
JOURNAL OF IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 1

Gradient-Based Compression and Approximate
Computing for Deep Network Optimization in

Multimedia Data Processing
Vishal Krishna Singh, Jagpreet Singh, Rajkumar Singh Rathore, Devansh Nema

Abstract—Existing methods of compressed multimedia data
processing in deep networks are constrained by inherent trade-
offs such as low reconstruction accuracy, compression ratio,
and high computational latency. With computational intensive
tasks, the performance further deteriorates owing to high energy
requirements and processing delays in real-time, large-scale
multimedia applications. This work presents a deep learning
framework that integrates gradient-based compression with
approximate computing to optimize the in-network processing
of multimedia data. Hyperparameter tuning is employed to
systematically adjust bit-width, model size, and network depth,
enabling fine-grained control over compression and computa-
tional efficiency. The proposed approach makes use of adaptive
convolutional layers and dynamic learning rates for local gradient
residue compression with the aim to improve the exploitation
of low-rank structures and data sparsity. Extensive simulations
are performed on publicly available datasets, including CIFAR-
10, CIFAR-100, and MNIST, to validated the performance of
the proposed method. Results demonstrate the effectiveness of
the proposed method as it outperforms a set of state-of-the-art
approaches achieving a classification accuracy of 99.09%, with
almost real-time processing of the multimedia data.

Index Terms—Approximate Computing, Data Compression,
Deep Learning, Image Processing, Convolution Neural Network,
MNIST.

I. INTRODUCTION

THE era of Machine Learning (ML) and Computational
Intelligence (CI) will be defined by the pivotal role of

Deep Learning (DL) algorithms in several domains such as
data transmission, in-network data processing, sensor net-
works, Internet of Things (IoT), big data analytics, pattern
recognition, and many more. Specifically, the large volume
of data and need for high accuracy and precision by the
Neural Networks (NN) and Deep Neural Networks (DNNs) in
resource-constrained networks impose additional overhead on
the storage requirements, computational capacity, transmission
bandwidth, and processing delays. These issues have been
considered by several state-of-the-art methods, such as in
[1], [2], [3]; however, the cost of in-network processing in

Vishal Krishna Singh is with the School of Computer Science and
Electronic Engineering, University of Essex, Colchester, U.K. (E-mail:
v.k.singh@essex.ac.uk

Jagpreet Singh is with the Indian Institute of Technology Ropar, Punjab,
India. (E-mail: jagpreets@iitrpr.ac.in).

Rajkumar Singh Rathore is Department of Computer Science, School of
Technologies, Cardiff Metropolitan University, United Kingdom. (E-mail:
rsrathore@cardiffmet.ac.uk)

D Nema is with Intel India, Bengaluru, India. (E-mail: devansh-
nema14@gmail.com).

deep models has escalated exponentially with the continually
increasing volume of the data.

Interestingly, Approximate Computing (AC) presents an
alternate computational paradigm for addressing the trade-off
introduced by the large volumes of data in deep networks. Dis-
carding the exactness of the traditional computing paradigm,
AC achieves a significant edge in computational throughput
without any major loss in accuracy or precision. The work
presented in [4] shows the wide applications of AC to a
variety of domains, where it has been phenomenal in reducing
computational costs. A comprehensive analysis, presented in
[4] and [5], proves that with AC not only the training cost
of the DNN could be easily reduced to more than 50%, but
also the overall execution time can be optimized up to 50%
of the actual run time. The traction being received by AC
for in-network data processing, especially in DL methods,
comes naturally after the ground-breaking work of [6], [7]
which was based on the Shannon-Nyquist sampling theorem.
Since then, Compressed Sensing (CS) along with its various
versions, have been the center of in-network data processing
in resource hungry networks.

The literature supports that in-network processing has wit-
nessed many approaches based on CS that make use of
different transforms such as Wavelet, Discrete-Fourier and
Discrete-Cosine [6], [7], [8]. Considering the wide range of
algorithms developed for image data processing, they may be
roughly categorized into three categories: greedy algorithms,
optimization-based algorithms, and learning-based algorithms
[9], [10]. However, naive application of CS in resource con-
strained networks, imposes extra overhead on the intermedi-
ate nodes and results in energy holes in the network [11].
Alternatively, various hybrid-CS methods have been used to
optimize the load distribution and network lifetime in such
resource constrained networks [12], [13]. It is empirical to
note that in multimedia applications, large volume of data
is simultaneously reported from multiple sources (example:
video cameras), with each camera recording live at a sampling
frequency of a few minutes, resulting in thousands of samples
simultaneously being reported at any given time frame. Fur-
ther, with the advent of 3D technologies, a steep proliferation
in the data volume has been reported in such applications [14].
In-network processing, as such, becomes an imperative need
when dealing with multimedia data being reported in real-time
or almost real-time applications. Several methods have been
proposed to achieve storage and in-network processing opti-
mizations in recent years, such as dictionary-based approaches

2 JOURNAL OF IEEE TRANSACTIONS ON CONSUMER ELECTRONICS

[15], [16], [17], the predictive coding methods [18], [19], [20],
[21], [22], and component compression methods [23], [24],
[25], [26].

A careful observation of these methods presents a series of
interesting approaches to the in-network processing and anal-
ysis of stream image data. An example of such an approach
is the work proposed in [27], where a CS-based method is
used for the utilization of block cipher structures for encoding
quantized information. These structures incorporate operations
such as scrambling, blending, S-box, and chaotic matrix
XOR. The seminal work by the authors in [28] introduced
a novel hybrid approach to compression and encryption using
CS, where a chaos index controls the measurement matrix
constructed from the Hadamard matrix. The technique aims
to ensure both rapid and secure transfer of photos over the
internet. Another work, proposed in [29], suggested incor-
porating optical compression for simultaneous multiplexing
and encoding of images, addressing the challenges associated
with internet-based transmission. Furthermore, the authors in
[30] proposed an innovative strategy that combines a hyper-
chaotic network with 2D CS-based image compression and
encryption, enabling concurrent execution of compression and
encryption tasks while achieving data reduction and improved
security. Our previous work on CS based in-network pro-
cessing [31] and [13] stands out for efficient data processing
and load balancing results. Alternatively, methods proposed in
[32], [33] and [34] have used graph based methods and game
theory [35] for in-network performance optimization.

These studies provide valuable insights and serve as relevant
contributions to the literature in the field of DL and ML.
However, it is pertinent to note that most of the mentioned
DL and ML based approaches are highly dependent upon the
need of highly interconnected GPUs for effective communica-
tion. During each iteration of the distributed processing, vast
amounts of weight data must be synchronized across accel-
erators, which leads to substantial energy consumption and
communication time. Understandably, with the high scaling
distribution of data batches, due to the proliferation in the
number of participating nodes, the communication bandwidth
requirement increases exponentially. Considering the signifi-
cant need for high data transfer rates, this work aims to address
the issue of large number of hyper-parameters impacting the
bandwidth consumption and in-network processing in deep
networks. Optimizing the bit-width, model size and network
depth through hyper-parameter tuning, the proposed work
utilizes a DL framework to enhance model convergence and
reduce computational overhead by implementing a gradient
based compression method. The optimization of the local
gradient residue allows maximum utilization of the low rank
feature and sparsity in the data, leading to an improved
accuracy, processing time, and energy consumption. This
work exploits the advantages of the amalgamation of two
approaches, i.e., AC and DL, with the aim of generating
compounded benefits that are used to optimize storage and
computation costs in deep networks. With the optimized in-
network processing, the proposed method (hereafter termed as
Approximate Deep Learning (ADL)), uses AC and Convolu-
tional Neural Networks (CNN), for accurate feature extraction

from the input data. The proposed ADL, achieves a significant
edge, specifically in terms of accuracy, energy consumption,
compression efficiency and end-to-end delay, as compared
to state-of-the-art algorithms. The proposed ADL is able to
optimize the substantial computational burden placed on the
Fully Connected (FC) layers of DL networks. The improved
model convergence and reduced computational overhead are
validated on real-world image data sets. To define the scope
of this study (without limiting the application of the proposed
ADL to a specific domain), this work specifically considers
the case of three widely used and publicly available CIFAR-
10, CIFAR-100 [36] and MNIST [37] data sets, for testing and
validation. The proposed ADL is also implemented on a real
world test-bed and the results with varying batch sizes and
learning rate (LR) are presented. The unique contributions of
this work are summarized as below:

1) This work presents the novel ADL (AC based optimized
DL framework), which amalgamates the major advan-
tages of AC and CNNs for accurate feature extraction.

2) The proposed ADL utilizes a DL framework applied
over a gradient-based compression method to optimize
model convergence and computational overhead. The
optimization of the local gradient residue allows maxi-
mum utilization of the low rank feature and sparsity in
the data, leading to an improved in-network processing.

3) The proposed ADL is able to outperform most of the ex-
isting state-of-the-art methods, and the same is validated
through a series of tests on publicly available CIFAR-10,
CIFAR-100 [36] and MNIST [37] data sets.

4) The proposed ADL is also implemented on a real world
test-bed and the results with varying batch sizes and LR
are presented. Performance validation and comparative
analysis prove that the proposed ADL has a significant
edge, specifically in terms of accuracy, in-network pro-
cessing, compression ratio and end-to-end delay, over
the state-of-the-art algorithms.

The organization of the paper is as follows: Section II
describes the specific problem targeted and the contributions
of this work. It is followed by section III, which presents the
system model and data set description. The section IV presents
the proposed method followed by the section V which presents
the details of the experimental and simulation environment.
The results and detailed discussions are presented next in
section VI followed by the concluding comments and future
directions in section VII.

II. PROBLEM DESCRIPTION AND CONTRIBUTIONS

In large-scale DL models, particularly those with billions
of parameters, the communication of weight updates between
distributed accelerators such as GPUs or TPUs becomes a
significant bottleneck. During each iteration of distributed
processing, vast amounts of weight data must be synchro-
nized across accelerators, which leads to substantial energy
consumption and communication time. As models grow in
complexity, the number of weight updates increases exponen-
tially, further amplifying communication overhead and reduc-
ing training efficiency. One approach to alleviate this problem

VISHAL et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON CONSUMER ELECTRONICS. 3

is to reduce the number of weight updates communicated
between accelerators without sacrificing the model’s accuracy.

By reducing the number of weight updates, techniques
such as sparsification and pruning can significantly decrease
the volume of data transferred between accelerators. These
methods select only the most critical weights to be transmitted,
leaving less significant updates out of the communication
process. This reduces the communication time, which can be
mathematically modeled as:

Tcomm = α+ β × n

b
(1)

where α is the communication latency (the fixed cost for
initiating communication), β represents the time required to
transmit a unit of data, n is the number of weight updates
being transmitted, and b is the available bandwidth. By re-
ducing n, the communication time decreases, which in turn
minimizes the energy consumption. The energy consumption
for communication can be expressed as:

Ecomm = Pcomm × Tcomm (2)

where Ecomm is the total energy consumed during communi-
cation, Pcomm is the power consumed during communication,
and Tcomm is the communication time.

To ensure the accuracy and efficiency of the model are
maintained, it must be taken into account that the available
bandwidth limits the maximum rate at which data can be
transmitted between accelerators. Reducing the number of
weights helps alleviate bandwidth pressure, ensuring efficient
data transfer, and is represented as b ≤ bmax. The model’s
accuracy A must be preserved within acceptable limits, ensur-
ing that pruning or sparsification does not degrade the model’s
accuracy beyond a predefined threshold Amin ≤ A ≤ Amax.
The computational resources required for selecting and updat-
ing the weights must not exceed the total available resources.
Efficient pruning and sparsification methods are necessary to
ensure that the computational cost of reducing weight updates
does not exceed the resources available, Rused ≤ Rtotal. The
overall communication latency must be kept within a prede-
fined maximum limit, ensuring that communication delays do
not compromise real-time or near-real-time performance, as
represented by Tcomm ≤ Tmax. By optimizing the number of
weight updates and incorporating methods like pruning and
sparsification, distributed deep learning systems can reduce
communication time and energy consumption while maintain-
ing high model performance. This allows for faster, energy-
efficient training of large-scale models without overwhelming
system resources or sacrificing accuracy.

III. SYSTEM MODEL AND DATA SET DESCRIPTION

A. System Model

The system model outlines the design of an inter-accelerator
communication framework using a 32-node cluster of Rasp-
berry Pi 3B+ devices. The cluster simulates a distributed
DL environment where each Raspberry Pi functions as an
individual accelerator. The proposed ADL is implemented on
the motes and consists of five successively numbered layers of
multiple deep compression layers. A convolution layer, batch

normalization layer, and ReLU activation function make up
the layer composition. Accordingly, the reconstruction layer is
also composed of successive deep reconstruction layers. While
layer 1 is designed to be fully connected, the layers from 2−5
are considered to be de-convolution, and stride 2 design is
considered for them. With the aim of obtaining a balanced
robustness and efficiency ratio, a mini-batch gradient of size
32 is considered in this work. The proposed DL framework is
applied over a gradient-based compression method to optimize
model convergence and computational overhead. ADL is ap-
plied to every fully connected convolutional layer separately as
an optimizer. The optimization is based on the idea to consider
both input features and the accumulated residual gradient by
dividing vectors into several fixed-length bins for each layer
(algorithm 1). The neural network’s final stages include a fully
connected layer that employs matrix multiplication to convert
it’s input data into output features using a weight matrix.

B. Data Set Description

The proposed ADL along with all the compared state-of-the-
art methods are implemented and the performance is compared
on the following data sets:

1) CIFAR Dataset: The CIFAR-10 and CIFAR-100 [36]
are popular labeled datasets with more than 50 million tiny
images. The CIFAR-10 is divided into 10 classes with 6000
images per class, making it 60000 colour images. The 32×32
pixel images and are bifurcated in 5 training and 1 testing
set, each containing 10000 images. The images in the test set
are chosen randomly, with exactly 1000 images from each
class. The CIFAR-100 is an extension of the CIFAR-10, with
100 classes, each comprising of 600 images. Each class is
composed of 500 training images and 100 testing images,
while the 100 classes together grouped to form a set of 20
super classes. For each image in the data set,‘fine’ and ‘coarse’
are used as the two labels for defining the class and super class,
respectively.

2) MNIST Dataset: The MNIST dataset [37] is widely
recognized as a benchmark in the fields of ML and computer
vision (CV), specifically for tasks such as picture classification
and digit recognition. This data set consists of 70, 000 gray
scale images, each with a resolution of 30 × 30 pixels. The
pixel intensity is represented by a gray scale value ranging
from 0 to 128. The data set is divided into 3 subsets for differ-
ent purposes: training, validation, and testing. The training set
contains 50, 000 images, which are used to train the proposed
ADL model in this work. The validation set comprises 10, 000
images and is utilized for hyper-parameter tuning and model
evaluation during the training process. The remaining 10, 000
images from the test set are employed for the final evaluation
of the trained model’s performance. The images in the dataset
exhibit variations in writing styles, forms, and sizes owing to
the diverse sources for collection.

IV. PROPOSED METHODOLOGY

The DL model consists of a multi-layer architecture with
ReLU as an activation function. The execution of the proposed
ADL is defined by the following steps (shown in Figure 1):

4 JOURNAL OF IEEE TRANSACTIONS ON CONSUMER ELECTRONICS

Fig. 1: System Architecture Diagram

1) Convolutional Block: The steps of execution are as
follows:

a) The input data is passed through the model, i.e. 1st

convolutional 2D layer. It adds a convolution layer
with 32 filters that generate 2-dimensional feature
maps to learn different aspects of the data with
ReLU as an activation function.

b) In the learningNoUpdate() phase, the algorithm
learns the number update, followed by the serial-
izeGrad(), which collects the gradient weightage
of each layer in a vector to facilitate sequential
weight update.

c) A Maxpooling2D layer is used for feature ex-
traction. The most relevant features are selected
and are forwarded for further processing, while the
remaining features are discarded.

d) Adaptive learning rates are used to decrease the
processing time, as shown in the equation 6, where
loss differential, learning rate and new learning
rate, are denoted by Ld, LR and L̂R, respectively.
The mathematical formulation to compute the val-
ues is inspired from the calculation presented in
[38] and is optimized to fit the proposed ADL.

Ay1 =
1

2
+

Ld +
1

LR

5× 3.14
(3)

Ay21 =
1

4
+

LR

0.6× 3.14
(4)

Ay22 =
1

4
+

Ld +
1

LR

5.5× 3.14
(5)

L̂R =
LR

2
+ (Ld > 10−5)× LR×

Ay1 + (Ld < 10−5)× LR×
(Ay21 +Ay22) (6)

2) Batch normalization: The output of the previous step is
passed on to the batch normalization layer. Essentially,
batch normalization widens the networks’ intermediary
layers, by normalizing to either the range of [0, 1] or
[−1, 1] or to mean = 0 and variance = 1. The basic
formula is :

a∗ =
(a− E[a])√

var(a)

VISHAL et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON CONSUMER ELECTRONICS. 5

where a∗ represents the updated value of a single
component, E[a] represents it’s batch mean, and var(a)
represents it’s batch variance.

3) The output of the previous step is iterated through two
different convolutional blocks and batch normalization
for further feature extraction and compression.

4) The output of the previous step is passed through 2
dropout layers which are applied at the rate of 0.25 and
0.5 respectively, to reduce the complexity of the model
to prevent over fitting.

5) Furthermore, a batch normalizing layer is applied in
between two separate linear layers. This enables the
array to be flattened so that the convolution outputs
(a matrix) may be fed into the fully connected layer
(an array), allowing the compressed data to be properly
transmitted from point A to point B.

6) The compressed data is then transmitted over the net-
work and decompressed for reconstruction.

7) Reconstruction of original data is done with de-
convolution block and reshape layers.

V. EXPERIMENT AND SIMULATION SETUP

The performance of the proposed ADL is validated through
a series of experiments performed on a real test-bed of 32-
node cluster of Raspberry Pi 3B+ devices. The performance
evaluation is further extended through extensive simulation
analysis and the details of the experimental and simulation
setup is presented below:

A. Experimental Setup

The experimental setup is deployed to replicate the frame-
work for simulating the inter-accelerator communication using
a 32-node cluster of Raspberry Pi 3B+ devices. Each Rasp-
berry Pi in the cluster, functions as a simulated accelerator
within a distributed DL environment. The setup is designed to
process the data independently on each node and the results
are communicated and aggregated across the network. The
Raspberry Pi 3B+ devices, each equipped with a 1.4 GHz
quad-core ARM Cortex-A53 processor, and have a 1 GB
RAM with built-in ethernet. The motes are connected via
ethernet cables to ensure low-latency communication. The
cluster is powered by individual 5V/2.5A power supplies for
each Raspberry Pi, and the devices are networked through
a central network switch that supports all 32 nodes. The
operating system for each Raspberry Pi is Raspbian OS,
which is installed on microSD cards, providing a stable and
familiar environment for development and execution. Coor-
dinated execution is achieved through the use of libraries
(MPI4Py, Dask, and Ray) for facilitating data distribution,
parallel computation, and the synchronization of results among
the nodes. The input data is distributed across the Raspberry
Pi devices, and inter-accelerator communication is managed
through message passing and synchronization protocols. Ad-
ditionally, the model incorporates fault tolerance strategies
like check-pointing and dynamic task reassignment to address
potential node failures, as well as load balancing techniques
to optimize resource utilization across the cluster. The results

Algorithm 1 Proposed ADL
Input : Original Image vector
Output : Re-Constructed image vector

1: procedure COMPRESS
2: Gr ← residue +Wt
3: Z ← Residue + 2×Wt
4: Divide Gr into bins of size S
5: for i = 1 to length(Gr)/S do
6: Calculate Grmax(i)
7: end for
8: for i = 1 to length(Gr)/S do
9: for j = 1 to S do

10: index← (i− 1)× S + j
11: if Zindex ≥ Grmax(i) then
12: Grq(index)← Quantize(Gr(index))
13: Add Grq(index) to a compress vector
14: residue(index)← Gr(index)×Grq(index)
15: else
16: residue(index)← Gr(index)
17: end if
18: end for
19: end for
20: return compress vector
21: end procedure
22: procedure DECOMPRESS(compress vector)
23: Initialize an empty array Gr of size

length(compress vector)
24: Initialize an empty array Z of size

length(compress vector)
25: Initialize S as the bin size used during compression
26: Initialize Wt as the desired weight
27: for i = 1 to length(Gr)/S do
28: Calculate Grmax(i)
29: end for
30: Initialize an empty array residue of the same size as

Gr
31: for i = 1 to length(Gr)/S do
32: for j = 1 to S do
33: index← (i− 1)× S + j
34: if Zindex ≥ Grmax(i) then
35: Gr(index) ←

Dequantize(compress vector[index])
36: residue(index) ← Gr(index) ×

Gr(index)−Wt
37: else
38: residue(index) ←

compress vector[index]−Wt
39: end if
40: end for
41: end for
42: return Reconstructed Image vector
43: end procedure

6 JOURNAL OF IEEE TRANSACTIONS ON CONSUMER ELECTRONICS

(a) A cluster of Raspberry Pi 3B+ (b) Raspberry Pi 3B+

Fig. 2: Experimental Setup

are obtained for a series of evaluation parameters; namely
in the terms of Accuracy, Average Loss, Processing Time,
Compression Ratio, Average Energy Consumption, End-to-End
delay and Structural Similarity Index Measure (SSIM). The
Figure 2 shows a magnified view of the experimental setup
used for this study.

B. Simulation Setup

To validate the performance of the proposed ADL, extensive
simulations were performed on a Dell Latitude 5420 with
Intel core I5−1145G7 processor, frequency 2.60GHz, 16 GB
Memory, and 256 GB SSD. The simulations were performed
to replicate a distributed environment on a 64-bit Windows 10
operating system with Python 3.0 virtual environment for the
execution of the code and for obtaining the results. For a fair
analysis of the proposed ADL, the case with batch size = 32
and LR = 0.005, is simulated along with various optimizers,
namely ADADelta [39], ADAGrad [40], Adam [41], ADAMax
[41], and RMSprop [42]. The simulations are extended for
implementing and comparing the out-cases of SGD [43], JPEG
[44] [45], AWC [46] and FeCarNet [47] for a comparative
evaluation of ADL’s performance. The model is trained for
100 epochs with the seed value of 50 and a log interval of
10 to ensure reproducibility on publicly available CIFAR-10,
CIFAR-100 [36] and MNIST [37] data sets. The results are ob-
tained for a series of evaluation parameters; namely Accuracy,
Average Loss, Processing Time, Compression Ratio, Average
Energy Consumption, End-to-End delay and SSIM. The details
of the simulation parameters and the required formulas for
calculating the evaluation parameters, are presented in Table
I.

VI. RESULTS AND DISCUSSIONS

A. Experimental Results

The Table II presents a comprehensive performance analysis
of the proposed ADL based on the experimental setup defined
in section V-A. The outcomes of the proposed ADL are
reported for varying batch sizes and LR. It is evident from
the results that lower LRs (0.005 and 0.01) have a slower
convergence because of the increased processing time and
high energy consumption, as compared to the moderate LR

TABLE I: Simulation Parameters and Metrics

Parameter Value Parameter Formula
Average (γ) 0.7 Accuracy TP+TN

TP+TN+FP+FN
Correlation Coefficient

Test Batch Size 1000 Compression
SIZE(initial)

SIZE(compress)

Ratio

Initial LR 0.005 Avg. Loss
∑n

i=1 Lossi
n

Stabilized (β) 0.6 Proc. Time Tf − Ti

Training Loss
Batch Size 32

Epochs 100
Dropout 0.25, 0.5

Seed 50
Log Interval 10

(0.05), which provides an acceptable trade-off between time
and network stability. The proposed ADL is able to show
improved performance with higher LRs (0.5 and 1.0), as the
training time is significantly reduced, resulting in improved
convergence. Results show that the proposed ADL is able
to significantly reduce the end-to-end delay as the minimum
delay is reported to be 4.38 seconds, verifying the algorithms
ability to improve the performance in almost real time appli-
cations. With the highest accuracy of 98.99%, highest SSIM at
96.79 and average energy consumption as low as 7.13 joules,
the proposed ADL is able to achieve the desired objectives
of improved performance in deep networks. Furthermore, the
optimization of the local gradient residue allows maximum
utilization of the low rank feature and sparsity in the data,
leading to an improved energy performance and compression
ratio by the ADL during the experiments.

B. Simulation Results

The performance assessment and comparative analysis of
various optimization methods offer insightful information
about their efficiency and viability. This section presents the
findings from assessing the effectiveness of the proposed ADL
and discusses how it stacks up against the existing state-of-
the-art techniques. For the simulation scenario described in
the section V-B, a comprehensive performance analysis is
presented below. The simulation outcomes for the proposed
ADL along with the compared methods on CIFAR-10, CIFAR-
100 and MNIST datasets, are also presented in Table III.

1) Accuracy: The proposed ADL is able to outperform
the other state-of-the-art optimizers and the SGD method
proposed in [43], with a clear margin as the accuracy outcome
is reported at 98.97% in comparison to the 98.81% for
ADADelta, 98.68% for ADAGrad, 98.89% for Adam, 98.77%
for RMSprop and 98.76% for SGD, at LR = 0.005 and batch
size = 32. The findings, as reported in Table III and shown in
Figure 3, are the outcomes of the proposed ADL’s ability to
allocate gradient weightage and sequential weight updation in
the learningNoUpdate() and serializeGrad() phase. The results
of efficient feature extraction through the Maxpooling 2D layer
are seen in the algorithm’s improved performance in terms
of accuracy. A careful observation of the performance of the
ADL on the CIFAR data sets shows that the method is equally

VISHAL et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON CONSUMER ELECTRONICS. 7

TABLE II: Experimental Performance of Proposed ADL with Varying Batch Size and Learning Rate

Batch Size Learning Rate Accuracy % Average Loss Proc. Time (sec) Avg. Compression Avg. Energy Delay (sec) SSIMRatio Consumption (J)

32 0.003 98.82 0.04 ± 0.01 3.11 5.42 11.31 5.01 93.13
32 0.005 98.99 0.03 ± 0.01 3.56 5.60 12.67 5.99 96.47
32 0.01 98.69 0.03 ± 0.01 3.09 5.55 11.03 5.43 94.43
32 0.05 98.81 0.03 ± 0.02 2.99 5.51 10.09 5.01 95.03
32 0.5 98.93 0.04 ± 0.01 2.91 5.41 9.78 4.67 96.13
32 1 98.79 0.03 ± 0.01 2.82 5.50 7.13 4.38 96.79
64 0.005 98.86 0.03 ± 0.01 3.89 5.55 13.21 6.81 92.13

128 0.005 98.92 0.04 ± 0.02 4.95 5.42 14.87 7.20 92.13
256 0.005 98.93 0.05 ± 0.02 7.03 5.33 16.08 9.91 91.13

effective on coloured images, where the algorithm is able to
achieve significantly improved accuracy of 89.19%, 59.11%
on the CIFAR-10 and CIFAR-100 data sets, respectively.

2) Average Loss: The proposed ADL is able to preserve crit-
ical information through the series of CNN’s applied through
the proposed architecture, as shown in Figure 4. The impres-
sively low average loss of the proposed ADL on MNIST data
set, reported at 0.03, is the reason for improved data fidelity,
transmission and data integrity. When compared to other state-
of-the-art optimizers, such as ADADelta, ADAGrad, Adam,
ADAMax, and RMSprop. As evident from Table III and Figure
4, the proposed ADL outperforms the compared approaches on
all three data sets with a fair margin. The effect of adaptive
LR in the proposed ADL is seen in terms of average loss when
compared with the SGD [43] method, where the proposed ADL
shows reduced average loss as the SGD [43] marks the average
loss at 0.07, 1.95, 0.53 and FeCarNet [47] at 0.02, 1.68, 0.59
in comparison to the ADL’s average loss of 0.03, 1.29 and 0.13
for the same parameters on MNIST, CIFAR-100 and CIFAR-
10 data sets, respectively.

3) Processing Time: The applicability of the proposed
ADL to real-time processing systems in bandwidth constrained
networks, is marked by it’s ability to strike a balance be-
tween optimization speed and accuracy, making it particularly
suitable for large-scale ML applications where time-efficiency
is critical. It can be clearly justified by the results of the
processing time, reported in Table III, that the adaptive LR
helps to enhance the overall stability and robustness of the
model by preventing large fluctuations in the learning rate that
can hinder convergence. It also dynamically adjusts the LR
depending on the accuracy and other factors, at each iteration
for better optimization of model parameters and weightage of
each neuron links within interconnected convolution layers,
that ultimately reduces the processing time of the proposed
ADL without affecting the accuracy and also prevents it from
underfitting or overfitting of the model. The processing of the
proposed ADL, reported at 1.26 minutes for MNIST, 6.09
minutes for CIFAR-100 and 4.91 minutes for CIFAR-10, is
significantly better than the state-of-the-art methods presented
in Table III.

4) Compression Ratio: Figure 7 shows 16 randomly se-
lected images from the MNIST data set. The selected images
were subjected to compression through the proposed ADL
along with the other identified optimizers. The outcomes of the
experiment in terms of compression ratio, for respective inputs
from Figure 7 are reported in Figure 8 and consistently demon-

strate that the proposed ADL algorithm achieves competitive
compression ratio across a variety of image resolutions. In
addition to the above, a simple observation from the Table
III reaffirms the algorithm’s effectiveness in achieving higher
compression ratios while preserving image details, as the
proposed ADL consistantly maintains it’s performance on
simple grey scale (MNIST) as well as complex coloured
data sets (CIFAR-10 and CIFAR-100). Through the integra-
tion of a convolutional layer combined with learningNoUp-
date(), serializeGrad(), and the Max-pooling layer, the ADL
algorithm surpasses by selectively retaining only the most
important image pixels or features. This selective strategy
enables the algorithm to accomplish higher compression ratio
while preserving significant image details during subsequent
image reconstruction. The results, as shown in the Table III,
demonstrate that the ADL algorithm is ideally suited for a
broad variety of applications where balancing compression
ratios and image quality is of the utmost importance.

5) Energy Consumption: The results presented in Table III
and Figure 5, show that the proposed ADL is able to achieve
a superior performance in terms of average energy consump-
tion. The impact of hyper-parameter optimization through the
proposed ADL, is seen in the optimized computation and
memory access requirements. The key hyper-parameters such
as bit-width (precision of weights and activations), model size
(number of parameters via pruning and sparsity), and network
architecture (depth and number of filters) are optimized to
ensure reduced energy consumption. The effect of bit-width
precision, batch-size optimization, pruning, optimized loss
rate and exploiting sparsity, reduces the number of non-zero
weights, allowing for fewer operations, lower memory band-
width requirements, and faster convergence, reducing the over-
all energy consumption. The model’s adaptive learning ability
and the integration of the convolutional layer combined with
learningNoUpdate(), serializeGrad(), and the Max-pooling
layer allows the algorithm to converge relatively quickly and
minimises the processing time as well. The proposed ADL
is able to achieve an average energy consumption of as low
as 2247 joules on MNIST, 10475 joules on CIFAR-100 and
6693 joules on the CIFAR-10 data set. The dexterity of
the proposed ADL is maintained over the compared state-
of-the-art methods as the algorithm surpasses the existing
methods with a minimum improvement of 23.01% in terms of
average energy consumption. The proposed ADL has a reduced
energy consumption rate as compared to traditional approaches
such the JPEG [44] [45]. Such methods, in contrast to the

8 JOURNAL OF IEEE TRANSACTIONS ON CONSUMER ELECTRONICS

proposed ADL, use a fixed algorithmic pipeline with limited
flexibility for energy reduction and lack tunable parameters to
dynamically adjust computation or precision, making it less
energy-efficient for specific tasks. Although JPEG itself is
computationally simple and does not involve training, its use
in deep learning pipelines introduces notable preprocessing
overhead. In these systems, images compressed using JPEG
require repeated decompression before being processed by the
model, particularly during the training phase when large-scale
datasets are involved. This continuous cycle of compression
and decompression adds computational cost and significantly
increases energy consumption, even when the JPEG algo-
rithm is simple [45]. In contrast, the proposed ADL directly
processes data without requiring intermediate compression-
decompression steps, thus eliminating this overhead and re-
ducing energy consumption.

6) End-to-End Delay: The performance of the proposed
ADL, in terms of end-to-end delay, is presented for the three
identified data sets in the Table III. Evidently, the proposed
ADL outperforms the compared approaches and claims it’s
suitability for real-time and almost real-time processing sys-
tems. The results for the CIFAR-10 and CIFAR-100 proves the
ability of the ADL to minimize the variations in the LR owing
to the models capability for adaptive learning rate. This en-
hances the model’s stability and robustness and ensures better
convergence. Moreover, the ability to dynamically adjust the
learning rate, based on neuron link weights, in interconnected
convolution layers allows minimum end-to-end delay for the
proposed ADL, without compromising the model’s accuracy.
The reported end-to-end delay of 3.69 minutes for MNIST,
7.07 minutes for CIFAR-100, and 5.11 minutes for CIFAR-10,
shows the ADL’s supremacy over the compared approaches.

7) Structural Similarity Index Measure: The SSIM is a
normalized measure of the similarity of an image when com-
pared to it’s compressed version [48]. The SSIM is calculated
on the basis of a window comparison method used for any two
images of the same resolution such that the measure between
the two windows of a and b is calculated as below:

SSIM(a, b) =
(2µaµb + d1)(2σab + d2)

(µ2
a + µ2

b + d1)((σ2
a + σ2

b + d2)
(7)

where µa and µb represent the average mean of ‘a’ and ‘b’
respectively and σa and σb are the average vairance of ‘a’ and
‘b’ respectively. Additionally, d1 and d2 are two variables.
As discussed in the previous sections and validated through
the results in Table III and Figure 6, the algorithm’s high
SSIM is another proof of the method’s dexterity which is
achieved through the integration of the convolutional layer
combined with learningNoUpdate(), serializeGrad(), and the
Max-pooling layer. The integration allows the ADL algorithm
to not only maintain a high SSIM but also have a high
compression ration without affecting the quality of the image.

VII. CONCLUSION AND FUTURE DIRECTIONS

This work presents a DL architecture, termed as ADL,
based on AC and CNN. Utilizing AC and hyper-parameter
tuning, this work proposes a DL architecture for in-network

performance optimization in large-scale image processing ap-
plications of deep networks. The proposed algorithm uses
hyper-parameter tuning to optimize bit-width, model size and
network depth of a deep learning framework, applied over
a gradient-based compression method to optimize the local
gradient residue, allowing maximum utilization of the low
rank feature and sparsity in the data, leading to improved
convergence and computational overhead. The performance of
the proposed ADL is validated through a series of experiments
performed on a real test-bed of 32-node cluster of Raspberry Pi
3B+ devices. The performance evaluation is further extended
through extensive simulation analysis on publicly available
CIFAR-10, CIFAR-100 and MNIST data sets. The proposed
approach is able to outperform most of the state-of-the-art
methods in terms of Accuracy, Average Loss, Processing Time,
Compression Ratio, Average Energy Consumption, End-to-End
delay and SSIM, achieving significantly good results for all the
used data sets. The authors continue to extend this work by
improving the training and validating the performance on more
complex and diverse data sets.

REFERENCES

[1] W. Jiang, Y. Zhang, H. Han, Z. Huang, Q. Li, and J. Mu, “Mobile
traffic prediction in consumer applications: A multimodal deep learning
approach,” IEEE Transactions on Consumer Electronics, vol. 70, no. 1,
pp. 3425–3435, 2024.

[2] Q. Li, Z. Huang, W. Jiang, Z. Tang, and M. Song, “Quantum algo-
rithms using infeasible solution constraints for collision-avoidance route
planning,” IEEE Transactions on Consumer Electronics, 2024.

[3] Z. Yang, W. Jiang, S. Huang, S. Chang, J. He, Y. Zhang, and Z. Feng,
“Snr-enhanced automatic modulation classification in artificial intel-
ligence of things for consumer electronics,” IEEE Transactions on
Consumer Electronics, 2025.

[4] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, 2016.

[5] F. Seiler and N. TaheriNejad, “Efficient image processing via
memristive-based approximate in-memory computing,” IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 43, no. 11, pp. 3312–3323, 2024.

[6] E. J. Candès et al., “Compressive sampling,” in Proceedings of the
international congress of mathematicians, vol. 3. Madrid, Spain, 2006,
pp. 1433–1452.

[7] D. L. Donoho, “Compressed sensing,” IEEE Transactions on information
theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[8] H. Gan, Z. Guo, and F. Liu, “Nestd-net: Deep nesta-inspired unfolding
network with dual-path deblocking structure for image compressive
sensing,” IEEE Transactions on Image Processing, vol. 33, pp. 1923–
1937, 2024.

[9] Z. Xie, L. Liu, and Z. Chen, “Image compressed sensing: From deep
learning to adaptive learning,” Knowledge-Based Systems, vol. 293, p.
111659, 2024.

[10] M. Shen, H. Gan, C. Ma, C. Ning, H. Li, and F. Liu, “Mtc-csnet:
Marrying transformer and convolution for image compressed sensing,”
IEEE Transactions on Cybernetics, vol. 54, no. 9, pp. 4949–4961, 2024.

[11] V. K. Singh and M. Kumar, “A compressed sensing approach to
resolve the energy hole problem in large scale wsns,” Wireless Personal
Communications, vol. 99, pp. 185–201, 2018.

[12] V. K. Singh, M. Kumar, and S. Verma, “Accurate detection of important
events in wsns,” IEEE Systems Journal, vol. 13, no. 1, pp. 248–257,
2017.

[13] ——, “Node scheduling and compressed sampling for event reporting in
wsns,” IEEE Transactions on Network Science and Engineering, vol. 6,
no. 3, pp. 418–431, 2018.

[14] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang, and S. Wang, “Image and
video compression with neural networks: A review,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 30, no. 6, pp. 1683–
1698, 2019.

[15] J. Liang, M. Zhang, X. Zeng, and G. Yu, “Distributed dictionary learning
for sparse representation in sensor networks,” IEEE Transactions on
Image Processing, vol. 23, no. 6, pp. 2528–2541, 2014.

VISHAL et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON CONSUMER ELECTRONICS. 9

0 20 40 60 80 100

76

78

80

82

84

86

88

90

92

A
cc

ur
ac

y
(%

)

Iterations

 Proposed ADL Adadelta Adagrad Adam
 Adamax RMSprop SGD JPEG
 AWC FeCarNet

(a) Performance on CIFAR-10

0 20 40 60 80 100

44

46

48

50

52

54

56

58

60

A
cc

ur
ac

y
(%

)
Iterations

 Proposed ADL Adadelta Adagrad Adam
 Adamax RMSprop SGD JPEG
 AWC FeCarNet

(b) Performance on CIFAR-100

0 20 40 60 80 100

94

95

96

97

98

99

A
cc

ur
ac

y
(%

)

Iterations

 Proposed ADL
 Adadelta
 Adagrad
 Adam
 Adamax
 RMSprop
 SGD
 JPEG
 AWC
 FeCarNet

(c) Performance on MNIST

Fig. 3: Performance Evaluation - Accuracy of Proposed ADL

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

A
ve

ra
ge

 L
os

s

Iterations

 Proposed ADL
 Adadelta
 Adagrad
 Adam
 Adamax
 RMSprop
 SGD
 JPEG
 AWC
 FeCarNet

(a) Performance on CIFAR-10

0 20 40 60 80 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

A
ve

ra
ge

 L
os

s

Iterations

 Proposed ADL
 Adadelta
 Adagrad
 Adam
 Adamax
 RMSprop
 SGD
 JPEG
 AWC
 FeCarNet

(b) Performance on CIFAR-100

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
ve

ra
ge

 L
os

s

Iterations

 Proposed ADL
 Adadelta
 Adagrad
 Adam
 Adamax
 RMSprop
 SGD
 JPEG
 AWC
 FeCarNet

(c) Performance on MNIST

Fig. 4: Performance Evaluation - Average Loss of the Proposed ADL

Prop
os

ed
 ADL

ADADelt
a

ADAGrad
Ada

m

ADAMax

RMSpro
p

SGD
JP

EG
AWC

FeC
arN

et
0

1000

2000

3000

4000

5000

6000

7000

8000

En
er

gy
 C

on
su

m
pt

io
n

(J
)

(a) Performance on CIFAR-10

Prop
os

ed
 ADL

ADADelt
a

ADAGrad
Ada

m

ADAMax

RMSpro
p

SGD
JP

EG
AWC

FeC
arN

et
0

2000

4000

6000

8000

10000

12000

En
er

gy
 C

on
su

m
pt

io
n

(J
)

(b) Performance on CIFAR-100

Prop
os

ed
 ADL

ADADelt
a

ADAGrad
Ada

m

ADAMax

RMSpro
p

SGD
JP

EG
AWC

FeC
arN

et
0

500

1000

1500

2000

2500

3000

En
er

gy
 C

on
su

m
pt

io
n

(J
)

(c) Performance on MNIST

Fig. 5: Performance Evaluation - Energy Consumption of Proposed ADL

10 JOURNAL OF IEEE TRANSACTIONS ON CONSUMER ELECTRONICS

TABLE III: Simulation Performance Comparison of the Proposed ADL with State-of-the-Art Methods

Dataset Algorithm Accuracy % Average Loss Processing Compression Avg. Energy Delay (min) SSIMTime (min) Ratio Consumption (J)

CIFAR-10 [36]

Proposed ADL 89.19 0.13 ± 0.02 4.91 3.97 6693 5.11 93.89
ADADelta [39] 82.56 0.49 ± 0.06 5.10 3.67 7488 5.01 88.92
ADAGrad [40] 80.19 0.53 ± 0.02 4.21 3.32 7231 5.43 86.13

Adam [41] 83.23 0.43 ± 0.02 4.71 3.89 7102 5.71 89.32
ADAMax [41] 82.17 0.34 ± 0.02 4.21 3.67 7123 5.93 88.32
RMSprop [42] 81.47 0.43 ± 0.02 4.41 3.72 7011 6.43 87.11

SGD [43] 81.29 0.53 ± 0.02 5.21 2.98 7809 6.91 85.39
JPEG [44] [45] 79.19 0.53 ± 0.02 4.51 3.37 7459 5.32 81.32

AWC [46] 82.19 0.54 ± 0.02 4.71 3.94 6987 6.39 86.32
FeCarNet [47] 88.19 0.59 ± 0.02 5.01 3.95 6709 6.61 90.32

CIFAR-100 [36]

Proposed ADL 59.11 1.29 ± 0.02 6.09 3.68 10475 7.07 89.16
ADADelta [39] 55.39 1.12 ± 0.02 8.09 3.35 11988 8.89 86.92
ADAGrad [40] 52.50 1.85 ± 0.02 7.53 3.27 11407 8.83 85.98

Adam [41] 56.12 1.60 ± 0.02 7.45 3.54 10801 8.47 86.71
ADAMax [41] 55.17 1.75 ± 0.02 7.27 3.61 11105 7.62 84.95
RMSprop [42] 54.54 1.78 ± 0.02 7.12 3.52 11123 8.50 83.43

SGD [43] 51.12 1.95 ± 0.02 7.81 2.71 11701 8.23 81.87
JPEG [44] [45] 52.25 1.92 ± 0.02 7.46 3.12 11302 7.78 75.36

AWC [46] 54.21 1.76 ± 0.02 7.17 3.36 11004 8.67 85.16
FeCarNet [47] 56.43 1.68 ± 0.02 6.87 3.15 10605 8.32 88.65

MNIST [37]

Proposed ADL 98.97 0.03 ± 0.01 1.26 4.86 2247 3.69 97.64
ADADelta [39] 98.81 0.04 ± 0.01 2.27 4.11 2988 4.21 97.13
ADAGrad [40] 98.68 0.03 ± 0.02 1.84 3.83 2503 3.82 93.04

Adam [41] 98.89 1.01 ± 0.12 1.89 4.48 2409 4.87 95.12
ADAMax [41] 98.61 0.15 ± 0.01 1.75 3.33 2533 4.86 94.02
RMSprop [42] 98.77 1.23 ± 0.19 1.49 3.84 2443 3.79 94.39

SGD [43] 98.76 0.07 ± 0.01 2.51 - 2889 4.32 95.28
JPEG [44] [45] 98.61 0.02 ± 0.01 1.27 3.79 2654 3.94 88.98

AWC [46] 98.81 0.04 ± 0.01 1.27 4.79 2431 3.73 96.31
FeCarNet [47] 98.89 0.02 ± 0.01 1.37 4.79 2378 3.69 97.31

Prop
os

ed
 ADL

ADADelt
a

ADAGrad
Ada

m

ADAMax

RMSpro
p

SGD
JP

EG
AWC

FeC
arN

et
65

70

75

80

85

90

95

SS
IM

(a) Performance on CIFAR-10

Prop
os

ed
 ADL

ADADelt
a

ADAGrad
Ada

m

ADAMax

RMSpro
p

SGD
JP

EG
AWC

FeC
arN

et

66

69

72

75

78

81

84

87

90

SS
IM

(b) Performance on CIFAR-100

Prop
os

ed
 ADL

ADADelt
a

ADAGrad
Ada

m

ADAMax

RMSpro
p

SGD
JP

EG
AWC

FeC
arN

et
75

80

85

90

95

100

SS
IM

(c) Performance on MNIST

Fig. 6: Performance Evaluation - SSIM of the Proposed ADL

[16] C. Afef, C. Émilie, and D. Marc-André, “Fast dictionary-based approach
for mass spectrometry data analysis,” in 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2018, pp. 816–820.

[17] L. Shao, R. Yan, X. Li, and Y. Liu, “From heuristic optimization to
dictionary learning: A review and comprehensive comparison of image
denoising algorithms,” IEEE transactions on cybernetics, vol. 44, no. 7,
pp. 1001–1013, 2013.

[18] J. Anitha, P. Eben Sophia, and D. Jude Hemanth, “An optimized
predictive coding algorithm for medical image compression,” in Arti-
ficial Intelligence: Second International Conference, SLAAI-ICAI 2018,
Moratuwa, Sri Lanka, December 20, 2018, Revised Selected Papers 2.
Springer, 2019, pp. 315–324.

[19] Z. Yan, J. Wang, L. Sheng, and Z. Yang, “An effective compression
algorithm for real-time transmission data using predictive coding with
mixed models of lstm and xgboost,” Neurocomputing, vol. 462, pp. 247–
259, 2021.

[20] H. Latha and A. Rama Prasath, “Icpch: A hybrid approach for lossless
dicom image compression using combined approach of linear predictive

coding and huffman coding with wavelets,” in International Conference
on Cognition and Recongition. Springer, 2021, pp. 269–281.

[21] T. S. Shinde, “Efficient motion estimation and predictive coding meth-
ods for compression of spatio-temporal sequences.” Ph.D. dissertation,
Indian Institute of Technology Jodhpur, 2020.

[22] Z. Yin, Z. Wu, W. Shi, G. Hu, and W. Lin, “Video compressed
sensing via wavelet residual sampling and dual-domain fusion,” IEEE
Transactions on Multimedia, 2025.

[23] H. Nuha, B. Liu, M. Mohandes, A. Balghonaim, and F. Fekri, “Seismic
data modeling and compression using particle swarm optimization,”
Arabian Journal of Geosciences, vol. 14, pp. 1–11, 2021.

[24] W. X. Zhao, X. Zhang, D. Lemire, D. Shan, J.-Y. Nie, H. Yan, and
J.-R. Wen, “A general simd-based approach to accelerating compression
algorithms,” ACM Transactions on Information Systems (TOIS), vol. 33,
no. 3, pp. 1–28, 2015.

[25] S. Banerjee, R. Gupta, and J. Saha, “Compression of multilead elec-
trocardiogram using principal component analysis and machine learning
approach,” in 2018 IEEE Applied Signal Processing Conference (ASP-
CON). IEEE, 2018, pp. 24–28.

VISHAL et al.: BARE DEMO OF IEEETAI.CLS FOR IEEE JOURNALS OF IEEE TRANSACTIONS ON CONSUMER ELECTRONICS. 11

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p)

Fig. 7: Random 16 Images from MNIST Data Set Used for Compression Analysis

(a) Result of Fig. 7(a) (b) Result of Fig. 7(b) (c) Result of Fig. 7(c) (d) Result of Fig. 7(d)

(e) Result of Fig. 7(e) (f) Result of Fig. 7(f) (g) Result of Fig. 7(g) (h) Result of Fig. 7(h)

(i) Result of Fig. 7(i) (j) Result of Fig. 7(j) (k) Result of Fig. 7(k) (l) Result of Fig. 7(l)

(m) Result of Fig. 7(m) (n) Result of Fig. 7(n) (o) Result of Fig. 7(o) (p) Result of Fig. 7(p)

Fig. 8: Compression Ratio vs Resolution for 16 Randomly Selected Images

[26] X. Ma, Z. Huang, X. Li, Y. Qi, L. Wang, and Z. Zhu, “Multiobjec-
tivization of single-objective optimization in evolutionary computation:
a survey,” IEEE Transactions on Cybernetics, 2021.

[27] R. Huang, K. Rhee, and S. Uchida, “A parallel image encryption method
based on compressive sensing,” Multimedia tools and applications,
vol. 72, no. 1, pp. 71–93, 2014.

[28] N. Zhou, A. Zhang, J. Wu, D. Pei, and Y. Yang, “Novel hybrid im-
age compression–encryption algorithm based on compressive sensing,”

Optik, vol. 125, no. 18, pp. 5075–5080, 2014.
[29] A. Alfalou and C. Brosseau, “Optical image compression and encryption

methods,” Advances in Optics and Photonics, vol. 1, no. 3, pp. 589–636,
2009.

[30] N. Zhou, S. Pan, S. Cheng, and Z. Zhou, “Image compression–
encryption scheme based on hyper-chaotic system and 2d compressive
sensing,” Optics & Laser Technology, vol. 82, pp. 121–133, 2016.

[31] V. K. Singh, B. Nathani, and M. Kumar, “Weed-mc: Wavelet trans-

12 JOURNAL OF IEEE TRANSACTIONS ON CONSUMER ELECTRONICS

form for energy efficient data gathering and matrix completion,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 5, pp.
1066–1073, 2019.

[32] A. Ali, I. Ullah, S. K. Singh, W. Jiang, F. Alturise, and X. Bai,
“Attention-driven graph convolutional networks for deadline-constrained
virtual machine task allocation in edge computing,” IEEE Transactions
on Consumer Electronics, 2025.

[33] V. K. Singh, N. Jain, G. Tripathi, and S. Sahani, “Correlated channeled
spatio temporal graph attention network model for traffic prediction,”
IEEE Transactions on Intelligent Transportation Systems, 2025.

[34] V. K. Singh, N. Anand, A. Pal, A. Chowdhury, and A. Srivastava,
“Anomaly detection in dynamic graphs using multiple encoding strate-
gies via transformers,” IEEE Transactions on Consumer Electronics,
2025.

[35] W. Jiang, A. Liu, Y. Zhang, H. Han, J. Mu, S. Liu, W. Gu, S. Huang,
and Z. Feng, “Towards global metaverse accessibility with rsma-based
satellite-terrestrial integrated networks: A game theoretic approach,”
IEEE Transactions on Consumer Electronics, 2025.

[36] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[37] Y. Raut, T. Tiwari, P. Pande, and P. Thakar, “Image compression using
convolutional autoencoder,” in ICDSMLA 2019: Proceedings of the
1st International Conference on Data Science, Machine Learning and
Applications. Springer, 2020, pp. 221–230.

[38] F. Ni, J. Zhang, and M. N. Noori, “Deep learning for data anomaly
detection and data compression of a long-span suspension bridge,”
Computer-Aided Civil and Infrastructure Engineering, vol. 35, no. 7,
pp. 685–700, 2020.

[39] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[40] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization.” Journal of machine
learning research, vol. 12, no. 7, 2011.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[42] D. P. Williams, R. Hamon, and I. D. Gerg, “On the benefit of multiple
representations with convolutional neural networks for improved target
classification using sonar data,” Training, vol. 2008, no. 29280, p. 2912,
2013.

[43] G. Yan, T. Li, S.-L. Huang, T. Lan, and L. Song, “Ac-sgd: Adaptively
compressed sgd for communication-efficient distributed learning,” IEEE
Journal on Selected Areas in Communications, vol. 40, no. 9, pp. 2678–
2693, 2022.

[44] G. K. Wallace, “The jpeg still picture compression standard,” IEEE
transactions on consumer electronics, vol. 38, no. 1, pp. xviii–xxxiv,
1992.

[45] Z. Liu, T. Liu, W. Wen, L. Jiang, J. Xu, Y. Wang, and G. Quan, “Deepn-
jpeg: A deep neural network favorable jpeg-based image compression
framework,” in Proceedings of the 55th annual design automation
conference, 2018, pp. 1–6.

[46] J. H. Ko, D. Kim, T. Na, J. Kung, and S. Mukhopadhyay, “Adaptive
weight compression for memory-efficient neural networks,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017.
IEEE, 2017, pp. 199–204.

[47] H. Chen, X. He, H. Yang, L. Qing, and Q. Teng, “A feature-enriched
deep convolutional neural network for jpeg image compression artifacts
reduction and its applications,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 33, no. 1, pp. 430–444, 2021.

[48] I. F. Ince, F. Bulut, I. Kilic, M. E. Yildirim, and O. F. Ince, “Low
dynamic range discrete cosine transform (ldr-dct) for high-performance
jpeg image compression,” The Visual Computer, vol. 38, no. 5, pp. 1845–
1870, 2022.

Vishal K. Singh received his bachelor’s degree
in Information Technology, in 2010, the master’s
degree in Computer Technology and Application, in
2013, and PhD degree in Information Technology
from Indian Institute of Information Technology,
Allahabad, India in 2018. He is currently working
as a Lecturer and is associated with the Networks
and Communications Research Group at School
of Computer Science and Electronics Engineering,
University of Essex, Colchester, U.K. His research
interests include Internet of Things, Wireless Sensor

Networks, In-Network Inference, Machine Learning and Data Analytics.

Jagpreet Singh received the B.Tech. degree in com-
puter science and engineering from Punjab Technical
University, Jalandhar, India, in 2003, the M.S. degree
in software systems from the Birla Institute of Tech-
nology and Sciences, Pilani, in 2009, and the Ph.D.
degree in computer science and engineering from
the Indian Institute of Technology Ropar, India, in
2015. He was an Assistant Professor with the Indian
Institute of Information Technology Allahabad, from
2015 to 2022. He has been an Assistant Professor
with the Indian Institute of Technology Ropar, since

2022. His research interests include parallel and distributed systems, schedul-
ing theory, high-performance computing, and wireless sensor networks.

Dr. Rajkumar Singh Rathore (Senior Member
IEEE) is working as Head of Cyber Security of
Connected and Autonomous Systems, CINC, Head
of Cyber Physical and Networks Systems, CeRISS
& Programme Director for MSc Computing and
IT in Department of Computer Science at Cardiff
Metropolitan University’s School of Technologies,
United Kingdom. His research works were fully
supported by Nottingham Trent University, United
Kingdom and Manchester Metropolitan University,
United Kingdom.

Devansh Nema received the bachelor’s degree in
Computer Science and Engg. in 2019 from SRMIST,
Chennai, India and M.tech in Computer Science
in 2023. His research interests include Machine
Learning, Internet of Things, Image Processing, and
Data Analytic.

	Introduction
	Problem Description and Contributions
	System Model and Data Set Description
	System Model
	Data Set Description
	CIFAR Dataset
	MNIST Dataset

	Proposed Methodology
	Experiment and Simulation Setup
	Experimental Setup
	Simulation Setup

	Results and Discussions
	Experimental Results
	Simulation Results
	Accuracy
	Average Loss
	Processing Time
	Compression Ratio
	Energy Consumption
	End-to-End Delay
	Structural Similarity Index Measure

	Conclusion and Future Directions
	References
	Biographies
	Vishal K. Singh
	Jagpreet Singh
	Dr. Rajkumar Singh Rathore
	Devansh Nema

