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Abstract

We explore how information from covariates can be incorporated into the CUSUM-
based real-time monitoring procedure for explosive asset price bubbles developed in
Homm and Breitung (2012). Where dynamic covariates are present in the data gen-
erating process, the false positive rate of the basic CUSUM procedure, which is based
on the assumption that prices follow a univariate data generating process, under the
null of no explosivity will not, in general, be properly controlled, even asymptoti-
cally. In contrast, accounting for these relevant covariates in the construction of the
CUSUM statistics leads to a procedure whose false positive rate can be controlled
using the same asymptotic crossing function as employed by Homm and Breitung
(2012). Doing so is also shown to have the potential to significantly increase the
chance of detecting an emerging bubble episode in finite samples. We additionally al-
low for time varying volatility in the innovations driving the model through the use
of a kernel-based variance estimator.
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1 Introduction and Motivation

Asset price bubbles tend to be characterised by a sudden and explosive increase in the price
of an asset without a corresponding increase in the fundamental value of the asset (thereby
representing a misallocation of resources), followed by a subsequent destruction of value
through a price collapse. Bubbles often presage economic recessions; indeed, the 2007/08
Global Financial Crisis (GFC) was preceded by suspected price bubbles in the U.S. housing,
commodity and stock markets. In the aftermath of the GFC, policymakers have considered
new rules for macroprudential regulation and intervention. Crucial to the effectiveness of
these is the availability of econometric methods which can monitor the behaviour of prices
in asset markets in real-time, rapidly and accurately detecting emerging price bubbles.

The majority of the bubble detection literature has focused on one-shot tests for detect-
ing the presence of historic asset price bubbles. The seminal contributions in this area were
made by Phillips, Wu and Yu (2011) [PWY] and Phillips, Shi and Yu (2015) [PSY], who
proposed tests for the presence of bubble episodes based on the maximum of sequences of
recursive univariate augmented Dickey-Fuller [ADF] unit root statistics applied to overlap-
ping sub-samples of the data. Other contributions based on sub-sample based methods in-
clude: Homm and Breitung (2012) [HB], Harvey et al. (2016), Astill et al. (2017), Phillips
and Shi (2018) and Harvey et al. (2019, 2020).

Although primarily designed as one-shot tests and date-stamping procedures for his-
torical bubbles, some of these approaches can also be implemented sequentially to provide
methods to monitor for the emergence of a bubble in real-time; most notably the BSADF
statistic of PSY (defined as the maximum of a backward-recursive sequence of subsample
ADF statistics computed over all possible subsamples ending at the last available date in
the full data sample, subject to a minimum subsample length). By implementing tests se-
quentially, however, a critical value which diverges with the sample size (satisfying the rate
condition given in equation (11) on page 1055 of PSY), needs to be used to control the false
positive rate [FPR] of the monitoring procedure, defined as the probability of incorrectly
declaring a bubble during the monitoring period; see Section 3.2 of PSY. This rate condition
implies a theoretical FPR (by which we mean the FPR of the procedure in large samples)
of zero. In practice, PSY (p.1066) recommend obtaining the critical value by Monte Carlo



simulation, yielding a real-time monitoring procedure with a controlled, but non-zero, FPR.
This procedure is, however, infeasible in the case where the innovations display time-varying
volatility. To allow for possible time-varying volatility, Phillips and Shi (2020, Section 5)
propose a wild bootstrap monitoring procedure, based on the BSADF statistic, whose FPR
can be controlled at a specified level across a monitoring period of a given length. This pro-
cedure is implemented at the end of the chosen monitoring period, and so is not run in real-
time; it may, however, be possible to modify this procedure to be implemented in real-time.

A different strand of the literature, which we focus on in this paper, has developed ded-
icated real-time monitoring procedures for asset price bubbles, designed so that the prac-
titioner can fix the theoretical FPR at a given (non-zero) level. These split the data into
a training sample and a monitoring period. HB use a CUSUM-based detector where a se-
quence of CUSUM statistics, calculated from the first differences of the data in real-time
over the monitoring period, are compared against a theoretical crossing function (such that
the critical value becomes larger the further into the monitoring sequence one is). In a dif-
ferent approach, Astill et al. (2018) use a method based on comparing the maximum value
of statistics computed in the training sample and monitoring period. Both of these pro-
cedures are designed for the case where the innovations are unconditionally homoskedas-
tic and assume that no relevant covariates exist. To deal with the first issue, Astill et al.
(2023a) [AHLTZ] propose standardising the CUSUM statistics used in the HB procedure
by a nonparametric kernel-based spot variance estimator at each monitoring point. They
show that a monitoring procedure based on these standardised CUSUM statistics has a the-
oretically controlled FPR even where the innovations are unconditionally heteroskedastic.
As we will show, failure to account for relevant dynamic covariates in the data generating
process (DGP) can lead to spurious over-rejection in both the HB and AHLTZ procedures.

It seems eminently plausible that information additional to the asset price series under
test could usefully be deployed in bubble detection methods. Indeed, the literature suggests
several potential covariates that might aid in identifying periods of explosive behaviour. For
equities, dividend discount type models (Diba and Grossman, 1998; PSY) link prices to the
risk-free rate of interest, whilst the capital asset pricing model (Kim and Kim, 2016) can

embed time-varying volatility. Pricing equations for commodity spot prices (Tsvetanov et



al., 2016) indicate inventories (Kilian and Murphy, 2014) play a role. Finally, given bubble
behaviour in real estate may precede equity (Caballero et al., 2008) and commodity market
bubbles (Phillips and Yu, 2011), potential housing market covariates such as interest rates,
disposable income and mortgage finance (White, 2015) may be particularly useful.
Despite these considerations, the majority of contributions in the bubble testing liter-
ature, and all of those described above, are purely univariate, using information from the
price series under consideration alone. Two notable exceptions are Shi and Phillips (2023)
and Astill et al. (2023b) [ATKK]. In the context of detecting house price bubbles, Shi and
Phillips (2023) develop BSAD F-type statistics applied to the (cumulated) residuals from
a first-stage IVX regression (see, e.g., Kostakis et al., 2015) which filters out market fun-
damentals from an observed price-to-rent series, and use these in a monitoring procedure
based on the approach of Phillips and Shi (2020), discussed above. More relevant to the
present setting, ATKK adapt the covariate augmented Dickey-Fuller [CADF] unit root test
proposed by Hansen (1995) to develop versions of the historical bubble testing procedures
of PWY and PSY, allowing information from covariates to be exploited. Hansen (1995)
shows that the inclusion of relevant (stationary) covariates in the CADF regression reduces
the error variance relative to a univariate ADF regression and so can lead to more precise
estimation of the model. ATKK show that the resulting covariate augmented variants of
the PWY and PSY tests can in some cases display significantly higher power to detect his-
torical asset prices bubbles than their univariate counterparts from PWY and PSY.
Given the policy need for real-time monitoring procedures that can detect emerging
bubbles as rapidly as possible, the findings in ATKK suggest it is worth exploring if the
incorporation of additional information from covariates can both improve the efficacy of
real-time bubble monitoring procedures to detect emerging bubble episodes, while also de-
livering a controlled FPR under the null. Motivated by the CUSUM approach of Kramer,
Ploberger and Alt (1988) [KPA], developed for detecting structural changes in dynamic
models, we propose CUSUM type real-time monitoring statistics based on recursive resid-
uals from a regression of the first differences of the price series under test on relevant co-
variates. Like AHLTZ, we implement the procedures using a nonparametric kernel-based

spot variance estimator at each time point to allow for time-varying volatility in the inno-



vations. We also allow for serial correlation in the innovations, something also not allowed
under the assumptions in HB.

We demonstrate that the resulting CUSUM statistic retains the same (pivotal) limiting
distribution under the constant parameter unit root null as HB’s original CUSUM statistic
attains under the regularity conditions in their paper. Consequently, a covariate augmented
monitoring procedure with a theoretically controlled FPR can be constructed by appealing
to large sample results from Chu et al. (1996). Monte Carlo simulations show that for
a wide range of potential DGPs our proposed covariate augmented CUSUM monitoring
procedure, implemented using a standard BIC criterion to decide whether or not to include
a candidate covariate, performs well in practice. In particular, and unlike the univariate
CUSUM-based monitoring procedures, the finite sample FPRs of the covariate augmented
procedures are well controlled when a genuine covariate is present in the DGP. Moreover,
where the covariate enters the DGP, the true positive rate [TPR], defined as the cumulative
probability of detecting a bubble present in the monitoring period, is much superior to the
univariate procedures. Additionally, the impact on finite sample performance is very small
in the case where the candidate covariate does not enter the DGP.

The remainder of the paper is organised as follows. Section 2 outlines the DGP we
work with and the assumptions under which we will operate. Section 3 gives a brief
description of the standard CUSUM procedure of HB. Section 4 outlines our proposed
covariate augmented CUSUM monitoring procedure for covariates that are allowed to have
non-zero means and details its large sample behaviour. The results from our Monte Carlo
simulation study are reported in Section 5. Section 6 concludes. A supplementary appendix
details: the analogous procedure for the case where it is known that the covariates are mean
zero; proofs of the technical results given in the paper; additional simulation results, and

an empirical illustration using the dataset of Welch and Goyal (2008).

2 The Model and Assumptions
Let {y:} be generated according to the following data generating process [DGP],

Yy = Wt (1)
U1 + V¢ tzl,,LTTJ

w = (2)
(140w +vp t=1[7T]+1,...,|\T]
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where 1 < 7 < A\) A > 1 and |.| denotes the integer part of its argument. The initial

condition g is assumed to be of O,(1). Under (2), u; follows the time-varying AR(1) process
Aut:(stut_l—l—vt, tzl,,T,,LATJ (3)

where A := (1 — L) is the usual first difference operator in the lag operator, L. The AR
coeflicient ; can be seen to change from 0 to § > 0 at time ¢t = |77| + 1.

In the context of (1)-(2) we will be concerned with two sub-sample periods of the series
Y. The first of these is the period t = 1, ..., T, which will form the training sample in our
analysis, and the second is the period ¢t = T + 1,..., [\T'|, which will form the monitoring
period for our procedure. Our model imposes that y; follows a unit root process over the
training sample ¢t = 1, ..., T, while over the monitoring period y; again follows a unit root
process over the sub-period t = T + 1, ..., |7T'], but crucially is subject to potentially ex-
plosive behaviour in the period t = [7T] +1,..., [AT] if § > 0.! In total, at the end of the
monitoring period, there are | A\T'| observations. When 6 > 0, if 7 = 1 then the explosive
regime will begin at the start of the monitoring period. In the context of monitoring for
explosive autoregressive behaviour during the monitoring period, our implicit null hypoth-
esis is given by Hp : = 0, with the corresponding alternative hypothesis, H; : § > 0.

With respect to the error process, v;, in (2), we allow v; to be serially correlated,
heteroskedastic and (potentially) related to an (m x 1) vector of covariates, x;. In the same

spirit as Hansen (1995), we achieve this by assuming that v, satisfies Assumption 1.

Assumption 1. Let v; be generated by the pth order heteroskedastic autoregressive exoge-

nous [ARX (p)] process
O[(L)Ut = 6(L),[$t — CJJ] + Et, Et = O (4)

where az) :=1—>1_ a2, B(2) := S 1_, Bez", and where x; := (14, .., Tmy)' 18 an m-

vector of stochastic covariates with constant mean vector c,. Let the mean-centred vector of

IThe DGP in (1)-(2) does not consider the case where the explosive regime collapses before the moni-
toring period ends. It could be extended to allow either an instantaneous collapse (as in, e.g., PWY), or
a stationary collapse regime (as in, e.g., Harvey et al., 2016). However, when monitoring for an emerging
explosive regime in real-time, the nature of any post-explosive collapse has no bearing on the detection

properties of the monitoring procedure, so we specify a non-collapsing explosive regime for simplicity.



covariates be denoted wy == xy—cy =: (W1g, ..., Wnt)'. The innovations, n, form a sequence
of serially uncorrelated conditionally heteroskedastic innovations with mean zero and unit
(unconditional) variance, with o, a (deterministic) time-varying volatility function, such

that &; has time-varying unconditional variance, o?.

Remark 2.1. In (4), the lag polynomial (L) allows for, but does not require, lags of the
covariate z; to enter the DGP. Compared to Equation (5) of Hansen (1995,p.1150), 8(L),
however, excludes the possibility of leads of the covariate entering (4). This is a consequence
of the fact that our interest in this paper is on developing real-time monitoring procedures,
whereby lead variables would be unavailable to the practitioner; see also Remark 4.1 of

ATKK (p.347). Notice that the variables in z; are not relevant covariates if 3(L) =0. &

Remark 2.2. Following the bulk of the econometric bubble detection literature, we model
asset prices with the time-varying AR model in (1)-(2). As discussed in PWY and Breitung
and Kruse (2013), inter alia, this is often motivated as an approximation to the rational
bubble model where the observed asset price, y;, is equal to the sum of the fundamental
price, fi, of the asset, assumed to be a martingale (/(1)) process, and a bubble component,
By, which is zero other than in its bubble phase when it is a submartingale (explosive AR(1)
process). Under Assumption 1, the error term, v;, in (1)-(2) is related to a set of covariates.
This therefore entails the implicit assumption that the covariates would be related to both
f: and B; in the rational bubble model. It is, however, possible that a given covariate
could be related to only the error term driving one of these components. If this were the
bubble component then, as noted by a referee, we would not expect any power gains from

incorporating that covariate into the CUSUM bubble detection procedure. &

Under the null hypothesis Hy : 6 = 0, we have that Ay, = v, for the full sample period
t=1,...,|\T], and so from (4) we then have that

p q
Ayt = U + Z OékAyt_k -+ Z 5,/€It_k -+ Et, (5)
k=1 k=0
where p:= —>"]_, B¢, and where the first summation term is understood to be present

only when p > 0. Notice that the intercept term p = 0 if either ¢, = 0, such that



the covariates have mean zero, or (L) = 0, such that z; are not relevant covariates.”
This is a heteroskedastic autoregressive model in Ay, augmented by the level and (up
to) ¢ lags of the m covariates. Defining g, := (1, Ay;—1,..., Ays—p, v}, 7} 4, ..., 7;_,)" and

@ = (1,0, By, By, -+ -5 B)', the null model (5) can be written more compactly as
Ay, =g +om, t=1,...,T,...,|\T| (6)

For the subsequent analysis, we need to formalise our assumptions on the covariates,
xt, and the other elements comprising (4). These are now stated in Assumption 2, with

some discussion of these conditions then given in Remarks 2.3-2.8.

Assumption 2. Let the {(n;, w;)} sequence be defined on a complete probability space, and

denote the natural filtration generated by the random vector sequence {(n;, wii1)} by {Fi}.
Assume that:

(a) Fort = 1,....T,...,|\T|, oo = o(t/T) where the function o(-) is non-stochastic,

has support [0, ], is differentiable, is uniformly bounded by a constant M, and is

such that o(.) > €*, for some € > 0. Furthermore, the derivative of o(-) is Lipschitz

continuous over (0, \).

(b) Let n, be a martingale difference sequence [MDS] with respect to the filtration J,
with conditional variance hy :== E(n?|Fi_1) > 0 satisfying the condition that E(h;) =
plim(1/|TA]) 375 by = 1.

T—o00

(c) {m} is a strong mizing process with mizing coefficients of size —r/(r — 2), for some
r> 2, and E|n*" < oc.
(d) a(z) # 0 for all |z] < 1.

s=1

plim(1/|Tx]) S g.9./0% = Jim (1/[Tw)) B(CLY 9,90/02) = ©(k), where O(x)

is a positive definite matriz with all elements finite and continuous in k. Furthermore,

(¢) For all 0 < r < X: plim(1/|Tx]) S5 g.g. is positive definite with finite elements;
T—o0

we assume that the covariances between hy and g, and between hy and g,g; are zero,

forallt=1,...,T,...,|\T].

2The constant term in (5) entails that statistics based on the residuals from estimating this model will

be exact invariant to a non-zero mean, should it be present, in Ay;, and hence to a linear trend in y;.



(f) The vector w, satisfies lim sup ﬁ Zt@ E||w]|?*° < o0, for some d > 0, where || - ||
T—o0

denotes the Euclidean norm.

Remark 2.3. The monitoring procedure of HB assumes v; is homoskedastic, while ATKK
allow for conditional heteroskedasticity, but impose unconditional homoskedasticity, in the
context of their covariate augmented PSY and PWY tests. These assumptions are arguably
rather strong given that time-varying volatility appears to be a common feature in many
financial time series. For example, many empirical studies report strong evidence of struc-
tural breaks in the unconditional variance of asset returns; see, among others, McMillan and
Wohar (2011), Calvo-Gonzalez et al. (2010), and Vivian and Wohar (2012). To allow for
such features, Assumption 2(a), which coincides with Assumption 2 of AHLTZ, specifies the
unconditional volatility function of the regression errors, oy, to have a flexible nonparamet-
ric structure which allows for, inter alia, smooth transition breaks in volatility and trending
volatility. The case of constant volatility, where o; = o, for all ¢, also satisfies Assumption
2(a) with o(s) = o, for all s € [0, A]. Although discrete jumps in volatility are not formally
allowed under Assumption 2(a), this is not restrictive in practice because one can always

approximate discontinuities in o(-) arbitrarily well using smooth transition functions.” <

Remark 2.4. Assumption 2(b) specifies that 7, is a conditionally heteroskedastic MDS.
Allowing for conditional heteroskedasticity is desirable with financial data and, hence,
this represents an important relaxation of the conditions required by AHLTZ who impose
conditional homoskedasticity on their equivalent of n; in their Assumption 1. The MDS
condition in Assumption 2(b) implies that the exogeneity condition E(g;n;) = 0 holds.
Assumption 2(c) additionally imposes that 7, is strong mixing. This assumption is made
because we need to restrict the amount of dependence in {n? — 1} (this process no longer
being a MDS when conditional heteroskedasticity is present in ;) for the purposes of
estimating the unconditional volatility function, oy; see, for example, Lemma A.3 in the
appendix. The final condition in Assumption 2(e) rules out any correlation between the

regressors in (6), g;, and the conditional variance of 7, and also rules out correlation between

3Under Assumption 2(a), oy depends on T, and as such {y;} formally constitutes a triangular array
of the type {yr: : ¢t = 0,1,...|A\T];T = 0,1,...}. However, because the triangular array notation is not

essential, the subscript T' will be suppressed in our exposition.



the elements of the design matrix ¢;¢g; and the conditional variance of n;. Where 7, is
conditionally homoskedastic, this condition is rendered redundant. Moreover, this condition
is also not needed in the case where an intercept term is not included in (5); see section

A.1 of the supplementary appendix. &

Remark 2.5. Assumption 2(d) rules out the presence of unit or explosive autoregressive
roots in Ay, under the null hypothesis. Assumption 2(e) allows the covariance matrix of
the covariates to display very general patterns of time-variation. This condition is weaker
than the conditions placed on o, under Assumption 2(a) because any heteroskedasticity
arising from the covariates does not show up in the limiting null distribution of the CUSUM
statistics that our monitoring procedure is based on and, hence, does not need to be
estimated or corrected for. Notice that time-variation in the correlation between ¢; and

the covariates is also permitted. %

Remark 2.6. Under Assumptions 2(e) and 2(f) we can make use of the weak convergence
result established in Lemma A.10 in the supplementary appendix, which is an extension of
Lemma 3 of KPA to our context and plays an important role in the proof of our main results.
In Assumption 2(e), the condition that plim(1/|Tx]) ngJ g:g; is positive definite with
finite elements rules out the possibility ofTaz;omptotic collinearity between the regressors in
g:. Taken together with the exogeneity condition implied by Assumption 2(b), this ensures
least squares [LS] estimation of ¢ in Lemma A.1 is consistent under the null hypothesis,
Hy : 0 = 0. Likewise, the analogous condition on ;T)lim(l /| Tk]) Ztng gig;/c? is required
—00

in the context of weighted least squares [WLS]| estimation of ¢; see Lemma A.6. &

Remark 2.7. An analogous moment condition to Assumption 2(f) is imposed for all the
covariates (and the error terms) in KPA; notice that we do not need to directly impose
this condition on the lagged differences Ay;_r, kK = 1,...,p, in our regression model in
(6), because Assumption 2(c) implies that the lagged differences will satisfy an equivalent
moment condition, which is stronger than Assumption 2(f). The stronger moment condition
in Assumption 2(c) is needed for the proof of Lemma A.3 in the appendix, which is required

in connection with estimation of the (unknown) variance function, o?. &



Remark 2.8. Our specification for the covariates is more general than is imposed by
KPA, who impose a global homoskedasticity assumption, or by Hansen (1995), Chang et
al. (2017) [CSS] and ATKK in the context of their covariate unit root testing methods.
For example, the (covariance) stationarity assumption required to hold on the covariates
by Hansen (1995) is not imposed by our assumptions as we allow for unconditional het-
eroskedasticity. Moreover, a version of the unconditionally homoskedastic finite-order sta-
tionary vector autoregressive model specified for the covariates in CSS and ATKK, gener-
alised to allow for the possibility of unconditional heteroskedasticity, is also permitted un-
der our assumptions. The assumption made in Hansen (1995), CSS and ATKK that the co-
variates are weakly dependent is not required for our analysis, albeit the strength of depen-
dence allowed is restricted by Assumption 2(e) which, for example, rules out covariates with
(near-) unit roots. As argued in Hansen (1995), in many cases the first differences of rele-

vant financial and/or macroeconomic time series will be natural covariates to consider.

3 CUSUM-based Bubble Detection Procedures

Under the assumption that v; in (2) is a mean zero, serially uncorrelated and condition-

2 and for a training sample t =

ally homoskedastic process with unconditional variance o
1,...,T, asin (1)-(2), HB propose testing for explosive behaviour in the monitoring period
using the CUSUM statistic:
t
1
Sto= — Ay, 7
T 5, Z Yj (7)

j=T+1

where ¢ > T is the monitoring observation. In (7), 57 is an estimate of 0 which is consistent
under Hy; HB use 67 := (t—1)7! Z;ZQ (Ay,)?. If SL is computed sequentially at dates t =
T+1,...,|A\T|, then under the null hypothesis, Hy, of no explosive behaviour, as T' — oo,

728 S Wiy - W), 1<r<a (8)

where “=" denotes weak convergence of the associated probability measures, and where
W () is used generically to denote a standard Brownian motion defined on the interval [0, A].

Using Theorem 3.4 of Chu et al. (1996), HB show that under Hj, the result in (8)
implies that, for any A > 1,

Tlim Pr <|Sl}| > ¢\t for some t € {T +1,..., |\T| }) < exp (—ba/2) 9)

10



where ¢; = \/m . The CUSUM monitoring procedure proposed in HB then
rejects Hy if St > ¢,\/t for some t > T, with an explosive episode signalled at the first time
point ¢ in the monitoring period for which such an exceedance occurs.® For such a (one-
sided upper tail) test the appropriate asymptotic setting for b, used to compute ¢; that
would deliver size of at most aw = 0.05 would be b, = 4.6 (as this value of b, would deliver
a two-sided test with size at most o = 0.10 from the result in (9)).”

Astill et al. (2018) show that the procedure based on S% does not have a controlled FPR,
even in large samples, in the case where v; = o,¢; with the volatility function, o, displaying
time-variation of the form specified by Assumption 2(a) and ¢, a MDS with unit conditional
variance. Based on this, AHLTZ replace S} with the modified CUSUM statistic,

t
SV} =

J=T+1

t>1T (10)
Uj,N

where 67 v is a kernel smoothing estimator for the spot variance o3 := (j/T), defined,

for j > N +1, as

6%y ':ik (Ay,_)*, with Fk,:= K& (11)
N - s J—s) > El s
! s=0 Zi\;OK (N)

where the kernel function, K(-), and bandwidth, N, satisfy the conditions stated in As-
sumption 3, below. AHLTZ establish that the CUSUM monitoring procedure based on
SVZ is able to control the FPR when v; exhibits time varying volatility of the form spec-
ified in Assumption 2(a), while retaining power close to the standard CUSUM procedure

of HB when the innovations are homoskedastic.

4Notice that the upper tail decision rule implies that the CUSUM procedure is designed to pick up
positive asset price bubbles, but will not reject against negative price bubbles. A version of the procedure
designed to detect the latter could be developed by using the corresponding lower tail decision rule, while

a detection procedure for either type of bubble would use the corresponding two tail decision rule.
5 These asymptotic settings for b, assume a monitoring period of infinite length, and monitoring proce-

dures based on these settings for b, can be extremely conservative in practice, particularly during the early
stages of the monitoring period. HB, therefore, provide finite sample settings in their paper (Table 8, p221),
reporting values of b, that deliver a monitoring procedure with an expected FPR of « € {0.10,0.05,0.01}
by the end of the monitoring period for various lengths of the training and monitoring period, assuming

the series y; is an exact unit root process driven by NIID(0,1) innovations.
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Henceforth, we will refer to a monitoring procedure based on the Sk statistic as the
(standard) CUSUM monitoring procedure and that based on the SV} statistic as the
CUSUMY monitoring procedure.

The validity of both CUSUM and CUSUMY relies on the assumption that Ay, is serially
uncorrelated under Hy. This assumption is obviously violated if v; is generated by (4) with
p > 0, but is also, in general, violated (even if p = 0) when (L) # 0 if, for example, either
the covariates, z;, are serially correlated, or ¢ > 0, or both. The large sample results in (8)
and (9) will not hold for S% or SV} in such cases. Consequently implementing CUSUM and
CUSUMY using the critical values from HB would result in monitoring procedures where the
(theoretical) FPR would not be at the level expected by the practitioner. We next develop
covariate augmented analogues of the CUSUM and CUSUM" procedures which account
for the influence of the covariates x;, as well as any serial correlation arising from a(L).
These will be shown to retain the large sample results in (8) and (9). Later, in section 5,
we will use Monte Carlo simulation to investigate the degree of spurious detections suffered
by the univariate procedures when covariates are present in the DGP, and show that these

are well controlled by the covariate augmented procedures.

4 A Covariate Augmented CUSUM Monitoring Procedure

CUSUM tests for structural change in the parameters of homoskedastic weakly dependent
dynamic regression models have been developed in KPA who base their approach on a
statistic constructed from a standardised cumulated sum of recursive LS residuals. We
will adapt this approach to our setting to develop a real-time bubble monitoring procedure
which has a theoretically controlled FPR when v, is generated according to (4). We discuss
the construction of the CUSUM monitoring statistic by first considering the infeasible case
where the volatility function, o;, is known, and then discuss the feasible version of this,
based on nonparametric estimation of o;.

A key difference between our setting and that considered in KPA is that we allow for
the presence of heteroskedasticity in both the covariates, z;, and in disturbances, &;, in
the null regression (5), of the form specified in Assumption 2. Except in the special case
where the intercept term is excluded from the null regression (recall that this may be done

where the covariates all have mean zero), which is discussed separately in Section A.1 of
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the supplementary appendix, the presence of unconditional heteroskedasticity necessitates
constructing the CUSUM monitoring statistics from recursive WLS residuals, rather than
the conventional recursive LS residuals which suffice under unconditional homoskedasticity.
It is also worth clarifying at this point that the methods outlined in this section apply
provided that the vector of regression variables, g;, in the null regression model, (6), contains
at least one element (even if this is just an intercept term). Where this is not the case, no
regression estimation is needed and the appropriate monitoring procedure is that given in
section 2.2 of AHLTZ.

Our proposed CUSUM monitoring statistic is based on recursive WLS estimation of the
(null) regression in (6), which contains 1 + p + (¢ + 1)m regressors. To that end, consider

the infeasible WLS transformation of (6), based on the true volatility function oy, given by

A
SV I =1, T,... |\T]. (12)

Ot Ot
The (infeasible) WLS estimator for ¢ at time ¢ in the monitoring sample from this regression

is then given by

-1
t t

W 99 9iAy;
th = Z 5 Z — 5 y t:T—i-l,,L)\TJ

) g5 ) g5
j=max(p+2,q+1) 7 j=max(p+2,q+1) 7

with the associated (infeasible) recursive residuals based on the WLS estimate defined as
e}f/v = Ayt - (SOKI)IQI‘J t=T+ 17"'7 L)‘TJ (13>

It is established in the proof of Theorem 1 that, under the null hypothesis, the associated
infeasible sequence of CUSUM statistics SWME = Z;.:TH ef Joj, t =T +1,.., AT},
satisfies T-V/2SWME™ = W(r) = W(1), 1 < r < A, where it is recalled that W(-)
generically denotes a standard Brownian motion on [0, A], such that we recover the usual
limiting distribution in (8).

To obtain a feasible version of SW M/, we need to replace o; by a nonparametric es-
timate thereof. Nonparametric estimation of the variance function in time series models
has been considered by, among others, Xu and Phillips (2008), Cavaliere et al. (2017) and

Harvey et al. (2019), whereby a nonparametric kernel smoothing estimation procedure

is applied to the squares of regression residuals from the model at hand. In the present
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real-time monitoring setting, however, nonparametric estimation of the variance function
is nonstandard in two ways. First, because the monitoring takes place in real-time, only
data up to and including each time point in the monitoring period will be available to the
practitioner, and so as a consequence the smoothing is naturally performed using a one-
sided kernel. Second, because new data will continue to arrive in real-time as the moni-
toring proceeds, the vector of regression residuals needs to be updated at each successive
time point in the monitoring period.

As a consequence of the second issue discussed above, we will need to make use of the

double array of ordinary least squares [OLS] residuals from estimating (5), defined as:

fir =0y — (&) g, i=max(p+2,q+1),...,t, t=T+1,...,[\T] (14)

-1
t t

@t = Z gjg;' Z ngyj > t:T+17"'7 L)‘TJ (15>

j=max(p+2,g+1) j=max(p+2,qg+1)

Using the OLS residuals in (14), we can then define the sequence of nonparametric

variance estimators across times j = N + max(p + 1, q), ..., t, when standing at time ¢, as

= SR = e B (16
j: 7t T s j—S,t ) A N S )

5=0 ZS:OK (N)
in which k;, s = 0,..., N, is a sequence of weights, which are defined based on some

kernel function K(-) and a window size N, precise conditions on which will be given in
Assumption 3, below. Because of the unavailability of future data, this nonparametric
variance estimator uses a left-sided, truncated kernel. Only the N most recent observations
are used in the calculation of the estimator and the weights are not dependent on ¢.
Based on the nonparametric variance estimates in (16), we can then define the feasible

WLS estimator of o at time ¢ as,’

-1
t t

W 9;9; 9;Ay; 741 AT
Py = Z PO Z =, t=T+1,..., [ \T]

o 0%
j=N+max(p+1,q) Nt j=N4max(p+1,q) Nt

6The change in the lower summation indices, relative to )", arises because the calculation of @}V

requires variance estimates which can only be computed from j = N + max(p + 1, ¢) onwards.
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Defining the feasible WLS recursive residuals as
é}/v = ij - (@jﬂil)/gjv J=T+1..., L)‘TJ

a feasible version of the sequence of STWM? statistics can then defined as,

t AW
e
SWMVY = § — t=T+1,..,|A\T| (17)

We will denote the monitoring procedure based on the sequence of SWMV} t = T +
1,..., | \T], statistics as CUSUMWMV

In order to derive the asymptotic properties of the sequence of SW MV statistics, we
require the following conditions hold on the kernel function K(-) and the window size N.
These conditions coincide with those imposed by AHLTZ (p.194) in the context of their

SV statistic in (10), where a discussion of these conditions is provided.

Assumption 3. (a) K(-) is strictly positive and continuously differentiable over the in-
terval (0,1), with K(x) = 0 forz <0 andx > 1. Also, fol K(z)dz > 0, fol |K(z)|dz <
00, fol |K (2)z|dz < oo and the characteristic function ¢(t) = [°_exp(itx) K (z)dx of
K satisfies [*°_|6(t)|dt < co. K'(-), the derwative of the K(-) function, also has a

characteristic function that is absolutely integrable.

(b) N = 0o as T — oo, such that N/T — 0 and N3/%/T — co.

Remark 4.1. Implementation of SW MV}, requires choices to be made for both the kernel
and bandwidth used in constructing the nonparametric estimator 57 5, in (16). We found
that the choices for these recommended in AHLTZ also lead to good FPR control for the
procedures considered in this paper. Specifically, we therefore recommend implementation
with the truncated Gaussian kernel and where the bandwidth at each point ¢ in the moni-

toring period, denoted N;*, is chosen according to the automated rule:

t

cvx : * * 1 0 *
Ne = i OV ), O =k S @ (9

j=t—H+1

where, for j =t — H +1,...,t,

N

~2 2

Uj,N,t = st(f;—s,t) ’ ks =
s=0

2 (19)

2 5=0

N 2|

i)’
N
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The estimators of the spot variances, 0]2-, j=t—H+1,...,t, each computed at time ¢, defined
in (19) are needed to compute the time ¢ cross-validation objective function in (18). The
automated bandwidth rule minimises the estimation error of the spot variance over the most
recent H observations based on the OLS residuals computed using data up to and including
the current monitoring observation, ¢; cf. Hall and Schucany (1989). Implementation of
N7 in (18) requires a choice of H; we follow AHLTZ and set H = 20. These choices for

the kernel and bandwidth are used in all the numerical work in this paper. %

In Theorem 1, we establish the joint limiting null distribution of the sequence of feasible

covariate augmented SW MV} statistics from the monitoring period.

Theorem 1. Let the data be generated according to (1)-(4) under the null hypothesis Hy :
0 = 0. If Assumptions 1-3 hold, then, as T — oo, it follows that

T2SWMVE = wir) - w(1), 1<r<A (20)
Appealing to Theorem 3.4 of Chu et al. (1996), Theorem 1 implies the following:

Corollary 1. Under the conditions of Theorem 1,

lim Pr (ySWMthy > eVt for somet € {T +1, ..., LATJ}) <exp(—ba/2).  (21)

T—o00

Remark 4.2. Theorem 1 and Corollary 1 imply that when the innovations v; satisfy
Assumptions 1-2; both the limiting null distribution and crossing probabilities for the
covariate augmented CUSUM"MV procedure are unchanged relative to those given in (8)
and (9), respectively, for the original CUSUM procedure of HB in the case where v, is
conditionally homoskedastic and serially uncorrelated. Notice from (20) that the joint
limiting null distribution of the SW MV, ¢ > T, statistics does not depend on any nuisance
parameters arising from time-varying behaviour in the unconditional covariance matrix of
the covariates; cf. Remark 2.5. &

Next, we proceed to establish consistency results for our covariate-augmented CUSUMW MV

monitoring procedure. In Theorem 2 we establish consistency results for a class of mildly
explosive alternatives of the form § = ¢/T¢ with 0 < d < 2/3, for t > [7T'], and where c

is a positive constant, and for fixed alternatives, 6 = c¢. We will subsequently discuss the
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class of mildly explosive alternatives where 2/3 < d < 1 in Remark 4.3, and locally explo-

sive alternatives, where d = 1, in Remark 4.4.

Theorem 2. Let the data be generated according to (1)-(4) under the alternative hypothesis
Hy : 6 = ¢/T? fort > |7T|, with ¢ a positive constant and 0 < d < 2/3, and let
Assumptions 1-3 hold. It then holds that,

Tlim Pr <]SWMV7'§| > ¢Vt for somet € {|TT| +1,...,|\T| }) =1 (22)
—00

Remark 4.3. The result in Theorem 2 immediately implies that the CUSUM"M™Y proce-
dure is consistent against both fixed (d = 0) and mildly explosive (0 < d < 2/3) alternatives
of the form § = ¢/T%. In both these cases T¢ maintains a fixed relative relationship with
N. Recall that Assumption 3(b) imposes the condition that N3/2/T — oo, which implies
that N/T%? — oco. Consequently, when 0 < d < 2/3, T? diverges at a slower rate than N
and T¢ AN = T?. However, in cases where 2/3 < d < 1, such that the magnitude of the ex-
plosiveness parameter is very mild, this no longer holds and, as a result, SW MVZ. does not
necessarily diverge at a faster rate than the boundary function ¢;v/t. Essentially this issue
arises because the volatility estimates in (16) are constructed using the residuals from a re-
gression model which imposes the null hypothesis. Where the null is false, this model is mis-
specified and for 2/3 < d < 1 the volatility estimate diverges at such a rate that it prevents
CUSUM"WMV from necessarily diverging at a faster rate than the boundary function c;v/%;
see Lemma A.9 in the supplementary appendix. A possible solution to this is to employ a
truncated volatility estimator of the form, 6, n; - I(6,n; < CIn(T")) + Cln(T) - I(Gj n,; >
ClIn(T)), where C is a generic positive constant, such that ClIn(7") serves as a slowly vary-
ing truncation function. Under the null, the volatility estimator is consistent and the trun-
cation level In(7") approaches infinity, such that the truncation has no impact in the limit.
However, under the alternative the truncated volatility estimator is limited to diverge at a
rate no faster than In(7"), which is slower than any polynomial rate. By incorporating this
truncation mechanism, we conjecture that consistency would hold over a wider range of d

than 0 < d < 2/3. However, we leave a detailed treatment of this case for future research. {

Remark 4.4. In addition to the consistency results in Theorem 2, it is also instructive

to examine the behaviour of the monitoring procedure in the case of locally explosive
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alternatives of the form H., : § = ¢/T, for t > | 71|, where c is a positive constant. When
the volatility process is known, the asymptotic behaviour of the detector SW MV, can be
derived along the same line of argument as the proof of Theorem 1. In particular, in the

special case of a(L) =1 (i.e. when the fitted model has no lagged dependent variables),

Lo L L
= 2 o > e =
> v S +E D
ﬁ j=T+1 0.7 \/_ j=T+1 \/_ j=T+1 .7 T / ]':LTTJ‘F]- O—J

As in the proof of Theorem 1, the first two terms collectively weakly converge to W (r) —

W(1). By the FCLT and CMT, the third term satisfies =7 JL.ZIJTTHI “gl = c [T U(s)/o(s)ds,

where U(s) := [¢ e“*""o(u)dW (u). It therefore follows that the asymptotic distribution

under HC,T is given by W(T) —W(Q)+c [ U(s)/o(s)ds, from which the asymptotic prob-
ability of the CUSUM"MV procedure rejecting the null when a locally explosive episode
is present can be simulated. For general a(L), it can be shown in the same way that the
asymptotic distribution is given by W (r)— e [TU(s s)ds. Where the volatil-
ity is estimated, we anticipate the same limit will hold under HC’T in view of the results
given in Harvey et al. (2019) for the behaviour of the nonparametric variance estimator

considered in this paper under locally explosive DGPs. &

Remark 4.5. Thus far we have assumed that the parameters p and ¢ in (5), together with
the composition of the m-vector of true covariates, x;, are known. In practice, these aspects
will be unknown. However, under the maintained hypothesis of no bubble in the training
sample, the regression model in (5), for t = 1,..., 7, is an ARX model satisfying standard
regularity conditions, and so an application of a consistent information criterion [IC], such
as the well-known Bayesian IC [BIC], could be used to select these elements. The Monte
Carlo results in section 5 will implement applying the BIC to the training sample to select

p, ¢, and whether to include a given candidate covariate or not. &

We end this section with a word of caution. The CUSUM"MV procedure can, in
principle, reject for various forms of structural change in the null model that, while ruled
by our regularity conditions, might occur in practice. As such, a rejection by CUSUMWMV
does not necessarily imply the presence of a bubble episode. Indeed, this is precisely

our motivation for developing a procedure robust to structural changes in unconditional
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volatility. Another possibility is where a covariate used in the null regression displays
structural change, such as an explosive episode itself or a mean shift; simulations looking
at these cases are reported in Section 5.3. In practice, as with any statistical procedure, we
recommend practitioners investigate the plausibility of the regularity conditions underlying
CUSUMWMYV a5 part of their statistical analysis. This could, for example, include running
standard tests for explosivity and mean shifts in the covariates over the training sample
and then running analogous (univariate) CUSUM monitoring procedures in tandem on the

covariates, removing any covariate from the analysis for which either of these reject.

5 Monte Carlo Simulations

We report results of a Monte Carlo simulation exercise evaluating the finite sample perfor-
mance of the CUSUMWMY monitoring procedure. Additional results are reported in the

supplementary appendix and summarised in Section 5.3.
5.1 Simulation DGP and Experimental Settings

Data were generated according to (1)-(2), initialised at ug = 100 (so that bubbles in our
series are generally upwardly explosive and, hence, empirically relevant), setting u = 0
without loss of generality. We set T" = 219, so that monitoring begins at time t = 220,
and set monitoring to end at time A\T" = 255. Under the null § = 0, while under the
alternative we set 6 = 0.005, T = 220 and T = AT, such that y,; follows a unit root
process during the training sample, before switching to an explosive regime starting when
monitoring commences and continuing until the end of the monitoring period.

For the error term v; and the covariate z;, we use an unconditionally heteroskedastic

extension of the simulation DGP detailed in Section 5.1 on page 143 of CSS:

v = iy + By + ey, (23)

Tip1 = P+ Eay, (24)

with the covariate initialised at g = 0. The variance matrix of the innovation vector,

(€14,€24)’, was generated according to:

2
O1t O12¢

~NIID(0,%,), Sy:=] " (25)

2
€2t O12¢ Oz
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in which Jit, 0%775 are subject to smooth upward shifts in volatility of the form:
-1 i
o0 = 14+ (Va—1)[1+exp(—0(t—219)]", j=1,2 (26)

with @ = 0.25; that is, a logistic smooth transition in volatility from 1 to v/4 centred on

the end of the training sample. We report results for the following four cases for >;:

(a) 07, = 05, = 1 and 013 = 013, in each case for all ¢, such that £,; and ey, are

homoskedastic with a fixed correlation of oys.

(b) 01, and o9, both satisfy (26), while o124 = 012014024, such that the correlation
between €1, and e, remains fixed at oy for all ¢.

(c) O'it satisfies (26), oo, = 1, for all ¢, and o124 = 0120714, such that €, exhibits time

varying volatility, but with the correlation between €, and ey, fixed at o1s.

(d) of, satisfies (26), 0oy = 1, for all t, and 0154 = 012, such that e, exhibits time
varying volatility with the correlation between €, and e, time-varying through O’it.

We report rejection rates for the CUSUM"WMV procedure together with the standard
CUSUM procedure of HB and the CUSUM" procedure of AHLTZ. We also report results
for a procedure, denoted CUSUMY*, which is similar to the CUSUM"V procedure outlined
in Section A.1 but where the null regression is given by (5) but excluding the covariate
regressors and the intercept. The rationale behind including this procedure is that including
only lags of Ay, should yield a procedure that is able to deal with the serial correlation in
Ay, induced by the presence of the covariate (see the discussion at the end of Section 3),
but does not exploit any potential power gains available from including a relevant covariate
under the alternative. It should therefore provide an FPR controlled benchmark against
which to quantify the power gains (or losses) that arise from including the covariate terms.”
Following the discussion in Remark 4.5, in implementing the CUSUMY ™V procedure we
use the BIC to select the null model, based on OLS estimation and using only the training

sample data. The BIC is computed for (5), estimated using a common data sample ending

"Note that the null regression used for CUSUM"* does not contain an intercept as, when excluding
the covariates from the regression, an intercept is only needed if we wish to allow for a trend in y; under
the null. The statistic for this procedure is therefore computed as in Section A.l in the Supplementary

Appendix where WLS estimation is not required.
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at time 7', across all combinations of p and ¢, subject to the proviso that where p > 1
all of the regressors Ay;_1,..., Ay,_, are included in the estimated model, and similarly
for ¢ > 0 all of the regressors z;, x;_1, ..., 7;—, are included in the estimated model. The
maximum value allowed for p is set at pp.x = 4 and the maximum value for ¢ is set at
(max = 2. Based on the same set of sample observations, the BIC is also calculated for
a version of (5) where the intercept and covariate regressors are excluded, again setting
Pmax = 4, and with the same condition that for p > 1 all of the regressors Ay;_1, ..., Ay,
are included in the estimated model. In the case where p = 0 and no intercept or covariate
regressors are included then no regression is performed and so the BIC is given by In(6?),
with no penalty term, where 62 is computed using the sample observations on Ay,. If the
minimum value of the BIC across all of these candidate models corresponds to a model that
excludes the intercept and covariate regressors then the monitoring statistics underlying
the CUSUMYWMV procedure coincide with those used in the CUSUM"* procedure.® If
the model with p = 0 and no intercept or covariate regressors is selected, the monitoring
statistics underlying the CUSUM"MV procedure coincide with those used in the CUSUMY
procedure of AHLTZ.

In implementing the CUSUM"* procedure we also use the BIC applied to models esti-
mated by OLS to select the value of p in (5) (with the intercept and covariate regressors
excluded) based on the same set of sample observations from the training sample as are
used in the BIC procedure for CUSUM"MV outlined in the last paragraph, again setting
the maximum permitted value of p to ppnax = 4, and with the same condition that for p > 1
all of the regressors Ay;_1,..., Ay;—, are included in the estimated model.” If the model
with p = 0 is selected then the monitoring statistics underlying the CUSUM"* procedure
coincide with those underlying the CUSUM" procedure of AHLTZ.

8We find that in all scenarios where 3 # 0 the intercept and covariate regressors are selected for inclusion
in the CUSUMYWMV procedure in a vast majority of replications. Likewise, when 3 = 0, the intercept
and covariate regressors are excluded by the BIC in a vast majority of replications. In the homoskedastic
scenario, for instance, the intercept and covariate regressors are selected in 100% of replications when /3 # 0
and in only 1% of replications when 8 = 0. Additional simulations showed that this pattern is repeated in

cases where the bubble begins before the start of the monitoring period.
9We considered allowing a larger maximum value of 12 for p in the CUSUMY* procedure but found

that this made no noticeable difference to the resulting FPR or TPR.
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Following HB, all monitoring procedures use finite sample critical values; cf. footnote 5.
We select a value of b, such that the FPR is equal to 0.10 by time ¢ = 241 when y, is a pure
unit root process driven by NIID(0, 1) innovations and the covariate is an irrelevant white
noise process; i.e., f =p =a; = 0 and 015 = O,Jit,ag)t = 1, for all . For the standard
CUSUM procedure this value is b, = 0.1395, while for CUSUMY b, = 0.1679. The figures
plot, in the line denoted FPR;; 4., the FPR of the CUSUM procedure that would obtain
in this baseline case under the null when the innovations are homoskedastic. CUSUMWMV

and CUSUMVY* use the same value of b, as CUSUM" .
5.2 Discussion of Results

The first set of results relate to the case where y; admits a purely univariate DGP (i.e. ; is
not a relevant covariate); that is, where § = p = a3 = 0 and 15 = 0, for all ¢. Here, and in
any other cases where 015 = 0, we omit results for the volatility shift in scenario (d) as this
is identical to scenario (c) when 15 = 0. These results are reported in Figure 1, with panel
(a) pertaining to the baseline case where the innovations are homoskedastic.!” For each time
point e, T+ 1 < e < AT, the corresponding point on the curves in the figure represents the
empirical rejection rate of the particular procedure run from time ¢ = T+ 1 until time t = e.

In this baseline scenario where the covariate is irrelevant, as a point of comparison, we
also report results for the (pseudo) real-time monitoring procedures proposed by PWY and
PSY. The monitoring procedure of PWY is based on performing a full sample ADF test (al-
lowing for a deterministic constant) at each point in the monitoring period using all data up
to and including the current monitoring observation, and the monitoring procedure of PSY
is based on performing the BSADF test of PSY (again, allowing for a deterministic con-
stant) at each point in the monitoring period using all data up to and including the current

monitoring observation. The procedure of PWY compares the sequence of ADF statistics

0Here and in each of the remaining figures we also report the value of g for each simulation DGP in
the case where O’it = U%t =1, for all t. For scenarios where Jit and/or J%t are time varying, the value
of ¢* will also be time varying. Defining ¢; := Bz + 1,4, 0° is defined as the long run (zero frequency)
squared correlation between ¢; and 1+, with precise details on the calculation of this quantity for this
DGP provided in CSS (p.144). While Hansen (1995) and CSS show that the power of left-tailed unit root
tests are inversely related to the value of p?, ATKK show that this is not necessarily the case when testing

in the right-tail, and we observe that this is also the case for the CUSUM" ™V monitoring procedure.

22



with a fixed simulated critical value, with a rejection signalled if any ADF statistic in the
sequence exceeds this critical value. Likewise, the procedure of PSY compares the sequence
of BSADF statistics with a fixed simulated critical value, with a rejection signalled if any
BSADF statistic in the sequence exceeds this critical value. We also include an implemen-
tation of our CUSUMYMV procedure where we ignore the outcome of BIC model selection
and force inclusion of the covariate (denoted CUSUMYMV (Forced)). For both the PWY
and PSY procedures the fixed critical value is chosen such that the FPR of the procedure
is equal to 0.10 by time ¢t = 241 when y; is a pure unit root process driven by NI1D(0, 1)
innovations, thereby mirroring the calibration process for the CUSUM procedures.*!

We see from the results in Figure 1 that the BIC reduces the CUSUM"Y MY and CUSUMV*
procedures to the CUSUMY procedure in the vast majority of replications, and so the FPR
and TPR of these three procedures are almost indistinguishable; indeed, forcing this irrel-
evant covariate to always be included is also seen to have little effect on either the FPR or
TPR of CUSUMWMV " As also demonstrated in AHLTZ, the standard CUSUM procedure
exhibits severe FPR distortions when the innovations to y; exhibit a smooth shift in volatil-
ity. In contrast, the CUSUMY, CUSUMWMV and CUSUM"* procedures all control the
FPR well in such cases. This shows that, like the CUSUM" procedure of AHLTZ, our pre-
ferred CUSUM"MV procedure has far superior FPR control to the standard CUSUM pro-
cedure in the presence of time varying volatility in a univariate setting, while only showing
a modest TPR shortfall relative to the standard CUSUM procedure under the alternative
when 1, is a pure unit root process driven by homoskedastic innovations. While the FPR
of a monitoring procedure based on either the SADF or BSADF statistics is well con-
trolled for homoskedastic innovations, these procedures, like the standard CUSUM proce-
dure, suffer from very significant FPR distortions when the innovations exhibit time vary-
ing volatility. In the homoskedastic case, where a monitoring procedure based on SADF
or BSADF has controlled FPR, we also observe that the TPR of the BSADF and espe-
cially the SADF procedures lies well below that of the CUSUM based monitoring proce-
dures, other than where all of the procedures display very low TPRs. Due to the poor FPR

UFor the BSADF statistics, the minimum window size, 7o, was set to 0.01 + 1.8/1/%, as suggested in

PSY, and in all ADF statistics the lag order was set to the true value of zero.
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control and TPR properties they display in Figure 1 we will not consider monitoring pro-
cedures based on the SADF or BSADF test further in the remainder of our experiments.

We next examine the performance of the procedures for a DGP in which the covariate
is relevant but the error term v; in (23) admits no serial correlation. To that end, Figure
2 reports the FPR and TPR of the procedures for the CSS type DGP for v; and x; given
by (23)-(24) with p = 012 = a3 = 0 and 5 = 0.8 (corresponding results for 5 = 0.5 are
given in the supplementary appendix and are qualitatively similar). As v, is not serially
correlated the BIC selects p = 0 in the great majority of replications so that the FPR
and TPR curves for CUSUMY and CUSUM"* almost exactly coincide. Under the null, all
but the standard CUSUM procedure exhibit decent FPR control in the presence of shifts
in volatility. Under the alternative, CUSUM"M™V is seen to offer substantial power gains
relative to both the CUSUMY and CUSUM"* procedures.

We next explore the properties of the monitoring procedures for DGPs that allow both
vy and x; to be serially correlated. Figures 3-4 present the FPR and TPR of the procedures
for the CSS type DGP for v; and x; given by (23)-(24) where, following CSS, we set a; = 0.2
and 015 = 0.4. We report results for p = 0.8 and 5 € {—0.8,0.8}, with additional figures in
the supplementary appendix for the remaining combinations of § and p considered by CSS.

Across these figures, neither the standard CUSUM nor CUSUM" procedures exhibit
controlled FPR, with both of these procedures often displaying extreme FPR distortions
relative to the baseline case where v; is i.i.d. While the CUSUM"WMV and CUSUM"*
procedures do exhibit some slight FPR distortions relative to the case where v, is i.i.d.,
these FPR distortions are very modest in comparison to those exhibited by CUSUM and
CUSUMY. Within each figure, examining the FPR performance of the procedures across
panels (b)-(d) shows that the FPR performance of the CUSUMY™V procedure is broadly
similar in the cases where a shift in volatility occurs in €;, and where a shift in volatility
occurs in both €1 and €24, regardless of whether the correlation between these innovations
remains fixed or not. This is not true for the remaining procedures which have an FPR
profile that changes significantly across these three scenarios.

While we include the TPR of the standard CUSUM and CUSUM" procedures in the
figures we cannot compare these directly to the TPR of CUSUMYMV and CUSUM"* as the
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former two procedures display very significant FPR distortions under the null. Between the
two FPR controlled procedures, the TPR of CUSUM"MV ig consistently much higher than
that of CUSUMY* across scenarios, showing that while CUSUM"* is able to control the
FPR under the null by dealing with the serial correlation induced by the presence of the co-
variate, it is unable to exploit the information from the covariate under the alternative, un-

like CUSUMYWMV which displays impressive TPR properties across all scenarios considered.
5.3 Summary of Additional Results in the Supplementary Appendix

1. Results for the case where a volatility shift is present in only €5, are reported in Section
A.4.2. These highlight that the standard CUSUM procedure is unable to control the
FPR as the volatility shift in the unmodelled covariate manifests in the values of Ay,
used to construct the CUSUM statistics. The CUSUMY procedure is only able to
control FPR when no serial correlation is present in v;, and the FPR of the CUSUM"*
procedure, while better than that of CUSUM and CUSUMY , is also quite poor. However,
CUSUMWMV displays good FPR control in all of the scenarios considered.

2. Results for the case where z; is subject to measurement error are reported in Section
A.4.3. These suggest that while the TPR of the CUSUMYW™V procedure is reduced in
the presence of measurement error, increasingly so as the variance of the measurement

error increases, it remains superior to the TPR exhibited by the other procedures.

3. Results where a bubble in the training sample is present in z; are reported in Section
A.4.4. The CUSUMY procedure is unaffected, provided the bubble terminates at least
H (the maximum bandwidth considered for the kernel variance estimator) periods be-
fore the start of monitoring. For CUSUM"MV and CUSUMY*, the residuals used in
constructing the CUSUM statistics use all of the available sample data. Where the co-
variate is irrelevant, the FPR and TPR of the CUSUM"MV and CUSUM"* procedures
are little altered, while a training sample bubble in a relevant covariate causes a slight
inflation of the FPR of the CUSUM"MV and CUSUMV* procedures. This could poten-

tially be obviated by truncation of the training sample.

4. Results for the case where an irrelevant (1) covariate, z;, is mistakenly used in the

CUSUMWMV procedure are reported in Section A.4.5. These show that including z,
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causes CUSUMWMV to exhibit a slightly inflated FPR and modestly lower TPR than
the correctly specified univariate tests. Reassuringly, the loss in TPR is modest and
is predicated on a practitioner failing to difference x; and then forcing the inclusion of
z; in the CUSUMYWMV procedure, as the BIC model selection we recommend for this

procedure determines x; to be irrelevant in the vast majority of cases.

. Results where an irrelevant covariate admits a bubble during the monitoring period are
reported in Section A.4.6. We consider the case where the covariate is initially either
1(0) or I(1) before switching to an explosive regime at the start of monitoring. Forcibly
including the covariate in the CUSUM"MV procedure leads to a slight inflation of the
FPR under the null and a modest decrease in the TPR under the alternative, with this
effect more pronounced where the covariate is initially 7(0). Analogous results for a
relevant covariate containing a bubble at the start of monitoring are reported in Section
A.4.7. These show a very slight increase in the FPR and no perceptible change in the

TPR, relative to the case where no bubble is present in the covariate.

. Results where a mean shift is present during the monitoring period in a utilised covariate
are reported in Section A.4.8. These suggest this is problematic only where the covariate
is relevant (8 # 0). A mean shift in a relevant covariate which is entered in first
differences, as will generally be the case with macro and financial variables (see Remark
2.8), also appears relatively benign. A mean shift in a series entered in levels is more
problematic causing a large increase in the FPR of CUSUMWMV " However, the approach
suggested at the end of Section 4 to simultaneously monitor the covariate for structural
change appears useful, in that under the no bubble null it rejects in the presence of the

mean shift with significantly higher frequency than does CUSUMWMV

. Results where a relevant but unobserved covariate, z;, is the input to an observed
local-to-unity process, z;, with local-to-unity parameter, ¢ > 0, but Az, (rather than
2 — (1 = %)z—1) is incorrectly used as the covariate are reported in Section A.4.9.
Relative to the correctly specified case where ¢ = 0, the FPR of CUSUMY"MV tends to
be slightly increased and the TPR slightly decreased, with these effects increasing in c.

These findings echo the results reported in Hansen (1995, pp.1159-1160) for covariate
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augmented unit root tests in this scenario. We note that Az; does not violate the

regularity conditions given in Assumption 2, regardless of the value of c.

6 Conclusions

We have developed a generalisation of the univariate CUSUM-based real-time bubble mon-
itoring procedure of HB which incorporates additional information from relevant covariates
and is also robust to unconditional heteroskedasticity and serial correlation in the distur-
bances. We have shown that the CUSUM statistics used in this procedure follow the same
limiting null distribution as those in HB, such that a monitoring procedure can be validly
based on the same large sample boundary function. Monte Carlo results were presented
showing that, in contrast to univariate procedures, our proposed procedure has a controlled
false positive rate where a relevant dynamic covariate enters the DGP. Moreover, where
an explosive episode occurs in the monitoring period, incorporating the covariate can yield

significant gains in finite sample detection efficacy, relative to univariate procedures.
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Figure 1: 8= p = 012 = a1 = 0 - Left Panel=FPR, Right Panel =TPR. (0> = 1.000)
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FPR (TPR) of the procedures; (b) The red dotted line corresponds to the case where the covariate is always

included in the null regression model (5) used in connection with the CUSUMY MV procedure.



Figure 2: 8= 0.8, p = 012 = a1 = 0 - Left Panel=FPR, Right Panel =TPR. (0 = 0.610)
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Figure 3: 8= 0.8, p= 0.8, 012 = 0.4, a; = 0.2 - Left Panel=FPR, Right Panel =TPR. (o? = 0.335)
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Figure 4: 8= —0.8, p = 0.8, 012 = 0.4, a1 = 0.2 - Left Panel=FPR, Right Panel =TPR. (0> = 0.026)
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Abstract

The contents of this supplementary appendix are as follows. Section A.1 outlines the
analogue of the covariate augmented CUSUM procedure proposed in Section 4 for
the case where it is known that all of the covariates have mean zero and the constant
term is accordingly omitted from the null regression. Section A.2 provides proofs of
the large sample results stated in Section 4 and Section A.1. Section A.3 reports the
results from a pseudo real-time empirical exercise comparing our covariate augmented
monitoring procedure with one which does not allow for covariate information, using
an updated version of the dataset of Welch and Goyal (2008). Section A.4 contains the

results of the additional Monte Carlo simulation experiments referred to in Section 5.



A.1 A Covariate Augmented CUSUM Monitoring Procedure -
No Constant Term

In the case where the covariates, x;, are known to have mean zero, such that ¢, = 0, so that
the constant term can be omitted from the null regression in (5), we have the simplified

null model,
p q
Ay, = Z apAy g, + Z Brwe_i, + €4, (A1)
k=1 k=0
where w; now coincides with x; and satisfies the conditions laid out in Assumption 1, and
where the first summation term is again understood to be present only when p > 0.
Defining 2; := (Ay—1, .- -, AYs—p, Wi, Wiy, ..,w;_,) and ¢ == (u, ..., o, By, By, - -, By),

the null model (A.1) can be written more compactly as
Ayt :¢/Zt+gt77t7 t = 1,...,T7..., |_)\TJ (A2)

Following KPA, our proposed CUSUM monitoring statistic is based on recursive esti-
mation of (A.2). However, in contrast to the SW MV statistics outlined in Section 4, these
can be estimated by OLS, rather than WLS, and still attain the large sample results in (8)
and (9); for further discussion on this point, see Remark A.1.7 below.

To that end, defining the recursive LS estimator for ¢ from (A.2) in the monitoring
period as

-1
t t

Gy = >z Y Ay |, t=T+1,...|AT]  (A3)

j=max(p+2,q+1) j=max(p+2,q+1)

the (null) recursive residuals in the monitoring period can then be defined as
e =Ny — &z, t=T+1,... |\T]. (A.4)

A key difference in the fitted null regression model compared to that discussed in Section
4 is that there is no constant term included in the regressors in z;.

Consider first the infeasible case where the volatility function, o;, is known. Here,
replacing Ay; in the CUSUM statistic of HB in (7) by the recursive null residual, e;, and
scaling by the known volatility, o;, we obtain the following (infeasible) covariate augmented

CUSUM statistic,

SWhi= S 2. 4T (A.5)
=11 7



In Theorem A.1 we next establish the limiting null distribution of the sequence of
infeasible covariate augmented CUSUM statistics, SWh, ¢ > T. In order to do so we need to
replace Assumption 2(e) on the regressors in the WLS regression, (5), with a corresponding
set of conditions on the OLS regression with the constant term omitted, (A.1). Analogously
to Assumption 2(e), this excludes the possibility of asymptotic collinearity between the
regressors in (A.1) and also needs to hold for us to be able to make use of the weak

convergence result in Lemma A.10.

Assumption A.1. For all 0 < k < A, it holds that plimT%oo(l/LT/fJ)ESLTTJ 252k =
limr,(1/|Tk]|) E (ZLT”J 2l) =: Z(k), and that plimg_, (1/|Tk]) tLTfJ zziothy =
limr o E(1/|Tk]) LT'f ziziothy =: Q(k), with Z(k) and (k) both positive definite ma-

trices with all elements finite and continuous in K.

Theorem A.l. Let the data be generated according to (1)-(4) under the null hypothesis
o : 0 = 0. If Assumptions 1-2, excluding Assumption 2(¢), and Assumption A.1 hold,

then, as T — oo, it follows that
T2sWwH = wir) —w@1), 1<r<Aa, (A.6)

where W (-) denotes a standard Brownian motion on [0, A].

As in the leading case considered in Section 4 where a constant is included in the null
regression, in order to develop a feasible version of this statistic we need to replace o; by
a nonparametric estimate thereof. The nonparametric estimator for the variance function

02(+) we use will be based on the double array of OLS residuals
fij = Ay — @iz, i=max(p+2,q+1),....5 j=T+1,... | T] (A7)

Using the OLS residuals in (A.7), we can then define the sequence of nonparametric

variance estimators across j =T + 1,..., | AT], when standing at time ¢, as
K (%)

= kof? ., kyi=m =N
Ti Z I YK (%)

where kg, s =0, ..., N, is a sequence of weights, for the kernel function K (-) and a window

(A.8)

size N. An important difference, compared to the methods outlined in Section 4, is that
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only the 6327 w,; are needed for constructing the monitoring statistic. This is because recursive
LS residuals, rather than recursive WLS residuals, are used in (A.5). We will therefore
use the simplified notation 6%y := 67y, for j = T'+ 1,...,|AT], in what follows. As
in the main text, due to the unavailability of future data, this nonparametric variance
estimator also uses a left-sided, truncated kernel. Only the N most recent observations are
used in the calculation of the estimator and the weights are not dependent on t. Notice
also that for practical implementation we require that N < T — max(p + 1, ¢), such that
GFyin - 76f>\TJ,N can be computed.

Based on (A.8), a feasible version of the covariate augmented CUSUM statistic in (A.5)
can then be defined as
€j

A Y

94,N

SWV% =

j=T+1

t>T. (A.9)

In what follows, we will denote a monitoring procedure based on the sequence of SWV/,

t =T +1,..|\T], statistics as CUSUM"V.

Remark A.1.1. Notice that in the definition of SWVZ, the recursive residuals {e;}’_,,
are used in the numerator of the statistic, while the double array of OLS residuals {f;;}

for max(p + 2,9+ 1) < i < j are used for estimating ¢; ; in the denominator. &

In Theorem A.2, we establish the joint limiting null distribution of the sequence of
feasible covariate augmented SWV/ statistics from the monitoring period. This is shown

to coincide with the result given for the known volatility case in (A.6).

Theorem A.2. Let the data be generated according to (1)-(4) under the null hypothesis
Hy : 0 = 0. If Assumptions 1-3, excluding Assumption 2(e), and Assumption A.1 hold,

then, as T'— oo, it follows that
T2SWVE = W(r) - W(l), 1<r<A (A.10)

Remark A.1.2. Notice from Theorem A.2, that the joint limiting null distribution of the
SWVE t > T, statistics does not depend on any nuisance parameters arising from time-

varying behaviour in the unconditional covariance matrix of the covariates; cf. Remark 2.5.

&
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Appealing to Theorem 3.4 of Chu et al. (1996), the result in Theorem A.2 implies the

following corollary,
Corollary A.1. Under the conditions of Theorem A.2,

Tlim Pr (|SWV7§\ > ¢Vt for somet € {T +1,..., |\T| }) < exp(—b,/2). (A.11)

In Theorem A.3 we establish a similar consistency result as in Theorem 2 that the

covariate augmented CUSUMWYV

monitoring procedure is also consistent when a bubble is
present in the monitoring period, rejecting the false null of no explosivity with probability

one in the limit.

Theorem A.3. Let the data be generated according to (1)-(4) under the alternative hypoth-
esis Hy : 0 > 0, and let Assumptions 1-3 and Assumption A.1 hold, excluding Assumption
2(e). It holds that,

Tlim Pr (\SWV}] > ¢Vt for somet € {|7T| +1,...,|\T| }) =1 (A.12)
—00

Remark A.1.3. The results in Theorem A.2, Corollary A.1 and Theorem A.3 imply that,
where the covariates have mean zero and the constant term is correspondingly omitted

from the null regression, the large sample properties of the CUSUM"YV procedure coincide

with those given for the CUSUMYWMY procedure in Section 4. &

Remark A.1.4. As in Remark 4.4, it is also instructive to examine the behaviour of the
monitoring procedure under locally explosive alternatives of the form H,., : dr = ¢/T,
for t > |[7T], where ¢ is a positive constant. When the volatility process is known, the
asymptotic behaviour of the detector SW V. can be derived along the same line of argument

as the proof of Theorem A.1. In particular, when «a(L) = 1,

Z j i— j j
VT j=1+1 % VT J=T+1 T J=T+1 o7 i j=1rT]+1 73

As in the proof of Theorem A.1, the first term converges weakly to W(r) — W(1). The

second term can be shown to be of 0,(1). By the FCLT and CMT, the third term

Tr| U

: c L
satisfies 75 > 5174 o

= ¢ [l e )W (s)ds. For general a(L), it can be shown in
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the same way that the asymptotic distribution under H,., is given by W(r) — W(1) +
a(l)e f: "=/ (s)ds, from which the asymptotic probability of the CUSUM"WMV proce-
dure rejecting the null of no explosivity when a locally explosive episode is present can eas-
ily be computed by numerical simulation. Where the volatility is estimated, we conjecture
the same limit will hold under H,, in view of the results given in Harvey et al. (2019) for
the behaviour of the non-parametric variance estimator considered in this paper under lo-

cally explosive DGPs. O

Remark A.1.5. To implement SWV} we again recommend the use of the kernel and

bandwidth selection criteria and choice of the tuning parameter H, outlined in Remark

4.1, &

Remark A.1.6. The tests developed in this section, which omit a constant term from the
null regression, do not require the use of recursive WLS residuals. However, the numera-
tor of the CUSUM statistics developed in this Section could alternatively be constructed
from the analogous recursive WLS residuals, obtained from (12) but with the constant
term omitted, without altering the large sample results given in Theorem A.1, Theorem
A.2, Corollary A.1 and Theorem A.3, provided a condition analogous to Assumption 2(e),

omitting the constant term from g;, held. %

Remark A.1.7. As Remark A.1.6 above notes, the procedures considered in this section,
which omit a constant term from the null regression (in the case where it is known that the
covariates have mean zero), can be based on CUSUM statistics formed either from recursive
LS residuals or recursive WLS residuals, without altering their large sample properties.
This is not the case, however, for the statistics considered in Section 4, where a constant
term is included in the null regression. In this latter case, it can be shown that if recursive
LS residuals were used then, except in the special case where o(s) = o, for all s € [0, ], the
resulting sequence of CUSUM statistics would not retain the nuisance parameter free null
limiting distribution which appears in (8). The reason for this can be seen in the proof of
Theorem 1 (see, in particular, the discussion after (A.25)) where it is shown that the limiting
distribution of the CUSUM process formed from recursive LS residuals weakly converges

to the difference between a standard Brownian motion process and an integral functional

Ab



of a vector Gaussian process, both of which are of O,(1). It is only where recursive WLS
residuals are used that the variance of the integral functional cancels exactly with its
covariance with the Brownian motion term, implying that the difference between these two
terms is a standard Brownian motion; see the proof of Theorem 1. As such, the claim made
in Remark 10 on pages 195-196 of AHLTZ, that the limiting null distribution of CUSUM
statistics which correct for the possibility of a non-zero mean in Ay, based on recursive
LS residuals will still obtain the limiting null distributional result given in (8), is incorrect
except in the special case where o(s) = o, for all s € [0, A]. As with the procedures detailed

in Section 4, recursive WLS residuals are required for this large sample result to hold. <

Remark A.1.8. If it were known that the unconditional volatility function o, = 0 < o0,
forallt =1,..,T, ..., |\T], then one could consider a covariate augmented monitoring pro-
cedure based on a simplified version of the SW VL statistic, given by &; ' Z;.:T 41 €5 where
67 = (t—max(p+1,¢q))~" Z;:max(p-i-Q,q—i—l) f7: Under this restriction, it can be shown that
the limit distribution of this statistic is identical to that given in Theorem A.2. In the

constant unconditional volatility case one could also consider a simplified version of the

SW MV statistic given by &, * S e* where 67 := (t—max(p+1,q))"' 3" fi

7t ’

j=T+1"~j j=max(p+2,q+1)

and where €} := Ay; — @), g; are recursive residuals, with ¢;_; the OLS estimator at time
j — 1 from (15). The constancy of the volatility function means that the WLS transforma-
tion is no longer needed, so that the numerator of this statistic can be based on the recur-
sive residuals €} rather than é}’V. In this case the limiting null distribution of this statistic
is identical to that given in Theorem 1. Neither of these results, however, require the co-

variates to be homoskedastic. &

Remark A.1.9. The limiting results given in this section are based on the assumption
that the covariates, x;, are all mean zero. If that were not the case, then the limiting
null distribution of the sequence of SWV}, ¢ =T + 1,...|\T|, statistics would depend on
nuisance parameters arising from c¢,, the (non-zero) mean of z;. As a consequence, the
resulting CUSUM"V procedure would not have a controlled FPR under the null. The
safe strategy is therefore to use the CUSUMWMV procedure, rather than the CUSUM"YV
procedure, because in practice it would be unknown whether the covariates are all mean

zero or not. To investigate what, if any, loss in finite sample performance is seen when using

A6
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CUSUM"WMYV rather than CUSUM"Y | we repeated the simulation experiments reported in
Section 5, where the covariates are all mean zero. These results show that the FPR control
of the CUSUM"YV procedure is marginally better (that is, slightly closer to the i.i.d.-based
FPR) than that of the CUSUMWMY procedure, while the TPR of the two procedures is
broadly similar. The safe strategy of using CUSUMWMV therefore appears to be relatively

costless. &

A.2 Proofs of Theorems

Throughout this section, unless otherwise stated, we use max; or max; as shorthand nota-
tion for maxyy1<i< a7 O MaXy41<j< A7), respectively. We also denote by (02)'(+) the deriva-
tive of o2(+). Denote the space of cadlag functions defined over the interval [0, A] by D0, \],
and the space of continuous functions over the same interval by C[0, A]. Notice that, due
to the monitoring nature of our problem, we do not normalise the end point of the interval
to 1, but instead to the fixed value, A > 1. For positive constants a and b, min(a, b) takes
the smaller constant. For two sequences ar, by — 00,'ar A by’ denotes taking the sequence

with slower rate of divergence.

A.2.1 Preparatory Lemmata

In this section we begin by stating and proving some preparatory lemmata that will subse-
quently be required for the proofs of the large sample results stated in Section 4 and Sec-

tion A.1.

Lemma A.1. Let the conditions of Theorem 1 hold. Then, under Hy,

b — || = O,(T1/?),
oA l9: — |l = Op( )

Proof of Lemma A.1. Observe first that

t -1 t
. 1 , 1
max [[¢ — ¢l < max (; 'Elgjgj) (T E 19j€j>
J= J=

AT



Under Assumption 1, for the same reason as noted in Remark 2.6, for large 7', the minimum
eigenvalue of %Z;Zl 9;9;, which we denote by Awin, will be positive. Using a standard

matrix norm inequality! we then have that

1 t
max; |7 21 9;

-1
1 1 o

where C is a generic positive constant.

Next, we show that max, | 7 Z§:1 g;igj| = O,(T~Y2). To do so, observe that (1/T) Z;Zl i€

is a vector of martingales. Using the definition of the Euclidean norm for vectors, and de-

noting the kth element of g; as g;x, to show the claimed order result, it is sufficient to es-
2

tablish that max;, (% 22:1 gj’kgj) = O,(T™") for any k = 1, ..., K, which follows straight-

forwardly from Doob’s maximal inequality for martingales and the moment assumptions

imposed by Assumption 2. The stated order result is therefore established. ]

Lemma A.2. Let the conditions of Theorem 1 hold. Then, under Hy, we have that

[A\T'| [AT|

Dl =0,1) and Y Jell? = O,(T).
t=1 t=1

Proof of Lemma A.2. Consider the first result. Using the definition of the Euclidean norm,

AT
tL:1J Hgt

Assumption 2, observe that even if Ay, and w,; are nonstationary due to the presence of

|? is the sum of squares of each element of the vector z; all added together. Under
unconditional heteroskedasticity, this does not alter the order in probability of the sums of
their squares from the case where they are unconditionally homoskedastic, and so we can
apply the same approach as used in proving Lemma 3.1 (a) of Chang and Park (2002) (pp
442), to obtain that S (Ay,_1)? = O,(T) for k = 1,...,p and 21 w?, = O,(T),
fori=1,...,m;k =1,...,q. We therefore have that ZtLi? g:l|*> = O,(T). The second

result can be derived in a similar way. O]

IThat is, || M| < +/7||M||2, where r is the rank of M and ||M ||z is the 2-norm which is defined as the

~1
square root of the maximum eigenvalue of M, and apply it to the positive definite matrix (% 2311 gj g;) .
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Lemma A.3. If Assumptions 1-3 hold, then

max

Proof of Lemma A.3. The stated result can be proved using the same strategy as used
in the proof of Lemma Al of AHLTZ. The only difference relative to that case is that
(nj_, — 1) is no longer a martingale difference sequence. In our setting, it is a mix-
ing sequence satisfying Assumption 2(c). Establishing the stochastic orders of the terms
E(PM cos(th)o2(n? — 1))? and E(S 2T sin(t)o2(n? — 1))? will therefore need to be done
differently. For the first of these, notice first that:

AT ?

E Z cos(tl)af(nf — 1)
I=1

AT [AT]
= Z cos* ()l E(nf — 1) + 2 Z cos(tl) cos(tl'Yofon E(nf — 1)(np — 1).
=1 I>1=1

Then by the uniform boundedness of the volatility function and the existence of the
(2r)th moment of g, with » > 2, the first term can be seen to be of O(T). Because
of the mixing Assumption 2(c), the second term is also of O(T'). It therefore follows
that E(3 2T cos(t)o?(n2 — 1))2 = O(T). In similar fashion it can be established that
E(- P sin(t)o2(n? — 1))2 is also of O(T). The remainder of the proof then follows ex-
actly the same lines as the proof of Lemma A1l of AHLTZ. m

Next, in Lemma (A.4), we establish a uniform consistency result for the sequence of

nonparametric variance estimators, 5]2.7 nopacross T+1 <7<t for T+1<t< |AT].

Lemma A.4. Let the conditions of Theorem 1 hold. Then, under Hy : 6 =0, if T, N — o0
such that N/T — 0 and N?/T — oo, then for T +1 <t < [\T'],

52 — 02| =
m?XTfig@‘Uﬂ?N’t a;| = 0,(1).
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Proof of Lemma A.J. First, we have the decomposition

N
~2 2 _ ~ 2 2
OjNt — 05 = E ks(ijfs - thgjfs) — 0y
s=0

N N
= Z kso—?—s(n]?—s - 1) + (Z kSUJZ—S o U]2>
SZON N
) k(0= 00 95-5) +2 ) keimo((p — 1) g5-5)

s=0 s=0

=t A+ Agy + Az + Agy, (A.13)
where A; ;, Ay j, A3 ; and Ay ; are defined implicitly.
By Lemma A.3, we have that max; |4, ;| = 0,(1). In view of the proof of Lemma 1 in
AHLTZ, we have that max;|A, ;| is also of 0,(1). For A;; and A4;, as in the proof of
Lemma A(i) in Xu and Phillips (2008), we have that:

N N
m;.mz; k(9 = ¢1)'055)" < max [l — @u|* max komaxd lg;
s=

s=0
A7)
< max [l — &i|* max . ; lge]1”

= O,(T"HO(N™O(T) = Op(N71),
and

N
< max lo — &l Z ksllej—sgi-sl

N
mjax Z ksm‘—s((@ - @j—s—l)/gj—S)
s=0

_ s=0
N 12 , N 1/2
< msto— ot (30) (Steant)
s=0 s=0
N2 [T Y2
< max|lp — & (Zk3> Z lerge]|?
s=0 t=1

= Oy(T™2)O(NTV2)0,(TY?) = O)(N71?),

where in each case we have used the order results established in Lemma A.1 and Lemma

A.2. Taken together these results then establish the stated result. [
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Lemma A.5. Let the conditions of Theorem 1 hold. Then, under Hy: 6 =0, if T, N — o0
such that N/T — 0 and N*? )T — oo, then for T +1 <t < |\T],

~2 2 ~2 2\ _ -1
mtaXTﬂg?gt |(0-j71,N,t - O-jfl) - (Uj,N,t - Uj)| =0p(T7).

Proof of Lemma A.5. Again using the decomposition in (A.13), we have that
(67 1 ni=05 1) =07 ny=0)| = [(Arjo1—Ar )+ (Agj1— Az ) +(As jo1— A j)+(Asjo1— Auy)|.

Let us consider the terms on the right hand side of this equation in turn. For the first
term, similarly to the proof of Lemma 2 of AHLTZ we have that
S (K (%) = K (7)) of 0 — 1)

Sl K (%)
1YY, K)o, — 1)
N Sl K (%)
where we have used the fact that K(0) = K(1) = 0, together with an application of

Arj— Ay =

?

the mean value theorem. Then using the same strategy in analysing the mixing sequence
(77?_8 — 1) as used in the proof of Lemma A.3, coupled with the absolute integrability
assumption placed on the characteristic function of K’(-) under Assumption 3, we obtain
that max; |0 K'()0% (3, — 1)‘ =0, (\/N), and hence that max; |A; ; — Ay 1] =
Op(N=32) = 0,(1/T).

For the second term, in view of the proof of Lemma 2 in AHLTZ, it holds that max; |A; ; —
Az 1| = 0p(1/T).

Turning to the third term, we have that

N N
Agj—Asjor = Y k(o —¢0)'g5-0)" =D _ k(o — 1) gj-s1)?
s=0 s=0
N
= ) (ke — k1) (0 = 0)'gj-0)%,
s=1
and so it holds that
N
max [As; — Agj-1| < max|le— el® max [k — ks mjaXZO llgs—sl”

)
< max|lp — Gilf* max |k, - ks1|; lgell?

<s

= 0,(T™HO(N)0,(T)
— 0,(N?) =o,(T),

All



where we have used the order results established in Lemma A.1 and Lemma A.2 and the

fact that

s — s—1
max |ks — ks—1| = max K (sz K (%) = O(N™?),
1<s<N 1<s<N Yo K (%)

which is a simple consequence of the mean value theorem and Assumption 3.

Similarly, for the fourth term, we have that

N
Agj—=Arjr = 2 (ks —hke)((0 = &1)'g5-0)js

s=1
and so
N 1/2 /|t 1/2
max | Ay — As 1| < maxlp = g (Z(k - k)) > el
s= t=

= Op(T71/2)O(N73/2)Op(Tl/Q) = Op(N73/2) = Op(Til)a

in view of the fact that N*2/T — oo under Assumption 3(b).
Taken together these results therefore establish the stated result. O

Lemma A.6 gives the uniform rate of convergence for the infeasible WLS estimator.

Since the proof is the same as that of Lemma A.1, we omit the proof to avoid repetition.
Lemma A.6. Let the conditions of Theorem 1 hold. Then under Hy,

w _ —1/2
— |l =0, (T1/?).
i o — @l = Oy( )

Lemma A.7. Let the conditions of Theorem 1 hold. Then under Hy,
W W —1/2
T+112t1)i>\TJ 122 @ |l = op(T777),
Proof of Lemma A.7. Notice

e —¢) = (@) —9)— (e — )




Using the summation by parts formula

L Z 9i951; %zt: ngJZ'nj

]_1 th
i 2
_ 1 ( 9j )91771 _ Zgyaﬂb
~2
T =\ TN
2 t t 2 2 7j—1

o; L 9 7j Tj1 LS g

— —1] = == — — — — = :
(UZN,t > Tj; gj ; UJQ',N,t ]2'71,N,t T; 03

Notice that Lemma A.4 implies that
~2 2
mgix ‘O-t,N,t —0;] = 0p(1),

it follows that the above first term is o0,(1). Using the proof strategy in Theorem 1 of
AHLTZ, and the results of Lemma A.4 and Lemma A.5, the above second term is also
0p(1). Using again Lemma A.4 and that 4 77} % = O, (T~1/2), we have

Zfl g;
t
gJUJnJ 1 9394 ~1/2
— — = T = 0,(T7 7).
Zl 03N T; o3 b
Also notice that

1 < 99, g;om;
- 195 3755 J J _ -1/2
T2y, Z =0T,

1 IV,

1=

and using similar arguments and the results of Lemma A.4, we have

PR S S R AN
Jj9j 193] _
(Tzﬂm) _<TZ 02) = opll).
y ]77 y

The result stated in the lemma then follows. O

Lemma A.8. Let the conditions of Theorem 2 hold, and define 1y = 1+ ¢/T?,

(T AN)” ZK s/N)pr* = O(1),

Furthermore, the limit is strictly positive and nondegenerate to 0.
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Proof of Lemma A.S. We first note that the following proof is valid for all 0 < d < 1. By
Assumption 3, N%2/T — oo, which implies that N/T?/3 — oco. Therefore, if 0 < d < 2/3,
the rate 7% A N will be T¢ in the presentation of the lemma.

To prove the stated results, we first show that

N
> ¢r* =O(T* AN). (A.14)
s=0
Using the formula for geometric series, we have that
N AN+ _ 4
P =N Al5
SZ:(:) T T ¢% —1 ( )

and observe that

1/12(N+1)_ 1+£ 2(N+1)_ 1_|_i Twacx%
T B Td = T .

As T — oo, the limit of this will depend on the order of (N + 1)/T¢. We discuss three
different possibilities for this below:
(i) If N/T? = oo, izp(NH) — e>® = 00 S0 @Z)%(NH) —1= @/}%(NH)(l +0(1)), and (A.15)

becomes

N+l
¢T2N1 sz c +( (7 ()1)—) 1= YNy N1 4 o(1)) = O(TY).
Td

(i) If N/T?—0, w%(NH) — ¢ = 1, then using Taylor expansion,

c \ 2(N+1)
¢:2F(N+1) 1 = (1 4 ﬁ)

— <1+2(N+1)ﬁ+2(N+1)(2;J!V+1)_1> <i>2+---) -1

1+ o(1)).

- 2(N+1)Td(

It then follows that (A.15) becomes
N2(N +1)75(1+o(1))

o oy 1 = VT N (1) = O)

(o

where we have used the fact that w;zN — el =1

(iii) When N/T? — 4, where ¥ is a positive constant, ¢TN+1 — 2% then (A.15)

becomes
62019 _
6—2079

1+ azg +0(%)—1

—_

= O(T%).
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Taken together, the results in (i)-(iii) establish the stated result in (A.14).

We now turn to establishing the results stated in the lemma. Notice first that because K{(.)

is bounded, we have
N N
D K(s/N)p™ <CY v, (A.16)
s=0 s=0

where C is a generic positive constant, then the upper bound part of the result follows.
To see that this is also the lower bound, notice that because the kernel is positive over the
interval (0, 1), then there exists a closed interval [§,1 — §] for an arbitrarily small § > 0,

such that K(.) > go > 0, by Assumption 3. It then follows that
N N
> O K(s/Nwp™ > Y K(s/N)bp™I(6 < s/N < 1-0)
s=0 s=0

N
> ) I < 8/N <1-0)
s=0

N—ON

= Y Z U,

s=0N
Letting 0 — 0, it then follows straightforwardly that this term is positive and has the same
order as 32 . O

In the next lemma, we analyse the asymptotic behaviour of the volatility estimator un-
der explosive alternatives. The volatility estimator is constructed with the null hypothesis
imposed, by smoothing past squared residuals. When there is a structural change leading
to an explosive regime, the null model becomes misspecified, and the volatility estimator
may lose its consistency or even diverge. The next lemma is an intermediate result needed

in the proof of Theorem 2.

Lemma A.9. Under the conditions of Theorem 2, let &1 be a sequence such that ¢ /T — 0
and &r /N — o0, it holds that

T*N 1, —2(t—1—|7T|) ~
(Td/\N> T 11/}T (=l J)U?,N,t = Op<1>~

max
7T | +Er+1<t< | AT

Moreover, min |, | 4ep41<t<(| A7) | (%) T*1@/J;2(t_1_LTTJ)5§N7t| is, with probability 1, strictly

positive.
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Proof of Lemma A.9. Note again first that the result of the lemma and the proof are valid
for 0 < d < 1. When 0 < d < 2/3, the result of the lemma becomes

Td lN —2t1|_TTJ) —0.(1).
LTTJ-&-&?}&};KLATJ vr t,N,t p( )

Now we prove the lemma. We will first establish the result that

max [TV Ty = 0,(1). (A.17)

| 7T | +1<i< | AT
To that end, it is convenient to use the formulation in (3). First notice that u, = O,(v/T)

during the unit root regime (i.e. before the inception of the explosive regime). Now for

|7T| +1 <t < [AT], by repeated backward substitution, we have that

Z wT vj JULTTJ, (A.IS)

=|7T|+1
where u|,7| is the last observation in the unit root regime and serves as the initial condition

for the explosive regime. For the first term on the right hand side of (A.18), observe that

t

~(t-17T)) < T i,
ELTTJ i?gt}itkﬂ Urp Z %UT v] < Yr ELTTJ ﬁli}i ) Z | v,

J=7T]+1 j=|rT]+1
|AT]
= ¢TTTJE Z [ U]| =0(1),
j=|7T|+1

and, hence, it follows that max| 7 11<t<|a7) wT(t L) ‘Zj T |41 Yi7v;| = O,(1). Turning

to the second term, we have that

T | = fugery| = 0, (VT)

[T ]+1< <t< AT
The second term on the right hand side of (A.18) is therefore the dominant term and the
result in (A.17) is established.

We are now in a position to establish the results stated in the lemma. Defining 7 = ¢/T,
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when |77 +&r + 1 <t < | AT, we have that

N N
5-t27N7t = Z ksff—s,t = Z ks(Ayt—s - @tgt—s)z
s=0 s=0
N

- Z ks((STut—s—l + Vs — @tgt—s)z

s=0

N N N N
= 5% Z k;suffs,l + Z ksvf,s + Z /{:s(@tgt_s)2 + 201 Z kglp—s—1Vp—g
s=0 s=0 s=0 s=0

N N
+26T Z ksutfsfl(@tgtfs) + 2 Z ksvtfs(gatgtfs)

s=0 s=0
=: Di+ Dy+ D3+ Dy+ Ds + D,
where the D;, j =1, ...,6, terms are implicitly defined.
Let us consider the terms Dy, ..., Dg in turn. First, notice that D; satisfies

Tl 2t 1=1rT))
7T iy 3P AT V1 !

N —2s
52 max |T71¢;2(t_s_1_LTTJ)Uf,S,l| (Zs:%vK(S/N>¢T )
25:0 K(S/N)

T T | 4 erH1<t< | AT ] 0<s<N

- o((Fw)).

where we have used (A.17) and the result that Zivzo K(s/N)y7:* = O(TY A N) and

Zivzo K(s/N) = O(N). Next, notice that max | 1| e, +1<i<|a7] T‘lw;ﬂt*l*hT”Dg = 0,(1),
t—1-[rT))

N

because Dy is a weighted sum of O, (1) terms, and notice that both 7~ — 0 and w;Z( —

0 (because t — 1 — |71 > &r). Next, for Ds, observe that

Ly, -2(t-1-17T)
17T +5£rﬁ}ét< AT Vr 3

N

< —1,,=2(t=1=[7T])} + 2

- Ogag\fks LTTH&;II&EKLATJT Vr “%HX;HQFSH
S=

Notice that ||g;_s||* is the sum of the squares of each element of the g; s vector. The first
element of g;_, is 1, and the second element is Ay, 1, which is d7u; s o+v;_s 5. Using the
same strategy as was used above in analysing Dy, we know that this element’s contribution
cannot be larger than D;. Similarly the contribution of all of the third to (p+1)th elements

is no larger than D, while the remaining elements are related to 1 and w; which are clearly
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seen to be dominated by Dy. Dy, D5 and Dg are cross product terms which therefore cannot

be the largest of the six terms. Thus D; is dominant and we have that

TIANN " el
L )

max
7T ) +&r+1<t< [ AT

Notice that D also satisfies

TIANN —(t—1—|+T
: 1y, -20-1-1rT]) )
LTTJ+£11:I<1F1&tSL)\TJ < T2dN ) Vr !

TiANN 11 al
) T71¢T2(t - TJ)‘S% Z kisug_g_y
s=0

min —
[T | +&r+1<t< AT < TN

S TEAN -1 52 i i w—25 " . |Tflw*2(t*5*1*LTTJ) 2 ’
> S < min Up_g—
TN T s T 7T |+Er+1<t< | AT |,0<s<N r t=s=1

First, notice that Zivzo ka7 = O((T? A N)/N), it follows that

TANY ' o (o=
(W) r (Z k™ | = O(1).
s=0
For min [T 1y 20T 2 ice that when ¢t > |7T
LTT|+Er +1<t<[AT ] 0<s<N Ur Uj__1], notice that when ¢ > |77'| +&r+

1, the index t — s — 1 always satisfies |77 ]| +1 < t—s—1 < [AT], because 0 < s < N and
&r/N — oo. It follows that

Tt T > min

: — —2(t—|7T
min T 4 (t=lr J)uf|.
[7T | +&r+1<t<| AT | ,0<s<N |7T | +1<t<| AT

Applying the backward substitution (A.18) for u; again we have min 7| 1<t<| A7 \T‘lwf(tfhﬂ)u?]
is O, (1) due to its dominating second term related to the initial value of the explosive regime

TflufTT | being O,(1) but not 0,(1). Consequently, the stated results are established. [

In the next Lemma A.10, we generalise Lemma 3 of KPA, which proves a weak conver-
gence result of a partial sum of vector martingale differences to a vector Brownian motion.
In our context, because we allow for the presence of unconditional heteroskedasticity in the
covariates and in the regression errors, the corresponding partial sums of vector martingale

differences will converge to a more general vector Gaussian process.
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Lemma A.10. Let (; be a martingale difference sequence with respect to some filtration
{Fi,t = 1}, with E(C}|Fi—1) = 1, and let y be a sequence of {-dimensional random vectors
measurable with respect to Fi—1. Let R(k) be a positive definite ¢ x £ matriz for each
k € [0,\], with each of its elements being finite and continuous in k, then the partial
sum process G () = <1 / VT ) tElJ r:(; converges weakly to an (-dimensional Gaussian

process G(+) with covariance structure
E(G(k1)G(k2)') = R(min(ky, K2)),

for k1, ko € [0, A], where min(ky, ko) denotes the smaller of k1 and Ky, provided

| Tk LT&J
plim,_, = T Z rery = hm E Z rry | = ), (A.19)
and
|
llmsup 73] - Z E|r||* < (A.20)

for some § > 0.

Proof of Lemma A.10. For simplicity, we prove the stated result for the case when ¢ = 1.
As argued in Section 29.7 of Davidson (2021), the extension to the ¢ > 1 case can be easily
obtained by applying the Cramer-Wold device.

First define an element Y7 in C[0,)], which is an interpolated version of GT)(k) =

(1/\/_> ZLT“J r(y; that is,

YD (k) = G(k) + (Tk — |Tk)) (1/\/_> TITk)+1G|Trj+1 K< A
o G(T)()\) =\ .

Notice that

sup [V () = G0w) = (T = 176)) (VT Iizugainyal 50
ke|0,

so that Y™ (.) and G™(-) have the same weak limit.
Using conditions (A.19) and (A.20), and by the multivariate central limit theorem for
martingale difference sequences (see, e.g., Corollary 3.1 of Hall and Heyde, 1980), it is
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straightforward to show that for 0 < k; < --- < kK < A, where k£ > 1 is a finite integer, we

have that
Y™ (k1) 0 R(k1) R(k1) ... R(ky)
Y(T)(FLQ) i} N 0 R(Hl) R(IiQ) NP R(KJQ)
Y™ (k) 0 R(k1) R(k2) ... R(kg)

Next we show Y (7)(.) is uniformly tight. By definition, for A > kg > #; > 0
YD (ky) = YD (k) = GD(ky) — GT (k1) + R (kg, k1),
where
RO (i, 1) = (Thia=|Tha)) (UNT) ritagsairmagn—(Tia=Tra)) (VT ) iyl oa-

Using the maximal inequality for martingales (see, e.g., Corollary 16.20 of Davidson, 2021),

we have that

[Tr2] [Tk1] [Tk2]
sup Z reCp — Z r(| = sup Z e
O0<r1<ro<l1 — — O0<Kr1<ka<l1 = |_Tf€1J
k
< max Zné 7
and so
1 [Tk2] [Tk1] 1 k E ‘Zthl e ’
Pl — sup reCy — r| >e | < Pl —= max G| >e | L ——m7—,
T 0<ri<ra<l ; ; /T 1<k<T ; X Tp/2cp

which, by Burkholder’s inequality (see Theorem 16.24 of Davidson, 2021), is bounded by

a constant when taking p = 2. For the term R™)(k, x,), notice that

P (s (7Y int > <) < S (7 bl o) < T30

Tp/2¢p ’
which is bounded by a constant when taking p = 4.
It therefore follows that the stochastic continuity condition (29.58) in Theorem 29.17 of
Davidson (2021) is satisfied. Moreover, condition (29.57) in Theorem 29.17 of Davidson
(2021) is trivially satisfied in our context. Therefore, the tightness condition is satisfied.

Applying Theorem 7.1 of Billingsley (1999), the claimed weak convergence result then
follows. O
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A.2.2 Proofs of Theorems

Proof of Theorem 1. Observe first that for 1 <r < A,

(Tr] 4 |Tr] \Tr] 4
B i :LZUJ_%_sz (A21)
VT 52, 0ing VT 51, 0N VT 5 0Ny

The proof of the theorem will be constructed in two parts. In the first part, we will show
the stated limiting distribution is valid in the case when the volatility function is known,
by extending KPA’s proof for their Theorem 1. We will then show that the result continues

to hold where the volatility function is estimated.

Let us establish the first part. The proof for this part will use a weak convergence result

for the vector ( ZLTTJ @ 2 Nis Z]LT: 77]) . Using Lemma A.10, under the conditions of
J

Theorem 1, we have,

ZLTTJ 9ing.
73 = V(r), rel0,)], (A.22)
ZLTT )

where V(.) is a K 42 dimensional Gaussian process,where K := p+(q+1)m. The elements
of the covariance matrix of V(-) can be established as follows. First, using Assumption 2(e)

that h; is uncorrelated with g;g}, we have that

T 2 T
Jm B |3 o) = —Z“ Bl
|77 i
= AmE —Z% o2
| ) i
= 111—I>I01<>E TZg]g] 2 =r-0(r).

Next, using Assumption 2(b), we have that

|_T7"J |Tr]
Jin B |7 28| = jim B —ZE%W
[77]
= jlgroloE —Zh =7,
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Next we have that

[Tr] 2
. 1 g51; . 1
TlgroloE T g P = lim F |= A :
J=1 | J=l

— =Y E(gy) E(h;) (A.23)

where the last line follows from the condition that cov(g;, hy) = 0, imposed by Assumption
2(e). Now, by the definition of the vector of regressors, under the null, we have that
E(g;) =v=(1,0,...,0,c,), a vector whose first element is 1, its next p elements are all
zero, and where ¢, is the (¢4 1)m-dimensional mean vector of the covariates, x;, as defined
in Assumption 1. By Assumption 2(b), we have E(h;) =1, and so (A.23) is equal to

LTr)
1 1 "1
i 3= [
j=1 J 0

Consequently, by Lemma A.10, the covariance matrix of the Gaussian process V(-) takes

the form ;
/ (min(r, s))O(min(r, s)) ’_Yfmm(r,s) —dz
BV = | e iy ) A2
y fo mdx (min(r, s))
for r,s € [0, A].

When ¢, n; = 0 in (A.21), the statistic becomes

Tr Tr Tr
IR LLE:JU' 1 LZJ (s~ 9)'s,
— i —
\/Tj:TH i ﬁj::mrl \/Tj:TH 9

T r j— -1 j—
_ ! %n'—lgjj( 9 )(}“gs%) (1 Jlgsns)
- ] . .
ﬁj:T—&-l Tj:T+1 (]/T)Uj J o—1 U? ﬁs:l Os

= sz(?“)—sz(l)—/lr’Y’@(:v)1(V1(:v),---,VK+1(96))' 1

zo(z)

dzx
(A.25)
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where Vi (.) denotes the kth element of V(.). In the last step above deriving (A.25) we have
used the weak convergence result (A.22) and an application of the continuous mapping

theorem. Defining,

1
xo(x)

the weak limit in (A.25) can be written as W(r) — W(1). Hence, if we can show the W(r)

dx

W(r) = Vicyalr) - / @) (Vi(@), .. Vi (2))

process is a standard Brownian motion process, then the theorem is proved.

The process W(r) is a Gaussian process as it is a continuous functional of the Gaussian
process V(7). From the definition of V(r), it is obvious that its (K +2)th element Vg o(r),
which is the first term in the definition of W(r), is a standard Brownian motion. The process
W(r) is then seen to be a standard Brownian motion if the second term in the definition
of W(r) is o0,(1). However, the second term in the definition of W(r) is a functional of
the Gaussian process V(r) and is therefore non-degenerate. Therefore, in order to show
the Gaussian process W(r) is a standard Brownian motion, we need to directly analyse its
covariance function. If it can be shown that the variance of the second term in the definition
of W(r) cancels exactly with its covariance with the first term, Vg o(r), then the Gaussian
process W(r) will be a standard Brownian motion process. We now establish that this is
indeed the case. This phenomenon is also observed in the proof of KPA’s Theorem 1, when

they derive the weak limit of their recursive LS residual based CUSUM process.

We need to verify that cov(W(z1), W(z2)) = min(zy, 22), which is the required condition
for W(r) to be a standard Brownian motion process. Setting z; < 2o, without loss of

generality, the covariance function is given by

cov(W(z1), W(z2))

= cov(Vgia(21), Viga(z2)) —

~ cov (VK+2(21), /0 0 (Vi (@), .. ,VKH(x))'xOl(x)dx)

— cov (/021 vYO(z) " (Vi(z),... NKH@))'%(LT)CWVKH(Z?))
o ( / V0@) " (Vil@), - Vi (@) | / VO(@)  (Vi(@),. - Vica (@) dx)

zo(x) xo(x)

=A-B-C+D,
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where A, B, C' and D are implicitly defined.

For the first term, A, we have that

A= COV(VK+2(21),VK+2(22>) = Z21.

For the second term, B, we have that

B = cov (VK+2(21), /0 227’@(56)1(V1(x),...,VK+1(a:))’xgl dx)
_ E(VK+2(21) /0 h 7’@(9[;)—1(%(;5),...,VKH(Q;))'%@)M)
= & (Vi) ([ 706 W0, Vi)

/: 7' O(z) (Vi(2),. .. aVK+1($))/$01(x)dx))

= [ e </ o ):wl<x>d°”“"+/:(”'@(””)l”) (/ a<1y>dy) L
1
<

In the above third step, we split the integral at value z;, such that the range of the two

1
—d
zo(x) Tt

dy
dy

resulting integrals has a fixed relative magnitude with z;. Then in the fourth step, we
exchange the order of integration and expectation, and use the definition of the covariance
matrix of Vin (A.24). This proof strategy is repeatedly used below for the analysis of term
C and D without being explained.

For the third term, C, we have that

C = cov </021 7O () M (Vyi(2),..., Viii(z)) diU,VK+2(Z2>>

N
xo(x)

- B (VK+2(Z2) /0 RN _I(Vl(x),...,VKH(x))’xUl(x)dx)

A24



Finally, for the fourth term, D, we have that

D = cov ( /OZW’@@:)1<vl<x>,...,vKH<x>>/ da, /Ozzv'@@:)1<vl<x>,...,vm1<x>>/m

L
zo(x)

= 5(([ et tnth . Vien@) ) ([TVe@ e Vien @)
- F /OzQ /Ozl7,@($)_1(V1($),...,VK+1(30))'7'@(:E)_1(V1(:U),...,VKJrl(m))'xOl(m) ygl(y)dydm
_ E/022 /0217,@(9,;)—1(%(3:),..‘,VKH(Q;))'(Vl(y),...,VKH(y))@(y)—lymlwy;(y)dydw
_ /OzQ /0Z1 (v/O(x) 'O (min(x,y))O(y) ) (min(x,y)) ml(x) yal(y) dydz
= [ [ wew  etminte. o) mine. )y

+ /Z 1 /O z)” O (min(z,y))O(y) ') (min(z y))ml(x) yal(y) dyda
= 2 [7 (e etuinte.)ol) ) aine, ) sy

+/Zl /O (YO(x) 'O (min(z,4))O(y) ~'7)(min(z, y)) 1(x) yal(y) ydz
= 2 [" [[ew) etmine. )0 W) —duda

+ [ e etmint e ) s
- 2/021 ox(’/@(x)_lwm(xl)g( jdudz + /0 ZI(W’@(:I:)‘W)M(;)U( dyda

= 2/:1 (YO(z)™'v) (/Oz Ugy)dy> Ml(x)dw+ </021 U(ly)dy> /ZTQ(V’@(x)lv)gj(jl(gs)dx,

where in the above seventh step, we use the symmetry of double integration with respect to z
and ¥, to rewrite the inner integral with respect to y as 2 times the integral with a variable upper

limit x, which is the variable of integration of the out layer integral.

It can be seen from the results above that —B—C+D = 0. Consequently, cov(W(z;), W(z)) =
A—B—C+ D = A = z, which completes the first part of the proof. Observe from the
foregoing derivations, that if recursive LS (rather than WLS) residuals were used in our
context, i.e. if we use the CUSUM statistic —= Z]LTTT 41 5=, then these cancellations would

not happen and W(r) would not be a standard Browman motion.

We now turn to the second part of the proof. We will show that

[Tr] o [Tr]
\/— Z — Z 1| = op(1), (A.26)
j=T+1 0j.N.j ; T+1
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and

(7] AW [Tr] / _
Wj-1 = ¥) Y5
E : E , = 0p(1), (A.27)
\/_] =T+1 Oj.N.j \/_] =T+1 9j

and the claimed result of the theorem follows.
(A.26) can be proved in the same way as in the proof for Theorem 1 of AHLTZ, by noting
the results of Lemma A.4 and Lemma A.5.

For (A.27), notice that

L) AW Yg; L) .
> e > U .
\/_] S Ting \/_ P 0j
| Tr| W \/
|Q0 | 1 j 1 QDJ 1) g]
2 : =1 5 § :
; o

] —T11 JN,J \/_] 711 I,

By Lemma A.4 and Lemma A.G, the above second term is 0,(1) uniformly for » € (0, 1].
By Lemma A.7, the first term is 0,(1), and the proof for (A.27) is complete. O

Proof of Theorem 2. Under Hy, and when |77 ] +1 <t < |A\T],

t 1 : &y
SWVT - — - J
VT j=1+1 TN
7T 7T |+€p+1 ~
_ i ZJ L JE:T n i Ay; — (Sojmil),gj
VT 0j,N,j

J=T+1  j=[rT]+1  j=|7T|+&r+1

=: AT—FBgT + C,

where Ap, B, and C; are implicitly defined.
Consider first C;. When |77 | + &7+ 1 < t < |AT'], we have that
ij = 5TU]'_1 + V.

Substituting this into the expression for C; we have that

t ~ /
6ol 3 (o G

VT | i e \TiNg  OiNg TN,

= Cn+Cp—C

where Cyq, Cys and C3 are the summation of three terms in the brackets implicitly defined.
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When |77 +&r+1 <t < [AT'], we will first show that |Cyo/Cyi| = 0,(1) and the order of
Cy3 is no larger than that of Cy1, so that the rate of Cy; + Cie + Cl3 is determined by the
rate of divergence of C};; then we derive a lower bound for the divergence rate of Cy;.

We will use Lemma A.9 in the following analysis. Notice that given 0 < d < 2/3,
T4 NN =T Consider first C;;. This satisfies

Cul
¢ —1/2,,-0-1=17T]), |
T /%Yy Uj—1
= Sp—— (TdN)1/2 > —
VT J=LTTJ+§T+1< T4=IN)V2y, umeirtg 04,N.j
dn7y1/2 .

S -1 fZ(T (iV)l [7TD 5 e e T

e e T, e

Sp(TIN)Y/2 /a1 sT])

= T / J T -

min <t [(T9=1N)/2 (=1=17T]) ~ \ﬁ Z | by uj-1]
|7T |+€r+1<5<t 04,N,j =|7T|+€r+1

)
5T(Td )1/2 1

= (t—1— 7T = &n)|TPupp| (1 + 0p(1)).

ﬁ

. —
Min 7| epr1cjer |(TEIN) Y29 07D o

Using Lemma A.9 we have that min|,r|4epi1<jce [(T97IN)V2p=U=1=1Thg, | s, with
probability 1, strictly positive. Moreover, |T~"?u .|| = O,(1), and so for any ¢ > |7*T|
with 7° > 7, (t — 1 — |7T] — &) = O(T), and it follows that Cy; is O,(TY2~4(T4N)Y?) =
O, (T%(l’d)N %>. Using the same argument, we can show that Cys is stochastically dom-
inated by Cy. Next consider Cy3. Notice that the g; vector contains the Ay;_’s for k =
1,2,...,p, together with the covariates. In the explosive regime, Ay;_ = 0puj_k—1 + Vj_k,
which is explosive, while the covariate terms are, by definition, non-explosive. Therefore,
C3 can be studied in the same way as Cy; and it can be shown that it is no larger than
Cy1, and it also cannot be the same as Cy; (so there is no possibility of cancellation between
the two terms), due to its dependence on u; terms up to j =t — 2, while Cy; is defined by
explosive u;’s up to j =t — 1. In summary, the order of C; is determined by that of C;.

We next derive a lower bound for the divergence rate of Cy;;. To that end, observe that

|Cta| also satisfies
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|C

. 6T(TdN)1/2 Z ‘T—1/2¢;(j—1—|_7'Tj)uj_1’
T r1<ist | (Td-1 N2 00T D5 \Fy T

WV

5p(T4N)L/2 1 Z - o)
x|y g1 | (TN 2y 070D mrf

o7 (TIN)/?
maXLTTJ+€T+1<j<t|(Td LN/ 24 (G—1-[7T]) ~ Ngl\f

,1|
J=mT]|+ér+1

(t =1 [7T] = &n)|TPupor) (1 + 0p(1)).

Again using Lemma A.9, we have that max|,p|4ept1<j<e |(T9IN) Y2, G-l ginl =
O,(1). Moreover, |T~?u .|| = O,(1) and is non-degenerate, and so for ¢t > [7*T], with
™ > 7, |Ch/(esv/t)] = O,(57(T?N)Y?). Notice that op(TIN)V? = O(T~¥2N'V?) — oo
because d < 2/3. Observing that max|,7 e 1<j<t |(TN) Y24 G115 ;Nj| appears
in the denominator, its stochastic upper bound order of O,(1) gives the lower bound of the
divergence rate for Cy;.

Next, we observe that Ar = O,(1), regardless of the value of ¢ (i.e. it has the same order
in probability throughout the monitoring period). Be, represents the sum of {7 + 1 terms
immediately after the structural break to an explosive regime; its order also does not depend
on t. Notice that since it cannot cancel exactly with C}, which has a changing end point as
the monitoring process goes on, the derived divergence rate lower bound we have derived
for C} also serves as a divergence rate lower bound for the monitoring statistic, regardless
of the specific order of Be,. The monitoring statistic will always diverge relative to the
boundary function, ¢,v/t, with at least a rate O(T~%2N'/2) due to the C; term, and so the
stated result follows. O

Proof of Theorem A.1. Observe that

|Tr] | Tr| ~
Z g _ 1 S o — (¢5-1 — ¢)'z
1 % \/ijT-&-l 9j
|Tr] ~
S Ly Ly e
_] =T+1 _] =T+1

Using the same proof strategy as that of Theorem 1, we can again show that the first term

above weakly converges to a standard Brownian motion, while the second term weakly
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converges to an integral of a Gaussian process as in (A.25). However, the proof is simpler
because each z; in the present setting now has zero mean, and so the second term in
the equation above can be shown to be of 0,(1), from which the stated result follows

straightforwardly. O]

Proof of Theorem A.2. Using the result in Theorem A.1, the stated result follows if we can
show that the errors induced by the nonparametric estimation of the variance function are
asymptotically negligible. This can be done along exactly the same lines as in the second

part of the proof of Theorem 1, and we therefore omit the details to avoid repetition. [

Proof of Theorem A.3. Again, the proof will follow along the same lines as the proof of
Theorem 2, using the observation that no aspect of that proof requires the covariates to

have strictly non-zero means. We therefore omit the proof to avoid repetition. O]
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A.3 Empirical Application

In this section we investigate the performance of our proposed monitoring procedures had
they been applied ahead of Black Monday in 1987, and the dotcom bubble episode of the
early 1990s. To do so we use the monthly dataset of Welch and Goyal (2008) which can be
obtained from http://www.hec.unil.ch/agoyal/ as well as the 10 Year US Treasury Con-
stant Maturity Rate which can be obtained from https://fred.stlouisfed.org/series/GS10.
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Following PSY, the series tested for bubbles will be the price-dividend ratio (Index/D12)
plotted in Figure A.1. Applying the GSADF test of PSY to the sample of data used for
our empirical analysis (October 1968 - December 1997) using the authors’ recommended
settings yields a test statistic of 2.873, which is in excess of the 1% critical value of 2.582,
which gives strong evidence in agreement with the findings of PSY that one or more bub-
bles are present during this period. The candidate covariates are earnings (E12), the book-
to-market ratio (b/m), the treasury-bill rate (tbl), corporate bond returns on AAA and
BAA rated bonds (AAA and BAA), the 10 Year US Treasury Constant Maturity Rate
(GS10) long term yield (Ity), net equity expansion (ntis), the risk free rate (rfree), inflation
(infl), long term rate of returns (Itr), long term corporate bond returns (corpr), stock vari-
ance (svar), the cross sectional premium (csp), the dividend payout ratio (de:=D12/E12),
the earnings-price ratio (ep:=E12/Index), the default yield spread (dfy:=BAA-AAA), the
term spread (tms:=lty-tbl) and the default return spread (dfr:=corpr-ltr).

We begin by examining how a monitoring exercise that began in January 1987, ahead of
Black Monday in October 1987, would have played out, examining the performance of the
CUSUMY, CUSUM"* and CUSUM"WMY monitoring procedures. For simplicity, and to help
determine which covariates are individually useful, we apply the CUSUMYWMV procedure
using only a single covariate at a time. Our training sample begins in October 1968 such
that its length is equal to T" = 219 as in the Monte Carlo simulations in Section 5. We
use the same bandwidth selection rule as in Section 5 and, again, use the BIC procedures
outlined in section 5.1 to select p and ¢, and whether or not to include the covariates, in
the null regression model, (5), again setting the maximum permitted values of p and ¢ to
4 and 2, respectively. We set the value of b, = 0.0883 such that the monitoring procedures
would have an empirical FPR of 0.10 after 1 year if the price-dividend data were a pure
unit root process driven by NIID innovations under the null.

Before applying the CUSUM"MV procedure we must first ensure that any covariates
used do not contain a unit root. We, therefore, pre-test the candidate covariates for a
unit root using the training sample observations that would have been available at the
commencement of the monitoring procedure. We apply the (heteroskedasticity-robust)

wild bootstrap ADF unit root test of Cavaliere and Taylor (2009) at the 5% level allowing
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for an intercept using the authors’ recommended settings where the number of lagged
differences in the ADF regression is determined using the MAIC of Ng and Perron (2001)

0-25] " Critical values

with the maximum number of lags k given by knax = [12(77/100)
are obtained using B = 499 bootstrap replications where the bootstrap data is generated
using the recolouring scheme outlined in Cavaliere and Taylor (2009) using the same value
of k selected by the MAIC for the test statistic of interest, with the value of k£ used to
construct the bootstrap test statistics again determined by the MAIC. From this we found
the variables ltr, corpr and dfr to be I(0) so there variables are utilised in levels, whereas
we found rfree, infl, svar, tms, E12, b/m, tbl, GS10, AAA, BAA, lty, ntis, csp, de, ep and
dfy to be I(1) so these variables are utilised in first differences.

At the commencement of the monitoring procedure applying the BIC to (5) indicates

that the covariates that are individually relevant for monitoring the price-dividend series

are A(b/m), A(tbl), A(GS10),A(AAA), A(BAA), A(lty), ltr, corpr, A(csp) and A(ep) and

MWMV procedure. For

so we only report results for the use of these covariates in the CUSU
the CUSUMY* procedure the BIC selects a lag length of p = 0 and so that this procedure
is identical to the CUSUM" procedure, we therefore report results only for the latter
procedure. Figures A.2-A.3 report plots of the individual test statistics underlying the
monitoring procedures, as well as the boundary function ¢,v/¢, with a rejection of the no-
bubble null indicated by any test statistic exceeding this boundary function. The vertical
dashed lines are used to indicate the first date each monitoring procedure rejects the null of
no bubble. The plots of these test statistics shows that the Black Monday bubble episode
was rather short lived, with only a small window of opportunity for detection before the
collapse of the price-divided ratio. In spite of this we see that the CUSUM"MV procedure
would have detected this bubble in July 1987 when utilising any of A(GS10), A(AAA),
A(lty), ltr, corpr or A(ep) as a covariate, which is earlier than the first rejection in August
1987 displayed by CUSUMY. For the other covariates the CUSUM"MV procedure first
rejects at the same time as CUSUMY | excepting A(csp) where the CUSUM"W™MY procedure
marginally fails to reject in August 1987. We also extended the analysis to allow for multiple

covariates, letting the BIC select from any combination of the covariates that were found

to be individually relevant. In this case the BIC suggested including both A(b/m) and
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A(ep), with the resulting procedure rejecting slightly later than when using A(ep) alone,
highlighting the fact that including additional covariates may not always be beneficial.

We also examined how a monitoring procedure that began in January 1994, ahead of
the dotcom bubble, would have played out. The monitoring procedures were performed
exactly as for the Black Monday exercise except that the training sample of data were of
length T" = 72, running from January 1988 to December 1993 so as to avoid the abrupt
collapse in the price-dividend ratio witnessed at the end of 1987 following Black Monday;
cf. item 3 in Section 5.3. This necessitated setting b, = 0.2672 to retain an FPR of 0.10
after 1 year, again assuming the price-dividend data were a purely unit root process driven
by NIID innovations under the null. Once again, the BIC selected p = 0 for the CUSUM"*
procedure so we report results only for CUSUMY. For the CUSUMY"MV procedure we
utilise the covariates that proved to be useful during the Black Monday bubble episode,
namely A(GS10) A(AAA), A(lty), ltr, corpr or A(ep). Figure A.4 again reports plots of
the individual test statistics underlying the monitoring procedures, as well as the boundary
function ¢;v/t. The CUSUMY procedure which utilises no covariate augmentation first
rejects the null of no bubble in January 1996, whereas the CUSUM"MV procedure rejects
earlier when using any of the six candidate covariates, with a first rejection in October
1994 when using corpr, March 1995 when using A(ep), July 1995 when using A(AAA),
A(GS10) or ltr and September 1995 when using A(lty). We also extended the analysis to
allow for multiple covariates, letting the BIC select from any combination of the covariates
that were found to be individually relevant. In this case the BIC suggested using only A(ep)
which was previously shown to lead to the second earliest rejection among all individual
candidate covariates.

As an additional robustness check, we also performed unit root tests on all of the
covariates employed in the CUSUM"MV procedure across the entire sample range of data
used for our empirical analysis (October 1968 - December 1997) and obtained the same
conclusions as when these unit root tests were performed on the initial training sample,
suggesting no change in persistence occurred for any of the employed covariates during the
monitoring periods. We also applied the GSADF test of PSY to each of these covariates

over the full sample period and found no evidence of bubbles, rendering it unlikely that
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any co-explosive behaviour was present between the covariates and the series of interest.

Additional References

Cavaliere, G. and Taylor, A.M.R. (2009). Bootstrap M unit root tests. Econometric
Reviews 28, 393-421.

Ng, S. and Perron, P. (2011). Lag Length Selection and the Construction of Unit Root
Tests with Good Size and Power. Econometrica 69, 1519-1554.
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Figure A.1: Price Dividend Ratio - 1968-2000
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Figure A.2: Test Statistics vs Critical Value - Black Monday
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Figure A.3: Test Statistics vs Critical Value - Black Monday
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Figure A.4: Test Statistics vs Critical Value - dotcom
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A.4 Additional Monte Carlo Simulation Results

This section reports Monte Carlo simulations results additional to those reported in the
main paper. Similar to the main paper all results are reported for the DGP in (1)-(2), and

under the alternative we set |77 = 220 with 6 = 0.005.
A.4.1 Additional Simulations - Further Parameter Constellations

Figure A.5 reports the FPR of the procedures under the null and TPR under the alternative
for the CSS type DGP for vy and x; given by (23)-(24) with p = 015 = @; = 0 and § = 0.5.
The reported results are qualitatively similar to those reported in Figure 2 for the case
when [ = 0.8 reported in the main paper.

Figure A.6 reports the FPR and TPR of the procedures for the CSS type DGP for v,
and z; given by (23)-(24) with 015 = 0.4, @3 = 0.2 and 8 = p = 0.0 such that the covariate
x; is irrelevant but the innovations v; are serially correlated. The FPR and TPR profile
of both the CUSUM"MV and CUSUM"* monitoring procedures are practically identical
to each other, identified by the green and red lines being almost indistinguishable from
one another. This is due to the fact that the BIC deems the candidate covariate to be
irrelevant, so that the CUSUM"MV procedure reduces to the CUSUMY* procedure, in
the vast majority of replications. Both the CUSUM and CUSUMY procedures exhibit
substantial FPR distortions in this scenario due to the unmodelled serial correlation present
in v;.

Figures A.7-A.12 present the FPR of the procedures under the null and TPR under
the alternative for the CSS type DGP for v; and x; given by (23)-(24) when ay = 0.2 and
o12 = 0.4 for the combinations of § and p considered by CSS not reported in Figures 3-4
in the main paper. Once again the results are all qualitatively similar to those reported in

the main paper.
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Figure A.5: 3 = 0.5, p = 012 = a1 = 0 - Left Panel=FPR, Right Panel =TPR. (¢? = 0.800)
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Figure A.6: 3 = 0.0, p = 0.0, 012 = 0.4, a; = 0.2 - Left Panel=FPR, Right Panel =TPR. (0? = 1.000)
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Figure A.7: 3= 0.5, p = 0.8, 012 = 0.4, a; = 0.2 - Left Panel=FPR, Right Panel =TPR. (0? = 0.432)
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Figure A.8: 8= —0.5, p= 0.8, 012 = 0.4, a; = 0.2 - Left Panel=FPR, Right Panel =TPR. (¢* = 0.000)
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Figure A.9: 3= 0.8, p = 0.5, 012 = 0.4, ay = 0.2 - Left Panel=FPR, Right Panel =TPR. (0? = 0.556)
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Figure A.10: 8= 0.5, p = 0.5, 015 = 0.4, a; = 0.2 - Left Panel=FPR, Right Panel =TPR. (0? = 0.700)
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Figure A.11: B = —0.5, p = 0.5, 012 = 0.4, a; = 0.2 - Left Panel=FPR, Right Panel =TPR. (¢* = 0.300)
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Figure A.12: 8= —0.8, p = 0.5, 012 = 0.4, a; = 0.2 - Left Panel=FPR, Right Panel =TPR. (¢* = 0.057)
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A.4.2 Additional Simulations - Smooth Volatility Shift in Innovations to Co-

variate

Figures A.13-A.15 report the TPR and FPR of the monitoring procedures when a smooth
volatility shift is present in the innovations to the covariate only. Data were generated ac-
cording to (1)-(2) and (23)-(25), with o1, = 1, o9 := 1+ (V4 —1) [1 + exp(—6(t — 219))] "
o124 = 01202, and we again set ug = 100, wy = p = 0. Under the null we set § = 0, whereas
under the alternative we set § = 0.005, T" = 220 and T = AT

Figure A.13 (a) shows that when x; does not enter the DGP for y; in any way that,
unsurprisingly, none of the monitoring procedures are impacted in any meaningful way by
the volatility shift present in the innovations to the covariate. The FPR and TPR for the
CUSUMWMV procedure is near identical to the homoskedastic case, and the FPR and TPR
of all other procedures are exactly identical to the homoskedastic case reported in Figure
1 (a) of the main paper.

Figure A.13 (b) and (c) report results for the case where the covariate is relevant but no
serial correlation is present in v;. In this scenario the heteroskedasticity in x; feeds through
into the values of Ay, that are used to construct the statistics underlying the CUSUM
and CUSUMY procedures. The former suffers FPR distortions as a consequence, whereas
the CUSUM" procedure is still able to control FPR to a decent extent due to the use of
the kernel based variance estimator. Due to the lack of serial correlation the BIC reduces
the CUSUMY* procedure to the CUSUMY procedure in a great majority of replications

MYWMV procedure is,

so that the blue and green lines almost exactly coincide. The CUSU
expectedly, also FPR controlled in these scenarios.

Figure A.13 (d) reports results for the case where the covariate is irrelevant, but serial
correlation is present in v,. Here both the standard CUSUM and CUSUMY procedures
exhibit FPR distortions, where the CUSUM"MY and CUSUM"* procedures display much
better FPR control. The latter two procedures display almost identical FPR/TPR profiles
in this scenario as when the covariate is irrelevant the BIC reduces the CUSUMWMV
procedure to the CUSUM"* procedure in a vast majority of replications.

The remaining figures A.14 and A.15 report the FPR and TPR of the procedures for

the same parameter constellations as considered by CSS. Across these scenarios both the
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standard CUSUM and CUSUMY procedures display very poor FPR control as neither
are able to model the serial correlation present in v;, and the former uses a standard
variance estimator that is unable to account for heteroskedasticity. The FPR control of the
CUSUMY* procedure is also poor, with this procedure exhibiting upward FPR distortions
rather than the downward FPR distortions it exhibits when the variance of only € ; shifts.
The best FPR control overall is clearly displayed by the CUSUM"™Y procedure. The
CUSUMWMV' procedure also displays far superior TPR performance to the CUSUM"*

procedure across all scenarios.
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Figure A.13: Volatility Shift in €5, only - Left Panel=FPR, Right Panel =TPR.
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Figure A.14: Volatility Shift in €5, only - Left Panel=FPR, Right Panel =TPR.

(a) 6 = 08, P = 08, 019 = 0-402,t; ap = 0.2
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Figure A.15: Volatility Shift in €5, only - Left Panel=FPR, Right Panel =TPR.

(a) 6 = 08, P = 05, 012 = 0-402,t; a1 = 0.2
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A.4.3 Additional Simulations - Covariate Observed with Measurement Error

Figures A.16-A.23 report the FPR and TPR of the monitoring procedures in the same
scenarios as panel (a) in Figures 3-4 and A.7-A.12 but where the covariate x; is observed
subject to a measurement error. Data were generated according to (1)-(2) and (23)-(25),
with 07, = 03, = 1, 012, = 0.4, &y = 0.2 and we again set ug = 100, wy = p = 0. Under
the null we set 6 = 0, whereas under the alternative we set 6 = 0.005, T = 220 and
75T = AT. Results are reported for the case where the covariate z; = x; 4+ 7, is used in
the CUSUM" MY procedure where 7, ~ N(0,07) (Setting 07 = 0 corresponds to the case
where the covariate is observed without measurement error). In all cases, the FPR of our
proposed CUSUMWMV monitoring procedure is impacted very little by the measurement
error, whereas under the alternative the TPR of the procedure is somewhat reduced relative
to the case where the covariate is observed without measurement error, with this power
reduction increasing in the value of 02. The FPR and TPR of the CUSUM, CUSUM" and

CUSUM"* procedures does not change with the value of 0727 as the true DGP remains the

2
n

covariate z,. In all cases the TPR of the CUSUM"MV procedure is superior to that of the

same across the various values of o~ and these procedures make no use of the observed

CUSUM"* procedure which is the only other FPR controlled test in these scenarios.
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Figure A.16: Covariate observed with error:5 = 0.8, p = 0.8, 012 = 0.4, a; = 0.2 - Left=FPR, Right=TPR
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Figure A.17: Covariate observed with error:5 = 0.5, p = 0.8, 012 = 0.4, a; = 0.2 - Left=FPR, Right=TPR
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Figure A.18: Covariate observed with error:3 = —0.5, p = 0.8, 012 = 0.4, a3 = 0.2 - Left=FPR,

Right=TPR
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Figure A.19: Covariate observed with error:3 = —0.8, p = 0.8, 012 = 0.4, a3 = 0.2 - Left=FPR,
Right=TPR
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Figure A.20: Covariate observed with error:5 = 0.8, p = 0.5, 012 = 0.4, a; = 0.2 - Left=FPR, Right=TPR
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Figure A.21: Covariate observed with error:5 = 0.5, p = 0.5, 012 = 0.4, a; = 0.2 - Left=FPR, Right=TPR
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Figure A.22: Covariate observed with error:5 = —0.5, p = 0.5,012 = 0.4,a7 = 0.2 - Left=FPR, Right=TPR
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Figure A.23: Covariate observed with error:f = —0.8,p = 0.5,012 = 0.4,a7 = 0.2 - Left=FPR, Right=TPR
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A.4.4 Additional Simulations - Training Sample Bubble

Figures A.24-A.32 report the FPR and TPR of the monitoring procedures when a single
collapsed bubble is present in the training sample, with this training sample bubble running
from ¢t = 96 to ¢t = 110 with an explosive offset of 0.005. Data were generated according to

(1) with u; generated as

Ut_1+Ut t= 7...,95
1.005us—1 + v¢ t=096,...,110

U111 = Ugs + V111

w o= < g+ t=112,...,T (A.28)
U1 + vy t=T+41,...,|nT]
(1+8ugq +v, t=|nT|+1,..., ||
U1 + vy t=|nT|+1,...,[A\T]

0

We generated v; and z; according to (23)-(25), with 07, = 03, = 1, 0124 = 012, and we
again set ug = 100, o = p = 0. Under the null we set 6 = 0, whereas under the alternative
we set 6 = 0.005, T = 220 and 7T = AT. When g = 0 and p = 0, so that the covariate
is irrelevant, the past training sample bubble has minimal impact on the FPR and TPR of
our proposed CUSUM"WMV procedure. This is because in almost all replications the BIC
chooses to include no dynamics at all in the pre-whitening regression for g, so that the
CUSUMYMV and CUSUMY* procedures reduce to the CUSUMY procedure which, when
using a maximum bandwidth of 20 for the volatility estimator, will never use any of the
observations associated with this past bubble. In all cases where the covariate is relevant,
the past bubble causes a slight inflation of the FPR of the CUSUM"MV and CUSUM"*
procedures relative to the case where no past bubble is present. This also leads to a slight
increase in the TPR of the procedures when a past bubble is present relative to the case

where no past bubble is present.
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Figure A.26: FPR and TPR - Training Sample Bubble. § = 0.5, p = 0.8, 012 = 0.4, a; = 0.2
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Figure A.27: FPR and TPR - Training Sample Bubble. 8 = —0.5, p = 0.8, 012 = 0.4, a; = 0.2
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Figure A.28: FPR and TPR - Training Sample Bubble. § = —0.8, p = 0.8, 012 = 0.4, a; = 0.2
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Figure A.29: FPR and TPR - Training Sample Bubble. § =0.8, p = 0.5, 012 = 0.4, a; = 0.2
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Figure A.30: FPR and TPR - Training Sample Bubble. § = 0.5, p = 0.5, 012 = 0.4, a3 = 0.2
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Figure A.31: FPR and TPR - Training Sample. 8 = —0.5, p = 0.5, 012 = 0.4, a3 = 0.2
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Figure A.32: FPR and TPR - Training Sample. 8 = —0.8, p = 0.5, 012 = 0.4, a3 = 0.2
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A.4.5 Additional Simulations - /(1) Covariate

Figure A.33 reports the FPR and TPR of the procedures when an irrelevant I(1) covariate
is considered for inclusion in the CUSUMWMV procedure. Data were therefore generated
according to (1)-(2) and (23)-(24) with f =p =012 =1 =0, p=1and 0}, = 05, = 1 Vt.
In a vast majority of replications the BIC model selection procedure correctly determines
the covariate to be irrelevant and so there is almost no effect on the FPR and TPR of the
CUSUMWMV procedure. Consequently, to get a better idea of the impact of including this
irrelevant (1) covariate we include a line on the figures for the case where the covariate
is forcibly included in the CUSUMWMV procedure. We see that including this covariate
leads to a slight increase in FPR under the null and a moderate decrease in TPR under the
alternative, compared to the correctly specified univariate procedures which have an FPR

profile identical to that seen in Figure 1(a) in the main paper.
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Figure A.33: 6 =0.0, p = 1.0, 012 = 0.0, a; = 0.0 - Left Panel=FPR, Right Panel =TPR. (I(1) Covariate)
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A.4.6 Additional Simulations - Bubble in Irrelevant Covariate

Figure A.34 reports the FPR and TPR of the procedures when an irrelevant covariate that
exhibits explosive behaviour in the monitoring period is considered for inclusion in the
CUSUMWMY procedure. Data were therefore generated according to (1)-(2) and (23)-(24)
with 3 = 019 = ay = 0, 0}, = 03, = 1 Vt, p, = p, p € {0.0,1.0} for ¢ = 1,...,220 and
pr = 1.005 for t = 221,...,A\T. The covariate therefore behaves as either an I(0) process
or an I(1) process up until the start of monitoring, before exhibiting explosive behaviour
until the end of the monitoring period. Again, in a majority of replications the BIC model
selection procedure correctly determines the covariate to be irrelevant and so there is almost
no effect on the FPR and TPR of the CUSUMY"™V procedure. To get a better idea of the
impact of including this explosive covariate we also include a line on the figures for the case
where the covariate is forcibly included in the CUSUM"MV procedure. We see that always

MYWMV yunder the null

including this covariate leads to a slight increase in the FPR of CUSU
and a modest decrease in the TPR under the alternative, compared to the correctly specified
univariate procedures, which have an FPR profile identical to that seen in Figure 1(a) in

the main paper, with these effects seen to be more pronounced for p = 0.0 than for p = 1.0.
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Figure A.34: 8 = 0.0, 012 = 0.0, a3 = 0.0 - Left Panel=FPR, Right Panel =TPR. Covariate Bubble in

Monitoring Period
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A.4.7 Additional Simulations - Bubble in Relevant Covariate

Figure A.35 reports the FPR and TPR of the procedures when a bubble may be present in

MWMV procedure. Data were therefore

a relevant covariate considered for use in the CUSU
generated according to (1)-(2) and (23)-(24) with § = 0.8, p = 012 = a3 = 0.0 and
0}, = 05, = 1 Vt. We generate z; = 21 + x4, t = 1,..., [7T| and 2z = (1 + 0.)z—1 + 24,
t = |7T] + 1,...,|\T'], again setting |77| = 220, and use Az, as a covariate in the
CUSUMYWMV procedure. Results are reported for 6. € {0.000,0.005}. We see that for
0. = 0 the FPR and TPR of the procedures is identical to those reported in Figure 2
panel(a), as would be expected because in this case Az, = x;. For §, = 0.005, such that
the covariate is contaminated by explosivity during the monitoring period, we see that the
FPR of the CUSUMYWMV procedure is very slightly inflated, relative to the case where
5. = 0. Under the alternative, the TPR of CUSUM"MV when §, = 0.005 is essentially the

same as when o, = 0.
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Figure A.35: 8 = 0.8, p = 012 = a1 = 0.0 - Left Panel=FPR, Right Panel =TPR. Impact of Explosivity

in Covariate
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A.4.8 Additional Simulations - Mean Shift In Covariate

In this section we examine the FPR and TPR of the monitoring procedures when a covariate
that includes a mean shift in the monitoring period is considered for inclusion in the
CUSUMWMV procedure. For reference we also report the cumulative rejection rate of a
univariate monitoring procedure, which will be denoted CUSUMY, that is designed to test
for structural change in the covariate over the same monitoring period as CUSUMWMV
This procedure is entirely analogous to the one-sided CUSUM"Y™V procedure except that
a two-tailed decision rule is used (to allow for positive or negative mean shifts), and the
regressions used to construct the statistics underlying the CUSUMX procedure are with-
constant autoregressions fitted to x;, with the autoregressive lag order determined by the
BIC. The CUSUM?Y procedure is calibrated so that it has a two-sided FPR of 20% at the
same time that the one-sided bubble CUSUM procedures are calibrated to have an FPR
of 10%. In practice the significance level used with CUSUMX can of course be varied by
the practitioner.

Given that in empirical applications candidate macroeconomic and financial covariates
will generally be entered in first differences rather than levels (see Remark 2.8), we consider
first what is arguably the empirically most relevant case where a mean shift occurs in a
series that is used as a covariate in first differences in the CUSUMY MV procedure. Data
were therefore generated according to (1)-(2) and (23)-(24) with 8 € {0.0,0.5}, p = 015 =
ap =0, ait = 0%7?5 =1 Vt. We then generate z; = z;,_1 + x; and add a 0.5 or 1.0 standard
deviation magnitude mean shift to z; at time t = 230. The first differenced series Az; is
then used as a covariate in the CUSUMYMV procedure.

We first consider the case 8 = 0.0, such that the covariate is irrelevant. Once again,
in the vast majority of simulation replications the BIC model selection device correctly
determines the covariate to be irrelevant and so there is almost no effect on the FPR and
TPR of the CUSUM"MV procedure. Consequently, in order to get a better idea of the
impact of including this covariate we again include a line on the figures for the case where
the covariate is forcibly included in the CUSUM"MV procedure. Examining the results
in Figures A.36-A.37 we see that, regardless of whether the mean shift is upwards or

downwards, including this covariate leads to a marginal increase in FPR under the null and
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a marginal decrease in TPR under the alternative, in each case compared to the correctly
specified univariate procedures which have an FPR profile identical to that seen in Figure
1(a) in the main paper. These effects are seen to be very small.

Moving to the case where § = 0.5, results for which are reported in Figures A.38-
A.39, we see that the mean shift in 2z, does lead to some slight FPR distortions in the
CUSUMWMV procedure, with upward mean shifts causing a slight decrease in FPR and
downward mean shifts leading to a slight increase. The impact on TPR is similar, as is
to be expected, with upward mean shifts causing a slight decrease in TPR and downward
mean shifts leading to a slight increase. The effects are, however, relatively benign even
for the case of a relatively large mean shift of one standard deviation.

We next turn to the case where the mean shift occurs in the candidate covariate, z,
which enters the regression in levels. Data were therefore generated according to (1)-(2)
and (23)-(24) with g € {0.0,0.5}, p = 012 = a1 = 0, 0}, = 05, = 1 Vt where we add a 0.5
or 1.0 standard deviation mean shift to x; at time t = 230. We begin by examining results
where 8 = 0.0 reported in Figures A.40-A.41, once again including a line on the figures
for the case where the covariate is forcibly included in the CUSUM"MV procedure, given
that the covariate is irrelevant. We see that, once again, the mean shift makes almost no
difference to the rejection rate of the CUSUMYWMY procedure.

Results for the case where = 0.5, reported in Figures A.42-A.43, are not so benign,
with the mean shift in the utilised covariate causing large upward (downward) bias in the
FPR of the CUSUMYWMV procedure for downward (upward) mean shifts, with a large down-
ward bias in the TPR of the CUSUM"MY procedure subsequently observed for upward
mean shifts. Crucially, however, the empirical rejection frequency of the CUSUM?X proce-
dure is considerably higher than that of the CUSUMWMV procedure under the null of no
bubble, even when the latter is subject to a large upward bias in FPR due to the presence of
a negative mean shift. In the majority of cases, therefore, the simultaneous CUSUM* pro-
cedure would alert the practitioner to the mean shift in the covariate and the practitioner

would consequently revert to a covariate unaugmented procedure, for example CUSUMY .
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Figure A.36: 8 = 0.0, p = 0.0, 012 = 0.0, a1 = 0.0. FPR of Procedures. Mean Shift at ¢ = 230 in an

Irrelevant Covariate entered in First Differences. Left Panel = Upward Shift, Right Panel = Downward

Shift.
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Figure A.37: 8 = 0.0, p = 0.0, 012 = 0.0, a3 = 0.0. TPR of Procedures. Mean Shift at ¢ = 230 in an
Irrelevant Covariate entered in First Differences. Left Panel = Upward Shift, Right Panel = Downward
Shift.
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Figure A.38: 8 =0.5, p =0.0, 012 = 0.0, a; = 0.0. FPR of Procedures. Mean Shift at ¢ = 230 in a Relevant
Covariate entered in First Differences. Left Panel = Upward Shift, Right Panel = Downward Shift.
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Figure A.39: 8 =0.5, p = 0.0, 012 = 0.0, a; = 0.0. TPR of Procedures. Mean Shift at ¢ = 230 in a Relevant
Covariate entered in First Differences. Left Panel = Upward Shift, Right Panel = Downward Shift.
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Figure A.40: 8 = 0.0, p = 0.0, 012 = 0.0, a; = 0.0. FPR of Procedures. Mean Shift at ¢ = 230 in an
Irrelevant Covariate entered in Levels. Left Panel = Upward Shift, Right Panel = Downward Shift.
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Figure A41: 8 = 0.0, p = 0.0, 012 = 0.0, a3 = 0.0. TPR of Procedures. Mean Shift at ¢ = 230 in an
Irrelevant Covariate entered in Levels. Left Panel = Upward Shift, Right Panel = Downward Shift.
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Figure A.42: 8 = 0.5, p = 0.0, 012 = 0.0, a3 = 0.0. FPR of Procedures. Mean Shift at ¢ = 230 in a
Relevant Covariate entered in Levels. Left Panel = Upward Shift, Right Panel = Downward Shift.
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Figure A.43: 8 = 0.5, p = 0.0, 012 = 0.0, @1 = 0.0. TPR of Procedures. Mean Shift at ¢ = 230 in a
Relevant Covariate entered in Levels. Left Panel = Upward Shift, Right Panel = Downward Shift.
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A.4.9 Additional Simulations - Incorrectly Differenced Covariate

Figure A.44 reports the FPR and TPR of the procedures in the case where x; is an unob-
served relevant covariate, but what we actually observe is z;, a strongly persistent (local-
to-unity) process formed from x;, and in order to remove the strong persistence we incor-
rectly take first differences of z;, Az;, and then consider this covariate for inclusion in the
CUSUMWMV procedure. Data on x; were therefore generated according to (1)-(2) and
(23)-(24) with 8 = 0.8, p = 012 = o1 = 0.0 and 0}, = 05, = 1 Vt. We then generate
2zt = (1—¢/T)z;_1 4z, as the observed series. The first differenced series, Az, is then used
as a covariate in the CUSUMWMY procedure. Results are reported for ¢ € {= 0,5, 10,20}.
We see that for ¢ = 0 the FPR and TPR of the procedures is identical to those reported
in Figure 2 panel(a), as would be expected given that in this case Az, = z;. For the other
values of ¢ we see that the FPR of the CUSUM"MV procedure is slightly inflated, and the
TPR of the procedure is slightly reduced, with both of these effects increasing in the value
of ¢. Tt should be noted, however, that while the TPR of the CUSUM"M™V procedure is
decreasing in ¢, it is still significantly higher than the TPRs of all of the univariate pro-
cedures. These findings mirror those reported for covariate augmented unit root tests in
Hansen (1995, pp.1159-1160) for this scenario. It is, however, worth noting that while the
limiting null distribution of the covariate unit root tests proposed in Hansen (1995) depend
in this scenario on ¢ (when ¢ > 0), in our context over-differenced covariates do not vio-
late the regularity conditions given in Assumption 2 and, hence, the asymptotic null dis-
tribution of the sequence of SWMVE, ¢t =T +1,..., | \T'], statistics in this case is as given
in Theorem 1, regardless of the value of ¢, such that the theoretical FPR of the resulting

CUSUM"YMV procedure remains controlled according to the result in Corollary 1.
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Figure A.44: 8 = 0.5, p = 0.5, 012 = 04, a3 = 0.2 - Left Panel=FPR, Right Panel =TPR. Impact of

Incorrectly Differenced Covariate
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