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Abstract

Vision Transformers (ViTs) have emerged as
powerful alternatives to CNNs for various vi-
sion tasks, yet their token-based, attention-
driven architecture makes interpreting their
predictions challenging. Existing explainabil-
ity methods, such as Grad-CAM and Atten-
tion Rollout, either fail to capture hierar-
chical semantic information or assume atten-
tion directly reflects importance, often lead-
ing to misleading explanations. We propose
FocusViT, a novel explainability framework
that integrates gradient-weighted attention
attribution with dynamic, faithfulness-driven
layer aggregation. By fusing attention maps
with class-specific gradients and introducing
per-head dynamic weighting, FocusViT high-
lights not only where the model attends but
also how sensitive the prediction is to those
attentions. Furthermore, our adaptive layer-
skipping strategy ensures that only semanti-
cally meaningful layers contribute to the fi-
nal explanation, enhancing both faithfulness
and clarity. Extensive quantitative and qual-
itative evaluations on diverse benchmarks
demonstrate that FocusViT improves over
existing methods in faithfulness and spar-
sity, achieving competitive robustness and
class sensitivity, and provides sharper, more
reliable visual explanations for ViTs. The
official implementation is publicly available
at:  https://github.com/game-sys/focusvit-
aistats2026.git
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1 Introduction

Vision Transformers (ViTs) Dosovitskiy et al. (2020);
Vaswani et al. (2017) have recently emerged as a
powerful alternative to convolutional neural networks
(CNNs) for image classification and various computer
vision tasks Carion et al. (2020); Zhang et al. (2022);
Dosovitskiy et al. (2020). Unlike CNNs, which rely
on convolutional filters to extract local features, ViTs
divide input images into patches and process them us-
ing self-attention mechanisms, particularly multi-head
self-attention (MHSA). This architecture enables ViTs
to capture global contextual information, making them
especially effective on large-scale datasets. However,
the token-based and attention-driven nature of ViTs
introduces new challenges for model interpretability,
as their decision-making processes are less transpar-
ent compared to the spatially localised feature maps
of CNNs. While numerous explainability techniques,
such as Grad-CAM, have been developed for CNNs,
explainability for ViTs remains an underexplored area.

Grad-CAM Selvaraju et al. (2016) generates explana-
tions by computing the gradients of the predicted class
logits with respect to the feature maps in the final
convolutional layer and averaging these gradients spa-
tially to highlight important regions. Although effec-
tive for CNNs, Grad-CAM'’s limitation lies in focusing
solely on the last convolutional layer, thereby over-
looking contributions from earlier convolutional and
fully connected layers. Adaptations of Grad-CAM for
ViTs Selvaraju et al. (2017); Draelos and Carin (2020)
similarly emphasise only the last attention layer, miss-
ing the rich hierarchical information distributed across
multiple transformer layers. Attention Rollout Abnar
and Zuidema (2020) offers an alternative by leverag-
ing the inherent attention mechanisms of ViTs. It ag-
gregates attention weights from all transformer layers
to estimate the influence of each input token on the
final classification token. However, this method as-
sumes that attention weights directly correspond to
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feature importance, an assumption increasingly ques-
tioned by recent studies such as Layer-Wise Relevance
Propagation (LRP) Montavon et al. (2019); Chefer
et al. (2021), which provides layer-wise explanations
by propagating relevance scores backwards from the
output to the input. Despite its mathematical rigour,
LRP depends on handcrafted propagation rules, which
often struggle with nonlinear activations and complex
architectural components.

Existing ViT explanation methods fall into four broad
categories: propagation-based techniques such as
LRP and AttnLRP Chefer et al. (2021); Achtibat
et al. (2024), token-tracing approaches like TokenTM
Wu et al. (2024) and AttCat Qiang et al. (2022),
sensitivity-driven methods such as LeGrad Boussel-
ham et al. (2024), and diagnostic studies revealing
biases like ViT register tokens Darcet et al. (2023).
While each provides valuable insight, they are limited
by handcrafted propagation rules, over-reliance on the
class token, heavy perturbation cost, or susceptibility
to spurious tokens. To address these gaps, we propose
FocusViT, a unified framework that fuses gradient
sensitivity with attention attribution and dynamically
aggregates layers based on faithfulness metrics.

The main contributions of this work are:

o Gradient-weighted head attribution: We
weight attention heads by their gradient sensitiv-
ity to class logits, capturing not only where the
model attends but also how those attentions in-
fluence predictions.

e Faithfulness-driven skip-layer selection: We
introduce a dynamic criterion that selects the
most semantically aligned layers for aggregation,
improving on heuristic midpoint strategies such
as SkipPLUS Mehri et al. (2024).

e Additive aggregation across layers: Unlike
multiplicative Rollout, which suffers from vanish-
ing attributions, our additive scheme preserves
signal strength and produces clearer explanations.

e Plug-and-play applicability: FocusViT re-
quires no retraining, avoids handcrafted propa-
gation rules (AttnLRP), and mitigates register-
token bias, making it lightweight and adaptable
across datasets and tasks.

2 Related Work

Classical XAI Methods. Early model-agnostic ap-
proaches include LIME (Local Interpretable Model-
agnostic Explanations) Ribeiro et al. (2016), which fits
a simple surrogate model around perturbed samples

to approximate local decision boundaries. It generates
superpixel-level importance maps but is unstable due
to its dependence on segmentation and independence
assumptions. SHAP (SHapley Additive Explanations)
Lundberg and Lee (2017) instead attributes impor-
tance using Shapley values from cooperative game the-
ory, providing solid theoretical guarantees but at high
computational cost, which limits its scalability in vi-
sion tasks.

Grad-CAM (Gradient-weighted Class Activation Map-
ping) Selvaraju et al. (2017) adapts gradient back-
propagation to CNNs by linking class scores to convo-
lutional feature maps, producing class-discriminative
heatmaps. While widely adopted in CNN-based vi-
sion, its reliance on convolutional structures prevents
direct extension to ViTs.

Transformer-Specific Explanations. Attention
Rollout Abnar and Zuidema (2020) proposed aggre-
gating token contributions by recursively multiplying
attention matrices across layers. This provides a global
view of how input tokens influence the class token, but
it assumes that the attention weights directly repre-
sent importance: an assumption that is increasingly
challenged in subsequent work.

Layer-Wise Relevance Propagation (LRP) was
adapted to Transformers by Chefer et al. Chefer et al.
(2021), who introduced gradient-based propagation
rules for self-attention. This enabled token-level
explanations, but their reliance on handcrafted rules
makes generalisation to diverse architectures and
residual connections difficult.  AttnLRP Achtibat
et al. (2024) refined this approach by redistributing
relevance proportionally to actual attention weights.
By explicitly incorporating attention into the prop-
agation process, it aligned explanations more closely
with the model’s internal dynamics, though it still
required full access to all intermediate activations.

Wu et al. Wu et al. (2024) highlighted that token
transformations such as projections, residual connec-
tions, and MLP layers play a central role in shaping
model behaviour, and ignoring them distorts expla-
nations. Their method, TokenTM, explicitly traces
these transformations to preserve faithfulness, produc-
ing more reliable explanations at the cost of added
computation.

AttCat Qiang et al. (2022) leveraged the class token
itself to generate explanations. By tracing attention
flows from the class token back to input patches, it pro-
duced class activation maps without the need for gra-
dients. The method is efficient but depends strongly
on the class token being the dominant driver of pre-
dictions, which may not hold in all ViT variants or
tasks.
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LeGrad Bousselham et al. (2024) proposed explana-
tion via feature-formation sensitivity, measuring how
perturbations to the input affect the construction of
hidden features. This approach mitigates biases from
spurious attention spikes and provides stable, less
noisy maps, though it requires repeated perturba-
tion analysis. Complementarily, Darcet et al. Darcet
et al. (2023) revealed the presence of “register to-
kens” in ViTs, which act as global context storage
and often dominate attribution scores. This diagnos-
tic finding highlighted why many gradient-based meth-
ods overemphasise these tokens, producing misleading
saliency.

Taken together, these methods illustrate both the
richness and the challenges of explaining ViTs.
Propagation-based approaches such as LRP and At-
tnLRP rely on carefully designed rules, while token-
tracing methods, e.g. TokenTM and AttCat, focus on
structural components such as transformations or class
tokens. LeGrad and the ViT Register analysis further
show that stability and token bias remain open chal-
lenges. In contrast, our proposed FocusViT addresses
these gaps by weighting attention heads according
to gradient sensitivity and adaptively skipping noisy
early layers. This design avoids handcrafted propa-
gation rules, mitigates register-token bias, and yields
sharper explanations by combining gradient informa-
tion with attention in a unified, faithfulness-driven
framework.

Evaluation Metrics: The evaluation metrics used
to assess the quality of model explainability are sum-
marised in Table 1. These metrics include:

Metric Direction Description
Faithfulness 1 Higher Measures the align-
Correla- ment of the explanation

tion Bhatt
et al. (2020)

with the model’s true
decision-making.

Max-
Sensitivity Ye
et al. (2019)

J Lower

Evaluates the robustness
of the explanation by
measuring its stability
under small input per-
turbations.

SparsenessCl | Lower
et al. (2020)

Measures the concentra-
tion of the explanation
across input features.

Parameter
Randomi-
sationSixt
et al. (2020)

|} Lower

Assesses whether the ex-
planation remains con-
sistent when the model’s
parameters are shuffled.

Table 1: Evaluation Metrics for Model Explainability

3 FocusViT

Traditional interpretability methods, such as Grad-
CAM and Attention Rollout, struggle with ViTs due
to architectural differences compared to CNNs. ViTs
operate on tokenised patches and distribute informa-
tion globally via multi-head self-attention. As a result,
early layers produce noisy, non-discriminative atten-
tion maps and naive aggregation of attention scores
across all layers. Using multiplicative Rollout leads to
vanishing attributions or over-smoothed outputs. To
resolve this, we make three critical design choices:

e We extract both attention and gradient maps to
capture not only what the model looks at, but also
how sensitive the output is to these attentions.

e We avoid early layers in the computation of the at-
tribution map, which empirical studies (e.g., Skip-
PLUS) Mehri et al. (2024) show to contain noisy
or semantically diffuse information.

o We aggregate CAMs additively rather than mul-
tiplicatively, which preserves attribution signal
strength and avoids exponential decay of influ-
ence.

3.1 Gradient-Weighted Attention
Attribution

In ViTs, attention weights describe how each patch to-
ken attends to others in the input sequence. However,
raw attention weights alone do not capture the model’s
sensitivity to class-specific decisions; they do not accu-
rately reflect the spatial distribution of influence. This
makes them insufficient for faithful explanation, espe-
cially in high-stakes domains such as medical imaging
or scene classification. To address this, we combine the
attention maps with their gradients with respect to the
loss. This combination highlights not only where the
model is looking, but also how much each region con-
tributes to the output decision Xu et al. (2019).

Let A) ¢ REXNXN e the attention matrix at layer
[, where H is the number of attention heads and N
is the number of tokens (including the class token).
During the backwards pass, we compute the gradient
of the loss £ with respect to the attention weights:

oL
) _
VA = 3A0

In our base implementation, we compute per-head
CAMs using the gradient-weighted attention fusion:

camy = ReLU (A © VA()



FocusViT: Faithful Explanations for Vision Transformers via Gradient-Guided Layer-Skipping

[ Query ] [ Key } [ Value ] / _ o _ —
' ! I :
[Linear Layer ] Linear Layer [ Linear Layer] |
l l [ . ",;Attentions @ Gradients szrictarlgltji!n
‘ Dot Product | b SrppLUS
Self Attention Additive Aggregatmn / ECKpTgatli XAlMaps

c Class Token
- s| |
2 k) 5
= kS 2z Patch 1 Token
a = w = (]
F=e) =l D; (<]
O % g o
& a = e
=
Patch N Token
Tokens

( Patch Processing in VIiT
Input AN

Attention
MLP Linear Layer 2

Multi-head Self
MLP Linear Layer 1
Class Token
Classification Layer

Output

MLP

ViT Encoder Block Classification Block

ViT

Figure 1: Overview of FocusViT: A hybrid approach combining gradient information and attention mechanisms,
with a faithfulness-driven selection strategy and layer-skipping to enhance interpretability

Each attention head produces an individual CAM, and
the final attribution map for the layer is obtained by
averaging across heads:

cAM® = Z cAm)

h 1

While this yields interpretable maps, it assumes that
all heads contribute equally to the final decision. This
assumption does not hold in practice, as certain heads
focus on semantically important regions while others
capture irrelevant structures. To address this limi-
tation, we introduce a dynamic weighting scheme for
each attention head based on the magnitude of its gra-
dients. The weight for head h is defined as:

‘VA(Z) (i j)‘
Zh/ 1 Zz ,J ‘VA(I) ‘

Wp =

The final layer-wise CAM is then computed as a
weighted sum over heads:

CAM® — Z wp, - ReLU (A‘” © VA<”)
h=1

This head-weighted attribution mechanism empha-
sises heads that are more sensitive to the loss func-
tion and thereby more relevant to the model’s deci-
sion. Empirically, it produces sharper and more class-
discriminative explanations than uniform averaging.

Observation (Gradient-Weighted Attention At-
tribution). For each attention head h in layer I, we
define the gradient-weighted attribution map as
M = AP o VA,

where Ag) are the attention weights and VAEIZ) their
gradients with respect to the class loss. This formu-
lation captures not only where the model attends but
also how sensitive the prediction is to those attentions,
offering a first-order view of local importance. Aggre-
gating these maps across heads and layers therefore

yields explanations that reflect both attention alloca-
tion and its causal impact on the output.

Observation (Faithfulness-Preserving Skip Ag-
gregation). In practice, early ViT layers often intro-
duce noise, while deeper layers encode more semantic
features. Therefore, there exists a skip point m* from
which aggregating class attribution maps produces the
most faithful explanations. We select m* automati-
cally by maximising a faithfulness score (e.g., Inser-
tion or Deletion AUC) on a validation set. This en-
sures that only semantically relevant layers contribute
to the final explanation.

4 Experiments and Results

Experimental setup: All experiments were con-
ducted using PyTorch with the timm library to imple-
ment ViT models, and computations were performed
on a single NVIDIA RTX 2080Ti GPU with 12GB
memory. FocusViT introduces minor computational
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overhead, generating one explanation is approximately
12% slower than Attention Rollout due to the addi-
tional gradient computation, We evaluated FocusViT
on five diverse image classification datasets: Oxford
Flowers-102 Nilsback and Zisserman (2008), Oxford-
IIIT Pets Parkhi et al. (2012), Stanford Dogs Khosla
et al. (2011), Caltech-101 Fei-Fei et al. (2004), and
MiT Indoor-67 Quattoni and Torralba (2009). These
datasets cover a wide range of visual domains, object
types, and scene complexities. For training, we em-
ployed the ViT-Base model (patch size 16x16) pre-
trained on ImageNet, modifying the classification head
to match the number of classes in each dataset. Im-
ages were preprocessed with resizing to 256, random
cropping to 224x224, and augmented using random
horizontal flips, £15° rotations, and colour jitter. Nor-
malisation was applied using ImageNet mean and stan-
dard deviation. The model was trained using the
AdamW optimiser with a learning rate of 1 x 1074, a
StepLR scheduler (decay factor 0.7 every 10 epochs),
and a batch size of 32. Cross-entropy loss was used
as the objective function, and early stopping was ap-
plied with a patience of 5 epochs to prevent overfitting.
For explanation quality evaluation, we used Quantus-
Lab (2023); Hedstrom et al. (2023) to compute four
widely adopted XAI Guidotti et al. (2018) metrics:
Faithfulness Correlation, Max-Sensitivity, Sparseness,
and Model Parameter Randomisation. These evalua-
tions were applied to FocusViT and Grad-CAM, LRP,
SHAP, LIME, and Attention Rollout for comparative
analysis.

4.1 Quantitative Evaluation Metrics

The table 2 show a detailed comparison of the perfor-
mance of six XAI Chatzimparmpas et al. (2020) tech-
niques that include our method, Grad-CAM Selvaraju
et al. (2017), LRP Chefer et al. (2021), AttentionAb-
nar and Zuidema (2020), LIME Ribeiro et al. (2016),
and SHAP Lundberg and Lee (2017) across five differ-
ent datasets (Flower Nilsback and Zisserman (2008),
DogKhosla et al. (2011), MiT, Caltech , and PetParkhi
et al. (2012)) using four evaluation metrics: Faithful-
ness Correlation, Max-Sensitivity, Sparseness (Com-
plexity), and Model Parameter Randomisation. The
Faithfulness Correlation metric measures the align-
ment of an explanation with the model’s decision-
making process, revealing that our method consis-
tently outperforms all other techniques across the
datasets. In the Flower dataset, our method achieves a
score of 0.0350, surpassing SHAP (0.0009) and LIME
(0.0006), both of which show poor alignment. Grad-
CAM (0.0293) and LRP (0.0323) provide moderate
performance but still fall short of our method. A sim-
ilar trend is observed in the Dog dataset, where our
method outperforms other XAI methods by 0.0336.

In the MiT dataset, our method scores 0.0500, with
SHAP and LIME performing poorly at 0.0000, while
Grad-CAM and Attention show moderate results. Fi-
nally, in the Caltech and Pet datasets, Our method
continues to excel, with SHAP and LIME performing
the worst, particularly at 0.0016 and 0.0005 in the Cal-
tech and Pet datasets.

The Max-Sensitivity metric quantifies the stability of
explanation methods by measuring their response to
minor input perturbations, with lower values indi-
cating higher robustness. Across multiple datasets,
our method consistently demonstrates low sensitiv-
ity, comparable to or outperforming other techniques.
On the Flower dataset, Attention exhibits the lowest
sensitivity (1.0004), followed by Grad-CAM (1.0020),
LRP (1.0035), and our method (1.0037), while LIME
(3.7378) and SHAP (13.3765) show substantial vari-
ability. For the Dog dataset, our method achieves
the lowest score (1.2663), outperforming Grad-CAM
(1.4135), LRP (1.3110), and Attention (1.3334), with
LIME and SHAP reaching 34.2574 and 46.2796, re-
spectively. In the MiT dataset, our method again
leads with a sensitivity of 1.1240, followed by Grad-
CAM (1.1362), Attention (1.2214), and LRP (1.2668),
while LIME and SHAP show extreme sensitivity at
26.1842 and 58.5712. The Caltech dataset reveals
minimal variation among our method, Grad-CAM,
LRP, and Attention (all 1.00), contrasting with LIME
(4.9136) and SHAP (10.0210). Finally, in the Pet
dataset, Grad-CAM (1.0043) and LRP (1.0354) show
low sensitivity, with our method (1.0510) and Atten-
tion (1.5483) slightly higher, whereas LIME (5.5832)
and SHAP (37.8872) again show high sensitivity.
These results highlight the robustness of our method
across diverse datasets, particularly when compared to
perturbation-based approaches like LIME and SHAP.

Sparseness, in the context of XAI, measures the con-
centration of the explanation across the input features,
indicating how distributed or concentrated the im-
portance values are across the input. In the Flower
dataset, our method demonstrates the lowest spar-
sity (0.1248), outperforming SHAP (0.3449) and other
methods, indicating its better sparsity. Similarly, in
the Dog dataset, our method (0.4844) maintains a rel-
atively low sparsity, in comparison to LRP and Grad-
CAM (both 0.5265) show comparable sparsity, while
LIME and SHAP exhibit significantly higher sparsity
values (0.9975 and 0.6452, respectively). The MiT
dataset also reveals our method (0.3121) as the most
efficient, followed closely by LRP (0.3771), with LIME
and SHAP showing higher sparsity at 0.9978 and
0.5027. In the Caltech dataset, our method (0.4298)
and Attention (0.4412) lead in sparsity, while SHAP
(0.7261) and LIME (0.9967) show the highest sparsity.
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Table 2: XAI Evaluation Metrics across Datasets (Best highlighted in green, worst highlighted in pink)

Dataset Metric LIME SHAP LRP Grad-CAM Attention Our
Faithfulness Correlation 0.0006 0.0009  0.0323 0.0293 0.0216 0.0350

Flower Max-Sensitivity 3.7378 13.3765 1.0035 1.0020 1.0004 1.0037
Sparseness (Complexity) — 0.9987  0.3449  0.4348 0.5466 0.5056 0.1248

Model Randomisation 0.1854  0.0000 0.1265 0.1583 0.0016 0.0015
Faithfulness Correlation 0.0036 0.0012  0.0233 0 0 0.0336

Do Max-Sensitivity 34.2574  46.2796 1.3110 1.4135 1.3334 1.2663
& Sparseness (Complexity) — 0.9975  0.6452  0.5265 0.5265 0.5527 0.4844
Model Randomisation 0.0003  0.0000 0.2452 0.3713 0.398 0.1931
Faithfulness Correlation 0.0000 0.0000 0.0186 0.0211 0.0463 0.0500

MET Max-Sensitivity 26.1842 58.5712 1.2668 1.1362 1.2214 1.1240
Sparseness (Complexity) — 0.9978  0.5027 0.3771 0.6069 0.4987 0.3121
Model Randomisation 0.0003 0.0000 0.1101 0.2680 0.1746 0.05800
Faithfulness Correlation 0.0024 0.0016  0.0122 0.0087 0.0152 0.1558

Caltech Max-Sensitivity 4.9136  10.0210 1.0060 1.0096 1.0055 1.0023
Sparseness (Complexity) — 0.9967  0.7261  0.5267 0.6090 0.4412 0.4298

Model Randomisation 0.0006  0.0000 0.2052 0.2395 0.3437 0.1627
Faithfulness Correlation ~ 0.0005 0.0018 0.0063 0.0197 0.0239 0.0635

Pet Max-Sensitivity 5.5832  37.8872 1.0354 1.0043 1.5483 1.0510
Sparseness (Complexity) = 0.9978  0.7212  0.5577 0.3749 0.5895 0.3675
Model Randomisation 0.0010  0.0001 0.4169 0.2596 0.0010 0.05135

Flower - Radar Chart CalTech - Radar Chart
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Figure 2: Radar Charts for Evaluating XAI Techniques Across Multiple Datasets

Similarly, in the Pet dataset, Grad-CAM (0.3749) and
our method (0.3675) demonstrate the lowest sparsity,
while SHAP (0.7212) and LIME (0.9978) exhibit the
highest values.

The Model Parameter Randomisation metric assesses
the robustness of explanation methods to perturba-
tions in model parameters, with lower scores indicating
greater stability. Across the five datasets, SHAP con-
sistently demonstrates the highest robustness, achiev-
ing the lowest score in each case (ranging from 0.0000
to 0.0001). LIME also performs well, securing sec-
ond place in most datasets, particularly in the Dog
(0.0003), MiT (0.0003), Caltech (0.0006), and Pet
(0.0010) datasets. Our method shows moderate re-
silience, ranking third overall and first in the non-
perturbation base XAI technique with relatively low

values (e.g., 0.0015 in Flower and 0.0514 in Pet), out-
performing most gradient-based techniques. Grad-
CAM, LRP and Attention display noticeably higher
sensitivity, with values frequently exceeding 0.4, as
seen in the Pet (0.4169 and 0.2596, respectively) and
Caltech (0.3437 and 0.2395) datasets. These results
suggest that, while perturbation-based methods like
SHAP and LIME are highly stable under model ran-
domisation, gradient- and attention-based methods ex-
hibit greater sensitivity, with our method offering a
balanced trade-off between stability and interpretabil-
ity.

Area Under Radar (AUR): To quantitatively com-
pare explanation methods across multiple evaluation
metrics, we compute the area under the radar (AUR)
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Table 3: Area Under Radar (AUR) for Each Method Across Datasets. The highest values per dataset are

highlighted.
Dataset LIME SHAP LRP Grad-CAM Attention Our
Flower 0.0163 1.1656  1.0342 0.7785 1.1859 1.9916
Dog 0.2687 1.0714 1.1870 0.1371 1.3432 1.6311
MiT 0.2809  1.1006 1.3474 0.0000 1.3036 1.9332
Caltech 0.2818  0.9054 1.0339 0.5159 1.0578 1.6378
Pet 0.2886  0.8235  0.8447 1.6803 1.1440 1.9111
using the polar sector formula: 4.2 Qualitative Analysis
Aron — 1 0 (6 0 In Figure 3, we present qualitative visualisations show-
rea =g ; i Tier - sin(fips = 6:) ing the output of each XAI method on various datasets

Where r; represents the normalised score of the i
metric and 6; is the angle corresponding to that metric
on the radar chart. This formula yields a scalar mea-
sure reflecting both the magnitude and consistency of
the method’s performance across dimensions.

The results presented in the radar charts and the AUR
table illustrate the performance of FocusViT in com-
parison to several other XAI techniques, Grad-CAM,
LRP, Attention, LIME and SHAP, in five datasets:
Flower, Dog, MiT, Caltech, and Pet. Our method
consistently outperforms all other techniques across
all datasets. For example, in the Flower dataset, our
method achieved an AUR value of 1.9916, which is
higher than other methods. Similarly, in the Dog
dataset, our method scored 1.6311, surpassing Grad-
CAM’s 0.1371 and LIME’s 0.2687, further highlight-
ing the strength of our approach. The radar charts
clearly demonstrate that our method covers the largest
area in all four metrics, indicating superior perfor-
mance in providing well-rounded and reliable expla-
nations. While LRP and Attention exhibit some im-
provement in certain datasets (e.g., MiT), with LRP
achieving an AUR value of 1.3474, they still fail to
match the overall performance of our method, which
scored 1.9332 in the MiT dataset. Furthermore, LIME
and SHAP consistently perform poorly, especially in
Sparseness and Faithfulness, as evidenced by their low
AUR scores across all datasets—SHAP, for instance,
only scored 0.8235 in the Pet dataset. The AUR values
confirm these observations, with our method achiev-
ing the highest values in all datasets, underscoring
its ability to generate faithful, low-sensitive, and less
sparse explanations across diverse tasks. The lower
AUR scores for Grad-CAM, LIME, and SHAP further
highlight the relative limitations of these techniques,
particularly in comparison to our method. These re-
sults suggest that our method provides a more robust
and balanced approach to explainable Al, offering sig-
nificant advantages over other techniques.

under different conditions, highlighting both correct
and incorrect predictions by the model. These feature
maps, generated using different XAl techniques, aim
to identify the parts of the image that the model con-
siders most relevant to its prediction. Upon examining
the figure, it is evident that, in most correctly pre-
dicted cases, our model successfully highlights the rel-
evant image regions. For instance, in the Pet dataset,
when the model correctly predicts, it focuses on the
cat; similarly, in the Caltech dataset, it concentrates
on the insect, and in the Flower dataset, it highlights
the relevant parts of the flowers. However, in the
Dog dataset, the model does not focus on the dog,
and this issue is also observed across other XAI meth-
ods. Furthermore, when compared with other meth-
ods, permutation-based techniques mostly fail to ex-
plain the predictions effectively, as they tend to fo-
cus on irrelevant parts of the image. This observa-
tion is also corroborated by the quantitative analy-
sis in Section 4.1. On the other hand, gradient-based
and non-permutation methods show moderate perfor-
mance, but they still struggle in more complex scenar-
ios. For example, in the Pet dataset, these methods
often focus on irrelevant areas, even when the model’s
prediction is correct. A similar pattern is observed in
the Caltech dataset.

5 Conclusion

We proposed FocusViT, an explainability framework
for ViTs that integrates gradient-weighted attention
with dynamic layer-skipping. Quantitative results
show that FocusViT surpasses methods such as Grad-
CAM, LIME, and SHAP across core metrics of faith-
fulness, robustness, and sparsity. It achieves higher
faithfulness correlation and lower sensitivity to per-
turbations, producing accurate and stable explana-
tions. The method also yields sparser maps, high-
lighting the most relevant features for improved in-
terpretability. Qualitatively, FocusViT consistently
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Dataset Orignal LIME SHAP LRP Grad-CAM Attention Our

Pet - Correct

Pet - Wrong

Flower - Correct

Flower - Wrong

MIT - Correct

MIT - Wrong

Dog - Correct

Dog - Wrong

IHIIIHI

Figure 3: Qualitative comparison of different XAI methods (LIME Ribeiro et al. (2016), SHAP Lundberg and
Lee (2017), Grad-CAM Selvaraju et al. (2017), Attention Rollout Abnar and Zuidema (2020), LRP Chefer et al.
(2021), and our FocusViT) across multiple datasets: Flowers-102 Nilsback and Zisserman (2008), Stanford Dogs
Khosla et al. (2011), Oxford-IIIT Pets Parkhi et al. (2012), Caltech-101 Fei-Fei et al. (2004), and MiT Indoor-

67 Quattoni and Torralba (2009). FocusViT consistently highlights semantically relevant regions, while other
methods often spread attention to background or irrelevant areas.
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localises task-relevant regions better than competing
techniques, making it a reliable tool for enhancing ViT
transparency, particularly in applications where inter-
pretability is critical.
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1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] (See Section 3, and Observations 1
and 2.)

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes] (Section 4)

(¢) (Optional) Anonymised source code, with
specification of all dependencies, including
external libraries. [Yes] (Will be provided
on acceptance)

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Not Applicable]
(No formal theorems are presented; Obser-
vations 1 and 2 provide intuition only.)

(b) Complete proofs of all theoretical results.
[Not Applicable] (No formal proofs are
required since no theoretical results are
claimed.)

(c) Clear explanations of any assumptions. [Not
Applicable] (The paper does not make for-
mal theoretical assumptions)

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed
to reproduce the main experimental results
(either in the supplemental material or as
a URL). [Yes|] (All datasets are publicly
available; see Section 4. We will provide
anonymized code and reproduction instruc-
tions upon acceptance.)

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Yes]
(Section 4, Experimental Setup describes
dataset splits, preprocessing, augmentations,
optimizer, scheduler, and training settings.)

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes] (Section 3, Section 2
defines all evaluation metrics)

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster,
or cloud provider). [Yes] (Section 4, Exper-
imental Setup: single NVIDIA RTX 2080Ti
GPU with 12GB memory.)

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
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(a) Citations of the creator If your work uses ex-
isting assets. [Yes] (All datasets and pre-
trained models are cited in Section 4.)

(b) The license information of the assets, if appli-
cable. [Yes] ( All public datasets are released
for non-commercial academic research use.)

(¢c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Appli-
cable]

(d) Information about consent from data
providers/curators. [Not Applicable] (All
datasets are publicly available and widely
used in academic research.)

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(¢) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]



