T statistics can then defined as,

SWMV t
T :=

t∑
j=T+1

êWj
σ̃j,N,j

, t = T + 1, ..., ⌊λT ⌋ (17)

We will denote the monitoring procedure based on the sequence of SWMV t
T , t = T +

1, ..., ⌊λT ⌋, statistics as CUSUMWMV .

In order to derive the asymptotic properties of the sequence of SWMV t
T statistics, we

require the following conditions hold on the kernel function K(·) and the window size N .

These conditions coincide with those imposed by AHLTZ (p.194) in the context of their

SV t
T statistic in (10), where a discussion of these conditions is provided.

Assumption 3. (a) K(·) is strictly positive and continuously differentiable over the in-

terval (0, 1), with K(x) = 0 for x ≤ 0 and x ≥ 1. Also,
∫ 1

0
K(x)dx > 0,

∫ 1

0
|K(x)|dx <

∞,
∫ 1

0
|K(x)x|dx <∞ and the characteristic function ϕ(t) =

∫∞
−∞ exp(itx)K(x)dx of

K satisfies
∫∞
−∞ |ϕ(t)|dt < ∞. K ′(·), the derivative of the K(·) function, also has a

characteristic function that is absolutely integrable.

(b) N → ∞ as T → ∞, such that N/T → 0 and N3/2/T → ∞.

Remark 4.1. Implementation of SWMV t
T requires choices to be made for both the kernel

and bandwidth used in constructing the nonparametric estimator σ̃2
j,N,t in (16). We found

that the choices for these recommended in AHLTZ also lead to good FPR control for the

procedures considered in this paper. Specifically, we therefore recommend implementation

with the truncated Gaussian kernel and where the bandwidth at each point t in the moni-

toring period, denoted N cv
t , is chosen according to the automated rule:

N cv∗
t := argminN∈[1,H]CV

∗
t (N), CV ∗

t (N) :=
1

H

t∑
j=t−H+1

(σ̃2
j,N,t − (f ∗

j,t)
2)2. (18)

where, for j = t−H + 1, ..., t,

σ̃2
j,N,t :=

N∑
s=0

ks(f
∗
j−s,t)

2, ks :=
K
(

s
N

)∑N
s=0K

(
s
N

) , (19)
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The estimators of the spot variances, σ2
j , j = t−H+1, ..., t, each computed at time t, defined

in (19) are needed to compute the time t cross-validation objective function in (18). The

automated bandwidth rule minimises the estimation error of the spot variance over the most

recent H observations based on the OLS residuals computed using data up to and including

the current monitoring observation, t; cf. Hall and Schucany (1989). Implementation of

N cv∗
t in (18) requires a choice of H; we follow AHLTZ and set H = 20. These choices for

the kernel and bandwidth are used in all the numerical work in this paper. ♢

In Theorem 1, we establish the joint limiting null distribution of the sequence of feasible

covariate augmented SWMV t
T statistics from the monitoring period.

Theorem 1. Let the data be generated according to (1)-(4) under the null hypothesis H0 :

δ = 0. If Assumptions 1-3 hold, then, as T → ∞, it follows that

T−1/2SWMV
⌊Tr⌋
T ⇒ W (r)−W (1), 1 < r ≤ λ. (20)

Appealing to Theorem 3.4 of Chu et al. (1996), Theorem 1 implies the following:

Corollary 1. Under the conditions of Theorem 1,

lim
T→∞

Pr
(
|SWMV t

T | > ct
√
t for some t ∈ {T + 1, ..., ⌊λT ⌋}

)
≤ exp(−bα/2). (21)

Remark 4.2. Theorem 1 and Corollary 1 imply that when the innovations vt satisfy

Assumptions 1-2, both the limiting null distribution and crossing probabilities for the

covariate augmented CUSUMWMV procedure are unchanged relative to those given in (8)

and (9), respectively, for the original CUSUM procedure of HB in the case where vt is

conditionally homoskedastic and serially uncorrelated. Notice from (20) that the joint

limiting null distribution of the SWMV t
T , t > T , statistics does not depend on any nuisance

parameters arising from time-varying behaviour in the unconditional covariance matrix of

the covariates; cf. Remark 2.5. ♢

Next, we proceed to establish consistency results for our covariate-augmented CUSUMWMV

monitoring procedure. In Theorem 2 we establish consistency results for a class of mildly

explosive alternatives of the form δ = c/T d with 0 < d ≤ 2/3, for t > ⌊τT ⌋, and where c

is a positive constant, and for fixed alternatives, δ = c. We will subsequently discuss the
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class of mildly explosive alternatives where 2/3 < d < 1 in Remark 4.3, and locally explo-

sive alternatives, where d = 1, in Remark 4.4.

Theorem 2. Let the data be generated according to (1)-(4) under the alternative hypothesis

H1 : δ = c/T d, for t > ⌊τT ⌋, with c a positive constant and 0 ≤ d ≤ 2/3, and let

Assumptions 1-3 hold. It then holds that,

lim
T→∞

Pr
(
|SWMV t

T | > ct
√
t, for some t ∈ {⌊τT ⌋+ 1, . . . , ⌊λT ⌋}

)
= 1. (22)

Remark 4.3. The result in Theorem 2 immediately implies that the CUSUMWMV proce-

dure is consistent against both fixed (d = 0) and mildly explosive (0 < d ≤ 2/3) alternatives

of the form δ = c/T d. In both these cases T d maintains a fixed relative relationship with

N . Recall that Assumption 3(b) imposes the condition that N3/2/T → ∞, which implies

that N/T 2/3 → ∞. Consequently, when 0 ≤ d ≤ 2/3, T d diverges at a slower rate than N

and T d∧N = T d. However, in cases where 2/3 < d < 1, such that the magnitude of the ex-

plosiveness parameter is very mild, this no longer holds and, as a result, SWMV t
T does not

necessarily diverge at a faster rate than the boundary function ct
√
t. Essentially this issue

arises because the volatility estimates in (16) are constructed using the residuals from a re-

gression model which imposes the null hypothesis. Where the null is false, this model is mis-

specified and for 2/3 < d < 1 the volatility estimate diverges at such a rate that it prevents

CUSUMWMV from necessarily diverging at a faster rate than the boundary function ct
√
t;

see Lemma A.9 in the supplementary appendix. A possible solution to this is to employ a

truncated volatility estimator of the form, σ̃j,N,j · I(σ̃j,N,j ≤ C ln(T )) + C ln(T ) · I(σ̃j,N,j >

C ln(T )), where C is a generic positive constant, such that C ln(T ) serves as a slowly vary-

ing truncation function. Under the null, the volatility estimator is consistent and the trun-

cation level ln(T ) approaches infinity, such that the truncation has no impact in the limit.

However, under the alternative the truncated volatility estimator is limited to diverge at a

rate no faster than ln(T ), which is slower than any polynomial rate. By incorporating this

truncation mechanism, we conjecture that consistency would hold over a wider range of d

than 0 ≤ d ≤ 2/3. However, we leave a detailed treatment of this case for future research. ♢

Remark 4.4. In addition to the consistency results in Theorem 2, it is also instructive

to examine the behaviour of the monitoring procedure in the case of locally explosive
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alternatives of the form Hc,τ : δ = c/T , for t > ⌊τT ⌋, where c is a positive constant. When

the volatility process is known, the asymptotic behaviour of the detector SWMV t
T can be

derived along the same line of argument as the proof of Theorem 1. In particular, in the

special case of α(L) = 1 (i.e. when the fitted model has no lagged dependent variables),

1√
T

⌊Tr⌋∑
j=T+1

eWj
σj

=
1√
T

⌊Tr⌋∑
j=T+1

ηj −
1√
T

⌊Tr⌋∑
j=T+1

(φW
j−1 − φ)′gj

σj
+

c

T 3/2

⌊Tr⌋∑
j=⌊τT ⌋+1

uj−1

σj

As in the proof of Theorem 1, the first two terms collectively weakly converge to W (r) −

W (1). By the FCLT and CMT, the third term satisfies c
T 3/2

∑⌊Tr⌋
j=⌊τT ⌋+1

uj−1

σj
⇒ c

∫ r

τ
U(s)/σ(s)ds,

where U(s) :=
∫ s

0
ec(s−u)σ(u)dW (u). It therefore follows that the asymptotic distribution

under Hc,τ is given by W (r)−W (1) + c
∫ r

τ
U(s)/σ(s)ds, from which the asymptotic prob-

ability of the CUSUMWMV procedure rejecting the null when a locally explosive episode

is present can be simulated. For general α(L), it can be shown in the same way that the

asymptotic distribution is given byW (r)−W (1)+α(1)c
∫ r

τ
U(s)/σ(s)ds. Where the volatil-

ity is estimated, we anticipate the same limit will hold under Hc,τ in view of the results

given in Harvey et al. (2019) for the behaviour of the nonparametric variance estimator

considered in this paper under locally explosive DGPs. ♢

Remark 4.5. Thus far we have assumed that the parameters p and q in (5), together with

the composition of them-vector of true covariates, xt, are known. In practice, these aspects

will be unknown. However, under the maintained hypothesis of no bubble in the training

sample, the regression model in (5), for t = 1, ..., T , is an ARX model satisfying standard

regularity conditions, and so an application of a consistent information criterion [IC], such

as the well-known Bayesian IC [BIC], could be used to select these elements. The Monte

Carlo results in section 5 will implement applying the BIC to the training sample to select

p, q, and whether to include a given candidate covariate or not. ♢

We end this section with a word of caution. The CUSUMWMV procedure can, in

principle, reject for various forms of structural change in the null model that, while ruled

by our regularity conditions, might occur in practice. As such, a rejection by CUSUMWMV

does not necessarily imply the presence of a bubble episode. Indeed, this is precisely

our motivation for developing a procedure robust to structural changes in unconditional
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volatility. Another possibility is where a covariate used in the null regression displays

structural change, such as an explosive episode itself or a mean shift; simulations looking

at these cases are reported in Section 5.3. In practice, as with any statistical procedure, we

recommend practitioners investigate the plausibility of the regularity conditions underlying

CUSUMWMV as part of their statistical analysis. This could, for example, include running

standard tests for explosivity and mean shifts in the covariates over the training sample

and then running analogous (univariate) CUSUM monitoring procedures in tandem on the

covariates, removing any covariate from the analysis for which either of these reject.

5 Monte Carlo Simulations

We report results of a Monte Carlo simulation exercise evaluating the finite sample perfor-

mance of the CUSUMWMV monitoring procedure. Additional results are reported in the

supplementary appendix and summarised in Section 5.3.

5.1 Simulation DGP and Experimental Settings

Data were generated according to (1)-(2), initialised at u0 = 100 (so that bubbles in our

series are generally upwardly explosive and, hence, empirically relevant), setting µ = 0

without loss of generality. We set T = 219, so that monitoring begins at time t = 220,

and set monitoring to end at time λT = 255. Under the null δ = 0, while under the

alternative we set δ = 0.005, τ1T = 220 and τ2T = λT , such that yt follows a unit root

process during the training sample, before switching to an explosive regime starting when

monitoring commences and continuing until the end of the monitoring period.

For the error term vt and the covariate xt, we use an unconditionally heteroskedastic

extension of the simulation DGP detailed in Section 5.1 on page 143 of CSS:

vt = α1vt−1 + βxt + ε1,t, (23)

xt+1 = ρxt + ε2,t, (24)

with the covariate initialised at x0 = 0. The variance matrix of the innovation vector,

(ε1,t, ε2,t)
′, was generated according to: ε1,t

ε2,t

 ∼ NIID(0,Σt), Σt :=

 σ2
1,t σ12,t

σ12,t σ2
2,t

 (25)
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in which σ2
1,t, σ

2
2,t are subject to smooth upward shifts in volatility of the form:

σj,t := 1 + (
√
4− 1) [1 + exp(−θ(t− 219))]−1 , j = 1, 2 (26)

with θ = 0.25; that is, a logistic smooth transition in volatility from 1 to
√
4 centred on

the end of the training sample. We report results for the following four cases for Σt:

(a) σ2
1,t = σ2

2,t = 1 and σ12,t = σ12, in each case for all t, such that ε1,t and ε2,t are

homoskedastic with a fixed correlation of σ12.

(b) σ1,t and σ2,t both satisfy (26), while σ12,t = σ12σ1,tσ2,t, such that the correlation

between ε1,t and ε2,t remains fixed at σ12 for all t.

(c) σ2
1,t satisfies (26), σ2,t = 1, for all t, and σ12,t = σ12σ1,t, such that ε1,t exhibits time

varying volatility, but with the correlation between ε1,t and ε2,t fixed at σ12.

(d) σ2
1,t satisfies (26), σ2,t = 1, for all t, and σ12,t = σ12, such that ε1,t exhibits time

varying volatility with the correlation between ε1,t and ε2,t time-varying through σ2
1,t.

We report rejection rates for the CUSUMWMV procedure together with the standard

CUSUM procedure of HB and the CUSUMV procedure of AHLTZ. We also report results

for a procedure, denoted CUSUMV ∗, which is similar to the CUSUMWV procedure outlined

in Section A.1 but where the null regression is given by (5) but excluding the covariate

regressors and the intercept. The rationale behind including this procedure is that including

only lags of ∆yt should yield a procedure that is able to deal with the serial correlation in

∆yt induced by the presence of the covariate (see the discussion at the end of Section 3),

but does not exploit any potential power gains available from including a relevant covariate

under the alternative. It should therefore provide an FPR controlled benchmark against

which to quantify the power gains (or losses) that arise from including the covariate terms.7

Following the discussion in Remark 4.5, in implementing the CUSUMWMV procedure we

use the BIC to select the null model, based on OLS estimation and using only the training

sample data. The BIC is computed for (5), estimated using a common data sample ending

7Note that the null regression used for CUSUMV ∗ does not contain an intercept as, when excluding

the covariates from the regression, an intercept is only needed if we wish to allow for a trend in yt under

the null. The statistic for this procedure is therefore computed as in Section A.1 in the Supplementary

Appendix where WLS estimation is not required.
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at time T , across all combinations of p and q, subject to the proviso that where p > 1

all of the regressors ∆yt−1, ...,∆yt−p are included in the estimated model, and similarly

for q > 0 all of the regressors xt, xt−1, ..., xt−q are included in the estimated model. The

maximum value allowed for p is set at pmax = 4 and the maximum value for q is set at

qmax = 2. Based on the same set of sample observations, the BIC is also calculated for

a version of (5) where the intercept and covariate regressors are excluded, again setting

pmax = 4, and with the same condition that for p > 1 all of the regressors ∆yt−1, ...,∆yt−p

are included in the estimated model. In the case where p = 0 and no intercept or covariate

regressors are included then no regression is performed and so the BIC is given by ln(σ̂2),

with no penalty term, where σ̂2 is computed using the sample observations on ∆yt. If the

minimum value of the BIC across all of these candidate models corresponds to a model that

excludes the intercept and covariate regressors then the monitoring statistics underlying

the CUSUMWMV procedure coincide with those used in the CUSUMV ∗ procedure.8 If

the model with p = 0 and no intercept or covariate regressors is selected, the monitoring

statistics underlying the CUSUMWMV procedure coincide with those used in the CUSUMV

procedure of AHLTZ.

In implementing the CUSUMV ∗ procedure we also use the BIC applied to models esti-

mated by OLS to select the value of p in (5) (with the intercept and covariate regressors

excluded) based on the same set of sample observations from the training sample as are

used in the BIC procedure for CUSUMWMV outlined in the last paragraph, again setting

the maximum permitted value of p to pmax = 4, and with the same condition that for p > 1

all of the regressors ∆yt−1, ...,∆yt−p are included in the estimated model.9 If the model

with p = 0 is selected then the monitoring statistics underlying the CUSUMV ∗ procedure

coincide with those underlying the CUSUMV procedure of AHLTZ.

8We find that in all scenarios where β ̸= 0 the intercept and covariate regressors are selected for inclusion

in the CUSUMWMV procedure in a vast majority of replications. Likewise, when β = 0, the intercept

and covariate regressors are excluded by the BIC in a vast majority of replications. In the homoskedastic

scenario, for instance, the intercept and covariate regressors are selected in 100% of replications when β ̸= 0

and in only 1% of replications when β = 0. Additional simulations showed that this pattern is repeated in

cases where the bubble begins before the start of the monitoring period.
9We considered allowing a larger maximum value of 12 for p in the CUSUMV ∗ procedure but found

that this made no noticeable difference to the resulting FPR or TPR.
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Following HB, all monitoring procedures use finite sample critical values; cf. footnote 5.

We select a value of bα such that the FPR is equal to 0.10 by time t = 241 when yt is a pure

unit root process driven by NIID(0, 1) innovations and the covariate is an irrelevant white

noise process; i.e., β = ρ = α1 = 0 and σ12 = 0, σ2
1,t, σ

2
2,t = 1, for all t. For the standard

CUSUM procedure this value is bα = 0.1395, while for CUSUMV bα = 0.1679. The figures

plot, in the line denoted FPRi.i.d., the FPR of the CUSUMV procedure that would obtain

in this baseline case under the null when the innovations are homoskedastic. CUSUMWMV

and CUSUMV ∗ use the same value of bα as CUSUMV .

5.2 Discussion of Results

The first set of results relate to the case where yt admits a purely univariate DGP (i.e. xt is

not a relevant covariate); that is, where β = ρ = α1 = 0 and σ12 = 0, for all t. Here, and in

any other cases where σ12 = 0, we omit results for the volatility shift in scenario (d) as this

is identical to scenario (c) when σ12 = 0. These results are reported in Figure 1, with panel

(a) pertaining to the baseline case where the innovations are homoskedastic.10 For each time

point e, T +1 ≤ e ≤ λT , the corresponding point on the curves in the figure represents the

empirical rejection rate of the particular procedure run from time t = T+1 until time t = e.

In this baseline scenario where the covariate is irrelevant, as a point of comparison, we

also report results for the (pseudo) real-time monitoring procedures proposed by PWY and

PSY. The monitoring procedure of PWY is based on performing a full sample ADF test (al-

lowing for a deterministic constant) at each point in the monitoring period using all data up

to and including the current monitoring observation, and the monitoring procedure of PSY

is based on performing the BSADF test of PSY (again, allowing for a deterministic con-

stant) at each point in the monitoring period using all data up to and including the current

monitoring observation. The procedure of PWY compares the sequence of ADF statistics

10Here and in each of the remaining figures we also report the value of ϱ2 for each simulation DGP in

the case where σ2
1,t = σ2

2,t = 1, for all t. For scenarios where σ2
1,t and/or σ2

2,t are time varying, the value

of ϱ2 will also be time varying. Defining qt := βxt + ε1,t, ϱ
2 is defined as the long run (zero frequency)

squared correlation between qt and ε1,t, with precise details on the calculation of this quantity for this

DGP provided in CSS (p.144). While Hansen (1995) and CSS show that the power of left-tailed unit root

tests are inversely related to the value of ϱ2, ATKK show that this is not necessarily the case when testing

in the right-tail, and we observe that this is also the case for the CUSUMWMV monitoring procedure.
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with a fixed simulated critical value, with a rejection signalled if any ADF statistic in the

sequence exceeds this critical value. Likewise, the procedure of PSY compares the sequence

of BSADF statistics with a fixed simulated critical value, with a rejection signalled if any

BSADF statistic in the sequence exceeds this critical value. We also include an implemen-

tation of our CUSUMWMV procedure where we ignore the outcome of BIC model selection

and force inclusion of the covariate (denoted CUSUMWMV (Forced)). For both the PWY

and PSY procedures the fixed critical value is chosen such that the FPR of the procedure

is equal to 0.10 by time t = 241 when yt is a pure unit root process driven by NIID(0, 1)

innovations, thereby mirroring the calibration process for the CUSUM procedures.11

We see from the results in Figure 1 that the BIC reduces the CUSUMWMV and CUSUMV ∗

procedures to the CUSUMV procedure in the vast majority of replications, and so the FPR

and TPR of these three procedures are almost indistinguishable; indeed, forcing this irrel-

evant covariate to always be included is also seen to have little effect on either the FPR or

TPR of CUSUMWMV . As also demonstrated in AHLTZ, the standard CUSUM procedure

exhibits severe FPR distortions when the innovations to yt exhibit a smooth shift in volatil-

ity. In contrast, the CUSUMV , CUSUMWMV and CUSUMV ∗ procedures all control the

FPR well in such cases. This shows that, like the CUSUMV procedure of AHLTZ, our pre-

ferred CUSUMWMV procedure has far superior FPR control to the standard CUSUM pro-

cedure in the presence of time varying volatility in a univariate setting, while only showing

a modest TPR shortfall relative to the standard CUSUM procedure under the alternative

when yt is a pure unit root process driven by homoskedastic innovations. While the FPR

of a monitoring procedure based on either the SADF or BSADF statistics is well con-

trolled for homoskedastic innovations, these procedures, like the standard CUSUM proce-

dure, suffer from very significant FPR distortions when the innovations exhibit time vary-

ing volatility. In the homoskedastic case, where a monitoring procedure based on SADF

or BSADF has controlled FPR, we also observe that the TPR of the BSADF and espe-

cially the SADF procedures lies well below that of the CUSUM based monitoring proce-

dures, other than where all of the procedures display very low TPRs. Due to the poor FPR

11For the BSADF statistics, the minimum window size, r0, was set to 0.01 + 1.8/
√
t, as suggested in

PSY, and in all ADF statistics the lag order was set to the true value of zero.
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control and TPR properties they display in Figure 1 we will not consider monitoring pro-

cedures based on the SADF or BSADF test further in the remainder of our experiments.

We next examine the performance of the procedures for a DGP in which the covariate

is relevant but the error term vt in (23) admits no serial correlation. To that end, Figure

2 reports the FPR and TPR of the procedures for the CSS type DGP for vt and xt given

by (23)-(24) with ρ = σ12 = α1 = 0 and β = 0.8 (corresponding results for β = 0.5 are

given in the supplementary appendix and are qualitatively similar). As vt is not serially

correlated the BIC selects p = 0 in the great majority of replications so that the FPR

and TPR curves for CUSUMV and CUSUMV ∗ almost exactly coincide. Under the null, all

but the standard CUSUM procedure exhibit decent FPR control in the presence of shifts

in volatility. Under the alternative, CUSUMWMV is seen to offer substantial power gains

relative to both the CUSUMV and CUSUMV ∗ procedures.

We next explore the properties of the monitoring procedures for DGPs that allow both

vt and xt to be serially correlated. Figures 3-4 present the FPR and TPR of the procedures

for the CSS type DGP for vt and xt given by (23)-(24) where, following CSS, we set α1 = 0.2

and σ12 = 0.4. We report results for ρ = 0.8 and β ∈ {−0.8, 0.8}, with additional figures in

the supplementary appendix for the remaining combinations of β and ρ considered by CSS.

Across these figures, neither the standard CUSUM nor CUSUMV procedures exhibit

controlled FPR, with both of these procedures often displaying extreme FPR distortions

relative to the baseline case where vt is i.i.d. While the CUSUMWMV and CUSUMV ∗

procedures do exhibit some slight FPR distortions relative to the case where vt is i.i.d.,

these FPR distortions are very modest in comparison to those exhibited by CUSUM and

CUSUMV . Within each figure, examining the FPR performance of the procedures across

panels (b)-(d) shows that the FPR performance of the CUSUMWMV procedure is broadly

similar in the cases where a shift in volatility occurs in ε1,t and where a shift in volatility

occurs in both ε1,t and ε2,t, regardless of whether the correlation between these innovations

remains fixed or not. This is not true for the remaining procedures which have an FPR

profile that changes significantly across these three scenarios.

While we include the TPR of the standard CUSUM and CUSUMV procedures in the

figures we cannot compare these directly to the TPR of CUSUMWMV and CUSUMV ∗ as the
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former two procedures display very significant FPR distortions under the null. Between the

two FPR controlled procedures, the TPR of CUSUMWMV is consistently much higher than

that of CUSUMV ∗ across scenarios, showing that while CUSUMV ∗ is able to control the

FPR under the null by dealing with the serial correlation induced by the presence of the co-

variate, it is unable to exploit the information from the covariate under the alternative, un-

like CUSUMWMV which displays impressive TPR properties across all scenarios considered.

5.3 Summary of Additional Results in the Supplementary Appendix

1. Results for the case where a volatility shift is present in only ϵ2,t are reported in Section

A.4.2. These highlight that the standard CUSUM procedure is unable to control the

FPR as the volatility shift in the unmodelled covariate manifests in the values of ∆yt

used to construct the CUSUM statistics. The CUSUMV procedure is only able to

control FPR when no serial correlation is present in vt, and the FPR of the CUSUMV ∗

procedure, while better than that of CUSUM and CUSUMV , is also quite poor. However,

CUSUMWMV displays good FPR control in all of the scenarios considered.

2. Results for the case where xt is subject to measurement error are reported in Section

A.4.3. These suggest that while the TPR of the CUSUMWMV procedure is reduced in

the presence of measurement error, increasingly so as the variance of the measurement

error increases, it remains superior to the TPR exhibited by the other procedures.

3. Results where a bubble in the training sample is present in xt are reported in Section

A.4.4. The CUSUMV procedure is unaffected, provided the bubble terminates at least

H (the maximum bandwidth considered for the kernel variance estimator) periods be-

fore the start of monitoring. For CUSUMWMV and CUSUMV ∗, the residuals used in

constructing the CUSUM statistics use all of the available sample data. Where the co-

variate is irrelevant, the FPR and TPR of the CUSUMWMV and CUSUMV ∗ procedures

are little altered, while a training sample bubble in a relevant covariate causes a slight

inflation of the FPR of the CUSUMWMV and CUSUMV ∗ procedures. This could poten-

tially be obviated by truncation of the training sample.

4. Results for the case where an irrelevant I(1) covariate, xt, is mistakenly used in the

CUSUMWMV procedure are reported in Section A.4.5. These show that including xt
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causes CUSUMWMV to exhibit a slightly inflated FPR and modestly lower TPR than

the correctly specified univariate tests. Reassuringly, the loss in TPR is modest and

is predicated on a practitioner failing to difference xt and then forcing the inclusion of

xt in the CUSUMWMV procedure, as the BIC model selection we recommend for this

procedure determines xt to be irrelevant in the vast majority of cases.

5. Results where an irrelevant covariate admits a bubble during the monitoring period are

reported in Section A.4.6. We consider the case where the covariate is initially either

I(0) or I(1) before switching to an explosive regime at the start of monitoring. Forcibly

including the covariate in the CUSUMWMV procedure leads to a slight inflation of the

FPR under the null and a modest decrease in the TPR under the alternative, with this

effect more pronounced where the covariate is initially I(0). Analogous results for a

relevant covariate containing a bubble at the start of monitoring are reported in Section

A.4.7. These show a very slight increase in the FPR and no perceptible change in the

TPR, relative to the case where no bubble is present in the covariate.

6. Results where a mean shift is present during the monitoring period in a utilised covariate

are reported in Section A.4.8. These suggest this is problematic only where the covariate

is relevant (β ̸= 0). A mean shift in a relevant covariate which is entered in first

differences, as will generally be the case with macro and financial variables (see Remark

2.8), also appears relatively benign. A mean shift in a series entered in levels is more

problematic causing a large increase in the FPR of CUSUMWMV . However, the approach

suggested at the end of Section 4 to simultaneously monitor the covariate for structural

change appears useful, in that under the no bubble null it rejects in the presence of the

mean shift with significantly higher frequency than does CUSUMWMV .

7. Results where a relevant but unobserved covariate, xt, is the input to an observed

local-to-unity process, zt, with local-to-unity parameter, c > 0, but ∆zt (rather than

zt − (1 − c
T
)zt−1) is incorrectly used as the covariate are reported in Section A.4.9.

Relative to the correctly specified case where c = 0, the FPR of CUSUMWMV tends to

be slightly increased and the TPR slightly decreased, with these effects increasing in c.

These findings echo the results reported in Hansen (1995, pp.1159-1160) for covariate
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augmented unit root tests in this scenario. We note that ∆zt does not violate the

regularity conditions given in Assumption 2, regardless of the value of c.

6 Conclusions

We have developed a generalisation of the univariate CUSUM-based real-time bubble mon-

itoring procedure of HB which incorporates additional information from relevant covariates

and is also robust to unconditional heteroskedasticity and serial correlation in the distur-

bances. We have shown that the CUSUM statistics used in this procedure follow the same

limiting null distribution as those in HB, such that a monitoring procedure can be validly

based on the same large sample boundary function. Monte Carlo results were presented

showing that, in contrast to univariate procedures, our proposed procedure has a controlled

false positive rate where a relevant dynamic covariate enters the DGP. Moreover, where

an explosive episode occurs in the monitoring period, incorporating the covariate can yield

significant gains in finite sample detection efficacy, relative to univariate procedures.
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Figure 1: β = ρ = σ12 = α1 = 0 - Left Panel=FPR, Right Panel =TPR. (ϱ2 = 1.000)

(a) Homoskedastic

(b) σ1,t, σ2,t Shift.

(c) σ1,t Shift.

FPRi.i.d.: - - -, CUSUM: ....., CUSUMV : - . -, CUSUMV ∗: – –, CUSUMWMV : ——

CUSUMWMV (Forced): . . ., SADF : – –, BSADF : –+–

Notes: (a) Each graph in this figure, and in all subsequent figures relating to our Monte Carlo experiments,

denotes the proportion of the simulation replications in which each procedure detects a bubble when run up

to and including time e, for e = 220, ..., 255. Under the null (alternative) this therefore depicts the empirical

FPR (TPR) of the procedures; (b) The red dotted line corresponds to the case where the covariate is always

included in the null regression model (5) used in connection with the CUSUMWMV procedure.



Figure 2: β = 0.8, ρ = σ12 = α1 = 0 - Left Panel=FPR, Right Panel =TPR. (ϱ2 = 0.610)

(a) Homoskedastic

(b) σ1,t, σ2,t Shift.

(c) σ1,t Shift.

FPRi.i.d.: - - -, CUSUM: ....., CUSUMV : - . -, CUSUMV ∗: – –, CUSUMWMV : ——



Figure 3: β = 0.8, ρ = 0.8, σ12 = 0.4, α1 = 0.2 - Left Panel=FPR, Right Panel =TPR. (ϱ2 = 0.335)

(a) Homoskedastic

(b) σ1,t, σ2,t Shift. Fixed Correlation

(c) σ1,t Shift. Fixed Correlation

(d) σ1,t Shift. Correlation Varies

FPRi.i.d.: - - -, CUSUM: ....., CUSUMV : - . -, CUSUMV ∗: – –, CUSUMWMV : ——



Figure 4: β = −0.8, ρ = 0.8, σ12 = 0.4, α1 = 0.2 - Left Panel=FPR, Right Panel =TPR. (ϱ2 = 0.026)

(a) Homoskedastic

(b) σ1,t, σ2,t Shift. Fixed Correlation

(c) σ1,t Shift. Fixed Correlation

(d) σ1,t Shift. Correlation Varies

FPRi.i.d.: - - -, CUSUM: ....., CUSUMV : - . -, CUSUMV ∗: – –, CUSUMWMV : ——
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Abstract

The contents of this supplementary appendix are as follows. Section A.1 outlines the

analogue of the covariate augmented CUSUM procedure proposed in Section 4 for

the case where it is known that all of the covariates have mean zero and the constant

term is accordingly omitted from the null regression. Section A.2 provides proofs of

the large sample results stated in Section 4 and Section A.1. Section A.3 reports the

results from a pseudo real-time empirical exercise comparing our covariate augmented

monitoring procedure with one which does not allow for covariate information, using

an updated version of the dataset of Welch and Goyal (2008). Section A.4 contains the

results of the additional Monte Carlo simulation experiments referred to in Section 5.



A.1 A Covariate Augmented CUSUM Monitoring Procedure -

No Constant Term

In the case where the covariates, xt, are known to have mean zero, such that cx = 0, so that

the constant term can be omitted from the null regression in (5), we have the simplified

null model,

∆yt =

p∑
k=1

αk∆yt−k +

q∑
k=0

β′
kwt−k + εt, (A.1)

where wt now coincides with xt and satisfies the conditions laid out in Assumption 1, and

where the first summation term is again understood to be present only when p > 0.

Defining zt := (∆yt−1, . . . ,∆yt−p, w
′
t, w

′
t−1, ..., w

′
t−q)

′ and ϕ := (α1, . . . , αp, β
′
0, β

′
1, . . . , β

′
q)

′,

the null model (A.1) can be written more compactly as

∆yt = ϕ′zt + σtηt, t = 1, . . . , T, . . . , ⌊λT ⌋ (A.2)

Following KPA, our proposed CUSUM monitoring statistic is based on recursive esti-

mation of (A.2). However, in contrast to the SWMV t
T statistics outlined in Section 4, these

can be estimated by OLS, rather than WLS, and still attain the large sample results in (8)

and (9); for further discussion on this point, see Remark A.1.7 below.

To that end, defining the recursive LS estimator for ϕ from (A.2) in the monitoring

period as

ϕ̂t :=

 t∑
j=max(p+2,q+1)

zjz
′
j

−1 t∑
j=max(p+2,q+1)

zj∆yj

 , t = T + 1, . . . , ⌊λT ⌋ (A.3)

the (null) recursive residuals in the monitoring period can then be defined as

et := ∆yt − ϕ̂′
t−1zt, t = T + 1, . . . , ⌊λT ⌋. (A.4)

A key difference in the fitted null regression model compared to that discussed in Section

4 is that there is no constant term included in the regressors in zt.

Consider first the infeasible case where the volatility function, σt, is known. Here,

replacing ∆yj in the CUSUM statistic of HB in (7) by the recursive null residual, ej, and

scaling by the known volatility, σj, we obtain the following (infeasible) covariate augmented

CUSUM statistic,

SW t
T :=

t∑
j=T+1

ej
σj
, t > T. (A.5)
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In Theorem A.1 we next establish the limiting null distribution of the sequence of

infeasible covariate augmented CUSUM statistics, SW t
T , t > T . In order to do so we need to

replace Assumption 2(e) on the regressors in the WLS regression, (5), with a corresponding

set of conditions on the OLS regression with the constant term omitted, (A.1). Analogously

to Assumption 2(e), this excludes the possibility of asymptotic collinearity between the

regressors in (A.1) and also needs to hold for us to be able to make use of the weak

convergence result in Lemma A.10.

Assumption A.1. For all 0 ≤ κ ≤ λ, it holds that plimT→∞(1/⌊Tκ⌋)
∑⌊Tκ⌋

s=1 zsz
′
s =

limT→∞(1/⌊Tκ⌋) E(
∑⌊Tκ⌋

s=1 zsz
′
s) =: Ξ(κ), and that plimT→∞(1/⌊Tκ⌋)

∑⌊Tκ⌋
t=1 ztz

′
tσ

2
t ht =

limT→∞E(1/⌊Tκ⌋)
∑⌊Tκ⌋

t=1 ztz
′
tσ

2
t ht =: Ω(κ), with Ξ(κ) and Ω(κ) both positive definite ma-

trices with all elements finite and continuous in κ.

Theorem A.1. Let the data be generated according to (1)-(4) under the null hypothesis

H0 : δ = 0. If Assumptions 1-2, excluding Assumption 2(e), and Assumption A.1 hold,

then, as T → ∞, it follows that

T−1/2SW
⌊Tr⌋
T ⇒ W (r)−W (1), 1 < r ≤ λ, (A.6)

where W (·) denotes a standard Brownian motion on [0, λ].

As in the leading case considered in Section 4 where a constant is included in the null

regression, in order to develop a feasible version of this statistic we need to replace σj by

a nonparametric estimate thereof. The nonparametric estimator for the variance function

σ2(·) we use will be based on the double array of OLS residuals

fi,j := ∆yi − ϕ̂′
jzi, i = max(p+ 2, q + 1), . . . , j, j = T + 1, . . . , ⌊λT ⌋. (A.7)

Using the OLS residuals in (A.7), we can then define the sequence of nonparametric

variance estimators across j = T + 1, . . . , ⌊λT ⌋, when standing at time t, as

σ̂2
j,N,t :=

N∑
s=0

ksf
2
j−s,t, ks :=

K
(

s
N

)∑N
s=0K

(
s
N

) , (A.8)

where ks, s = 0, ..., N , is a sequence of weights, for the kernel function K(·) and a window

size N . An important difference, compared to the methods outlined in Section 4, is that
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only the σ̂2
j,N,j are needed for constructing the monitoring statistic. This is because recursive

LS residuals, rather than recursive WLS residuals, are used in (A.5). We will therefore

use the simplified notation σ̂2
j,N := σ̂2

j,N,j for j = T + 1, . . . , ⌊λT ⌋, in what follows. As

in the main text, due to the unavailability of future data, this nonparametric variance

estimator also uses a left-sided, truncated kernel. Only the N most recent observations are

used in the calculation of the estimator and the weights are not dependent on t. Notice

also that for practical implementation we require that N ≤ T − max(p + 1, q), such that

σ̂2
T+1,N , . . . , σ̂

2
⌊λT ⌋,N can be computed.

Based on (A.8), a feasible version of the covariate augmented CUSUM statistic in (A.5)

can then be defined as

SWV t
T :=

t∑
j=T+1

ej
σ̂j,N

, t > T. (A.9)

In what follows, we will denote a monitoring procedure based on the sequence of SWV t
T ,

t = T + 1, ...⌊λT ⌋, statistics as CUSUMWV .

Remark A.1.1. Notice that in the definition of SWV t
T , the recursive residuals {ej}tj=T+1

are used in the numerator of the statistic, while the double array of OLS residuals {fi,j}

for max(p+ 2, q + 1) ⩽ i ⩽ j are used for estimating σ̂j,N in the denominator. ♢

In Theorem A.2, we establish the joint limiting null distribution of the sequence of

feasible covariate augmented SWV t
T statistics from the monitoring period. This is shown

to coincide with the result given for the known volatility case in (A.6).

Theorem A.2. Let the data be generated according to (1)-(4) under the null hypothesis

H0 : δ = 0. If Assumptions 1-3, excluding Assumption 2(e), and Assumption A.1 hold,

then, as T → ∞, it follows that

T−1/2SWV
⌊Tr⌋
T ⇒ W (r)−W (1), 1 < r ≤ λ. (A.10)

Remark A.1.2. Notice from Theorem A.2, that the joint limiting null distribution of the

SWV t
T , t > T , statistics does not depend on any nuisance parameters arising from time-

varying behaviour in the unconditional covariance matrix of the covariates; cf. Remark 2.5.

♢
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Appealing to Theorem 3.4 of Chu et al. (1996), the result in Theorem A.2 implies the

following corollary,

Corollary A.1. Under the conditions of Theorem A.2,

lim
T→∞

Pr
(
|SWV t

T | > ct
√
t for some t ∈ {T + 1, ..., ⌊λT ⌋}

)
≤ exp(−bα/2). (A.11)

In Theorem A.3 we establish a similar consistency result as in Theorem 2 that the

covariate augmented CUSUMWV monitoring procedure is also consistent when a bubble is

present in the monitoring period, rejecting the false null of no explosivity with probability

one in the limit.

Theorem A.3. Let the data be generated according to (1)-(4) under the alternative hypoth-

esis H1 : δ > 0, and let Assumptions 1-3 and Assumption A.1 hold, excluding Assumption

2(e). It holds that,

lim
T→∞

Pr
(
|SWV t

T | > ct
√
t, for some t ∈ {⌊τT ⌋+ 1, . . . , ⌊λT ⌋}

)
= 1. (A.12)

Remark A.1.3. The results in Theorem A.2, Corollary A.1 and Theorem A.3 imply that,

where the covariates have mean zero and the constant term is correspondingly omitted

from the null regression, the large sample properties of the CUSUMWV procedure coincide

with those given for the CUSUMWMV procedure in Section 4. ♢

Remark A.1.4. As in Remark 4.4, it is also instructive to examine the behaviour of the

monitoring procedure under locally explosive alternatives of the form Hc,τ : δT = c/T ,

for t > ⌊τT ⌋, where c is a positive constant. When the volatility process is known, the

asymptotic behaviour of the detector SWV t
T can be derived along the same line of argument

as the proof of Theorem A.1. In particular, when α(L) = 1,

1√
T

⌊Tr⌋∑
j=T+1

ej
σj

=
1√
T

⌊Tr⌋∑
j=T+1

ηj −
1√
T

⌊Tr⌋∑
j=T+1

(ϕ̂j−1 − ϕ)′zj
σj

+
c

T 3/2

⌊Tr⌋∑
j=⌊τT ⌋+1

uj
σj

As in the proof of Theorem A.1, the first term converges weakly to W (r) −W (1). The

second term can be shown to be of op(1). By the FCLT and CMT, the third term

satisfies c
T 3/2

∑⌊Tr⌋
j=⌊τT ⌋+1

uj

σj
⇒ c

∫ r

τ
ec(r−s)W (s)ds. For general α(L), it can be shown in
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the same way that the asymptotic distribution under Hc,τ is given by W (r) − W (1) +

α(1)c
∫ r

τ
ec(r−s)W (s)ds, from which the asymptotic probability of the CUSUMWMV proce-

dure rejecting the null of no explosivity when a locally explosive episode is present can eas-

ily be computed by numerical simulation. Where the volatility is estimated, we conjecture

the same limit will hold under Hc,τ in view of the results given in Harvey et al. (2019) for

the behaviour of the non-parametric variance estimator considered in this paper under lo-

cally explosive DGPs. ♢

Remark A.1.5. To implement SWV t
T we again recommend the use of the kernel and

bandwidth selection criteria and choice of the tuning parameter H, outlined in Remark

4.1. ♢

Remark A.1.6. The tests developed in this section, which omit a constant term from the

null regression, do not require the use of recursive WLS residuals. However, the numera-

tor of the CUSUM statistics developed in this Section could alternatively be constructed

from the analogous recursive WLS residuals, obtained from (12) but with the constant

term omitted, without altering the large sample results given in Theorem A.1, Theorem

A.2, Corollary A.1 and Theorem A.3, provided a condition analogous to Assumption 2(e),

omitting the constant term from gt, held. ♢

Remark A.1.7. As Remark A.1.6 above notes, the procedures considered in this section,

which omit a constant term from the null regression (in the case where it is known that the

covariates have mean zero), can be based on CUSUM statistics formed either from recursive

LS residuals or recursive WLS residuals, without altering their large sample properties.

This is not the case, however, for the statistics considered in Section 4, where a constant

term is included in the null regression. In this latter case, it can be shown that if recursive

LS residuals were used then, except in the special case where σ(s) = σ, for all s ∈ [0, λ], the

resulting sequence of CUSUM statistics would not retain the nuisance parameter free null

limiting distribution which appears in (8). The reason for this can be seen in the proof of

Theorem 1 (see, in particular, the discussion after (A.25)) where it is shown that the limiting

distribution of the CUSUM process formed from recursive LS residuals weakly converges

to the difference between a standard Brownian motion process and an integral functional
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of a vector Gaussian process, both of which are of Op(1). It is only where recursive WLS

residuals are used that the variance of the integral functional cancels exactly with its

covariance with the Brownian motion term, implying that the difference between these two

terms is a standard Brownian motion; see the proof of Theorem 1. As such, the claim made

in Remark 10 on pages 195-196 of AHLTZ, that the limiting null distribution of CUSUM

statistics which correct for the possibility of a non-zero mean in ∆yt based on recursive

LS residuals will still obtain the limiting null distributional result given in (8), is incorrect

except in the special case where σ(s) = σ, for all s ∈ [0, λ]. As with the procedures detailed

in Section 4, recursive WLS residuals are required for this large sample result to hold. ♢

Remark A.1.8. If it were known that the unconditional volatility function σt = σ < ∞,

for all t = 1, ..., T, ..., ⌊λT ⌋, then one could consider a covariate augmented monitoring pro-

cedure based on a simplified version of the SWV t
T statistic, given by σ̃−1

t

∑t
j=T+1 ej where

σ̃2
t := (t−max(p+1, q))−1

∑t
j=max(p+2,q+1) f

2
j,t. Under this restriction, it can be shown that

the limit distribution of this statistic is identical to that given in Theorem A.2. In the

constant unconditional volatility case one could also consider a simplified version of the

SWMV t
T statistic given by σ̃−1

t

∑t
j=T+1 e

∗
j where σ̃

2
t := (t−max(p+1, q))−1

∑t
j=max(p+2,q+1) f

∗
j,t

2,

and where e∗j := ∆yj − φ̂′
j−1gj are recursive residuals, with φ̂j−1 the OLS estimator at time

j − 1 from (15). The constancy of the volatility function means that the WLS transforma-

tion is no longer needed, so that the numerator of this statistic can be based on the recur-

sive residuals e∗j rather than êWj . In this case the limiting null distribution of this statistic

is identical to that given in Theorem 1. Neither of these results, however, require the co-

variates to be homoskedastic. ♢

Remark A.1.9. The limiting results given in this section are based on the assumption

that the covariates, xt, are all mean zero. If that were not the case, then the limiting

null distribution of the sequence of SWV t
T , t = T + 1, ...⌊λT ⌋, statistics would depend on

nuisance parameters arising from cx, the (non-zero) mean of xt. As a consequence, the

resulting CUSUMWV procedure would not have a controlled FPR under the null. The

safe strategy is therefore to use the CUSUMWMV procedure, rather than the CUSUMWV

procedure, because in practice it would be unknown whether the covariates are all mean

zero or not. To investigate what, if any, loss in finite sample performance is seen when using

A6



CUSUMWMV rather than CUSUMWV , we repeated the simulation experiments reported in

Section 5, where the covariates are all mean zero. These results show that the FPR control

of the CUSUMWV procedure is marginally better (that is, slightly closer to the i.i.d.-based

FPR) than that of the CUSUMWMV procedure, while the TPR of the two procedures is

broadly similar. The safe strategy of using CUSUMWMV therefore appears to be relatively

costless. ♢

A.2 Proofs of Theorems

Throughout this section, unless otherwise stated, we use maxt or maxj as shorthand nota-

tion for maxT+1⩽t⩽⌊λT ⌋or maxT+1⩽j⩽⌊λT ⌋, respectively. We also denote by (σ2)′(·) the deriva-

tive of σ2(·). Denote the space of càdlàg functions defined over the interval [0, λ] by D[0, λ],

and the space of continuous functions over the same interval by C[0, λ]. Notice that, due

to the monitoring nature of our problem, we do not normalise the end point of the interval

to 1, but instead to the fixed value, λ > 1. For positive constants a and b, min(a, b) takes

the smaller constant. For two sequences aT , bT → ∞,‘aT ∧ bT ’ denotes taking the sequence

with slower rate of divergence.

A.2.1 Preparatory Lemmata

In this section we begin by stating and proving some preparatory lemmata that will subse-

quently be required for the proofs of the large sample results stated in Section 4 and Sec-

tion A.1.

Lemma A.1. Let the conditions of Theorem 1 hold. Then, under H0,

max
T+1⩽t⩽⌊λT ⌋

∥φ̂t − φ∥ = Op(T
−1/2).

Proof of Lemma A.1. Observe first that

max
t

∥φ̂t − φ∥ ⩽ max
t

∣∣∣∣∣∣
(

1

T

t∑
j=1

gjg
′
j

)−1(
1

T

t∑
j=1

gjεj

)∣∣∣∣∣∣ .
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Under Assumption 1, for the same reason as noted in Remark 2.6, for large T , the minimum

eigenvalue of 1
T

∑t
j=1 gjg

′
j, which we denote by λmin, will be positive. Using a standard

matrix norm inequality1 we then have that

max
t

∣∣∣∣∣∣
(

1

T

t∑
j=1

gjg
′
j

)−1(
1

T

t∑
j=1

gjεj

)∣∣∣∣∣∣ ⩽ C
maxt

∣∣∣ 1T ∑t
j=1 gjεj

∣∣∣
λmin

,

where C is a generic positive constant.

Next, we show that maxt

∣∣∣ 1T ∑t
j=1 gjεj

∣∣∣ = Op(T
−1/2). To do so, observe that (1/T )

∑t
j=1 gjεj

is a vector of martingales. Using the definition of the Euclidean norm for vectors, and de-

noting the kth element of gj as gj,k, to show the claimed order result, it is sufficient to es-

tablish that maxt

(
1
T

∑t
j=1 gj,kεj

)2
= Op(T

−1) for any k = 1, . . . , K, which follows straight-

forwardly from Doob’s maximal inequality for martingales and the moment assumptions

imposed by Assumption 2. The stated order result is therefore established.

Lemma A.2. Let the conditions of Theorem 1 hold. Then, under H0, we have that

⌊λT ⌋∑
t=1

∥gt∥2 = Op(T ) and

⌊λT ⌋∑
t=1

∥εtgt∥2 = Op(T ).

Proof of Lemma A.2. Consider the first result. Using the definition of the Euclidean norm,∑⌊λT ⌋
t=1 ∥gt∥2 is the sum of squares of each element of the vector zt all added together. Under

Assumption 2, observe that even if ∆yt and wt are nonstationary due to the presence of

unconditional heteroskedasticity, this does not alter the order in probability of the sums of

their squares from the case where they are unconditionally homoskedastic, and so we can

apply the same approach as used in proving Lemma 3.1 (a) of Chang and Park (2002) (pp

442), to obtain that
∑⌊λT ⌋

t=1 (∆yt−k)
2 = Op(T ) for k = 1, . . . , p and

∑⌊λT ⌋
t=1 w2

i,t−k = Op(T ),

for i = 1, . . . ,m; k = 1, . . . , q. We therefore have that
∑⌊λT ⌋

t=1 ∥gt∥2 = Op(T ). The second

result can be derived in a similar way.

1That is, ∥M∥ ⩽
√
r∥M∥2, where r is the rank of M and ∥M∥2 is the 2-norm which is defined as the

square root of the maximum eigenvalue ofM , and apply it to the positive definite matrix
(

1
T

∑t
j=1 gjg

′
j

)−1

.
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Lemma A.3. If Assumptions 1-3 hold, then

max
j

∣∣∣∣∣
N∑
s=0

ksσ
2
j−s(η

2
j−s − 1)

∣∣∣∣∣ = op(1).

Proof of Lemma A.3. The stated result can be proved using the same strategy as used

in the proof of Lemma A1 of AHLTZ. The only difference relative to that case is that

(η2j−s − 1) is no longer a martingale difference sequence. In our setting, it is a mix-

ing sequence satisfying Assumption 2(c). Establishing the stochastic orders of the terms

E(
∑⌊λT ⌋

l=1 cos(tl)σ2
l (η

2
l − 1))2 and E(

∑⌊λT ⌋
l=1 sin(tl)σ2

l (η
2
l − 1))2 will therefore need to be done

differently. For the first of these, notice first that:

E

⌊λT ⌋∑
l=1

cos(tl)σ2
l (η

2
l − 1)

2

=

⌊λT ⌋∑
l=1

cos2(tl)σ4
l E(η

2
l − 1)2 + 2

⌊λT ⌋∑
l>l′=1

cos(tl) cos(tl′)σ2
l σ

2
l′E(η

2
l − 1)(η2l′ − 1).

Then by the uniform boundedness of the volatility function and the existence of the

(2r)th moment of εl, with r > 2, the first term can be seen to be of O(T ). Because

of the mixing Assumption 2(c), the second term is also of O(T ). It therefore follows

that E(
∑⌊λT ⌋

l=1 cos(tl)σ2
l (η

2
l − 1))2 = O(T ). In similar fashion it can be established that

E(
∑⌊λT ⌋

l=1 sin(tl)σ2
l (η

2
l − 1))2 is also of O(T ). The remainder of the proof then follows ex-

actly the same lines as the proof of Lemma A1 of AHLTZ.

Next, in Lemma (A.4), we establish a uniform consistency result for the sequence of

nonparametric variance estimators, σ̃2
j,N,t, across T + 1 ⩽ j ⩽ t, for T + 1 ⩽ t ⩽ ⌊λT ⌋.

Lemma A.4. Let the conditions of Theorem 1 hold. Then, under H0 : δ = 0, if T,N → ∞

such that N/T → 0 and N2/T → ∞, then for T + 1 ⩽ t ⩽ ⌊λT ⌋,

max
t

max
T+1⩽j⩽t

|σ̃2
j,N,t − σ2

j | = op(1).
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Proof of Lemma A.4. First, we have the decomposition

σ̃2
j,N,t − σ2

j =
N∑
s=0

ks(∆yj−s − φ̂tgj−s)
2 − σ2

j

=
N∑
s=0

ksσ
2
j−s(η

2
j−s − 1) +

(
N∑
s=0

ksσ
2
j−s − σ2

j

)

+
N∑
s=0

ks((φ− φ̂t)
′gj−s)

2 + 2
N∑
s=0

ksεj−s((φ− φ̂t)
′gj−s)

=: A1,j + A2,j + A3,j + A4,j, (A.13)

where A1,j, A2,j, A3,j and A4,j are defined implicitly.

By Lemma A.3, we have that maxj |A1,j| = op(1). In view of the proof of Lemma 1 in

AHLTZ, we have that maxj |A2,j| is also of op(1). For A3,j and A4,j, as in the proof of

Lemma A(i) in Xu and Phillips (2008), we have that:

max
j

N∑
s=0

ks((φ− φ̂t)
′gj−s)

2 ⩽ max
t

∥φ− φ̂t∥2 max
0⩽s⩽N

ksmax
j

N∑
s=0

∥gj−s∥2

⩽ max
t

∥φ− φ̂t∥2 max
0⩽s⩽N

ks

⌊λT ⌋∑
t=1

∥gt∥2

= Op(T
−1)O(N−1)Op(T ) = Op(N

−1),

and

max
j

∣∣∣∣∣
N∑
s=0

ksηj−s((φ− φ̂j−s−1)
′gj−s)

∣∣∣∣∣ ⩽ max
t

∥φ− φ̂t∥
N∑
s=0

ks∥εj−sgj−s∥

⩽ max
t

∥φ− φ̂t∥

(
N∑
s=0

k2s

)1/2( N∑
s=0

∥εj−sgj−s∥2
)1/2

⩽ max
t

∥φ− φ̂t∥

(
N∑
s=0

k2s

)1/2
⌊λT ⌋∑

t=1

∥εtgt∥2
1/2

= Op(T
−1/2)O(N−1/2)Op(T

1/2) = Op(N
−1/2),

where in each case we have used the order results established in Lemma A.1 and Lemma

A.2. Taken together these results then establish the stated result.
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Lemma A.5. Let the conditions of Theorem 1 hold. Then, under H0 : δ = 0, if T,N → ∞

such that N/T → 0 and N3/2/T → ∞, then for T + 1 ≤ t ≤ ⌊λT ⌋,

max
t

max
T+1⩽j⩽t

|(σ̃2
j−1,N,t − σ2

j−1)− (σ̃2
j,N,t − σ2

j )| = op(T
−1).

Proof of Lemma A.5. Again using the decomposition in (A.13), we have that

|(σ̃2
j−1,N,t−σ2

j−1)−(σ̃2
j,N,t−σ2

j )| = |(A1,j−1−A1,j)+(A2,j−1−A2,j)+(A3,j−1−A3,j)+(A4,j−1−A4,j)|.

Let us consider the terms on the right hand side of this equation in turn. For the first

term, similarly to the proof of Lemma 2 of AHLTZ we have that

A1,j − A1,j−1 =

∑N
s=1

(
K
(

s
N

)
−K

(
s−1
N

))
σ2
j−s(η

2
j−s − 1)∑N

s=0K
(

s
N

)
=

1

N

∑N
s=1K

′(τs)σ
2
j−s(η

2
j−s − 1)∑N

s=0K
(

s
N

) ,

where we have used the fact that K(0) = K(1) = 0, together with an application of

the mean value theorem. Then using the same strategy in analysing the mixing sequence

(η2j−s − 1) as used in the proof of Lemma A.3, coupled with the absolute integrability

assumption placed on the characteristic function of K ′(·) under Assumption 3, we obtain

that maxj

∣∣∣∑N
s=1K

′(τs)σ
2
j−s(η

2
j−s − 1)

∣∣∣ = Op

(√
N
)
, and hence that maxj |A1,j −A1,j−1| =

Op(N
−3/2) = op(1/T ).

For the second term, in view of the proof of Lemma 2 in AHLTZ, it holds that maxj |A2,j −

A2,j−1| = op(1/T ).

Turning to the third term, we have that

A3,j − A3,j−1 =
N∑
s=0

ks((φ− φ̂t)
′gj−s)

2 −
N∑
s=0

ks((φ− φ̂t)
′gj−s−1)

2

=
N∑
s=1

(ks − ks−1)((φ− φ̂t)
′gj−s)

2,

and so it holds that

max
j

|A3,j − A3,j−1| ⩽ max
j

∥φ− φ̂t∥2 max
1⩽s⩽N

|ks − ks−1|max
j

N∑
s=0

∥gj−s∥2

⩽ max
j

∥φ− φ̂t∥2 max
1⩽s⩽N

|ks − ks−1|
⌊λT ⌋∑
t=1

∥gt∥2

= Op(T
−1)O(N−2)Op(T )

= Op(N
−2) = op(T

−1),
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where we have used the order results established in Lemma A.1 and Lemma A.2 and the

fact that

max
1⩽s⩽N

|ks − ks−1| = max
1⩽s⩽N

∣∣K ( s
N

)
−K

(
s−1
N

)∣∣∑N
s=0K

(
s
N

) = O(N−2),

which is a simple consequence of the mean value theorem and Assumption 3.

Similarly, for the fourth term, we have that

A4,j − A4,j−1 = 2
N∑
s=1

(ks − ks−1)((φ− φ̂t)
′gj−s)εj−s,

and so

max
j

|A4,j − A4,j−1| ⩽ max
j

∥φ− φ̂t∥2
(

N∑
s=1

(ks − ks−1)
2

)1/2
⌊λT ⌋∑

t=1

∥εtgt∥2
1/2

= Op(T
−1/2)O(N−3/2)Op(T

1/2) = Op(N
−3/2) = op(T

−1),

in view of the fact that N3/2/T → ∞ under Assumption 3(b).

Taken together these results therefore establish the stated result.

Lemma A.6 gives the uniform rate of convergence for the infeasible WLS estimator.

Since the proof is the same as that of Lemma A.1, we omit the proof to avoid repetition.

Lemma A.6. Let the conditions of Theorem 1 hold. Then under H0,

max
T+1⩽t⩽⌊λT ⌋

∥φW
t − φ∥ = Op(T

−1/2).

Lemma A.7. Let the conditions of Theorem 1 hold. Then under H0,

max
T+1⩽t⩽⌊λT ⌋

∥φ̂W
t − φW

t ∥ = op(T
−1/2),

Proof of Lemma A.7. Notice

φ̂W
t − φW

t = (φ̂W
t − φ)− (φW

t − φ)

=

(
1

T

t∑
j=1

gjg
′
j

σ̃2
j,N,t

)−1(
1

T

t∑
j=1

gjσjηj
σ̃2
j,N,t

)
−

(
1

T

t∑
j=1

gjg
′
j

σ2
j

)−1(
1

T

t∑
j=1

gjσjηj
σ2
j

)

=

(
1

T

t∑
j=1

gjg
′
j

σ̃2
j,N,t

)−1((
1

T

t∑
j=1

gjσjηj
σ̃2
j,N,t

)
−

(
1

T

t∑
j=1

gjσjηj
σ2
j

))

+

( 1

T

t∑
j=1

gjg
′
j

σ̃2
j,N,t

)−1

−

(
1

T

t∑
j=1

gjg
′
j

σ2
j

)−1
( 1

T

t∑
j=1

gjσjηj
σ2
j

)
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Using the summation by parts formula

1

T

t∑
j=1

gjσjηj
σ̃2
j,N,t

− 1

T

t∑
j=1

gjσjηj
σ2
j

=
1

T

t∑
j=1

(
σ2
j

σ̃2
j,N,t

)
gjηj
σj

− 1

T

t∑
j=1

gjσjηj
σ2
j

=

(
σ2
t

σ̃2
t,N,t

− 1

)
1

T

t∑
j=1

gjηj
σj

−
t∑

j=1

(
σ2
j

σ̃2
j,N,t

−
σ2
j−1

σ̃2
j−1,N,t

)(
1

T

j−1∑
i=1

giηi
σi

)
.

Notice that Lemma A.4 implies that

max
t

|σ̃2
t,N,t − σ2

t | = op(1),

it follows that the above first term is op(1). Using the proof strategy in Theorem 1 of

AHLTZ, and the results of Lemma A.4 and Lemma A.5, the above second term is also

op(1). Using again Lemma A.4 and that 1
T

∑j−1
i=1

giηi
σi

= Op(T
−1/2), we have

1

T

t∑
j=1

gjσjηj
σ̃2
j,N,t

− 1

T

t∑
j=1

gjσjηj
σ2
j

= op(T
−1/2).

Also notice that

1

T

t∑
j=1

gjg
′
j

σ̃2
j,N,t

= Op(1),
1

T

t∑
j=1

gjσjηj
σ2
j

= Op(T
−1/2),

and using similar arguments and the results of Lemma A.4, we have(
1

T

t∑
j=1

gjg
′
j

σ̃2
j,N,t

)−1

−

(
1

T

t∑
j=1

gjg
′
j

σ2
j

)−1

= op(1).

The result stated in the lemma then follows.

Lemma A.8. Let the conditions of Theorem 2 hold, and define ψT := 1 + c/T d,

(T d ∧N)−1

N∑
s=0

K(s/N)ψ−2s
T = O(1),

Furthermore, the limit is strictly positive and nondegenerate to 0.
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Proof of Lemma A.8. We first note that the following proof is valid for all 0 ⩽ d < 1. By

Assumption 3, N3/2/T → ∞, which implies that N/T 2/3 → ∞. Therefore, if 0 ≤ d ≤ 2/3,

the rate T d ∧N will be T d in the presentation of the lemma.

To prove the stated results, we first show that

N∑
s=0

ψ−2s
T = O(T d ∧N). (A.14)

Using the formula for geometric series, we have that

N∑
s=0

ψ−2s
T = ψ−2N

T

ψ
2(N+1)
T − 1

ψ2
T − 1

. (A.15)

and observe that

ψ
2(N+1)
T =

(
1 +

c

T d

)2(N+1)

=
(
1 +

c

T d

)Td

c
×2c×N+1

Td

.

As T → ∞, the limit of this will depend on the order of (N + 1)/T d. We discuss three

different possibilities for this below:

(i) If N/T d → ∞, ψ
2(N+1)
T → e∞ = ∞ so ψ

2(N+1)
T − 1 = ψ

2(N+1)
T (1 + o(1)), and (A.15)

becomes

ψ−2N
T

ψ
2(N+1)
T (1 + o(1))

1 + 2 c
T d + o

(
c
T d

)
− 1

= ψ−2N
T ψ

2(N+1)
T T d(1 + o(1)) = O(T d).

(ii) If N/T d → 0, ψ
2(N+1)
T → e0 = 1, then using Taylor expansion,

ψ
2(N+1)
T − 1 =

(
1 +

c

T d

)2(N+1)

− 1

=

(
1 + 2(N + 1)

c

T d
+

2(N + 1)(2(N + 1)− 1)

2!

( c

T d

)2
+ · · ·

)
− 1

= 2(N + 1)
c

T d
(1 + o(1)).

It then follows that (A.15) becomes

ψ−2N
T

2(N + 1) c
T d (1 + o(1))

1 + 2 c
T d + o

(
c
T d

)
− 1

= ψ−2N
T (N + 1)(1 + o(1)) = O(N),

where we have used the fact that ψ−2N
T → e0 = 1.

(iii) When N/T d → ϑ, where ϑ is a positive constant, ψ
2(N+1)
T → e2cϑ, then (A.15)

becomes

e−2cϑ e2cϑ − 1

1 + a c
T d + o

(
c
T d

)
− 1

= O(T d).
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Taken together, the results in (i)-(iii) establish the stated result in (A.14).

We now turn to establishing the results stated in the lemma. Notice first that because K(.)

is bounded, we have
N∑
s=0

K(s/N)ψ−2s
T ⩽ C

N∑
s=0

ψ−2s
T , (A.16)

where C is a generic positive constant, then the upper bound part of the result follows.

To see that this is also the lower bound, notice that because the kernel is positive over the

interval (0, 1), then there exists a closed interval [δ, 1 − δ] for an arbitrarily small δ > 0,

such that K(.) ⩾ g0 > 0, by Assumption 3. It then follows that

N∑
s=0

K(s/N)ψ−2s
T >

N∑
s=0

K(s/N)ψ−2s
T I(δ ⩽ s/N ⩽ 1− δ)

⩾ g0

N∑
s=0

ψ−2s
T I(δ ⩽ s/N ⩽ 1− δ)

= g0

N−δN∑
s=δN

ψ−2s
T .

Letting δ → 0, it then follows straightforwardly that this term is positive and has the same

order as
∑N

s=0 ψ
−2s
T .

In the next lemma, we analyse the asymptotic behaviour of the volatility estimator un-

der explosive alternatives. The volatility estimator is constructed with the null hypothesis

imposed, by smoothing past squared residuals. When there is a structural change leading

to an explosive regime, the null model becomes misspecified, and the volatility estimator

may lose its consistency or even diverge. The next lemma is an intermediate result needed

in the proof of Theorem 2.

Lemma A.9. Under the conditions of Theorem 2, let ξT be a sequence such that ξT/T → 0

and ξT/N → ∞, it holds that

max
⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋

∣∣∣∣( T 2dN

T d ∧N

)
T−1ψ

−2(t−1−⌊τT ⌋)
T σ̃2

t,N,t

∣∣∣∣ = Op(1).

Moreover, min⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋ |
(

T 2dN
T d∧N

)
T−1ψ

−2(t−1−⌊τT ⌋)
T σ̃2

t,N,t| is, with probability 1, strictly

positive.
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Proof of Lemma A.9. Note again first that the result of the lemma and the proof are valid

for 0 ≤ d < 1. When 0 ⩽ d ⩽ 2/3, the result of the lemma becomes

max
⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋

∣∣∣T d−1Nψ
−2(t−1−⌊τT ⌋)
T σ̃2

t,N,t

∣∣∣ = Op(1).

Now we prove the lemma. We will first establish the result that

max
⌊τT ⌋+1⩽t⩽⌊λT ⌋

|T−1/2ψ
−(t−⌊τT ⌋)
T ut| = Op(1). (A.17)

To that end, it is convenient to use the formulation in (3). First notice that ut = Op(
√
T )

during the unit root regime (i.e. before the inception of the explosive regime). Now for

⌊τT ⌋+ 1 ⩽ t ⩽ ⌊λT ⌋, by repeated backward substitution, we have that

ut =
t∑

j=⌊τT ⌋+1

ψt−j
T vj + ψ

t−⌊τT ⌋
T u⌊τT ⌋, (A.18)

where u⌊τT ⌋ is the last observation in the unit root regime and serves as the initial condition

for the explosive regime. For the first term on the right hand side of (A.18), observe that

E max
⌊τT ⌋+1⩽t⩽⌊λT ⌋

ψ
−(t−⌊τT ⌋)
T

∣∣∣∣∣∣
t∑

j=⌊τT ⌋+1

ψt−j
T vj

∣∣∣∣∣∣ ⩽ ψ
⌊τT ⌋
T E max

⌊τT ⌋+1⩽t⩽⌊λT ⌋

t∑
j=⌊τT ⌋+1

|ψ−j
T vj|

= ψ
⌊τT ⌋
T E

⌊λT ⌋∑
j=⌊τT ⌋+1

|ψ−j
T vj| = O(1),

and, hence, it follows that max⌊τT ⌋+1⩽t⩽⌊λT ⌋ ψ
−(t−⌊τT ⌋)
T

∣∣∣∑t
j=⌊τT ⌋+1 ψ

t−j
T vj

∣∣∣ = Op(1). Turning

to the second term, we have that

max
⌊τT ⌋+1⩽t⩽⌊λT ⌋

|ψ−(t−⌊τT ⌋)
T ψ

t−⌊τT ⌋
T u⌊τT ⌋| = |u⌊τT ⌋| = Op

(√
T
)
.

The second term on the right hand side of (A.18) is therefore the dominant term and the

result in (A.17) is established.

We are now in a position to establish the results stated in the lemma. Defining δT = c/T d,
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when ⌊τT ⌋+ ξT + 1 ⩽ t ⩽ ⌊λT ⌋, we have that

σ̃2
t,N,t =

N∑
s=0

ksf
2
t−s,t =

N∑
s=0

ks(∆yt−s − φ̂tgt−s)
2

=
N∑
s=0

ks(δTut−s−1 + vt−s − φ̂tgt−s)
2

= δ2T

N∑
s=0

ksu
2
t−s−1 +

N∑
s=0

ksv
2
t−s +

N∑
s=0

ks(φ̂tgt−s)
2 + 2δT

N∑
s=0

ksut−s−1vt−s

+2δT

N∑
s=0

ksut−s−1(φ̂tgt−s) + 2
N∑
s=0

ksvt−s(φ̂tgt−s)

=: D1 +D2 +D3 +D4 +D5 +D6,

where the Dj, j = 1, ..., 6, terms are implicitly defined.

Let us consider the terms D1, . . . , D6 in turn. First, notice that D1 satisfies

max
⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋

T−1ψ
−2(t−1−⌊τT ⌋)
T D1

⩽ δ2T max
⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋,0⩽s⩽N

|T−1ψ
−2(t−s−1−⌊τT ⌋)
T u2t−s−1|

(∑N
s=0K(s/N)ψ−2s

T∑N
s=0K(s/N)

)

= Op

((
T d ∧N
T 2dN

))
,

where we have used (A.17) and the result that
∑N

s=0K(s/N)ψ−2s
T = O(T d ∧ N) and∑N

s=0K(s/N) = O(N). Next, notice that max⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋ T
−1ψ

−2(t−1−⌊τT ⌋)
T D2 = op(1),

becauseD2 is a weighted sum ofOp(1) terms, and notice that both T−1 → 0 and ψ
−2(t−1−⌊τT ⌋)
T →

0 (because t− 1− ⌊τT ⌋ > ξT ). Next, for D3, observe that

max
⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋

T−1ψ
−2(t−1−⌊τT ⌋)
T D3

⩽ max
0⩽s⩽N

ks max
⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋

T−1ψ
−2(t−1−⌊τT ⌋)
T ∥φ̂t∥

N∑
s=0

∥gt−s∥2

Notice that ∥gt−s∥2 is the sum of the squares of each element of the gt−s vector. The first

element of gt−s is 1, and the second element is ∆yt−s−1, which is δTut−s−2+vt−s−2. Using the

same strategy as was used above in analysing D1, we know that this element’s contribution

cannot be larger than D1. Similarly the contribution of all of the third to (p+1)th elements

is no larger than D1, while the remaining elements are related to 1 and wt which are clearly
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seen to be dominated by D1. D4, D5 and D6 are cross product terms which therefore cannot

be the largest of the six terms. Thus D1 is dominant and we have that

max
⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋

∣∣∣∣∣
(
T d ∧N
T 2dN

)−1

T−1ψ
−2(t−1−⌊τT ⌋)
T σ̃2

t,N,t

∣∣∣∣∣ = Op(1).

Notice that D1 also satisfies

min
⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋

(
T d ∧N
T 2dN

)−1

T−1ψ
−2(t−1−⌊τT ⌋)
T D1

= min
⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋

(
T d ∧N
T 2dN

)−1

T−1ψ
−2(t−1−⌊τT ⌋)
T δ2T

N∑
s=0

ksu
2
t−s−1

⩾

(
T d ∧N
T 2dN

)−1

δ2T

(
N∑
s=0

ksψ
−2s
T

)
× min

⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋,0⩽s⩽N
|T−1ψ

−2(t−s−1−⌊τT ⌋)
T u2t−s−1|

First, notice that
∑N

s=0 ksψ
−2s
T = O((T d ∧N)/N), it follows that(
T d ∧N
T 2dN

)−1

δ2T

(
N∑
s=0

ksψ
−2s
T

)
= O(1).

For min⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋,0⩽s⩽N |T−1ψ
−2(t−s−1−⌊τT ⌋)
T u2t−s−1|, notice that when t ⩾ ⌊τT ⌋+ξT +

1, the index t− s− 1 always satisfies ⌊τT ⌋+1 ⩽ t− s− 1 ⩽ ⌊λT ⌋, because 0 ⩽ s ⩽ N and

ξT/N → ∞. It follows that

min
⌊τT ⌋+ξT+1⩽t⩽⌊λT ⌋,0⩽s⩽N

|T−1ψ
−2(t−s−1−⌊τT ⌋)
T u2t−s−1| ⩾ min

⌊τT ⌋+1⩽t⩽⌊λT ⌋
|T−1ψ

−2(t−⌊τT ⌋)
T u2t |.

Applying the backward substitution (A.18) for ut again we have min⌊τT ⌋+1⩽t⩽⌊λT ⌋ |T−1ψ
−2(t−⌊τT ⌋)
T u2t |

is Op(1) due to its dominating second term related to the initial value of the explosive regime

T−1u2⌊τT ⌋ being Op(1) but not op(1). Consequently, the stated results are established.

In the next Lemma A.10, we generalise Lemma 3 of KPA, which proves a weak conver-

gence result of a partial sum of vector martingale differences to a vector Brownian motion.

In our context, because we allow for the presence of unconditional heteroskedasticity in the

covariates and in the regression errors, the corresponding partial sums of vector martingale

differences will converge to a more general vector Gaussian process.
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Lemma A.10. Let ζt be a martingale difference sequence with respect to some filtration

{Ft, t ⩾ 1}, with E(ζ2t |Ft−1) = 1, and let rt be a sequence of ℓ-dimensional random vectors

measurable with respect to Ft−1. Let R(κ) be a positive definite ℓ × ℓ matrix for each

κ ∈ [0, λ], with each of its elements being finite and continuous in κ, then the partial

sum process G(T )(·) :=
(
1/
√
T
)∑⌊T ·⌋

t=1 rtζt converges weakly to an ℓ-dimensional Gaussian

process G(·) with covariance structure

E (G(κ1)G(κ2)
′) = R(min(κ1, κ2)),

for κ1, κ2 ∈ [0, λ], where min(κ1, κ2) denotes the smaller of κ1 and κ2, provided

plimT→∞
1

T

⌊Tκ⌋∑
t=1

rtr
′
t = lim

T→∞
E

 1

T

⌊Tκ⌋∑
t=1

rtr
′
t

 = R(κ), (A.19)

and

lim sup
T→∞

1

⌊Tλ⌋

⌊Tλ⌋∑
t=1

E∥rtζt∥2+δ <∞, (A.20)

for some δ > 0.

Proof of Lemma A.10. For simplicity, we prove the stated result for the case when ℓ = 1.

As argued in Section 29.7 of Davidson (2021), the extension to the ℓ > 1 case can be easily

obtained by applying the Cramer-Wold device.

First define an element YT in C[0, λ], which is an interpolated version of G(T )(κ) =(
1/
√
T
)∑⌊Tκ⌋

t=1 rtζt; that is,

Y (T )(κ) :=

 G(T )(κ) + (Tκ− ⌊Tκ⌋)
(
1/
√
T
)
r⌊Tκ⌋+1ζ⌊Tκ⌋+1 κ < λ

G(T )(λ) κ = λ
.

Notice that

sup
κ∈[0,λ]

|Y (T )(κ)−G(T )(κ)| = (Tκ− ⌊Tκ⌋)
(
1/
√
T
)
|r⌊Tκ⌋+1ζ⌊Tκ⌋+1|

p−→ 0,

so that Y (T )(·) and G(T )(·) have the same weak limit.

Using conditions (A.19) and (A.20), and by the multivariate central limit theorem for

martingale difference sequences (see, e.g., Corollary 3.1 of Hall and Heyde, 1980), it is
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straightforward to show that for 0 < κ1 < · · · < κk < λ, where k > 1 is a finite integer, we

have that 
Y (T )(κ1)

Y (T )(κ2)

. . .

Y (T )(κk)

 d−→ N




0

0

. . .

0

 ,


R(κ1) R(κ1) . . . R(κ1)

R(κ1) R(κ2) . . . R(κ2)

. . . . . . . . . . . .

R(κ1) R(κ2) . . . R(κk)



 .

Next we show Y (T )(·) is uniformly tight. By definition, for λ ⩾ κ2 > κ1 ⩾ 0

Y (T )(κ2)− Y (T )(κ1) = G(T )(κ2)−G(T )(κ1) +R(T )(κ2, κ1),

where

R(T )(κ2, κ1) := (Tκ2−⌊Tκ2⌋)
(
1/
√
T
)
r⌊Tκ2⌋+1ζ⌊Tκ2⌋+1−(Tκ1−⌊Tκ1⌋)

(
1/
√
T
)
r⌊Tκ1⌋+1ζ⌊Tκ1⌋+1.

Using the maximal inequality for martingales (see, e.g., Corollary 16.20 of Davidson, 2021),

we have that

sup
0<κ1<κ2<1

∣∣∣∣∣∣
⌊Tκ2⌋∑
t=1

rtζt −
⌊Tκ1⌋∑
t=1

rtζt

∣∣∣∣∣∣ = sup
0<κ1<κ2<1

∣∣∣∣∣∣
⌊Tκ2⌋∑

t=⌊Tκ1⌋

rtζt

∣∣∣∣∣∣
⩽ max

1⩽k⩽T

∣∣∣∣∣
k∑

t=1

rtζt

∣∣∣∣∣ ,
and so

P

 1√
T

sup
0<κ1<κ2<1

∣∣∣∣∣∣
⌊Tκ2⌋∑
t=1

rtζt −
⌊Tκ1⌋∑
t=1

rtζt

∣∣∣∣∣∣ > ε

 < P

(
1√
T

max
1⩽k⩽T

∣∣∣∣∣
k∑

t=1

rtζt

∣∣∣∣∣ > ε

)
⩽
E
∣∣∣∑T

t=1 rtζt

∣∣∣p
T p/2εp

,

which, by Burkholder’s inequality (see Theorem 16.24 of Davidson, 2021), is bounded by

a constant when taking p = 2. For the term R(T )(κ1, κ2), notice that

P

(
max
1⩽t⩽T

(
1/
√
T
)
|rtζt| > ε

)
⩽

T∑
t=1

P
((

1/
√
T
)
|rtζt| > ε

)
⩽ T

E|rtζt|p

T p/2εp
,

which is bounded by a constant when taking p = 4.

It therefore follows that the stochastic continuity condition (29.58) in Theorem 29.17 of

Davidson (2021) is satisfied. Moreover, condition (29.57) in Theorem 29.17 of Davidson

(2021) is trivially satisfied in our context. Therefore, the tightness condition is satisfied.

Applying Theorem 7.1 of Billingsley (1999), the claimed weak convergence result then

follows.
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A.2.2 Proofs of Theorems

Proof of Theorem 1. Observe first that for 1 < r ≤ λ,

1√
T

⌊Tr⌋∑
j=T+1

êWj
σ̃j,N,j

=
1√
T

⌊Tr⌋∑
j=T+1

σjηj
σ̃j,N,j

− 1√
T

⌊Tr⌋∑
j=T+1

(φ̂W
j−1 − φ)′gj

σ̃j,N,j

. (A.21)

The proof of the theorem will be constructed in two parts. In the first part, we will show

the stated limiting distribution is valid in the case when the volatility function is known,

by extending KPA’s proof for their Theorem 1. We will then show that the result continues

to hold where the volatility function is estimated.

Let us establish the first part. The proof for this part will use a weak convergence result

for the vector
(

1√
T

∑⌊Tr⌋
j=1

gjηj
σj
, 1√

T

∑⌊Tr⌋
j=1 ηj

)′
. Using Lemma A.10, under the conditions of

Theorem 1, we have,  1√
T

∑⌊Tr⌋
j=1

gjηj
σj

1√
T

∑⌊Tr⌋
j=1 ηj

⇒ V(r), r ∈ [0, λ], (A.22)

where V(.) is a K+2 dimensional Gaussian process,where K := p+(q+1)m. The elements

of the covariance matrix of V(·) can be established as follows. First, using Assumption 2(e)

that hj is uncorrelated with gjg
′
j, we have that

lim
T→∞

E

 1

T

⌊Tr⌋∑
j=1

gjg
′
j

η2j
σ2
j

 = lim
T→∞

E

 1

T

⌊Tr⌋∑
j=1

gjg
′
j

E(η2j |Fj−1)

σ2
j


= lim

T→∞
E

 1

T

⌊Tr⌋∑
j=1

gjg
′
j

hj
σ2
j


= lim

T→∞
E

 1

T

⌊Tr⌋∑
j=1

gjg
′
j

1

σ2
j

 = r ·Θ(r).

Next, using Assumption 2(b), we have that

lim
T→∞

E

 1

T

⌊Tr⌋∑
j=1

η2j

 = lim
T→∞

E

 1

T

⌊Tr⌋∑
j=1

E(η2j |Fj−1)


= lim

T→∞
E

 1

T

⌊Tr⌋∑
j=1

hj

 = r.
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Next we have that

lim
T→∞

E

 1

T

⌊Tr⌋∑
j=1

gjη
2
j

σj

 = lim
T→∞

E

 1

T

⌊Tr⌋∑
j=1

gjE(η
2
j |Fj−1)

σj


= lim

T→∞
E

 1

T

⌊Tr⌋∑
j=1

gjhj
σj


= lim

T→∞

1

T

⌊Tr⌋∑
j=1

E(gjhj)

σj

= lim
T→∞

1

T

⌊Tr⌋∑
j=1

E(gj)E(hj)

σj
(A.23)

where the last line follows from the condition that cov(gt, ht) = 0, imposed by Assumption

2(e). Now, by the definition of the vector of regressors, under the null, we have that

E(gj) := γ = (1, 0, . . . , 0, c′x)
′, a vector whose first element is 1, its next p elements are all

zero, and where cx is the (q+1)m-dimensional mean vector of the covariates, xt, as defined

in Assumption 1. By Assumption 2(b), we have E(hj) = 1, and so (A.23) is equal to

γ lim
T→∞

1

T

⌊Tr⌋∑
j=1

1

σj
= γ

∫ r

0

1

σ(x)
dx.

Consequently, by Lemma A.10, the covariance matrix of the Gaussian process V(·) takes

the form

E[V(r)V(s)′] =

 (min(r, s))Θ(min(r, s)) γ
∫ min(r,s)

0
1

σ(x)
dx

γ′
∫ min(r,s)

0
1

σ(x)
dx (min(r, s))

 , (A.24)

for r, s ∈ [0, λ].

When σ̃j,N,j = σj in (A.21), the statistic becomes

1√
T

⌊Tr⌋∑
j=T+1

eWj
σj

=
1√
T

⌊Tr⌋∑
j=T+1

ηj −
1√
T

⌊Tr⌋∑
j=T+1

(φW
j−1 − φ)′gj

σj

=
1√
T

⌊Tr⌋∑
j=T+1

ηj −
1

T

⌊Tr⌋∑
j=T+1

(
g′j

(j/T )σj

)(
1

j

j−1∑
s=1

gsg
′
s

σ2
s

)−1(
1√
T

j−1∑
s=1

gsηs
σs

)

⇒ VK+2(r)− VK+2(1)−
∫ r

1

γ′Θ(x)−1(V1(x), . . . ,VK+1(x))
′ 1

xσ(x)
dx

(A.25)
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where Vk(.) denotes the kth element of V(.). In the last step above deriving (A.25) we have

used the weak convergence result (A.22) and an application of the continuous mapping

theorem. Defining,

W(r) := VK+2(r)−
∫ r

0

γ′Θ(x)−1(V1(x), . . . ,VK+1(x))
′ 1

xσ(x)
dx

the weak limit in (A.25) can be written as W(r)−W(1). Hence, if we can show the W(r)

process is a standard Brownian motion process, then the theorem is proved.

The process W(r) is a Gaussian process as it is a continuous functional of the Gaussian

process V(r). From the definition of V(r), it is obvious that its (K+2)th element VK+2(r),

which is the first term in the definition ofW(r), is a standard Brownian motion. The process

W(r) is then seen to be a standard Brownian motion if the second term in the definition

of W(r) is op(1). However, the second term in the definition of W(r) is a functional of

the Gaussian process V(r) and is therefore non-degenerate. Therefore, in order to show

the Gaussian process W(r) is a standard Brownian motion, we need to directly analyse its

covariance function. If it can be shown that the variance of the second term in the definition

of W(r) cancels exactly with its covariance with the first term, VK+2(r), then the Gaussian

process W(r) will be a standard Brownian motion process. We now establish that this is

indeed the case. This phenomenon is also observed in the proof of KPA’s Theorem 1, when

they derive the weak limit of their recursive LS residual based CUSUM process.

We need to verify that cov(W(z1),W(z2)) = min(z1, z2), which is the required condition

for W(r) to be a standard Brownian motion process. Setting z1 < z2, without loss of

generality, the covariance function is given by

cov(W(z1),W(z2))

= cov(VK+2(z1),VK+2(z2))−

− cov

(
VK+2(z1),

∫ z2

0

γ′Θ(x)−1(V1(x), . . . ,VK+1(x))
′ 1

xσ(x)
dx

)
− cov

(∫ z1

0

γ′Θ(x)−1(V1(x), . . . ,VK+1(x))
′ 1

xσ(x)
dx,VK+2(z2)

)
+cov

(∫ z1

0

γ′Θ(x)−1(V1(x), . . . ,VK+1(x))
′

xσ(x)
dx,

∫ z2

0

γ′Θ(x)−1(V1(x), . . . ,VK+1(x))
′

xσ(x)
dx

)
:= A−B − C +D,
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where A, B, C and D are implicitly defined.

For the first term, A, we have that

A = cov(VK+2(z1),VK+2(z2)) = z1.

For the second term, B, we have that

B = cov

(
VK+2(z1),

∫ z2

0

γ′Θ(x)−1(V1(x), . . . ,VK+1(x))
′ 1

xσ(x)
dx

)
= E

(
VK+2(z1)

∫ z2

0

γ′Θ(x)−1(V1(x), . . . ,VK+1(x))
′ 1

xσ(x)
dx

)
= E

(
VK+2(z1)

(∫ z1

0

γ′Θ(x)−1(V1(x), . . . ,VK+1(x))
′ 1

xσ(x)
dx+∫ z2

z1

γ′Θ(x)−1(V1(x), . . . ,VK+1(x))
′ 1

xσ(x)
dx

))
=

∫ z1

0

(γ′Θ(x)−1γ)

(∫ x

0

1

σ(y)
dy

)
1

xσ(x)
dx+

∫ z2

z1

(γ′Θ(x)−1γ)

(∫ z1

0

1

σ(y)
dy

)
1

xσ(x)
dx

=

∫ z1

0

(γ′Θ(x)−1γ)

(∫ x

0

1

σ(y)
dy

)
1

xσ(x)
dx+

(∫ z1

0

1

σ(y)
dy

)∫ z2

z1

(γ′Θ(x)−1γ)
1

xσ(x)
dx.

In the above third step, we split the integral at value z1, such that the range of the two

resulting integrals has a fixed relative magnitude with z1. Then in the fourth step, we

exchange the order of integration and expectation, and use the definition of the covariance

matrix of V in (A.24). This proof strategy is repeatedly used below for the analysis of term

C and D without being explained.

For the third term, C, we have that

C = cov

(∫ z1

0

γ′Θ(x)−1(V1(x), . . . ,VK+1(x))
′ 1

xσ(x)
dx,VK+2(z2)

)
= E

(
VK+2(z2)

∫ z1

0

γ′Θ(x)−1(V1(x), . . . ,VK+1(x))
′ 1

xσ(x)
dx

)
=

∫ z1

0

(γ′Θ(x)−1γ)

(∫ x

0

1

σ(y)
dy

)
1

xσ(x)
dx

=

∫ z1

0

(γ′Θ(x)−1γ)

(∫ x

0

1

σ(y)
dy

)
1

xσ(x)
dx
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Finally, for the fourth term, D, we have that

D = cov

(∫ z1

0
γ′Θ(x)−1(V1(x), . . . ,VK+1(x))

′ 1

xσ(x)
dx,

∫ z2

0
γ′Θ(x)−1(V1(x), . . . ,VK+1(x))

′ 1

xσ(x)
dx

)
= E

((∫ z1

0
γ′Θ(x)−1(V1(x), . . . ,VK+1(x))

′ 1

xσ(x)
dx

)(∫ z2

0
γ′Θ(x)−1(V1(x), . . . ,VK+1(x))

′ 1

xσ(x)
dx

))
= E

∫ z2

0

∫ z1

0
γ′Θ(x)−1(V1(x), . . . ,VK+1(x))

′γ′Θ(x)−1(V1(x), . . . ,VK+1(x))
′ 1

xσ(x)

1

yσ(y)
dydx

= E

∫ z2

0

∫ z1

0
γ′Θ(x)−1(V1(x), . . . ,VK+1(x))

′(V1(y), . . . ,VK+1(y))Θ(y)−1γ
1

xσ(x)

1

yσ(y)
dydx

=

∫ z2

0

∫ z1

0
(γ′Θ(x)−1Θ(min(x, y))Θ(y)−1γ)(min(x, y))

1

xσ(x)

1

yσ(y)
dydx

=

∫ z1

0

∫ z1

0
(γ′Θ(x)−1Θ(min(x, y))Θ(y)−1γ)(min(x, y))

1

xσ(x)

1

yσ(y)
dydx

+

∫ z2

z1

∫ z1

0
(γ′Θ(x)−1Θ(min(x, y))Θ(y)−1γ)(min(x, y))

1

xσ(x)

1

yσ(y)
dydx

= 2

∫ z1

0

∫ x

0
(γ′Θ(x)−1Θ(min(x, y))Θ(y)−1γ)(min(x, y))

1

xσ(x)

1

yσ(y)
dydx

+

∫ z2

z1

∫ z1

0
(γ′Θ(x)−1Θ(min(x, y))Θ(y)−1γ)(min(x, y))

1

xσ(x)

1

yσ(y)
dydx

= 2

∫ z1

0

∫ x

0
(γ′Θ(x)−1Θ(min(x, y))Θ(y)−1γ)(y)

1

xσ(x)

1

yσ(y)
dydx

+

∫ z2

z1

∫ z1

0
(γ′Θ(x)−1Θ(min(x, y))Θ(y)−1γ)(y)

1

xσ(x)

1

yσ(y)
dydx

= 2

∫ z1

0

∫ x

0
(γ′Θ(x)−1γ)

1

xσ(x)σ(y)
dydx+

∫ z2

z1

∫ z1

0
(γ′Θ(x)−1γ)

1

xσ(x)σ(y)
dydx

= 2

∫ z1

0
(γ′Θ(x)−1γ)

(∫ x

0

1

σ(y)
dy

)
1

xσ(x)
dx+

(∫ z1

0

1

σ(y)
dy

)∫ z2

z1

(γ′Θ(x)−1γ)
1

xσ(x)
dx,

where in the above seventh step, we use the symmetry of double integration with respect to x

and y, to rewrite the inner integral with respect to y as 2 times the integral with a variable upper

limit x, which is the variable of integration of the out layer integral.

It can be seen from the results above that−B−C+D = 0. Consequently, cov(W(z1),W(z2)) =

A − B − C +D = A = z1, which completes the first part of the proof. Observe from the

foregoing derivations, that if recursive LS (rather than WLS) residuals were used in our

context, i.e. if we use the CUSUM statistic 1√
T

∑⌊Tr⌋
j=T+1

ej
σj
, then these cancellations would

not happen and W(r) would not be a standard Brownian motion.

We now turn to the second part of the proof. We will show that∣∣∣∣∣∣ 1√
T

⌊Tr⌋∑
j=T+1

σjηj
σ̃j,N,j

− 1√
T

⌊Tr⌋∑
j=T+1

ηj

∣∣∣∣∣∣ = op(1), (A.26)
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and ∣∣∣∣∣∣ 1√
T

⌊Tr⌋∑
j=T+1

(φ̂W
j−1 − φ)′gj

σ̃j,N,j

− 1√
T

⌊Tr⌋∑
j=T+1

(φW
j−1 − φ)′gj

σj

∣∣∣∣∣∣ = op(1), (A.27)

and the claimed result of the theorem follows.

(A.26) can be proved in the same way as in the proof for Theorem 1 of AHLTZ, by noting

the results of Lemma A.4 and Lemma A.5.

For (A.27), notice that∣∣∣∣∣∣ 1√
T

⌊Tr⌋∑
j=T+1

(φ̂W
j−1 − φ)′gj

σ̃j,N,j

− 1√
T

⌊Tr⌋∑
j=T+1

(φW
j−1 − φ)′gj

σj

∣∣∣∣∣∣
⩽

1√
T

⌊Tr⌋∑
j=T+1

|(φW
j−1 − φ)′gj|

∣∣∣∣ 1

σ̃j,N,j

− 1

σj

∣∣∣∣+
∣∣∣∣∣∣ 1√
T

⌊Tr⌋∑
j=T+1

(φ̂W
j−1 − φW

j−1)
′gj

σ̃j,N,j

∣∣∣∣∣∣ .
By Lemma A.4 and Lemma A.6, the above second term is op(1) uniformly for r ∈ (0, 1].

By Lemma A.7, the first term is op(1), and the proof for (A.27) is complete.

Proof of Theorem 2. Under H1, and when ⌊τT ⌋+ 1 ⩽ t ⩽ ⌊λT ⌋,

SWV t
T =

1√
T

t∑
j=T+1

êWj
σ̃j,N,j

=
1√
T

 ⌊τT ⌋∑
j=T+1

+

⌊τT ⌋+ξT+1∑
j=⌊τT ⌋+1

+
t∑

j=⌊τT ⌋+ξT+1

 ∆yj − (φ̂W
j−1)

′gj

σ̃j,N,j

=: AT +BξT + Ct

where AT , BξT and Ct are implicitly defined.

Consider first Ct. When ⌊τT ⌋+ ξT + 1 ⩽ t ⩽ ⌊λT ⌋, we have that

∆yj = δTuj−1 + vj.

Substituting this into the expression for Ct we have that

Ct = δT
1√
T

t∑
j=⌊τT ⌋+ξT+1

(
uj−1

σ̃j,N,j

+
vj

σ̃j,N,j

−
(φ̂W

j−1)
′gj

σ̃j,N,j

)
=: Ct1 + Ct2 − Ct3

where Ct1, Ct2 and Ct3 are the summation of three terms in the brackets implicitly defined.
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When ⌊τT ⌋+ ξT +1 ⩽ t ⩽ ⌊λT ⌋, we will first show that |Ct2/Ct1| = op(1) and the order of

Ct3 is no larger than that of Ct1, so that the rate of Ct1 + Ct2 + Ct3 is determined by the

rate of divergence of Ct1; then we derive a lower bound for the divergence rate of Ct1.

We will use Lemma A.9 in the following analysis. Notice that given 0 ⩽ d ⩽ 2/3,

T d ∧N = T d. Consider first Ct1. This satisfies

|Ct1|

= δT
1√
T
(T dN)1/2

∣∣∣∣∣∣
t∑

j=⌊τT ⌋+ξT+1

T−1/2ψ
−(j−1−⌊τT ⌋)
T uj−1

(T d−1N)1/2ψ
−(j−1−⌊τT ⌋)
T σ̃j,N,j

∣∣∣∣∣∣
⩽ max

⌊τT ⌋+ξT+1⩽j⩽t

∣∣∣∣∣ δT (T
dN)1/2

(T d−1N)1/2ψ
−(j−1−⌊τT ⌋)
T σ̃j,N,j

∣∣∣∣∣ 1√
T

t∑
j=⌊τT ⌋+ξT+1

|T−1/2ψ
−(j−1−⌊τT ⌋)
T uj−1|

=
δT (T

dN)1/2

min⌊τT ⌋+ξT+1⩽j⩽t |(T d−1N)1/2ψ
−(j−1−⌊τT ⌋)
T σ̃j,N,j |

1√
T

t∑
j=⌊τT ⌋+ξT+1

|T−1/2ψ
−(j−1−⌊τT ⌋)
T uj−1|

=
δT (T

dN)1/2

min⌊τT ⌋+ξT+1⩽j⩽t |(T d−1N)1/2ψ
−(j−1−⌊τT ⌋)
T σ̃j,N,j |

1√
T
(t− 1− ⌊τT ⌋ − ξT )|T−1/2u⌊τT ⌋|(1 + op(1)).

Using Lemma A.9 we have that min⌊τT ⌋+ξT+1⩽j⩽t |(T d−1N)1/2ψ−(j−1−⌊τT ⌋)σ̃j,N,j| is, with

probability 1, strictly positive. Moreover, |T−1/2u⌊τT ⌋| = Op(1), and so for any t ⩾ ⌊τ ∗T ⌋

with τ ∗ > τ , (t− 1− ⌊τT ⌋ − ξT ) = O(T ), and it follows that Ct1 is Op(T
1/2−d(T dN)1/2) =

Op

(
T

1
2
(1−d)N

1
2

)
. Using the same argument, we can show that Ct2 is stochastically dom-

inated by Ct1. Next consider Ct3. Notice that the gj vector contains the ∆yj−k’s for k =

1, 2, . . . , p, together with the covariates. In the explosive regime, ∆yj−k = δTuj−k−1 + vj−k,

which is explosive, while the covariate terms are, by definition, non-explosive. Therefore,

Ct3 can be studied in the same way as Ct1 and it can be shown that it is no larger than

Ct1, and it also cannot be the same as Ct1 (so there is no possibility of cancellation between

the two terms), due to its dependence on uj terms up to j = t− 2, while Ct1 is defined by

explosive uj’s up to j = t− 1. In summary, the order of Ct is determined by that of Ct1.

We next derive a lower bound for the divergence rate of Ct1. To that end, observe that

|Ct1| also satisfies
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|Ct1|

⩾ min
⌊τT ⌋+ξT+1⩽j⩽t

∣∣∣∣∣ δT (T
dN)1/2

(T d−1N)1/2ψ
−(j−1−⌊τT ⌋)
T σ̃j,N,j

∣∣∣∣∣ 1√
T

t∑
j=⌊τT ⌋+ξT+1

|T−1/2ψ
−(j−1−⌊τT ⌋)
T uj−1|

=
δT (T

dN)1/2

max⌊τT ⌋+ξT+1⩽j⩽t |(T d−1N)1/2ψ
−(j−1−⌊τT ⌋)
T σ̃j,N,j |

1√
T

t∑
j=⌊τT ⌋+ξT+1

|T−1/2ψ
−(j−1−⌊τT ⌋)
T uj−1|

=
δT (T

dN)1/2

max⌊τT ⌋+ξT+1⩽j⩽t |(T d−1N)1/2ψ
−(j−1−⌊τT ⌋)
T σ̃j,N,j |

1√
T
(t− 1− ⌊τT ⌋ − ξT )|T−1/2u⌊τT ⌋|(1 + op(1)).

Again using Lemma A.9, we have that max⌊τT ⌋+ξT+1⩽j⩽t |(T d−1N)1/2ψ
−(j−1−⌊τT ⌋)
T σ̃j,N,j| =

Op(1). Moreover, |T−1/2u⌊τT ⌋| = Op(1) and is non-degenerate, and so for t ⩾ ⌊τ ∗T ⌋, with

τ ∗ > τ , |Ct1/(ct
√
t)| = Op(δT (T

dN)1/2). Notice that δT (T
dN)1/2 = O(T−d/2N1/2) → ∞

because d ⩽ 2/3. Observing that max⌊τT ⌋+ξT+1⩽j⩽t |(T d−1N)1/2ψ
−(j−1−⌊τT ⌋)
T σ̃j,N,j| appears

in the denominator, its stochastic upper bound order of Op(1) gives the lower bound of the

divergence rate for Ct1.

Next, we observe that AT = Op(1), regardless of the value of t (i.e. it has the same order

in probability throughout the monitoring period). BξT represents the sum of ξT + 1 terms

immediately after the structural break to an explosive regime; its order also does not depend

on t. Notice that since it cannot cancel exactly with Ct, which has a changing end point as

the monitoring process goes on, the derived divergence rate lower bound we have derived

for Ct also serves as a divergence rate lower bound for the monitoring statistic, regardless

of the specific order of BξT . The monitoring statistic will always diverge relative to the

boundary function, ct
√
t, with at least a rate O(T−d/2N1/2) due to the Ct term, and so the

stated result follows.

Proof of Theorem A.1. Observe that

1√
T

⌊Tr⌋∑
j=T+1

ej
σj

=
1√
T

⌊Tr⌋∑
j=T+1

σjηj − (ϕ̂j−1 − ϕ)′zj
σj

=
1√
T

⌊Tr⌋∑
j=T+1

ηj −
1√
T

⌊Tr⌋∑
j=T+1

(ϕ̂j−1 − ϕ)′zj
σj

.

Using the same proof strategy as that of Theorem 1, we can again show that the first term

above weakly converges to a standard Brownian motion, while the second term weakly
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converges to an integral of a Gaussian process as in (A.25). However, the proof is simpler

because each zj in the present setting now has zero mean, and so the second term in

the equation above can be shown to be of op(1), from which the stated result follows

straightforwardly.

Proof of Theorem A.2. Using the result in Theorem A.1, the stated result follows if we can

show that the errors induced by the nonparametric estimation of the variance function are

asymptotically negligible. This can be done along exactly the same lines as in the second

part of the proof of Theorem 1, and we therefore omit the details to avoid repetition.

Proof of Theorem A.3. Again, the proof will follow along the same lines as the proof of

Theorem 2, using the observation that no aspect of that proof requires the covariates to

have strictly non-zero means. We therefore omit the proof to avoid repetition.
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A.3 Empirical Application

In this section we investigate the performance of our proposed monitoring procedures had

they been applied ahead of Black Monday in 1987, and the dotcom bubble episode of the

early 1990s. To do so we use the monthly dataset of Welch and Goyal (2008) which can be

obtained from http://www.hec.unil.ch/agoyal/ as well as the 10 Year US Treasury Con-

stant Maturity Rate which can be obtained from https://fred.stlouisfed.org/series/GS10.

A29

http://www.hec.unil.ch/agoyal/
https://fred.stlouisfed.org/series/GS10


Following PSY, the series tested for bubbles will be the price-dividend ratio (Index/D12)

plotted in Figure A.1. Applying the GSADF test of PSY to the sample of data used for

our empirical analysis (October 1968 - December 1997) using the authors’ recommended

settings yields a test statistic of 2.873, which is in excess of the 1% critical value of 2.582,

which gives strong evidence in agreement with the findings of PSY that one or more bub-

bles are present during this period. The candidate covariates are earnings (E12), the book-

to-market ratio (b/m), the treasury-bill rate (tbl), corporate bond returns on AAA and

BAA rated bonds (AAA and BAA), the 10 Year US Treasury Constant Maturity Rate

(GS10) long term yield (lty), net equity expansion (ntis), the risk free rate (rfree), inflation

(infl), long term rate of returns (ltr), long term corporate bond returns (corpr), stock vari-

ance (svar), the cross sectional premium (csp), the dividend payout ratio (de:=D12/E12),

the earnings-price ratio (ep:=E12/Index), the default yield spread (dfy:=BAA-AAA), the

term spread (tms:=lty-tbl) and the default return spread (dfr:=corpr-ltr).

We begin by examining how a monitoring exercise that began in January 1987, ahead of

Black Monday in October 1987, would have played out, examining the performance of the

CUSUMV , CUSUMV ∗ and CUSUMWMV monitoring procedures. For simplicity, and to help

determine which covariates are individually useful, we apply the CUSUMWMV procedure

using only a single covariate at a time. Our training sample begins in October 1968 such

that its length is equal to T = 219 as in the Monte Carlo simulations in Section 5. We

use the same bandwidth selection rule as in Section 5 and, again, use the BIC procedures

outlined in section 5.1 to select p and q, and whether or not to include the covariates, in

the null regression model, (5), again setting the maximum permitted values of p and q to

4 and 2, respectively. We set the value of bα = 0.0883 such that the monitoring procedures

would have an empirical FPR of 0.10 after 1 year if the price-dividend data were a pure

unit root process driven by NIID innovations under the null.

Before applying the CUSUMWMV procedure we must first ensure that any covariates

used do not contain a unit root. We, therefore, pre-test the candidate covariates for a

unit root using the training sample observations that would have been available at the

commencement of the monitoring procedure. We apply the (heteroskedasticity-robust)

wild bootstrap ADF unit root test of Cavaliere and Taylor (2009) at the 5% level allowing
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for an intercept using the authors’ recommended settings where the number of lagged

differences in the ADF regression is determined using the MAIC of Ng and Perron (2001)

with the maximum number of lags k given by kmax = ⌊12(T/100)0.25⌋. Critical values

are obtained using B = 499 bootstrap replications where the bootstrap data is generated

using the recolouring scheme outlined in Cavaliere and Taylor (2009) using the same value

of k selected by the MAIC for the test statistic of interest, with the value of k used to

construct the bootstrap test statistics again determined by the MAIC. From this we found

the variables ltr, corpr and dfr to be I(0) so there variables are utilised in levels, whereas

we found rfree, infl, svar, tms, E12, b/m, tbl, GS10, AAA, BAA, lty, ntis, csp, de, ep and

dfy to be I(1) so these variables are utilised in first differences.

At the commencement of the monitoring procedure applying the BIC to (5) indicates

that the covariates that are individually relevant for monitoring the price-dividend series

are ∆(b/m), ∆(tbl), ∆(GS10),∆(AAA), ∆(BAA), ∆(lty), ltr, corpr, ∆(csp) and ∆(ep) and

so we only report results for the use of these covariates in the CUSUMWMV procedure. For

the CUSUMV ∗ procedure the BIC selects a lag length of p = 0 and so that this procedure

is identical to the CUSUMV procedure, we therefore report results only for the latter

procedure. Figures A.2-A.3 report plots of the individual test statistics underlying the

monitoring procedures, as well as the boundary function ct
√
t, with a rejection of the no-

bubble null indicated by any test statistic exceeding this boundary function. The vertical

dashed lines are used to indicate the first date each monitoring procedure rejects the null of

no bubble. The plots of these test statistics shows that the Black Monday bubble episode

was rather short lived, with only a small window of opportunity for detection before the

collapse of the price-divided ratio. In spite of this we see that the CUSUMWMV procedure

would have detected this bubble in July 1987 when utilising any of ∆(GS10), ∆(AAA),

∆(lty), ltr, corpr or ∆(ep) as a covariate, which is earlier than the first rejection in August

1987 displayed by CUSUMV . For the other covariates the CUSUMWMV procedure first

rejects at the same time as CUSUMV , excepting ∆(csp) where the CUSUMWMV procedure

marginally fails to reject in August 1987. We also extended the analysis to allow for multiple

covariates, letting the BIC select from any combination of the covariates that were found

to be individually relevant. In this case the BIC suggested including both ∆(b/m) and
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∆(ep), with the resulting procedure rejecting slightly later than when using ∆(ep) alone,

highlighting the fact that including additional covariates may not always be beneficial.

We also examined how a monitoring procedure that began in January 1994, ahead of

the dotcom bubble, would have played out. The monitoring procedures were performed

exactly as for the Black Monday exercise except that the training sample of data were of

length T = 72, running from January 1988 to December 1993 so as to avoid the abrupt

collapse in the price-dividend ratio witnessed at the end of 1987 following Black Monday;

cf. item 3 in Section 5.3. This necessitated setting bα = 0.2672 to retain an FPR of 0.10

after 1 year, again assuming the price-dividend data were a purely unit root process driven

by NIID innovations under the null. Once again, the BIC selected p = 0 for the CUSUMV ∗

procedure so we report results only for CUSUMV . For the CUSUMWMV procedure we

utilise the covariates that proved to be useful during the Black Monday bubble episode,

namely ∆(GS10) ∆(AAA), ∆(lty), ltr, corpr or ∆(ep). Figure A.4 again reports plots of

the individual test statistics underlying the monitoring procedures, as well as the boundary

function ct
√
t. The CUSUMV procedure which utilises no covariate augmentation first

rejects the null of no bubble in January 1996, whereas the CUSUMWMV procedure rejects

earlier when using any of the six candidate covariates, with a first rejection in October

1994 when using corpr, March 1995 when using ∆(ep), July 1995 when using ∆(AAA),

∆(GS10) or ltr and September 1995 when using ∆(lty). We also extended the analysis to

allow for multiple covariates, letting the BIC select from any combination of the covariates

that were found to be individually relevant. In this case the BIC suggested using only ∆(ep)

which was previously shown to lead to the second earliest rejection among all individual

candidate covariates.

As an additional robustness check, we also performed unit root tests on all of the

covariates employed in the CUSUMWMV procedure across the entire sample range of data

used for our empirical analysis (October 1968 - December 1997) and obtained the same

conclusions as when these unit root tests were performed on the initial training sample,

suggesting no change in persistence occurred for any of the employed covariates during the

monitoring periods. We also applied the GSADF test of PSY to each of these covariates

over the full sample period and found no evidence of bubbles, rendering it unlikely that
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any co-explosive behaviour was present between the covariates and the series of interest.

Additional References
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Figure A.1: Price Dividend Ratio - 1968-2000
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Figure A.2: Test Statistics vs Critical Value - Black Monday
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Figure A.3: Test Statistics vs Critical Value - Black Monday
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Figure A.4: Test Statistics vs Critical Value - dotcom
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A.4 Additional Monte Carlo Simulation Results

This section reports Monte Carlo simulations results additional to those reported in the

main paper. Similar to the main paper all results are reported for the DGP in (1)-(2), and

under the alternative we set ⌊τT ⌋ = 220 with δ = 0.005.

A.4.1 Additional Simulations - Further Parameter Constellations

Figure A.5 reports the FPR of the procedures under the null and TPR under the alternative

for the CSS type DGP for vt and xt given by (23)-(24) with ρ = σ12 = α1 = 0 and β = 0.5.

The reported results are qualitatively similar to those reported in Figure 2 for the case

when β = 0.8 reported in the main paper.

Figure A.6 reports the FPR and TPR of the procedures for the CSS type DGP for vt

and xt given by (23)-(24) with σ12 = 0.4, α1 = 0.2 and β = ρ = 0.0 such that the covariate

xt is irrelevant but the innovations vt are serially correlated. The FPR and TPR profile

of both the CUSUMWMV and CUSUMV ∗ monitoring procedures are practically identical

to each other, identified by the green and red lines being almost indistinguishable from

one another. This is due to the fact that the BIC deems the candidate covariate to be

irrelevant, so that the CUSUMWMV procedure reduces to the CUSUMV ∗ procedure, in

the vast majority of replications. Both the CUSUM and CUSUMV procedures exhibit

substantial FPR distortions in this scenario due to the unmodelled serial correlation present

in vt.

Figures A.7-A.12 present the FPR of the procedures under the null and TPR under

the alternative for the CSS type DGP for vt and xt given by (23)-(24) when α1 = 0.2 and

σ12 = 0.4 for the combinations of β and ρ considered by CSS not reported in Figures 3-4

in the main paper. Once again the results are all qualitatively similar to those reported in

the main paper.
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Figure A.5: β = 0.5, ρ = σ12 = α1 = 0 - Left Panel=FPR, Right Panel =TPR. (ϱ2 = 0.800)

(a) Homoskedastic

(b) σ1,t, σ2,t Shift.

(c) σ1,t Shift.

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.6: β = 0.0, ρ = 0.0, σ12 = 0.4, α1 = 0.2 - Left Panel=FPR, Right Panel =TPR. (ϱ2 = 1.000)

(a) Homoskedastic

(b) σ1,t, σ2,t Shift. Fixed Correlation

(c) σ1,t Shift. Fixed Correlation

(d) σ1,t Shift. Correlation Varies

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.7: β = 0.5, ρ = 0.8, σ12 = 0.4, α1 = 0.2 - Left Panel=FPR, Right Panel =TPR. (ϱ2 = 0.432)

(a) Homoskedastic

(b) σ1,t, σ2,t Shift. Fixed Correlation

(c) σ1,t Shift. Fixed Correlation

(d) σ1,t Shift. Correlation Varies

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.8: β = −0.5, ρ = 0.8, σ12 = 0.4, α1 = 0.2 - Left Panel=FPR, Right Panel =TPR. (ϱ2 = 0.000)

(a) Homoskedastic

(b) σ1,t, σ2,t Shift. Fixed Correlation

(c) σ1,t Shift. Fixed Correlation

(d) σ1,t Shift. Correlation Varies

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.9: β = 0.8, ρ = 0.5, σ12 = 0.4, α1 = 0.2 - Left Panel=FPR, Right Panel =TPR. (ϱ2 = 0.556)

(a) Homoskedastic

(b) σ1,t, σ2,t Shift. Fixed Correlation

(c) σ1,t Shift. Fixed Correlation

(d) σ1,t Shift. Correlation Varies

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.10: β = 0.5, ρ = 0.5, σ12 = 0.4, α1 = 0.2 - Left Panel=FPR, Right Panel =TPR. (ϱ2 = 0.700)

(a) Homoskedastic

(b) σ1,t, σ2,t Shift. Fixed Correlation

(c) σ1,t Shift. Fixed Correlation

(d) σ1,t Shift. Correlation Varies

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.11: β = −0.5, ρ = 0.5, σ12 = 0.4, α1 = 0.2 - Left Panel=FPR, Right Panel =TPR. (ϱ2 = 0.300)

(a) Homoskedastic

(b) σ1,t, σ2,t Shift. Fixed Correlation

(c) σ1,t Shift. Fixed Correlation

(d) σ1,t Shift. Correlation Varies

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.12: β = −0.8, ρ = 0.5, σ12 = 0.4, α1 = 0.2 - Left Panel=FPR, Right Panel =TPR. (ϱ2 = 0.057)

(a) Homoskedastic

(b) σ1,t, σ2,t Shift. Fixed Correlation

(c) σ1,t Shift. Fixed Correlation

(d) σ1,t Shift. Correlation Varies

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



A.4.2 Additional Simulations - Smooth Volatility Shift in Innovations to Co-

variate

Figures A.13-A.15 report the TPR and FPR of the monitoring procedures when a smooth

volatility shift is present in the innovations to the covariate only. Data were generated ac-

cording to (1)-(2) and (23)-(25), with σ1,t = 1, σ2,t := 1+(
√
4−1) [1 + exp(−θ(t− 219))]−1

σ12,t = σ12σ2,t and we again set u0 = 100, w0 = µ = 0. Under the null we set δ = 0, whereas

under the alternative we set δ = 0.005, τ1T = 220 and τ2T = λT .

Figure A.13 (a) shows that when xt does not enter the DGP for yt in any way that,

unsurprisingly, none of the monitoring procedures are impacted in any meaningful way by

the volatility shift present in the innovations to the covariate. The FPR and TPR for the

CUSUMWMV procedure is near identical to the homoskedastic case, and the FPR and TPR

of all other procedures are exactly identical to the homoskedastic case reported in Figure

1 (a) of the main paper.

Figure A.13 (b) and (c) report results for the case where the covariate is relevant but no

serial correlation is present in vt. In this scenario the heteroskedasticity in xt feeds through

into the values of ∆yt that are used to construct the statistics underlying the CUSUM

and CUSUMV procedures. The former suffers FPR distortions as a consequence, whereas

the CUSUMV procedure is still able to control FPR to a decent extent due to the use of

the kernel based variance estimator. Due to the lack of serial correlation the BIC reduces

the CUSUMV ∗ procedure to the CUSUMV procedure in a great majority of replications

so that the blue and green lines almost exactly coincide. The CUSUMWMV procedure is,

expectedly, also FPR controlled in these scenarios.

Figure A.13 (d) reports results for the case where the covariate is irrelevant, but serial

correlation is present in vt. Here both the standard CUSUM and CUSUMV procedures

exhibit FPR distortions, where the CUSUMWMV and CUSUMV ∗ procedures display much

better FPR control. The latter two procedures display almost identical FPR/TPR profiles

in this scenario as when the covariate is irrelevant the BIC reduces the CUSUMWMV

procedure to the CUSUMV ∗ procedure in a vast majority of replications.

The remaining figures A.14 and A.15 report the FPR and TPR of the procedures for

the same parameter constellations as considered by CSS. Across these scenarios both the
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standard CUSUM and CUSUMV procedures display very poor FPR control as neither

are able to model the serial correlation present in vt, and the former uses a standard

variance estimator that is unable to account for heteroskedasticity. The FPR control of the

CUSUMV ∗ procedure is also poor, with this procedure exhibiting upward FPR distortions

rather than the downward FPR distortions it exhibits when the variance of only ϵ1,t shifts.

The best FPR control overall is clearly displayed by the CUSUMWMV procedure. The

CUSUMWMV procedure also displays far superior TPR performance to the CUSUMV ∗

procedure across all scenarios.
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Figure A.13: Volatility Shift in ε2,t only - Left Panel=FPR, Right Panel =TPR.

(a) β = ρ = σ12 = α1 = 0

(b) β = 0.5, ρ = σ12 = α1 = 0

(c) β = 0.8, ρ = σ12,t = α1 = 0

(d) β = 0.0, ρ = 0.0, σ12 = 0.4σ2,t, α1 = 0.2

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.14: Volatility Shift in ε2,t only - Left Panel=FPR, Right Panel =TPR.

(a) β = 0.8, ρ = 0.8, σ12 = 0.4σ2,t, α1 = 0.2

(b) β = 0.5, ρ = 0.8, σ12 = 0.4σ2,t, α1 = 0.2

(c) β = −0.5, ρ = 0.8, σ12 = 0.4σ2,t, α1 = 0.2

(d) β = −0.8, ρ = 0.8, σ12 = 0.4σ2,t, α1 = 0.2

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.15: Volatility Shift in ε2,t only - Left Panel=FPR, Right Panel =TPR.

(a) β = 0.8, ρ = 0.5, σ12 = 0.4σ2,t, α1 = 0.2

(b) β = 0.5, ρ = 0.5, σ12 = 0.4σ2,t, α1 = 0.2

(c) β = −0.5, ρ = 0.5, σ12 = 0.4σ2,t, α1 = 0.2

(d) β = −0.8, ρ = 0.5, σ12 = 0.4σ2,t, α1 = 0.2

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



A.4.3 Additional Simulations - Covariate Observed with Measurement Error

Figures A.16-A.23 report the FPR and TPR of the monitoring procedures in the same

scenarios as panel (a) in Figures 3-4 and A.7-A.12 but where the covariate xt is observed

subject to a measurement error. Data were generated according to (1)-(2) and (23)-(25),

with σ2
1,t = σ2

2,t = 1, σ12,t = 0.4, α1 = 0.2 and we again set u0 = 100, w0 = µ = 0. Under

the null we set δ = 0, whereas under the alternative we set δ = 0.005, τ1T = 220 and

τ2T = λT . Results are reported for the case where the covariate zt = xt + ηt is used in

the CUSUMWMV procedure where ηt ∼ N(0, σ2
η) (Setting σ

2
η = 0 corresponds to the case

where the covariate is observed without measurement error). In all cases, the FPR of our

proposed CUSUMWMV monitoring procedure is impacted very little by the measurement

error, whereas under the alternative the TPR of the procedure is somewhat reduced relative

to the case where the covariate is observed without measurement error, with this power

reduction increasing in the value of σ2
η. The FPR and TPR of the CUSUM, CUSUMV and

CUSUMV ∗ procedures does not change with the value of σ2
η as the true DGP remains the

same across the various values of σ2
η and these procedures make no use of the observed

covariate zt. In all cases the TPR of the CUSUMWMV procedure is superior to that of the

CUSUMV ∗ procedure which is the only other FPR controlled test in these scenarios.
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Figure A.16: Covariate observed with error:β = 0.8, ρ = 0.8, σ12 = 0.4, α1 = 0.2 - Left=FPR, Right=TPR

(a) σ2
η = 0

(b) σ2
η = 0.5

(c) σ2
η = 1.0

(d) σ2
η = 2.0

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.17: Covariate observed with error:β = 0.5, ρ = 0.8, σ12 = 0.4, α1 = 0.2 - Left=FPR, Right=TPR

(a) σ2
η = 0

(b) σ2
η = 0.5

(c) σ2
η = 1.0

(d) σ2
η = 2.0

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.18: Covariate observed with error:β = −0.5, ρ = 0.8, σ12 = 0.4, α1 = 0.2 - Left=FPR,
Right=TPR

(a) σ2
η = 0

(b) σ2
η = 0.5

(c) σ2
η = 1.0

(d) σ2
η = 2.0

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.19: Covariate observed with error:β = −0.8, ρ = 0.8, σ12 = 0.4, α1 = 0.2 - Left=FPR,
Right=TPR

(a) σ2
η = 0

(b) σ2
η = 0.5

(c) σ2
η = 1.0

(d) σ2
η = 2.0

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.20: Covariate observed with error:β = 0.8, ρ = 0.5, σ12 = 0.4, α1 = 0.2 - Left=FPR, Right=TPR

(a) σ2
η = 0

(b) σ2
η = 0.5

(c) σ2
η = 1.0

(d) σ2
η = 2.0

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.21: Covariate observed with error:β = 0.5, ρ = 0.5, σ12 = 0.4, α1 = 0.2 - Left=FPR, Right=TPR

(a) σ2
η = 0

(b) σ2
η = 0.5

(c) σ2
η = 1.0

(d) σ2
η = 2.0

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.22: Covariate observed with error:β = −0.5, ρ = 0.5,σ12 = 0.4,α1 = 0.2 - Left=FPR, Right=TPR

(a) σ2
η = 0

(b) σ2
η = 0.5

(c) σ2
η = 1.0

(d) σ2
η = 2.0

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.23: Covariate observed with error:β = −0.8,ρ = 0.5,σ12 = 0.4,α1 = 0.2 - Left=FPR, Right=TPR

(a) σ2
η = 0

(b) σ2
η = 0.5

(c) σ2
η = 1.0

(d) σ2
η = 2.0

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



A.4.4 Additional Simulations - Training Sample Bubble

Figures A.24-A.32 report the FPR and TPR of the monitoring procedures when a single

collapsed bubble is present in the training sample, with this training sample bubble running

from t = 96 to t = 110 with an explosive offset of 0.005. Data were generated according to

(1) with ut generated as

ut =



ut−1 + vt t = 1, . . . , 95

1.005ut−1 + vt t = 96, . . . , 110

u111 = u95 + v111

ut−1 + vt t = 112, . . . , T

ut−1 + vt t = T + 1, . . . , ⌊τ1T ⌋

(1 + δ)ut−1 + vt t = ⌊τ1T ⌋+ 1, . . . , ⌊τ2T ⌋

ut−1 + vt t = ⌊τ2T ⌋+ 1, . . . , ⌊λT ⌋

(A.28)

We generated vt and xt according to (23)-(25), with σ2
1,t = σ2

2,t = 1, σ12,t = σ12, and we

again set u0 = 100, x0 = µ = 0. Under the null we set δ = 0, whereas under the alternative

we set δ = 0.005, τ1T = 220 and τ2T = λT . When β = 0 and ρ = 0, so that the covariate

is irrelevant, the past training sample bubble has minimal impact on the FPR and TPR of

our proposed CUSUMWMV procedure. This is because in almost all replications the BIC

chooses to include no dynamics at all in the pre-whitening regression for yt so that the

CUSUMWMV and CUSUMV ∗ procedures reduce to the CUSUMV procedure which, when

using a maximum bandwidth of 20 for the volatility estimator, will never use any of the

observations associated with this past bubble. In all cases where the covariate is relevant,

the past bubble causes a slight inflation of the FPR of the CUSUMWMV and CUSUMV ∗

procedures relative to the case where no past bubble is present. This also leads to a slight

increase in the TPR of the procedures when a past bubble is present relative to the case

where no past bubble is present.
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Figure A.24: FPR and TPR - Training Sample Bubble. β = 0.0 = ρ = σ12 = α1 = 0.0

(a) FPR - No Training Sample Bubble (b) FPR - Training Sample Bubble

(c) TPR - No Training Sample Bubble (d) TPR - Training Sample Bubble

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.25: FPR and TPR - Training Sample Bubble. β = 0.8, ρ = 0.8, σ12 = 0.4, α1 = 0.2

(a) FPR - No Training Sample Bubble (b) FPR - Training Sample Bubble

(c) TPR - No Training Sample Bubble (d) TPR - Training Sample Bubble

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.26: FPR and TPR - Training Sample Bubble. β = 0.5, ρ = 0.8, σ12 = 0.4, α1 = 0.2

(a) FPR - No Training Sample Bubble (b) FPR - Training Sample Bubble

(c) TPR - No Training Sample Bubble (d) TPR - Training Sample Bubble

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.27: FPR and TPR - Training Sample Bubble. β = −0.5, ρ = 0.8, σ12 = 0.4, α1 = 0.2

(a) FPR - No Training Sample Bubble (b) FPR - Training Sample Bubble

(c) TPR - No Training Sample Bubble (d) TPR - Training Sample Bubble

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.28: FPR and TPR - Training Sample Bubble. β = −0.8, ρ = 0.8, σ12 = 0.4, α1 = 0.2

(a) FPR - No Training Sample Bubble (b) FPR - Training Sample Bubble

(c) TPR - No Training Sample Bubble (d) TPR - Training Sample Bubble

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.29: FPR and TPR - Training Sample Bubble. β = 0.8, ρ = 0.5, σ12 = 0.4, α1 = 0.2

(a) FPR - No Training Sample Bubble (b) FPR - Training Sample Bubble

(c) TPR - No Training Sample Bubble (d) TPR - Training Sample Bubble

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.30: FPR and TPR - Training Sample Bubble. β = 0.5, ρ = 0.5, σ12 = 0.4, α1 = 0.2

(a) FPR - No Training Sample Bubble (b) FPR - Training Sample Bubble

(c) TPR - No Training Sample Bubble (d) TPR - Training Sample Bubble

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.31: FPR and TPR - Training Sample. β = −0.5, ρ = 0.5, σ12 = 0.4, α1 = 0.2

(a) FPR - No Training Sample Bubble (b) FPR - Training Sample Bubble

(c) TPR - No Training Sample Bubble (d) TPR - Training Sample Bubble

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



Figure A.32: FPR and TPR - Training Sample. β = −0.8, ρ = 0.5, σ12 = 0.4, α1 = 0.2

(a) FPR - No Training Sample Bubble (b) FPR - Training Sample Bubble

(c) TPR - No Training Sample Bubble (d) TPR - Training Sample Bubble

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



A.4.5 Additional Simulations - I(1) Covariate

Figure A.33 reports the FPR and TPR of the procedures when an irrelevant I(1) covariate

is considered for inclusion in the CUSUMWMV procedure. Data were therefore generated

according to (1)-(2) and (23)-(24) with β = ρ = σ12 = α1 = 0, ρ = 1 and σ2
1,t = σ2

2,t = 1 ∀t.

In a vast majority of replications the BIC model selection procedure correctly determines

the covariate to be irrelevant and so there is almost no effect on the FPR and TPR of the

CUSUMWMV procedure. Consequently, to get a better idea of the impact of including this

irrelevant I(1) covariate we include a line on the figures for the case where the covariate

is forcibly included in the CUSUMWMV procedure. We see that including this covariate

leads to a slight increase in FPR under the null and a moderate decrease in TPR under the

alternative, compared to the correctly specified univariate procedures which have an FPR

profile identical to that seen in Figure 1(a) in the main paper.
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Figure A.33: β = 0.0, ρ = 1.0, σ12 = 0.0, α1 = 0.0 - Left Panel=FPR, Right Panel =TPR. (I(1) Covariate)

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——

CUSUMWMV (Forced):– –



A.4.6 Additional Simulations - Bubble in Irrelevant Covariate

Figure A.34 reports the FPR and TPR of the procedures when an irrelevant covariate that

exhibits explosive behaviour in the monitoring period is considered for inclusion in the

CUSUMWMV procedure. Data were therefore generated according to (1)-(2) and (23)-(24)

with β = σ12 = α1 = 0, σ2
1,t = σ2

2,t = 1 ∀t, ρt = ρ, ρ ∈ {0.0, 1.0} for t = 1, ..., 220 and

ρt = 1.005 for t = 221, ..., λT . The covariate therefore behaves as either an I(0) process

or an I(1) process up until the start of monitoring, before exhibiting explosive behaviour

until the end of the monitoring period. Again, in a majority of replications the BIC model

selection procedure correctly determines the covariate to be irrelevant and so there is almost

no effect on the FPR and TPR of the CUSUMWMV procedure. To get a better idea of the

impact of including this explosive covariate we also include a line on the figures for the case

where the covariate is forcibly included in the CUSUMWMV procedure. We see that always

including this covariate leads to a slight increase in the FPR of CUSUMWMV under the null

and a modest decrease in the TPR under the alternative, compared to the correctly specified

univariate procedures, which have an FPR profile identical to that seen in Figure 1(a) in

the main paper, with these effects seen to be more pronounced for ρ = 0.0 than for ρ = 1.0.
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Figure A.34: β = 0.0, σ12 = 0.0, α1 = 0.0 - Left Panel=FPR, Right Panel =TPR. Covariate Bubble in

Monitoring Period

ρ = 0.0 to ρ = 1.005

ρ = 1.0 to ρ = 1.005

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——

CUSUMWMV (Forced):– –



A.4.7 Additional Simulations - Bubble in Relevant Covariate

Figure A.35 reports the FPR and TPR of the procedures when a bubble may be present in

a relevant covariate considered for use in the CUSUMWMV procedure. Data were therefore

generated according to (1)-(2) and (23)-(24) with β = 0.8, ρ = σ12 = α1 = 0.0 and

σ2
1,t = σ2

2,t = 1 ∀t. We generate zt = zt−1 + xt, t = 1, ..., ⌊τT ⌋ and zt = (1 + δc)zt−1 + xt,

t = ⌊τT ⌋ + 1, ..., ⌊λT ⌋, again setting ⌊τT ⌋ = 220, and use ∆zt as a covariate in the

CUSUMWMV procedure. Results are reported for δc ∈ {0.000, 0.005}. We see that for

δc = 0 the FPR and TPR of the procedures is identical to those reported in Figure 2

panel(a), as would be expected because in this case ∆zt = xt. For δc = 0.005, such that

the covariate is contaminated by explosivity during the monitoring period, we see that the

FPR of the CUSUMWMV procedure is very slightly inflated, relative to the case where

δc = 0. Under the alternative, the TPR of CUSUMWMV when δc = 0.005 is essentially the

same as when δc = 0.
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Figure A.35: β = 0.8, ρ = σ12 = α1 = 0.0 - Left Panel=FPR, Right Panel =TPR. Impact of Explosivity

in Covariate

δc = 0.000

δc = 0.005

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——



A.4.8 Additional Simulations - Mean Shift In Covariate

In this section we examine the FPR and TPR of the monitoring procedures when a covariate

that includes a mean shift in the monitoring period is considered for inclusion in the

CUSUMWMV procedure. For reference we also report the cumulative rejection rate of a

univariate monitoring procedure, which will be denoted CUSUMX , that is designed to test

for structural change in the covariate over the same monitoring period as CUSUMWMV .

This procedure is entirely analogous to the one-sided CUSUMWMV procedure except that

a two-tailed decision rule is used (to allow for positive or negative mean shifts), and the

regressions used to construct the statistics underlying the CUSUMX procedure are with-

constant autoregressions fitted to xt, with the autoregressive lag order determined by the

BIC. The CUSUMX procedure is calibrated so that it has a two-sided FPR of 20% at the

same time that the one-sided bubble CUSUM procedures are calibrated to have an FPR

of 10%. In practice the significance level used with CUSUMX can of course be varied by

the practitioner.

Given that in empirical applications candidate macroeconomic and financial covariates

will generally be entered in first differences rather than levels (see Remark 2.8), we consider

first what is arguably the empirically most relevant case where a mean shift occurs in a

series that is used as a covariate in first differences in the CUSUMWMV procedure. Data

were therefore generated according to (1)-(2) and (23)-(24) with β ∈ {0.0, 0.5}, ρ = σ12 =

α1 = 0, σ2
1,t = σ2

2,t = 1 ∀t. We then generate zt = zt−1 + xt and add a 0.5 or 1.0 standard

deviation magnitude mean shift to zt at time t = 230. The first differenced series ∆zt is

then used as a covariate in the CUSUMWMV procedure.

We first consider the case β = 0.0, such that the covariate is irrelevant. Once again,

in the vast majority of simulation replications the BIC model selection device correctly

determines the covariate to be irrelevant and so there is almost no effect on the FPR and

TPR of the CUSUMWMV procedure. Consequently, in order to get a better idea of the

impact of including this covariate we again include a line on the figures for the case where

the covariate is forcibly included in the CUSUMWMV procedure. Examining the results

in Figures A.36-A.37 we see that, regardless of whether the mean shift is upwards or

downwards, including this covariate leads to a marginal increase in FPR under the null and

A77



a marginal decrease in TPR under the alternative, in each case compared to the correctly

specified univariate procedures which have an FPR profile identical to that seen in Figure

1(a) in the main paper. These effects are seen to be very small.

Moving to the case where β = 0.5, results for which are reported in Figures A.38-

A.39, we see that the mean shift in zt does lead to some slight FPR distortions in the

CUSUMWMV procedure, with upward mean shifts causing a slight decrease in FPR and

downward mean shifts leading to a slight increase. The impact on TPR is similar, as is

to be expected, with upward mean shifts causing a slight decrease in TPR and downward

mean shifts leading to a slight increase. The effects are, however, relatively benign even

for the case of a relatively large mean shift of one standard deviation.

We next turn to the case where the mean shift occurs in the candidate covariate, xt,

which enters the regression in levels. Data were therefore generated according to (1)-(2)

and (23)-(24) with β ∈ {0.0, 0.5}, ρ = σ12 = α1 = 0, σ2
1,t = σ2

2,t = 1 ∀t where we add a 0.5

or 1.0 standard deviation mean shift to xt at time t = 230. We begin by examining results

where β = 0.0 reported in Figures A.40-A.41, once again including a line on the figures

for the case where the covariate is forcibly included in the CUSUMWMV procedure, given

that the covariate is irrelevant. We see that, once again, the mean shift makes almost no

difference to the rejection rate of the CUSUMWMV procedure.

Results for the case where β = 0.5, reported in Figures A.42-A.43, are not so benign,

with the mean shift in the utilised covariate causing large upward (downward) bias in the

FPR of the CUSUMWMV procedure for downward (upward) mean shifts, with a large down-

ward bias in the TPR of the CUSUMWMV procedure subsequently observed for upward

mean shifts. Crucially, however, the empirical rejection frequency of the CUSUMX proce-

dure is considerably higher than that of the CUSUMWMV procedure under the null of no

bubble, even when the latter is subject to a large upward bias in FPR due to the presence of

a negative mean shift. In the majority of cases, therefore, the simultaneous CUSUMX pro-

cedure would alert the practitioner to the mean shift in the covariate and the practitioner

would consequently revert to a covariate unaugmented procedure, for example CUSUMV ∗.
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Figure A.36: β = 0.0, ρ = 0.0, σ12 = 0.0, α1 = 0.0. FPR of Procedures. Mean Shift at t = 230 in an

Irrelevant Covariate entered in First Differences. Left Panel = Upward Shift, Right Panel = Downward

Shift.

Break Magnitude = 0.5σ

Break Magnitude = 1σ

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——

CUSUMWMV (Forced):– –, CUSUMX :——



Figure A.37: β = 0.0, ρ = 0.0, σ12 = 0.0, α1 = 0.0. TPR of Procedures. Mean Shift at t = 230 in an

Irrelevant Covariate entered in First Differences. Left Panel = Upward Shift, Right Panel = Downward

Shift.

Break Magnitude = 0.5σ

Break Magnitude = 1σ

CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——

CUSUMWMV (Forced):– –, CUSUMX :——



Figure A.38: β = 0.5, ρ = 0.0, σ12 = 0.0, α1 = 0.0. FPR of Procedures. Mean Shift at t = 230 in a Relevant

Covariate entered in First Differences. Left Panel = Upward Shift, Right Panel = Downward Shift.

Break Magnitude = 0.5σ

Break Magnitude = 1σ

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——

CUSUMX :——



Figure A.39: β = 0.5, ρ = 0.0, σ12 = 0.0, α1 = 0.0. TPR of Procedures. Mean Shift at t = 230 in a Relevant

Covariate entered in First Differences. Left Panel = Upward Shift, Right Panel = Downward Shift.

Break Magnitude = 0.5σ

Break Magnitude = 1σ

CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——

CUSUMX :——



Figure A.40: β = 0.0, ρ = 0.0, σ12 = 0.0, α1 = 0.0. FPR of Procedures. Mean Shift at t = 230 in an

Irrelevant Covariate entered in Levels. Left Panel = Upward Shift, Right Panel = Downward Shift.

Break Magnitude = 0.5σ

Break Magnitude = 1σ

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——

CUSUMWMV (Forced):– –, CUSUMX :——



Figure A.41: β = 0.0, ρ = 0.0, σ12 = 0.0, α1 = 0.0. TPR of Procedures. Mean Shift at t = 230 in an

Irrelevant Covariate entered in Levels. Left Panel = Upward Shift, Right Panel = Downward Shift.

Break Magnitude = 0.5σ

Break Magnitude = 1σ

CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——

CUSUMWMV (Forced):– –, CUSUMX :——



Figure A.42: β = 0.5, ρ = 0.0, σ12 = 0.0, α1 = 0.0. FPR of Procedures. Mean Shift at t = 230 in a

Relevant Covariate entered in Levels. Left Panel = Upward Shift, Right Panel = Downward Shift.

Break Magnitude = 0.5σ

Break Magnitude = 1σ

FPRi.i.d.:– –, CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——

CUSUMX :——



Figure A.43: β = 0.5, ρ = 0.0, σ12 = 0.0, α1 = 0.0. TPR of Procedures. Mean Shift at t = 230 in a

Relevant Covariate entered in Levels. Left Panel = Upward Shift, Right Panel = Downward Shift.

Break Magnitude = 0.5σ

Break Magnitude = 1σ

CUSUM:——, CUSUMV :——, CUSUMV ∗:——, CUSUMWMV :——

CUSUMX :——



A.4.9 Additional Simulations - Incorrectly Differenced Covariate

Figure A.44 reports the FPR and TPR of the procedures in the case where xt is an unob-

served relevant covariate, but what we actually observe is zt, a strongly persistent (local-

to-unity) process formed from xt, and in order to remove the strong persistence we incor-

rectly take first differences of zt, ∆zt, and then consider this covariate for inclusion in the

CUSUMWMV procedure. Data on xt were therefore generated according to (1)-(2) and

(23)-(24) with β = 0.8, ρ = σ12 = α1 = 0.0 and σ2
1,t = σ2

2,t = 1 ∀t. We then generate

zt = (1− c/T )zt−1+xt as the observed series. The first differenced series, ∆zt, is then used

as a covariate in the CUSUMWMV procedure. Results are reported for c ∈ {= 0, 5, 10, 20}.

We see that for c = 0 the FPR and TPR of the procedures is identical to those reported

in Figure 2 panel(a), as would be expected given that in this case ∆zt = xt. For the other

values of c we see that the FPR of the CUSUMWMV procedure is slightly inflated, and the

TPR of the procedure is slightly reduced, with both of these effects increasing in the value

of c. It should be noted, however, that while the TPR of the CUSUMWMV procedure is

decreasing in c, it is still significantly higher than the TPRs of all of the univariate pro-

cedures. These findings mirror those reported for covariate augmented unit root tests in

Hansen (1995, pp.1159-1160) for this scenario. It is, however, worth noting that while the

limiting null distribution of the covariate unit root tests proposed in Hansen (1995) depend

in this scenario on c (when c > 0), in our context over-differenced covariates do not vio-

late the regularity conditions given in Assumption 2 and, hence, the asymptotic null dis-

tribution of the sequence of SWMV t
T , t = T + 1, ..., ⌊λT ⌋, statistics in this case is as given

in Theorem 1, regardless of the value of c, such that the theoretical FPR of the resulting

CUSUMWMV procedure remains controlled according to the result in Corollary 1.
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Figure A.44: β = 0.5, ρ = 0.5, σ12 = 0.4, α1 = 0.2 - Left Panel=FPR, Right Panel =TPR. Impact of

Incorrectly Differenced Covariate
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