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Abstract—This paper introduces a novel finite Zak trans-
form (FZT)-aided framework for constructing multiple zero-
correlation zone (ZCZ) sequence sets with optimal correlation
properties. Specifically, each sequence is perfect with zero auto-
correlation sidelobes, each ZCZ sequence set meets the Tang-
Fan-Matsufuji bound with equality, and the maximum inter-set
cross-correlation of multiple sequence sets meets the Sarwate
bound with equality. Our study shows that these sequences
can be sparsely expressed in the Zak domain through properly
selected index and phase matrices. Particularly, it is found
that the maximum inter-set cross-correlation beats the Sarwate
bound if every index matrix is a circular Florentine array.
Several construction methods of multiple ZCZ sequence sets are
proposed, demonstrating both the optimality and high flexibility.
Additionally, it is shown that excellent synchronization perfor-
mance can be achieved by the proposed sequences in orthogonal-
time-frequency-space (OTFS) systems.

Index Terms—Perfect sequences, Zak transform, multiple ZCZ
sequence sets, Sarwate bound, cyclically distinct, inter-set cross-
correlation.

I. INTRODUCTION

A. Background

SEQUENCES with good correlation properties are use-
ful for a number of applications (e.g., synchronization,

channel estimation, spread-spectrum communication, random
access, ranging and positioning) in communication and radar
systems. To deal with asynchronous wireless channels, perfect
sequences with zero auto-corelation sides are preferred. How-
ever, perfect binary and quaternary sequences are only known
to have lengths of 4 and 2, 4, 8, 16, respectively [1]. There
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are polyphase perfect sequences of lengths N = sm2 (s,m
positive integers), but as conjectured by Mow in [2], their
minimum alphabet size is 2sm for even s and odd m and is
sm otherwise. Furthermore, constrained by the Sarwate bound
[3], it is not possible to have two or more perfect sequences
with zero cross-correlation functions.

As a remedy to the aforementioned problem, zero-
correlation zone (ZCZ) sequences [4] have received tremen-
dous research attention in the past decades. By definition, ZCZ
sequences are characterized by their zero auto- and cross-
correlation values for certain time-shifts around the in-phase
position. Thanks to this property, ZCZ sequences permit an
interference-free window, thus leading to improved multi-user
detection or channel estimation performance in, for example,
quasi-synchronous code-division multiple access (QS-CDMA)
communications [5], [6] or multiple-antenna transmissions
[7]–[11], respectively.

Formally, let us consider a ZCZ sequence set of length N ,
set size of T , the ZCZ width of Z. Such a set is featured
by their zero periodic (non-trivial) auto- and cross-correlation
functions for all the time-shifts in the range of |τ | < Z. The
Tang-Fan-Matsufuji bound [12] shows that the parameters of
a ZCZ sequence set should satisfy TZ ≤ N . A ZCZ sequence
set is said to be optimal if it meets this bound with equality. To
support multi-cell QS-CDMA or multi-user MIMO communi-
cations, there is a strong need to design multiple ZCZ sequence
sets having low inter-set cross-correlation with respect to the
Sarwate bound [3] or the generalised Sarwate bound for the
binary case [13].

B. Related Works
As a class of orthogonal design, a number of ZCZ con-

structions from various aspects have been developed. Typi-
cally, one can design ZCZ sequences from perfect sequences
(e.g., generalized Chirp-like sequences) as illustrated in [14]–
[16]. Hu and Gong [17] presented a general construction of
sequence families with zero or low correlation zones using
interleaving techniques and Hadamard matrices. Besides, the
research works of [18] and [19] showed that complementary
sequences [20]–[23] are an useful building component of
ZCZ sequences. The algebraic connection between mutually
orthogonal complementary sets and ZCZ sequences through
generalized Reed-Muller codes was revealed in [24].

Designing multiple ZCZ sets with low inter-set cross-
correlation [25] is a challenging task. [26] pointed out that
multiple ZCZ sequence sets with optimal inter-set cross-
correlation can also be obtained by extending the method
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in [16]. The resultant multiple ZCZ sequence sets have the
following properties: 1) each sequence is perfect with zero
auto-correlation sidelobes; 2) each ZCZ sequence set meets the
Tang-Fan-Matsufuji bound with equality; and 3) the maximum
inter-set cross-correlation of multiple sequence sets meets the
Sarwate bound with equality. However, some of the ZCZ
sequences obtained in [16] may be cyclically equivalent, which
is not desirable in practical applications [27]. To solve this
problem, improved multiple ZCZ sets were obtained with
the aid of perfect nonlinear functions [26] and generalized
bent functions [28]. Recently, circular Florentine arrays were
employed in [29] for more ZCZ sequence sets compared to
that in [26], [28]. The same combinatorial tool was used in
[30] for sequences with perfect auto-correlation and optimal
cross-correlation.

C. Motivations and Contributions

Against the above state-of-the-art, this paper seeks a novel
research angle for new optimal multiple ZCZ sequence sets.
We advocate the use of an emerging tool, called finite Zak
transform (FZT), which has found wide applications in math-
ematics, quantum mechanics, and signal analysis [31]–[33].
A key advantage of FZT is that the sparse representation of
sequences in Zak space enables efficient signal processing
in radar, sonar, and communications [34], [35], leading to
reduced computational complexity as well as storage space
at the receiver. Building upon FZT and its inverse, Brodzik
derived sequences with perfect auto-correlation [36] and all-
zero cross-correlation [37]. Recently, FZT was utilized in [38]
for multiple spectrally-constrained sequence sets with optimal
ZCZ and all-zero inter-set cross-correlation properties. Yet, the
full potential of FZT for sequence design is largely unexplored.

From the application perspective, owing to the equivalence
between the Zak domain and the delay-Doppler (DD) domain,
FZT has inspired orthogonal-time-frequency-space (OTFS)
modulation, which is a promising multicarrier waveform for
future high-mobility communications [39]. In the first version
of OTFS, the basic idea is to send the data symbols in the
DD domain (i.e., Zak domain), convert it to time-frequency
(TF) domain through inverse sympletic finite Fourier transform
(ISFFT), and then to time domain via Heisenberg transform
[40], [41]. Recently, it has been found that one can directly
generate the relevant time-domain signal by applying the
inverse FZT (IFZT) to the DD domain data [42]–[44]. There-
fore, it is intriguing to transmit the proposed Zak-transform-
induced sequences in the DD domain as preamble sequences
and investigate their performances for random access [45],
synchronization [46]–[48], channel estimation [49], sensing
[50], etc.

The contributions of this work are multifold:
• We first introduce a novel framework whereby optimal

multiple ZCZ sequence sets can be uniquely obtained
by IFZT. To this end, we introduce a number of index
matrices and phase matrices by advocating the sequence
sparsity in the Zak domain.

• We derive the admissible conditions of these index ma-
trices and phase matrices and show that the maximum

inter-set cross-correlation beats the Sarwate bound when
every index matrix is a circular Florentine array.

• We employ the proposed sequences as preamble se-
quences in the DD domain and study their synchroniza-
tion performance in OTFS. Our numerical simulation
results demonstrate that 1) their superiority over random
sequences in OTFS synchronization and 2) their excel-
lent ambiguity function, highlighting their potential for
sensing.

D. Organization of This Work

The rest of the paper is organized as follows. Section II
gives brief introductions to perfect sequences, FZT, and cyclic
Florentine arrays. For optimal multiple ZCZ sequence sets,
we introduce the main framework and derive the conditions
for index and phase matrices in the Zak domain in Section
III. In Section IV, several constructions are proposed based on
IFZT and the cyclic Florentine arrays. The derived sequences
are then applied to an OTFS system and evaluated for their
synchronization performance. Section V concludes this paper.

II. PRELIMINARIES

A. Perfect Sequences

Definition 1: Let s0 = (s0 (0), ..., s0 (N − 1)) and s1 =
(s1 (0), ..., s1 (N − 1)) be two sequences of period N , then
the periodic cross-correlation function (PCCF) between s0 and
s1 is defined as

θs0,s1 (τ) =

N−1∑
n=0

s0 (n+ τ)N s∗1(n), (1)

where 0 ≤ τ < N , (·)N indicates the integer modulus
of N and s∗1 (n) is the complex conjugate of the complex
number s1 (n). When s0 = s1, θs0 is called the periodic auto-
correlation function (PACF) of s0. A sequence s0 is said to be
perfect if θs0 (τ) = 0 for all 0 < τ < N .

Definition 2: For two sequences s0 and s1 with period N , if
there exist some 0 ≤ τ < N and a constant complex number
c with |c| = 1 such that s1(t) = cs0(t + τ) for all 0 ≤ t <
N (i.e., |Rs0,s1(τ)| = N ), then the sequences s0 and s1 are
said to be cyclically equivalent. Otherwise, they are said to be
cyclically distinct.

Definition 3: Let S = {su}T−1
u=0 be a set of T sequences

of period N , where su = (su (0), ..., su (N − 1)) denotes the
u-th constituent sequence of S. The maximum out-of-phase
periodic auto-correlation magnitude θa and the maximum
periodic cross-correlation magnitude θc of the sequence set
S are respectively defined by

θa = max {|θsu (τ)| : 0 ≤ u < T, 0 < τ < N} ,

and

θc = max {|θsu,sv (τ)| : 0 ≤ u ̸= v < T, 0 ≤ τ < N} .

The following lemma is the well-known Sarwate bound on
θa and θc.
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Lemma 1 [3]: For any sequence set S with T sequences of
period N , we have

θ2c
N

+
N − 1

N (T − 1)

θ2a
N

≥ 1. (2)

Lemma 1 demonstrates that it is impossible to obtain a
sequence set with both θa and θc being zero. This implies
that cross-correlation and nontrivial auto-correlation cannot be
zero for all τ . Fortunately, this problem can be addressed by
placing τ in some regions around the origin, which facilitates
the application and development of sequences with zero cor-
relation zones [4].

Definition 4: The set S is called an (N,T, Z)-ZCZ sequence
set if

θsu (τ) = 0, for 0 ≤ u < T and 0 < τ < Z,

θsu,sv (τ) = 0, for 0 ≤ u ̸= v < T and 0 ≤ τ < Z,

where Z denotes the length of the ZCZ.
The following bound implies that there is a tradeoff among

the parameters of any ZCZ sequence set.
Lemma 2 (Tang-Fan-Matsufuji bound [12]): Let S be a set

of T sequences of period N with ZCZ length Z, then

TZ ≤ N.

A ZCZ sequence set meeting the Tang-Fan-Matsufuji bound
is said to be optimal.

Definition 5: Let S be a family of M sequence sets,
each consisting of T sequences of period N , i.e., S ={
S0, S1, ...SM−1

}
. A sequence set Sm(0 ≤ m < M) is

expressed as:

Sm =
{

smu : smu
∆
= {smu (n)}N−1

n=0 , 0 ≤ u < T
}
,

The inter-set cross-correlation of S is defined as

θc (S) = max
{∣∣θsm1

u ,sm2
v

(τ)
∣∣ : 0 ≤ τ < N

}
where 0 ≤ m1 ̸= m2 < M and 0 ≤ u, v < T .

B. The Zak Transform

Definition 6 [36]: Let s be a sequence of period N . Suppose
that N = LT , where L and T are positive integers. The FZT
of s is given by

X(j, t) =

L−1∑
l=0

s(t+ lT )w−lj
L , 0 ≤ j < L, 0 ≤ t < T, (3)

where wL = e
2π

√
−1

L = e
2πi
L .

When a sequence of period N = LT is represented as
an L × T matrix x, its FZT domain X can be rewritten as
X = W ·x, where W = w−lj

L is the discrete fourier transform
(DFT) matrix of order L. It is clear that the FZT reduces to
the classic DFT when T = 1.

Similarly to the DFT, the FZT is a one-to-one mapping. A
signal s can be recovered by its X(j, t) as

s(t+ lT ) = L−1
L−1∑
j=0

X(j, t)wlj
L , (4)

where 0 ≤ t < T and 0 ≤ l < L.

Take X , Y and Z as the FZTs of s0, s1 and θs0,s1 ,
respectively. The Zak space correlation formula is given by

Z (j, t) =

T−1∑
k=0

X(j, k + t)Y ∗(j, k). (5)

Consequently, for a shift τ = τ1 + τ2T where 0 ≤ τ1 < T
and 0 ≤ τ2 < L, we have

θs0,s1 (τ1 + τ2T )

=L−1
L−1∑
j=0

T−1∑
t=0

X (j, t+ τ1)Y
∗ (j, t)wτ2j

L

(6)

C. Circular Florentine Arrays

The circular Florentine array has been studied since 1989
[51]–[53]. The definition and some lemmas about circular
Florentine arrays are introduced in the following.

Definition 7 [54]: An M ×T circular Florentine array is an
array of T distinct symbols in M circular rows such that

1) each row is a permutation of the T symbols and
2) for any pair of distinct symbols (s, t) and for each 1 ≤

a ≤ T − 1, there is at most one row in which t occurs
a steps to the right of s.

Example 1: An example of a 4× 15 circular Florentine array
is shown in (7).

Lemma 3 : For each positive integer T ≥ 2, let Fc (T )
denote the largest integer such that circular Florentine array
of order Fc (T )× T exists, then we have

1) s− 1 ≤ Fc (T ) ≤ T − 1, where s is the smallest prime
factor of T [54];

2) Fc (T ) = 1 when T is even [55];
3) Fc (T ) = T − 1 when T is prime [54]; and
4) Fc (T ) ≤ T − 3 when T ≡ 15 mod 18 [54].
The following lemma of the circular Florentine array guar-

antees the cross-correlation properties of the sequence sets,
which can be used in the proof of Lemma 8.

Lemma 4 [54]: Let ZT = {0, 1, ..., T − 1}, F be an
Fc (T )×T circular Florentine array on ZT . Then each row is
an arrangement on ZT , denoted as πi, where 0 ≤ i < Fc (T ).
For 0 ≤ i1 ̸= i2 ≤ Fc (T ) and z ∈ ZT , there is exactly one
solution for πi1 (t) = πi2 (t+ z) on ZT .

III. PROPOSED ZAK-TRANSFORM-INDUCED MULTIPLE
ZCZ SEQUENCE SETS

In this section, we present a novel Zak-transform-induced
framework for constructing multiple ZCZ sequence sets. Our
proposed framework advocates the sparse representations of
these sequences in the Zak domain. Our key idea is that
sequences within a set exhibit identical non-zero support in
the Zak domain, whilst distinct sets possess different non-
zero supports. Following this idea, we first identify the Zak-
domain non-zero positions of each set using an index matrix.
Subsequently, we assign the corresponding Zak-domain phase
values to these non-zero positions, represented by a phase
matrix. In short, the proposed framework is comprised of
three steps: 1) determining the Zak-domain non-zero positions
using the index matrix; 2) assigning the Zak-domain phase
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
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 7 1 8 2 12 3 11 9 4 13 5 14 6 10
0 4 11 7 10 1 13 9 5 8 3 6 2 14 12
0 13 7 2 11 6 14 10 3 5 12 9 1 4 8

 . (7)

values using the phase matrix; and 3) generating time-domain
sequences of a set via the IFZT. To generate multiple good
sequence sets, appropriate index matrices and phase matrices
are needed.

Main Framework: Let R, M , T and L be positive integers.
M multiple sequence sets S = {Sm}M−1

m=0 , each comprising
T sequences of period N , where N = RT 2 = LT , are
constructed by following the steps below.

1) Let A be an index matrix, which is a M × T matrix
over ZT . Am (t) denotes the value of the t-th element
in the m-th row of the index matrix A. The row vector
Am for 0 ≤ m < M corresponds to the sequence set
Sm. The non-zero support of the sequence set Sm in
the Zak domain is given by |Xm(j, t)| as follows:

|Xm (j, t)| =

{
T
√
R, j = Am (t) + rT,

0, otherwise
(8)

where 0 ≤ j < L, 0 ≤ t < T and 0 ≤ r < R.
2) Let Pm(0 ≤ m < M) be a phase matrix, which is

a T × L matrix. Pm
u (t) denotes the value of the t-th

element in the u-th row of the phase matrix Pm. The row
vector Pm

u corresponds to the sequence smu in Sm. The
sequence smu in the Zak domain is given by Xm

u (j, t)
as follows:

Xm
u (j, t) =

{
T
√
RPm

u (t+ rT ) , j = Am (t) + rT

0, otherwise.
(9)

3) For each 0 ≤ m < M , according to the IFZT, the
sequence smu (n) in Sm is obtained by

smu (n) = smu (t+ lT )

=L−1T
√
R

R−1∑
r=0

Pm
u (t+ rT )w

l(Am(t)+rT )
L ,

(10)

where 0 ≤ u < T and 0 ≤ l < L.

To demonstrate the construction of multiple sequence sets
using the index matrix A and the phase matrices Pm(0 ≤ m <
M), an example of the proposed Main Framework is provided
for the case where T = 5, M = R = 2 and L = RT = 10.
Example 2: A is a 2× 5 index matrix, which is expressed as:

A =

[
0 1 2 4 3
0 3 4 2 1

]
.

Let P 0 and P 1 be the phase matrices, as shown in (11a) and
(11b), respectively. Through (8) and (9), we can get X0

1 (j, t)

and X1
3 (j, t), i.e.,

X0
1 = 5

√
2



w0
10 0 0 0 0
0 w1

10 0 0 0
0 0 w2

10 0 0
0 0 0 0 w4

10

0 0 0 w3
10 0

w5
10 0 0 0 0
0 w6

10 0 0 0
0 0 w7

10 0 0
0 0 0 0 w9

10

0 0 0 w8
10 0


,

X1
3 = 5

√
2



w0
10 0 0 0 0
0 0 0 0 w2

10

0 0 0 w4
10 0

0 w8
10 0 0 0

0 0 w6
10 0 0

w0
10 0 0 0 0
0 0 0 0 w2

10

0 0 0 w4
10 0

0 w8
10 0 0 0

0 0 w6
10 0 0


.

In this paper, the proposed Main Framework will be em-
ployed to construct multiple sequence sets with the following
desired properties:

1) Each sequence is a perfect unimodular sequence;
2) Each Sm is an optimal ZCZ sequence set with respect

to the Tang-Fan-Matsufuji bound;
3) The family of sequence set S has low inter-set

cross-correlation, namely, the maximal inter-set cross-
correlation of multiple sequence sets achieves the well-
known Sarwate bound;

4) All sequences in each Sm are cyclically distinct.

The above analysis has revealed that the key to constructing
multiple sequence sets with the aforementioned properties is
the design of appropriate index matrix A and its corresponding
phase matrices Pm(0 ≤ m < M − 1). To proceed, we first
introduce the necessary conditions that such matrices must
satisfy. These conditions play a pivotal role in the construction
of multiple sequence sets with desirable properties, which will
be detailed in Section IV.

Lemma 5: Let smu be a sequence of period N , where
N = LT and L = RT . The sequence smu is unimodular if the
phase vector Pm

u of smu in Zak domain satisfies the following
condition: ∣∣∣∣∣

R−1∑
r=0

Pm
u (t+ rT )wlrT

L

∣∣∣∣∣ = √
R (12)

for all 0 ≤ t < T and 0 ≤ l < L.
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P 0 =


w0

10 w0
10 w0

10 w0
10 w0

10 w0
10 w0

10 w0
10 w0

10 w0
10

w0
10 w1

10 w2
10 w3

10 w4
10 w5

10 w6
10 w7

10 w8
10 w9

10

w0
10 w2

10 w4
10 w6

10 w8
10 w0

10 w2
10 w4

10 w6
10 w8

10

w0
10 w3

10 w6
10 w9

10 w2
10 w5

10 w8
10 w1

10 w4
10 w7

10

w0
10 w4

10 w8
10 w2

10 w6
10 w0

10 w4
10 w8

10 w2
10 w6

10

 , (11a)

P 1 =


w0

10 w5
10 w0

10 w5
10 w0

10 w5
10 w0

10 w5
10 w0

10 w5
10

w0
10 w6

10 w2
10 w8

10 w4
10 w0

10 w6
10 w2

10 w8
10 w4

10

w0
10 w7

10 w4
10 w1

10 w8
10 w5

10 w2
10 w9

10 w6
10 w3

10

w0
10 w8

10 w6
10 w4

10 w2
10 w0

10 w8
10 w6

10 w4
10 w2

10

w0
10 w9

10 w8
10 w7

10 w6
10 w5

10 w4
10 w3

10 w2
10 w1

10

 . (11b)

Proof: To ensure that |smu (n)| = 1 holds, from (10), the
time-domain expression of smu is

smu (n) = smu (t+ lT )

=L−1T
√
R

R−1∑
r=0

Pm
u (t+ rT )w

l(Am(t)+rT )
L

=L−1T
√
Rw

lAm(t)
L

R−1∑
r=0

Pm
u (t+ rT )wlrT

L .

Then |smu (n)| = 1√
R

∣∣∣∣R−1∑
r=0

Pm
u (t+ rT )wlrT

L

∣∣∣∣. Since (12)

holds for all 0 ≤ t < T and 0 ≤ l < L, it follows that
each sequence smu is unimodular. ■

Lemma 6: Let smu be a sequence of period N , where N =
LT and L = RT . The sequence smu is perfect if its phase
vector Pm

u and index vector Am in the Zak domain satisfy
the following conditions:

1) The index vector Am is a permutation of ZT .
2) The phase vector Pm

u is unimodular.
Proof: To ensure that θsmu (0) = N and θsmu (τ) = 0 for all

0 < τ < N , according to (6), the auto-correlation of smu is

θsmu (τ) = θsmu (τ1 + τ2T )

=L−1
∑
j∈ZL

wτ2j
L

∑
t∈ZT

Xm
u (j, t+ τ1)X

m∗
u (j, t) (13)

where 0 ≤ τ1 < T and 0 ≤ τ2 < L.
When τ1 ̸= 0, since Am is a permutation of ZT , we get∑

t∈ZT

Xm
u (j, t+ τ1)X

m
u

∗ (j, t) = 0.

Therefore θsmu (τ) = 0.
When τ1 = 0, τ2 ̸= 0, (13) becomes

θsmu (τ2T )

=L−1
∑
j∈ZL

wτ2j
L

∑
t∈ZT

Xm
u (j, t)Xm

u
∗ (j, t)

=T

R−1∑
r=0

T−1∑
t=0

w
τ2(rT+Am(t))
L Pm

u (t+ rT )Pm∗
u (t+ rT ).

Since Am is a permutation of ZT , Am (t) + rT for
0 ≤ r < R is a permutation of ZL. Then we have
R−1∑
r=0

T−1∑
t=0

w
τ2(rT+Am(t))
L = 0. Therefore, we can obtain

θsmu (τ) = 0 for τ1 = 0 and 0 < τ2 < L.

When τ1 = 0, τ2 = 0, (13) becomes

θsmu (0)

=T

R−1∑
r=0

T−1∑
t=0

w
0(rT+Am(t))
L Pm

u (t+ rT )Pm∗
u (t+ rT )

=T

R−1∑
r=0

T−1∑
t=0

|Pm
u (t+ rT )|2.

Since the phase vector Pm
u is unimodular, we can get

θsmu (0) = RT 2 = N . ■
Lemma 7: Let Sm be a set of T sequences of period N ,

where N = LT and L = RT . Suppose the phase vector Pm
u

and the index vector Am of the sequence set Sm in the Zak
domain satisfy the following conditions:

1) The index vector Am is a permutation of ZT ,

2)
∣∣∣∣R−1∑
r=0

T−1∑
t=0

w
τ2(A

m(t)+rT )
L P

∣∣∣∣ = 0, where 0 ≤ τ2 < R,

3) 0 <

∣∣∣∣R−1∑
r=0

T−1∑
t=0

w
Am(t)
T P

∣∣∣∣ < RT,

where P = Pm
u (t+ rT )Pm∗

v (t+ rT ). Then the sequence set
Sm satisfies the Tang-Fan-Matsufuji bound and each sequence
is cyclically distinct.

Proof: Let smu and smv be any two sequences in Sm, 0 ≤
u ̸= v < T and 0 ≤ m < M . In order to ensure that the
length of the ZCZ meets Tang-Fan-Matsufuji bound, we need
to show

∣∣θsmu ,smv (τ)
∣∣ = 0 for 0 ≤ τ < RT .

Meanwhile, to further ensure that all the sequences are
pairwise cyclically distinct, it is sufficient to guarantee 0 <∣∣θsmu ,smv (RT )

∣∣ < N . There are two reasons for this constraint:
(1) If

∣∣θsmu ,smv (RT )
∣∣ = N , the resulting sequence set must

contain equivalent sequences. (2) If
∣∣θsmu ,smv (RT )

∣∣ = 0, then
the ZCZ width is Z = RT + 1, which violates the Tang-Fan-
Matsufuji bound.

According to (6), the cross-correlation of smu and smv is

θsmu ,smv (τ) = θsmu ,smv (τ1 + τ2T )

=L−1
∑
j∈ZL

wτ2j
L

∑
t∈ZT

Xm
u (j, t+ τ1)X

m
v

∗ (j, t), (14)

where 0 ≤ τ1 < T and 0 ≤ τ2 < L.
When τ1 ̸= 0, since Am is a permutation of ZT , we can

get ∑
t∈ZT

Xm
u (j, t+ τ1)X

m
v

∗ (j, t) = 0.
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Therefore,
∣∣θsmu ,smv (τ)

∣∣ = 0.
When τ1 = 0, we have the following two cases.
Case 1: When 0 ≤ τ2 < R, (14) becomes

θsmu ,smv (τ2T )

=L−1
∑
j∈ZL

wτ2j
L

∑
t∈ZT

Xm
u (j, t)Xm

v
∗ (j, t)

=T

R−1∑
r=0

T−1∑
t=0

w
τ2(A

m(t)+rT )
L P,

where P = Pm
u (t+ rT )Pm∗

v (t+ rT ).
Given that ∣∣∣∣∣

R−1∑
r=0

T−1∑
t=0

w
τ2(A

m(t)+rT )
L P

∣∣∣∣∣ = 0, (15)

it follows that
∣∣θsmu ,smv (τ2T )

∣∣ = 0 for all 0 ≤ τ2 < R.
Case 2: When τ2 = R, (14) becomes

θsmu ,smv (L)

=L−1
∑
j∈ZL

wRj
L

∑
t∈ZT

Xm
u (j, t)Xm

v
∗ (j, t)

=T

R−1∑
r=0

T−1∑
t=0

w
(Am(t)+rT )
T P

=T

R−1∑
r=0

T−1∑
t=0

w
Am(t)
T P,

where P = Pm
u (t+ rT )Pm∗

v (t+ rT ).
Given that

0 <

∣∣∣∣∣
R−1∑
r=0

T−1∑
t=0

w
Am(t)
T P

∣∣∣∣∣ < RT, (16)

it follows that 0 <
∣∣θsmu ,smv (τ2T )

∣∣ < N for τ2 = R.
Our observations from the two cases demonstrate that the

sequence set Sm adheres to the Tang-Fan-Matsufuji bound,
while also exhibiting the property of cyclic distinctness for
each individual sequence. ■

Lemma 8: Consider a family S containing M sequence sets,
denoted by Sm (0 ≤ m < M), where each set comprises T
sequences of period N . Here, N = LT and L = RT . Let
Pm1 and Pm2 represent the phase matrices, and Am1 and Am2

denote the index vectors associated with sets Sm1 and Sm2

respectively, where 0 ≤ m1 ̸= m2 < M . Then the maximum
inter-set cross-correlation of S attains the Sarwate bound if
the following two conditions are met:

1) The index matrix A is a circular Florentine array.

2)
∣∣∣∣R−1∑
r=0

Pm1
u (t+ τ1 + rT )Pm2∗

v (t+ rT )wrτ2
R

∣∣∣∣ = √
R,

where 0 ≤ t, τ1 < T , 0 ≤ u ̸= v < T and 0 ≤ τ2 < L.

Proof: Let sm1
u and sm2

v be any two sequences in Sm1 and
Sm2 , respectively. The inter-set cross-correlation between sm1

u

and sm2
v is given by

θsm1
u ,s

m2
v

(τ) =

N−1∑
n=0

sm1
u (n+ τ)N sm2

v
∗ (n)

=
1

R

T−1∑
t=0

L−1∑
l=0

(
R−1∑
r=0

Pm2∗
v (t+ rT )w

−l(Am2 (t)+rT )
L

·
R−1∑
r=0

Pm1
u (t+ τ1 + rT )w

(l+τ2)(A
m1 (t+τ1)+rT )

L

)

=
1

R

T−1∑
t=0

w
τ2A

m1 (t+τ1)
L

L−1∑
l=0

w
l(Am1 (t+τ1)−Am2 (t))
L

R−1∑
r=0

Pm1
u (t+ τ1 + rT )Pm2∗

v (t+ rT )wrτ2
R ,

where n = t + lT , τ = τ1 + τ2T , 0 ≤ t, τ1 < T and 0 ≤
l, τ2 < L.

Since∣∣∣∣∣
R−1∑
r=0

Pm1
u (t+ τ1 + rT )Pm2∗

v (t+ rT )wrτ2
R

∣∣∣∣∣ = √
R, (17)

the absolute value of the above equation of θsm1
u ,s

m2
v

(τ) is∣∣θsm1
u ,s

m2
v

(τ)
∣∣

=

√
R

R

∣∣∣∣∣
T−1∑
t=0

w
τ2A

m1 (t+τ1)
L

L−1∑
l=0

w
l(Am1 (t+τ1)−Am2 (t))
L

∣∣∣∣∣ . (18)

Lemma 4 implies that for a circular Florentine array, A,
there exists a unique integer t, denoted t′, such that the
following equality holds for all possible values of τ1 within
the range 0 ≤ τ1 < T :

Am2 (t′) = Am1 (t′ + τ1).

Thus, we have
L−1∑
l=0

w
l(Am1(t′+τ1)−Am2(t′))
L =

L−1∑
l=0

1 = L.

For distinct values of t, i.e. t ̸= t′, there is no as-
surance that Am2 (t) = Am1 (t+ τ1). In such cases, where
Am2 (t)−Am1 (t+ τ1) = b ̸= 0, we obtain

L−1∑
l=0

wbl
L = 0.

Hence, (18) becomes as∣∣θsm1
u ,s

m2
v

(τ)
∣∣

=

√
R

R

∣∣∣∣wτ2A
m1(t′+τ1)

L

∣∣∣∣L+

√
R

R

∣∣∣∣∣∣∣∣
T−1∑
t=0
t̸=t′

wτ2A
m1(t+τ1)

L · 0

∣∣∣∣∣∣∣∣
=T

√
R.

Therefore, in light of the preceding discussion and Lemma
1, we can definitively conclude that the maximum inter-set
cross-correlation of S achieves the Sarwate bound. ■
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IV. SETS OF PERFECT SEQUENCES WITH OPTIMAL
CORRELATION

A. The Proposed Constructions

Leveraging Lemma 8, we identify that the index matrix
possesses the structure of a circular Florentine array. However,
current methods for obtaining these arrays primarily rely on
computational search techniques. To address this limitation
and expand the pool of index matrices available for our
constructions, we propose an extension method for circular
Florentine arrays. This method offers a more flexible permu-
tation set, facilitating the subsequent construction of multiple
optimal ZCZ sequence sets with optimal interset correlation.

Construction I: Let F be an Fc (T )×T circular Florentine
array. We denote the t-th element in the m-th row of F by
Fm (t), where Fm (t) = (t+ b)T , 0 ≤ m < Fc (T ) and 0 ≤
t, b < T . We achieve this construction in two steps:

1) Choose the first row of F , denoted as F0. By rearrang-
ing the last T − 2 elements of F0, we obtain a new
permutation, denoted as F q

0 , where 0 < q < (T − 2)!.
2) For the m′-th row of F q (where 1 ≤ m′ < Fc (T )),

denoted as F q
m′ , the elements can be obtained by

F q
m′ (t) = F q

0 (Fm′ (t)) .

This construction process yields (T − 2)!−1 distinct types of
circular Florentine arrays.

Proof: We leverage Lemma 4 to establish that for m1 ̸= m2

and z ∈ ZT , there exists a unique solution for the equation
Fm1

(t) = Fm2
(t+ z) within ZT . Furthermore, the initial

step guarantees that F q
0 constitutes a permutation in ZT ,

and the mapping between the function output F q
0 (t) and the

independent variable t is one-to-one. Consequently, we can
assert that there exists a unique solution for the equation
F q
0 (Fm1

(t)) = F q
0 (Fm2

(t+ z)) within ZT . This implies that
F q itself qualifies as a circular Florentine array. ■

Remark 1: Fixing the first two elements in F0 is to ensure
that there is no equivalence for all in the extended cases.

Example 3: Let T = 5, the selected circular Floren-
tine array F , and its 5 extended circular Florentine arrays
F q (0 < q ≤ 5) obtained by Construction I are listed as fol-
lows:

F =


0 1 2 3 4
0 2 4 1 3
0 3 1 4 2
0 4 3 2 1

 , F 1 =


0 1 2 4 3
0 2 3 1 4
0 4 1 3 2
0 3 4 2 1

 ,

F 2 =


0 1 3 4 2
0 3 2 1 4
0 4 1 2 3
0 2 4 3 1

 , F 3 =


0 1 3 2 4
0 3 4 1 2
0 2 1 4 3
0 4 2 3 1

 ,

F 4 =


0 1 4 3 2
0 4 2 1 3
0 3 1 2 4
0 2 3 4 1

 , F 5 =


0 1 4 2 3
0 4 3 1 2
0 2 1 3 4
0 3 2 4 1

 .

Building upon the Main Framework and the insights from
Lemmas 5-8 presented in Section III, this section introduces
three novel constructions for multiple ZCZ sequence sets with
optimal correlation properties for T > 3. These constructions

are categorized according to the value of R: R = 1, odd R, and
even R. For each case, the desired properties are achieved by
carefully designing the index matrix A and the corresponding
phase matrices Pm.

Theorem 1: Let R = 1, M = Fc(T ) and N = T 2. Select the
circular Florentine array F q (0 < q < (T − 2)!) as the index
matrix A, where F q is obtained by Construction I. The phase
matrices Pm for the distinct sequence sets Sm (0 ≤ m < M)
are assumed to be identical and collectively denoted as P . The
Pu (t) of P is defined as:

Pu (t) = wut
T , (19)

where 0 ≤ u, t < T . According to the Main Framework,
smu (n) in Sm is obtained as

smu (n) = smu (t+ lT ) = Pu (t)w
lAm(t)
T , (20)

where 0 ≤ l < T . Then the sequence set Sm (0 ≤ m < M)
has the following properties:

1) Each sequence in Sm is unimodular and perfect.
2) Each Sm is an optimal

(
T 2, T, T

)
-ZCZ sequence set.

3) θsm1
u ,s

m2
v

(τ) = T for all 0 ≤ τ < T 2, 0 ≤ m1 ̸= m2 <
M and 0 ≤ u ̸= v < T .

Proof: The detailed proof of Theorem 1 is provided in the
Appendix.

Incorporating the circular Florentine array F described in
Construction I into the construction framework of Theorem 1
inevitably leads to the issue of sequence equivalence within
sequence sets. To circumvent this problem, we propose the
following construction method by refining the generation
process of the phase matrix.

Corollary 1: Select the circular Florentine array F as the
index matrix A. The Pu (t) of P is defined as:

Pu (t) =


wut

T , for t = 0, 1, . . . , T − 3,

w
u(T−1)
T , for t = T − 2,

w
u(T−2)
T , for t = T − 1.

(21)

The sequence set Sm (0 ≤ m < M) obtained by (20) and (21)
has exactly the same properties as Theorem 1.

Proof: The proof of Corollary 1 is similar to that for
Theorem 1, hence it is omitted.

Example 4: Let N = RT 2, where R = 1 and T = 4.
M = Fc (4) = 1. Then we choose the index matrix A as

A =
[
0 1 3 2

]
.

From (21), the phase matrix is obtained as

P =


w0

4 w0
4 w0

4 w0
4

w0
4 w1

4 w2
4 w3

4

w0
4 w2

4 w0
4 w2

4

w0
4 w3

4 w2
4 w1

4

 .

Then the sequence set S0 consisting of 4 sequences of period
16 can be obtained, and the element of s0u is expressed as:

s0u (n) = s0u (t+ 4l) = P 0
u (t)w

lA0(t)
4 ,

where 0 ≤ u, t, l < 4. Four sequences in S0 are given below:

s00 =
(
1, 1, 1, 1, 1, w1

4, w
3
4, w

2
4, 1, w

2
4, w

2
4, 1, 1, w

3
4, w

1
4, w

2
4

)
,
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Fig. 1: (a) The PACF of s01 obtained from Example 4; (b) The
PCCF of s02 and s03.

s01 =
(
1, w1

4, w
2
4, w

3
4, 1, w

2
4, w

1
4, w

1
4, 1, w

3
4, 1, w

3
4, 1, 1, w

3
4, w

1
4

)
,

s02 =
(
1, w2

4, 1, w
2
4, 1, w

3
4, w

3
4, 1, 1, 1, w

2
4, w

2
4, 1, w

1
4, w

1
4, 1
)
,

s03 =
(
1, w3

4, w
2
4, w

1
4, 1, 1, w

1
4, w

3
4, 1, w

1
4, 1, w

1
4, 1, w

2
4, w

3
4, w

3
4

)
.

The PACF of s01 and PCCF between s02 and s03 are shown
in Fig. 1. It is known that the sequence set S0 has optimal
correlations.

Theorem 2: Let R be odd, L = RT , N = RT 2 and
M = min {R∗ − 1, Fc (T )}, where R∗ is the smallest prime
divisor of R. Select M rows randomly from the circular
Florentine array F q (0 < q < (T − 2)!) to form the index
matrix A, where F q is obtained by Construction I. The Pm

u (l)
within the phase matrix Pm, associated with the sequence set
Sm, is defined as:

Pm
u (l) = Pm

u (t+ rT ) = warm

R wut
T ,

where arm = (m+ 1) r(1+r)
2 , 0 ≤ l < L, 0 ≤ r < R,

0 ≤ t, u < T and 0 ≤ m < M .
According to the Main Framework, smu (n) in Sm is ob-

tained as described in (10). Then the sequence set Sm,
0 ≤ m < M , has the following properties:

1) Each sequence in Sm is unimodular and perfect.
2) Each Sm is an optimal

(
RT 2, T,RT

)
-ZCZ sequence

set.
3) θsm1

u ,s
m2
v

(τ) =
√
RT for all 0 ≤ τ < RT 2, 0 ≤ m1 ̸=

m2 < M and 0 ≤ u ̸= v < T .

Proof: The detailed proof of Theorem 2 is provided in the
Appendix.

Corollary 2: Let F be the circular Florentine array described
in Construction I. Select M rows randomly from the circular
Florentine array F to form the index matrix A. Define a T×L
matrix Qm, the l-th element of the u-th row of the m-th matrix
Qm is expressed as

Qm
u (l) = Qm

u (t+ rT ) = warm

R wut
T ,

where arm = (m+ 1) r(1+r)
2 , 0 ≤ r < R, 0 ≤ t, u < T and

0 ≤ m < M . The phase matrix Pm is obtained by swapping
the (rT − 1)-th and (rT − 2)-th column of the matrix Qm for
0 < r ≤ R. The sequence sets obtained by (10) have exactly
the same properties as in Theorem 2.

Example 5: Let N = RT 2, where R = 3 and T = 5. M =
min {3− 1, Fc (5)} = 2. From Construction I, the constructed
circular Florentine array F 1 is shown as

F 1 =


0 1 2 4 3
0 2 3 1 4
0 3 4 2 1
0 4 1 3 2

 .

Randomly select the first two rows of array F 1 to form the
matrix A, as shown below:

A =

[
0 1 2 4 3
0 2 3 1 4

]
.

The phase matrices P 0 and P 1 for the sequence sets S0 and S1

in the Zak domain are shown in (22a) and (22b), respectively.
From (10), two sequence sets of size 5 and period 75 are
obtained as

smu (n) = smu (t+ 5l)

=

√
3

3

2∑
r=0

Pm
u (t+ 5r)w

l(Am(t)+5r)
15 ,

where 0 ≤ u, t < 5, 0 ≤ l < 15, 0 ≤ m < 2. The PACF of s01,
the PCCF between s00 and s04 and the PCCF between s00 and
s12 are shown in Fig. 2.

Theorem 3: Let R be even, L = RT , N = RT 2 and M = 1.
Select M rows randomly from the circular Florentine array
F q (0 < q < (T − 2)!) to form the index matrix A, where F q

is obtained by Construction I. The Pu (l) within the phase
matrix P , associated with the sequence set S, is defined as:

Pu (l) = Pu (t+ rT ) = wr2

2Rw
ut
T ,

where 0 ≤ l < L, 0 ≤ r < R and 0 ≤ t, u < T .
According to the Main Framework, su (n) in S is defined

as
su (n) = su (t+ lT )

=L−1T
√
R

R−1∑
r=0

wr2

2Rw
ut
T w

l(A(t)+rT )
L .

(23)

Then, the sequence set S has the following properties:
1) Each sequence in S is unimodular and perfect.
2) S is an optimal

(
RT 2, T,RT

)
-ZCZ sequence set.

Proof: The detailed proof of Theorem 3 is provided in the
Appendix.

Corollary 3: Let F be the circular Florentine array described
in Construction I. Select F to from the index matrix A. Define
a T×L matrix Q, the l-th element of the u-th row of the matrix
Q is expressed as

Qu (l) = Qu (t+ rT ) = wr2

2Rw
ut
T ,

where 0 ≤ r < R and 0 ≤ t, u < T . The phase matrix
P is obtained by swapping the (rT − 1)-th and (rT − 2)-th
column of the matrix Q for 0 < r ≤ R. The sequence set
S generated through (23) exhibits identical characteristics to
those outlined in Theorem 3.

Example 6: Let N = RT 2, where R = 2, T = 6
and M = 1. Then we choose the index matrix A as
A =

[
0 1 2 3 5 4

]
. The phase matrix P is shown
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P 0 =


w0

15 w0
15 w0

15 w0
15 w0

15 w5
15 w5

15 w5
15 w5

15 w5
15 w0

15 w0
15 w0

15 w0
15 w0

15

w0
15 w3

15 w6
15 w9

15 w12
15 w5

15 w8
15 w11

15 w14
15 w2

15 w0
15 w3

15 w6
15 w9

15 w12
15

w0
15 w6

15 w12
15 w3

15 w9
15 w5

15 w11
15 w2

15 w8
15 w14

15 w0
15 w6

15 w12
15 w3

15 w9
15

w0
15 w9

15 w3
15 w12

15 w6
15 w5

15 w14
15 w8

15 w2
15 w11

15 w0
15 w9

15 w3
15 w12

15 w6
15

w0
15 w12

15 w9
15 w6

15 w3
15 w5

15 w2
15 w14

15 w11
15 w8

15 w0
15 w12

15 w9
15 w6

15 w3
15

 , (22a)

P 1 =


w0

15 w0
15 w0

15 w0
15 w0

15 w10
15 w10

15 w10
15 w10

15 w10
15 w0

15 w0
15 w0

15 w0
15 w0

15

w0
15 w3

15 w6
15 w9

15 w12
15 w10

15 w13
15 w1

15 w4
15 w7

15 w0
15 w3

15 w6
15 w9

15 w12
15

w0
15 w6

15 w12
15 w3

15 w9
15 w10

15 w1
15 w7

15 w13
15 w4

15 w0
15 w6

15 w12
15 w3

15 w9
15

w0
15 w9

15 w3
15 w12

15 w6
15 w10

15 w4
15 w13

15 w7
15 w1

15 w0
15 w9

15 w3
15 w12

15 w6
15

w0
15 w12

15 w9
15 w6

15 w3
15 w10

15 w7
15 w4

15 w1
15 w13

15 w0
15 w12

15 w9
15 w6

15 w3
15

 . (22b)
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2.

Fig. 2: The correlation properties of Example 5.

in (24). From (23), a sequence set S of size 6 with period 72
is obtained as

su (n) = su (t+ 6l) =

√
2

2

1∑
r=0

Pu (t+ 6r)w
l(A(t)+6r)
12 ,

where 0 ≤ u, t < 6, 0 ≤ l < 12. The PACF of s4 and PCCF
between s1 and s5 are shown in Fig. 3.

B. Comparison With The Previous Related Constructions

In Table I, we list some known constructions of multiple
ZCZ sequence sets with optimal correlation properties. From
the construction perspective, existing methods in [16], [26],
[28] and [56] are developed from a time-domain approach.

In contrast, our proposed method uniquely leverages the Zak
transform, operating directly in the Zak domain.

With regard to the cyclic equivalence and availability of
sequences, existing methods suffer from several different lim-
itations. Specifically, the Hadamard matrix based approach in
[16] may produce cyclically equivalent sequences. While the
constructions in [26] and [28] can ensure unique sequences,
the achievable sequence set numbers are limited due to their
reliance on specific functions. Moreover, the number of mul-
tiple ZCZ sequence sets in [16], [26], [28] and [56] is d− 1,
where d is the smallest prime divisor of the sequence length.

To address these limitations, [29] utilizes circular Florentine
arrays to create multiple optimal ZCZ sets with period RT 2,
where R is a positive integer. When T is a prime, the number
of the ZCZ sequence sets is also equal to d − 1 as in [16],
[26] and [28]. When T is non-prime, the number of the
ZCZ sequence sets depends on the number of rows of the
cyclic Florentine array Fc (T ), which is strictly larger than
d− 1. Although [29] leads to relatively large number of ZCZ
sequence sets, their method still introduces cyclic equivalence
within individual sets regardless of whether R = 1 or not.

Note that cyclically distinct sequences are highly desirable
in practice [26], [27]. On the contrary, the use of cyclically
equivalent sequences could enable an attacker to easily decode
the sequences of multiple users once the sequence of one user
is decoded. This is unacceptable for secure information trans-
mission in, for example, military and satellite communication
systems.

Compared with [29], our proposed construction effectively
avoids cyclic equivalence within individual sets. One can show
that there are (T−2)! distinct cases for the proposed sequence
sets, thus offering a wide range of possibilities for various
applications. On the other hand, the construction method in
[30] can only yield a single sequence set with optimal cross-
correlation. Additionally, the application of cyclic Florentine
array in the Zak-domain has not been reported before, to the
best of our knowledge.

C. Evaluation of the Synchronization performance in OTFS

Let us consider a wireless communication system where L×
T data symbols in the DD domain are modulated using OTFS
over a total bandwidth B operating at the carrier frequency fc,
where L and T denote the numbers of delay bins and Doppler
bins, respectively. Firstly, the OTFS modulator distributes
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P =


w0

12 w0
12 w0

12 w0
12 w0

12 w0
12 w3

12 w3
12 w3

12 w3
12 w3

12 w3
12

w0
12 w2

12 w4
12 w6

12 w8
12 w10

12 w3
12 w5

12 w7
12 w9

12 w11
12 w1

12

w0
12 w4

12 w8
12 w0

12 w4
12 w8

12 w3
12 w7

12 w11
12 w3

12 w7
12 w11

12

w0
12 w6

12 w0
12 w6

12 w0
12 w6

12 w3
12 w9

12 w3
12 w9

12 w3
12 w9

12

w0
12 w8

12 w4
12 w0

12 w8
12 w4

12 w3
12 w11

12 w7
12 w3

12 w11
12 w7

12

w0
12 w10

12 w8
12 w6

12 w4
12 w2

12 w3
12 w1

12 w11
12 w9

12 w7
12 w5

12

 (24)

TABLE I: The parameters for several sets of multiple ZCZ sequences

Methods Period
Phase
Num-

ber
Set size Hz

The number of ZCZ
sets θc (S) Whether

cyclically distinct

Number of
distinct

sequence sets
Note

[16] RT 2 RT T RT d− 1
√
RT N 1 R and T are positive

integers.
[26] T 2 T T T T − 1 T Y 1 T is odd prime.
[28] T 2 T T T d− 1 T Y 1 T is odd.
[56] T T

⌊
T
L

⌋
L T − 1

√
T N 1 T is prime.

[29]
RT 2 RT T T d− 1

√
RT N 1 T is prime. R is a

positive integer.
T 2 T T T Fc(T ) T N 1 T is nonprime.

RT 2 RT T RT min{R∗ − 1, Fc(T )}
√
RT N 1

T is nonprime and
R ̸= 1 is a positive

integer.
Th.1 T 2 T T T Fc(T ) T Y (T − 2)! T > 3 is a integer.

Th.2 RT 2 RT T RT min{R∗ − 1, Fc(T )}
√
RT Y (T − 2)!

R is odd, T > 3 is a
integer.

Th.3 RT 2 2RT T RT 1 − Y (T − 2)!
R is even, T > 3 is a

integer.
d is the smallest prime divisor of the period; R∗ is the smallest prime divisor of R.
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(a) The PACF of s4.
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(b) The PCCF of s1 and s5.

Fig. 3: The correlation properties of Example 6.

these symbols {X(j, t), j = 0, . . . , L− 1, t = 0, . . . , T − 1}
in the two-dimensional DD grid. Denote by ∆f = B/T the
frequency spacing and Γ = 1/∆f the corresponding time
duration. Thus, the duration of one OTFS frame is LΓ.

The DD-domain symbols X(j, t) are
then transformed into the TF domain
{XTF(l,m), l = 0, . . . , L− 1,m = 0, . . . , T − 1} via ISFFT,
as shown in (25) below.

XTF(l,m) =
1√
LT

L−1∑
j=0

T−1∑
t=0

X(j, t)ei2π(
lj
L −mt

T ). (25)

After mapping into TF domain, Heisenberg transform is
applied to generate the discrete time-domain signal as follows:

s(t+ lT ) =
1√
T

T−1∑
m=0

XTF(l,m)e
2πim

T t. (26)

Substituting (25) into (26), we obtain

s(t+ lT ) =
1√
L

L−1∑
j=0

X(j, t)ei2π
l
L j ,

which is equivalent to IFZT defined in (4). The relationship
of OTFS modulation and IFZT is shown in Fig. 4.

Heisenberg

ISFFT

Zak (DD) domain

TF domin

X(j,t)

XTF(l,m)

Time domin

s(n)

IFZT

Fig. 4: The relationship of OTFS modulation and IFZT.

Furthermore, let us consider a doubly selective channel
consisting of C paths as shown below:

h(τ, v) =

C∑
ρ=1

hpδ(τ − τρ)δ(v − vρ), (27)

where hρ, τρ and vρ represent the channel fading coefficient,
delay and Doppler values of the ρ-th path, respectively. To
determine L and T , it is required that max(τ) < Γ and
max(v) < ∆f . After the OTFS modulation (i.e., IFZT
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transform), the time-domain signal is represented by s(n). The
received signal r(n) can then be expressed as

r(n) =

∫ ∫
h(τ, v)s(n− τ)e2πiv(n−τ)dτdv +N , (28)

where N denotes the additive white Gaussian noise term with
variance of σ2.

To understand the Doppler resilience of the proposed Zak
sequences, we also introduce the definition of discrete periodic
auto-ambiguity function (auto-AF) of sequences as follows
[58]:

Let s = (s (0), ..., s (N − 1)) be a sequence of period N .
The periodic auto-AF of s at time shift τ and Doppler shift v
is defined as

AFs (τ, v) =

N−1∑
n=0

s (n+ τ)N s∗(n)wvn
N , (29)

where −N < τ, v < N .

Next, we investigate the synchronization performance of a
single-input single-output (SISO) OTFS system. Our idea is to
transmit a sparse Zak matrix (satisfying the perfect sequence
condition as specified in Subsection IV.A) as a preamble
sequence (frame) in the DD domain and then leverage its
zero auto-correlation sidelobes for synchronization in the time
domain. Fig. 5 illustrates the synchronization model for such
a SISO-OTFS system. We assume that a cyclic prefix (CP)
is added to the beginning of each frame for mitigation of
inter-frame interference. The length of the sliding window is
LΓ. The receive signal in the window is correlated with the
known reference sequence (i.e., the time-domain sequence of
the aforementioned sparse Zak matrix) each time within the
timing acquisition range Tu to detect the starting position of
the preamble sequence. The synchronization point is detected
once a correlation peak is achieved at certain time shift.

s(n-τ1)CP

1-th path Signal

0-th path Signal

C-th path Signal

CP

CP

0 Tu

time

LΓ

+

+

+

r(n)

=

Data frame signal

LΓ+Tu

Last Window

Synchronization

Point

Preamble frame signal

Initial Window  

s(n-τ2)

s(n-τC)

Fig. 5: Synchronization model of SISO-OTFS system.

X0
1 =

8
√
2



w0
16 0 0 0 0 0 0 0

0 w2
16 0 0 0 0 0 0

0 0 0 0 0 0 w12
16 0

0 0 w4
16 0 0 0 0 0

0 0 0 0 0 w10
16 0 0

0 0 0 w6
16 0 0 0 0

0 0 0 0 0 0 0 w14
16

0 0 0 0 w8
16 0 0 0

w4
16 0 0 0 0 0 0 0

0 w6
16 0 0 0 0 0 0

0 0 0 0 0 0 w0
16 0

0 0 w8
16 0 0 0 0 0

0 0 0 0 0 w14
16 0 0

0 0 0 w10
16 0 0 0 0

0 0 0 0 0 0 0 w2
16

0 0 0 0 w12
16 0 0 0


(30)
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1

Fig. 6: The real and imaginary parts of s01
.

For evaluation, three consecutive 16 × 8 OTFS frames are
transmitted, with the second frame as the synchronization
frame and the remaining frames carrying QPSK data in the DD
domain. Equal transmission power is assumed for all frames.
As an example, we consider Zak matrix X0

1 in (30) which is
constructed via Theorem 3 with parameters R = 2 and T = 8.
The corresponding time-domain sequence is s01. The real and
imaginary parts of s01 are shown in Fig. 6. Also, as shown in
Fig. 7, such a sequence exhibits excellent periodic auto-AF
with strong resilience to Doppler as well as perfect periodic
auto-correlation sidelobes.

To introduce randomness for the starting point of the
synchronization frame, some initial portion of the first data
frame is randomly truncated. For numerical simulation, we
consider C ∈ {3, 6}. The channel coefficients hp are generated
by hp ∼ CN (0, qp) [59], where qp = exp

(
−τp

rτ−1
rτστ

)
·10

−Zp
10 ,

rτ is the proportionality factor, στ is the root mean square
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(a) The periodic auto-AF of s01.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140

(b) The PACF of s01
.

Fig. 7: The periodic auto-AF and PACF of s01

(RMS) delay spread, Zp is additional fading. The normalized
delay of C paths is [0, 1, · · · , C − 1]. Each normalized delay
has a single Doppler shift generated using Jakes’ formula
νp = νmax cos (θp), where νmax is the maximum Doppler
shift determined by the maximum relative velocity vmax, θp
is uniformly distributed over [0, 2π]. The system parameters
are summarized in Table II. The synchronization success
probability is evaluated using 10000 Monte Carlo simulations
at each signal-to-noise ratio (SNR).

Fig. 8 compares the synchronization probabilities under
different maximum velocities at SNR = 20 dB. For C ∈
{3, 6}, our simulation results indicate that increasing vmax

leads to a deterioration in synchronization performance. In
our synchronization algorithm, to obtain a distinct correlation
peak, the Doppler shift of the main path is estimated and
compensated. Since the remaining receive signal paths are
regarded as noise, the synchronization performance of the
proposed Zak sequence cannot reach 100% at higher vmax. As
a result, an error floor appears in the subsequent bit error rate
(BER) simulation results. At the same time, compared with

TABLE II: SYSTEM PARAMETERS

number of Doppler bins (T ) 8
number of delay bins (L) 16

Carrier Frequency (fc) 6 GHz
frequency spacing (∆f ) 15 KHz

Number of paths (C) 3, 6
maximum relative velocity (vmax) 200 km/h

proportionality factor (rτ ) 2.3
RMS delay spread (στ ) 1.5 µs
additional fading (Zp) 0 dB

CP Length 32
Sliding Window Length 128

random Zak sequences, the proposed Zak sequences achieve
significantly improved synchronization performance, thanks to
its excellent autocorrelation and ambiguity properties.

Fig. 9 evaluates the synchronization success probability
performance as a function of SNR. In fact, due to the noise, the
multipath propagation, as well as the sequence autocorrelation
sidelobes, the receiver may fail to achieve synchronization,
thus potentially leading to a catastrophic degradation of de-
coding performance. Thanks to the perfect auto-correlation
property of the proposed sequence s01, the receiver can ef-
fectively detect the starting point of the preamble sequence
through sliding window correlation. Our proposed preamble
sequence can achieve a success rate close to 100% at SNR
of 10 dB or higher, while the random sequence (with random
QPSK symbols in the DD domain) can only reach about 89%
for the 6-path case at SNR of 20 dB or higher. In addition,
due to the perfect auto-correlation property of the proposed
Zak sequence, it exhibits robust synchronization performance
for different numbers of paths.

Fig. 10 shows the BER simulation results under different
SNRs after synchronization, by assuming that perfect chan-
nel fading coefficients are known. At high SNR, since the
synchronization performance of the proposed Zak sequence
approaches but cannot reach 100%, any occasional synchro-
nization failure results in a substantial gap between its BER
curve and that with perfect synchronization. In addition, the
BER performances of the proposed Zak sequences are signif-
icantly better than that of random Zak sequences, especially
for the case of C = 6.

V. CONCLUSIONS

In this paper, we have presented a novel framework for
constructing multiple ZCZ sequence sets with optimal corre-
lation properties using IFZT. To ensure sequence sparsity in
the Zak domain, we have introduced index matrices and phase
matrices that are associated to FZT. The admissible conditions
of these matrices are also derived. It has been found that
the maximum inter-set cross-correlation can beat the Sarwate
bound provided that a circular Florentine array is adopted
as the index matrix. Besides, we have demonstrated that the
Zak-domain-induced optimal sequences can be employed as
preamble sequences in the DD domain for excellent OTFS
synchronization performance.

As a future work, it is interesting to analyze and study
the ambiguity properties of the proposed sequences [57].
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Fig. 8: Comparison of synchronization success probabilities
under different vmax.
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Fig. 9: The synchronization success probability versus SNR.
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Fig. 10: BER results versus SNR with perfect channel fading
coefficients and by using the proposed synchronization algo-
rithm.

Moreover, it is worthy to investigate their applications for
channel estimation and sensing in, for example, multi-user
MIMO-OTFS systems. To this end, one may leverage the

multiple ZCZ set properties as well as the excellent ambiguity
sidelobes of these sequences. For spectrum-efficient transmis-
sion, one may also superimpose those sparse Zak matrices in
the DD domain with random communication data symbols.
The readers are invited to attack these research problems.

PROOF OF THE THEOREM 1
Proof: Initially demonstrate that the first property of the

sequence sets is met. For R = 1, 0 ≤ t < T and 0 ≤ l < L,
we have ∣∣∣∣∣

R−1∑
r=0

Pu (t+ rT )wlrT
L

∣∣∣∣∣ = |Pu (t)| = 1.

Additionally, A is a circular Florentine array, it is known
that Am is a permutation on ZT . And we have

|Pu (t+ rT )| = |Pu (t)| = 1.

According to Lemma 5 and 6, any sequence in Sm obtained
by Theorem 1 is unimodular and perfect. This completes the
proof of Part 1).

We now prove Part 2). Let smu and smv be two sequences in
Sm, where 0 ≤ u ̸= v < T and 0 ≤ m < M . Based on the
IFZT and Lemma 7, for τ1 = 0, we distinguish between the
following two cases to calculate (15).

Case 1: When τ2 = 0, (15) becomes
R−1∑
r=0

T−1∑
t=0

w
0(Am(t)+rT )
L Pu (t+ rT )P ∗

v (t+ rT )

=

T−1∑
t=0

Pu (t)P
∗
v (t) =

T−1∑
t=0

w
(u−v)t
T .

The result follows from the fact that (u− v) t is a permutation
on ZT for any u ̸= v.

Case 2: When τ2 = 1, (15) becomes
R−1∑
r=0

T−1∑
t=0

w
(Am(t)+rT )
T Pu (t+ rT )P ∗

v (t+ rT )

=

T−1∑
t=0

w
Am(t)
T Pu (t)P

∗
v (t) =

T−1∑
t=0

w
Am(t)+(u−v)t
T .

Within Construction I, it is established that Am (t) ̸=
at, where a is a constant. This implies that Am (t) +
(u− v) t is neither 0 nor a multiple of t. Then, 0 <∣∣∣∣T−1∑
t=0

w
Am(t)+(u−v)t
T

∣∣∣∣ < T and 0 <
∣∣θsmu ,smv (T )

∣∣ < T 2.

Hence, the sequence set Sm is an optimal
(
T 2, T, T

)
-

ZCZ set for the Tang-Fan-Matsufuji bound. Furthermore, all
sequences in Sm exhibit cyclic distinctness.

We now proceed to the third part of the theorem demon-
stration. Let’s consider any two sequences sm1

u and sm2
v within

Sm1 and Sm2 respectively, where 0 ≤ u ̸= v < T and
0 ≤ m1 ̸= m2 < M . Let n = t + lT, τ = τ1 + τ2T , with
0 ≤ t, τ1 < T and 0 ≤ l, τ2 < L. Based on the equation∣∣∣∣∣

R−1∑
r=0

Pm1
u (t+ τ1 + rT )Pm2∗

v (t+ rT )wrτ2
R

∣∣∣∣∣
= |Pm1

u (t+ τ1)P
m2∗
v (t)| ,
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since each element of the phase matrix is a power of wT , this
implies that

∣∣∣∣∣
R−1∑
r=0

Pm1
u (t+ τ1 + rT )Pm2∗

v (t+ rT )wrτ2
R

∣∣∣∣∣ = 1.

Recalling that A is an Fc (T )× T circular Florentine array
over ZT , from Lemma 8, we can assert that θsm1

u ,s
m2
v

(τ) = T
for any 0 ≤ m1 ̸= m2 < M, 0 ≤ u ̸= v < T and 0 ≤ τ < T 2.
■

PROOF OF THE THEOREM 2

Proof: For R being odd, 0 ≤ t < T and 0 ≤ l < L, we
have

∣∣∣∣∣
R−1∑
r=0

Pm
u (t+ rT )wlrT

L

∣∣∣∣∣
2

=

(
R−1∑
r=0

w
(m+1)

r(1+r)
2

R wut
T wlrT

L

)
(

R−1∑
r′=0

w
(m+1)

r′(1+r′)
2

R wut
T wlr′T

L

)∗

=

(
R−1∑
r=0

w
(m+1)

r(1+r)
2

R wlr
R

)
(

R−1∑
r′=0

w
−(m+1)

r′(1+r′)
2

R w−lr′

R

)

(31)

By analyzing the behavior of the summation
R−1∑
r=0

w
(m+1)

r(1+r)
2

R wlr
R for various values of l and m,

where 0 ≤ l < L and 0 ≤ m < M , (30) is reduced to

∣∣∣∣∣
R−1∑
r=0

Pm
u (t+ rT )wlrT

L

∣∣∣∣∣
2

=

R−1∑
r=0

w
r(1+r)

2

R

R−1∑
r′=0

w
−r′(1+r′)

2

R

(32)

Denoting a =
⌊
R
2

⌋
, where ⌊x⌋ represents the greatest

integer less than or equal to x, we can reformulate equation

(31) as follows:

R−1∑
r=0

w
r(1+r)

2

R

R−1∑
r′=0

w
−r′(1+r′)

2

R

=

(
2

a−1∑
r=0

w
r(1+r)

2

R + w
a(1+a)

2

R

)
(
2

a−1∑
r′=0

w
−r′(1+r′)

2

R + w
−a(1+a)

2

R

)

=4

a−1∑
r=0

w
r(1+r)

2

R

a−1∑
r′=0

w
−r′(1+r′)

2

R + 1

+ 2w
a(1+a)

2

R

a−1∑
r′=0

w
−r′(1+r′)

2

R + 2w
−a(1+a)

2

R

a−1∑
r=0

w
r(1+r)

2

R

=4

(
a− a2 − a

R− 1

)
− 2

2a

R− 1
+ 1

=4a− 4a2

R− 1
+ 1 = R.

Through the above calculation and analysis, we can get∣∣∣∣R−1∑
r=0

Pm
u (t+ rT )wlrT

L

∣∣∣∣ = √
R.

Additionally, A is a circular Florentine array, it is known
that Am is a permutation on ZT . And we have

|Pm
u (t+ rT )| =

∣∣∣∣w(m+1)
r(1+r)

2

R wut
T

∣∣∣∣ = 1.

According to Lemma 5 and 6, any sequence in Sm obtained
by Theorem 2 is unimodular and perfect. This completes the
proof of Part 1).

We now prove Part 2). Let smu and smv be any two sequences
in Sm, where 0 ≤ u ̸= v < T and 0 ≤ m < M . Based on the
IFZT and Lemma 7, for τ1 = 0, we consider the following
three cases to evaluate (15).

Case 1: When τ2 = 0, (15) becomes

R−1∑
r=0

T−1∑
t=0

w
0(Am(t)+rT )
L Pm

u (t+ rT )Pm∗
v (t+ rT )

=

R−1∑
r=0

T−1∑
t=0

Pm
u (t+ rT )Pm∗

v (t+ rT )

=R

T−1∑
t=0

w
(u−v)t
T .

(33)

Then (32) is equal to zero followed by the fact that (u− v) t
is a permutation on ZT for any u ̸= v.

Case 2: When 0 < τ2 < R, we have
R−1∑
r=0

T−1∑
t=0

w
τ2(A

m(t)+rT )
L Pm

u (t+ rT )Pm∗
v (t+ rT )

=

T−1∑
t=0

w
τ2A

m(t)
L w

(u−v)t
T

R−1∑
r=0

wτ2r
R .

(34)

Due to
R−1∑
r=0

wτ2r
R = 0 for τ2 ̸= 0, (33) is equal to zero for

0 < τ2 < R.
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Case 3: When τ2 = R, (15) becomes

R−1∑
r=0

T−1∑
t=0

w
(Am(t)+rT )
T Pm

u (t+ rT )Pm∗
v (t+ rT )

=

R−1∑
r=0

wr
T−1∑
t=0

w
Am(t)+(u−v)t
T .

Within Construction I, it is established that Am (t) ̸=
at, where a is a constant. This implies that Am (t) +
(u− v) t is neither 0 nor a multiple of t. Therefore, 0 <∣∣∣∣R−1∑
r=0

wr
T−1∑
t=0

w
Am(t)+(u−v)t
T

∣∣∣∣ < RT and 0 <
∣∣θsmu ,smv (T )

∣∣ <
RT 2.

From case 1, case2 and case3, we conclude that each Sm

is an optimal
(
RT 2, T,RT

)
-ZCZ set respect to the Tang-Fan

-Matsufuji bound. Furthermore, all sequences in Sm exhibit
the property of cyclic distinctness.

Finally, we prove Part 3). Let sm1
u and sm2

v be two sequences
in Sm1 and Sm2 , respectively, where 0 ≤ u ̸= v < T and
0 ≤ m1 ̸= m2 < M . Let n = t + lT, τ = τ1 + τ2T, 0 ≤
t, τ1 < T, 0 ≤ l, τ2 < L, we have∣∣∣∣∣

R−1∑
r=0

Pm1
u (t+ τ1 + rT )Pm2∗

v (t+ rT )wrτ2
R

∣∣∣∣∣
=

∣∣∣∣∣wu(t+τ1)−vt
T

R−1∑
r=0

w
(m1−m2)

r(1+r)
2 +rτ2

R

∣∣∣∣∣
=

∣∣∣∣∣
R−1∑
r=0

wrτ2
R w

(m1−m2)
r(1+r)

2

R

∣∣∣∣∣ .
We observe that the above equation shares a similar struc-

ture with (31). This allows us to exploit an analogous approach
and conclude that∣∣∣∣∣

R−1∑
r=0

wrτ2
R w

(m1−m2)
r(1+r)

2

R

∣∣∣∣∣ = √
R.

According to Lemma 8, we have
∣∣θsm1

u ,s
m2
v

(τ)
∣∣ = √

RT for
all 0 ≤ m1 ̸= m2 < M, 0 ≤ u ̸= v < T and 0 ≤ τ < RT 2.
■
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Proof: For R being even, 0 ≤ t < T and 0 ≤ l < L, we
have ∣∣∣∣∣

R−1∑
r=0

Pu (t+ rT )wlrT
L

∣∣∣∣∣
2

=

(
R−1∑
r=0

wr2

2Rw
ut
T wlrT

L

)(
R−1∑
r′=0

w−r′2

2R w−ut
T w−lr′T

L

)

=

(
R−1∑
r=0

wr2

2Rw
lrT
L

)(
R−1∑
r′=0

w−r′2

2R w−lr′T
L

) (35)

By analyzing the values of
R−1∑
r=0

wr2

2Rw
lrT
L for different values

of r, (34) can be reduced to

∣∣∣∣∣
R−1∑
r=0

Pu (t+ rT )wlrT
L

∣∣∣∣∣
2

=

R−1∑
r=0

wr2

2R

R−1∑
r′=0

w−r′2

2R . (36)

Let a = R
2 , through further analysis, (35) can be reformu-

lated as(
a−1∑
r=1

wr2

2R + w0
2R + wa2

2R

)(
a−1∑
r′=1

w−r′2

2R + w0
2R + w−a2

2R

)

=

a−1∑
r=1

wr2

2R

a−1∑
r′=1

w−r′2

2R +
(
w0

2R + wa2

2R

) a−1∑
r′=1

w−r′2

2R

+
(
w0

2R + w−a2

2R

) a−1∑
r=1

wr2

2R +
(
w0

2R + wa2

2R

)(
w0

2R + w−a2

2R

)
= 4 (a− 1) + 2− 2 (a− 1) = R.

Then, we get
∣∣∣∣R−1∑
r=0

Pu (t+ rT )wlrT
L

∣∣∣∣ = √
R.

Additionally, A is a permutation on ZT . And we have

|Pu (t+ rT )| =
∣∣∣wr2

2Rw
ut
T

∣∣∣ = 1.

We assert that any sequence in S is unimodular and perfect.
This completes the proof of Part 1).

As the demonstration here closely parallels the approach
used in Theorem 2 Part 2), a detailed proof is skipped to
avoid redundancy. ■

REFERENCES
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