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Abstract—This paper introduces a radar perception learning
framework guided by data collected from commonly equipped
visual-inertial (VI) sensor suites on smart vehicles. Unlike
existing approaches that rely on dense point clouds from 3D
LiDARs, which are costly and not widely deployed, this method
leverages the broader availability of VI data. However, visual
images alone lack the ability to capture the three-dimensional
motion of moving targets, which limits their effectiveness in
supervising motion-related tasks. To overcome this limitation, the
framework integrates multiple perception tasks such as odometry
estimation, motion segmentation, and scene flow prediction
into a unified learning process. The first component is an
odometry estimation module that combines deterministic ego-
motion models with data-driven learning results. This fusion
helps accurately infer the scene flow of static background points
while minimizing drift. The second component is a supervision
signal extraction module that aligns optical and millimeter-wave
radar measurements to guide the learning of radar scene flow
and rigid transformations. This module improves the reliability
of dynamic point supervision through joint constraints across
sensing modalities. The third component introduces a feature-
selection module designed for cross-modal learning. It enhances
the accuracy of motion segmentation and enforces consistency
between odometry and scene flow, resulting in more coherent
radar perception outputs. Experimental evaluations show that
this framework achieves superior performance in challenging
conditions such as smoke-obscured environments. It surpasses
state-of-the-art (SOTA) methods that depend on high-cost LiDAR
systems.

Index Terms—Scene flow, 4D mmWave radar, cross-modal
learning, SLAM.

I. INTRODUCTION

Millimeter-wave (mmWave) radar enhances the robustness
of autonomous driving perception in adverse environments
and plays an important role in ensuring the safety and
reliability of large-scale deployment of intelligent transportation
systems. Its resilience to environmental degradations makes
it a compelling alternative to vision-based sensors in safety
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critical scenarios. However, the limited sensing resolution
of mmWave radar manifested as sparse and noisy point
clouds poses substantial challenges for key perception tasks
including odometry estimation, motion segmentation, and
scene flow estimation. To mitigate these limitations, recent
methods typically adopt a cross-modal learning paradigm in
which radar perception models are supervised using dense 3D
point clouds from high-end LiDAR sensors [2]-[5]. While
such supervision can effectively capture the 3D motion of
objects and yield accurate training signals, this approach suffers
from high deployment cost, limited sensor availability, and a
strong reliance on large-scale annotated datasets to ensure
generalization across diverse driving conditions.
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Fig. 1. The proposed system utilizes visual and inertial data to generate
supervision signals for training the mmWave radar perception model. This
model supports tasks including motion segmentation, scene flow estimation,
and odometry estimation. Notably, visual and inertial inputs are needed only
during the training phase.

In the industry, several approaches are used to collect
training data. One involves deploying a fleet of specialized
data collection vehicles for long-term operation. The other
utilizes every user’s vehicle to gather data, e.g., Tesla. In
addition to these real-world sources, companies also rely on
synthetic data generation techniques, including simulation,
procedural environments, and photorealistic rendering, together
with domain adaptation, to produce large-scale, diverse, and
controlled training sets. However, these synthetic pipelines
still need to be seeded and validated with high-quality real-
world data, which is often obtained using expensive sensor
suites such as high-channel LiDAR and RTK-GPS, and is
therefore difficult to scale. For this reason, methods that
can exploit large amounts of crowdsourced data, even from
lower cost sensor configurations, remain crucial for efficiently
expanding training corpora. Note that LiDAR based perception
can degrade significantly under adverse weather such as fog,
rain and snow, as well as under strong vibrations, whereas
mmWave radars generally maintain more stable detections
in such conditions [6], [7]. At the same time, cameras have
become pervasive in production vehicles, which makes the
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combination of radar and vision particularly attractive for
robust perception. Thus, guiding the radar perception learning
through images is more favorable for crowdsourcing training
data from cameras. However, monocular 2D images lack
direct 3D information [8]-[10], which makes it challenging
to estimate the motion of moving points in three-dimensional
space. This limitation hinders both scene flow estimation and
motion segmentation tasks.

This study proposes VISC+, a unified framework for
mmWave radar perception, leveraging supervision from
commonly deployed visual-inertial (VI) sensors. As illustrated
in Fig. 1, VISC+ jointly learns the tightly coupled radar
perception tasks of odometry estimation, motion segmentation,
and scene flow estimation by leveraging their mutual
dependencies and complementary supervision. The framework
employs self-supervised learning, leveraging visual and inertial
inputs to provide cross-modal supervision. At test time, the
model relies solely on radar point clouds, making it well-
suited for deployment in cost-constrained and vision-degraded
environments, such as fog or smoke. The core idea of VISC+
is to leverage the inherent coupling between perception tasks
to compensate for missing or noisy supervision. For instance,
ego-motion estimates from VI-SLAM provide frame-to-frame
alignment and can supervise the scene flow of background
points. These background flows, in turn, offer cues for
separating static and dynamic regions in the radar scans. For
dynamic points, the radar’s relative radial velocity (RRV)
and the visual optical flow offer complementary motion cues.
These cues are jointly constrained across consecutive frames
to recover the complete 3D scene flow. Through this design,
VISC+ transforms sparse and modality-limited sensor data into
rich cross-task supervision, enabling accurate radar perception
without requiring any ground-truth labels or expensive sensors
during training.

While the coupling of radar perception tasks provides
opportunities for supervision, constructing reliable cross-modal
guidance from VI data introduces three main challenges.
First, visual-inertial odometry tends to accumulate drift in
the absence of loop closure or GNSS, which compromises
the supervision accuracy for static-point scene flow. Second,
the motion of dynamic points is only partially observable.
Optical flow offers 2D motion in the image plane, and radar
provides radial velocity measurements, but neither alone is
sufficient to recover complete 3D trajectories. This limitation
makes it difficult to generate reliable supervision for dynamic
scene flow. Third, visual and inertial signals must be carefully
transformed into effective cross-modal supervision. Without
dense 3D annotations, it remains challenging to use them to
guide radar-based odometry, segmentation, and scene flow
estimation in a unified framework.

To address the above challenges, VISC+ incorporates
three key modules. First, a recursive sensor fusion module
compensates for the drift in VI odometry by combining
kinematic IMU integration with a learned motion model
trained via dead reckoning. This approach produces a
more stable estimation of ego-motion, which in turn
enhances the supervision of static scene flow. Second, a
supervision extraction module integrates optical flow, RRV,

and geometric information across frames to guide the learning
of dynamic scene flow. Third, a feature-selection cross-modal
learning module enhances motion segmentation by transferring
background-consistent visual features to the radar domain,
while enforcing consistency across tasks. Together, these
modules enable accurate and self-supervised radar perception
using only visual-inertial data during training.

Contributions. Our method enhances mmWave radar
perception with the assistance of widely available VI sensor
data through: 1) Drift-free odometry estimation. We propose
a recursive sensor fusion module that integrates kinematic
model-based IMU integration with a learned neural motion
model to reduce temporal drift in VI odometry. 2) Supervision
signal extraction from optical and mmWave data. For dynamic
points, we develop a supervision module that leverages optical
flow from images and radar’s RRV to generate pseudo ground-
truth scene flow. 3) Feature-selection cross-modal learning. We
introduce a learning strategy that selects background visual
features from segmented images to supervise radar motion
segmentation. By enforcing consistency among odometry,
segmentation, and scene flow, this module jointly refines
the overall radar perception. We validate VISC+ on both
synthetic (CARLA) and real-world datasets collected with a
custom sensor platform. Extensive experiments demonstrate that
VISC+ consistently outperforms LiDAR-supervised baselines
in challenging scenarios, including dense smoke environments,
thereby highlighting the potential of low-cost VI sensors for
scalable radar perception learning.

II. RELATED WORK

Perception learning by camera. Monocular 3D motion field
perception is known to be a severely ill-posed problem [11]. To
address this, many vision-based methods rely on external depth
information, either from RGB-D sensors [12], [13] or stereo
camera systems [14]. Some approaches also use monocular
images combined with predicted depth maps [11], [15]. The
availability of large-scale image datasets [16] has enabled
highly accurate supervised models [14], but these methods often
face challenges related to domain overfitting. To overcome the
need for labeled data and improve generalization, unsupervised
learning strategies have been developed [17], although they
typically yield lower performance. Furthermore, most vision-
based systems require favorable lighting conditions, which
limits their robustness. As an alternative, LiIDAR has been
widely used in perception tasks due to its active light emission
and strong adaptability to various environments.

Perception learning by LiDAR. LiDAR-generated 3D
point clouds provide direct access to point-wise 3D motion
fields. Recent supervised methods [18]-[20] have reached
state-of-the-art accuracy in this area. However, these models
rely on manually labeled scene flow data, which demands
significant annotation effort. To reduce this burden, self-
supervised approaches [4], [21] have been proposed, enabling
model training without ground-truth labels. As expected, the
lack of true annotations leads to a drop in accuracy for these
methods. Despite their promising outcomes, LiDAR remains
vulnerable in challenging weather conditions such as fog, heavy
rain, and storms, which limits its reliability for smart vehicles.
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Perception learning by mmWave radar. mmWave radar
has gained increasing interest for its ability to provide full
3D perception and maintain reliability under harsh weather
conditions [22]-[25]. Nevertheless, its short wavelength at
the millimeter scale leads to limited environmental resolution,
resulting in sparse point cloud outputs [26]—[31]. Given the
challenges in labeling such sparse data, many existing methods
adopt self-supervised learning strategies [32], [33]. Among
them, CMFlow [32] stands out as a state-of-the-art model,
benefiting from supervision derived through multiple redundant
sensors such as cameras, high-end LiDAR, and RTK-GPS.
However, the required high-performance LiDAR systems can
cost several thousand dollars [34], and RTK-GPS depends
on infrastructure like reference station networks, which are
not broadly deployed. As a result, CMFlow’s training process
relies on expensive setups mounted on vehicles operating in
urban environments. This raises the cost of data collection and
increases the risk of long-tail perception issues in autonomous
driving. In contrast, our approach focuses on learning radar
perception with affordable cameras and IMUs, which are widely
integrated into commercial vehicles.

III. SYSTEM DESIGN OF VISC+
A. Overview

Typical radar perceptional tasks include odometry estimation,
motion segmentation, and scene flow estimation. Odometry

estimation aims to compute a vehicle’s position and orientation.

The goal of motion segmentation is to label points in a scene
if they are stationary or moving. Scene flow estimation aims
to compute the 3D non-rigid motion field of a scene [35]. In
our context, mmWave radar provides point clouds to describe
the scene. The inputs are two consecutive point clouds F; and
Fs. Each point f; € Fi, f; = {s;, ¢;},i =1,2,--- , Ny, where
N denotes the number of points in F; and s; € R3 is the 3D
position of point . ¢; € R denotes the RRV of radar points.
The scene flow L is a set of point-wise 3D vectors with respect
to the first point cloud. Each 1; € R®inL,i= 1,2,---, Ny,
represents the translation of a point from frame J; to frame

JF>, generating a corresponding point s} = s; +1; in frame F.

Fig. 2 illustrates the architecture of the VISC+ system,
which comprises three main modules: a recursive sensor
fusion module, an optical-mmWave supervision module, and
a feature-selection cross-modal learning module. The system
takes as input RGB images from a monocular camera, IMU
data including linear acceleration and angular velocity, and
point clouds from a mmWave radar. The processing begins
by extracting point-wise latent features from two consecutive
radar point clouds [32], [33]. These features are then fed
into two separate network heads to estimate an initial scene
flow and a preliminary motion segmentation map. Feature
extraction is performed synchronously on the two consecutive
radar frames by a shared-weight encoder, producing paired
feature tensors. The two heads operate in parallel on these
paired tensors, forwarding the initial scene flow and preliminary
motion segmentation to the odometry module. Based on
these outputs, the radar odometry between the two frames
is computed using the Kabsch algorithm [36], which yields

a rigid-body transformation. The estimated rigid transform is
fed back to (i) align the second-frame points prior to flow
refinement and (ii) enforce a transform-consistency constraint
on the odometry estimation. As a result, we obtain coarse
predictions for odometry, motion segmentation, and scene flow,
all aligned to the reference frame F; of the radar.

To supervise the above coarse estimates, we explore the
opportunity from VI-SLAM technology. The recursive sensor
fusion module (see §III-B) utilizes RGB images and IMU
measurements to produce centimeter-level odometry, which
serves as a constraint for radar-based pose estimation. To
supervise the scene flow of moving points, the optical-mmWave
supervision module combines optical flow with the radar’s
RRYV, offering partial 3D motion information. These cues
supervise the dynamic component of the scene flow (see §III-D),
without altering the inference pipeline. These cross-modal
cues are employed to guide the learning of the dynamic
portion of the scene flow. In addition, with the delicate image
segmentation from Segment Anything Model [37] and the 3D
reconstruction from VI-SLAM [38], we provide more accurate
motion segmentation labels from the feature-selection cross-
modal learning module (refer to §III-C) to constrain the motion
segmentation mask. Finally, the cross-modal refinement module
combines the motion segmentation labels and the odometry
estimation to constrain the scene flow estimation.

B. Recursive Visual-inertial Fusion

The odometry provided by VI-SLAM [38] already leverages
the fusion of visual and inertial data. To further reduce temporal
drift, one might consider introducing a third sensing modality.
However, this can be avoided. Prior work on IMU-based dead
reckoning [39]-[41] has shown that the IMU alone is capable
of supporting independent odometry estimation, making it a
viable solution without additional sensor requirements.

1) Inertial-learning Deep Neural Network: Network
architecture. To estimate odometry from the IMU’s sequential
3D acceleration and angular velocity readings, we adopt a
recurrent neural network (RNN) structure, specifically a Long
Short-Term Memory (LSTM) network, for temporal sequence
modeling. This choice follows prior deep inertial odometry
frameworks such as [40], [42], where LSTM-based encoders
have been shown to effectively learn motion patterns and drift
compensation from noisy IMU data. Though recent work has
also explored Transformer-based architectures for IMU-only
localization [43], [44]. These methods highlight the potential
of attention mechanisms when the trajectory must be recovered
from IMU alone. In contrast, our method operates in a visual-
inertial setting, where a model-based VI odometry backbone
already provides strong geometric constraints, and the IMU
branch is used as a learned complement. We therefore adopt a
lightweight LSTM-based design for the IMU network and focus
our contributions on the fusion of learned IMU odometry with
model-based VI odometry. Based on the effectiveness reported
in [45], we utilize a fully connected LSTM (FC-LSTM) to
capture temporal dependencies. The architecture comprises
two stacked LSTM layers followed by a fully connected layer.
We select a two-layer configuration as it offers improved
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Fig. 2. Overview of the VISC+ system, with the newly proposed components marked in yellow.

performance over a single layer, while adding a third layer
yields negligible gains, consistent with observations in [46],
[47].

Each LSTM layer consists of 64 hidden units, with the state
of the k-th unit represented as Ly for £k = 1,2,...,64. Each
L;, processes the IMU input data a; and wy, along with the
output from its preceding unit, to capture temporal features.
IMU signals are de-biased using estimated constant biases,
rotated to the radar frame for gravity removal, and per-axis
normalized. Segments are aligned to camera frames during
training and to the two radar timestamps at inference to match
the network input window. The combined output of the LSTM
layers is then projected into a 1 x 12 vector and reshaped into
a 3 x 4 matrix [R | ¢] that represents the relative pose between
consecutive radar frames in the first-frame radar reference.
The network predicts rotation and translation only, no velocity
terms are included.

Loss function. The network is trained to predict 3D
translations and their associated uncertainties between adjacent
image frames. To this end, we adopt a hybrid loss function
that includes both the mean squared error (MSE) loss and the
Gaussian maximum likelihood (ML) loss during training.

ZHt —ti|l?,

Luse(t, 1) ey

11 -
Ly (t, T 25@@“)+W—W)v@

i=1
where t = tq,%ts,--- ,tx represent the ground-truth 3D
translations obtained from the VI-SLAM system. Here, NV
denotes the total number of IMU segments aligned with visual
frames in the training set. The predicted translations and their
corresponding uncertainty estimates from the neural network
are denoted as ¢ = £,,&o,--- ,tx and I = I‘l,I‘27~-~ ,f‘N,
respectively. For each segment i (1 < i < N), I; is a
3 x 3 covariance matrix describing the uncertainty of the
predicted translation. Following the diagonal parameterization

method in [40], the network outputs a vector of coefficients
¢ = [Ciz, Ciy, ¢.]T, and the covariance is computed as
I'; = diag(e2Cie €20 20iz),

2) Two-stage Sensor Fusion: Tightly-coupled fusion. A
graph-based optimization approach is utilized to tightly fuse
the results from the IMU kinematics and the statistical
learning model, which has been shown to enhance estimation
accuracy [38], [48]-[50]. We form a diagonal translation
covariance %; = diag(o2, 05, 02) from the network output by
comparing t with IMU preintegration over the same window
and taking an exponential moving average of per-axis residuals,
followed by floor clipping to avoid overconfidence, and a
Huber loss is applied. A rotation weight is obtained from the
geodesic distance between the network rotation R and the
Kabsch estimate, and mapped to an equivalent variance used
for the rotation factor. Factor weights are normalized before
graph optimization.

Xit+4
~i+3
i+4

Zita
Fig. 3. Graph-based optimization.

Fig. 3 shows the graph representation of our odometry
estimation problem.

Let x; represent the vehicle state at timestamp 7. At each
step ¢, the deep neural network produces an output z;, which
contains both the estimated 3D translation #; and its associated
uncertainty I'i. Since the IMU operates at a higher frequency
(100 Hz) compared to the camera (20 Hz), the IMU data is
segmented based on image frame intervals. We integrate the
IMU readings within each segment to compute the relative
motion i + 1% between two successive image frames.
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To enable real-time computation, we adopt a sliding
window strategy that retains m consecutive states during the
optimization process [50]. The details of the sliding window
strategy has been thoroughly resolved in our conference
publication [1]. The overall state vector is defined as X =
pY;pY; - ;P2 |, where each p) represents the position at
time ¢ relative to the initial position indexed by 0. The
optimization aims to compute the maximum a posteriori
(MAP) estimate by minimizing the Mahalanobis distance of
all residuals derived from sensor measurements:

. ~ 2
min ¢ 3 |12; — HX||p, +z;
i€

iEN

. . 2
~J _ J
wy — Hy X ’
P’
i+

3)
where H; and Hj 41 are information matrices for neural
network observations and IMU kinematic predictions,
respectively. NV is the set of network-based translations and
uncertainties. Z denotes the set of raw IMU measurements. The
Mahalanobis norm in the objective function takes into account
the correlations of the data set, which are key for any high-
precision inertial-based autonomous system. where H; denotes
the information matrix associated with the neural network
outputs, while H; 11 corresponds to the IMU-based kinematic
constraints. The sets A" and Z represent the network-predicted
translations with uncertainties and the raw IMU measurements,
respectively. The Mahalanobis norm used in the cost function
captures correlations within the data, which is essential for
achieving high-precision inertial navigation. For each network
prediction z;, the geometric constraint involves only the
translation component t; between states x; and X;41. This
leads to a constraint of the form ¢; = p?,; — p?, from which
the information matrix H; can be derived. The corresponding
covariance P; is initialized based on the predicted uncertainty
I';. On the IMU side, given the accelerometer and gyroscope
measurements @; and w; at time £, one can compute the relative

motion estimate @}, ; along with its associated information

martrix Hi 1 1- The covariance P; 41 1s obtained via discrete-

time uncertainty propagation over the interval At; [38].
,0,-1,1,0,...,0].

H, =[0,... “4)
——

(i—1) zeros

All individual matrices H; from the neural network outputs
are aggregated to construct the complete information matrix
corresponding to the network-based observations. The initial
covariance P; is set using the predicted uncertainty I provided
by the network. Note that H; will be a zero vector when
1%2 = 0 as the network does not observe the vehicle’s velocity.

For the IMU side, given the non-gravitational acceleration a;
and angular velocity w; at time ¢, the relative motion between
frames, denoted as ﬁ.;- 41> can be derived as part of the kinematic
model.

~j 7 & 442
@, = i1 i jn Biae dt
i+1 7 | ) - 2J 4
’ Yj+1 Jeetj g Bt e dt )
J i i
Pjr —Pj — VAL
J e jJ - H'+1X7

i
Vit1 —Vj

where the vehicle’s relative orientation Rg 41 is computed
as R§+1 = Jietijt R |&yx|,dt, and |@;x | denotes the
skew-symmetric matrix derived from the angular velocity w;.
To mitigate drift in heading estimation, external sensors such
as a compass can be used for correction. The time duration
between two consecutive states is denoted as At;, over which
the associated covariance Pj 11 is obtained via discrete-time
uncertainty propagation. At this point, all the information
matrices of the system have been explicitly defined. We then
use Ceres Solver to solve the optimization problem.
Loosely-coupled fusion. At time step ¢, we obtain the state
&;, which consists of the position /p? estimated from the
learned-inertial module and the heading /Y adjusted using the
IMU compass. Here, /g? denotes the quaternion that represents
rotational orientation. These estimates are utilized to correct the
temporal drift present in the visual-inertial odometry V' &; =
VP9,V ¢Y], as computed by VINS [38]. Since VINS [38] has
already estimated the odometry, the state propagation is trivial
in our fusion. Given a covariance matrix of sensing noise W,
the state covariance Pj is propagated as Py = P, + W.
Then, we derive the measurement update when taking a learned-
inertial odometry. Since the rotation has to be linearized on
the manifold, we apply error-based filtering. We define the
odometry vector X and the error-state vector X as

X =(q’p"), X =(30,6p),

1

6)

where 60 =V ¢° ® (I (jo)fl, ® denotes the quaternion
multiplication. ép =" p° —! pY. Then the measurement

function h(X) with respect to state 4 can be written as,
WX)=[a0,pY] " = ['@% 8Y]" + ['mpi0] . (D)

1 n,; is the random noise following the normal
distribution A/ ~ (07 I';) and I; is provided by the inertial
learning module. Then we take the partial derivative of
h(X) with the error-state variable to obtain the linearized
measurement matrix H. Finally, we use H and [I';,0]T to
compute the Kalman gain and update the odometry X and
the covariance matrix P. In practice, W is set as a diagonal
covariance that reflects the expected magnitude of residual
sensor noise and modeling error and is kept fixed across all
experiments, while I is directly taken from the inertial learning
module without additional tuning. The remaining extended
Kalman filter update equations follow the standard form and
are omitted here for brevity.

where

C. Feature-selection Cross-modal Supervision

To better supervise the perception model, we combine
multiple related tasks to suppress the noisy supervision signals
from cross-modal sensing. Based on the state-of-the-art point-
wise feature extraction method [32], consider a radar frame
containing N points. The network produces a coarse scene flow
estimation L¢ = 1; € R3f\;1 along with a motion segmentation
probability map M¢ = 7n; € [0,1]),. A value of 7h; < 0.5
indicates that point ¢ is considered static. With both the coarse
flow L¢ and the segmentation confidence M¢, we estimate the
radar odometry T € SE(3) using the Kabsch algorithm [36].
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Fig. 4. An illustration of absolute
velocity computation.

Fig. 5. Leveraging background visual
features to find more background
radar points.

It is important to note that this odometry only provides valid
scene flow vectors for static background points. Better motion
segmentation to distinguish background points will benefit the
scene flow estimation. Thus, the three tasks, i.e., odometry,
motion segmentation, and scene flow, are tightly coupled. In
the following, we elaborate on the design for better motion
segmentation.

1) Background Point Masking: Intuitively, all static points on
the background should have absolute radial velocities (ARVs)
close to 0. We denote the ARV of point ¢ as v{. With the
estimated odometry, as shown in Fig. 4, at time ¢, its velocity
with respect to the initial frame can be trivially deduced by
the first derivative of position p). Meanwhile, the radar on
the vehicle reads a point-cloud frame . Each point f; € F
contains the point’s relative position s; and the RRV v]. We
compute the relative radial velocity in the first radar frame. Ego
motion is compensated using the Kabsch transform between
the two frames. For each point, we remove the ego-induced
radial component from the raw Doppler and obtain a residual
RRYV used for masking, and the RRV v]. Then v{ writes:
st - by

Istll

g ®)

We set a small threshold ¢,. Considering the rigid
transformation accuracy, ¢, = 0.1 m/s in our model. The
pseudo motion segmentation label of point ¢ is static, i.e.,
m; = 0, when v} < €,. We put a static radar point into
a set M®. Note that this motion segmentation principle will
falsely mark static labels on tangentially moving points. To
avoid mislabeling tangential movers as static, we apply short
temporal voting across three consecutive frames and require
consistency with a locally estimated rigid motion. A point is

marked as background only when both conditions are satisfied.

To further constrain the motion segmentation, we leverage
the 3D reconstruction of VI-SLAM. Existing LiDAR-based
solutions [51] can track foreground points with a dense point
cloud. However, the VI 3D reconstruction [38], [52] can only
track background static points. To address this issue, we resort
to advanced image segmentation tools [37], [53] to find out the
visual features that have no explicit object label. We segment
objects which are likely to move, e.g., vehicles, pedestrians,
and animals. Features without assigning valid labels are marked
as background points, forming a background set V.

We first use V¢ to mark radar points whose v{ < €, as
background points, as shown in Fig. 5. Then, we exploit an
intuition that static radar points should be spatially related to
background visual features in V¢, For ease of processing, we
segment the radar points frame by frame. For two consecutive
radar frames S; and S,, VI-SLAM [38] can easily compute
the frame transformation and obtain the 3D reconstruction with
respect to frame S;. In other words, we transform the 3D
positions of background visual features to the newest frame,
aligning with the frame of the radar’s new reading. Thus, for
each background point i in MP?, we find its top-k closest
visual features in V8, where k is a hyper-parameter in our
model. We choose k = 4 through tests (refer to § IV-A4). A
radar point is accepted only if the mean of the k distances
is below a threshold 7; and the sample variance is below T;,.
The thresholds are chosen once on a small validation split for
each dataset and remain fixed during testing. If the mean or the
variance of these k distances is too big, typically determined
by thresholding, we exclude this point from M?. If multiple
radar points compete for the same visual feature, we keep the
pair with the highest score and discard the others. The score is
exp(—d/s) - pyis, where d is the mean distance and py; is the
visual mask confidence. This score becomes the confidence
weight.

With accurate background labels M?, we cannot simply mark
other radar points in the frame as foreground points due to the
ghost points generated by multipath. Similar to the criterion
of labeling background points, we assign points foreground
labels, i.e., m; = 1 for point 4, by the top-k strategy applying
to the foreground visual features V'8 from image segmentation.
Then we obtain a set of foreground points M7. Note that
M? N M/ may not cover all radar points in a frame. For
any point s, ¢ M and ¢ M/, it may be a ghost point that
randomly comes out from nowhere. Thus, we randomly set
its label. We compute the closest distance d£ to a foreground
visual feature and the closest distance dz to a background
visual feature. Then we label it as a background point with a
probability of pi = dbi’“f

2) Cross-modal  Perception  Refinement: Motion
segmentation refinement. Now we have obtained a
moving probability map Mc¢ from the point-wise feature
extraction [32] and the pseudo motion segmentation ground-
truth label M° from § III-C1. Our system aims to adjust
the estimated moving probability to agree with M€ by the
following loss:

s SN (1 —my) log(1 — 1) N SN my log i,
seg 2 Zi\il(lfml) Zi\ilml .

D. Optical-mmWave Supervision Extraction

Our proposed framework generates supervisory signals that
facilitate self-supervised learning of both the radar’s rigid-
body transformation and scene flow. Once trained, the model
is capable of estimating these quantities solely from sparse
mmWave radar point clouds, even under challenging conditions
such as smoke-filled environments.
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Odometry refinement. As described in § III-B, we
have access to reliable vehicle odometry. This allows for
straightforward computation of the radar’s pseudo ground-
truth transformation T € SE(3) between two adjacent frames.
Additionally, an estimated transformation T € SE(3) can be
obtained using the Kabsch algorithm [36], providing a basis
for refining odometry accuracy. Consider two radar frames,
JF1 and F5, with a known 2trzlns2for1nzaltion from frame 1 to
Ry 1]
0 1
JF1 can be mapped to the coordinate system of F2 using the
transformation as follows:

frame 2 given by T? = . A point s;; observed in

shy = R3s! +t2. (10)

The objective of our system is to refine the estimated

odometry T = [10{ ﬂ to closely match the pseudo ground-

truth transformation T = IO{ i

}. To achieve this, we define
the following loss function:

N
»Clrans = %ZH(RRT _13) Si1 +t_£H2 (11)
i=1

Scene flow refinement. The improved estimation of rigid
transformation and motion segmentation yields more reliable
supervisory cues for learning the scene flow of background
points. In this work, we adopt the refinement strategy proposed
in [32]. Concretely, we incorporate two types of loss terms: one
derived from optical flow labels extracted from RGB images,
denoted as L, and the other based on the radar point cloud
itself, denoted as L, as introduced in [32]. The total scene
flow loss is then defined as:

Eﬁow = )\opt»copt + Eself» (12)

where Ao = 0.1 in experiments.

IV. SYSTEM IMPLEMENTATION AND EVALUATION

VISC+ operates with inputs from a 4D mmWave radar, an
RGB camera, and an IMU. The framework depends on raw
inertial data, specifically accelerations and angular velocities,
which are not provided in current public 4D radar datasets [54]-
[58]. To address this limitation, we employ both synthetic data
generated using the Carla simulator [59] and real-world data
collected through a custom-built platform mounted on a drone.

Platform. As depicted in Fig. 6, the 4D radar system
consists of a cascade of four TI AWR2243 modules, comprising
12 transmit and 16 receive antennas. Under the MIMO
configuration, it supports a maximum detection range of 150
meters. The angular resolutions achieved are 1.4° in azimuth
and 18° in elevation. For visual data acquisition, we utilize
an Intel Realsense D435 RGB camera. Inertial readings are
obtained from the high-precision IMU integrated within the
CUAV v5+ flight controller. All sensor data streams are
transmitted to an Intel NUCI1TNKi5 unit equipped with
a 2.6 GHz Intel Core i5 processor and 16 GB of RAM,
running Ubuntu 20.04. A Robot Operating System (ROS)
framework is employed to manage inter-sensor communication

and synchronize the timestamped data. The collected dataset
is subsequently transferred to a backend server for training
purposes. All models are implemented in PyTorch 1.7.0 with
Python 3.7. On a workstation equipped with an NVIDIA RTX
2060 GPU, the average inference time for one radar frame
pair, including all network components, is approximately 42
ms, corresponding to about 23 frames per second.

Dataset. In the simulation environment, we equip a virtual
vehicle with an RGB camera, an IMU, and a 4D mmWave radar
to collect data across 8 distinct scenes. The resulting dataset
contains 7119 frames, each with synchronized RGB images
and radar point clouds. On average, around 80% of the objects
in each frame are dynamic. The dataset also includes 23750
IMU sequences. The total recording time spans approximately
400 seconds, covering a trajectory of 2.53 kilometers. For real-
world data collection, we conduct experiments in both outdoor
and indoor environments. The outdoor dataset is captured along
a roadway adjacent to our campus, while the indoor dataset is
gathered within our laboratory. The outdoor portion comprises
5312 synchronized frames of images and radar point clouds,
whereas the indoor set includes about 1328 frames. In terms
of inertial data, we collect roughly 39600 IMU sequences
outdoors and 9900 sequences indoors, with the entire trajectory
exceeding 2.1 kilometers. All supervision signals derived from
vision or IMU, including optical flow, SAM masks, and VINS
odometry, are generated offline on the training split only. It is
worth noting that, in both settings, approximately 60% of the
visual targets are in motion.

Ground Truth Labeling. Although VISC+ is designed
for self-supervised learning and does not rely on ground
truth during training, annotated labels are still necessary for
performance evaluation. Following the protocol in [32], we
generate ground truth scene flow using object detection results
(i.e., bounding boxes) along with accurate radar odometry.
For the indoor dataset, ground truth odometry is obtained
using the NOKOV motion capture system, which provides
high-precision pose information. In outdoor environments, we
utilize VINS-Fusion ! to integrate RGB images, IMU data,
and GPS signals for producing reliable odometry estimates.
For static background points, their corresponding scene flow
vectors are labeled based on the radar’s ground truth motion.

Metrics. In line with the evaluation protocol from [33],
we assess the performance of our framework across three
sub-tasks using six metrics. For scene flow estimation, we
adopt 1) the average end-point error (ZPFE, in meters), which
measures the mean Euclidean distance between the predicted
and ground-truth flow vectors; 2) the accuracy metrics AccS
and AccR, representing the proportion of points with EPE <
0.05 or 0.1 meters, respectively, reflecting strict and relaxed
accuracy thresholds. For motion segmentation, we use the
mean intersection-over-union (mJIoU), which computes the IoU
between dynamic and static regions in each frame and averages
the results across the dataset. Regarding odometry estimation,
we report two standard metrics: the relative translation error
(RTE) and the relative angular error (RAE), which quantify

Uhttps://github.com/HKUST- Aerial- Robotics/VINS-Fusion
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Fig. 6. The key components of our customized platform include a 4D radar,
an RGB camera, an IMU, and a mini-computer.

the accuracy of estimated trajectories in both position and
orientation.

Baselines. We compare our approach with two state-of-
the-art radar scene flow methods: RAFlow [33] and CMFlow
[32]. RAFlow utilizes radar point cloud radial velocities as
implicit supervision to train the scene flow network. CMFlow,
by contrast, requires high-precision external sensors such
as LiDAR and RTK-GPS to obtain cross-modal supervisory
signals. In our implementation, we adapt CMFlow by replacing
LiDAR with depth point clouds reconstructed from a camera,
and we substitute RTK-GPS with odometry results from VINS-
Fusion.

We partitioned the dataset into training, testing, and
validation sets in a ratio of 5 : 3 : 2. In the experiments,
we use the Adam optimizer to train all models. The initial
learning rate is 0.001, exponentially decreasing by 0.9 per
epoch.

A. Performance Evaluation

1) Overall Results: We conduct a comparative evaluation
of VISC+ against existing baseline methods. As presented in
Table I, our approach delivers results on par with CMFlow,
despite utilizing only low-cost visual-inertial sensors. Notably,
VISC+ shows clear improvements over the original VISC
framework across both simulated and real-world scenarios.
On the synthetic data, VISC+ improves AccS by 3.7% and
AccR by 2.7%, while reducing the EPFE by 1.4%. On the
real-world data, VISC+ achieves a 5.1% increase in AccS and
a 1.2% reduction in EPFE, demonstrating the effectiveness of
the proposed feature-selection cross-modal learning module.
Compared to CMFlow, which leverages high-precision LiDAR
and RTK-GPS for supervision, VISC+ still shows a slight
performance gap. For example, on the synthetic data, AccS
and AccR are 1.2% and 0.6% lower, respectively, while the
EPFE remains within 0.7% of CMFlow. These results suggest
that our method approaches the accuracy of high-cost sensor-
based supervision, while being significantly more practical for
large-scale deployment. We note that real-world performance
may still be affected by temporal misalignment among sensors.
To address this, we apply online temporal calibration using

VINS [38] to correct the clock differences between the camera
and IMU. In addition, radar frames are synchronized through
the system clock of ROS. These steps help ensure the accuracy
of cross-modal supervision during training.

TABLE I
METHOD COMPARISON
Method Super- | EPE AccST | AccR?T
vision [m])
RAFlow (synth.) Self 0.224 0.286 0.525
RAFlow (real.) Self 0.283 0.224 0.475
CMFlow (synth.) Cross 0.136 0.481 0.774
CMFlow (real.) Cross 0.169 0.402 0.703
VISC (synth.) Cross 0.139 0.458 0.749
VISC (real.) Cross 0.172 0.375 0.711
VISC+ (synth.) Cross 0.137 0.475 0.769
VISC+ (real.) Cross 0.170 0.394 0.709

2) Ablation Study: We conduct ablation studies to investigate
the impact of different modules on scene flow estimation, as
shown in Table. II. The average translation error of VI-SLAM is
0.44 meters, and the average rotation error is 0.05°. VI-SLAM
shows the inferior performance of scene flow estimation due
to the cumulative errors of ego-motions and the inaccurate
position estimates of dynamic points. After incorporating the
recursive sensor fusion module, the FPFE decreases by 65.3%
on the synthetic dataset, and by 62.7% on the real-world
dataset. This indicates that the sensor fusion method effectively
mitigates the drift in VI-SLAM and improves the accuracy
of scene flow estimation. After incorporating the optical-
mmWave supervision extraction module, the E'PFE decreased
by 25.2% on synthetic data and by 33.0% on real-world
data, indicating that cross-modal constraints from optical flow
and radar enhance the supervision quality for dynamic scene
flow estimation. Similarly, after adding the feature selection
module, the FPFE decreased by 34.7% on synthetic data and
by 32.2% on real-world data, demonstrating the effectiveness
of background point masking in VISC+.

TABLE II

ABLATION STUDY
Method EPE [m]l AccST AccR?
VI-SLAM [38] (synth.) 0.424 0.009 0.011
VI-SLAM [38] (real-w.) 0.485 0.002 0.007
VI—-SLAM+Recur. Fusion 0.147 0.431 0.729
(synth.)
VI-SLAM-+Recur. Fusion 0.181 0.346 0.629
(real-w.)
VI-SLAM-+Feature 0.277 0.257 0.489
Select. (synth.)
VI—-SLAM-+Feature 0.329 0.207 0.425
Select. (real-w.)
VI-SLAM+Opt-mm. 0.317 0.236 0.435
Extract. (synth.)
VI-SLAM+Opt-mm. 0.325 0.182 0.408
Extract. (real-w.)
VISC (synth.) 0.139 0.458 0.749
VISC (real-w.) 0.172 0.375 0.696
VISC+ (synth.) 0.137 0.475 0.769
VISC+ (real-w.) 0.170 0.394 0.709

Furthermore, when both modules are combined, the results
show that compared to VI-SLAM, the EPE decreases by
67.2% on the Carla dataset. When using the real-world data, it
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Fig. 7. Qualitative scene flow visualizations in two representative scenarios are illustrated. From left to right, the subfigures show: (1) RGB images overlaid
with projected radar points; (2) two consecutive radar point clouds, where the first frame is shown in red and the second in blue; (3) the first point cloud
warped using the predicted scene flow alongside the second frame; (4) the first point cloud aligned using the ground-truth scene flow and compared with the
second frame. Dynamic objects are emphasized using green circles, and detailed regions are magnified for clarity.

shows similar results in that the FPF decreases by 64.5%. This
indicates that motion segmentations and odometry estimation
are coupled with scene flow estimation. Their more accurate
results can benefit the scene flow estimation. In Fig. 7, we
compare the results of predicted scene flow to the ground truth
in synthetic and real-world scenarios.

Furthermore, when combining all three modules, our final
method VISC+ achieves the best results: a 67.7% reduction
in EPE compared to VI-SLAM on synthetic data, and a
64.9% reduction on real-world data. These results demonstrate
that accurate odometry estimation, motion segmentation, and
cross-modal supervision are tightly coupled with scene flow
estimation, and their joint optimization significantly boosts
overall performance. In Fig. 7, we compare the predicted scene
flow with the ground truth in both synthetic and real-world
scenarios.

3) Testing in Smoke-filled Environments: VISC+ is designed
to enhance perception reliability in environments where visual
sensing is degraded, such as adverse weather conditions. To
validate its robustness, we evaluate VISC+ in smoke-filled
settings through both simulation and real-world indoor testing.
In the simulation, foggy scenes are generated in Carla, while
in the physical setup, varying levels of smoke density are
created using a smoke machine in the lab. In simulation, smoke
densities of 30%, 50%, and 70% are defined using the fog
attribute in the CARLA renderer, with corresponding reductions
in visual range, contrast, and depth-dependent attenuation.
In real indoor tests, smoke density levels are controlled by
adjusting the output of a smoke machine, with levels measured
using a smoke density sensor. Light, medium, and heavy smoke
correspond to specific particle concentrations, with temporal
variability controlled by maintaining a stable smoke output
during testing. As shown in Table III, VISC+ maintains strong
performance across different smoke conditions. Notably, it
slightly surpasses CMFlow in scene flow accuracy, despite
CMFlow relying on expensive LiDAR data during training.

For instance, under 30% synthetic smoke density, VISC+
reduces EPE by 30.9% and improves AccS by 46.2%, and

AccR by 28.3%. Similar improvements are observed at 50%
and 70% smoke levels, where VISC+ maintains lower EPE
and better robustness in degraded visual conditions. In real-
world indoor environments, VISC+ also outperforms both
CMFlow and the original VISC. Under light smoke, VISC+
achieves a 27.1% reduction compared to CMFlow and a 5.6%
reduction compared to VISC. Meanwhile, AccS improves by
22.7% over VISC and 57.4% over CMFlow. Even under heavy
smoke, VISC+ maintains stable performance, with AccS and
AccR significantly higher than CMFlow, indicating stronger
generalization in severely degraded conditions.

Fig. 8 illustrates the qualitative comparison between VISC+
and CMFlow under different levels of smoke densities. We
can see that under heavy smoke conditions, VISC+ can better
estimate the scene flow. These results demonstrate that our
mmWave-based scene flow estimation model, trained in benign
environments, can be applied to smoke-filled environments.
Based on these experiments, we believe that all commercial
vehicles, not just a few specialized LiDAR-equipped vehicles,
can contribute to data collection for training radar scene flow
models. A more efficient data collection process results in
more diverse data, thus alleviating the long-tail problem in
autonomous vehicle perception.

4) Performance on Subtasks: In addition to scene flow
estimation, we evaluated the motion segmentation task.
Regarding the hyper-parameter & (c.f. Sec. III-C), we conduct
a comparison for different values in Table. IV. Through
experiments, we found that when k is set to 4, it effectively
utilizes the distance information between feature points and
static point clouds, resulting in relatively higher accuracy in
scene flow estimation. In Table. VI, both ARV and feature
selection techniques demonstrated the potential to enhance
the performance of motion segmentation. Fig. 9 illustrates
the motion segmentation results in two scenarios. The results
demonstrate that our motion segmentation can achieve multi-
object segmentation in complex scenes. We further report
class-wise performance for static and dynamic points. On the
evaluation set, the IoU for static points is 45.1, and the IoU for
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Fig. 8. Scene flow estimation under different levels of smoke densities. From left to right: 1) visual images; 2) two consecutive frames of point clouds, the
first frame (red), the second frame (blue), and the ground truth scene flow (depicted in green); 3) the CMFlow results; 4) the VISC results. We highlight
moving objects in brown circles and zoom in on them.

TABLE III
COMPARISON IN SMOKE-FILLED INDOOR ENVIRONMENTS
Smoke Density EPE [m]| AccST AccRT
CMFlow-30% (synth.) 0.259 0.264 0.501
CMFlow-50% (synth.) 0.273 0.260 0.495
CMFlow-70% (synth.) 0.322 0.211 0.439
VISC-30% (synth.) 0.194 0.323 0.587
VISC-50% (synth.) 0.225 0.281 0.516
VISC-70% (synth.) 0.275 0.259 0.490
VISC+-30% (synth.) 0.179 0.386 0.643
VISC+-50% (synth.) 0.195 0.347 0.533
VISC+-70% (synth.) 0.249 0.300 0.518
CMFlow-Light (real-w.) 0.280 0.230 0.485
CMFlow-Med. (real-w.) 0.298 0.218 0.451
CMFlow-Heavy (real-w.) 0.355 0.135 0.227
VISC-Light (real-w.) 0.216 0.295 0.568
VISC-Med. (real-w.) 0.255 0.275 0.510
VISC-Heavy (real-w.) 0.305 0.215 0.448
VISC+-Light (real-w.) 0.204 0.362 0.601
VISC+-Med. (real-w.) 0.221 0.328 0.525
VISC+-Heavy (real-w.) 0.265 0.278 0.504

dynamic points is 43.5. The proportion of dynamic points in the
evaluation set is approximately 60%. The proposed approach
effectively utilizes visual feature points to constrain static radar

point clouds.

TABLE IV
IMPACT OF HYPER-PARAMETERS
k EPE [m]l AceST AccRT mloUf
2 0.140 0.405 0.726 42.0
3 0.141 0.401 0.714 43.6
4 0.139 0.408 0.749 45.2
5 0.170 0.373 0.646 44.4

RGB Image Ours Ground Truth

Fig. 9. Motion segmentation results. The left column shows the RGB image
with the projected radar point cloud. In the middle and right columns, static
points are green and dynamic points are pink.

TABLE V
SCENE FLOW ACCURACY BY ODOMETRY-ERROR BIN.

RTE bin EPE [m]] AceST AccR 7T
0-1% (synth.) 0.139 0.474 0.765
1-2% (synth.) 0.141 0.470 0.758
2-4% (synth.) 0.148 0.464 0.754
>4% (synth.) 0.156 0.459 0.750
0-1% (real-w.) 0.173 0.392 0.706
1-2% (real-w.) 0.176 0.385 0.698
2-4% (real-w.) 0.185 0.382 0.693
>4% (real-w.) 0.192 0.376 0.685

We obtain odometry between consecutive radar frames under
the constraints of VI-SLAM and the recursive sensor fusion
module. In Table VII, we evaluate the odometry estimation
task, showing that VISC+ achieves further improvements
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over the original VISC due to the enhanced cross-task
consistency introduced by the feature-selection module. Using
the accumulated odometry, we visualize the trajectories in
Fig. 10 for two representative scenarios. Although CMFlow
achieves lower RTE and RAE in short-range motion, its reliance
on high-precision LiDAR and RTK supervision limits its
performance in longer trajectories where accumulated drift
becomes significant. In contrast, VISC+ demonstrates more
stable and accurate long-term trajectory estimation, benefiting
from recursive fusion and task-level supervision refinement.
Despite using only low-cost sensors, VISC+ yields lower
accumulated drift than CMFlow, highlighting the robustness and
practicality of our proposed framework in large-scale real-world
navigation tasks. We also evaluate scene-flow robustness under
different odometry qualities. Test trajectories are partitioned
into non-overlapping 10 m segments. For each segment we
compute relative translation and rotation errors of odometry.
Segments are grouped by RTE into four bins: 0-1%, 1-2%,
2-4%, and >4%. For each bin we report EPE, AccS, and
AccR. For simulation we use ground-truth poses. For real-
world sequences we use VINS only to define the bins. The
results are summarized in Table V. The degradation is smooth
across bins, indicating the flow head remains robust even when
the motion prior is less accurate.

TABLE VI TABLE VII
MOTION SEGMENTATION ODOMETRY ESTIMATION
ARV | Feature | mloUt VIO | Recur. | RTE | RAE
Select. Fus. [m]) [°H
15.7 0.185 | 0.203
v 23.8 v 0.116 | 0.180
v v 45.2 v v 0.076 | 0.147
200/ — Ground Truth 80
175 z’:ﬂ?i“‘: 70
150 VISC 60 i e—
125 visC+ 50 T
Emo 540 —
75 30 —— Ground Truth
so — 20 e
25 10 vIsC
ol _ ol i - VISC+
-75 -50 -25 0 25 50 75 ('] 20 40 60 80

X [m] X [m]

Fig. 10. The trajectories are plotted based on accumulated odometry for two
scenarios.

V. CONCLUSION

This work introduces VISC+, a self-supervised learning
framework enhanced by visual-inertial sensing, aimed at
improving mmWave radar perception and enabling scalable
crowd-sourced training. The key innovation lies in integrating
deterministic motion models with learned statistical estimations
to recursively leverage IMU data for accurate odometry, thereby
providing reliable supervision for static background points.
Then, we develop an optical-mmWave supervision extraction
module that generates supervisory signals for both rigid-
body transformation and scene flow estimation. Furthermore,
our proposed feature-selection cross-modal learning module
produces a more accurate motion segmentation leveraging
background points. It further establishes consistency constraints

on the scene flow and odometry estimation and jointly refine
their results. Using datasets collected from both the Carla
simulator and our custom-built sensor platform, we conduct
extensive experiments demonstrating that VISC+ can surpass
state-of-the-art methods that rely on expensive LiDAR systems.
Looking ahead, we plan to further investigate the sensing
capabilities of mmWave radar, with a particular focus on
enhancing elevation angle resolution to improve the robustness
and precision of radar-based perception.
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