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Editorial on the Research Topic

Narrow and general intelligence: embodied, self-referential social 
cognition and novelty production in humans, AI and robots

s

 A team of multi-disciplinary editors, whose views are reflected in the themes 
underscored in this Research Topic, has come together to help take stock of the phenomenal 
success of narrow Statistical Artificial Intelligence (SAI) and to examine new perspectives on 
achieving Artificial General Intelligence (AGI). The tenets of SAI, which remain contingent 
on the domain of knowledge uploaded in digital form, is often contrasted with a long-held 
view that AGI must emulate the human brain, which marks an apogee as a prototype for 
general intelligence (Prescott, 2024). Many of the editors are of the view that the general 
scope of human intelligence arises from the necessity of maintaining the homeostasis of 
life itself (Friston, 2010; Friston, 2013; Prescott and Jimenez-Rodriguez, 2025), under ever-
changing and often hostile circumstances. Further, they hold the view that complex life 
manifests embodied self-referential information processing (Northoff et al., 2006) with 
empathic mirror systems for prolific self-other interaction, and with selfhood and autonomy 
of goal setting intrinsically configured and committed to a hack-free agenda to mitigate what 
is inimical to life.

Against this background, we will briefly review the dozen papers published in this 
Research Topic involving a wide array of perspectives of 37 authors. These papers have to 
date garnered over 50,000 views and downloads.

It is useful to start with the review paper by Wu et al. where the scene is set for 
AI generations that have unfolded over the last 7 decades from AI 1.0 to AI 4.0. These 
developments have been driven by a triad of factors relating to algorithms and software; 
chip technology and computing power; access and storage of voluminous data in static 
and real time mode. AI 1.0 is ground zero, with algorithms aimed to fully direct outcomes 
mostly based on logic and rules based inference. This phase was accompanied by internet
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technologies such as search engines, digital automation and data 
processing. The authors categorize AI 2.0 as encompassing Agentic 
AI, real-time online bots, and the advent of high-performance 
Graphics Processing Units (GPUs) and vast labeled datasets. 
This gave rise to deep learning and reinforcement learning, 
with convolutional and recurrent neural networks achieving 
breakthroughs in vision, language, and control. The third AI 3.0 
generation marks the embedding of digital intelligence in an 
embodied physical agency of robots, where AI operates in material 
spaces as in autonomous vehicles and other utilitarian cobots.

The fourth generation AI 4.0 is set to coincide with aspirations 
of AGI with controversial notions of machine sentience, with self-
capable, adaptive selection of goals and the wherewithal to evolve 
programs to achieve goals autonomously. Markose. points out that 
the lack of AI alignment (Bostrom, 2014; Russell, 2019) with human 
values and goals encountered in agents capable of setting their 
own goals is not unique to AI, but is a problem that lies at the 
foundations of civil society. Conflicting or adversarial goals of agents 
and their accompanying actions that are inimical to life must be 
kept in check for the survival of the human condition. On the other 
hand, providing AIs that are value-aligned with some awareness, and 
capacity for moral reasoning, could make them safer and better able 
to recognise and mitigate risks (Wallach, 2008).

The Markose. perspective on genomic intelligence—underpinned 
by the algorithmic takeover of biology within a uniquely encoded 
system—is that there are lessons to be learnt on the alignment 
problem from the evolution of general intelligence in complex life. 
The view here is that alignment to life and the design of selfhood has 
been solved in formal ways that can be explicated using Gödel logic, 
and with recent developments in cryptography with the blockchain. 
The principles involved here can be conjectured to maintain the 
immutability of original protein coding blocks against internal and 
external bio-digital adversaries within an evolvable and unbroken 
chain of life.

It has become popular to refer to self-improving code-
based systems as Gödel machines in AGI frameworks, which 
are necessarily end-to-end self-assembly programs as in life 
(Schmidhuber, 2006; Zhang et al., 2025). Markose. suggests that 
this misses the point of Gödel logic, which is embedded in 
complex life first found in the adaptive immune system, AIS, of 
jawed fish 500 mya and latterly in the mirror neuron systems of 
primates. About 85% of expressed genes that can be identified 
as online self-assembly machines that create the morphology 
and phenotype of a multicellular organism can be viewed as its 
theorems. These are mapped offline in AIS ‘Thymic Self ’ à la Self-
Representation (Self-Rep) structures from the Recursive Function 
Theory of Gödel-Turing-Post. The purpose of this is to recursively 
identify non-self codes, especially of digital adversaries wielding 
the negation operator, which are potentially uncountable infinity. A 
corresponding open-ended capacity to detect changes to self-codes - 
known to be found only in the AIS and the human brain in a process 
of prolific predictive coding—is empowered by the Recombination 
Activation Gene operators. In a bold hypothesis, Markose (2022), 
Markose (2021) states that the Gödel Sentence is known to have 
little relevance in the real world, but is ubiquitous in complex 
life as a hashing algorithm (to adopt the language of blockchains) 
that enables embodied self-referential intelligence to detect any 
misalignment or negation of life’s self-codes. This is accompanied by 

an arms race in novelty or surprises in a game with the viral/digital 
adversary, first identified by the game theorist Binmore (1987) in 
the archetype of Godel’s Liar, to maintain the primacy of life codes. 
This self-regulation is achieved internally or by human external 
phenotypical interventions with human artifacts often in a structure 
of a perpetual Gödelian arms race.

This nicely takes us to other papers that investigate self-
regulation and embodied intelligence within humans and AI 
systems. The research paper of Verchure et al. investigates the self-
regulatory processes not through code-based smart controls, which 
can suffer misalignment by attacks by internal or external bio-
malware as per Markose., but via the notion of allostasis, modelled 
by dynamical equations, whereby multiple physiological parameters 
are monitored and controlled “to maintain the stability of the 
integrated self rather than its parts”. In particular, they consider 
how the mammalian brain conducts allostatic regulation of action, 
as an extension of the principle of homeostasis, using a predictive 
and adaptive multi-layered control architecture (see also Prescott 
and Jimenez-Rodriguez, 2025). They deploy an allocentric synthetic 
agent in a virtual environment and test the dynamical properties of 
the neural mass allostatic model with internal needs such as heat and 
hydration to be fulfilled in three scenarios. These relate to (1) open 
field rodent behavior, (2) where adaptation in navigation is needed, 
and (3) when criticality reset optimizes the interoceptive-driven 
decision-making process. They find, that though environmental 
stressors challenge the capacity to fulfil the agent’s internal needs, 
the neural mass model with its self-regulatory dynamics achieves a 
robust balance in this regard.

The perspective paper by Caucke et al. explores how our 
understanding of the prolific capacity of social cognition in humans 
can help build the same capacities in robots. They review well-known 
theories on embodied self with self-knowledge - both from the 
interoceptive internal environment and the external environment, 
via the sensory motor cortex that undergirds physical situatedness. 
The use of self-knowledge as the basis of social cognition, empathy 
and action prediction of other similarly wired-up conspecifics and 
the strategic necessity of the Sally-Ann problem of false beliefs 
relating to perception of negation - are discussed. The authors 
are keen to emphasize that as human social cognition depends 
on some degree of individual autonomy, remote or externally 
controlled robots do not engage in social cognition. Likewise, 
they state that swarm robots that can self-organize along a well-
defined and externally limited action set do not have autonomy 
in the choice of goals or actions. They touch on the fundamental 
problem of coordination and cooperation when robot behaviors 
are mutually predictable by robots themselves via good internal 
models of the other. This requires that the robots do not engage 
in unpredictable actions that are adversarial or disruptive of 
what is mutually predictable. While specific robots can have their 
autonomy limited in order to be cooperative, as indicated in the 
seminal work of Binmore (1987), digital adversaries cannot be 
eliminated in general and robots like humans must be capable of 
detecting Liars/adversaries and enter into arms races with them to 
preserve autonomy of self.

In Ryan. perspective paper, the embodied and ecological 
approach to intelligence, with the former based on the framework 
of the Learning Intelligent Decision Agent (LIDA), is used to 
understand novelty and improvisation in music. For this Ryan 
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draws on the Jeff Pressing model which entails the knowledge base 
comprised of cognitive units of objects and processes stored in long 
term memory of the musician. Processes bring about changes in 
features and objects and all of these aspects interact with one another 
in complex ways. Ryan favors the LIDA approach rather than AGI 
as LIDA’s framework of cognitive cycles of learning, perception, and 
action engages high and low levels of cognition of an autonomous 
agent without a specific problem-solving goal typically associated 
with AGI. In future works Ryan aims to show a LIDA/Pressing 
robot for music improvisation compared with existing improvising 
AI machines.

Pontes-Filho et al. challenge the view that AGI should emulate 
human-level intelligence and instead argue that the starting point 
of AGI should be at a much lower level, which they call 
Neuroevolutionary AGI (NAGI) when learning occurs through 
sensory experience. They propose at a minimum - a body and a 
reactive environment - where evolutionary complexification can 
happen. From a randomly initialized spiking neural network, they 
posit that learning occurs with adaptive synapses which control 
binary signals (excitatory or inhibitory) that propagate through 
reconfigurable network topology. Hence, this method has been 
called Neuroevolution of augmented topologies (NEAT). This 
method, though comparable, does not follow gradient descent of 
deep neural networks for reinforcement learning tasks. NAGI is 
successfully tested on three tasks: food foraging, emulation of logic 
gates, and cart-pole balancing. This approach, while promising, begs 
the question of how an AI learning to do preassigned tasks can 
achieve AGI ambitions, which typically include autonomous choice 
of goals themselves.

Johansson. aims to advance AGI by developing what he calls 
Machine Psychology by harnessing operant learning psychology 
based on behavioral changes due to the consequences of actions, 
integrating it with the Non-Axiomatic Reasoning System (NARS). 
NARS has been built with sensorimotor reasoning at its core, 
enabling it to process sensory data in real-time and respond with 
appropriate motor actions. NARs is equipped to be an efficacious 
inference system with limited knowledge and resources, a condition 
that is often true for real-world scenarios. Combining the two is 
an apt example of learning by doing, though Johansson brings in 
the Skinnerian behavioral triad of stimulus, response, and reward 
and an additional establishing operation (EO), which can enhance or 
mitigate the stimulus and make the response more (less) likely. Well-
known critiques of Skinner—such as that by Chomsky—exist on 
how language acquisition, for instance, requires more than operant 
conditioning. The tasks used to test out Machine Psychology, though 
successful, fall far short of the prowess expected by AGI. The 
clear advantage of NARS is that it can eschew large data sets, 
unlike traditional AI systems, as NARS operates effectively under 
conditions of insufficient knowledge and resources.

In robot intelligence Chen et al. like Johansson. propose the 
use of fast and frugal heuristic decision making, as in humans, 
conjectured to lead to more robust inference in real-time systems 
in which rapid decision making is essential. Bounded rationality 
solutions of Herbert Simon that rely on satisficing rather than 
optimization underpins the branch of learning called active 
perception in robots, which uses less data than onerous deep 
learning solutions. The authors use human decision makers to 
solve simulated treasure hunt problems in a virtual environment 

to derive efficacious decision rules as time and other pressures, 
such as impediments to visual perceptions (fog), are increased. 
The most efficacious human strategies discovered from human 
studies are then implemented on autonomous robots equipped with 
vision sensors. Results show robust performance of robots using 
the heuristic toolbox, when compared with known optimization 
algorithms that fail to complete the search for treasures under 
unanticipated adverse conditions.

In a second paper, Johansson. shows how Arbitrarily Applicable 
Relational Responding (AARR)—which has been considered to be a 
particularly human facility for flexible and contextual learning—can 
be captured by suitably designed AI systems. He aims to achieve 
this by combining Non-Axiomatic Reasoning System (NARS) used 
for learning under uncertainty with the behavioral psychology 
account of AARR, which enables NARS to derive symbolic relational 
knowledge directly from sensorimotor experiences. He shows 
how key properties of AARR (mutual entailment, combinatorial 
entailment, and transformation of stimulus functions) can emerge 
from NARS’s inference rules and memory structures. The claim is 
that this can pave the way to AGI, though there is some considerable 
work that needs to be done to bring this to fruition.

In the final three papers that are reviewed here, applications 
of extant AI for specific tasks are considered, or some new 
enhancements have been incorporated to achieve more efficacious 
performance.

Zhai et al. use a multi-modal and multi-level approach for 
enhanced human-robot interactions. Multi-modal intelligence is a 
desired AGI characteristic, as a combination of visual, auditory, and 
language-enabled human intelligence gives enhanced experience 
and performance, and impairment in any of these modalities places 
an individual at a considerable disadvantage in life. However, 
in a robot setting, the architecture of multimodal intelligence is 
considerably more complicated when combining, say, computer 
vision for object identification with natural language processing 
for named entity identification. This is especially the case in 
settings like social media postings, where images and texts are 
short and prone to noise, making it harder to achieve feature 
selection and identify relevant information. The authors develop 
a multimodal named entity recognition (MNER) architecture in 
which the neural network can extract useful visual information 
for enhancing semantic understanding and subsequently improve 
entity identification. Twitter data sets with pictures and text are used 
for experiments and to test out their MNER model. The enhanced 
performance of their MNER—when compared to other multi-modal 
models—comes at the price of slower operations.

Babushkin et al. investigate how handwriting, which is the 
outcome of multimodal inputs in humans, can be evaluated by 
an AI such as a temporal convolutional neural network (TCN). 
The use of AI is seen to overcome biases that humans have in 
their assessment of handwriting; there are educational, forensic, 
and technological contexts where AI can provide a more efficient 
and accurate service. For their AI experiment, the handwritten 
documents of an identical text—designed to include all possible 
orthographic combinations of Arabic characters—were done by 
50 human subjects, and three experts were used to categorize the 
produced text into different legibility scores. The TCN is trained to 
classify the documents into different legibility categories. The results 
show that while the TCN model trained on stylus kinematics features
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demonstrates relatively high accuracy (around 76%), the addition of 
hand kinematics features significantly increases the model accuracy 
by approximately 10%.

In the final paper Binzagr and Abulfaraj. aim to improve 
traditional machine learning methods for diagnosing Alzheimer’s 
disease (AD) from MRI scans, claiming that CNN architectures 
have problems with detecting AD due to overfitting. In addition 
to the CNN, the authors incorporate two other components 
into their new framework. These include a generalized self-
attention (GSA) score, which gives a global assessment of 
interdependence across spatial and channel dimensions while 
filtering out irrelevant details, and an extreme learning machine 
(ELM) classifier, employed to categorize AD. Note, the GSA 
blocks are placed on an InceptionV3 network, which is a directed 
acyclic graph (DAG) network that has 316 layers and 350 links 
that include 94 as convolutional layers. In-depth experiments on 
two benchmark datasets demonstrate that the proposed InGSA 
achieves superior performance compared to the state-of-the-art
techniques.

This Research Topic provides a valuable snapshot of where 
thinking about AGI is in the early-mid 2020s. Some crosscutting 
themes in the research and review articles laid out above 
are agency, autonomy, and autopoiesis, read in their broadest 
terms. Indeed, ‘codeopoiesis’ or how code-based genomic 
intelligence achieves self-organization (Markose, 2022) as in 
blockchains is underscored to reflect new developments in
autonomous AI.
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In this work, we argue that the search for Artificial General Intelligence should

start from amuch lower level than human-level intelligence. The circumstances

of intelligent behavior in nature resulted from an organism interacting with its

surrounding environment, which could change over time and exert pressure on

the organism to allow for learning of new behaviors or environment models.

Our hypothesis is that learning occurs through interpreting sensory feedback

when an agent acts in an environment. For that to happen, a body and a reactive

environment are needed. We evaluate a method to evolve a biologically-

inspired artificial neural network that learns from environment reactions

named Neuroevolution of Artificial General Intelligence, a framework for

low-level artificial general intelligence. This method allows the evolutionary

complexification of a randomly-initialized spiking neural network with adaptive

synapses, which controls agents instantiated in mutable environments. Such a

configuration allows us to benchmark the adaptivity and generality of the

controllers. The chosen tasks in the mutable environments are food

foraging, emulation of logic gates, and cart-pole balancing. The three tasks

are successfully solved with rather small network topologies and therefore it

opens up the possibility of experimenting with more complex tasks and

scenarios where curriculum learning is beneficial.

KEYWORDS

neuroevolution, artificial general intelligence, spiking neural network, spike-timing-
dependent plasticity, Hebbian learning, weight agnostic neural network, meta-
learning

1 Introduction

Artificial General Intelligence (AGI) or strong Artificial Intelligence (AI) is commonly

discussed among AI researchers. It is often defined as human-level AI. However, the

generality of an AI does not need to be considered at such a level of complexity. Even an

artificial neural network that performs lots of different tasks as a collection of specialized
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or weak AI (Reed et al., 2022) may not provide the level of

generality observed in simple biological systems. In fact, our

current artificial intelligent systems cannot emulate the

adaptability to unknown conditions and learning capabilities

of an animal with a simple nervous system, such as a worm

(Ardiel and Rankin, 2010; Randi and Leifer, 2020). An alternative

approach is to start the quest for the generality of AI from the

simplest tasks that animals can do, but machines cannot, like

behaving intelligently even in new environments (Crosby et al.,

2019), i.e., out-of-distribution generalization (Shen et al., 2021).

Moreover, AGI systems should be tested in tasks that require self-

learning on the fly from sensory feedback, as it is often done in

meta-learning and continual learning (Najarro and Risi, 2020;

Zohora et al., 2021).

We argue that a radical paradigm change is needed in order

to reach general intelligence (Lake et al., 2017; Crosby et al.,

2019). Our hypothesis is that such a new paradigm requires

learning systems with self-organizing properties, as discussed by

Risi, (2021). In this work, our goal is to achieve the learning

capabilities of a primitive brain. Therefore, we aim at a low-level

AGI, i.e., a system that can learn a map function through sensory

experience. Interpreting and understanding sensory inputs are

achieved through evolution, particularly supervised evolution

(Zador, 2019) of agents interacting with their environment.

The brain is the organ that interprets the encoded signals

from our sensory organs, thanks to the ability to distinguish

between positive and negative sensory experiences depending on

what is considered to be good or harmful, e.g., pleasure and pain.

The experiences of pleasure and pain serve as reward and penalty

mechanisms that may affect our behavior by conditioning

associative positive and negative cues with specific memories.

In this work, we evaluate the Neuroevolution of Artificial

General Intelligence (NAGI) framework (Pontes-Filho and

Nichele, 2019). NAGI is a low-level biologically-inspired AGI

framework. NAGI consists of an evolvable spiking neural

network with adaptive synapses and randomly-initialized

weights. The network is evolved by an extension of the

method NeuroEvolution of Augmenting Topologies (NEAT)

(Stanley and Miikkulainen, 2002). The source code of NAGI

is available at https://github.com/SocratesNFR/neat-nagi-

python.

The evolved spiking neural network controls an agent placed

in a mutable environment. Its chances of reproduction are

proportional to how long it can survive in an environment

that is constantly changing, sometimes abruptly. Evolution

optimizes how the neurons are connected in the network,

their type of neurotransmitters (excitatory or inhibitory), their

susceptibility to background electrical current noise (analogous

to bias), and their neuroplasticity. With such degrees of freedom

in the optimization process, we attempt to approximately

recapitulate the evolutionary process of the simplest brains.

The mutable environment and random weight initialization

propitiate a benchmark for generality and adaptivity of the agent.

We test NAGI in three mutable environments. The first one

is a simple food foraging task, in which the agent has one

photoreceptor (or light intensity sensor) used to identify food.

The food type (color) is either black or white. Food can be edible

or poisonous and this feature changes over time. The agent can

also taste the food as its sensory feedback for good and bad

actions. The second environment is a logic gate task. The spiking

neural network needs to emulate different logic gates in series

where the only reward and penalty sensory signals are the

supporting mechanisms to identify the correct output. The

third environment is a cart-pole balancing task. In this

environment, the goal of the agent is to control the forces

applied to the cart in order to maintain the pole above itself

upright. The mutable component of this environment is the pole

length, which changes during the lifetime of the agent. Because

this environment has sensory feedback for the agent’s actions,

there is no need to add reward and penalty sensory signals.

The article is organized as follows: Section 2 explains the

theoretical basis for understanding NAGI. Section 3 discusses the

related work to our approach. Section 4 describes the details of

the method and experiments. Section 5 presents the experimental

results. Section 6 concludes the article including a discussion of

the results and plans for future work.

2 Background

The components of the NAGI framework are inspired by the

overlapping research fields of artificial life (Langton, 2019),

evolutionary robotics (Doncieux et al., 2015), and

computational neuroscience (Trappenberg, 2009). In

particular, the controller for the agents is a Spiking Neural

Network (SNN) (Izhikevich, 2003), which is a more

biologically-plausible artificial neural network. The neurons in

an SNN communicate through spikes, i.e., binary values in time

series. Therefore, an SNN adds a temporal dimension to binary

data. A neuron propagates such data depending on whether its

membrane potential crossed a threshold value or not. If the

threshold is crossed, the neuron propagates a signal represented

as neurotransmitters to its connected neurons; otherwise, the

action potential is not propagated. When neurotransmitters are

released by a neuron, they can be of two types: excitatory, which

increases the membrane potential and the likelihood of

producing an action potential; or inhibitory, which has the

opposite effect by decreasing the membrane potential.

Efficient optimization of an SNN cannot happen through

gradient descent as spike trains are not differentiable

(Tavanaei et al., 2019). Instead, spiking neurons have

biologically inspired local learning rules, such as Hebbian

learning and Spike-Timing-Dependent Plasticity (STDP)

(Hebb, 1949; Li et al., 2014). Those neuroplasticity rules are

unsupervised, and their functionality in the brain is still not fully

understood. However, it is inferred that the supervision comes
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from a certain network configuration acquired through

evolution. Therefore, in this work, we use a modification of

NeuroEvolution of Augmenting Topologies (NEAT) (Stanley

and Miikkulainen, 2002). NEAT uses a Genetic Algorithm

(GA) (Holland, 1992) to optimize the weights and the

topology of a growing neural network that is initialized with a

minimal and functional size. NEAT is typically used to search for

a network configuration that improves a fitness score while

maintaining population diversity (speciation) and avoiding

loss of genes during crossover (historical marking). For an

accessible and extensive explanation of NEAT, please refer to

Ref. (Welleck, 2019).

A distinction from NEAT is that the weights in the NAGI

framework are randomly initialized, and they change (adapt)

after deployment. The adaptation is coordinated by a realistic

Hebbian learning rule, i.e., STDP. This neuroplasticity adjusts the

synaptic strength of a neuron’s dendrites (i.e., input connections)

when it fires an action potential (or spike) that goes through its

axon (i.e., output connection). The weights are modified

according to the difference in time between incoming spikes

and the generated action potential. More detailed information

about SNN and STDP is available in Ref. (Camuñas-Mesa et al.,

2019).

The body and brain interaction (sensors and actuators vs.

controller) is often described as “chicken and egg” problem

(Funes and Pollack, 1998). The natural evolution of body and

brain happens together with the evolution of the environment.

They evolve in cooperation and response to each other (Mautner

and Belew, 2000). The application of supervised evolution of

agents interacting with the environment is defined as embodied

evolution (Watson et al., 1999). As such, an agent needs a body to

learn from the reaction of its environment. We hypothesize that

low-level general intelligence in nature emerged through the

evolution of a sensory feedback learning method.

3 Related work

Neuroevolution with adaptive synapses was introduced in

2003 by Stanley et al. (2003). Such a method is a version of NEAT

where the synaptic strength of the connections changes with

Hebbian local learning rules. In their work, they used a food

foraging task where an agent moves around a field surrounded by

edible and poisonous food. The type of food did not change over

time, but it was initialized differently at every new run. The

agents needed to try the food first before identifying it. Therefore,

the agents possess reward and penalty sensory signals as in

NAGI. This method is rather similar to ours. However, NAGI

is more biologically plausible, weight agnostic, and is tested in a

mutable environment. Risi and Stanley, (2010) proposed an

extended version by replacing the direct encoding of the

network in NEAT with an indirect encoding.

Additional related methods are described in Refs. (Gaier and

Ha, 2019) and (Najarro and Risi, 2020) where randomly-

initialized artificial neural networks are used. The work of

Gaier and Ha, (2019) uses a version of NEAT where each

neuron can have one activation function out of several types.

While in the method of Najarro and Risi, (2020), the network

topology is fixed and each connection evolves to optimize the

parameters of its Hebbian learning rule.

In a recent review on neuroevolution (Stanley et al., 2019),

NEAT and its extensions are comparable to deep neural networks

trained with gradient-based methods for reinforcement learning

tasks. Such methods allow evolving artificial neural networks

with indirect encoding for scalability, novelty search for diversity,

meta-learning for learning how to learn, and architecture search

for deep learning models. Moreover, neuroevolution is described

as a key factor for reaching AGI, particularly in relation to meta-

learning and open-ended evolution. Meta-learning encompasses

the training of a model with certain datasets and testing it with

others. The goal of the model is therefore to learn any given

dataset by itself from experience (Thrun and Pratt, 1998). Open-

ended evolution is the ability to endlessly generate a variety of

solutions of increasing complexity (Taylor, 2019). In NAGI,

meta-learning is an implicit target in the mutable

environments and is implemented as neuroplasticity in the

spiking neural network.

In 2020, Nadji-Tehrani and Eslami, (2020) introduced the

framework for evolutionary artificial general intelligence

(FEAGI). This method uses an indirect encoding technique

for a spiking neural network that resembles the growth of the

biological brain, which is called “neuroembryogenesis.” As a

proof of concept, FEAGI demonstrates successful handwritten

digits classification by learning through association and being

able to recall digits from different image samples in real-time.

4 Neuroevolution of Artificial General
Intelligence

The NAGI framework aims at providing a simplified model

of the initial stages of the evolution of biological general

intelligence (Pontes-Filho and Nichele, 2019). The evolving

agents in NAGI consist of randomly-initialized spiking neural

networks. Thus, a genome in NAGI does not require the

definition of synaptic weights of the connections between

neurons, as it is done in NEAT. Therefore, the synaptic

weights in the genome are replaced by an STDP rule and its

parameters for each neuron. Since biological neurons may

provide one of the two main neurotransmitters, NAGI’s

genome defines such a feature in the neurons’ genes. As such,

a neuron can be either excitatory or inhibitory. To imitate the

function of bias in artificial neural networks, neurons may be also

susceptible to a “background electrical current noise.”
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The environment changes during the lifetime of the agent.

This forces the agent to learn new environmental conditions.

Therefore, the agent is encouraged to generalize and learn how to

learn. The aforementioned random initialization and mutable

environment aim at benchmarking the basic properties needed

for low-level AGI.

4.1 Spiking neural network

The spiking neural network has a fixed number of input and

output neurons depending on the task to be solved. The

neuroevolution process defines the number of hidden neurons

that will be available. Hidden neurons can be either excitatory or

inhibitory, while input and output neurons are always excitatory.

Self-loops and cycles are permitted while duplicate connections

between two neurons in the same direction are prohibited. The

SNN is stimulated from the input neurons, as such units are spike

generators. The spikes are uniformly generated in an assigned

frequency or firing rate.

As a spiking neuron model, we use a simplification of the

leaky integrate-and-fire model (Liu andWang, 2001). A neuron’s

membrane potential v is increased directly by its inputs and

decays over time by a factor λdecay. We can then express the

change in membrane potential Δv with regards to a time step

Δt by

Δv Δt( ) � ∑n
i�1

wixi − Δtλdecayv, (1)

where xi is the input value 0 (no spike) or 1 (spike) from the

presynaptic neuron i, the dendrite for this connection has the

synaptic strength defined as wi, and n is the total number of

presynaptic neurons that the dendrites are connecting. If the

membrane potential v is greater than the membrane threshold

vth, a spike is released and the membrane potential returns to the

resting membrane potential vrest, which is 0. The time step Δt we
use in the experiments is 0.1 ms, and decay factor λdecay is 0.01Δt.
An action performed by the SNN is calculated by the number of

spikes in a time window. Such an actuator time window covers

250 ms or 2,500 time steps. In NAGI, the weights of the SNN are

randomly initialized with a normal distribution. The mean is

equal to 1 and the standard deviation is equal to 0.2. The weights

are always positive. As mentioned, the excitation and inhibition

of a neuron are defined by the neurotransmitter of the

presynaptic neuron.

4.1.1 Homeostasis
Biological neurons have a plasticity mechanism that

maintains a steady equilibrium of the firing rate, which is

called homeostasis (Betts et al., 2013; Kulik et al., 2019). In

our method, the spiking neurons can have non-homogeneous

inputs, which could lead to very different firing rates. It is

desirable that all neurons have approximately equal firing

rates (Diehl and Cook, 2015). In order to homogenize the

firing rates of the neurons in a network, the membrane

threshold vth is given by

vth � min vpth + Θ,∑n
i�1

wi
⎛⎝ ⎞⎠, (2)

where vth* is the “resting” membrane threshold equals to 1; and Θ
starts with value 0, increases 0.2 every time a neuron fires, and decays

exponentially with a rate of 0.01Δt. Each neuron has an individualΘ.
Therefore, a neuron firing more often will get a larger membrane

threshold and consequently a lower firing rate. To compensate for a

neuron with weak incoming weights, which causes a low firing rate;

we instead use the sum of the incoming weights as the threshold.

4.1.2 Spike-Timing-Dependent Plasticity
The adjustment of the weights of the connections entering into a

neuron happens on every input and output spike to and from a

neuron. This is performed by STDP. It is done by keeping track of

the time elapsed since the last output spike and each input spike

from incoming connections within a time frame. Such a time frame

is called the STDP time window and is set to be ±40 ms. The

difference between presynaptic and postsynaptic spikes, or the

relative timing between them, denoted by Δtr is given by

Δtr tout, tin( ) � tout − tin, (3)

where tout is the timing of the output spike and tin is the timing of

the input spike.

The synaptic weight change Δw is calculated in accordance

with one of the four Hebbian learning rules. The functions for

each of the four learning rules are given by

Δw Δtr( ) �
A+e

−Δtr
τ+ Δtr > 0,

−A−e
Δtr
τ− Δtr < 0,

0 Δtr � 0;

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Asymmetric Hebbian (4)

Δw Δtr( ) �
−A+e

−Δtr
τ+ Δtr > 0,

A−e
Δtr
τ− Δtr < 0,

0 Δtr � 0;

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Asymmetric Anti −Hebbian

(5)

Δw Δtr( ) �
A+g Δtr( ) g Δtr( )> 0,
A−g Δtr( ) g Δtr( )< 0,
0 g Δtr( ) � 0;

⎧⎪⎨⎪⎩ SymmetricHebbian

(6)

Δw Δtr( ) �
−A+g Δtr( ) g Δtr( )> 0,
−A−g Δtr( ) g Δtr( )< 0,
0 g Δtr( ) � 0;

⎧⎪⎨⎪⎩ Symmetric Anti −Hebbian

(7)

where g (Δtr) is a Difference of Gaussian function given by

g Δtr( ) � 1
σ+

���
2π

√ e−
1
2

Δtr
σ+( )2 − 1

σ−
���
2π

√ e−
1
2

Δtr
σ−( )2 , (8)
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A+ and A− are the parameters that affect the height of the curve,

τ+ and τ+ are the parameters that affect the width or steepness of the

curve of the Asymmetric Hebbian functions, and σ+ and σ− are the

standard deviations for the Gaussian functions used in the

Symmetric Hebbian functions. It is also required that σ− > σ+.

We experimentally found fitting ranges for each of these parameters,

which are A+ = [0.1, 1.0], A− = [0.1, 1.0], τ+ = [1.0, 10.0], and τ− =

[1.0, 10.0] for the asymmetric STDP functions; and A+ = [1.0, 10.6],

A− = [1.0, 44.0], σ+ = [3.5, 10.0], and σ− = [13.5, 20.0] for the

symmetric ones. The STDP curves with themaximumvalue of those

parameters are illustrated in Figure 1.

Weights can take values in a range [wmin, wmax], and every

neuron has a weight budget wbudget it must follow. What this

means is that if the sum of a neuron’s incoming weights exceed

wbudget after initialization or STDP has been applied, they are

normalized to wbudget, given by

if ∑n
i�1

wi >wbudget, thenwi � wiwbudget∑n
i�1wi

. (9)

The parameters used during our experiments are wmin = 0,

wmax = 1, and wbudget = 5. In case of a SNN without

homeostasis, if a connection i has wi = wmax, then wi = vth.

Therefore, an action potential coming from i will always produce

a spike. This is the reason why wmax = vth.

4.2 Genome

The genome in NAGI is rather similar to the one in NEAT.

Its node genes have three types: input, hidden, and output.

Depending on the type of the node gene, there is a different

collection of loci1. The input node is a spike generator and

provides excitation to the neurons it is connected to. The

gene of an input node is the same as in NEAT. The hidden

and output nodes represent adaptable and mutable spiking

neurons. They have three additional loci: the type of the

learning rule, the set of the learning rule parameters, and a

bias. The connection gene in NAGI has no weight locus as in

NEAT. The reason for its removal is that the weights of the SNN

are defined by a normal distribution.

The learning rule is one of the four STDPs. The set of learning

rule parameters consists of four parameters that adjust the intensity

of the weight change. They are different for symmetric and

asymmetric learning rules. The symmetric parameters are A+{ ,

A−, σ+, σ−} and the asymmetric parameters are A+{ , A−, τ+, τ−}.
The bias is a Boolean value that determines if the neuron has a

constant input of 0.001 being added toΔv, which is analogous to the
background noise of the neuron.

FIGURE 1
Spike-timing-dependent plasticity rules.

FIGURE 2
Genotype and phenotype in NAGI. Image taken from Ref.
(Olsen, 2020).

1 In the terminology of genetic algorithms, a value within a gene is also
called a locus (plural loci).
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The hidden node genes have a unique locus, which is a

Boolean value that determines whether it represents an inhibitory

or excitatory neuron. This locus is not included in the output

node genes because they are always excitatory. As a result of

combining all the descriptions of the genome in NAGI, the

genotype and the phenotype are illustrated in Figure 2.

The initialization of the additional loci in the node genes can

be conditional and non-uniform. The initialization of the

neurotransmitter type of a neuron follows a similar

proportion of excitatory and inhibitory neurons in the brain

(Sukenik et al., 2021). The probability of a neuron being added as

excitatory is 70%. The probability of having a bias is 20%.

Depending on the neurotransmitter, excitatory neurons have a

70% chance of initializing with Hebbian plasticity, and inhibitory

neurons have the same chance but for anti-Hebbian plasticity.

The learning rule parameters are initialized by sampling from a

uniform distribution within the STDP parameter ranges.

Themutations of the additional loci happen in 10% of chance

to switch the neurotransmitter type, bias, learning rule, and

learning rule parameters. Those parameters have 2% chance

of a fully re-initialization. When the parameters are assigned

to be mutated, a random value sampled from a normal

distribution with μ = 0 and σ2 = m(p) is added to the

parameter p. The equation of m(p) is

m p( ) � 0.2 pmax − pmin( ), (10)

where pmax and pmin are the maximum and minimum values the

parameter can have, given by the STDP parameter ranges.

During the neuroevolution, 10% of the genotypes with the

best fitness scores will be passed to the next generation

unchanged, i.e., elitism.

4.3 Mutable environments

The benchmark tasks for NAGI are meant to evaluate the

agent’s ability to generalize and self-adapt. Therefore, they

consist of environments that change during the lifetime of the

agent. Two types of tasks are provided, binary classification (two

tasks of this kind are provided) and control (one task of this kind

is provided). The first type (binary classification) is the simplest

one, however, it provides the most abrupt changes in the

environment. The binary classification tasks are food foraging

with one input, and logic gates with two inputs. The control task

in a simulated physical environment is the cart-pole balancing

from OpenAI Gym (Brockman et al., 2016). The changes are less

abrupt in this last task as they consist in modifying the pole size.

The fitness scores are calculated using the number of time steps t

that the agent survived in these environments, normalized to the

range [0, 1] using the maximum possible lifetime Lmax and

minimum possible lifetime Lmin. Therefore, the fitness

function f is given by

f t( ) � t − Lmin

Lmax − Lmin
. (11)

In the binary classification tasks, the agents have an initial

amount of health points that is reduced every time step as

continuous damage. If a correct action is chosen, the health

point amount is reduced by dc health point. Otherwise, it is

reduced by di. The input sample is given to the agent for 1 s or

10,000 time steps, then it is changed to a new one. The mutation

of the environment condition happens when the agent has seen

four samples. The order of the input samples and the

environment conditions is fixed and cyclic.

We noticed that the number of spikes within the actuator

time window can be the same for the output neurons and

therefore allowing for a tie in many cases. Our solution to

avoid spiking neural networks with this behavior is to include

a “confidence” factor in the fitness score calculation. Therefore,

the higher the difference between the spike count, the more

confident the action is. If the action is correct and highly

confident, the damage is dc or closer. If the action is incorrect

but highly confident, the damage is di or closer. The lack of

confidence would make the damage lie between the values dc and

di. The spike count for the correct action sc and incorrect one si
are used to calculate the participation of the spikes for deciding

the correct action pc and the participation for the incorrect action

pi. In the iterations without spikes of the output neurons,

normally the initial ones; the agent takes di as damage.

Otherwise, the damage is calculated by

pc sc , si( ) �
max 0, min sc , st( )( ) −max 0, min sc , st( )( ) + st

2st
sc + si ≤ 2st

sc
sc + si

sc + si > 2st

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (12)

pi sc, si( ) � 1 − pc sc − pi( ) (13)

where st is the minimum “target” number of spikes. The purpose

of st is to avoid assigning a too high or low fitness to agents that

fire few spikes through their outputs. The agent takes damage at

every time step and is given by

d sc, si( ) � dcpc sc, si( ) + dipi sc, si( ) (14)

Damaging is performed until the agent runs out of health

points and ‘dies’. Subsequently, the fitness score of the agent is

calculated from the fitness function expressed in Eq. 11. The

damage to the health points in a correct action dc is 1, in an

incorrect one di is 2. Therefore, correct actions result in a longer

lifetime. The value for theminimum ‘target’ number of spikes st is

3 spikes.

In the control task of cart-pole balancing, the behavior of the

mutable environment is different. A new environment is

presented to the agent either after its failure or after the

maximum number of environment iterations is reached.

Moreover, the agents do not have health points. The fitness

score is the normalization of the number of iterations that the

agent survived after all environment conditions were executed.
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4.3.1 Food foraging
The agent in the food foraging environment possesses just one

light sensor for identifying the food “in front of it.” There are two

types of food: edible and poisonous. As such, food is represented in

two colors: black and white. The environment changes by randomly

defining which food color is edible or poisonous. In this

environment, the agent can act in two ways: eating or avoiding

the food. The sample has a predefined time of exposure to the agent.

An action is performed after the first spike and it continues for every

time step in the environment simulation. After this exposure time,

the food is replaced by a new one. The agent can only discover

whether it is exposed to an edible or poisonous food by interacting

with it. An incorrect action is defined as eating poisonous food, or

avoiding edible food, while a correct action is defined as eating edible

food or avoiding poisonous one. If the agent makes an incorrect

action, it receives a penalty signal, fromwhich the agent should learn

over the generations that it represents pain, revulsion, or hunger. If

the agent makes a correct action, it receives a reward signal, from

which it should learn that it represents the pleasure of eating

delicious food or recognizing that the food is poisonous. In

Figure 3, the food foraging environment is illustrated, how the

environment changes and provides new food samples. In our

experiment, the change of the environment occurs after

presenting four food samples to the agent. The first food sample

type is chosen randomly and alternates in every sample change. In

Table 1, the four combinations of edible and poisonous food for the

white and black ones are shown. To evolve the spiking neural

network for the food foraging task, the parameters of the genetic

algorithm are the following: the population size is set to

100 individuals, and the number of generations is set to 1,000.

This task was chosen because of its simplicity. In particular, it allows

a virtual wheeled robot to forage for food using proximity sensors,

such as in the related work of Stanley et al. (2003).

4.3.2 Logic gates
In this environment, the mutable environmental state is a

two-input logic gate. The environment provides the agent with

two binary inputs, i.e., 0’s and 1’s. The agent’s task is to predict

the correct output for the current logic gate given the current

input. Similar to the food foraging environment, it receives a

reward signal if it is currently predicting the correct output, and a

penalty signal if it is currently predicting the wrong output.

In order to measure the generalizing properties of agents, we

use two different sets of environments: a training environment,

which is used in calculating the fitness score while running the

evolutionary algorithm, and a test environment which has a fully

disjoint set of possible environmental states. A full overview of

the logic gates found in both the training and the test

environments, as well as the truth values for all input and

output combinations, are found in Table 2 and Table 3. The

evolution of the spiking neural network is performed by a

population of 100 individuals through 1,000 generations.

4.3.3 Cart-pole balancing
The cart-pole balancing is a well-known control task used as

a benchmark problem in reinforcement learning. In this

environment, there is a cart that moves when a force is

applied to the left or to the right every time step. In the

middle of the cart, there is a vertical pole connected to a non-

actuated joint. The goal of this environment is to maintain the

pole balanced upright by controlling the forces that move the

cart. Moreover, the cart cannot move beyond the limits of the

track. The observations available to the controller are the cart

position, the cart velocity, the pole angle, and the pole angular

velocity.

For training, we use poles of different sizes, which are 0.5

(default), 0.3, and 0.7. For testing, the sizes are 0.4, and 0.6.

Those pole sizes are depicted in the Supplementary Material.

Each size can run up to 200 environment iterations and it is

repeated three times during training for promoting stable

controllers. If there are no more environment iterations or

the pole falls, the cart-pole environment restarts with the next

pole size while using the same SNN or finishes when all pole

sizes were executed. The fitness score is calculated using the

number of iterations the pole kept balanced. Subsequently, it

is normalized to values between 0 and 1. The evolution for this

task occurs with a population size of 256 during

500 generations.

FIGURE 3
Example of the food foraging environment and how it
progresses through the lifetime of the agent in a generation. The
eight food samples per environment are illustrative. Our
experiment uses four.

TABLE 1 Correct actions for all combinations of input food color and
edible food in the food foraging task.

Food foraging environment conditions

Edible Black White None Both

Input

Black Eat Avoid Avoid Eat

White Avoid Eat Avoid Eat
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4.4 Data representation

The data type in a spiking neural network is a binary time series

or a spike train. Because the agent senses and acts in the

environment, such data must be converted from the sensors and

to the actuators. The flow of spikes over time can be quantified as

firing rate, which corresponds to a frequency, or the number of

spikes per second. The firing rate is the data representation that is

converted as inputs and outputs for the SNN. However, the input

firing rate must be within aminimum and amaximum value. In our

experiments, we use the value range [5Hz, 50Hz]. The minimum

andmaximum value of the firing rate are simplified to a real number

range [0, 1]. It is preferable that the data from the sensors has also a

minimum and a maximum value. Otherwise, it will be necessary to

clip sensory values or map the values to a desirable range.

In the binary classification tasks, all inputs and outputs are

binary. Therefore, the minimum and maximum values for the

input firing rate stand for, respectively, 0 and 1, or False and True.

To avoid having a predefined threshold firing rate for the output

neurons, we opt to have two output neurons for one binary value.

The neuron with the highest firing rate within the actuator time

window is the one defining the binary output value. If these two

output neurons have the same firing rate, then the last one with

TABLE 2 Truth table showing the correct output for each training logic gate.

Training logic gates

Input A B NOT A NOT B Only 0 Only 1 XOR XNOR

A B

0 0 0 0 1 1 0 1 0 1

0 1 0 1 1 0 0 1 1 0

1 0 1 0 0 1 0 1 1 0

1 1 1 1 0 0 0 1 0 1

TABLE 3 Truth table showing the correct output for each testing logic
gate.

Test logic gates

Input AND NAND OR NOR

A B

0 0 0 1 0 1

0 1 0 1 1 0

1 0 0 1 1 0

1 1 1 0 1 0

FIGURE 4
Evolution history of food foraging environment showing the average, minimum and maximum per generation.
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the highest value is selected. We also decided to have the same

“two neurons-one binary value” strategy with the inputs, which

consists of 0 or False being 01 in one-hot encoding, then (low,

high) in firing rate, while 1 or True is 10 in one-hot encoding, so

the firing rate is (high, low).

For the cart-pole control task, the inputs are real numbers, and

the left and right actions are represented as two output neurons,

similar to the outputs of the binary classification tasks. In this

environment, the inputs are the cart position, cart velocity, pole

angle, and pole angular velocity. Because we infer that real numbers

converted to the firing rate of one neuron can be difficult to deal with

in an adaptive spiking neural network (as also mentioned in Ref.

(Pontes-Filho and Liwicki, 2019)), we decided to have three neurons

for each input. The firing rate of the three neurons is similar to the

sensitivity for the light spectrum of the three cone cells in the human

eye (Bowmaker and Dartnall, 1980). We use the sigmoid function

(Han and Moraga, 1995) for neurons #1 and #3 and a normalized

version of the Gaussian function (Patel and Read, 1996) for neuron

#2. The sigmoid equation is

F sigmoid x | ω, z, h, l( ) � h

1 + e−ω x−z( ) + l, (15)

where x is the observation value from the environment, ω is the

weight that adjusts the smoothness of the interval between 0 and

FIGURE 5
Illustration of the network topology and behavior of the highest accuracy agent in the food foraging task. The one-hot encoded input sample
goes into nodes 0 and 1, the reward signal in node 2, and the penalty signal goes into node 3. Node 4 is the output for the “eat” actuator and node 5 is
the output for the “avoid” actuator.
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1, z is the shift coefficient to adjust the function on the horizontal

axis, h is the highest firing rate possible applied to an input

neuron, and l is the lowest firing rate possible. The Gaussian

function for converting observation value to firing rate is

expressed by

FGaussian x | μ, σ, h, l( ) � he
− x−μ( )2( )

2σ2 + l, (16)

where μ is the mean and σ is the standard deviation. We replace
1

σ
��
2π

√ in the original Gaussian function to h because, in this way,

we can define the highest firing rate when the observation value is

the mean. Neurons #1 and #3 use F sigmoid, while neuron #2 uses

FGaussian. The parameters and the figures with the illustration of

those equations are included in the Supplementary Material.

5 Results

The evolution of the spiking neural networks in NAGI is

evaluated with fitness score, accuracy, and end-of-sample

accuracy for the binary classification tasks, which are food

foraging and logic gate. The accuracy is measured at every

time step of the simulation. The end-of-sample accuracy

stands for the accuracy measured in the last time step of a

TABLE 4 Test simulations of the highest accuracy agent in the food foraging experiment. “Acc.” stands for accuracy and “EOS Acc.” for end-of-sample
accuracy.

Food foraging test simulations

# Acc. (%) EOS Acc. (%) Input order Environment order

1 88.0 92.6 black, white white, both, black, none

2 90.6 100 white, black white, none, both, black

3 91.3 100 black, white white, both, none, black

4 85.4 92.3 white, black white, black, both, none

5 89.5 96.3 white, black both, none, white, black

6 89.2 100.0 black, white both, white, black, none

7 87.7 92.6 black, white white, black, none, both

8 84.9 92.6 black, white black, both, white, none

9 89.8 100 black, white white, black, both, none

10 88.4 92.6 white, black black, none, white, both

Avg 88.4 95.9 n/a

FIGURE 6
Evolution history of logic gate environment showing the average, minimum and maximum per generation.
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sample. The assessment performed for the control task with cart-

pole balancing is done with the fitness score. We test the best

performing agent in a task with ten simulations where their

details are also provided.

Figure 4 shows the evolution history of the food foraging task.

The average fitness score has a slight increase, but the maximum

fitness score does not follow this trend. The accuracy and end-of-

sample accuracy have high variation with their maximum values,

but they consist of high accuracies. Moreover, some early

generations register 100% end-of-sample accuracy. The three

measurements do not improve through the generations.

However, good solutions are already found in the first

generation. Therefore, this is an easy task that requires a small

SNN. For test simulations, we select the individual with the

highest accuracy, which is found in generation number 34 and

has an accuracy of 89.8%. Its fitness score is 0.541395 and its end-

of-sample accuracy is 100%. Its topology is shown in Figure 5.

Paying attention to this topology, the hidden nodes are not

FIGURE 7
Illustration of the network topology and behavior of the highest training accuracy agent in the logic gate task. The one-hot encoded input
sample “(A)” goes into nodes 0 and 1, the one-hot encoded input sample “(B)” goes into nodes 2 and 3, the reward signal goes into node 4, and the
penalty signal into node 5. Node 6 is the output for the “0” actuator and node 7 is the output for the “1” actuator.
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needed. They form a loop that does not connect with the output

nodes. The topology summarizes in one of the one-hot encoded

input nodes (node 1) connecting to the two output nodes. Then,

the node with the penalty signal (node 3) connects only with the

node for the “eat” actuator (node 4). The behavior of the network

is illustrated in Figure 5C. The topology of the network indicates

that the two output neurons have the same data input from node

1, but the neuron for “avoid” action has a bias, which gives it a

small excitatory current. If “avoid” is the wrong action, the

penalty input signal from node 3 excites the output neuron

for the “eat” action. This is how the spiking neural network

decides the actions from “understanding” the feedback of the

environment given by the penalty input signal. The result of the

ten test simulations is presented in Table 4.

Figure 6 shows the training results of the logic gate task and it

includes the test of the maximum individual of the measurement

in every generation. The fitness score, accuracy, and end-of-

sample accuracy maintain average values with high variation.

However, the evolution of the agents in the logic gate task is

similar to the one in the food foraging. The early generations

already contain good spiking neural networks for the task. The

best-performing agent is selected from the accuracy

measurement. This individual is in generation 48 and has an

accuracy of 85.0%. Its fitness score is 0.4421625 and its end-of-

sample accuracy is 100%. The topology of this spiking neural

TABLE 5 Test simulations of the highest training accuracy agent in the logic gate experiment. “Acc.” stands for accuracy and “EOS Acc.” for end-of-
sample accuracy.

Logic gate test simulations

# Acc. (%) EOS Acc. (%) Input order (A, B) Environment order

1 89.8 100 (1, 0), (0, 0), (1, 1), (0, 1) NOR, OR, AND, NAND

2 85.2 95.2 (1, 1), (1, 0), (0, 0), (0, 1) OR, NOR, NAND, AND

3 86.0 100 (1, 0), (1, 1), (0, 1), (0, 0) NOR, OR, AND, NAND

4 85.9 95.2 (0, 0), (1, 1), (0, 1), (1, 0) NAND, AND, OR, NOR

5 79.9 85.7 (0, 0), (0, 1), (1, 0), (1, 1) NAND, AND, NOR, OR

6 88.8 100 (1, 0), (0, 0), (1, 1), (0, 1) AND, NAND, OR, NOR

7 85.1 90.5 (0, 0), (1, 1), (1, 0), (0, 1) OR, NOR, NAND, AND

8 84.8 90.5 (1, 1), (0, 1), (0, 0), (1, 0) NOR, NAND, OR, AND

9 83.7 85.7 (0, 0), (1, 0), (0, 1), (1, 1) NAND, NOR, OR, AND

10 88.5 100 (1, 1), (1, 0), (0, 0), (0, 1) NOR, AND, OR, NAND

Avg 85.7 94.2 n/a

FIGURE 8
Fitness history of cart-pole balancing environment showing
the average, minimum and maximum per generation.

TABLE 6 Test simulations of the highest fitness agent in the cart-pole
balancing experiment.

Cart-pole balancing test simulations

# Fitness # Steps 0.4 # Steps 0.6 Environment order

1 1.000 200 200 0.4, 0.6

2 1.000 200 200 0.4, 0.6

3 1.000 200 200 0.6, 0.4

4 0.943 200 177 0.4, 0.6

5 0.800 154 166 0.6, 0.4

6 0.792 179 138 0.4, 0.6

7 0.835 200 134 0.6, 0.4

8 0.845 200 138 0.4, 0.6

9 0.873 200 149 0.6, 0.4

10 0.720 88 200 0.6, 0.4

Avg 0.874 178.3 171.5 n/a
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network is shown in Figure 7. Its behavior is shown in Figure 7C.

Even though we have trained with a “confidence” factor in the

fitness function, the spike counts are still with almost the same

values. Table 5 contains the accuracy and end-of-sample

accuracy of ten test simulations, which indicates that the SNN

can be general to reproduce the behavior of logic gates without

being trained to them.

Figure 8 shows the fitness score history through the

evolution for the cart-pole balancing task. This task is the

one with the highest difficulty to find a good genome for the

adaptive spiking neural network. It can be noted that the

fitness score improves through the generations. The

maximum fitness score in a generation goes from around

0.16 in the first generation to 0.99944 in generation number

399. Such an individual is the one selected for the test

simulations. Its topology is illustrated in Figure 9 and the

spike counts of the actuators for “left” and “right” actions are

shown in Figure 9C. The spiking neural network has no

FIGURE 9
Illustration of the network topology and behavior of the highest training fitness agent in the cart-pole balancing experiment. The 3-tuple of
input nodes (0, 1, 2) gets the converted firing rate from the observation of the cart position, (3, 4, 5) from the cart velocity, (6, 7, 8) from the pole angle,
and (9, 10, 11) from the pole angular velocity. Node 12 is the output for the ‘left’ action and node 13 is the output for the “right” action.
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hidden neurons. Therefore, the SNN works as an input

selection for the output neurons. The result of the ten test

simulations is presented in Table 6. When the pole is balanced

for more than 100 iterations, the controller is considered

successful.

6 Discussion and conclusion

We successfully solved all three presented tasks with the

NAGI framework. The spiking neural networks found showed

generality to the binary classification tasks, even to unseen

conditions in the case of the emulation of logic gates. The

neuroevolution produced rather simple topologies for the

SNNs. We infer that binary classification is easy due to the

binary performance feedback. For further research, multi-class

classification is considered.

The cart-pole balancing task was successfully solved without

any hidden neurons. The conversion of one observation into

three input neurons is used to avoid the requirement of weight

fine-tuning due to small differences in firing rate and also to the

assumption that Hebbian plasticity works better with binary data

(active and inactive) (Pontes-Filho and Liwicki, 2019). With such

a conversion, the SNN became an input selection.

The topologies for the three tasks caught our attention

because almost all output excitatory neurons were anti-

Hebbian, and the two inhibitory hidden neurons in the logic

gate solution have Hebbian neuroplasticity. Our initial

hypotheses were that excitatory neurons mainly have Hebbian

learning rules, and inhibitory neurons are anti-Hebbian. That

was the reason for having different probabilities for anti-Hebbian

and Hebbian learning rules depending on the type of the

neurotransmitter when adding a new neuron through mutation.

Even though there is elitism, the performance measurements

are unstable through generations. This is a demonstration of the

randomness in the initialization of the weights, and input and

environment order. This can be perceived in the results of the ten

test simulations of the three tasks.

For future work, we plan to attempt more challenging tasks.

If there is a failure in executing the task, the constraints imposed

on NAGI can be eased. A major constraint is that one neuron has

one plasticity rule for all dendrites. Maybe its removal can

simplify issues in difficult tasks. This constraint was intended

to reduce the dimensionality of the search space in the

neuroevolution and an assumption that the dendrites in the

same neuron adapt under one learning rule. This modification is

also aligned with the work of Najarro and Risi, (2020), which has

meta-learning properties for more difficult control tasks than the

cart-pole balancing, such as top-down car racing and quadruped

walk. Another opportunity is the addition of curriculum learning

(Bengio et al., 2009; Narvekar et al., 2020) for increasing the

complexity of the task while the agent becomes better over the

generations.
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Drive competition underlies
effective allostatic orchestration

Oscar Guerrero Rosado*, Adrian F. Amil, Ismael T. Freire and
Paul F. M. J. Verschure*

Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands

Living systems ensure their fitness by self-regulating. The optimal matching of

their behavior to the opportunities and demands of the ever-changing natural

environment is crucial for satisfying physiological and cognitive needs.

Although homeostasis has explained how organisms maintain their internal

states within a desirable range, the problem of orchestrating different

homeostatic systems has not been fully explained yet. In the present paper,

we argue that attractor dynamics emerge from the competitive relation of

internal drives, resulting in the effective regulation of adaptive behaviors. To test

this hypothesis, we develop a biologically-grounded attractor model of

allostatic orchestration that is embedded into a synthetic agent. Results

show that the resultant neural mass model allows the agent to reproduce

the navigational patterns of a rodent in an open field. Moreover, when exploring

the robustness of our model in a dynamically changing environment, the

synthetic agent pursues the stability of the self, being its internal states

dependent on environmental opportunities to satisfy its needs. Finally, we

elaborate on the benefits of resetting the model’s dynamics after drive-

completion behaviors. Altogether, our studies suggest that the neural mass

allostatic model adequately reproduces self-regulatory dynamics while

overcoming the limitations of previous models.

KEYWORDS

self-regulation, homeostasis, allostatic control, attractormodel, need-based behavior,
control theory

Introduction

As 19th-century physiologists Claude Bernard and Ivan Pavlov proposed, living

systems are generally characterized by their ability to self-regulate (Bernard, 1865; Pavlov,

1955). Through self-regulation, an organism ensures its fitness by adjusting its inner

processes relative to external perturbations (Papies and Aarts, 2016), in turn, assisting

self-maintenance (i.e., Autopoiesis) (Maturana and Varela, 1991). One aspect of self-

regulation is homeostasis, which describes the process of maintaining an internal state

within a desirable range as proposed by Cannon (Cannon, 1939). Once external

perturbations produce a deviation from the desirable range, a homeostatic error

arises, driving a proportional error-correcting response to restore balance in the

system. This process would be later formalized as a feedback control loop by Norbert

Wiener (Wiener, 1948), father of cybernetics. However, the homeostatic control of a
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single need is insufficient to ensure fitness since living organisms

need to maintain a rather large set of internal needs with

dynamically varying priorities from electrolysis to temperature

and oxygenation. To overcome this and other gaps of

homeostasis in explaining self-regulation, the notion of

allostasis aims to capture the stability of the integrated self

rather than its parts.

Allostasis transcends the constancy imposed by homeostasis

by aligning all organism’s internal parameters with the

environmental demands and opportunities (Sterling, 1988). In

its broad conceptualization, allostasis targets stability by

integrating many dynamic regulatory principles (Sterling,

2020). For this reason, we differentiate three complementary

and coupled levels of allostasis. First, allostatic orchestration

allows the agent to rapidly rank its internal needs based on

priorities, urgencies, and opportunities. Second, predictive

allostasis leverages environmental regularities to learn

associations between external events and internal states,

supporting anticipatory allostatic orchestration and future

homeostatic risks. Finally, contextual allostasis benefits from

goal-oriented learning mechanisms to enrich self-regulatory

strategies with spatio-temporal information, in turn facilitating

anticipatory behavioral strategies. Hence, we consider that in the

mammalian brain allostatic regulation of action is organized in a

multi-layered architecture following the Distributed Adaptive

Control (DAC) theory (Verschure, 2012, 2016).

While nowadays, allostasis is increasing in popularity (2010:

2,584 citations versus 2021:12549 citations, resource: Scopus),

most of the latest computational models on allostasis focus on

exploring the advantages of its predictive component (Sterling,

2012). Paradoxically, some models return to the one-single-need

problem of homeostasis (Tschantz et al., 2022). In addition, the

concept of allostasis has not explained the computational

mechanisms by which individuals achieve stability by

orchestrating different homeostatic systems. The divergent

modeling approaches adopted by the few computational

studies addressing allostasis demonstrate the lack of consensus

when determining the fundamental principles behind allostatic

orchestration.

In 2010, Sanchez-Fibla et al. developed what, to our

knowledge, is the first computational model of allostatic

orchestration (Sanchez-Fibla et al., 2010). The model

emulated rodent behavior and physiological states in an

open field test (Gould et al., 2009) with simulated and

physical robots. This model proposed that the animal’s

behavior resulted from the interaction between two internal

needs: Security, which is fulfilled in one of the arena’s corners

representing the rodent’s home base, and arousal, which

would be higher in the center of the arena given the

maximum exposure of the animal at that location.

However, although reproducing the animal’s overall

trajectory pattern and occupancy preferences, the model

did not elaborate on the neuroscience supporting allostasis.

A more recent model bases the optimal selection of

regulatory behaviors on maximizing a subsequent reward

(Laurençon et al., 2021). This deployment of a reward-

based allostatic model builds on the premises of

homeostatic reinforcement learning (HRL) (Keramati and

Gutkin, 2014). HRL represents a major refinement of

traditional reinforcement learning theories grounding

learning protocols on the individual’s internal state. HRL

successfully explains effects in animal behavior such as

alliesthesia, namely, the fluctuations in reward value during

resource acquisition (Cabanac, 1971). Still, although HRL

leverages temporal and spatial information to improve the

self-regulatory strategy, this approach makes a

complementary learning process critical for solving the

allostatic orchestration problem.

Finally, a third approach suggests that allostatic orchestration

emerges frommotivational conflict solved via attractor dynamics

(Jimenez-Rodriguez et al., 2020).In this approach, the attractor

dynamics implement competition through cross-inhibition

(Usher and McClelland, 2001; Marshall et al., 2015). This

framework supports the idea that attractor dynamics can

underlie the optimal selection of regulatory behavior and

explained their duration and latency. However, an explanation

of how neural correlates of internal needs’ implement such

competing dynamics is unclear.

Grounding the design principles of a model of allostasis in

state-of-the-art neuroscience constitutes a pending task for

previous modeling approaches that have largely relied on

algorithmic solutions. We suggest that novel approaches can

overcome this challenge by focusing on the core behavior systems

of the mammalian brain (Merker, 2013; Verschure, 2016).

Interoception of physiological needs such as hydration,

nutrition, thermoregulation, or sleep is generally attributed to

distinct specialized hypothalamic nuclei (Strecker et al., 2002;

Blouet and Schwartz, 2010; Nakamura, 2011; Zimmerman et al.,

2017). In contrast, other psychological needs (e.g., social

interaction) depend on more distributed brain networks (Lee

et al., 2021). Importantly, recent studies suggest that these nuclei,

and so the internal needs they represent, are not independent of

each other but hold a competing relationship through inhibitory

interactions (Burnett et al., 2016; Osterhout et al., 2022; Qian

et al., 2022). This competition between internal drives could serve

as the basis of allostatic orchestration by imposing a winner-take-

all mechanism represented as attractor dynamics. Thus,

irrelevant drives are suppressed, and the singleness principle

of action is supported (Sherrington, 1906). This research

literature suggests that an attractor-based approach is suitable

for modeling allostasis.

In contexts where animals constantly self-regulate multiple

internal needs, decision-making could be hampered by attractor

forces sustained after drive-completion behaviors. Indeed, in vivo

studies suggest that cortical areas involved in decision-making

operate in a critical regime (close to a phase transition) (Ma et al.,
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2019) that occasionally evolves to supercriticality (saturated

population response), a regime that supports effective

information transmission (Li et al., 2019). Nonetheless, how the

system returns to criticality from a supercritical regime is poorly

understood. The paraventricular hypothalamic nucleus (PVH) is a

good candidate to inhibit the main interoceptive nuclei, recover

their basal population activity after drive-completion behaviors,

and create the initial conditions for the next cycle of allostatic

orchestration. From one side, PVH mediates many diverse

motivational functions, including thirst (Zimmerman et al.,

2017), hunger (Blouet and Schwartz, 2010), and

thermoregulation (Nakamura, 2011). Conversely,

corticotrophin-releasing hormone (CRH) neurons in the PVH

are suggested to be sensitive toward reward acquisition.

Specifically, PVH CRH neurons get inhibited during drive-

completion behaviors, representing a potential source of global

inhibition to the rest of hypothalamic interoceptive nuclei (Yuan

et al., 2019). In this research work, we model this form of decision

reset by applying general inhibitory inputs to the excitatory

populations once an internal need has been satisfied.

FIGURE 1
Performance of the neural mass allostatic model in an open field. Two gradients represent the areas where the two internal needs, arousal (red)
and security (green), can be fulfilled (top-left). The agent partially observes those gradients through local sensation (top-middle). Local sensation
allows the agent to adjust its actions to ascend/descend the gradients and detect when the observer’s current position is in the vicinity of the
resource area (i.e., the peak of the gradient). If the agent is not close enough to the resource area, the internal state related to that resource
keeps declining, as the security actual state (aS) is doing in this figure (top-right). In contrast, if the agent occupies the peak of the gradient, the
internal state approximates the desired state (dS), as shownwith arousal. The aSs and dSs are compared, creating a homeostatic error (top-right) that
will input their respective excitatory pools in the neuralmassmodel (middle-right). The level of competition is defined by the ratio ofmutual inhibition
(orange interneurons) and shared feedback inhibition (blue interneurons). Finally, the firing rate of each excitatory population provides the agent with
the corresponding drives given its internal states.
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In the following sections, we will describe a novel neural mass

model of allostatic orchestration grounded on the interoceptive

mechanisms of the mammalian brain. As in (Sanchez-Fibla et al.,

2010), the model will be embedded in an agent endowed with a

so-called core behavior system (CBS) (Merker, 2013; Verschure,

2016). In other words, besides sensing its internal environment, a

competence attributed to the hypothalamus (Strecker et al., 2002;

Blouet and Schwartz, 2010; Nakamura, 2011; Zimmerman et al.,

2017), the agent can orientate in an external environment and

perform basic navigation based on an appetitive-aversive axis,

cognitive functions attributed to the superior colliculus and

the zona incerta-periaqueductal gray axis, respectively. The

resultant model is tested in both static and dynamic

environments. In the static condition, we aim to elucidate

if our model can faithfully replicate both previous models of

allostatic control and rodent behavior in an open field test

(Gould et al., 2009). In the dynamic environment, we will

further explore the robustness of our model when

environmental opportunities to satisfy internal needs

decrease over time. Finally, we will analyze how inducing

subcritical dynamics after drive fulfillment facilitates switches

in self-regulatory strategies.

Materials and methods

To better understand the potential of competing dynamics

between internal drives in facilitating need orchestration and

stability of the self, we built a novel allostatic model grounding

its design on contemporary research literature. Consequently,

a neural mass model was built incorporating two distinct

populations sensitive to homeostatic markers while holding

a competing relationship (Figure 1). Aiming for convergent

validation, we equipped a synthetic agent with this

biologically-constraint model and analyzed its ability to

defend its internal states by navigating an external

environment.

Homeostatic systems

Assuming that living organisms have interoceptive

capabilities to assess their internal state, we conceptualized

each internal need as a homeostatic mechanism. Here, actual

and desired states are compared providing a measure of

homeostatic error (that is, hEi = |dSi − aSi|). Importantly,

homeostatic systems have no power to provide regulatory

responses by themselves. Instead, they bias those behaviors by

constantly feeding the neural mass allostatic model with

homeostatic errors (Figure 1).

The transition between actual internal states responded to

the following dynamical law,

aSi t( ) � aSi t − 1( ) − dRi t( ) + rIi t( ) (1)
where aSi(t − 1) is the actual state of the homeostatic system i

in the immediate previous timestep, dRi(t) corresponds to the

decay rate applied to each homeostatic system at time t, and

rIi(t) represents the resource impact at time t. Importantly,

resource impact will be 0 unless the agent is in the vicinity of

the resource. By applying different decay factors and resource

impacts, internal states can evolve with different temporal

dynamics.

This dynamical law, similarly applied in (Jimenez-Rodriguez

et al., 2020), notably differs from the methods applied in

(Sanchez-Fibla et al., 2010), where the agent drew its internal

states directly from gradients mapped onto the two-dimensional

arena.

The neural mass allostatic model

Wilson-Cowan equations modified as in (Amil and

Verschure, 2021) were used to model two need-sensitive

neural populations (Figure 1). This modification allowed to

account for mutual and shared feedback inhibition held

between the excitatory populations, as follows:

τ
dD1 t( )
dt

� −D1

+ f w+D1 + hE1 − Qw−D2 − 1 − Q( )w�f D1 +D2( )( )
+ σξ t( )

(2)
τ
dD2 t( )
dt

� −D2

+ f w+D2 + hE2 − Qw−D1 − 1 − Q( )w�f D1 +D2( )( )
+ σξ t( )

(3)
where f(x) is the logistic f − hEi function,

f x( ) � Fmax

1 + e − x−θ( )
k

(4)

In these equations, τ is the time constant determining the

timescale of population dynamics. Di is the drive magnitude

represented as the mean firing rate of the excitatory population i.

w+, w−, and w= are the weights for recurrent connections within

the excitatory population, mutual inhibition, and feedback

inhibition, respectively. Q represents the mutual/feedback

inhibition ratio, a variable that allows for inducing a

controlled level of competition. σ and ξ are the variance and

magnitude of Gaussian noise provided to the excitatory

populations (See Supplementary Figures S1–S4 for Q and

noise parameter search). Finally, Fmax, k, and θ are the

maximum firing rate, gain, and threshold parameters of the

f − hEi logistic curve respectively (Eq. 4).
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Orientation

Methods enabling the orientation and navigation of the

synthetic agent in the arena are based on (Sanchez-Fibla et al.,

2010). In both conditions (static and dynamic environments), we

served from three-dimensional gradients to represent the location of

resources fulfilling specific internal needs. Notably, gradients are

used solely to support navigation, and internal states are not directly

linked to the agent’s location in the arena, as in the original study.

Instead, internal states follow their dynamics, as explained above.

The decision to use gradient-based methods for navigation is

supported by representations of future navigational goals in the

orbitofrontal cortex (Basu et al., 2021).

We implemented a partially observable environment by

providing the agent with local sensations of the gradient areas

surrounding its position. The local sensation was divided into

four quadrants (Figure 1) to allow goal-directed-like navigation.

By observing differences between the upper horizontal quadrants

(q0i and q1i ), H
sign
i controlled the agent’s orientation. ADsign

i

implements an appetitive-aversive behavioral axis (gradient

ascent/descent) by comparing agent (aGL) and resource

gradient location (rGL); understanding aGL as the mean

gradient value between the four quadrants and rGL as the

gradient value at its peak.

Hsign
i �

1 if q0i < q1i − th
−1 if q0i > q1i + th
0 otherwise

⎧⎪⎨⎪⎩ (5)

ADsign
i �

1 if aGL0
i < rGL1

i − th
−1 if aGL0

i > rGL1
i + th

0 otherwise

⎧⎪⎨⎪⎩ (6)

Internally-driven navigation

Outputs of the excitatory populations of the neural mass

allostatic model are integrated with Hsign
i and ADsign

i

orientational signals to result in internally-driven goal-

oriented-like navigation, following:

Navigation � c + ∑nGrad
i�1

Hsign
i · ADsign

i · Excoutputi
⎛⎝ ⎞⎠ · 1

nNeeds

(7)
where c is a constant ensuring a default action going forward,

Excoutputi accounts for the output of the excitatory population i of

the neural mass allostatic model, and 1
nNeeds is a normalization

factor given the number of implemented needs.

Experimental design

A first study was conducted to evaluate the competence of the

neural mass allostatic model in replicating rodent behavior

during an open field test. In this study, a synthetic agent

navigated a static simulated environment to defend its internal

states of security and arousal. 50 experiments were carried out to

analyze navigational patterns consistency and the internal

dynamics of the agent along the simulation.

In the second study, the synthetic agent endowed with the

neural mass allostatic model incorporated two distinct internal

needs: thermoregulation and hydration. A dynamic simulated

environment allowed us to assess the agent’s ability to adapt its

navigation according to environmental opportunities.

50 experiments were carried out to analyze the consistency of

the navigational patterns, the internal dynamics taking place

along the simulation, and the relationship between these internal

dynamics and environmental changes.

In both the first and the second studies, the agent must

constantly decide what internal drives should base its navigation

on to maximize stability. This continuous decision-making

condition represents a major difference from the original

work in which the model’s design is based on (Amil and

Verschure, 2021) and is a novel challenge to overcome.

Therefore, a third study was conducted to evaluate the

advantages of inducting subcritical dynamics after need

resolution. As in the second study, a synthetic agent navigated

a dynamic environment to defend its internal states of hydration

and thermoregulation. 50 experiments were conducted to assess

the advantages of applying global inhibition after drive-

completion behavior compared with the second study, where

we did not consider such an effect.

Arenas

The arenas simulated in static and dynamic conditions were

designed as two-dimensional 200 × 200 matrices incorporating

one gradient per internal need. These gradients represented the

location in the two-dimensional space where each internal need

can be satisfied.

In the first study, we built a static environment following the

gradient design of the open field test used in (Sanchez-Fibla et al.,

2010). Thus, we implemented two gradients mapping the

opportunities to calm security and arousal drives. The security

gradient was designed as a Gaussian gradient with its peak in the

top-left corner, representing the home base location. Meanwhile,

the arousal gradient was designed with its peak in the center of

the arena, representing the animal’s exposure level. The

configuration of these gradients aimed to replicate rodent

navigational patterns, understood as a preference to occupy

the home base and to explore the arena close to the walls

(i.e., thigmotaxis) with occasional transversals (Figure 2A).

In the second and third studies, a dynamic environment

implemented two gradients to map the opportunities to satisfy

thermoregulation and hydration internal needs. We used a

similar static gradient to security in the first study to
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represent the thirst-calming resource—nonetheless, the gradient

representing the area where internal temperature increases

changed over time. Designed as a two-dimensional sigmoidal

function, the area providing temperature was large at the

beginning of the simulation. However, as the simulation

evolved, the x-intercept of our sigmoidal gradient increased,

shortening the temperature gradient’s peak area and

establishing a larger gap between the two resource locations

(Figure 2B). Thus, at the experiment’s end, the temperature

gradient’s peak area only covers a short area of the arena at

its bottom limit.

Efficiency, fairness and stability

To further understand the relationship between internal and

external variables, in the second and third studies, we compute

three measures traditionally used in game theory (Binmore, 2005;

Hawkins and Goldstone, 2016; Freire et al., 2020). Efficiency

provides a measure of how good the system is in maintaining the

internal states close to their setpoints. Fairness designates

whether there is any bias in the engagement of drives. Lastly,

stability, computed as the mean square homeostatic error,

comprises both the magnitude and the difference between

homeostatic errors to provide a general measure of the agent

performance.

To inform about the evolution of these measures throughout

the experiment, they were calculated for every 1/100 faction of

the duration of the experiment. Hence, mean internal and desired

states only represented those elements in the considered fraction

across the 50 experiments.

Efficiency � meanT +meanH

nNeeds
(8)

Fairness � |meanT −meanH|
nNeeds

(9)

Stability � 1 − ∑nGrad
i�1

meanISi −meanDSi( )2 (10)

Results

Open field test

In the first study, as previous works did (Sanchez-Fibla et al.,

2010), we aim to reproduce the navigational patterns of a rodent

in an open field test. As in rodents, the trajectories of our agent

showed preferences toward the walls (thigmotaxis) and the top-

left corner (home base). At the same time, occasional transversals

explored the center of the arena (Figure 3A, Supplementary

Figure S5). The observed trajectory patterns resulted from the

competition between two drives with different temporal

FIGURE 2
Gradients representing environmental opportunities to satisfy internal needs in each condition. (A) Arousal and security gradients were
designed to replicate rodent behavior in an open field test. To represent themaximal level of exposure when exploring the center of the arena, we set
the peak of the gradient in that location. Similarly, we used the peak of the security gradient to represent the home base location in one of the
corners. (B)Hydration and temperature gradients were designed to test the performance of our model in a dynamic setting. Here, the hydration
gradient was static, with its peak in one of the corners. In contrast, the temperature gradient changed over time. To do so, we built the gradient as a
two-dimensional sigmoidal function where its x-intercept increased as the simulation evolved. Thus, the peak area where internal temperature
increases shrunk, and the intermediate area between gradients increased over time.
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dynamics. Fast-decaying security made the agent constantly

revisit its home base, while slow-decaying arousal allowed the

agent to occasionally visit the center of the arena (Figure 3B).

Competing dynamics between the two internal needs emerged

when feeding the excitatory populations of our neural mass

model with the corresponding homeostatic errors, allowing

the dominant attractor to inhibit its opponent, thus resolving

drive orchestration (Figure 3C). After carrying out

50 experiments, agent trajectories showed consistency in their

occupancy pattern: a clear preference to visit the home base,

navigate close to the walls, and avoid the center of the arena

(Figure 3D). The distribution of the internal states during those

50 simulations was very informative. On the one hand, the agent

maintained a high level of security during a large part of the

simulations (Figure 3E). On the other hand, the state of arousal

followed a bimodal distribution indicating the agent was either

high or low aroused during the experiment. This bimodal

distribution can be interpreted as follows: First, while the

agent pursues security, an aversion toward the center of the

arena induces low states of arousal. Then, low internal states, in

turn, promote transversals that fully replenish the arousal of the

agent (Figure 3F). Finally, attractor dominances, i.e., the

simulation period where the firing rate of one excitatory

neural pool exceeded the firing rate of the other, showed a

balanced activation of both attractors with a slight bias toward

arousal (Figure 3G).

Dynamic environment

In the second study, we assess the robustness of our novel neural

mass allostatic model in a dynamic environment. In this condition,

we observe that the agent’s trajectory accurately tracks the

environmental gradients (Figure 2B) occupying their peak areas

FIGURE 3
Replication of rodent behavior in an open field test. (A) Agent’s trajectory tracked along a complete experiment. The red dot represents starting
location, randomized across experiments. (B) Agent’s internal state dynamics during a complete experiment (same as a). (C) Firing rates of the
excitatory populations configuring the neural mass allostatic model during a complete experiment (same as a). (D) Occupancy map across
50 experiments with normalized values. (E) Distribution of security states across 50 experiments. (F) Distribution of arousal states across
50 experiments. (G) Mean attractor dominance across 50 experiments.
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(Figure 4A, Supplementary Figure S6). Specifically, when dividing

the complete experiment into five periods of equal length, we can

observe that the agent’s trajectory constantly adapted to the changes

in the temperature gradient (Figure 4B). Thus, when initializing the

experiment (period 1), the peak area of the temperature gradient

covers a large part of the arena, and the agent navigates more

extensively. However, in the last period (period 5), the peak area is

reduced to a thin region close to the bottom border, and the agent’s

navigation adapts to it. This trajectory pattern was consistent across

the 50 experiments, as the occupancy maps suggest (Figure 4C).

Spearman correlation analysis indicated that the mean Y axis

position of the agent during thermoregulation highly correlated

with the temperature gradient’s slope location (r(498) = 0.96, p <
0.001), confirming the agent’s trajectory adaptation. Once again,

attractor dominance was balanced (Figure 4D), suggesting that

although the environment asymmetrically reduces the

opportunities to fulfill the agent’s internal needs, the neural mass

model imposes a well-balanced competition without neglecting any

of the drives. Indeed, the mean internal state across the experiment

shows that thermoregulation and hydration levels are well

maintained without biases (Figure 4E), and both are equally

correlated with the environmental temperature (mean value of

the temperature gradient) (Figure 4F). To understand in detail

the relationship between internal states and environmental

dynamics, we studied this relationship in terms of efficiency,

fairness, and stability metrics. Correlating these measures with

the environmental temperature, we observed that efficiency

strongly depends on the opportunities to fulfill internal needs

FIGURE 4
Agent’s performance in a dynamic environment. (A) Agent’s trajectory tracked along a complete experiment. The red dot represents starting
location, randomized across experiments. (B) Agent’s trajectory tracked along a complete experiment (same as a) divided into five periods. (C)Map of
occupancy divided into five periods. Color crosses illustrate the mean position during hydration (blue) and thermoregulation (orange) attractor
dominance. The red dashed line illustrates the variable slope location of the dynamic temperature gradient. (D) Mean attractor dominance (E)
Mean agent internal state dynamics and environmental temperature. The shaded area indicates the internal state variance. (F) Mean internal state
dynamics correlated with the environmental temperature. (G) Efficiency dynamics correlated with the environmental temperature. (H) Fairness
dynamics correlated with the environmental temperature. (I) Stability dynamics correlated with the environmental temperature. Aggregated results
from 50 experiments.
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(Figure 4G). This result was expected, given the environmental

dynamics. When the environmental temperature decreases

(i.e., temperature gradient peak shrinks), gradients’ peak areas are

more distant, forcing the agent to navigate a larger area where its

internal states decrease. However, environmental changes do not

affect the fairness level (Figure 4H), validating that the balance of

attractor dominance is defended even when receiving asymmetric

influences from the environment. Lastly, stability reports difficulties

minimizing the mean square homeostatic error as temperature

decreases (Figure 4I). According to our previous analysis, this

result would be better explained by environmental influences on

efficiency than fairness.

Criticality-driven decision-reset after
decision accomplishment

Finally, a third study explores the potential limitations of

attractor-based allostatic models. Specifically, by inhibiting the

model’s excitatory neural populations (once drive-completion

behaviors have been performed), we explore whether sustained

attractor forces could hamper individual self-regulation in study

2. Results showed that agents widely benefit from inducing a

critical regime to set the initial conditions for each cycle of

allostatic orchestration. Specifically, mean internal states along

the simulation (calculated every 1/100 fraction of the

experiment) across 50 simulations indicated that agents

maintained their internal states better when applying decision-

reset (Inhibition). (Figure 5A). Consequently, increased internal

states also resulted in increased efficiency, fairness, and stability

scores. A Mann-Whitney test indicated statistically significant

differences when comparing the two conditions in each measure,

U(NNo−inhibition = 100, Ninhibition = 100), p < 0.001). Furthermore,

this enhanced performance occurred in larger alignment with the

environmental temperature (Figure 5B), which indicates the

agent’s internal states decreased when the scarcity of resources

prevented a better self-regulatory strategy. Altogether, these

results suggest that attractor forces sustained after drive-

completion behaviors hampered allostatic orchestration, and

criticality-driven decision-reset provides an effective

mechanism to facilitate a more flexible decision-making process.

Discussion

Previous computational works have contributed to explaining

animal self-regulatory behavior (Sanchez-Fibla et al., 2010; Keramati

and Gutkin, 2014; Jimenez-Rodriguez et al., 2020). However, these

models have not been validated in a broad range of taskswith emphasis

on their robustness in the face of varying task conditions, while in

parallel, their grounding in the brain mechanisms underlying allostatic

orchestration is not fully elucidated. We hypothesize that attractor

dynamics originate from the competing relation between different

hypothalamic interoceptive nuclei and their loops through the zona

incerta, which are further perturbed by the superior colliculus (input

and orienting control), and the central gray for triggering reactive

species-specific behaviors. To test the adequacy of allostatic attractor

dynamics in orchestrating internal needs, we built a biologically-

constrained computational model of allostatic orchestration. The

resultant model implements competition between internal drives by

comprising two drive-sensitive excitatory neural populations that apply

mutual and feedback inhibition. To allow a synthetic agent to navigate

a virtual external environment based on its internal state, we endowed

it with the ability to orientate and perform basic appetitive-aversive

navigational behaviors. In this manner, the hypothalamus, superior

colliculus, and zona incerta-periaqueductal gray axis are represented in

ourmodel, providing a first approximation of the core behavior system

(Merker, 2013; Verschure, 2016).

FIGURE 5
Decision-reset supports the agent’s internal stability. (A) Comparison of temperature and hydration internal states and efficiency, fairness, and
stability scores between no-inhibition (study 2) and decision-reset (study 3) conditions. (B) Correlation between internal states and game theory
measures with environmental temperature for both no inhibition and decision-reset conditions.
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Deploying the allocentric synthetic agent in a virtual

environment, we tested the competencies and robustness of

the neural mass allostatic model. Specifically, our model

allowed the agent to 1) navigate an open field reproducing

rodent behavior, 2) adapt its navigation to environmental

changes without neglecting any internal needs, and 3) benefit

from criticality reset to optimize the interoceptive-driven

decision-making process. Altogether, our results supported

our hypothesis empirically validating attractor dynamics as an

inherent feature of the hypothalamic circuitry that can underlie

robust allostatic orchestration. However, the attractor dynamics

that emerge in our model need to be further validated by

physiological data, ideally by direct neural recordings of the

hypothalamic interoceptive nuclei. Lacking ground truth

benchmarking data, the temporal dynamics of the homeostatic

markers employed in this work were arbitrarily set, representing

an additional methodological limitation. Moreover, now that we

have assessed the robustness and fidelity of the model to track

environmental dynamics, we need to assess its scalability.

Additionally, our work opens new questions in the quest to

understand self-regulation. For instance, a better understanding

of the interplay between stress and risky internal states is needed.

In our studies, the level of competition between neural

populations remained fixed at an optimal point. However, the

ratio between mutual and shared inhibition could be modulated

by stress markers such as acetylcholine (Kawaguchi, 1997). How

stress can modulate the competition held between internal drives

is a question that remains unanswered. Another open question is

how allostatic orchestration interplays with predictive and

contextual allostasis to assist each other. We propose to

structure allostasis as a cognitive architecture following the

four organizational layers of the Distributed Adaptive Control

theory of mind (Verschure, 2012). Here, a first somatic level

endows the agent with predefined internal needs. Then, the

reactive level rapidly orchestrates behaviors directed to calm

the most salient drives. In parallel, the adaptive layer learns

associations between external and internal events to predict

future homeostatic errors and solve them in anticipation.

Lastly, a contextual layer enriches the representation of the

self-regulatory strategies and enables their memorization.

Finally, contributions to the field of allostasis can expand the

boundaries of self-regulation in its understanding and

implementation. On the one hand, drives and motivations

should also respond to a hierarchical organization that

encodes not only priority but also abstraction, virtualization,

and replaceability of the drive (Verschure, 2016). Maslow’s

hierarchy was a first approximation to capture this

organization (Maslow, 1943); however, 7 decades later, this

theory has not been further advanced in the face of new

insights into the dynamics of self-regulation. How different

needs within the same priority level organize or how new

needs arise and substitute previous ones are questions not

answered yet. On the other hand, further investigation could

shed light on how a hierarchical organization of needs fits with a

neural mass model. Secondly, general-purpose robot

instantiations can benefit greatly from the self-regulatory

principles described here. Previous works elaborated on how a

multi-agent robotic recycling plant can implement homeostatic

and allostatic principles to self-organize at both single-agent and

large-scale levels (Rosado and Verschure, 2020). Similar

architectures can be designed and implemented to advance a

variety of scenarios where robot autonomy is key such as robot

delivery or space exploration. Indeed, autonomy in artificial

intelligence and robotics places the question of self-regulation

at the center of the research of synthetic embodied cognition and

consciousness.
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Self-organized groups of robots have generally coordinated their behaviors using
quite simple social interactions. Although simple interactions are sufficient for some
group behaviors, future research needs to investigate more elaborate forms of
coordination, such as social cognition, to progress towards real deployments. In
this perspective, we define social cognition among robots as the combination
of social inference, social learning, social influence, and knowledge transfer, and
propose that these abilities can be established in robots by building underlying
mechanisms based on behaviors observed in humans. We review key social
processes observed in humans that could inspire valuable capabilities in robots
and propose that relevant insights from human social cognition can be obtained
by studying human-controlled avatars in virtual environments that have the
correct balance of embodiment and constraints. Such environments need to
allow participants to engage in embodied social behaviors, for instance through
situatedness and bodily involvement, but, at the same time, need to artificially
constrain humans to the operational conditions of robots, for instance in terms of
perception and communication. We illustrate our proposed experimental method
with example setups in a multi-user virtual environment.

KEYWORDS

artificial social cognition, embodied cognition, self-organization, robot swarms, multi-
robot systems, artificial intelligence, artificial general intelligence, social robots

Introduction

AI research has greatly advanced, but when interaction with other agents is required,
existing algorithms easily break down (Bard et al., 2020). Social interaction and social
embodiment are still underexplored in artificial general intelligence (Bolotta and Dumas, 2022)
and in groups of intelligent robots. While there is some robotics research on social cognition,
it focuses on human-robot interaction (Henschel et al., 2020), e.g., how a robot interprets the
intentions of a human, not on interactions among robots. It is important to note that what looks
like social cognition is not necessarily social cognition. For instance, agents or robot controllers
made by reinforcement learning might behave in ways that look socially cognizant in some
situations, but this might only be appearance—i.e., the underlying behavioral phenomena are
not there—so the illusion will break down when exposed to more situations.

Robots can coordinate with each other by using, e.g., centralized control or self-
organization. In multi-robot systems that are not self-organized, robots are directed to
follow a centrally coordinated plan using explicit commands or global references. In this
paper, we are interested exclusively in robot groups that include aspects of self-organization,
because social cognition depends on some degree of individual autonomy. If a robot is
essentially a remote-controlled sensor or actuator, it does not engage in social cognition.
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In existing research on self-organized robot groups, the
individuals are usually quite simple and often rely on indiscriminate,
naïve interactions. Indeed, swarm robotics research has shown that
no advanced cognition or elaborate social negotiation is needed
to self-organize certain group behaviors (e.g., Nouyan et al., 2009;
Rubenstein et al., 2014; Valentini et al., 2016). However, it has been
argued that there are still significant gaps for robot swarms to be
deployment-ready, and that the future of swarm robotics research
should concentrate on more elaborate forms of self-organized
coordination (Dorigo et al., 2020; 2021), such as self-organized
hierarchy (Mathews et al., 2017; Zhu et al., 2020) or behavioral
heterogeneity (Kengyel et al., 2015).

In this perspective, we argue that another important direction for
future study should be social cognition. Robot groups successfully
equippedwith social cognition could engage in elaborate coordination
without sending each other large amounts of data. Some aspects
of robot behavior could be mutually predictable, for instance by
robots maintaining good internal models of each other. Socially
cognitive robots could have improved group performance, e.g., by not
destructively interfering with each other (which requires time and
effort to resolve) and not accidentally disrupting each other’s sub-goals
while attempting to reach a common goal.

In cognitive robotics, research on individual robots such as
humanoids is very advanced (Cangelosi and Asada, 2022), even
on each of the six key attributes of artificial cognitive systems
(Vernon, 2014): action, perception, autonomy, adaptation, learning,
and anticipation. Comparatively, cognition in swarm robotics is
still in its beginning stages. While cognitive robot swarms can be
autonomously capable of collective action, perception, and in some
cases adaptation (Heinrich et al., 2022), we do not yet know how to
make robot swarms that can autonomously learn and anticipate as a
collective, in such a way that the group behavior is greater than the
sum of its parts. We propose that studying social cognition could help
us advance the autonomous collective capabilities of groups of robots.

Socially cognitive robots: Our
perspective

Our perspective is summarized as follows: social cognition among
robots can be built by developing artificial social reasoning capabilities
based on behaviors observed in humans.

Frith (2008) has defined social cognition in humans as “the various
psychological processes that enable individuals to take advantage
of being part of a social group” and Frith and Frith (2012) have
further specified that a substantial portion of these psychological
processes are for learning about and making predictions about
other members of the social group. The mechanisms of social
cognition in humans include social signalling, social referencing,
mentalizing (i.e., tracking of others’ mental states, intended actions,
objectives, and opinions), observational learning (e.g., social reward
learning, mirroring), deliberate knowledge transfer (e.g., teaching),
and sharing of experiences through reflective discussion (Frith, 2008;
Frith and Frith, 2012). Crucially, social cognition is also defined as
“not reducible to the workings of individual cognitive mechanisms”
(De Jaegher et al., 2010).

Although some social abilities such as simple social interaction
are well-developed among robots, most of the abilities contained in
Frith (2008)’s definition of social cognition are lacking, and could

provide significant performance benefits. For instance, the transfer of
information between robots is well understood, but much less so the
transfer of knowledge, especially implicitly:

We define social cognition among robots as the following set of
abilities:

1. Social inference—inferring the opinions, intended next actions,
and overall goals of other robots in the same social group, using
interpretation of social signals;

2. Social learning—learning information about which actions to
adopt or avoid based on observations of each other’s behaviors and
social signalling;

3. Social influence—deliberately influencing each other’s (socially
inferred) internal states using social signaling; and

4. Knowledge transfer—transferring high-level knowledge using
social interaction, e.g., using implicit demonstration or explicit
instruction.

Currently, robots are well-equipped with some of the requirements for
these abilities, such as simple social interactions, but lack other crucial
requirements such as explicit social reasoning. Although research has
shown that no social cognition is needed for simple group behaviors
in robots, it is an open challenge how to accomplish more advanced
behaviors in a fully self-organized way. Some of the significant
unresolved technical challenges for advanced self-organization among
robots, which we believe social cognitive abilities could contribute to,
are the following:

• autonomously anticipating which actions should be taken in an
environment filled with other autonomous robots,
• collectively defining an explicit goal that was not pre-

programmed and collectively directing the robot group towards
it,
• making online inferences about other robots’ current states

and future behaviors, and adapting their coordination strategies
accordingly, even while moving at high speed in dynamic
unknown environments, and
• designing self-organization among robots such that the resulting

group behaviors, although not completely predictable, are safe
and trustable.

We propose that socially cognitive robots can in part be developed
by learning from the social cognition processes of humans in certain
experimental conditions. In order to have the potential to transfer
observed behaviors and capabilities fromhumans to robots, we believe
experiments with human subjects must be conducted in a platform
that allows experimental setups to be: on one hand, realistic enough to
study embodied human behavior, but on the other hand, constrained
and simplified enough to approximate the operational conditions of
robots.

State of the art

Artificial social learning and artificial
mentalizing

Many examples of artificial learning exist that seem relevant to the
mechanisms of social cognition. However, key social aspects are not
present in these existing methods: for instance, reward learning has
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been demonstrated in robots (e.g., Daniel et al., 2015) but learning of
social rewards among robots has not been studied. Likewise, robots
learning by interacting with and observing other robots has been
demonstrated (e.g., Murata et al., 2015), but not for the learning of
socially relevant information nor to build behaviors among robots that
are irreducible to the knowledge held by robots individually.

Currently, the most advanced research towards artificial social
cognition can be seen in multi-agent reinforcement learning. In
basic approaches, each agent would use reinforcement learning
individually, treating other agents as part of the environment. In more
elaborate existing approaches, agents are trained to model each other
and several types of artificial mentalizing have been demonstrated
(Albrecht and Stone, 2018). For example, in the Deep Reinforcement
Opponent Network (DRON), one agent learns the representation of
the opponent’s policy (He et al., 2016). In another example, an agent
uses itself as the basis to predict another agent’s actions (Raileanu et al.,
2018). One approach using a “Theory of Mind” network has even
produced agents that can explicitly report inferred mental states of
other agents and pass the classic “false belief test” for understanding
the mental states of others (Rabinowitz et al., 2018). Current efforts
in multi-agent learning use cooperative games such as Hanabi as
benchmarks, which involves inferring the mental states of others
and using that information to collaborate (Bard et al., 2020). For the
development of artificial social cognition, the next step for this line
of research would be to situate the mentalizing behaviors within the
full set of social cognition mechanisms, including social influence and
social reward learning (cf. Olsson et al., 2020).

Social cognition transfer between humans
and robots

Robots have been used as experimental tools for the study of
embodied social cognition. For instance, a variety of devices have been
used to automatically provide synthetic social stimuli to animals in
a naturalistic way (Frohnwieser et al., 2016). Similarly, the effect of
humanoid robots on human social cognition has been broadly studied
(Wykowska et al., 2016). Social robots in the context of human-robot
interaction have also been investigated (e.g., Dautenhahn, 2007).
However, to the best of our knowledge, no studies have looked
at expanding these robot use cases into embodied artificial social
cognition among robots, and no work apart from our own has
proposed using experiments with humans to contribute to building
social cognition among robots.

Directions for future research

Advanced group capabilities seen in humans can inspire similar
capabilities in robots. For example, the human capabilities of
selecting and following leaders (Van Vugt, 2006) and re-organizing
communication networks around individuals with better information
(Almaatouq et al., 2020) have recently inspired the development of
self-organized hierarchies for robots, for instance using physical
(Mathews et al., 2017) orwireless connections (Zhu et al., 2020). In the
following sections, we identify cognitive processes used by humans in
social situations that would be valuable for robot groups, and propose
them as future research directions for building social cognition among
robots.

Social heuristics and action selection

Humans often use cognitive processes known as “heuristics” to
select actions in social situations. In humans, heuristics are defined
as action selection strategies that usually deviate from economic
rationality or Bayesian optimality but which facilitate a rapid action
selection when time and knowledge about a situation are limited
(Hertwig and Herzog, 2009). The hidden states of other agents cannot
be directly observed, so the outcome of a social situation always
has a high degree of uncertainty—selecting the optimal action is
computationally intractable (Seymour and Dolan, 2008).

In humans, heuristics can involve continuous integration of
multiple variables or sources of information, for example when
deciding on awalking direction based on the position of other walking
individuals (Moussaid et al., 2011). In psychology and neuroscience,
action selection is often characterized as the result of an accumulation
process, in which evidence that supports a certain decision or action is
accumulated over time (Ratcliff and McKoon, 2008). A certain action
is taken when the accumulated evidence crosses some threshold. The
sources and manner of evidence integration can be determined by
social heuristics. For example, evidence accumulation frameworks can
characterize how humans use a “follow the majority heuristic” during
social decisionmaking (Tump et al., 2020), aswell as howhumans base
their ownmovements on those of others during embodied competitive
interactions (Lokesh et al., 2022).

Coupling, alignment, and mirroring

Humans often mirror each other’s behaviors and can participate
in a “coupling” behavior through reciprocal interactions. Implicit
coupling can occur between physiological states (for example,
synchronization of heartbeats and breathing rhythms). Explicit
sensorimotor coupling involves mutual prediction of each other’s
actions and facilitates coordinated action sequences (Dumas and
Fairhurst, 2021). On a higher cognitive level, reciprocal interactions
can create alignment between internal cognitive states, which in turn
facilitates bettermutual prediction of actions (Friston and Frith, 2015).

Humans can also disengage from social interactions and instead
mirror (or “simulate”) others’ actions as a type of internalized action
(Buzsáki, 2019, p. 131). This capacity is supported by the mirror
neuron system, which is active when observing and when executing a
movement (Rizzolatti and Craighero, 2004). Internal simulation aids
in understanding others’ intentions and in selecting complementary
actions (Newman-Norlund et al., 2007).

Mentalizing and shared representations

Simply mirroring the mental states of others is often not sufficient
to infer their opinions, objectives, or intended actions (Saxe, 2005).
Therefore, coupling andmirroring are often complemented in humans
by higher-level cognition about others’ beliefs, desires, and intentions,
taking into account factors such as context andmemory (Sebanz et al.,
2006). This requires mentalizing, a process of inference about others’
changing mental states, beyond simple mirroring (Frith and Frith,
2012).

For example, mentalizing based on observations of others’ gazes
facilitates taking others’ perspectives into account and tracking their
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beliefs about a shared environment or world (Frith and Frith,
2012). By observing others’ movements, humans can also infer the
confidence that others have in their beliefs (Patel et al., 2012) and the
intentions that underlie their actions (Baker et al., 2009). Crucially,
humans also mentalize based on third-party observations of others’
interactions, and then estimate the social relationships between them
(Ullman et al., 2009).

Tracking others’ goals and beliefs helps humans to distinguish
which subset of their action representations are shared with others.
Shared representations aid in predicting and interpreting the actions
of others in the context of a joint goal, and in selecting complementary
actions. For instance, by tracking others’ beliefs, an individual can
recognize when communication or signalling is needed to facilitate
smooth coordination (Pezzulo and Dindo, 2011).

Outcome monitoring

Humans monitor behaviors and detect errors when taking actions
directed towards a certain goal (Botvinick et al., 2001). If an individual
recognizes another making what might be an error, in pursuit of a
shared goal, the individual needs to then distinguish whether it was
indeed an error, or whether their goals are misaligned.

Humans also monitor whether actions have their intended
outcomes, as well as whether a certain action and certain outcome
actually have a causal link. This results in a greater or lesser sense
of agency over a certain action or outcome (Haggard and Chambon,
2012), which in turn impacts how an individual acts in social
situations. Agency can be modulated in a variety of ways: joint agency
when acting together with others, vicarious agency when influencing
the actions of others, or violated agency when actions are interfered
with by others (Silver et al., 2020). The modulated sense of agency
in humans helps shape an individual’s monitoring of links between
actions, errors, and outcomes.

From humans to robots: An
experimental method

Robots are embodied agents with specific morphologies and
specific perception and action capabilities that differ from (and are
often far more limited than) those of humans. To gain insights
from human social cognition that are relevant to robots, human
subjects would need to be studied in an experimental platform
that: 1) allows them to engage in embodied social behaviors, but
also 2) allows enough constraints to artificially expose humans to
the operational conditions of robots. We propose that behavioral
experiments conducted with humans controlling avatars in virtual
environments can achieve this trade-off.

Balancing embodiment and constraints in
virtual environments

Existing experiments on human social cognition have mostly
been conducted in highly controlled single-person paradigms
which lack embodiment. We identify the following five aspects of
embodiment that we propose human-controlled avatars in new virtual
environments will need, for the study of embodied human social
cognition.

1. Situatedness: An agent takes actions while being part of a situation,
rather than by observing the situation from the outside (Wilson,
2002).

2. Sensory and action shaping: By taking actions (e.g., moving their
bodies) in the environment, agents can actively change the flow of
their sensory inputs as well as the potential effects of their actions
(Gordon et al., 2021).

3. Bodily involvement: The bodily state and/or morphology of the
agent—as well as the agent’s bodily relation to the bodies of other
agents—can be involved in cognition (Wilson, 2002).

4. Interaction cascades: Agents can engage with each other in such a
way that actions by one can influence reciprocal actions by another,
resulting in cascades of interactions and behaviors (Dale et al.,
2013).

5. High bandwidth: There can be high bandwidth of implicit or
explicit information exchange between agents (Schilbach et al.,
2013).

Complementarily, we identify the following constraints that will also
need to be possible in the virtual environment.

1. Body and action: Human-controlled avatars can be equipped with
morphology features and action capabilities that are similar to those
of relevant robots.

2. Perception: When controlling an avatar, a human subject can be
limited to sensory inputs similar to those of relevant robots (e.g.,
restricted visual information).

3. Communication: Human-controlled avatars can be limited to
communication and signalling capabilities that are similar to those
available to relevant robots.

4. Hidden states: Human subjects can be required to explicitly
report information about hidden states (e.g., their current opinion
or confidence level) that is not directly observable from their
behavior but would be available to an experimenter if using relevant
robots.

Unconstrained real-world social situations would fulfill all listed
requirements for embodiment, but would lack control and
interpretability. Virtual environments enable certain aspects of
embodiment while at the same time ensuring a degree of control
of the situation for the experimenter.

Example: Using the virtual environment
HuGoS

To the best of our knowledge, no off-the-shelf virtual environment
was available tomeet these requirements, so we built a tool in Unity3D
called “HuGoS: Humans Go Swarming” (Coucke et al., 2020; 2021)
that we could use to study human behavior in embodied scenarios
similar to those in which robots operate. To illustrate the features
that we propose for a virtual environment for studying transferable
social cognition, we describe two example experimental setups in
HuGoS.

Collective decision making
Collective decision making has been widely studied in swarm

robotics (Valentini et al., 2017), but many gaps still remain
(Khaluf et al., 2019). Collective decisions have also been extensively
studied in humans (Kameda et al., 2022), but not typically in
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FIGURE 1
Collective decision making. Participants control cubic avatars while having either a broad (A) or limited (C) view of the full environment (B). A wide variety of
variables can be measured during the experiment, such as the participants’ trajectories (D), the percentage of the environment they have explored (E), the
average distance between participants (F), the participant-participant viewing network (G), and the number of avatars choosing the correct color (H). Figure
reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer eBook, Coucke et al. (2020), © Springer Nature 2020.

FIGURE 2
Collective construction. (A) Two physical robots that perform collective construction using stigmergic blocks (Allwright et al., 2019). Figure (A) reprinted
from Allwright et al. (2019) under license CC BY-NC-ND 4.0. (B, C) “Lava spill task” in which participants use indirect communication to collectively
construct a barrier to contain expanding spills. (D) The spill size stagnates after around 200 s, when participants successfully enclosed it with construction
blocks. (E) Data such as the avatar trajectories can be used to analyze how participants coordinate the placement of blocks. Figures (B–D) adapted from
Coucke et al. (2021) under license CC BY 4.0.

embodied scenarios that would be relevant to robots, in which,
e.g., exploration and signalling can take place simultaneously.
In our example implementation in Coucke et al. (2020), each of
four participants controls the movements of a cubic avatar in an
environment scattered with red and blue cylindrical landmarks (see
Figure 1). The task is to explore the environment while making
observations through the avatar’s (broad or limited) field of view and
simultaneously decidingwhether there aremore red or blue landmarks
present in the environment.Theparticipantsmust come to a consensus
in order to complete the task and are only permitted to communicate
with each other indirectly: they vote by changing their avatar color
and they observe the avatar colors of the other participants while
making their decisions (see Figures 1A–C). During an experiment, all

perceptual information available to each participant, along with their
actions, are recorded at a sampling rate of 10 Hz (Figures 1D–H).

In this experiment setup, participants came to a consensus about
the predominant color in the environment through a combination of
environmental and social information. In the example trial shown in
Figure 1, at 45 s, all four participants had adopted the correct opinion
(Figure 1H) after individually and broadly exploring the environment
and then reducing their average relative distances to increase their
access to social information (Figure 1F) and finally come to a
consensus. When a consensus was reached, not all participants
had personally observed all parts of the environment (Figure 1E),
implying that social information was effectively used. Further, all
participants had a strong directional line-of-sight connection with
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at least one other participant (Figure 1G), but the most looked-at
participant (P4) had not personally observed the whole environment
(Figure 1E), implying that the consensus on the correct opinion
was indeed arrived at by a self-organized and collective process.
For more information on this and similar experiments, please refer
to Coucke et al. (2020). By setting up more advanced experiments
in this direction, data could be collected to, for example, identify
social heuristics that can inspire new protocols in future robot
swarms.

Collective construction
Existing swarm robotics approaches to construction often use

stigmergy (i.e., indirect communication through modification of the
environment) to coordinate (Petersen et al., 2019), but the structures
built strictly by stigmergy are relatively simple. Future robot swarms
should be able to build complex structures in dynamically changing
environments (Dorigo et al., 2020). In our example “lava spill task”
scenario in Coucke et al. (2021), human social behaviors in collective
construction scenarios can be observed. In this task (see Figure 2),
participants are instructed to collectively construct a barrier to
contain an expanding spill, but are not instructed how to coordinate.
Each participant controls the movement of an avatar that can push
construction blocks. The environment includes two different spills
(i.e., expanding circles) and a supply of construction blocks placed in
between them. During an experiment, a group of eight participants
needs to assess the environment and coordinate their actions using
indirect communication (i.e., observation of peers) to barricade both
of the expanding spills within 300 s.

The avatar trajectories in Figure 2E show that participants
coordinated to distribute their work between the two spills and place
blocks around the full circumferences of both spills. Figure 2D shows
that participants continued to place more blocks at a roughly constant
rate throughout the experiment, implying that no bottleneck arose
in their self-organized coordination. The figure also shows that the
expansion of both spills had successfully been stopped at around
200 s. For more information on this and similar experiments, please
refer to Coucke et al. (2021). Using more advanced setups in this
direction, the gathered behavioral data could provide insights into how
self-organized coordination and group actions unfold over time and
adapt to the environment. In order to get detailed information about
participant strategies, experiments in this virtual environment can
be temporarily interrupted at certain times to ask participants about,
e.g., their explicit judgements about the beliefs of other participants,
their sense of (joint) agency, or their feelings of alignment with
others.

Discussion

Some features of human social groups, such as collective
intentions, reflective discussion, or shared biases, might at first
seem not particularly relevant for robots. However, there are many
autonomous group behaviors that have not yet been demonstrated in
self-organized robots. For instance, it is not yet understood how to
have robots autonomously identify when they shouldmake a collective
decision (Khaluf et al., 2019). These fundamentals of group-level

autonomy, which social animals such as humans exhibit effortlessly
and consistently, might possibly be based on, or even depend on,
such unexpected features as shared biases. Our perspective is that
research that investigates the transfer of such social traits fromhumans
to robots can help us to identify and understand the basic elements
needed to build artificial social cognition.

Artificial restrictions in embodied experiments are unlikely to
reveal how humans would behave in natural conditions, but there
is existing evidence that such restrictions indeed have the potential
to reveal aspects of embodied human social behavior that would be
transferable to robots. For example, when realistic social cues such as
gaze and facial expressions are inhibited, humans have been shown to
focus on other communication channels, such as implicit movement-
based communication (Roth et al., 2016).

If eventually achieved, the creation of social cognition among
robots would open many further research questions. For instance,
there are human collective intentions that go beyond the humans
that are immediately present (Tomasello et al., 2005)—if robots have
advanced social cognition abilities, how should different social groups
of robots interact with each other, whether physically or remotely?
As another example, intrinsic motivation or curiosity-driven learning
could be investigated to motivate agents to explore the complex
internal states that make up another agent, perhaps constituting a
rudimentary theory of an artificial mind. Or, perhaps robots could
be intrinsically motivated to autonomously develop completely new
forms of artificial social cognition that do not resemble those already
seen in humans or social animals.
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In the field of human–computer interaction, accurate identification of talking

objects can help robots to accomplish subsequent tasks such as decision-

making or recommendation; therefore, object determination is of great interest

as a pre-requisite task. Whether it is named entity recognition (NER) in natural

language processing (NLP) work or object detection (OD) task in the computer

vision (CV) field, the essence is to achieve object recognition. Currently,

multimodal approaches are widely used in basic image recognition and natural

language processing tasks. This multimodal architecture can perform entity

recognition tasks more accurately, but when faced with short texts and images

containing more noise, we find that there is still room for optimization in the

image-text-based multimodal named entity recognition (MNER) architecture. In

this study, we propose a new multi-level multimodal named entity recognition

architecture, which is a network capable of extracting useful visual information for

boosting semantic understanding and subsequently improving entity identification

e�cacy. Specifically, we first performed image and text encoding separately

and then built a symmetric neural network architecture based on Transformer

for multimodal feature fusion. We utilized a gating mechanism to filter visual

information that is significantly related to the textual content, in order to

enhance text understanding and achieve semantic disambiguation. Furthermore,

we incorporated character-level vector encoding to reduce text noise. Finally, we

employed Conditional Random Fields for label classification task. Experiments on

the Twitter dataset show that our model works to increase the accuracy of the

MNER task.

KEYWORDS

multimodal named entity recognition, short text, multi-head attention, pre-training,

cross task

1. Introduction

In the field of human–computer interaction, a large number of novel techniques have

been proposed to improve efficiency, reduce operational difficulty, and increase recognition

accuracy. Currently, natural language-based human–robot interaction has been widely used

(Ahn et al., 2018; Park et al., 2019; Walker et al., 2019). At the same time, the field of

image perception is also developing rapidly. The combination of visual information and

natural language can further improve the service response capability of robots. Especially

when robots need to perform tasks related to entity features, it is meaningful to introduce

multimodal named entity recognition techniques. The human-generated text that the robot

needs to process is often spoken and noisy, which is somewhat similar to the characteristics

of free posting on social media. Therefore, we choose the corpus and images from social
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media postings for the named entity recognition task, thus helping

to improve multimodal human–robot interaction.

With the widespread use of social media platforms, the number

of individual user postings has grown rapidly. Such interesting and

diverse informal expressions provide users with rich information

while providing a large amount of raw corpus data for natural

language processing (NLP). Named Entity Recognition (NER),

as a precursor to many information extraction tasks, aims to

discover multiple categories of named entities, such as Person

(PER), Location (LOC), and Organization (ORG), from raw text

data. Given its importance, NER has attracted significant attention

in the research community (Lample et al., 2016; Jiang et al., 2021;

Radmard et al., 2021; Tian et al., 2021).

Although a large number of excellent methods have emerged

that enable increasing accuracy in named entity recognition efforts,

most of them are based on news report texts or domain-length texts

(Li et al., 2021;Wang et al., 2021, 2022).When solving named entity

recognition tasks for social media texts (e.g., tweets), their shorter

length and large amount of noise are fully considered, and thus,

their performance is often much lower than that in news report

texts. In general, common text noise in tweets includesmisspellings,

web abbreviations, and some informal newly invented words. In

recent years, the posting format of social media platforms has

been innovated, and the “text-image” format has gradually become

mainstream, and some studies have proposed using visual features

to improve the performance of NER (Arshad et al., 2019; Asgari-

Chenaghlu et al., 2020; Chen et al., 2022). In this study, we will focus

on multimodal named entity recognition (MNER) for social media

postings, with the goal of extracting the corresponding entities from

“text-image” pairs. This is shown in Figure 1.

A large number of excellent algorithms for multimodal named

entity recognition already exist (Moon et al., 2018; Chen D. et al.,

2021), but there are still some problems as follows: (1) The

expressions in social media posts are often informal, colloquial,

and even have certain spelling errors, which can affect the accuracy

of text recognition. (2) Since short texts in social media contain

less contextual information, there is some difficulty in determining

entity types, which requires the use of image information to achieve

semantic disambiguation. (3) For image information screening

FIGURE 1

Two examples for multimodal named entity recognition.

and fusion problems, there may be a large amount of irrelevant

information in the whole picture, and there is some interference

in entity extraction. Even the accompanying images in some posts

may be irrelevant to the text, resulting in lower accuracy when

directly fusing image features with text.

To solve these problems, we will pre-train the image and text

data separately to extract the focused object features in the image

and the word embedding and character embedding in the text as

the input. We propose a multi-modal BERT model that uses a

filtering gate to preserve visually relevant image features and trains

an adaptive attention network to fuse image and textual features.

Specifically, we design a symmetrical image-text fusion module

that fully integrates multi-modal data by exchanging filtered feature

information bi-directionally. To address the limited expressiveness

and noise issues of short textual information, we further enhance

the understanding of textual features using a bidirectional long

short-term memory network. Finally, we use a conditional random

field for label classification and complete the entity recognition

task. We conduct experiments on the Twitter dataset to validate the

effectiveness of our proposed model.

The main contributions of this study are as follows.

1. Based on a more efficient multimodal encoding scheme to

reduce the noise in social media posts and improve the accuracy

of named entity recognition tasks in informal corpus;

2. Proposes a new symmetric unified architecture for named entity

recognition based on image-text features for multi-channel and

multi-level input computation;

3. Achieves better performance on the Twitter2015 and

Twitter2017 datasets.

2. Related work

2.1. Named entity recognition

NER has been attracting a lot of attention from the research

community as a precursor to many natural language processing

(NLP) tasks. While traditional NER tasks often rely on specific

knowledge and manual annotation combined with statistical
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learning methods, with the continuous development of neural

networks, most NERs are now opting for deep learning approaches.

Various supervised learning-based approaches have been proposed,

focusing primarily on designing the structure of neural networks so

that more valuable features are fed into the classifier. The first use

of neural networks applied to the study of named entities was by

Hammerton (2003). They used a one-way long short-termmemory

network (LSTM), which has good sequence modeling capabilities,

and LSTM-CRF became the underlying architecture for entity

recognition. Later, based on this model, Lample et al. (2016)

proposed a neural network model combining Bidirectional Long

Short-Term Memory (BiLSTM) and Conditional Random Fields

(CRF), a bidirectional structure capable of acquiring contextual

sequence information. Pinheiro and Collobert (2014) first applied

the combination of CNN and CRF structures in named entity

recognition research with good results on CoNLL-2003. In the field

of chemistry, Luo et al. (2018) used the BiLSTM-CRF model based

on the attention mechanism to further improve the performance of

entity recognition.With the introduction of the BERT model, more

research has focused on the improvement and optimization of the

pre-trained model, and the effectiveness of the NER task has been

further improved (Devlin et al., 2018; Jawahar et al., 2019; Souza

et al., 2019). The combination of BERT as an encoder with LSTM-

CRF by Liu et al. (2019) and Luo et al. (2020) and the combination

of BERT and a threshold control unit (GRU) by Liu et al. resulted

in better results for the NER task on the CoNLL-2003 dataset.

However, these methods tend to be more suitable for NER tasks

in formal texts, and most of them do not achieve satisfactory results

when facing social media texts. To address this problem, many

studies have added some resources other than text to the input

of NER, which can achieve better performance on social media

texts. Moreover, as the image-text posting format on social media

becomes mainstream (Su et al., 2019; Tan and Bansal, 2019), recent

studies tend to focusmore onmultimodal named entity recognition

tasks (MNER), to improve the accuracy of text feature extraction

with the help of feature elements in images.

2.2. Multimodal named entity recognition

Moon et al. (2018) transformed the NER task into a

sequence annotation problem with character embeddings and

word embeddings as text data inputs and a weighted combination

of textual and visual information through an adaptive co-

attentive network. Lu et al. (2018) proposed a salient visual

attention model to find image regions associated with textual

content. The visual contextual information is extracted and

fused into the word-level output of the biLSTM model. Zhang

et al. (2018) designed an adaptive co-attentive network layer

to simultaneously learn the fused feature vectors of vision and

language. Moreover, a filtering gate was designed to determine

whether the fused features contribute to the accuracy of the

annotation task. Arshad et al. (2019) also proposed a gated

multimodal fusion representation, where gated fusion is a weighted

sum of visual attention features and marker alignment features.

Whereas, additive attention scores between word queries and

picture features were used to weigh and calculate the visual

attention features using VGG-19 visual features (Simonyan and

Zisserman, 2014). Chen S. et al. (2020) and Chen X. et al. (2021)

extracted visual information into subtitles and proposed a softer

method of image-text combination that improves the fusion of

different modal features.

2.3. Visual-linguistic pre-training

Visual-linguistic pre-training mainly learns the semantic

correspondence between different modalities by pre-training

on large-scale data to achieve proper operation of the model

in resource-poor scenarios. There are already many models

implemented based on single-stream (Murahari et al., 2020; Hong

et al., 2021) and dual-stream (Gan et al., 2020; Gao et al.,

2020) architectures and pre-trained on common datasets such

as COCO (Lin et al., 2014). Many VLP models use a single

encoder architecture, where the multimodal fusion representation

is fed directly to the output layer to generate the final output.

In contrast, other VLP models advocate the use of the encoder–

decoder architecture commonly used by Transformer, where the

multimodal representation is first fed to the decoder and then to

the output layer.

Overall, the key issues of the current multimodal named entity

recognition task remain in the strategy of combining visual features

with linguistic features (Li et al., 2022) and the subsequent entity

extraction architecture (He et al., 2016; Li et al., 2020). Therefore,

in this study, we explore a multi-channel and multi-level named

entity recognition architecture to accomplishMNER for text-image

modal tweets.

3. Methodology

The overall structure of the MLNet model roughly consists

of several components (shown in Figure 2): image feature

extraction, text embedding, multimodal fusion embedding, and

label prediction. We first perform image feature extraction,

and subsequently input the overall image features and focused

relevant visual information into the multimodal BERT along

with the text vector to obtain a sequence vector containing rich

entity information. Subsequently, contextual information is further

learned in the BiLSTM structure. CRF are used to perform the final

label prediction.

3.1. Image feature extraction

In the case where an image is associated with the corresponding

text content, the named entities mentioned in the text are often

associated with only the salient features in the image. For the

original images in the dataset, the top s salient local visual objects in

them are first extracted using a pre-trained target detection model.

Then, we align the global and local images by scaling so that the size

of each image is 224× 224 pixels, noted as the global image L0 and

local image L = {L1, L2, ..., Ls}.

Features were subsequently extracted from the images L and L0
using ResNet as the image feature input for the entire subsequent
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FIGURE 2

Overall architecture of our MLNet.

named entity recognition network architecture. Considering the

excellent performance of the ResNet network in object detection

tasks, we hypothesize that residual networks can also effectively

recognize entities that may appear in images, thereby reducing the

impact of image noise on entity recognition accuracy. We use a

lightweight ResNet structure with 18 convolutional layers, where

each layer uses a convolutional kernel, and residual blocks are

used between each convolutional layer to increase the depth of the

model. The last pooling layer feature in ResNet is retained with

dimension 7 × 7 × d, where 7 × 7 is the 49 regions of the image

and d = 2048 is the dimension of each visual region. At this point,

each image can be represented as ν̃I = {ν̃i|ν̃i ∈ R, i = 1, 2, ..., 49},

and it is subsequently linearly varied and normalized to maintain

the same dimensionality as the text vector.

νI = tanh(WI · ν̃I + bI) (1)

where the parameters WI and bI can be obtained from the

training data. The image features obtained at this point can be

used as input to the subsequent overall recognition framework to

be combined with text features. The visual feature pre-processing

process is shown in Figure 3.

3.2. Image-text feature fusion

Taking into account both the complexity of the model and

the actual effectiveness, we chose the WordPiece tokenizer used

in BERT for tokenization and word embedding. For character

embedding, we adopted a basic recurrent neural network (RNN)

model. After completing image and text data pre-processing

separately, we choose a BERT structure capable of handling

multimodal inputs to realize the joint representation of text and

images. The text vectors in the dataset (which have completed word

embedding and character embedding) and their corresponding set

of image vectors (including global images and local images) are sent

to the image converter and text converter independently as inputs

to the multimodal BERT. The two converters are trained separately

and do not share parameters, and the converters are implemented

by a multi-head attention mechanism as follows:

MultiHead(QF ,KF ,VF) = Concat(headF1 , ..., head
F
n)W

O (2)

HeadFi = Attention(QWQF
i ,KWKF

i ,VWVF
i ) (3)

where Q is the query matrix, K is the key matrix, V is the

value matrix, W is the weight matrix, and F =
{
Text, Image

}
is

used to distinguish the image conversion module from the text

conversion module. The multi-head attention mechanism projects

Q, K, and V through several different linear transformations, and

finally, stitches the different attention results together. To improve

the task efficiency, we add a cross-attention layer for cross-modal

interaction and introduce a control unit to discard the visual

information that is less relevant to the text. The main structure of

our multimodal BERT is shown in Figure 4.

For the multimodal BERT structure, we choose three common

target tasks for pre-training as follows: (i) masked language

modeling (MLM); (ii) masked vision modeling (MVM); and (iii)

visual-language matching (VLM). In task, (i) some elements of the

text input are masked, but vectors corresponding to image regions

are not masked. Task (ii), in contrast to (i), partially masks the

image input, but the corresponding text vectors are not masked.

In the MVM task, we mark all masked pixel values in the image as

a special value of −1 to distinguish them from the original colored

image.

The MLM task can be expressed as follows:

LMLM = −E(v,w)∼DlogP(wm|w6m, v) (4)

where v denotes visual,w denotes text,wm denotes masked text,

w6m denotes remained text, and D denotes the training data set.

The MVM task can be expressed as follows:

LMVM = E(v,w)∼Df (vm|v6m,w) (5)

We choose label classification as the MVM pre-training task,

where the mask features are fed into the FC layer to predict
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FIGURE 3

Image feature extraction.

FIGURE 4

Multi-modal BERT architecture.

the category scores of the objects and then normalized using the

softmax function. The detected object categories are used as labels

for the masked regions as follows:

f1(vm|v 6m,w) =

K∑

i=1

CE(c(vim)− g1(v
i
m)) (6)

where g1(v
i
m) is the class of detected objects, and K denotes the

number of visual areas.

We will minimize the KL dispersion (Chen Y.-C. et al., 2020)

between the two distributions of the real object class and the

detected object class to complete the supervised learning, which is

the original output of the detector as follows:

f2(vm|v 6m,w) =

K∑

i=1

KDL(ĉ(v
i
m)− g2(v

i
m)) (7)

where g2(v
i
m) is the distribution of detected object classes.

By performing the above two tasks, we complete the training of

the transformer for each of the image module and text modules.

Before the cross-attention layer, we fuse the keys K and values

V of the image and text separately to achieve more fine-grained

feature interactions. We use fully connected layers to perform the

fusion process. The fused representation of the two patterns is then

provided to the FC layer and the sigmoid function to predict a

score between 0 and 1, where 0 means visual and verbal mismatch

and 1 means visual and verbal match. When the predicted value is

less than 0.5, we discard the visual vector because it indicates that

the mapping is not relevant enough to the text, and adding visual

features at this point will reduce the accuracy of entity recognition.

G(K,T) =

{
1 , sigmoid(LN(Text, Image)) > 0.5

0 , sigmoid(LN(Text, Image)) 6 0.5
(8)
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where LN(·) denotes the fusion score of image and text, and G

is the cross-attention layer coefficient.

3.3. Label prediction

Since the short text can contain less contextual information,

we further use the BiLSTM structure for contextual encoding, in

order to preserve the complete semantics as much as possible.

The core of the LSTM consists of the following structures: the

forgetting gate, the input gate, the output gate, and the memory

cell; the common function of the input gate and the forgetting

gate is to discard the useless information and pass the useful

information to the next moment. The output of the whole structure

is obtained by multiplying the output of the memory cell and

the output of the output gate. Since the one-way LSTM model

cannot handle the contextual information at the same time, the

BiLSTM (Bidirectional Long-Short Term Memory) proposed by

Graves A et al. The basic idea is to take forward and backward

LSTM for each input sequence, respectively, and then, the outputs

of the same moment are merged. Thus, for each moment, there

corresponds to forward and backward information, which can be

expressed as ht =
[−→
ht ,
←−
ht

]
, where

−→
ht and

←−
ht denote the forward

and backward outputs of the bi-directional LSTM, respectively. In

the named entity recognition task, BiLSTM is good at handling

long-range textual information but cannot handle the dependencies

between neighboring labels. Moreover, CRF can obtain an optimal

prediction sequence by the relationship of neighboring labels,

which can compensate for the shortcomings of BiLSTM.

For the input sequence X = {x1, x2, ..., xn}, it is assumed that

P ∈ R
n×k is the output score matrix of the BiLSTM, where n is the

input vector dimension, k is the number of labels, and the score

of the j−th label of the i−th word. For the prediction sequence

Y =
{
y1, y2, ..., yn

}
, the formula to calculate its score is as follows:

s (X,Y) =

n∑

i=0

Ayi ,yi+1 +

n∑

i=1

Pi,yi (9)

Where A denotes the matrix of transferred scores, Aij

representing the scores transferred from label i to label j. The size

of A is k + 2. The probability of generating the predicted sequence

Y is as follows:

p(Y|X) =
es(X,Y)

∑
Ỹ∈YX

s
(
X, Ỹ

) (10)

The likelihood function of the predicted sequence is obtained

by taking the logarithm on both sides as follows:

ln
(
p (Y|X)

)
= s (X,Y)− ln


 ∑

Ỹ∈YX

s
(
X, Ỹ

)

 (11)

where X denotes the true labeled sequence and Y denotes all

possible labeled sequences. The output sequence of the maximum

score is obtained after decoding as follows:

Y◦ = argmax
Ỹ∈YX

s
(
X, Ỹ

)
(12)

TABLE 1 The basic statistics of our two Twitter datasets.

Entity type Twitter2015 Twitter2017

Train Dev Test Train Dev Test

Person 2,217 552 1,816 2,943 626 621

Location 2,091 522 1,697 731 173 178

Organization 928 247 839 1,647 375 395

Miscellaneous 940 225 726 701 150 157

Total 6,176 1,546 5,078 6,049 1,324 1,351

Num of Tweets 4,000 1,000 3,257 3,373 723 723

4. Experiment

4.1. Experiment settings

This study uses two publicly available Twitter datasets,

Twitter2015 and Twitter2017, constructed by Zhang et al. (2018)

and Lu et al. (2018), respectively. These two datasets mainly include

multimodal user posts posted on Twitter during 2014–2015 and

2016–2017. Table 1 shows the number of entities and multimodal

tweet counts for each type in the training, development, and testing

sets for both datasets.

Evaluation system: The common labeling systems for named

entity identification are the BIO system, BIOE system, and BIOES

system, and the BIO system is chosen in this study. The system has

nine labels, namely, “O”, “B-PER”, “I-PER”, “B-ORG”, “I-ORG”,

“B-LOC”, “I-LOC”, “B-MISC”, and “I-MISC”.

In this study, recall R, precision P, and F1 values are used to

judge the performance of the model, and each evaluation index is

calculated as follows:

P =
a

B
× 100% (13)

R =
a

A
× 100% (14)

F1 =
2PR

P + R
× 100% (15)

Where a is the number of correctly identified entities, A is the

total number of entities, and B is the number of identified entities.

4.2. Baseline

To exemplify the effectiveness of our new models, we selected

several benchmark models for comparison. We first consider

a representative set of text-based models as follows: 1) CNN-

BiLSTM-CRF, a widely adopted NER neural network model

that is an improvement in BiLSTM-CRF that replaces word

embeddings with character-level word embeddings and CNN-

based concatenation of character-level word representations for

each word; 2) BERT- CRF which is a pioneering study that

eliminates the heavy reliance on hand-crafted features and simply

employs a bi-directional LSTMmodel and then uses CRF layers for

the final prediction of each word.
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TABLE 2 Performance comparison on our two TWITTER datasets.

Methods Twitter2015 Twitter2017

Precision Recall F1 Precision Recall F1

CNN-BiLSTM-CRF 66.24 68.09 67.15 80.00 78.76 79.37

BERT-CRF 69.22 74.59 71.81 83.32 83.57 83.44

AdapCAN-BERT-CRF 69.87 74.59 72.15 85.13 83.20 84.10

VisualBERT 68.84 71.39 70.09 84.06 85.39 84.72

OCSGA 74.71 71.21 72.92 - - -

UMT 71.67 75.23 73.41 85.28 85.34 85.31

UMGF 74.49 75.21 74.85 86.54 84.50 85.51

HVPNet 73.87 76.82 75.32 85.84 87.93 86.87

MLNet (ours) 75.73 76.85 76.28 87.36 86.97 87.17

The best results in the table are highlighted in bold.

In addition, we compare other multimodal approaches for

named entity recognition as follows: (1) AdapCAN-Bert-CRF

(Zhang et al., 2018) which designs an adaptive co-attention network

to induce visual representations of each word; (2) VisualBERT

(Li et al., 2019) which differs from the above mentioned SOTA

based mainly on co-attention approach, VisualBERT is a single-

stream structure, which is a strong baseline for comparison; (3)

OCSGA (Wu et al., 2020), a model that combines dense co-

attentive networks (self-attentive and guided attention), to model

the association between visual objects and textual entities and the

intrinsic connections between objects or entities; (4) UMT (Yu

et al., 2020) by adding a multi modality converter to achieve a

unified architecture by adding an auxiliary entity span detection

module; (5) UMGF (Zhang et al., 2021), using a multimodal

graph fusion approach, captures various semantic relationships

between multimodal semantic units (words and visual objects); (6)

HVPNet (Chen et al., 2022), using dynamic threshold aggregation

strategy to achieve hierarchical multiscale visual features as fused

visual prefixes.

In the multimodal BERT structure, we choose 12 layers, each

hidden layer has a size of 768 and 12 self-attentive heads. In the

training process of the BiLSTM-CRF structure, the Adam optimizer

is used, and the learning rate is chosen as 0.001. In addition,

the LSTM dimension is set to 200, the batch size is 64, and

the maximum vector length of text input is 128, to prevent an

overfitting problem. Dropout is used in the input and output of

BiLSTM, and the value is 0.5 (Bouthillier et al., 2015).

4.3. Main results

In Table 2, we report the precision (P), recall (R), and F1 score

(F1) achieved by each method on the two Twitter datasets.

First, compared with the two text-based methods CNN-

BiLSTM-CRF and BERT-CRF, it is clearly observed that our model

outperforms the other methods on both datasets. It is clear that

the inclusion of visual features does guide the NER model well

in discovering named entities when solving the named entity

recognition task for tweet text. Although the accompanying images

of some tweets may not be directly related to the text content, to

a certain extent, extracting the corresponding image information

(shown as Figure 5) can address the ambiguity issues and irregular

representations present in the text.

Second, our model outperforms OCSGA, UMT, and UMGF

compared with existing multimodal methods, thus it can be

shown that the visual information preprocessed by focused feature

extraction is more helpful for text entity extraction task effect

enhancement than the complete image. By drawing on the target

detection algorithm in the image preprocessing process, we are

able to focus more actively on the entity information originally

present in the image in the subsequent label classification task,

thus avoiding a large amount of irrelevant information interference.

Moreover, compared with the pre-trained model VisualBERT in

which images and complete text are directly input to BERT for

encoding and decoding, our model also introduces character-

level embedding to address spelling errors and noise of informal

expressions and uses a multi-head attention mechanism to learn

different levels and modalities of input information.

Finally, comparing all named entity recognition methods,

we can see that our multimodal entity recognition architecture

achieves the best results, 0.29 and 1.86% higher than the second best

method, respectively, and outperforms the twitter2015 dataset in

twitter2017. This indicates that our model is accurate and effective

in small-sample scenarios. In this regard, we analyze that our

model is more enough to better learn the association between visual

features and text features in small sample scenarios, thus improving

the accuracy of tag classification.

4.4. Further analysis

4.4.1. Ablation study
To understand the role of network structure in the model, we

performed more experiments for some variants of our model. For

each dataset, we compared the full model MLNet and two variants

of the model MLNet w/o Early Fusion and MLNet w/o Mtla. The

obtained knots are shown in Table 3.

MLNet: Complete multi-level multimodal named entity

recognition model, including image-text pre-processing,

multimodal feature fusion already and feature annotation structure.
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FIGURE 5

Two examples of correct visual attention. Our model successfully highlights related image regions required to predict correct tag.

TABLE 3 Ablation study of MLNet.

Methods Twitter2015 Twitter2017

Precision Recall F1 Precision Recall F1

MLNet 75.73 76.85 76.28 87.36 86.97 87.17

MLNet w/o Fus. 74.44 73.07 73.75 85.10 84.51 84.80

MLNet w/o Mtla. 74.73 73.72 74.22 85.97 85.62 85.79

The best results in the table are highlighted in bold.

MLNet w/o Fus.: Instead of combining the image feature

vectors extracted by ResNet with the text in the encoder

Transformer in BERT, they are combined with the text vectors

in the last layer of the Transformer structure before output.

This allows us to test whether the interaction between linguistic

and visual in the whole Transformer stack is important for

performance. This variant structure is able to represent the

impact of image features fused with text features for entity

recognition tasks.

MLNet w/o Mtla.: When encoding text, only word-level

vectors are kept, and no character-level feature vectors are

introduced. This variant can help us to recognize the help of

multi-level structure for improving accuracy.

As we can see in Table 3, the introduction of visual features

and character-level embedding vectors can effectively improve the

quality of the task. In this regard, we analyze that image information

can enhance the semantic understanding of MLNet, and this

multimodal BERT structure we use can filter the visual information,

retain the regions with higher similarity to the text, and achieve

image-text and feature fusion to avoid directly superimposing the

less relevant image information on top of the text, which causes

unnecessary errors. The introduction of character-level embedding

is another important reason for achieving the MLNet effect. Due to

the short text length of tweets, it is difficult to obtain the semantics

according to the context, and there are certain misspellings, URL

addresses, and some emojis, which bring interference with label

classification. Preserving character-level embedding can obtain

more semantic information to a certain extent and improve the

effectiveness of short text recognition tasks.

4.4.2. Cross-task scenario
We further tested the performance of UMGF and MLNet

in cross-domain scenarios and compared them. We used the

model obtained by training on the Twitter2015 dataset to test

Twitter2017 and notated as Twitter2015→Twitter2017. Similarly,

Twitter2017→Twitter2015 indicates the use of a model trained on

Twitter2017 to test Twitter2015. As shown in Table 4, our MLNet

achieves better results in terms of F1 Score in this cross-task

scenario experiment. This proves that our MLNet has made some

progress in model liability.

Although MLNet is slightly less effective on the Twitter2015

dataset than the Twitter2017 dataset, our model trained on the

Twitter2015 dataset is still more effective than the model trained

on the Twitter2017 dataset in the migration experiment. This

also shows that although our models have better results on small

datasets, training MLNet on larger amounts of data is still effective

and can improve the understanding of the models. This cross-

migration scenario is interesting to facilitate the entity recognition

task and better improve the language model.

5. Conclusion

In this study, we propose a new multilevel multichannel

fusion network for the named entity recognition task in social

media postings. Specifically, we propose a focused visual feature

preprocessingmethod inmultimodal tasks to extract visual features

related to text semantics as auxiliary inputs, which is an effective

visual enhancement of the NER attention module. We also propose
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TABLE 4 Performance comparison of MLNet and UMGF in cross-task scenario.

Methods Twitter2015→Twitter2017 Twitter2017→Twitter2015

Precision Recall F1 Precision Recall F1

UMGF 67.00 62.81 66.21 69.88 56.92 62.74

MLNet 70.60 62.46 66.28 71.01 58.40 64.09

The best results in the table are highlighted in bold.

the inclusion of character embedding, which expands the feature

information that can be extracted from short texts and implements

an entity extraction architecture with multiple levels of input.

Achieving a better extractor through effective visual enhancement,

extensive experiments, and results on three criteria demonstrate

the effectiveness and robustness of our proposed approach. At the

same time, our method faces the limitation of slower operations.

In future, we plan to (1) further investigate the simplified structure

of multimodal multilevel entity extraction models to make them

more flexible and scalable and (2) try more diverse image-text

feature fusion algorithms to help the models better understand the

association between visual features and text features.
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Understanding novelty and improvisation in music requires gathering insight
from a variety of disciplines. One fruitful path for synthesizing these insights is
via modeling. As such, my aim in this paper is to start building a bridge between
traditional cognitive models and contemporary embodied and ecological
approaches to cognitive science. To achieve this task, I offer a perspective on
a model that would combine elements of ecological psychology (especially
affordances) and the Learning Intelligent Decision Agent (LIDA) cognitive
architecture. Jeff Pressing’s cognitive model of musical improvisation will also
be a central link between these elements. While some overlap between these
three areas already exists, there are several points of tension between them,
notably concerning the nature of perception and the function of artificial general
intelligence modeling. I thus aim to alleviate the most worrisome concerns here,
introduce several future research questions, and conclude with several points on
how my account is part of a general theory, rather than merely a redescription
of existent work.
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improvisation, cognitive model, ecological psychology, learning intelligent decision
agent (LIDA), affordances, music

1 Introduction

To understand novelty in cognition, we must account for improvisation; as philosopher
Gilbert Ryle noted about improvising, “It is part of intelligence to seize new opportunities
and to face new hazards; to be, in short, ‘not a tram, but a bus’” [(Ryle, 1976), 69]. Other
philosophers have explored improvisation in detail, including, inter alia, its connection to
composition and repetition, possible moral dimensions, and its relation to creativity and
novelty (Brown, 1996; Gould and Keaton, 2000; Alperson, 2010; Carvalho, 2010; Hagberg,
2016; Brown, Goldblatt and Gracyk, 2018; Lewis, 2019). My focus will hereafter be on
musical improvisation.

The scientific study of improvisation in music has seen major development in the past
several decades. Landmark work by musician and psychologist Pressing. (1988), Pressing
(1998) has left a lasting impact on cognitive accounts of musical improvisation. Another
important computational account was developed by psychologist and philosopher Johnson-
Laird (2002). Similarly, work in artificial intelligence has been steadily advancing. Examples
of notable AI programs here include Voyager (Lewis, 2000), Magenta, and BachBot (Novelli
and Proksch, 2022).

Since the early 2000s, neuroscientists have discovered important roles for different neural
areas in improvisation, including (but not limited to) the left inferior frontal gyrus (IFG) and
the dorsolateral prefrontal cortex (DLPFC) (For a review, see Beaty, 2015; for a conceptual
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model involving neural correlates, see Faber and McIntosh,
2019). Evidence has emerged for differences during solo vs.
group improvisation, most notably in activations of the DLPFC.
Interpretations for why these differences occur include unique
requirements for creativity and monitoring in individual or
collective contexts; there may also be methodological differences in
participant selection and task requirements across studies (Beaty,
2015).

Another discipline to consider is ecological psychology, wherein
the environment is taken to be both an inextricable part of
psychological explanation and a constitutive part of cognition. A
pioneer of this approach was psychologist Gibson 1966, Gibson
1979. It has further developed to include accounts of auditory
cognition (Gaver, 1993a; Gaver, 1993b), music perception (Clarke,
2005), music in everyday life (DeNora, 2000, esp. Chap. 4), musical
affordances (Reybrouck, 2012; Windsor and de Balzac, 2012;
Krueger, 2014), and the structure of performance spaces (Burland
and Windsor, 2014), among other topics. Cognitive scientist and
philosopher Ashley Walton and her colleagues (Walton et al., 2015;
Walton et al., 2018) have also provided similar work on dynamics
and interaction in performance.

In what follows, I propose an important way to further
our understanding of musical improvisation by bringing together
ecological psychology, the Learning Intelligent Decision Agent
(LIDA) cognitive architecture, and Pressing’s model of musical
improvisation. I first introduce Pressing’smodel. Second, I introduce
core aspects of LIDA. Third, I present an ecological description
of Pressing’s model from music theorist and lawyer Love. (2017)
and, finally, I discuss several main issues about how Pressing, Love,
LIDA can be connected. While there are insights for many different
readers in what follows, I hope that it speaks clearly to those who are
interested with an account of improvisation in cognition and action,
including the similarities and differences between domain general
and domain specific aspects of improvised activity.

2 Pressing’s model of musical
improvisation

There is an expansive and growing literature for models,
including theories and interdisciplinary work, of musical
performance (e.g., see MacDonald and Wilson, 2020, Chap. 2,
esp. 30–43, for a theoretical overview). There are likewise notable
differences among traditions of cognitive modeling. For instance,
classical approaches focus on the development of music starting
within an agent, post-human approaches place emphasis on the flow
of information from the environment into the agent, computational
accounts take most, or all, of human cognition as akin to functions
on computers, and embodied approaches center cognition as a
dynamic dance between brain, body, and world.

Pressing had a classical approach to modeling musical
improvisation1. The heart of his model is the referent and the

1 It is important to note that Pressing’s model is best fit for “standard” jazz
improvisation, especially in the context of either solo performance and/or
group improvisations with a clear referent. While it is not limited to these
contexts, we may need to consider different models (e.g., MacDonald and
Wilson, 2020, esp. Chap. 4; Canonne and Garnier, 2011) for capturing “free”
jazz performance or improvisation in other genres of music.

knowledge base of an improviser. A referent is “a set of cognitive,
perceptual, or emotional structures (constraints) that guide and
aid in the production of musical materials” (Pressing, 1998,
52). Paradigmatic examples include a jazz standard or a 12-bar
blues progression. Some referents are stored in external formats,
utilizing musical notation and sheet music, while others are
internalized. The purpose and existence of a referent will vary
depending on the type of improvisational activity and other relevant
considerations.

The knowledge base covers a range of information stored
primarily in long-term memory. Specific elements include “musical
materials and excerpts, repertoire, subskills, perceptual strategies,
problem-solving routines, hierarchical memory structures and
schemas, generalized motor programs, and more” (Pressing, 1998,
53). The base can further be connected with three mental
representations: objects, features, and processes. Objects are specific
“cognitive units,” such as a chord or gesture; features are “common
parameters of multiple objects; ” processes are “changes in objects or
features over time; ” and, finally, it is essential to highlight that all of
these aspects interact with each other in complex ways (Dean and
Bailes, 2014, 41–42).

According to Pressing, improvisors execute plans to either
continue current musical events via association or break
via interruption. The general forms of these choices are
consistent–association maintains most/all of the aspects (e.g.,
movement, musical, acoustic, or other features) from previous
events, while interruption breaks from them to some significant
degree–but their exact functioning in performance will vary based
onmultiple factors. For example, a bassist may decide to play a pedal
point across several measures. A continuation of the tone would be
an association between the starting event (Ei) and Ei+1, Ei+2, … Ei+n,
while abruptly stopping it would be an interruption between these
events. Reasons for choosing continuity or interruption include
acoustic, social, musical, and movement-based considerations,
among others. These processes are also facilitated by an interruption
tester monitoring Ei and a movement trigger between events (For
a visual overview of Pressings model, see Fig. 7.4 in Pressing, 1988,
160).

There are two further things to highlight about Pressing’s model.
First, it operates under an assumption that improvisation develops
along a discrete repetition of input-process-output cycles. These
cycles are musical events and event clusters. For instance, a given
solo for a jazz bebop performance would be an event cluster
constituted by multiple interlocking musical events (e.g., specific
notes and changing chords). Second, his model is developed at a
rather general level. In Pressing’s words, for instance, the model
“does not spell out exactly how real-time constraints of memory
and attention are to be accommodated” (1998, 56). Connecting this
model to LIDA will help to address some of these downsides and
further strengthen the upsides.

3 Learning intelligent decision agent
(LIDA) cognitive architecture

Learning Intelligent Decision Agent (LIDA) is a conceptual and
partially computational systems-level cognitive model that aims to
model mind (see Figure 1). Insofar as it operates at the systems-
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FIGURE 1
The LIDA Model Overview.

level, LIDA attempts to account for the entire span of low-level to
high-level cognition. According to Stan Franklin, computer scientist
and the main architect behind LIDA, a mind is a control structure
of an autonomous agent (AA). AA has a technical definition of “a
system situated in and part of an environment, which senses that
environment and acts on it over time in accordance with its own
agenda, so as it may affect what it senses in the future” (Franklin and
Graesser, 1997).

A central feature of LIDA is a “cognitive cycle” wherein learning,
perception, and action occur.The core part of the cognitive cycle is a
global broadcast of information across themind.The first step in the
cycle is input, either exogenous (e.g., sensory input) or endogenous
(e.g., memory), that results in perception and/or understanding of
the current situation. Second, in the attention phase, information
that has reached a certain level of salience is broadcast. Third, this
broadcasted information results in learning and/or action.

Cognitive cycles can overlap and it is possible for actions
to occur both asynchronously and without rising to the level of
consciousness (i.e., without being globally broadcast). While the
majority of LIDA research thus far has focused on fleshing out
the cognitive cycle, recent developments have included cases that
require multiple cognitive cycles, including distal intentions and
narratives (Kronsted et al., 2021), the body schema (Neemeh et al.,
2021), and smooth coping (Kronsted et al., 2022). Modelingmusical
improvisation will likewise require multiple cognitive cycles.

Fully implementing Pressing’s model in LIDA is outside
the scope of this current work, but three points can be said

about a partial implementation. First, modeling expertise in
musical improvisation will require further development of codelets.
Codelets, especially for attention and structure-building, are
important parts of LIDA. They fulfill tasks such as bringing together
different types of information or raising relevant information
to the level of consciousness. In addition, work on LIDA has
considered a specific role for some structure-building codelets
in creating affordance links (Franklin et al., 2016; Section 5.3.2).
Second, further developing the Perceptual Associative Memory and
Procedural Memory modules will be important for modeling skills
in musical improvisation, especially involving a referent. Third,
the Conscious Contents Queue, Action Selection and Motor Plan
Execution modules will be essential parts of grounding any model
of improvisation. Part of developing these modules will connect
to how improvisation occurs with and without consciousness.
Figure 2.

One may wonder why I appeal to LIDA, rather than another
Artificial General Intelligence (AGI)model. On one hand, it is useful
to develop as many cognitive architectures as possible. On the other,
LIDA offers several unique aspects that have been underexplored in
AGI. For example, LIDA’s focus onAAsmeans that it does not reduce
improvisation to a problem-solving task, since the explorations,
sensations, and alterations that are part of being anAA covers a wide
swath of whywe improvise.The central focus on affect, emotion, and
consciousness alsomakes LIDAan important architecture to use and
further develop; indeed, while affect and emotion are an essential
part of all human cognition, they play an extremely strong role
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FIGURE 2
Musical Improvisation in LIDA–A Partial Conceptual Implementation.

in music (Schiavio et al., 2017; Van der Schyff and Schiavio, 2017;
Novelli and Proksch, 2022).

4 An ecological description and
musical affordances in improvisation

Love (2017) provides an ecological description of jazz
improvisation.His paper beginswith a concern of oversimplification
for computational models. Specifically, while simplification is
needed for computational purposes, it does not match actual human
improvising (Love, 2017, 32). He raises a connected worry about
any neat distinctions between input, processing, and output, since
cognition in the world is neither that simple nor clean. In turn, Love
develops his description by reformulating ideas from Pressing’s
model, including the referent, the role of memory and learning,
and the temporal coordination among soloists and ensembles.
I shall focus on the referent and memory/learning in what
follows.

First, according to Pressing, a benefit of the referent is to
simplify improvisation. Following chord changes allows a soloist
to focus on other aspects of creativity, for instance. Love grants
this simplification as important. However, he notes that a referent
may also make improvising more difficult “by introducing the
possibility of failure, or, if we prefer, shrinking the set of actions
that count as ‘success’” (Love, 2017, 34). This difficulty is connected
to the idea that improvisation is a form of navigation across a
terrain, rather than abstract problem-solving. Any solo navigational
difficulty is moreover amplified within collective forms of musical
improvisation, where ensembles support or challenge the soloist
navigating their environment (Linson and Clarke, 2017).

Second, instead of long-term memory, Love’s ecological
description focuses on perceptual process and affordances. An
affordance is a relational property between the abilities of an
organism and features of the environment (Chemero, 2009). For
instance, the affordance “climbable” is present if an organism is able
to scale vertical surfaces in the environment; a specific “climbable”
surface for a human may not exist for a dog, just as a professional
climber may find surfaces “climbable” that are impossible for a
novice. There is also an important role for affordances in the design
of everyday objects, as emphasized by engineer and design expert
Norman (2013).

Following philosophers Rietveld and Kiverstein. (2014), I
suggest that affordances are found in a landscape for a form of life.
Any situation will include a salient field of affordances within the
overall landscape (Einarsson and Ziemke, 2017). The form of life is
the focal point since it helps make sense for how affordances come
into existence and how they persist over time.

Finally, Love cites several additional pieces of evidence about
memory, including worries about the overemphasis of memory
across perception and the fact that much of what an improvisor does
is connected to how they perceive and navigate an improvisation,
instead of using an abstract store of representations separate from
perception itself (Love, 2017, 38–40).

I have been calling Love’s work a description, rather than a
theory or model. The reason why, as Love himself notes, is his
account lacks core aspects of a theory, especially falsifiability (Love,
2017, 31). By connecting Pressing and Love directly to LIDA,
I suggest that we will at least take steps in the direction of a
developed theory, even though I do not provide that fully developed
theory here. Furthermore, LIDA is integrally connected to several
additional theoretical and empirical commitments, most notably
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Bernard Baars’ Global Workspace Theory (GWT) (Franklin et al.,
2016; Section 4.4). These connections help support the idea that
my proposed account will be part of a general theory, not merely
a description.

5 Discussion

There are two main points I will consider in this discussion:
First, does my model call for a major reformulation or minor
refocus in Pressing’s account? Second, is LIDA able to fully capture
the affordances that are essential to an ecological account of
improvisation?

For the first point, I suggest that the answer will partially rest
on the extent to which Pressing’s model contains the ecological
aspects highlighted by Love. At first glance, Pressing’s model already
includes an explicit role for performer-environmental interaction.
He likewise emphasizes a refinement of perception and action
in musical performance, in part, by learning to discern invariant
structures of the environment. Pressing introduces invariants in
ways that are similar to affordances. When discussing “arrays” of
objects, features, and processes, for instance, he notes that “the
answer given here is based on an ecological perspective, which
considers that the capacity to extract or create such arrays is
neurologically innate, but that they are only brought into being by
interaction with the environment” (Pressing, 1988, 161). We find a
similar situation with other parts of the knowledge base, notably
“perceptual strategies” (1998, 53), which implies that perception
does not collapse into another form of memory.

The two possible results to the first point are either (1)
Love is offering a minor shift in emphasis rather than a major
reformulation or (2) Love’s reformulation comes mainly from
worries that Pressing’s account fails to capture other essential aspects
of affordances and/or the environment beyond invariance. While
I am not committed to either of these interpretations, the best
likelihood for (2) would come from the subjective component of
affordances and their “ambivalent relationship to rules” (Love, 2017,
34). (2) may also be supported by Pressing’s explicit rejection of
“the organizational invariant approach” as a satisfactory theory for
modeling action and improvisation (1988, 133–4).

This rejection of an organizational invariant approach raises
a concern that Pressing’s account is not about the perception of
affordances because it requires a comparison of sensation to pre-
existing knowledge, instead of the agent adapting to affordances in
the environment. One reply to this concern is to grant that Pressing’s
approach and affordances are more opposed than I heretofore
implied, with substantial work required to reconcile them, if doing
so is even possible. A second reply is to consider recent work on
neural resonance as a way to account for organism abilities and the
knowledge base in an ecological manner (Fuchs, 2018; Raja, 2018;
Ryan and Gallagher, 2020; Shepard, 1984; for neural resonance and
neurodynamics inmusical perception, see Large, 2010).This second
option, if correct, still requires more work, but it would be closer to
a slight refocus over radical reformulation.

For the second main point, one may be concerned with the
vast assortment of memory modules in LIDA with limited cases
of distinctly perceptual processes. Another issue may be that the
affordances introduced so far in LIDA are not adequately relational.

To address these worries, I will say a few words on the connection
between LIDA and embodied cognition, along with the importance
of looking at the implementation of the LIDA model in LIDA agents
as part of the modeling process.

Franklin et al. (2016) argue that LIDA is “resonant with the
core ideas of the embodied, situated, and enactive views” (2016,
Section 4.2), with situated cognition being close to the core
commitments of ecological psychology introduced so far (i.e., the
mutual influence and interaction of environment and organism in
cognition). Three points of connection they discuss in detail are
asynchrony, nonlinear dynamics, and Theta Gamma Coupling. Of
primary note here is asynchrony. While much of the description
of LIDA introduces the model as if it works in a serial fashion,
that is only for ease of explanation. In practice, almost all of the
processing in the LIDA architecture may occur in asynchronous
fashion, which entails that the “LIDA model accommodates the
possibility of algorithmic behavior more complex than that of a data
pipeline in the information processing paradigm.” (Franklin et al.,
2016 Section 4.9). Breaking down this pipeline is akin to what Love
calls for when he questions the neat distinction of input-process-
output.

Additionally, an implementation of LIDA in a LIDA agent is
essential when considering the nature of affordances themselves.
An affordance is a relational property between an organism and
the environment. While certain abstract claims can be made about
them, an affordance must be grounded in specific organisms acting
in specific environments. Similarly, affordances in LIDA are partially
constituted by implementation in an agent, rather than being fully,
and solely, developed in the conceptual model. It may even be
the case that using the model alone to tell us everything about
affordances could be a category mistake.

6 Conclusion

I have proposed that a fruitful avenue for understanding
musical improvisation will come from a combination of Pressing’s
model, taken under Love’s ecological description, and the Learning
Intelligent Decision Agent (LIDA) cognitive architecture.My theory
includes at least the following three points, which are open to
further exploration, refinement, or change as additional research is
conducted.

• Insights from a traditional cognitive model and an ecological
description of that model can be fruitfully combined within an
AGI architecture;

• While this combination draws on existent theoretical
components, it also opens up important theoretical and
empirical questions for the future (e.g., how can we build an
improvising LIDA robot? In what ways will it be unique and
similar to existent improvising AI machines? How can we use
the LIDA cognitive model and musical improvisation to test
open questions about Global Workspace Theory and other
accounts of consciousness? What aspects of improvisation
occur within and outside of consciousness?);

• An account of musical improvisation is integrally connected to
other forms of improvisation, and we cannot fully understand
any of those activities in complete isolation.
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Moving forward, it will likely be important to further nest
the aforementioned approaches within even broader theoretical
frameworks, such as the Skilled Intentionality Framework
(Rietveld, Denys and Van Westen, 2018) or the Thinking
Through Other Minds and Cultural Affordances Frameworks
(Ramstead, Veissière and Kirmayer, 2016; Veissière et al., 2020).
Integrating more interdisciplinary sources and artistic research
will be essential as well, including work by Derek Bailey, Gary
Peters, Marcel Cobussen, and Harald Stenström (e.g., Bailey, 1992;
Stenström, 2009; Cobussen, 2017; Peters, 2017). Such additions will
further develop this model of musical improvisation and its related
upshots.
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This paper presents an interdisciplinary framework, Machine Psychology, which
integrates principles from operant learning psychology with a particular Artificial
Intelligence model, the Non-Axiomatic Reasoning System (NARS), to advance
Artificial General Intelligence (AGI) research. Central to this framework is the
assumption that adaptation is fundamental to both biological and artificial
intelligence, and can be understood using operant conditioning principles.
The study evaluates this approach through three operant learning tasks
using OpenNARS for Applications (ONA): simple discrimination, changing
contingencies, and conditional discrimination tasks. In the simple discrimination
task, NARS demonstrated rapid learning, achieving 100% correct responses
during training and testing phases. The changing contingencies task illustrated
NARS’s adaptability, as it successfully adjusted its behavior when task conditions
were reversed. In the conditional discrimination task, NARS managed complex
learning scenarios, achieving high accuracy by forming and utilizing complex
hypotheses based on conditional cues. These results validate the use of operant
conditioning as a framework for developing adaptive AGI systems. NARS’s
ability to function under conditions of insufficient knowledge and resources,
combined with its sensorimotor reasoning capabilities, positions it as a robust
model for AGI. The Machine Psychology framework, by implementing aspects
of natural intelligence such as continuous learning and goal-driven behavior,
provides a scalable and flexible approach for real-world applications. Future
research should explore using enhanced NARS systems, more advanced tasks
and applying this framework to diverse, complex tasks to further advance the
development of human-level AI.

KEYWORDS

artificial general intelligence (AGI), operant conditioning, non-axiomatic reasoning
system (NARS), machine psychology, adaptive learning

1 Introduction

Artificial General Intelligence (AGI) is the task of building computer systems that are
able to understand or learn any intellectual task that a human being can. This type of AI
is often contrasted with narrow or weak AI, which is designed to perform a narrow task
(e.g., facial recognition or playing chess). There are several diverse research approaches
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to AGI including brain-based approaches (e.g., Hawkins, 2021),
projects that aims to implement different cognitive functions
separately (e.g., Laird, 2019), and principle-based approaches (e.g.,
Hutter, 2004; Wang, 2013). Recently, Large Language Models like
GPT-4 have also been introduced as a potential pathway towards
achieving more generalizable AI systems (Bubeck et al., 2023).

One major challenge in contemporary AGI research is the
lack of coherent theoretical frameworks (Wang, 2012; 2019). This
scarcity of unified models to interpret and guide the development
of AGI systems seems to have led to a fragmented landscape
where researchers often work in isolation on narrowly defined
problems. Coherent research frameworks could also provide a
roadmap and evaluation criteria for AGI development, fostering
more collaborative and interdisciplinary efforts. The fact that AGI
research has not progressed as rapidly as some had hoped could very
well be attributed to the lack of these comprehensive frameworks and
the absence of standardized benchmarks for measuring progression
towards AGI capabilities.

This work aims to address this challenge by proposing a novel
framework that outlines key milestones and metrics for evaluating
progress in the field of artificial general intelligence (AGI). A
fundamental assumption in this work is that adaptation is at the
heart of general intelligence. Adaptation is typically divided in
ontogenetic adaptation, which involves the changes that occur with
an organism over its lifespan, and 2) phylogenetic adaptation, which
refers to the evolutionary changes that occur across generations
within a species.

Learning has within the field of learning psychology,
been equated with ontogenetic adaptation, where an
individual’s experiences directly impact its capabilities and
behaviors (De Houwer et al., 2013). Operant conditioning is
one type of learning that involves adaptation in the form of
behavioral changes due to consequences of actions. Given the
enormous amount of empirical progress generated by operant
conditioning research in learning psychology, the principle of
operant conditioning and its associated research tradition could
be a guiding principle for AGI research.

One particular approach to building AGI is the Non-Axiomatic
Reasoning System (NARS) (Wang, 2013; 2022). NARS is an adaptive
reasoning system that operates on the principle of insufficient
knowledge and resources, a condition that is often true for real-
world scenarios. Hence, NARS is a principle-based approach that
aims to address the challenges of building AGI systems that can
operate effectively in dynamic and unpredictable environments
(Wang, 2019). There are several NARS implementations available.
One implementation is OpenNARS for Applications (ONA), that is
designed to provide a practical framework for integratingNARS into
various applications, with a particular focus on robotics (Hammer
and Lofthouse, 2020; Hammer et al., 2023). ONA is built with
sensorimotor reasoning at its core, enabling it to process sensory
data in real-time and respond with appropriate motor actions.
Sensorimotor reasoning, as implemented in ONA, permits the
system to make sense of the world much in the same way as
biological organisms do, by directly interacting with its environment
and learning from these interactions. The fact that NARS systems
are focused on adaptation, and that ONA has a strong emphasis on
sensorimotor capabilities, suggests that they are particularly well-
suited for implementing the principle of operant conditioning.

This work presents Machine Psychology, an interdisciplinary
framework for advancing AGI research. It integrates principles
from learning psychology, with the theory and implementation
of NARS. Machine Psychology starts with the assumption that
adaptation is fundamental to intelligence, both biological and
artificial. As it is presented here, Machine Psychology is guided
by the theoretical framework of learning psychology, and the
principle of operant conditioning in particular. A sensorimotor-
only version of ONA (Hammer, 2022) is used to demonstrate
the feasibility of using these principles to guide the development
of intelligent systems. One way to describe the integration of
operant conditioning and NARS presented in this paper is
that the ability to learn and adapt based on feedback from
the environment, is implemented using sensorimotor reasoning
that is the core of ONA. An analogy is that a neurobiological
explanation of operant conditioning could be argued to be
part of a biological basis for adaptive behaviors observed in
many species (Brembs, 2003), similarly, the implementation
within ONA using temporal and procedural inference rules
offers an alternative explanation of the core of adaptive behavior
and cognition.

We evaluate the Machine Psychology framework by carrying
out three operant learning tasks with NARS. The first is a simple
discrimination task in where NARS needs to learn, based on
feedback, to choose one stimulus over another, demonstrating a
fundamental aspect of learning based on the consequences of
actions. The second task is more complex than the first in that
the conditions of the experiment is changed midway through the
task, requiring NARS to adapt its choice strategy based on the new
conditions. The third experiment is a conditional discrimination
task, where NARS is presented with pairs of stimuli, and must
learn to select the correct stimulus based on a conditional cue
that changes throughout the task, requiring an increased level of
adaptability. Methods from learning psychology are used to design
the experiments and guide the evaluation of the results. We explain
the results by describing how the sensorimotor reasoning used by
ONA enables it to adaptively modify its behavior based on the
consequences of its actions. The Machine Psychology framework
is demonstrated to provide a coherent experimental approach
to studying the core of learning and cognition with artificial
agents, and also offers a scalable and flexible framework that
potentially could significantly advance research in Artificial General
Intelligence (AGI).

The paper is organized as follows. Section 2 presents a
background on the principles of operant conditioning and
its significance in learning psychology. Section 3 introduces
NARS with a focus on its foundational concepts. Section 4
describes the architecture of OpenNARS for Applications with a
particular focus on its sensorimotor reasoning abilities. Section 5
discusses related work to our approach. Section 6 presents the
Machine Psychology framework and how it integrates operant
conditioning principles with NARS. Section 7 describes the
details of the methods and experimental setup used in the
evaluation of our approach. Section 8 presents the results from the
experiments. Section 9 concludes the paper and outlines how the
Machine Psychology framework could be used to further advance
the field of AGI.
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2 Operant conditioning

The work presented in this paper takes a functional approach
to learning and adaptation (De Houwer and Hughes, 2020),
and to science in general. Such approach to learning is rooted
in the principles of behaviorism, which emphasizes the role
of environmental interactions in shaping behavior, rather than
mechanistic explanations of how internal processes affect behavior.
It stems particularly from the work of B. F. Skinner, who laid
much of the groundwork for understanding how consequences of
an action affect the likelihood of that action being repeated in the
future (Skinner, 1938). Skinner was influenced by physicist and
philosopher Ernst Mach, who emphasized the use of functional
relations in science to describe relations between events, rather than
using a traditional mechanistic causal framework (Chiesa, 1994).

In the functional learning psychology tradition, learning (as
ontogenetic adaptation) is defined as a change in behavior due to
regularities in the environment (De Houwer et al., 2013). Several
types of learning can be classified under this perspective. Operant
conditioning is defined as a change in behavior due to regularities
between behavior and stimuli (De Houwer et al., 2013). Other types
of learning can be defined based on other the regularities in
operation. A few comments regarding these definitions of learning
and operant conditioning follow, as clarified by De Houwer et al.
(2013). First, in line with Skinner (1938) behavior is defined very
broadly, encompassing any observable action or response from
an organism. This includes responses that are only in principle
observable, such as internal physiological changes, neural processes
or cognitive events. In addition to this, behavior is defined to
always be a function of one or more stimuli, while a response
is just an observable reaction. Second, regularities are defined to
be any patterns of events or behavior that go beyond a single
occurrence. This can be the same events happening repeatedly,
or two or more events or behaviors happening at the same time.
Third, the definition signals a particular view of causality (“due
to”). As highlighted above, this research tradition emphasizes
functional relations between environmental regularities and changes
in behavior. This implies that learning, from this perspective,
cannot be directly observed, but must be inferred from the
systematic changes in behavior in response to modifications in the
environment (De Houwer et al., 2013). Such inferences do depend
on an observer, whose scientific goals and theoretical orientations
shape the interpretation. An example follows that aims to clarify this
definition further.

2.1 The three-term contingency

To describe behavior as an interaction between the organism
and its environment, Skinner introduced the concept of the
three-term contingency, which consists of a discriminative
stimulus (Sd), a response (R), and a resultant stimulus (Sr)
Skinner (1953); De Houwer and Hughes (2020). In some contexts,
the terms antecedent, behavior, and consequence are used to reflect
the same triadic relationship.

In many situations, an additional element is crucial: the
establishing operation (EO), which is an example of a motivating
operation. The EO modifies the efficacy of a resultant stimulus as a

reinforcer. For instance, a consequence such as food might only be
effective as a reinforcer under certain conditions, for example, after
food deprivation - which would then be the establishing operation.
Hence, the EO could be included as a fourth term in the three-term
contingency description.

Furthermore, a conditional discriminative stimulus can modify
the contingency based on additional contextual factors. This
stimulus signals whether the relation between the discriminative
stimulus, the response, and the resultant stimulus would hold
or not, adding another layer of complexity to the model
Lashley (1938); Stewart and McElwee (2009). The functions of the
other terms would be conditional that stimulus, which explains the
name conditional discriminative stimulus.

2.2 An example of operant conditioning

Imagine a rat in an experimental chamber used to study
behavior. The chamber contains a small loudspeaker, a lever that
can be pressed, and a water dispenser where the delivery of water
is controlled by the researcher. The researcher aims to shape the
rat into turning around when techno music is played and pressing
the lever when classical music is played. To do this, the researcher
uses an operant conditioning procedure. Before the experiment, the
rat has been deprived of water for a short period, serving as the
establishing operation (EO), which increases the effectiveness of
water as a reinforcer.

Initially, any tendency to turn around when techno music is
played (the discriminative stimulus, Sd) might be followed by
the delivery of water (the resultant stimulus, Sr). This makes the
behavior (R) more likely to occur in the future under similar
conditions, meaning that the water functioned as a reinforcer.
Conversely, when classical music (another Sd) is played, and the rat
presses the lever (R), the delivery ofwater (Sr) follows the behavior as
well. Over time, the rat learns to turn around or press the lever based
on the type of music that is playing. A video of a rat performing in
this experiment can be found online (WMU Rat Lab, 2009).

We could also have imagined enhancing the procedure with
adding a light that could be on or off, signaling if the relation
between music type, the rat’s behavior, and water would hold or
not. Since the function of the other terms would be conditional
on the state of the light, the light would function as conditional
discriminative stimulus.

This example can be considered an effective demonstration of
operant conditioning. The behavior in this example is a function of
both the music and the water. It illustrates the point made above
that behavior studied from this perspective is not just an isolated
motor action, but is also significantly influenced by the surrounding
environment and the consequences that follow the behavior. The
regularities in operation are reoccurring patterns of behavior and
stimuli, for example, lever pressing and the delivery of water, but
also a regularity regarding classical music and lever pressing. To
make a causal statement about learning, we would need to observe
the rat before and after interacting with these stimuli. Before the
interaction, we might, for example, observe the rat exploring the
cage or do random actions when different types of music was
playing. After the interaction however, if we observe the behaviors
described in the example, this would be a clear change in behavior
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- from, for example, cage exploring when classical music is playing
to lever pressing when the same music is playing. If we could argue
that the change in behavior is due to the procedural arrangements
(regularities), then we could potentially claim that this qualifies as
an instance of learning. The type of learning it would indicate is
operant conditioning since the regularities involved were between
responses and stimuli (rather than, for example, a repeated pairing of
stimuli as with classical conditioning). More specifically, it would be
an instance of positive reinforcement, a kind of operant conditioning
that involves an increase in target behavior due to the consequences.

2.3 Three levels of analysis

A learning situation such as the one illustrated in the example
can be analyzed on three levels using learning psychology: 1) The
descriptive level (or level of procedure), 2) The functional level
(or the level of effect), and 3) The cognitive level (or the level of
mechanism) (De Houwer and Hughes, 2020). At the descriptive
level, the procedural arrangement is from the perspective of the
researcher. The different sounds is used to signal if a relationship
between behaving in a certain way and water holds. This is a
description of procedures initiated by the researcher. It does not
mean that the rat has learned based on these arrangements. The
functional level however, is closer to describing the relations from
the rat’s perspective. If the rat turns around if and only if the techno
music is playing, then thatmusic functions as a cue for that behavior.
Similarly, it is only if the delivery of water increased the behavior,
that it functions as a reinforcer. If there is no change in lever pressing
or turning due to the water being delivered, then that consequence
has no effect. Finally, the cognitive level can be used to describe
certain mental mechanisms, like association formations, that could
explain how the operant learning processes take place (De Houwer
and Hughes, 2020).

The importance of distinguishing these levels cannot be
overstated. Just using an operant conditioning procedure (like the
one above), does not mean that the subject learns in the form of
operant conditioning. When doing functional learning research,
we arrange procedures and study the effect on behavior change.
Learning, from this perspective, is hence defined on the functional
level. As stated above, a term such as reinforcement is also defined as
an effect rather than amechanism.This alsomeans that explanations
on the cognitive/mechanistic level are not part of the learning
definition (De Houwer et al., 2013). It also opens up for different
kinds of explanations in terms of mechanisms - for example,
propositional networks as something different from association-
based learning theories.

2.4 Where is the organism?

In a functional analysis of behavior, it is an interaction between
organism and environment that is being analyzed. Hence, it is not
the organism itself in isolation that is of interest. Technically, it is
interactions between stimulus functions and response functions that
are being studied, for example, an interaction between seeing a lever
and pressing it, or hearing techno music and reacting to it. There are
other conceptual schemas in functional learning psychology than

the three-term contingency that takes into account the complexity
of these interactions (Hayes and Fryling, 2018), but for this
paper, what has been presented above is a sufficient conceptual
framework. Importantly though, in functional learning research,
these relations between procedural arrangements and behavior
change does depend on an organism in that they enable response
functions. This does not in an way mean that the organism causes
behavior. Rather, the organism can be considered a participant in
the arrangements (Roche and Barnes, 1997).

Recently, De Houwer and Hughes (2022) extended their
conceptual work on learning beyond that of organisms, for example,
to also incorporate the study of learning with genes, groups, and
machines. At the descriptive level of analysis, they replace the term
response with that of state transition. In the example above with
the rat, a change from exploring the cage to pressing the lever
could be described as such a state transition (moving from a state
of exploration to a state of lever pressing). Importantly, states, as
defined from this perspective, are used to describe state transitions.
A behavior is then defined as a state transition in relation to
one or more stimuli, for example, in relation to the music being
played. This is once again a functional definition - the behavior
is a function of stimuli. Learning is still defined as changes in
behavior (state transitions in relation to stimuli) that occurs due to
regularities (De Houwer and Hughes, 2022).

Based on this conceptual change a system is defined as a
construct from the perspective of an observer, as sets of states that
can be used to describe change. In common language we often refer
to a rat “being a system”, but technically it is rather that the system
is a collection of topographical descriptions of a rat’s physiological
responses. With computer systems they could typically be described
as collections of interdependent systems (Hayes and Fryling, 2018).
For example, a robot taking part of an experimental task, might,
for example, be described as hardware movements (like the robot
arm) that are dependent on sensory equipment and on software
interpreting those sensory inputs.

2.5 Human-level intelligence from an
operant perspective

All above examples involve learning that are animal-level in
the sense that they could be observed with an animal like a
rat. The fact that operant conditioning can be observed with
both humans and animals does not, however, mean that these
processes are irrelevant for achieving human-level intelligence with
artificial systems. On the contrary, we would argue that mechanisms
enabling operant conditioning at the core (as with OpenNARS for
Applications; Hammer, 2022) could very well be integral to the
development of complex cognitive behaviors with AGI systems.

However, there might be limitations to the purely operant
account as presented by Skinner. Already in the 1950s, critiques
of Skinner’s theories emerged, particularly in the context of
language acquisition, arguing that verbal behavior requires more
than just operant conditioning (Chomsky, 1959). Given this,
the development of human-level AI from the perspective of
operant conditioning could risk to be limited when it comes
to higher-order functions such as language. These critiques have
been thoroughly addressed by contemporary functional learning

Frontiers in Robotics and AI 04 frontiersin.org64

https://doi.org/10.3389/frobt.2024.1440631
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Johansson 10.3389/frobt.2024.1440631

theories of language and cognition, such as Relational Frame
Theory (RFT; Hayes et al., 2001).

RFT posits that the foundation of human language and
cognition lies in the ability to relate objects and events in arbitrary
ways, an ability referred to as Arbitrarily Applicable Relational
Responding (AARR; Hayes et al., 2001; Johansson, 2019). AARR
allows individuals to respond to one stimulus in terms of another
based on arbitrary contextual cues, rather than solely on the physical
properties of the stimuli themselves. For example, learning to relate
to an object and a spoken word as equivalent, despite having no
inherent physical similarity, showcases this ability. Or, responding
to a small coin as more valuable than a larger one, is another
demonstration of AARR.

Importantly, such patterns of AARR (called “relational frames”
in RFT) are assumed to be operant behaviors in themselves,
which are learned through interaction with the environment
and are subject to reinforcement (Hayes et al., 2021). Learning
to derive relations in accordance with, for example, similarity,
opposition, comparision, etc., seems to enable the development of
complex cognitive skills such as language understanding, problem-
solving, and abstract reasoning. Hence, from the perspective of
RFT, intelligence as a whole can be viewed as a collection of
interrelated relational frames that are dynamically shaped and
modified through continuous engagement with one’s environment
(Cassidy et al., 2016; Hayes et al., 2021).

The implications of RFT for AGI research are profound.
Since AARR is assumed to be learned behavior, it suggests that
AGI systems could potentially achieve human-like intelligence
through extensive training on relational tasks. There is a large
amount of experimental RFT studies regarding training of relational
framing abilities with humans across a variety of contexts and
populations, providing a rich dataset to inform AGI development
(Dixon et al., 2014; Cassidy et al., 2016). Also, an implication of
an RFT perspective is the necessity for AGI systems to have
mechanisms to learn relational frames from interactions with the
environment in a manner similar to how humans learn throughout
their lifetime. This means that AGI systems must be designed with
architectures capable of not just operant conditioning in a traditional
sense, but also with the ability to derive and apply relational frames
dynamically.

A roadmap to AGI from the perspective of functional learning
psychology and RFT would clearly emphasize operant conditioning
abilities at the core, as suggested in this paper. Furthermore, it would
advocate for trainings of increasingly complex AARR, in order to
foster the development of advanced cognitive abilities (Johansson,
2020). Hence, such a roadmap could provide a clear specification of
the requisite stages and milestones necessary for the development of
AGI, aligning with the principles of Relational Frame Theory (RFT)
(Hayes et al., 2001; 2021).

3 Non-axiomatic reasoning systems

A Non-Axiomatic Reasoning System (NARS) is a type of
artificial intelligence system that operates under the assumption
of insufficient knowledge and resources (AIKR) (Wang, 1995;
2006; 2013). The AIKR principle dictates that the system must
function effectively despite having limited information and

computational resources, a scenario that closely mirrors real-world
conditions and human cognitive constraints.

All NARS systems implement a Non-Axiomatic
Logic (NAL) (Wang, 2013), a term logic designed to handle
uncertainty using experience-grounded truth values. Most NARS
systems also makes use of concept-centric memory structure, which
organizes the system’s memory based on terms and subterms
from the logic statements, leading to a more effective control
of the inference process. Furthermore, all NARS systems use
a formal language Narsese, that allows encoding of complex
information and communication of NAL sentences within and
between NARS systems.

3.1 Core principles of NARS

NARS systems are built on a few key concepts that distinguish
them from traditional AI systems (Wang, 2022).

1. Adaptation Under AIKR: Unlike systems that assume
abundant knowledge and resources, NARS thrives under
constraints. It manages finite processing power and storage,
operates in real-time, and handles tasks with varying content
and urgency. This adaptability ensures that NARS remains
relevant in dynamic and unpredictable environments.

2. Experience-BasedLearning andReasoning:Central toNARS
is its concept-centered representation of knowledge. Concepts
in NARS are data structures with unique identifiers, linked
through relations such as inheritance, similarity, implication,
and equivalence. These relationships are context-sensitive
and derived from the system’s experiences, allowing NARS
to continuously update and refine its knowledge base as it
encounters new information.

3. Non-Axiomatic Logic: Traditional AI often relies on
axiomatic systems where certain truths are taken as given.
In contrast, NARS employs non-axiomatic logic, where all
knowledge is subject to revision based on new experiences.
This approach supports a variety of inference methods,
including deduction, induction, abduction, and analogy,
enabling NARS to reason in a manner that is both flexible
and grounded in empirical evidence.

3.2 Problem-solving and learning

NARS processes three types of tasks: incorporating new
knowledge, achieving goals, and answering questions. It uses both
forward and backward reasoning to handle these tasks, dynamically
allocating its limited resources based on task priorities. This
approach, known as case-by-case problem-solving, means that
NARS does not rely on predefined algorithms for specific problems.
Instead, it adapts to the situation at hand, providing solutions that
are contextually appropriate and continuously refined.

Learning in NARS is a self-organizing process (Wang, 2022).
The system builds and adjusts its memory structure—a network of
interconnected concepts—based on its experiences. This structure
evolves over time, allowing NARS to integrate new knowledge,
resolve conflicts, and improve its problem-solving capabilities.

Frontiers in Robotics and AI 05 frontiersin.org65

https://doi.org/10.3389/frobt.2024.1440631
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Johansson 10.3389/frobt.2024.1440631

Unlike many machine learning models that require large datasets
and extensive training, NARS learns incrementally in interaction
with its environment and can accept inputs at various levels of
abstraction, from raw sensorimotor data to complex linguistic
information.

3.3 A unified cognitive model

One of the most significant aspects of NARS is its unified
approach to cognitive functions. In NARS, reasoning, learning,
planning, and perception are not separate processes but different
manifestations of the same underlying mechanism. This integration
provides a coherent framework for understanding and developing
general intelligence, making NARS a versatile tool for a wide range
of AI applications (Wang, 2022).

In conclusion, NARS represents a significant departure from
conventional AI paradigms by embracing the challenges of limited
knowledge and resources. Its unique combination of non-axiomatic
reasoning, experience-based learning, and adaptive problem-
solving positions NARS as a robust model for advancing artificial
general intelligence.

4 OpenNARS for applications

OpenNARS for Applications (ONA) is a highly effective
implementation of a NARS, designed to be suitable for practical
applications such as robotics (Hammer and Lofthouse, 2020). At the
core of ONA lies sensorimotor reasoning, which integrates sensory
processing with motor actions to enable goal-directed behavior
under conditions of uncertainty and limited resources. ONA differs
from other NARS systems in several key aspects, including.

1. Event-Driven Control Process: ONA incorporates an event-
driven control mechanism that departs from the more
probabilistic and bag-based approach used in traditional
NARS implementations, such as OpenNARS (Lofthouse,
2019). This shift allows ONA to prioritize processing based
on the immediacy and relevance of incoming data and tasks.
The event-driven approach is particularly advantageous in
dynamic environments where responses to changes must be
timely and context-sensitive.

2. Separation of Sensorimotor and Semantic Inference:Unlike
other NARS models that often blend various reasoning
functions, ONA distinctly separates sensorimotor inference
from semantic inference (Hammer and Lofthouse, 2020). This
division allows for specialized handling of different types of
reasoning tasks—sensorimotor inference can manage real-
time, action-oriented processes, while semantic inference deals
with abstract, knowledge-based reasoning. This separation
helps to optimize processing efficiency and reduces the
computational complexity involved in handling diverse
reasoning tasks simultaneously.

3. Resource Management: ONA places a strong emphasis on
managing computational resources effectively, adhering to
the Assumption of Insufficient Knowledge and Resources
(AIKR). It is designed to operate within strict memory and

processing constraints, employing mechanisms like priority-
based forgetting and constant-time inference cycles. These
features ensure that ONA can function continuously in
resource-limited settings by efficiently managing its cognitive
load and memory usage.

4. Advanced Data Structures andMemoryManagement:ONA
utilizes a sophisticated system of data structures that include
events, concepts, implications, and a priority queue system for
managing these elements. This setup facilitates more refined
control over memory and processing, prioritizing elements
that are most relevant to the system’s current goals and
tasks. It also helps in maintaining the system’s performance
by managing the complexity and volume of information
it handles.

5. Practical Application Focus: The architectural and control
changes in ONA are driven by a focus on practical application
needs, which demand reliability and adaptability. ONA
is tailored to function effectively in real-world settings
that require autonomous decision-making and adaptation
to changing environments, making it more applicable and
robust than its predecessors for tasks in complex, dynamic
scenarios Hammer and Lofthouse (2020).

4.1 The architecture of ONA

ONA’s architecture is composed of several interrelated
components that work together to process sensory input, manage
knowledge, make decisions, and learn from experience. These
components are designed to handle the dynamic and uncertain
nature of real-world environments, ensuring that the system can
adapt and respond effectively (Hammer, 2022). The architecture
is illustrated in Figure 1. ONA’s architecture has a number of key
components: 1) Event Providers, 2) FIFO Sequencer, 3) Cycling
Events Queue, 4) Concept Memory, 5) Sensorimotor Inference
Block, and 6)Declarative Inference Block. Each of these components
plays a crucial role in ONA’s operation, as described in detail below.

4.1.1 Event providers
Event providers are responsible for processing sensory inputs

from various modalities, converting raw data into structured
statements that the reasoning system can interpret. Each event
provider is specialized for different types of sensory information,
such as visual, auditory, or tactile data. These providers ensure that
all relevant environmental information is captured and encoded as
events, which are then fed into the system for further processing.The
main functionality can be summarized as follows.

• Sensor Data Processing: Event providers preprocess raw
sensor data to filter noise and extract meaningful information.
• Event Encoding: The processed data is encoded into

statements or events that can be understood by the
ONA system.

4.1.2 FIFO sequencer
The FIFO (First-In-First-Out) Sequencer maintains a sliding

window of recent events. This component is essential for building
and strengthening temporal implication links, which are used to
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FIGURE 1
An overview of the architecture in OpenNARS for Applications (ONA). Reprinted with permission from Patrick Hammer, the author of ONA.

understand the sequence of events and their relationships over
time. By keeping track of the recent history, the FIFO Sequencer
allows ONA to form hypotheses about temporal patterns and causal
relationships. As a note, in recent versions of ONA, the FIFO was
removed and replaced by an explicit temporal inference block. This
design is however not yet described in any scientific publications,
and therefore the designwith the FIFOhas been described.Themain
functionality can be summarized as follows.

• Event Sequencing: It organizes events in a chronological order,
maintaining a window of the most recent events.
• Temporal Implications: Builds and strengthens links between

events based on their temporal proximity and sequence.

4.1.3 Cycling Events Queue
The Cycling Events Queue is a priority queue that serves as

the central attention buffer of the system. All input and derived
statements enter this queue, but only a subset can be selected for
processing within a given timeframe due to the fixed capacity of
the queue. This mechanism ensures that the most relevant and
urgent information is processed first, while less critical information
is discarded or delayed. The main functionality can be summarized
as follows.

• Priority Management: Events are prioritized based on their
importance and relevance to current goals.
• Attention Focus: Ensures that the system’s limited processing

resources are focused on the most critical tasks.

4.1.4 Concept Memory
Concept Memory acts as the long-term memory of the

ONA system. It stores temporal hypotheses and supports their
strengthening or weakening based on prediction success. This
memory component allows ONA to retain knowledge over long
periods, enabling cumulative learning and the ability to recall
past experiences to inform current decision-making. The main
functionality can be summarized as follows.

• Hypothesis Management: Stores and manages temporal and
procedural hypotheses about the environment.
• Evidence Accumulation: Strengthens or weakens stored

hypotheses based on new evidence and prediction
outcomes.

4.1.5 Sensorimotor Inference Block
The Sensorimotor Inference Block is responsible for handling

decision-making and subgoaling processes for goal events
selected from the Cycling Events Queue. This component
invokes algorithms for goal achievement, generating actions
or subgoals that guide the system’s behavior towards fulfilling
its objectives. The main functionality can be summarized
as follows.

• Decision Making: Selects the best actions to achieve current
goals based on stored knowledge and recent events.
• Subgoaling: Decomposes complex goals into manageable

subgoals, facilitating step-by-step achievement of objectives.
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4.1.6 Declarative Inference Block
The Declarative Inference Block is responsible for higher-level

reasoning tasks such as feature association, prototype formation,
and relational reasoning. It utilizes human-provided knowledge
to enhance the system’s understanding of the environment and
improve its reasoning capabilities. Though not utilized in the
specific experiments described in the paper, this block is crucial for
applications requiring complex knowledge integration and abstract
reasoning. The main functionality can be summarized as follows.

• FeatureAssociation:Links related features and concepts based
on observed patterns and external knowledge.
• Relational Reasoning: Understands and reasons about

relationships between different concepts and entities.

4.2 The operations of ONA

The main operations of ONA will be described below.

4.2.1 Truth value calculation
Truth values inONAare based on positive and negative evidence

supporting or refuting a statement, respectively. The system uses
two measures: frequency (the ratio of positive evidence to total
evidence) and confidence (the ratio of total evidence to total
evidence plus one). This approach allows ONA to represent degrees
of belief, accommodating the inherent uncertainty in real-world
information.

The calculation of frequency and confidence is conducted as
follows. Frequency: f = w+

w
, and Confidence: c = w

w+1
, where w is the

total amount of evidence, and w+ is the positive evidence.
These values are used to evaluate the truth of implications and

guide decision-making processes, ensuring that actions are based on
the most reliable and relevant information available.

4.2.2 Implications and learning
ONA forms temporal and procedural implications through

induction and revises them based on new evidence. Temporal
implications represent sequences of events, while procedural
implications represent action-outcome relationships. Learning
involves accumulating positive and negative evidence for these
implications and adjusting their truth values accordingly. Also if
an implication exists (for example, <(<A1 –> [left]> &/

ˆleft) =/> G>, and A1 was observed followed by ˆleft, an
assumption of failure will be applied to the implication for implicit
anticipation. This means, if the anticipation fails, the truth of the
implication will be reduced by the addition of negative evidence,
via an implicit negative G event, while the truth will increase due to
positive evidence in case G happened.

The learning process at the core consists of.

• Event Sequences: Implications are formedwhen related events
occur within the sliding window maintained by the FIFO
Sequencer.
• Evidence Update: Positive and negative evidence is

accumulated and used to revise the truth values of
implications, ensuring they reflect the system’s experiential
knowledge.

4.2.3 Decision making and subgoaling
ONA’s decision-making process is goal-driven, leveraging its

knowledge of temporal and procedural implications to select actions
or generate subgoals. The system evaluates the desire value of goals
and subgoals, prioritizing them based on their likelihood of success
and relevance to current objectives. The decision process can be
described as follows.

• Goal Deduction and Evaluation: Determines the most
desirable actions or subgoals based on stored implications and
recent events.
• Subgoal Generation: Breaks down complex goals into smaller,

manageable subgoals, facilitating efficient achievement
through step-by-step actions.

4.2.4 Motor babbling
To trigger executions when no procedural knowledge yet exists,

ONA periodically invokes random operations, a process called
Motor Babbling. This enables ONA to execute operations despite
any procedural knowledge that applies. Without this ability, ONA
would not be able to do its initial steps of learning procedural
knowledge (Hammer and Lofthouse, 2020).

4.3 Conclusion

The architecture of ONA integrates various components
that collectively enable it to reason, learn, and make decisions
under conditions of uncertainty and resource constraints. By
demonstrating aspects of natural intelligence, such as continuous
learning and goal-driven behavior, ONA offers a robust framework
for developing intelligent systems capable of adapting to the
complexities of real-world environments.

5 Related work

While we are not aware of any other attempt to integrate
functional learning psychology with the Non-Axiomatic Reasoning
System (NARS), there are several approaches that aim to implement
the “biological basis” of operant conditioning using computational
modeling or similar approaches. Importantly, it seems like most of
these attempts take amechanistic approach to operant conditioning,
rather than a functional approach (as in this paper). Reinforcement
learning, particularly model-free methods like Q-Learning and
Deep Q-Networks (DQN), has gained significant attention for
its ability to learn optimal policies through interactions with the
environment (Mnih et al., 2015). These methods rely on the Markov
property, where the next state depends only on the current state and
action, simplifying the learning process but also limiting the system’s
ability to handle non-Markovian environments.

ONA diverges fromRL by adopting a reasoning-based approach
grounded in Non-Axiomatic Logic (NAL). Unlike RL, which
optimizes a predefined reward function, ONA emphasizes real-time
reasoning under uncertainty, adapting to insufficient knowledge
and resources (Wang, 2013). This allows ONA to handle complex,
non-Markovian environments more effectively. While RL methods
struggle with sparse rewards and require extensive data to learn,
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ONA leverages its reasoning capabilities to infer causal relationships
and plan actions based on partial knowledge, making it more data-
efficient (Hammer, 2022).

In summary, while reinforcement learning remains a powerful
tool for specific, well-defined tasks, ONA offers a robust alternative
for more complex, real-time applications. Its integration of
reasoning under uncertainty, goal-driven learning, and adaptability
positions it as a significant advancement in the quest for
generalizable and resilient AI systems (Hammer, 2022).

6 Machine Psychology

Machine Psychology is an interdisciplinary framework for
advancing AGI research. It aims to integrate principles from operant
learning psychology (as described in Section 2), with the theory
and implementation of NARS (as described in Sections 3 and 4).
At the core of the integration is the assumption that adaptation is
fundamental to intelligence, both biological and artificial.

Generally, Machine Psychology can be said to be a functional
approach (as defined in Section 2 to the problem of building an
AGI system. With this, we mean that the Machine Psychology
framework enables the possibility to not only study functional
relations between changes in the environment and changes in
behavior (as in operant psychology), but also to study functional
relations betweenmechanisms and changes in behavior.Hence, both
experience of the system, and its mechanisms could in principle be
manipulated.

In the case with studying operant conditioning with NARS, it
means that it is indeed possible to both manipulate the system’s
experience, but also, in principle, tomanipulate themechanisms that
are available (or not) during an experimental task.

This interdisciplinary approach might be likened to
Psychobiology, that integrates psychology and biology (Dewsbury,
1991). Psychobiology is an interdisciplinary field that integrates
biological and psychological perspectives to study the dynamic
processes governing behavior and mental functions in whole,
integrated organisms. It emphasizes the interaction between
biological systems, such as the nervous and endocrine systems,
and psychological phenomena, such as cognition, emotion, and
behavior. This approach allows for the dual manipulation of
factors related to both experience (as in psychology) and biological
processes (as in biology) within a unified framework. By doing so,
psychobiology provides a comprehensive understanding of how
environmental and experiential factors can influence biological
states and how biological conditions can shape psychological
experiences, thus bridging the gap between the two domains
to offer holistic insights into human and animal behavior
(Dewsbury, 1991; Ritz and von Leupoldt, 2023).

Hence, one way to describe Machine Psychology, is that it
is to computer science (and particularly NARS theory), as what
Psychobiology is to biology.

6.1 An interaction with NARS

Within a Machine Psychology approach to NARS, it is possible
to interact with NARS as one would do with an organism

in psychological research in general. This will be illustrated in
this section.

An example interaction can be described as follows, where each
line endswith:|:, indicating temporal statements. First, a nonsense
symbol A1 is presented to the left. Then, A2 is presented to the
right. After that, the event G is established as something desirable
by the system (the ! indicates that the system desires the event).
This triggers the system to execute an operation (for example, the
operation ˆleft). The researcher could then provide the event G
as a consequence, leading to a derived contingency statement by the
system. The entire interaction can be described as follows (where//
represents comments):

<A1 --> [left]>. :|: // A1 is presented

to the left

<A2 --> [right]>. :|: // A2 is presented

to the right

G! :|: // G is established as a desired

event
^left. :|: // ^left executed by the system

G. :|: // G is provided as a consequence

<(<A1 --> [left]> &/ ^left) =/> G> //

Derived by the system

This example aims to provide an example of how the researcher
might interact with NARS, as if it was a biological organism.
The researchers presents events, and the system responds, and the
researcher once again presents an event as a consequence.

As part of this study, all interactions with ONA was done
via its Python interface. Specifically, experimental designs was
conducted in the Python-based open source experimental
software OpenSesame, that was configured to interact with ONA
(Mathôt et al., 2012; Mathôt and March 2022).

6.2 Learning psychology with NARS

Given the above example, it should be clear that interactions
between NARS and its environment can be analyzed using the
terms provided by functional learning psychology, as provided
in Section 2. The operant learning examples are described at the
descriptive level (the level of procedure), and learning effects
can be described at the functional level. The analog to the
cognitive/mechanistic level is the operations of theNARS system, as,
for example, described in Sedtion 4.2. The three-term contingency
(as described in Section 2.1) can be used to describe relations of
events, operations and consequences. In the example above, the
event <A1 –> [left]> functions as a discriminative stimulus,
ˆleft is a response, and G functions as a reinforcer. Importantly
though, the G! (that establishes G as desired event) functions as an
establishing operation.

7 Methods

7.1 OpenNARS for applications

The study used a version of OpenNARS for Applications (ONA)
compiled with the parameter SEMANTIC_INFERENCE_NAL_

LEVEL set to 0, which means that only sensorimotor reasoning
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were to be used. Hence, no declarative inference rules were available
during the experiments.

For all three experiments, ONA was configured at starting time
in the following way:
∗babblingops=2
∗motorbabbling=0.9
∗setopname 1 ^left

∗setopname 2 ^right

∗volume=100
This indicates that ONA was set to have two operators ˆleft

and ˆright, and an initial chance of 90% for motor babbling.

7.2 Encoding of experimental setup

All experimental tasks were presented as temporal Narsese
statements, as indicated by the:|:markers below. An arbitrary goal
event G! :|: was presented at the end to trigger the execution of
one of the two procedural operationsˆleft andˆright (through
motor babbling or a decision). During training, feedback was given
in the formofG. :|: (meaning to reinforce a correct choice) orG.
:|: {0.0 0.9} (to indicate that the systemhad conducted an incorrect
choice). Between each trial, 100 time steps was entered, by feeding
100 to ONA.

<A1 --> [sample]>. :|:

<B1 --> [left]>. :|:

<B2 --> [right]>. :|:

G! :|:

The first three lines are so-called inheritance statements, with
properties on the right-hand side, indicating that the events A1, B1
and B2 are either on the left, right or at the position of a sample.

7.3 Experimental designs

In this section, the experimental designs will be detailed of the
three tasks: 1) The simple discrimination task, 2) The changing
contingencies task, and 3) The conditional discriminations task. The
tasks are further illustrated with a few examples in Figure 2.

The first experiment investigated if NARS could learn in
the form of operant conditioning, specifically in the form of
simple discriminations. In the experiment, three phases were used:
Baseline assessment, Training (with feedback), and Testing (without
feedback). In all phases, training and testing were done in blocks of
trials. One trial could, for example, be that A1 was to the left, and
A2 was to the right. A block contained twelve trials, with the two
possible trials possible (depending on the location of A1 and A2),
each presented six times in random order.

1. Baseline: During the baseline assessment, which was three
blocks, no feedback was given. This phase was included to
establish a baseline probability of responding correct. It was
expected that the system would respond correctly by chance
in 50% of the trials.

2. Training: Then, the system was trained on a set of three
blocks. Feedback was given when the system was correct (for
example, executing ˆleftwhenA1 was to the left), and when
not correct.

3. Testing: The system was then tested (without feedback) on
three blocks, with the contingencies that previously had
been trained.

The second experiment investigated if ONA could adapt to
changing conditions midway through the task. Five phases were
used: Baseline, Training 1 (with feedback), Testing 1 (without
feedback), Training 2 (with feedback), and Testing 2 (without
feedback). All blocks contained twelve trials.

1. Baseline: Two blocks, where no feedback was given.
2. Training 1: Four blocks of, where feedback was given. This

phase aimed to train the system in executing ˆleft when A1
was to the left, and ˆright when A1 was to the right.

3. Testing 1:Then, the systemwas tested over two blocks (without
feedback) on what was trained the previous phase.

4. Training 2:This phase of four blocks aimed to train in reversed
contingencies compared to the first training. That is, the phase
aimed to train ONA into executing ˆleft when A2 was to
the left (and henceA1 to the right), and ˆrightwhenA2 was
to the right.

5. Testing 2: Over two blocks, the system was tested, without
feedback, on the contingencies trained in the previous phase.

Finally, in the third experiment, that investigated if the system
could learn conditional discriminations, three phases were used:
Baseline, Training, and Testing.

1. Baseline: Three blocks of 12 trials, where no
feedback was given.

2. Training: Six blocks, where feedback was given. For example,
when A1 was the sample, and B1 to the left, the system was
reinforced for executing ˆleft.

3. Testing: The system was then tested, without feedback, on
three blocks of 12 trials, with the contingencies that previously
had been trained.

8 Results

8.1 Simple discrimination task

During baseline, the amount of correct trials ranged between
0% and 50% during the three blocks, indicating that no learning
happened. In the training phase, NARS was 100% correct on
all trials already in the second out of three blocks, indicating
a rapid learning. Finally, in the testing, where no feedback
was provided, NARS performed consistently 100% correct
across all three blocks of trials. The results are illustrated in
Figure 3.

The average confidence values for the two target hypotheseswent
from 0.56 to 0.82. These two hypotheses were

<(<A1 --> [left]> &/ ^left) =/> G>

and
<(<A1 --> [right]> &/ ^right) =/> G>

The increase in average confidence value is also
illustrated in Figure 3.

In summary, the results indicate that ONA indeed can learn in
the form of operant conditioning.
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FIGURE 2
Examples from the three experimental tasks investigated.

FIGURE 3
Operant conditioning. Dots illustrate the percent of correct in blocks of 12 trials. The solid line shows the mean NARS confidence value for hypotheses.
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FIGURE 4
Operant conditioning with changing contingencies. Dots illustrate the percent of correct in blocks of 12 trials. The solid lines show the mean NARS
frequency values for the respective hypotheses.

8.1.1 NARS examples from the training phase
A few example trials from the training session follows. Let’s say

that the system was exposed to the following NARS statements:
<A2 --> [left]>. :|:

<A1 --> [right]>. :|:

G! :|:

If it is early in the training, NARS might use Motor Babbling
to execute the ˆright operation. Since this is considered correct
in the experiment, the feedback G. :|: would be given to NARS,
followed by 100 time steps. Only from this single interaction, NARS
would form a hypothesis using Temporal Induction:

<(<A1 --> [right]> &/ ^right) =/> G>

When the same situation happens again later during the
training phase, ONA will not rely on motor babbling, but
instead use its decision making algorithm and Goal Deduction, as
detailed by (Hammer, 2022).

8.2 Changing contingencies task

As expected, no learning happened during the baseline phase,
where NARS was less than 25% correct in both phases. In the first
training phase, NARS was 100% correct after two completed blocks
of 12 trials. During testing, the system was 100% correct without
any feedback being present. In the second training phase, where the
contingencies were reversed, the system could adapt to the change
as indicated by the increase in number of correct responses over
time, with 75% correct in the final block of the phase. Finally, in the
second testing phase, the system’s performance was 91.7% correct,
indicating that a successful retraining had been conducted. The
results are further illustrated in Figure 4.

To further illustrate how the NARS system was able to adapt to
changing contingencies, the change in average frequency value of
the two target hypotheses can be described over time. This is also
illustrated in Figure 4. As seen in Figure 4, the average frequency
value for the first hypothesis was close to 1.0 during the first training
and testing, meaning that the system had not received any negative
evidence. However, when the contingencies were reversed in the
second training phase, the frequency value of the first hypothesis
immediately decreased, taking the negative evidence into account.
The frequency value of the second hypothesis however, did not
rise above zero until the start of the second training, where the
hypothesis got positive evidence for the first time.

These results do all together indicate that a NARS system can
adapt in realtime in the form that is necessary when contingencies
are reversed midway through a task.

8.2.1 Examples from changed contingencies
Theexperiment starts out similar as to the example in Section 8.1.1

during the first training phase. However, after the contingencies
change, and reinforcement is not provided for executing ˆleft

and ˆright when A1 is to the left and right, respectively, the
system is forced to readapt. For example, if the following situation is
shown to the system:

<A1 --> [left]>. :|:

<A2 --> [right]>. :|:

G! :|:

The system will execute ˆleft based on its previous learning.
However, instead of G. :|: as a consequence, G. :|: {0.0 0.9}
will be provided. An explanation of how Revision is used will
be provided.
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Before the negative feedback, the following hypothesis will have
a frequency close to 1.0:

<(<A1 --> [left]> &/ ^left) =/> G>.

{0.98, 0.41}
In the above, 0.98, 0.41 means frequency = 0.98, and

confidence = 0.41.
However, with the negative feedback shown above, the following

hypothesis will be derived:
<(<A1 --> [left]> &/ ^left) =/> G>.

{0.00, 0.19}
Together, these two hypothesis with different truth values will be

revised as follows:
<(<A1 --> [left]> &/ ^left) =/> G>.

{0.74, 0.48}
When NARS combines the positive and negative evidence, the

frequency value goes down from 0.98 to 0.74, and the confidence
value goes up from 0.41 to 0.48, as the system has gained even more
evidence and is more confident in its conclusions.

With repeated examples smilar to the above, the system will
eventually go back tomotor babbling, andˆrightwill be executed,
leading to a reinforcing consequence. That will lead to the following
hypothesis being formed:

<(<A2 --> [right]> &/ ^right) =/> G>.

In summary, the mechanism of Revision, in combination to
what have been covered previously, enables the system to adapt to
changing contingencies.

8.3 Conditional discriminations task

As with the previous experiments, no learning happened during
the three-block baseline. During training, NARSwasmore than 75%
correct after two completed blocks of 12 trials. In the testing, NARS
performed 100% correct, without feedback, across three blocks of
trials. These results are illustrated in Figure 5.

The four target hypotheses were the following:
<((<A1 --> [sample]> &/ <B1 --> [left]>)

&/ ^left) =/> G>

<((<A1 --> [sample]> &/ <B1 --> [right]>)

&/ ^right) =/> G>

<((<A2 --> [sample]> &/ <B2 --> [left]>)

&/ ^left) =/> G>

<((<A2 --> [sample]> &/ <B2 --> [right]>)

&/ ^right) =/> G>

The average confidence value for these hypotheses
increased from 0.13 to 0.70 during the training phase, as also
illustrated in Figure 5.

8.3.1 NARS examples from conditional
discrimination training

A few example trials from the training session follows. Let’s say
that the system was exposed to the following NARS statements:

<A1 --> [sample]>. :|:

<B2 --> [left]>. :|:

<B1 --> [right]>. :|:

G! :|:

If it is early in the training, NARS might use motor babbling to
execute the ˆright operation. Since this is considered correct in

the experiment, the feedback G. :|: would be given to NARS,
followed by 100 time steps. From this single interaction, NARS
would form a hypothesis:

<((<A1 --> [sample]> &/ <B1 --> [right]>)

&/ ^right) =/> G>.

// frequency: 1.00, confidence: 0.15

Importantly, after this single trial, NARS would also form
simpler hypothesis such as:

<(<B1 --> [right]> &/ ^right) =/> G>.

// frequency: 1.00, confidence: 0.21

<(<A1 --> [sample]> &/ ^right) =/> G>.

// frequency: 1.00, confidence: 0.16

This means, that if the same trial was to be presented again
(all four possible trials will be presented three times in a block of
twelve trials), NARSwould respondˆright again, but the decision
being based on the simpler hypothesis, since that hypothesis has the
highest confidence value.

Let’s say, that within the same block of 12 trials, the next trial to
be presented to NARS was the following:

<A1 --> [sample]>. :|:

<B1 --> [left]>. :|:

<B2 --> [right]>. :|:

G! :|:

NARS would initially respond ˆright, with the decision being
made from the simple hypothesis <(<A1 –> [sample]> &/

ˆright) =/> G> .
This would be considered wrong in the experiment, and the

feedbackG. :|: {0.0 0.9} would be given toNARS.Thiswould
lead to negative evidence for the simple hypothesis. If the same
trial was presented again, NARS would then likely resort to motor
babbling that could execute the ˆleft operation. Over repeated
trials with feedback, the simpler hypotheses would getmore negative
evidence, and the confidence values of the more complex target
hypotheses would increase.

In summary, NARS can learn increasingly complex hypotheses,
with repeated examples.

8.4 NARS mechanisms

Given the examples above, we will now provide further
clarifications of the results in terms of mechanisms and inference
rules that are implemented in ONA.

In all three tasks, the confidence increase followed from
repeated examples which provide evidence to the respective target
hypotheses. For this to happen and to derive the truth values, the
following mechanisms in NARS were necessary.

1. Temporal induction: Given events that A1 is to the left, the
ˆleft operation, and G, then derive positive evidence for a
relation like<(<A1 –> [left]> &/ ˆleft) =/> G>

2. Goal deducation:Given for example, <(<A1 –> [left]>

&/ ˆleft) =/> G> and a precondition that A1 is to the
left, and the eventG!, then by deduction derive that theˆleft
operation is to be executed.

3. Motor babbling:The ability to execute operations functions as
themeans for exploration in the sense that it enables the system
to try out new things.
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FIGURE 5
Conditional discriminations. Dots illustrate the percent of correct in blocks of 12 trials. The solid line shows the mean NARS confidence value for
hypotheses.

4. Anticipation: To derive negative evidence to a hypothesis,
based on that the antedecent happened but the consequent did
not. For example, <(<A1 –> [sample]> &/ ˆright)

=/> G> can receive negative evidence based on anticipation.
5. Revision:To summarize the positive evidence and the negative

evidence for a statement.

9 Discussion and conclusion

The results of this study demonstrate the feasibility and
effectiveness of integrating principles from operant conditioning
with the Non-Axiomatic Reasoning System (NARS) to advance the
field of Artificial General Intelligence (AGI). This interdisciplinary
framework, referred to as Machine Psychology, offers a novel
approach to understanding and developing intelligent systems by
emphasizing adaptation, a core aspect of both biological and
artificial intelligence.

9.1 Summary of findings

The experiments conducted in this study aimed to evaluate
the ability of NARS, specifically the OpenNARS for Applications
(ONA) implementation, to perform operant conditioning
tasks. The three tasks—simple discrimination, changing
contingencies, and conditional discriminations—provided a
comprehensive assessment of the system’s learning and adaptation
capabilities.

In the simple discrimination task, NARS demonstrated rapid
learning, achieving 100% correct responses during the training
phase and maintaining this performance in the testing phase

without feedback. This indicates that NARS can effectively learn
and adapt based on positive reinforcement, a key aspect of operant
conditioning.

The changing contingencies task further highlighted the system’s
adaptability.When the contingencieswere reversedmidway through
the task, NARS was able to adjust its behavior accordingly, showing
a significant decrease in errors and an increase in correct responses
during the retraining phase.This flexibility is crucial forAGI systems
operating in dynamic environments where conditions can change
unpredictably.

The conditional discriminations task showcased NARS’s
ability to handle more complex learning scenarios. Despite
the increased difficulty, the system achieved high accuracy,
indicating that it can form and utilize more intricate
hypotheses based on conditional cues. This capability is
essential for developing AGI systems that require sophisticated
cognitive skills.

9.2 Implications for AGI research

The success of NARS in these operant conditioning tasks has
several important implications for AGI research. First, it validates
the use of learning psychology principles, particularly operant
conditioning, as a guiding framework for developing intelligent
systems. The results suggest that mechanisms enabling operant
conditioning are integral to the development of adaptive behaviors
and cognition in AGI systems.

Second, the experiments carried out as part of this study, can
be said to constitute key milestones of AGI research, as has been
suggested by us elsewhere (Johansson, 2020). Operant psychology
research provides examples of increasingly complex tasks, that can
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be used to test the abilities of an AGI system. The use of functional
learning psychology principles to guide AGI research also enable
metrics to be used to evaluate AGI systems, as demonstrated in
this paper.

Third, the study highlights the potential of NARS as a robust
model for AGI. Unlike traditional AI systems that rely on predefined
algorithms and large datasets, NARS operates effectively under
conditions of insufficient knowledge and resources.This adaptability
makes it well-suited for real-world applications where information
is often incomplete and environments are constantly changing.

Fourth, the integration of sensorimotor reasoning with operant
conditioning principles in ONA provides a scalable and flexible
framework forAGI development. By demonstrating aspects of natural
intelligence, such as continuous learning and goal-driven behavior,
ONA offers a practical approach to building intelligent systems that
can interact with and learn from their environments in real-time.

9.3 Future directions

The findings of this study open several avenues for future
research. One potential direction is to explore the integration
of additional cognitive and behavioral principles from functional
learning psychology into NARS. Future research can be guided by
operant theories of cognition, such as Relational Frame Theory, as
suggested by Johansson (2019).

Another important direction is to apply the Machine Psychology
framework to more complex and diverse tasks beyond the idealized
examplesprovided in thispaper.By testingNARSinvariousreal-world
scenarios, such as autonomous robotics, natural language processing,
andhuman-computerinteraction,researcherscanevaluatethesystem’s
generalizability and robustness across different domains.

Additionally, further refinement of the sensorimotor inference
and declarative inference components in ONA could lead to
improvements in the system’s performance. Enhancing the efficiency
of resource management, memory structures, and event-driven
control processes will be critical for scaling up the system to handle
more sophisticated tasks and larger datasets.

9.4 Conclusion

In conclusion, this study demonstrates that integrating operant
conditioning principles with NARS offers a promising pathway
for advancing AGI research. The Machine Psychology framework
provides a coherent and experimentally grounded approach to
studying and developing intelligent systems. By emphasizing
adaptation and learning from environmental interactions, this
interdisciplinary approach has the potential to significantly advance

the field of AGI and bring us closer to achieving human-level
artificial intelligence.
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Inferential decision-making algorithms typically assume that an underlying
probabilistic model of decision alternatives and outcomes may be learned a
priori or online. Furthermore, when applied to robots in real-world settings they
often perform unsatisfactorily or fail to accomplish the necessary tasks because
this assumption is violated and/or because they experience unanticipated
external pressures and constraints. Cognitive studies presented in this and
other papers show that humans cope with complex and unknown settings by
modulating between near-optimal and satisficing solutions, including heuristics,
by leveraging information value of available environmental cues that are
possibly redundant. Using the benchmark inferential decision problem known
as “treasure hunt”, this paper develops a general approach for investigating and
modeling active perception solutions under pressure. By simulating treasure
hunt problems in virtual worlds, our approach learns generalizable strategies
from high performers that, when applied to robots, allow them to modulate
between optimal and heuristic solutions on the basis of external pressures
and probabilistic models, if and when available. The result is a suite of active
perception algorithms for camera-equipped robots that outperform treasure-
hunt solutions obtained via cell decomposition, information roadmap, and
information potential algorithms, in both high-fidelity numerical simulations
and physical experiments. The effectiveness of the new active perception
strategies is demonstrated under a broad range of unanticipated conditions that
cause existing algorithms to fail to complete the search for treasures, such as
unmodelled time constraints, resource constraints, and adverse weather (fog).

KEYWORDS

satisficing, heuristics, active perception, human, studies, decision-making, treasure
hunt, sensor

1 Introduction

Rational inferential decision-making theories obtained from human or robot studies
to date assume that a model me be used either off-line or on-line in order to compute
satisficing strategies that maximize appropriate utility functions and/or satisfy given
mathematical constraints (Simon, 1955; Herbert, 1979; Caplin and Glimcher, 2014;
Nicolaides, 1988; Simon, 2019). When a probabilistic world model is available, for
example, methods such as optimal control, cell decomposition, probabilistic roadmaps,
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and maximum utility theories, may be applied to inferential
decision-making problems such as robot active perception,
planning, and feedback control (Fishburn, 1981; Lebedev et al.,
2005; Scott, 2004; Todorov and Jordan, 2002; Ferrari andWettergren,
2021; Latombe, 2012; LaValle, 2006). In particular, active perception,
namely, the ability to plan and select behaviors that optimize
the information extracted from the sensor data in a particular
environment, has broad and extensible applications in robotics that
also highlights human abilities to make decisions when only partial
or imperfect information is available.

Many “model-free” reinforcement learning (RL) and
approximate dynamic programming (ADP) approaches have also
been developed on the basis of the assumption that a partial or
imperfect model is available in order to predict the next system state
and/or “cost-to-go”, and optimize the immediate and potential future
rewards, such as information value (Bertsekas, 2012; Si et al., 2004;
Powell, 2007; Ferrari and Cai, 2009; Sutton and Barto, 2018;Wiering
and Van Otterlo, 2012; Abdulsaheb and Kadhim, 2023). Given
the computational burden carried by learning-based methods,
various approximations have also been proposed. For instance,
approximate dynamic programming (ADP) methods have been
developed based on the assumption that a partial or imperfectmodel
is available to predict the next system state and/or “cost-to-go.”These
methods aim to optimize immediate and potential future rewards,
such as information value (Bertsekas, 2012; Si et al., 2004; Powell,
2007; Ferrari and Cai, 2009; Sutton and Barto, 2018; Wiering and
Van Otterlo, 2012), typically also exploiting world models available
a priori in order to predict the next world state.

Other machine learning (ML) and artificial intelligence (AI)
methods can be broadly categorized into two fundamental learning-
based approaches. The first approach is deep reinforcement learning
(DRL), where models incorporate classical Markov decision process
theories and use a human-crafted or data-extracted reward
function to train an agent to maximize the probability of
gaining the highest reward (Silver et al., 2014; Lillicrap et al., 2015;
Schulman et al., 2017). The second approach follows the learning
from demonstration paradigm, also known as imitation learning
(Chen et al., 2020; Ho and Ermon, 2016). Because of their need for
extensive and domain-specific data, data-driven methods are also
not typically applicable to situations that cannot be foreseen a priori.

Given the ability of natural organisms to cope with uncertainty
and adapt to unforeseen circumstances, a parallel thread of
development has focused on biologically inspired models, especially
for perception-based decision making. These methods are typically
computationally highly efficient and include motivational models,
which use psychological motivations as incentives for agent
behaviors (Lewis and Cañamero, 2016; O’Brien and Arkin, 2020;
Lones et al., 2014), cognitive models, which transfer human mental
and emotional functions into robots (Vallverdú et al., 2016; Martin-
Rico et al., 2020). The implementation of cognitive models are
usually in the form of heuristics, and their applications range from
energy level maintenance (Batta and Stephens, 2019) to domestic
environment navigation (Kirsch, 2016).

Humans have also been shown to use internal world models
for inferential decision-making whenever possible, a characteristic
first referred to as “substantial rationality” in (Simon, 1955; Herbert,
1979). As also shown by the human studies on passive and
active satisficing perception presented in this paper, given sufficient

data, time, and informational resources, a globally rational human
decision-maker uses an internal model of available alternatives,
probabilities, and decision consequences to optimize both decision
and information value in what is known as a “small-world”
paradigm (Savage, 1972). In contrast, in “large-world” scenarios,
decision-makers face environmental pressures that prevent them
from building an internal model or quantifying rewards, because
of pressures such as missing data, time and computational power
constraints, or sensory deprivation, yet still manage to complete
tasks by using “bounded rationality” (Simon, 1997). Under these
circumstances, optimization-based methods may not only be
infeasible, returning no solution, but also cause disasters resulting
from failing to take action (Gigerenzer and Gaissmaier, 2011).
Furthermore, Simon and other psychologists have shown that
humans can overcome these limitations in real life via “satisficing
decisions” that modulate between near-optimal strategies and the
use of heuristics to gather new information and arrive at fast and
“good-enough” solutions to complete relevant tasks.

To develop satisficing solutions for active robot perception,
herein, we consider here the class of sensing problems known
as treasure hunt (Ferrari and Cai, 2009; Cai and Ferrari, 2009;
Zhang et al., 2009; Zhang et al., 2011). The mathematical model
of the problem, comprised of geometric and Bayesian network
descriptions demonstrated in (Ferrari and Wettergren, 2021; Cai
and Ferrari, 2009), is used to develop a new experimental design
approach that ensures humans and robots experience the same
distribution of treasure hunts in any given class, including time,
cost, and environmental pressures inducing satisficing strategies.
This novel approach enables not only the readily comparison of the
human-robot performance but also the generalization of the learned
strategies to any treasure hunt problem and robotic platform.
Hence, satisficing strategies are modeled using human decision
data obtained from passive and active satisficing experiments,
ranging from desktop to virtual reality human studies sampled
from the treasure hunt model. Subsequently, the new strategies are
demonstrated through both simulated and physical experiments
involving robots under time and cost pressures, or subject to sensory
deprivation (fog).

The treasure hunt problem under pressure, formulated in
Section 2. and referred to as satisficing treasure hunt herein, is an
extension of the robot treasure hunt presented in Cai and Ferrari
(2009); Zhang et al. (2009), which introduces motion planning and
inference in the search for Spanish treasures originally used in Simon
and Kadane (1975) to investigate satisficing decisions in humans.
Whereas the search for Spanish treasures amounts to searching
a (static) decision tree with hidden variables, the robot treasure
hunt involves a sensor-equipped robot searching for targets in an
obstacle-populated workspace. As shown in Ferrari and Wettergren
(2021) and references therein, the robot treasure hunt paradigm is
useful in many mobile sensing applications involving multi-target
detection and classification. In particular, the problem highlights
the coupling of action decisions that change the physical state of
the robot (or decision-maker) with test decisions that allow the
robot to gather information from the targets via onboard sensors. In
this paper, the satisficing treasure hunt is introduced to investigate
and model human satisficing perception strategies under external
pressures in passive and active tasks, first via desktop simulations
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and then in the Duke immersive Virtual Environment (DiVE)
(Zielinski et al., 2013), as shown in Supplementary Figure S1.

To date, substantial research has been devoted to solving treasure
hunt problems for many robots/sensor types, in applications as
diverse as demining infrared sensors and underwater acoustics,
under the aforementioned “small-world” assumptions (Ferrari and
Wettergren, 2021). Optimal control and computational geometry
solution approaches, such as cell decomposition (Cai and Ferrari,
2009), disjunctive programming (Swingler and Ferrari, 2013), and
information roadmap methods (IRM) (Zhang et al., 2009), have
been developed for optimizing robot performance by minimizing
the cost of traveling through the workspace and processing
sensor measurements, while maximizing the sensor rewards such
as information gain. All these existing methods assume prior
knowledge of sensor performance and of the workspace, and are
applicable when the time and energy allotted to the robot are
adequate for completing the sensing task. Information-driven path
planning algorithm integrated with online mapping, developed in
Zhu et al. (2019); Liu et al. (2019); Ge et al. (2011), have extended
former treasure hunt solutions to problems in which a prior
model of the workspace is not available and must be obtained
online. Optimization-based algorithms have also been developed for
fixed end-time problems with partial knowledge of the workspace,
on the basis of the assumption that a probabilistic model of
the information states and unlimited sensor measurements are
available (Rossello et al., 2021). This paper builds on this previous
work to develop heuristic strategies applicable when uncertainties
cannot be learned or mathematically modeled in closed form, and
the presence of external pressures might prevent task completion,
e.g., adverse weather or insufficient time/energy.

Inspired by previous findings on human satisficing heuristic
strategies (Gigerenzer and Gaissmaier, 2011; Gigerenzer, 1991;
Gigerenzer and Goldstein, 1996; Gigerenzer, 2007; Oh et al., 2016),
this paper develops, implements, and compares the performance
between existing treasure hunt algorithms and human participants
engaged in the same sensing tasks and experimental conditions
by using a new design approach. Subsequently, human strategies
and heuristics outperforming existing state-of-the-art algorithms
are identified and modeled from data in a manner that can
be extended to any sensor-equipped autonomous robot. The
effectiveness of these strategies is then demonstrated with camera-
equipped robots via high-fidelity simulations as well as physical
laboratory experiments. In particular, humanheuristics aremodeled
by using the “three building blocks” structure for formalizing general
inferential heuristic strategies presented in Gigerenzer and Todd
(1999). The mathematical properties of heuristics characterized by
this approach are then compared with logic and statistics, according
to the rationale in Gigerenzer and Gaissmaier (2011).

Three main classes of human heuristics for inferential decisions
exist: recognition-based decision-making (Ratcliff and McKoon,
1989; Goldstein and Gigerenzer, 2002), one-reason decision-
making (Gigerenzer, 2007; Newell and Shanks, 2003), and trade-
off heuristics (Lichtman, 2008). Although categorized by respective
decision mechanisms, these classes of human heuristics have been
investigated in disparate satisficing settings, thus complicating the
determination of which strategies are best equipped to handle
different environmental pressures. Furthermore, existing human
studies are typically confined to desktop simulations and do not

account for action decisions pertaining to physical motion and path
planning in complex workspaces. Therefore, this paper presents a
new experimental design approach (Section 3) and tests in human
participants to analyze and model satisficing active perception
strategies (Section 7) that are generalizable and applicable to robot
applications, as shown in Section 8.

The paper also presents new analysis and modeling studies of
human satisficing strategies in both passive and active perception
and decision-making tasks (Section 3). For passive tasks, time
pressure on inference is introduced to examine subsequent
effects on human decision-making in terms of decision model
complexity and information gain. The resulting heuristic strategies
(Section 5) extracted from human data demonstrate adaptability to
varying time pressure, thus enabling inferential decision-making
to meet decision deadlines. These heuristics significantly reduce
the complexity of target feature search from an exhaustive search
O(2n) to O(nlog(n) + n), where n is the number of target features.
Additionally, they exhibit superior classification performance
when compared to optimizing strategies that utilize all target
features for inference (Section 6), demonstrating the less-can-be-
more effect (Gigerenzer and Gaissmaier, 2011).

For active tasks, when the sensing capabilities are significantly
hindered, such as in adverse weather conditions, human strategies
are found to amount to highly effective heuristics that can be
modeled as shown in Section 7, and generalized to robots as
shown in Section 8. The human strategies discovered from human
studies are implemented on autonomous robots equipped with
vision sensors and compared with existing planning methods
(Section 8) through simulations and physical experiments in
which optimizing strategies fail to complete the task or exhibit
very poor performance. Under information cost pressure, a
decision-making strategy developed using mixed integer nonlinear
program (MINLP) (Cai and Ferrari, 2009; Zhang et al., 2009)
was found to outperform existing solutions as well as human
strategies (Section 8). By complementing the aforementioned
heuristics, the MINLP optimizing strategies provide a toolbox for
active robot perception under pressures that is verified both in
experiments and simulations.

2 Treasure hunt problem formulation

This paper considers the active perception problem known as
treasure hunt, in which a mobile information-gathering agent, such
as a human or an autonomous robot, must find and localize all
important targets, referred to as treasures, in an unknownworkspace
W ⊂ ℝ3.Thenumber of possible treasures or targets, r, is unknown a
priori, and each target i may constitute a treasure or another object,
such as a clutter or false alarm, such that its classification may be
represented by a random and discrete hypothesis variable Yi with
finite rangeY = {yj | j ∈ J }, where yj represents the jth category ofYi.
WhileYi is hidden or non-observable, it may be inferred from pi ∈ ℤ
observed features among a set of n discrete random variables Xi =
{Xi,1,…,Xi,n}, and the lth (1 ≤ l ≤ n) feature has a finite range Xl =
{xl,j | j ∈N } [see (Ferrari and Cai, 2009; Zhang et al., 2011; Ferrari
and Vaghi, 2006) for more details]. At the onset of the search, Xi and
Yi are assumed unknown for all targets, as are the number of targets
and treasures present in W . Thus, the agent must first navigate the
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FIGURE 1
Human (A) and robot (B) state, configuration, and passive and active sensor FOVs.

workspace to find the targets and, then, observe their features to infer
their classification.

All r targets are fixed, at unknown positions x1,…,xr ∈W , and
must be detected, observed, and classified using onboard sensors
with bounded field-of-view (FOV) (Ferrari and Wettergren, 2021):

Definition 2.1: (Field-of-view (FOV)) For a sensor characterized
by a dynamic state, in a workspace W ⊂ ℝ3, the FOV is defined as a
closed and bounded subset S ⊂W such that a target featureXi,l may
be observed at any point xi ∈ S .

In order to obtain generalizable strategies for camera-equipped
robots, in both human and robot studies knowledge of the
targets is acquired, at a cost, through vision, and the sensing
process is modeled by a probabilistic Bayesian network learned
from data (Ferrari and Wettergren, 2021).

Although the approach can be easily extended to other
sensor configurations, in this paper it is assumed that the
information-gathering agent is equipped with one passive sensor
for obstacle/target collision avoidance and localization, with FOV
denoted by SP, and one active sensor for target inference and
classification, with FOV denoted by SI (Figure 1B). In human
studies, the same passive/active configuration is implemented via
virtual reality (VR) wand/joystick and goggles, and by measuring
and constraining the human FOV, as shown in Figure 1A.
Furthermore, the workspace is populated with q known fixed, rigid,
and opaque objects B1,…,Bq ⊂W that constitute obstacles as well
as occlusions. Therefore, in order to observe the targets, the agent
must navigate in W avoiding both collisions and occluded views,
according to the following line of sight (LOS) visibility constraint:

Definition 2.2: (Line of sight) Given the sensor position s ∈W , a
target at x ∈W is occluded by an object B ⊂W if and only if,

L (s,x) ∩B ≠ ∅

where L(s,x) = {(1− γ)s+ γx |γ ∈ [0,1]}.
Let FW denote an inertial frame embedded in W , and I

denote the geometry of the agent body. The motion of the agent

relative to the workspace can then be described by the position and
orientation of a body frame FS , embedded in the agent, relative to
FW . Thus, the state of the information-gathering agent at tk can be
described by the vector qk = [s

T
k θk ξk ϕk]

T, where sk represents
the inertial position of the information-gathering agent in W , θk ∈
𝕊1 is the orientation of the agent, and ξk ∈ [ξl,ξu] and ϕk ∈ [ϕl,ϕu]
are preferred sensing directions of the “passive” and “active” FOVs,
respectively. In addition, ξl,ξu and ϕl,ϕu bound the preferred sensing
directions for SP and SI with respect to the information-gathering
agent body. By this approach it is possible to model FOVs able to
move with respect to the agent body, as required by the motion of
the human head or pan-tilt-zoom cameras (Figure 1).

Obstacle avoidance is accomplished by ensuring that the
agent configuration, defined as tk = [s

T
k θk]

T, remains in free
configuration space at all times. Let C represent all possible
agent configurations, and CBj = {t ∈ C|I(t) ∩Bj ≠ ∅} denote the C-
obstacle associatedwith objectBj [defined in Ferrari andWettergren
(2021) and references therein). Then, the free configuration space is
the space of configurations that avoid collisions with the obstacles
or, in other words, that are the complement of all C-obstacle regions
in C, i.e., Cfree = {C\⋃

q
j=1CBj}.

According to directional visibility theory (Gemerek et al., 2022),
the subset of the free space at which a target is visible by a sensor in
the presence of occlusions can defined as follows:

Definition 2.3: (Target Visibility Region) For a sensor with FOV
SP ⊂W , in the presence of q occlusionsBj(j = 1,…,q) a target at xi ∈
W is visible within the target visibility region that satisfies both FOV
and LOS conditions, i.e.,:

T V i = {t ∈ Cfree | xi ∈ SP,L(s,xi) ∩Bj = ∅,∀j}

It follows that multiple targets are visible to the
sensor in the intersection of multiple visibility regions
defined as Gemerek et al. (2022):

Definition 2.4: (Set Visibility Region) Given a set of r target-
visibility regions {T V i | i ∈ {1,2,…, r}}, let S ⊆ {1,2,…, r} represent
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the set of target indices of two or more intersecting regions, such
that the following holds ⋂i∈ST Vi ≠ ∅. Then, the set visibility region
of target i is defined as

VS = {⋂
i∈S

T Vi | S ⊆ {1,2,…, r}}

Similarly, after a target i is detected and localized, the agent
may observe the target features using the active sensor with FOV
SI provided xi ∈ SI(q) and L(s,xi) ∩Bj = ∅, 1 ≤ j ≤ q. In order to
explore the tradeoff of information value and information cost in
inferential decisions, use of the active sensor is associated with an
information cost J(tk) that may reflect the use of processing power,
data storage, and/or need for covertness. Then, the information-
gathering agent, must make a deliberate decision to observe one
or more target features prior to obtaining the corresponding
measurement, which may consist of an image or raw measurement
data from which feature Xi may be extracted. For simplicity,
measurement errors are assumed negligible but they may be easily
introduced following the approach in [10, Chapter 9]. Then, the
goal of the treasure hunt is to infer the hypothesis variable Yi
from Xi, i = 1,2,…, using a probabilistic measurement model
P(Yi,Xi,1,…,Xi,n) (Ferrari and Cai, 2009). The measurement model,
chosen here as a Bayesian network (BN) (Figure 2D), consists of a
probabilistic representation of the relationship between the observed
target features and the target classification that may be learned
from expert knowledge or prior training data as shown in [10,
Chapter 9]. Importantly, because the agent may not have the time
and/or resources to observe all target features, classification may be
performed from a sequence of partial observations.

Target features are observed through test decisions made by the
information-gathering agent, which result into soft or hard evidence
for the probabilistic model P(Yi,Xi,1,…,Xi,n) (Jensen and Nielsen,
2007). Let u(tk) ∈ Uk denote at time tk test decision chosen from the
set of all admissible tests Uk ⊂ U . The set U = {ϑc,ϑs,ϑun} consists
of all test decisions, where ϑc and ϑs represent the decisions to
continue or stop observing target features, and ϑun represents the
decision to not observe any feature. The test decision u(tk) generates
a measurement variable at time step tk+1,

z(tk+1) = xi,l, 1 ≤ i ≤ r, 1 ≤ l ≤ n, xi,l ∈ Xl

observed after paying the information cost J(tk) ∈ ℤ, which is
modeled as cumulative number of observed features up to tk. When
the measurement budget R is finite, it may not be exceeded by the
agent and, thus, the treasure hunt problem must be solved subject to
the hard constraint

J(tk) ≤ R.

Action decisions modify the state of the world and/or
information-gathering agent (Jensen and Nielsen, 2007). In the
treasure hunt problem, action decisions are control inputs that
decide the position and orientation of the agent and of the FOVs SP
and SI. Let a(tk) ∈Ak denote an action decision chosen at time tk
from set Ak of all admissible actions. The agent motion can then be
described by a causal model as the following difference equation,

qk+1 = f[qk,a(tk) , tk]

where f[⋅] is obtained by modeling the agent dynamics.
Then, an active perception strategy consists of a sequence

of action and test decisions that allow the agent to search the
workspace and obtain measurements from targets distributed
therein, as follows:

Definition 2.5: (Inferential Decision Strategy) An active inferential
decision strategy is a class of admissible policies that consists of a
sequence of functions,

σ = {π0,π1,…,πT}

where πkmaps all past information-gathering agent states, test
variables, action and test decisions into admissible action and test
decisions,

{a(tk) ,u(tk)} = πk [q0,a (t1) ,u (t1) ,z (t1) , J (t1) ,q1,

…,a(tk−1) ,u(tk−1) ,z(tk−1) , J(tk−1) ,qk−1]

such that πk[⋅] ∈ {Ak,Uk}, for all k = 1,2,…,T.
Based on all the aforementioned definitions, the problem is

formulated as follows:
Problem 1: (Satisficing Treasure Hunt)

Given an initial state q0 and the satisificing aspiration level of
total information value Δ, the satisficing treasure hunt problem
consists of finding an active inferential decision making strategy, σ,
over a known and finite time horizon (0,T], such that the cumulative
information value collected from all observed features is no less than
Δ,

r

∑
i=1
[1(∃k,xi ∈ SI (qk) ∧ L(sk,xi) ∩Bj,∀j) I(Yi;Xi)] ≥ Δ (1)

where

qk+1 = f[qk,a(tk) , tk] (2)

ŷi = arg maxy∈YP(Yi = y,Xi,1,…,Xi,n) (3)

I(Yi;Xi) =H(Yi) −H(Yi | Xi) (4)

J (tT) ≤ R (5)

i = 1,2,…, r, 1 ≤ k ≤ T (6)

j = 1,2,…,q (7)

An optimal search strategymakes use of the agentmotionmodel
(Equation 2), measurement model (Equation 3) and knowledge
of the workspace W to maximize the information value while
minimizing the distance traveled and the cumulative information
cost (Ferrari and Wettergren, 2021). A feasible search strategy may
use all or part of the availablemodels of the environment and targets,
or knowledge of prior states and decisions to produce a sequence of
action and test decisions that satisfy the objective (Equation 1) by
the desired end time tT.

3 Human satisficing studies

Human strategies and heuristics for active perception are
modeled and investigated by considering two classes of satisficing
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FIGURE 2
First-person view in training phase without prior target feature revealed (A) and with feature revealed by a participant (B) in the Webots®workspace (C)
and target features encoded in a BN structure with ordering constraints (D).

treasure hunt problems, referred to as passive and active
experiments. Passive satisficing experiments focus on treasure
hunt problems in which information is presented to the decision
maker who passively observes features needed to make inferential
decisions. Active satisficing experiments allow the decisionmaker to
control the amount of information gathered in support of inferential
decisions. Additionally, treasure hunt problems with both static and
dynamic robots are considered in order to compare with and extend
previous satisficing studies, evolving human studies traditionally
conducted on a desktop (Oh et al., 2016; Toader et al., 2019; Oh-
Descher et al., 2017) to ambulatory human studies in virtual reality
that parallel mobile robots applications (Zielinski et al., 2013).

Previous cognitive psychology studies showed that the urgency
to respond (Cisek et al., 2009) and the need for fast decision-making
(Oh et al., 2016) significantly affect human decision evidence
accumulation, thus leading to the use of heuristics in solving
complex problems. Passive satisficing experiments focus on test
decisions, which determine the evidence accumulation of the agent
based on partial information under “urgency”. Inspired by satisficing
searches for Spanish treasures with feature ordering constraints
(Simon and Kadane, 1975), active satisficing includes both test and
action decisions, which change not only the agent’s knowledge and
information about the world but also its physical state. Because
information gathering by a physical agent such as a human or robot
is a causal process (Ferrari and Wettergren, 2021), feature ordering

constraints are necessary in order to describe the temporal nature of
information discovery.

Both passive and active satisficing human experiments comprise
a training phase and a test phase that are also similarly applied
in the robot experiments in Sections 6–8. During the training
phase, human participants learn the validity of target features in
determining the outcome of the hypothesis variable. They receive
feedback on their inferential decisions to aid in their learning
process. During the test phase, pressures are introduced, and action
decisions are added for active tasks. Importantly, during the test
phase, no performance feedback or ground truth is provided to
human participants (or robots).

3.1 Passive satisficing task

The passive satisficing experiments presented in this
paper adopted the passive treasure hunt problem, shown
in Supplementary Figure S2 and related to the well-known
weather prediction task (Gluck et al., 2002; Lagnado et al., 2006;
Speekenbrink et al., 2010). The problem was first proposed in
Oh et al. (2016) to investigate the cognitive processes involved in
human test decisions under pressure. In view of its passive nature,
the experimental platform of choice consisted of a desktop computer
used to emulate the high-paced decision scenarios, and to encourage
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the human participants to focus on cue(feature) combination rather
than memorization (Oh et al., 2016; Lamberts, 1995).

The stimuli presented on a screen were precisely controlled,
ensuring consistency across participants and minimizing
distractions from irrelevant objects or external factors (Garlan et al.,
2002; Lavie, 2010). In each task, participants were presented with
two different stimuli from which to select the “treasure” before the
total time, tT, at one’s disposal has elapsed (time pressure). The
treasures are hidden but correlated with the visual appearance of
the stimulus, and the underlying probabilities must be learned
by trial and error during the training phase. Each stimulus is
characterized by four binary cues or “features”, namely, color (X1),
shape (X2), contour (X3), and line orientation (X4), illustrated
in the table in Supplementary Figure S2. The goal of this passive
satisficing task is to find all treasures among stimuli that are
presented on the screen or, in other words, to infer a binary
hypothesis variable Y, with rangeY = {y1,y2}, where y1 = “treasure”
and y2 = “not treasure”. The task is passive by design because the
participant cannot control the information displayed in order to aid
his/her decisions.

During the training phase, each (human) participant performed
240 trials in order to learn the relationship between features, X =
{X1,X2,X3,X4}, and the hypothesis variable Y. After the training
phase, participants were divided into two groups. The first group
underwent a moderate time pressure (TP) experiment and was
tested against two datasets, each consisting of 120 trials. Participants
were required to make decisions within a response time tT =
750 ms, which allowed ample time to ponder on the features
presented and how they related to the treasure. The second group
underwent an intense TP experiment, with a response time of
only tT = 500 ms. Participants in this group also encountered two
datasets, each containing 120 trials. A more detailed description of
the experiment, including redundant features, and human subject
procedures that informed, among other parameters, the number of
trials can be found in Oh et al. (2016). Subsequently, the task was
modified to develop a number of active satisficing treasure hunts
in which information about the treasures had to be obtained by
navigating a complex environment, as explained in the next section.

As shown in Table 1, the relevant statistics for passivesatisficing
experiments are summarized in the upper part. Similarly, the
statistics for active satisficing experiments are presented in the lower
part, where the human participants are allowed to move in an
environment and choose the interaction order with the targets. The
statistics correspond to three conditions: “No Pressure”, “Info Cost
Pressure”, and “Sensory Deprivation”. These pressure conditions will
be introduced in detail in Section 3.2.

3.2 Active satisficing treasure hunt task

The satisficing treasure hunt task is an ambulatory study in
which participants must navigate a complex environment populated
with a number of obstacles and objects in order to first find
a set of targets (stimuli) and, then, determine which are the
treasures. Additionally, once the targets are inside the participant’s
FOV, features are displayed sequentially to him/her only after
paying cost for the information requested. The ordering constraints
(illustrated in Figure 2D) allow for the study of information cost and

its role in the decision making process by which the task is to be
performed not only under time pressure but also a fixed budget.
Thus, the satisficing treasure hunt allows not only to investigate
how information about a hidden variable (treasure) is leveraged,
but also how humans mediate between multiple objectives such as
obstacle avoidance, limited sensing resources, and time constraints.
Participants must, therefore, search and locate the treasures without
any prior information on initial target features, target positions, or
workspace and obstacle layout.

In order to utilize a controlled environment that can be easily
changed to study all combinations of features, target/obstacle
distributions, and underlying probabilities, the active satisficing
treasure hunt task was developed and conducted in a virtual reality
environment known as the DiVE (Zielinski et al., 2013). By this
approach different experiments were designed and easily modified
so as to investigate different difficulty levels and provide the human
participants repeatable, well-controlled, and immersive experience
of acquiring and processing information to generate behavior
(Van Veen et al., 1998; Pan and Hamilton, 2018; Servotte et al.,
2020). The DiVE consists of a 3 m × 3 m × 3 m stereoscopic rear
projected room with head and hand tracking, allowing participants
to interact with a virtual environment in real-time (Zielinski et al.,
2013). By developing a new interface between the DiVE and
the robotic software WebotsⓇ, this research was able to readily
introduce humans within the same environments designed for
humans, and vice versa, according to the BN model of the desired
treasure hunt task.The structure of the BNused for the human/robot
treasure hunt perception task is plotted in Figure 2D. The BN
parameters, not shown for brevity, were varied across trials to
obtain a representative dataset from the human study from which
mathematical models of human decision strategies could be learned
and validated.

Six human participants were trained and given access to the
DiVE for a total of fifty-four trials with the objective tomodel aspects
of human intelligence that outperform existing robot strategies.
The number of trials and participants is adequate to the scope of
the study which was not to learn from a representative sample of
the human population, but to extract inferential decision making
strategies generalizable to treasure hunt robot problems. Besides
manageable in view of the high costs and logistical challenges
associated with running DiVE experiments, the size of the resulting
dataset was also found to be adequate to varying all of the workspace
and target characteristics across experiments, similarly to the studies
in Ziebart et al. (2008); Levine et al. (2011). Moreover, through the
VR googles and environment, it was possible to have precise and
controllable ground truth not only about the workspace, but also
about the human FOV, SP, within which the human could observe
critical information such as targets, features, and obstacles.

A mental model of the relationship between target features and
classification was first learned by the human participants during
100 stationary training sessions (Figures 2A, B) in which the target
features (visual cues), comprised of shape (X1), color (X2), and
texture (X3), followed by the target classification Y, where Y =
{y1,y2}, were displayed on a computer screen, through the desktop
WebotsⓇ simulation shown in Figure 2. Participants were then
instructed to search for treasures inside an unknown 10 m × 10 m
WebotsⓇ workspace with r = 30 targets (Figure 2C), by paying
information cost J(tk) to see the features,Xi = {Xi,1,Xi,2,Xi,3}, of every
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TABLE 1 Experiment conditions and trials.

Experiment type Pressure condition Number of participants Number of training
targets for each

participant

Number of test trials
for each participant

Passive Satisficing

NP 48 240 120

Moderate TP 48 240 120

Intense TP 48 240 120

Active Satisficing

No Pressure 6 100 3

Info Cost Pressure 6 100 3

Sensory Deprivation 6 100 3

target (labeled by i) inside their FOV sequentially over time (test
phase). Based on the features observed, which may have included
one or more features in the set X, participants were asked to decide
which targets were treasures (Y = y1) or not (Y = y2). No feedback
about their decisions was provided and, as explained in Section 2,
the task had to be performed within a limited budget R and time
period tT.

Mobility and ordering feature constraints are both critical to
autonomous sensors and robots, because they are intrinsic to how
these cyber-physical systems gather information and interact with
the world around them. Thanks to the simulation environments
and human experiment design presented in this section, we were
able to engage participants in a series of classification tasks
in which target features were revealed only after paying both
a monetary and time cost, similarly to artificial sensors that
require both computing and time resources to process visual
data. Participants were able to build a mental model built for
decision making with the inclusion of temporal constraints during
the training phase, according to the BN conditional probabilities
(parameters) of each study. By sampling theWebotsⓇ environments
from each BN model, selected by the experiment designer to
encompass the full range of inference problem difficulty, and
by transferring them automatically into VR (Figure 3) the data
collected was guaranteed ideally suited for the modeling and
generalization of human strategies to robots (Section 7). As
explained in the next section, the test phase was conducted
under three conditions: no pressure, money pressure, and sensory
deprivation (fog).

4 External pressures inducing
satisficing

Previous work on human satisficing strategies and heuristics
illustrated that most humans resort to these approaches for two
main reasons, one is computational feasibility and the other is
the “less-can-be-more” effect (Gigerenzer and Gaissmaier, 2011).
When the search for information and computation costs become
impractical for making a truly “rational” decision, satisficing
strategies adaptively drop information sources or partially explore

decision tree branches, thus accommodating the limitations of
computational capacity. In situations in which models have
significant deviations from the ground truth, external uncertainties
are substantial, or closed-form mathematical descriptions are
lacking, optimization on potentially inaccurate models can be risky.
As a result, satisficing strategies and heuristics often outperform
classical models by utilizing less information. This effect can be
explained in two ways. Firstly, the success of heuristics is often
dependent on the environment. For example, empirical evidence
suggests that strategies such as “take-the-best,” which rely on
a single good reason, perform better than classical approaches
under high uncertainty (Hogarth and Karelaia, 2007). Secondly,
decision-making systems should consider trade-offs between bias
and variance, which is determined by model complexity (Bishop
and Nasrabadi, 2006). Simple heuristics with fewer free parameters
have smaller variance than complex statistical models, thus avoiding
overfitting to noisy or unrepresentative data, and generalizable
across a wider range of datasets (Bishop and Nasrabadi, 2006;
Brighton et al., 2008; Gigerenzer and Brighton, 2009).

Motivated by the situations where robots’ mission goals can be
severely hindered or completely compromised due to inaccurate
environment or sensing models caused by pressures, the paper
seeks to emulate aspects of human intelligence under the pressures
and study their influence on decisions. The environment pressures
include, for example, time pressure (Payne et al., 1988), information
cost (Dieckmann and Rieskamp, 2007; Bröder, 2003), cue(feature)
redundancy (Dieckmann and Rieskamp, 2007; Rieskamp and
Otto, 2006), sensory deprivation, and high risks (Slovic et al.,
2005; Porcelli and Delgado, 2017). Cue(feature) redundancy and
high risk have been investigated extensively in statistics and
economics, particularly in the context of inferential decisions
(Kruschke, 2010; Mullainathan and Thaler, 2000). In the treasure
hunt problem, sensory deprivation and information cost directly
and indirectly influence action decisions, which brings insight
how these pressures impact agents’ motion. However, the effects
of sensory deprivation on human decisions have not been
thoroughly investigated compared to other pressures. Time pressure
is ubiquitous in the real world, yet heuristic strategies derived
from human behavior are still lacking. Thus, this paper aims to
fill this research gap by examining the time pressure, information
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FIGURE 3
Test phase in active satisficing experiment in DiVE from side view (A),
and from rear view (B).

cost pressure, and sensory deprivation and their effects on
decision outcomes.

4.1 Time pressure

Assume that a fixed time interval tc is needed to integrate one
additional feature into the inference decision-making process. In
the meantime, each decision must be made within tT, and pi is
the number of observed features for the ith target. The satisficing
strategies must adaptively select a subset of the features such that a
decision is made within the time constraint

pitc < tT, i = 1,2,…, r

According to the human studies in Oh et al. (2016), the response
time of participants in the passive satisficing tasks was measured
during the pilot work. The average response time in these tasks was
found to be approximately 700 ms. Based on this finding, three time
windows were designed to represent different time pressure levels: a
2-s timewindowwas consideredwithout any time pressure; a 750 ms

time window was considered moderate time pressure; and a 500 ms
time window was considered intense time pressure.

4.2 Information cost

The cost of acquiring new information intrinsically makes an
agent use fewer features to reach a decision. In Section 2, new
information for the ith target is collected through a sequence of pi
observed target features. Thus, for all r targets, the information cost
is mathematically described as the total number of observed features
not exceeding a preset budget R

r

∑
i=1

pi ≤ R

In Section 3.2, the human studies introduce information cost
pressure using the parameter R = 30. In the context of the treasure
hunt problem, R represents the measurement budget, which limits
the number of features that a participant can observe from targets. In
this experiment, for example, a total of r = 30 targets was used, and
an information budget of R = 30 was chosen such that the human
participants were able to observe, on average, one feature per target.
Other experiments were similarly performed by considering a range
of parameters that spanned task difficulty levels across participants
and treasure hunt types.

4.3 Sensory deprivation

As explained in Section 2, information-gathering agents were
not provided a map of the workspace W a priori, and, instead, were
required to obtain information about target and obstacle positions
and geometries by means of a passive on-board sensor (e.g., camera
or LIDAR) with FOV SP as shown in Figure 4A. From the definition
of set visibility region (Definition 2.4), for a subset S ⊆ {1,2,…, r} of
target indices, the set visibility regionVS ⊆ Cfree contains all targets in
S visible to passive sensor with FOV SP. A globally optimal solution
to treasure hunt problem (Equations 1–7) with respect to a subset of
targets S is feasible if and only if VS ≠ ∅.

In parallel to the human studies in Section 3.2, robot sensory
deprivation was introduced by simulating/producing fog in the
workspace, thereby reducing the FOV radius to approximately
1 m, in a 20 m × 20 m robot workspace. A fog environment is
simulated inside the Webots® environment as shown in Figure 4,
thereby reducing the camera’s ability (Figure 4B) to view targets
inside the sensor SP. As a result, VS = ∅ even when there are
|S| = 2 targets, indicating that a globally optimal solution is
infeasible. Consequently, optimal strategies typically fail under
sensory deprivation due to lack of target information. Using
the methods presented in the next section, human strategies for
modulating between satisficing and optimizing strategies are first
learned from data and, then, generalized to autonomous robots,
as shown in Section 8. Satisficing strategies are aimed at overcoming
this difficulty, and use local information to explore the environment
and visit targets.
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FIGURE 4
Top view visibility conditions of the unknown workspace (A) and
first-person view of poor visibility condition (B) due to fog.

5 Mathematical modeling of human
passive satisficing strategies

Previous work by the authors showed that human participants
drop less informative features to meet pressing time deadlines
that do not allow them to complete the tasks optimally (Oh et al.,
2016). The analysis of data obtained from the moderate TP
experiment (Figure 5A) and intense TP experiment (Figure 5B)
reveals similar interesting findings regarding human decision-
making under different time pressure conditions. Under the no
TP condition, the most probable decision model selected by
human participants (indicated by the yellow contour for D15 in
Figures 5A, B) utilizes all four features and aims at maximizing
information value. However, under moderate TP, the most probable
decision model selected by human participants (indicated by a
red box in Figure 5A) uses only three features and has lower
information value than the no TP condition. As time pressure
becomes the most stringent in the intense TP, the most probable
decision model selected by human participants (indicated by a dark
blue box in Figure 5B) uses only two features and exhibits even
lower information value than observed in the previous two time
pressure conditions. Figure 5C shows all possible decision models
(i.e. features combinations) that a participant can use to make an

inferential decision. These results demonstrate the trade-offs made
by human participants among time pressure, model complexity, and
information value. As time pressure increases, individuals adaptively
opt for simpler decision models with fewer features, and sacrificed
information value to meet the decision deadline, thus reflecting
the cognitive adaptation of human participants in response to time
constraints.

5.1 Passive satisficing decision heuristic
propositions

Inspired by humanparticipants’ satisficing behavior indicated by
the data analysis above, this paper develops three heuristic decision
models, which accommodate varying levels of time pressure and
adaptively select a subset of information-significant features to solve
the inferential decision making problems. For simplicity and based
on experimental evidence, it was assumed that observed features
were error free.

5.1.1 Discounted cumulative probability gain
(ProbGain)

Theheuristic is designed to incorporate two aspects of behaviors
observed from human data. First, the heuristic encourages the
use of features that provide high information value for decision-
making. By summing up the information value of each feature,
the heuristic prioritizes the features that contribute the most to
evidence accumulation. Second, the heuristic also considers the cost
of using multiple features in terms of processing time. By applying
a higher discount to models with more features, the heuristic
discourages excessive cost on time that might lead to violation of
time constraints.

For an inferential decision-making problem with sorted p
observed features {xj}

p
j=1 according to the information value

vProbGain(xj) in descending order, where vProbGain(xj) representing
the increase in information value with respect to the maximum
a-posterior rule

vProbGain (xj) =maxy∈Yp(Y = y | xj) −maxy∈Yp (Y = y)

Let {x1,x2,…,xi} represent a subset of observed features that
contains the first (i) most informative features with respect to
vProbGain(xj), where tT is the allowable time to make a classification
decision, and the discount factor γ ∈ (0,1) is defined to be a function
of tT in order to represent the penalty induced by time pressure.
Then, the heuristic strategy can be modeled as follows,

HProbGain (tT, {xj}
p
j=1
) = arg maxi{γ(tT)

i
i

∑
j=1

vProbGain (xj)}

where,

γ (tT) = exp(−
λ
tT
)

and, thus, λ may be used to represent the extent to which the
discount γ is applied to the cue information value.
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FIGURE 5
Human data analysis results for the moderate TP experiment (A) and the intense TP experiment (B) with the enumeration of decision models (C).

5.1.2 Discounted log-odds ratio (LogOdds)
Log odds ratio plays a central role in classical algorithms like

logistic regression (Bishop and Nasrabadi, 2006), and represents the
“confidence” ofmaking a inferential decision.Theupdate of log odds
ratio with respect to a “new feature” is through direct summation,
thus taking advantage of the feature independence and arriving at
fast evidence accumulation. Furthermore, the use of log odds ratio in
the context of time pressure is slightly modified such that a discount
is applied with inclusion of an additional feature to penalize the
feature usage because of time pressure. By combining the benefits of
direct summation for fast evidence accumulation and the discount
for time pressure as inspired from human behavior, the heuristic
based on log odds ratio can make efficient decisions by considering
the most relevant features under time constraints.

For an inferential decision-making problem with sorted p
observed features {xj}

p
j=1 according to the information value

| vProbGain(xj) | in descending order, where | vProbGain(xj) |
represents the log odds ratio of observed features xj. Then, the
heuristic strategy can be modeled as follows,

HLogOdds (tT, {xj}
p
j=1
) = arg maxi{γ(tT)

i | v0 +
i

∑
j=1

vProbGain (xj) | }

where

vI (xj) = log(p(xj | y1)) − log(p(xj | y2))

v0 = log(p(Y = y1)) − log(p(Y = y2))

5.1.3 Information free feature number
discounting (InfoFree)

The previous two feature selection heuristics are both based
on comparison: multiple candidate sets of features are evaluated
and compared, and the heuristics select the one with the best
trade-off between information value and processing time cost. A
simpler heuristic is proposed to avoid comparisons and reduces the
computation burden, while still showing the behavior that dropping
less informative features due to time pressure observed from human
participants.

Sort the p features according to the information value vI(xj) in
descending order as x1,x2,…,xp, and a subset of the first i most
informative features refers to as {x1,x2,…,xi}. The heuristic strategy
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FIGURE 6
Mean and standard deviation of the number of used features of three
heuristic strategies and the human strategy under three time
pressure levels.

is as follows

HInfoFree (tT) = ⌈p exp(− λ
tT
)⌉

The outputs of the three heuristics are the numbers of
features to be fed into the model P(Yi,Xi,1,…,Xi,n) to make an
inference decision. Somemathematical properties (e.g., convergence
and monotonicity) of the three proposed heuristic strategies are
presented in Supplementary Appendix SA1.

5.2 Model fit test against human data

The model fit tests against human data of the three proposed
time-adaptive heuristics are under three time pressure levels, with
the time constraints scaled to ensure comparability between human
experiments and heuristic tests. The results, as shown in Figure 6,
indicate two major observations. First, as time pressure increases,
all three strategies utilize fewer features, thus demonstrating their
adaptability to time constraints andmirroring the behavior observed
in human participants. Second, among the three strategies,HLogOdds
exhibits the closest average number of features and standard
deviation to the human data across all time pressure conditions.
Consequently,HLogOdds is the heuristic strategy that bestmatches the
human data among the three proposed strategies.

6 Autonomous robot applications of
passive satisficing strategies

The effectiveness of the human passive satisficing strategies
modeled in the previous section, namely, the three heuristics
denoted by HProbGain, HLogOdds, and HInfoFree, was tested on an
autonomous robot making inferential decisions on the well-
established database known as car evaluation dataset (Dua andGraff,

FIGURE 7
Processing time (unit: sec) of three time-adaptive heuristics and the
“Bayes optimal” strategy.

FIGURE 8
Classification performance and efficiency of three time-adaptive
heuristics under three time pressure conditions.

2017). This dataset, containing 1,728 samples, is chosen over other
benchmark problems because its size is comparable to the database
used for modeling human heuristics and is characterized by six
possibly redundant features, which allows for the ability to adaptively
select a subset of features to infer the target class. The performance
of the three heuristics is compared against that of a naïve Bayes
classifier, referred to as “Bayes optimal” herein, which utilizes all
available features for decision-making.

The car evaluation dataset records the cars’ acceptability, on the
basis of six features and originally four classes. The four classes are
merged into two. A training set of 1,228 samples is used to learn
the conditional probability tables (CPTs), ensuring equal priors for
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FIGURE 9
(A) The information value attempt index, IIG, and (B) information-cost
parsimony index IIC are shown for high-performance human
participants under two pressure conditions.

FIGURE 10
The intra-slice DBN that models human decision behavior.

both classes. After learning the CPTs, 500 samples are used to test
the classification performance of the heuristics and the naïve Bayes
classifier. The tests are conducted under three conditions: no TP,
moderate TP, and intense TP.

The experiments are performed on a digital computer using
MATLAB R2019b on an AMD Ryzen 9 3900X processor. The
processing times of the strategies are depicted in Figure 7. If a
heuristic’s processing time falls within the time pressure envelope
(blue area), the time constraints are considered satisfied. The no
TP condition provides sufficient time for all heuristics to utilize all
features for decision-making. The moderate TP condition allows
for 75% of the time available in the no TP condition, whereas the
intense TP condition allows for 50% of the time available in the no
TP condition. All three heuristics are observed to satisfy the time
constraints across all time pressure conditions.

The classification performance and efficiency of the three time-
adaptive strategies is plotted in Figure 8. HLogOdds outperforms
the other three strategies on this dataset, and its performance

FIGURE 11
The human behavior patterns in a fog environment, which
demonstrate wall following (A), area coverage (B), strategy switching
(C), and random walk (D) behaviors.
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FIGURE 12
Averaged model log likelihood of AdaptiveSwitch and ForwardExplore
in six human studies.

deteriorates as time pressure increases. Under moderate TP, the
three time-adaptive strategies use fewer features but achieve
better classification performance than Bayes optimal. This
finding exemplifies the less-can-be-more effect (Gigerenzer and
Gaissmaier, 2011). The classification efficiency measures the average
contribution of each feature to the classification performance. Bayes
optimal displays the lowest efficiency, because it utilizes all features
for all time pressure conditions, whereas HLogOdds exhibits the
highest efficiency among the three heuristics across all time pressure
conditions.

7 Mathematical modeling of human
active satisficing strategies

In the active satisficing experiments, human participants face
pressures due to (unmodelled) information cost (money) and
sensory deprivation (fog pressure). These pressures prevent the
participants from performing the test and action decisions optimally.
The data analysis results for the information cost pressure, as
described in Section 7.1, reveal that the test decisions and action
decisions are coupled. The pressure on test decisions affect the
action decisions made by the participants. The data analysis of the
sensory deprivation (fog pressure) does not incorporate existing
decision-making models, such as Ziebart et al. (2008); Levine et al.
(2011); Ghahramani (2006); Puterman (1990), because the human
participants perceive very limited information, thus violating the
assumptions underlying these models. Instead, a set of decision
rules are extracted in the form of heuristics from the human
participants data from inspection. These heuristics capture the
decision-making strategies used by the participants under sensory
deprivation (fog pressure).

7.1 Information cost (money) pressure

Previous studies showed that, when information cost was
present, humans used a single good reason strategy (e.g., take-
the-best) in larger proportion than compensatory strategies, which

integrated all available features, to make decisions (Dieckmann
and Rieskamp, 2007); and information cost induced humans
to optimize decision criteria and shift strategies to save cost
on inferior features (Bröder, 2003). This section analyzes the
characteristics of human decision behavior under information cost
pressure compared with no pressure condition.

Based on the classic “treasure hunt” problem formulation for
active perception (Ferrari and Wettergren, 2021), the goals of action
and test decisions are expressed through three objectives, namely,
information value or benefit (B), information cost (J), and distance
travelled (D). Hence, optimal strategies are typically assumed to
maximize a weighted sum of the three objectives, i.e.,

V =
T

∑
k=0

ωBB(tk) −ωDD(tk) −ωJJ(tk) (8)

where, the weights ωB, ωD, and ωJ represent the relative importance
of the corresponding objectives.

Upon entering the study, human participants are instructed
to solve the treasure hunt problem by maximizing the number
of treasures found using minimum time (distance) and money.
Therefore, it can be assumed that human participants also seek
to maximize the objective function in (23), using their personal
criteria for relative importance and decision strategy. Since the
mathematical form of the chosen objectives is unknown, upon trial
completion the averaged weights utilized by human participants
are estimated using the Maximum Entropy Inverse Reinforcement
Learning algorithm, adopted from Ziebart et al. (2008). The learned
weights can then be used to understand the effects of money
pressure on human decision behaviors, as follows. The two
indices, IIG = ωB/ωD and IIC = ωB/ωJ, are obtained from the ratios
of the three averaged weights and, thus, reflect the priorities
underlying human decisions and behaviors. The first index, IIG,
referred to as information-value attempt index, measures the
willingness of human participants to trade travel distance in favor
of increased information value. The second index, IIC, referred
to as information-cost parsimony index, measures the willingness
of human participants to spend “money” in favor of increased
information value.

The analysis of human experiment data, shown in Figure 9,
indicates that, under information cost (money) pressure, human
participants are willing to travel longer distances to acquire
information of high value (↑IIG). However, they are less willing
to incur costs (↓IIC) for information value, thus suggesting a
tendency to be more conservative in spending resources for
information acquisition. Furthermore, assuming no other utility
(goal) is associated with human states or actions, the causal
relationships underlying human decisions may be modeled using
dynamic Bayesian networks (DBNs) learned from the human trials.
The DBN intra-slice structure, shown in Figure 10, uses nodes to
represent the human participants’ states qk, action decision a(tk),
test decision u(tk), the set of visible targets o(tk) at time tk, and
the “money”(information cost) already spent J(tk). The intra-slice
variables capture the relevant information for decision-making
at a specific time slice, learning both arcs and parameters from
human data.

Once the DBN description of human decisions is obtained,
the inter-slice structure may be used to understand how
observations influence subsequent action and test decisions. The
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FIGURE 13
Four workspace in MATLAB® simulations and AdaptiveSwitch trajectories for case studies (a) − (d): with 7 targets plus 9 obstacles (A), 11 targets plus 9
obstacles (B), 7 targets plus 12 obstacles (C), and 11 targets plus 12 obstacles (D).

key question is: in how many time slices does an observation
o(tk) influence decision-making? To determine the appropriate
inter-slice structure, this paper conducts a series of hypothesis
tests to assess the conformity of various models against the
human decision data. Supplementary Figure S3 presents the results
of these hypothesis tests. Each data point represents a p-value
that evaluates the null hypothesis: “model i+ 1 does not fit the
human data significantly better than model i”. The models are
defined according to the number of time slices in which an
observation influences decisions. If the p-value is smaller than
the significance level α, the null hypothesis is rejected, thus
indicating that the subsequent model fits the data better than the
previous one.

According to the results plotted in Supplementary Figure S3,
under the no pressure condition, an observation o(tk) influences
one subsequent decision. However, under the information

cost(money) pressure, an observation o(tk) influences nine
subsequent decisions. This finding suggests that the influence
of observations extends over a longer time horizon under
information cost(money) pressure than in the no pressure
condition.

7.2 Sensory deprivation (fog pressure)

The introduction of sensory deprivation (fog pressure) in the
environment poses two main difficulties for human participants
during navigation. First, fog limits the visibility range, thus
hindering human participants’ capability of locating targets and
being aware of obstacles. Second, fog impairs spatial awareness, thus
hindering human participants’ ability to accurately perceive their
own position within the workspace.

Frontiers in Robotics and AI 15 frontiersin.org91

https://doi.org/10.3389/frobt.2024.1384609
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Chen et al. 10.3389/frobt.2024.1384609

FIGURE 14
(A)Number classified targets and travel distance (B)information gain
for two heuristic strategies and two existing robot strategies in four
case studies.

In situations in which target and obstacle information is
scarcely accessible and uncertainties are difficult to model,
human participants were found to use local information to
navigate the workspace, observe features, and classify all targets
in their FOVs (Gigerenzer and Gaissmaier, 2011; Dieckmann
and Rieskamp, 2007). By analyzing the human decision data
collected through the active satisficing experiments described
in Section 3, significant behavioral patterns shared by the top
human performers can be summarized by the following six
behavioral patterns exemplified by the sample studies plotted in
Figure 11:

1. Whenparticipants enter an area andno targets are immediately
visible, they follow the walls or obstacles detected in the
workspace (Figure 11A).

2. When participants detect multiple targets, they pursue
targets one by one, prioritizing them by proximity
(Figure 11B).

3. While following a wall or obstacle, if participants detect a
target, they will deviate from their original path and pursue
the target, andmay then return to their previous “wall/obstacle
follow” path after performing classification (Figure 11A).

4. Upon entering an enclosed area (e.g., room), participants
may engage in a strategy of covering the entire room
(Figure 11B).

5. After walking along a wall or obstacle for some time without
encountering any targets, participants are likely to switch to a
different exploratory strategy (Figure 11C).

6. In the absence of any visible targets, participants may exhibit
random walking behavior (Figure 11D).

Detailed analysis of the above behavioral patterns (omitted for
brevity) showed that the following three underlying incentives drive
human participants in the presence of fog pressure:

• Frugal: Human participants exhibit tendencies to avoid
repeated visitations. Navigating along walls or obstacles helps
participants localize themselves by using walls or obstacles as
reference points.
• Greedy: Human participants demonstrate a strong motivation

to find targets and engage with them. After a target is detected,
participants pursue it and interact with it immediately.
• Adaptive: Human participants display adaptability by using

multiple strategies for exploring the workspace. These
strategies include “wall/obstacle following,” “area coverage,”
and “random walk.” Participants can switch among these
strategies according to the effectiveness of their current
approach in finding targets.

Based on these findings, a new algorithm referred to as
AdaptiveSwitch (Algorithm 1) was developed to emulate humans’
ability to transition between the three heuristics when sensory
deprivation prevents the implementation of optimizing strategies.
The three exploratory heuristics consist of wall/obstacle following
(π1), area coverage (π2), and random walk (π3). The probability of
executing each heuristic is referred to as Π = [b1,b2,b3]

T, where bi
represents the probability of executing πi. The index g indicates the
exploratory policy being executed, and k represents the number of
steps taken while executing a policy. The maximum number of steps
before updating the distribution Π is K. The policy for interacting
with targets is πI(u(tk) | qk,o(tk)), and the policy for pursuing a
target is πP(a(tk) | qk,o(tk)).

As shown inAlgorithm 1, the greediness of the heuristic strategy
(lines 4–9) captures the behaviors inwhich participants interact with
targets if possible (line 4) and pursue a target if it is visible (line
7). If no targets are visible and the maximum exploratory step K
is not exceeded, the current exploratory heuristic continues to be
executed (lines 11–13). The adaptiveness of the three exploratory
heuristics is shown in lines 15–22. If the current exploratory
heuristic is executed for more than K steps, its probability of
execution is discounted (line 16). The probability of executing the
“wall/obstacle following” heuristic increases β > 1.0 if the participant
is close to a wall/obstacle; otherwise this heuristic is disabled
(lines 19–21).

After learning the parameters from the human data, the
AdaptiveSwitch algorithm was compared to another hypothesized
switching logic referred to as ForwardExplore in which participants
predominantly move forward with a high probability and turn
with a small probability or when encountering an obstacle.
In order to determine which switching logic best captured
human behaviors, the log likelihood of AdaptiveSwitch and
ForwardExplore was computed using the human data from the
active satisficing experiment involving six participants. The results
plotted in Figure 12 show that the log likelihood of AdaptiveSwitch
is greater than that of ForwardExplore across all human experiment
trials. This finding suggests that AdaptiveSwitch aligns more closely
with the observed human strategies than ForwardExplore and,
therefore, was implemented in the robot studies described in the
next section.

Frontiers in Robotics and AI 16 frontiersin.org92

https://doi.org/10.3389/frobt.2024.1384609
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Chen et al. 10.3389/frobt.2024.1384609

TABLE 2 Performance comparison of AdaptiveSwitch and Standalone heuristics in Webots® : Workspace A.

Performance metrics Heuristic strategies

AdaptiveSwitch RandomWalk AreaCoverage

Travel distance, D(τ) [m] 86.19 164.87 224.18

Number of classified targets, Nv 7/7 7/7 3/7

Target visitation efficiency, ηv [m
−1] 0.0812 0.0425 0.0134

Travel distance, D(τ) [m] 148.98 291.69 246.38

Number of classified targets, Nv 13/13 11/13 6/13

Target visitation efficiency, ηv [m
−1] 0.0873 0.0377 0.0244

Travel distance, D(τ) [m] 159.97 236.86 205.78

Number of classified targets, Nv 15/15 11/15 8/15

Target visitation efficiency, ηv [m
−1] 0.0938 0.0464 0.0389

TABLE 3 Performance comparison of AdaptiveSwitch and Standalone heuristics in Webots® : Workspace B.

Performance metrics Heuristic strategies

AdaptiveSwitch RandomWalk AreaCoverage

Travel distance, D(τ) [m] 122.86 218.72 265.49

Number of classified targets, Nv 7/7 5/7 5/7

Target visitation efficiency, ηv [m
−1] 0.0570 0.0229 0.0188

Travel distance, D(τ) [m] 122.57 219.49 234.70

Number of classified targets, Nv 13/13 10/13 7/13

Target visitation efficiency, ηv [m
−1] 0.0873 0.0456 0.0298

Travel distance: D(τ) [m] 129.19 226.57 216.25

Number of classified targets, Nv 15/15 12/15 8/15

Target visitation efficiency, ηv [m
−1] 0.1161 0.0530 0.0370

8 Autonomous robot applications of
active satisficing strategies

Two key contributions of this paper are the applications of the
modeled human strategies on a robot, and the comparison of optimal
strategies and the modeled human strategies in pressure conditions,
under which optimization is infeasible. For simplicity, the preferred
sensing directions of SP and SI are assumed to be fixed with respect
to the robot platform. Therefore, the state vector for a robot reduces
to q = [x y θ]T, where the orientation of the robot platform θ also
represents the preferred sensing directions. Both sensor FOVs are
modeled by sectorswith angle-of-view ζ1,ζ2 ∈ [0,2π) and radii r1, r2 >
0.The twoFOVs share the same apex and their bisectors coincidewith
each other.

8.1 Information cost (money) pressure

The introduction of information cost increases the complexity
of planning test decisions. In the absence of information cost, a
greedy policy that observes all available features for any target
is considered “optimal”, because it collects all information value
without any cost. However, when information cost is taken into
account, a longer planning horizon for test decisions becomes
crucial to effectively allocate the budget for observing features of
all targets. This paper implements two existing robot planners,
PRM and cell decomposition, to solve the treasure hunt problem
in an identical workspace, initial conditions, and target layouts
faced by human participants in the active satisficing treasure hunt
experiment. The objective function Equation 8 is maximized by
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FIGURE 15
Object detection results (A) in clear and (B) fog conditions.

FIGURE 16
The first workspace and target layout for the physical experiment
under (A) clear and (B) fog condition.

using these methods. Unlike existing approaches (Ferrari and Cai,
2009; Cai and Ferrari, 2009; Zhang et al., 2009) that solve the
original version of the treasure hunt problem as described in
(Ferrari and Wettergren, 2021), the developed planners handle the
problem without pre-specification of the final robot configuration.
Consequently, the search space increases exponentially, thus
rendering label-correcting algorithms (Bertsekas, 2012) no longer
applicable. Additionally, unlike previous methods that solely
optimize the objective with respect to the path, the developed
planners consider the constraint on the number of observed
features due to information cost pressure. The number of observed
features thus becomes a decision variable with a long planning
horizon. To solve the problem, the developed planners use PRM

and cell decomposition techniques to generate graphs representing
the workspace (Ferrari and Wettergren, 2021). The Dijkstra
algorithm is used to compute the shortest path between targets.
Furthermore, an MINLP algorithm is used to determine the
optimal number of observed features and the visitation sequence of
the targets.

8.1.1 Performance comparison with human
strategies

The performance of the optimal strategies known as PRM
and cell decomposition is compared to that of human strategies
in Supplementary Figure S4. It can be seen that, under information
cost (money) pressure, the path and number of observed features per
target are optimized using a linear combination of three objectives.
Letting τ denote the planned path (as defined in (LaValle, 2006)),
four performance metrics are used for evaluation and comparison,
i.e.,: path efficiency ηP = 1/D(τ) [m

−1]; information gathering
efficiency ηB = B(τ)/D(τ) [bit/m]; measurement productivity ηJ =
B(τ)/J(τ) [bit]; and classification performance N = N(τ) (with
higher values indicating higher performance). Six case studies
are examined. One case study comprises of three different
experiment layouts. The optimal strategies and the human
participants have no prior knowledge of the target positions and
initial features, and all environmental information is obtained
from FOV SP. The results, shown in Supplementary Figure S4,
indicate that the two optimal strategies consistently outperform
the human strategy across all four performance metrics. The
performance envelopes of the optimal strategies are outside of
the performance of the human strategy, thus indicating their
superiority.

The finding that the optimal strategies outperform human
strategies is unsurprising, because information cost (money)
pressure imposes a constraint on only the expenditure of
measurement resources, which can be effectively modeled
mathematically. The finding suggests that under information cost
(money) pressure, near-optimal strategies canmake better decisions
than human strategies.
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FIGURE 17
Target visitation sequence of AdaptiveSwitch in the first workspace.

TABLE 4 Performance Comparison of Heuristic Strategies in
target layout 1.

Performance
metrics

Heuristic strategies

AdaptiveSwitch ForwardExplore

Number of classified
targets, Nv

6/6 6/6

Travel distance,
D(τ) [m]

6.43 ± 0.90 8.38 ± 2.07

Correct target feature
classifications

13.40 ± 1.82 12.40 ± 1.95

Info gathering
efficiency, ηB [bit/m]

0.155 ± 0.023 0.090 ± 0.018

8.2 Sensory deprivation (fog pressure)

An extensive series of tests are conducted to evaluate
the effectiveness of AdaptiveSwitch (Section 7.) under sensory
deprivation(fog) conditions and compare it with other strategies.
These tests comprise of 118 simulations and physical experiments,
encompassing various levels of uncertainty. The challenges
posed by fog in robot planning are twofold. First, fog obstructs
the robot’s ability to detect targets and obstacles by using
onboard sensors such as cameras, thus making long-horizon
optimization-based planning nearly impossible. Second, fog
complicates the task of self-localization for the robot with respect
to the entire map, although short-term localization can rely
on inertial measurement units. Three test groups are described
as follows:
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FIGURE 18
The second workspace and target layout for the physical experiment under (A) clear and (B) fog condition.

8.2.1 Performance comparison tests inside
human experiment workspace

AdaptiveSwitch is applied to robots operating in the same
workspace and target layouts used in the active satisficing human
experiments (Section 3.), described in Figures 3, 4. Using these
eighteen environments, the performance of hypothesized human
strategies, AdaptiveSwitch and ForwardExplore, was compared to
that of existing robot strategies (cell decomposition and PRM). One
important metric used to evaluate a strategy’s capability to search
for targets in fog conditions is the number of classified targets:Nv. As
shown by the quantitative comparison in Supplementary Figure S5A
and Supplementary Figure S5B, under sensory deprivation (fog) the
optimal strategies face difficulties in moving and classifying targets
because of the lack of information on target and obstacle layout.
Here, the distance travelled and classification performance are
plotted by averaging the results of extensive simulations, along with
the standard deviation (bars in Supplementary Figures S5A, S5B).
In contrast, both the human strategies and AdaptiveSwitch are
able to explore the unknown environment, even if at times they
do not capture target information through SP. In particular,
AdaptiveSwitch achieves slightly higher target classification rates
and shorter travel distances than the observed human strategies.

8.2.2 Generalized performance comparison
In order to demonstrate the generalizability of the human-

inspired strategy AdaptiveSwitch to robot applications, extensive
comparative studies were performed using new workspaces and
target layouts, different from those used in human experiments.

In order to fully assess the performance and generalizability of
AdaptiveSwitch, the sensor range was also varied to investigate
the influence of sensor modalities and characteristics. Extensive
simulations were conducted in MATLABⓇ using four newly
designed workspaces and corresponding target layouts (Figure 13).
For evaluation purposes, these additional simulations considered
fixed FOV geometries and assumed no missed detections or false
alarms, as well as perfect target feature recognition.

As part of this comparison, ForwardExplore and the two existing
robot strategies, cell decomposition and PRM, are also implemented
for comparison. Due to the limitations posed by fog and limited
sensing capabilities, the performance in terms of travel distance,
D(τ), and classification, (Nv), is significantly hindered, as shown by
the averaged values plotted in Figure 14A on the left (histogram
bar) and right (line) vertical axis, respectively. Robots implementing
AdaptiveSwitch outperform those implementing other strategies in
terms of the number of correctly classified targets, because they are
able to explore the workspace even when no targets were visible.

Additionally, AdaptiveSwitch is more efficient than
ForwardExplore in terms of travel distance. By adapting its
exploration strategy and leveraging the combination of three
simple heuristics, AdaptiveSwitch is able to classify more targets
while traveling shorter distances. Consequently, higher information
value B(τ) than that with both ForwardExplore and existing robot
strategies is observed across all four case studies (Figure 14B).
These findings highlight the effectiveness of the AdaptiveSwitch
in navigating foggy environments and its superiority to existing
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FIGURE 19
Target visitation sequence of AdaptiveSwitch in the second workspace.

robot strategies and the ForwardExplore in terms of information
gathering and travel efficiency.

8.2.2.1 Simulations with artificial fog
Two new workspaces are designed in Webots® as shown in

Supplementary Figure S6.The performance of AdaptiveSwitch and its
standalone heuristics for the two workspaces is shown in Tables 2, 3.
The comparison reveals the substantial advantage of AdaptiveSwitch.

In both workspace scenarios, as shown in Tables 2, 3, AdaptiveSwitch
outperforms its standalone heuristics by successfully finding and
classifying all targets within the given simulation time upper bound.
In contrast, the standalone heuristics are unable to achieve this level of
performance. AdaptiveSwitch not only visits and classifies all targets,
but also accomplishes the tasks within shorter travel distances than
the standalone heuristics. Therefore, AdaptiveSwitch exhibits higher
target visitation efficiency (ηv) which is calculated as the ratio of the
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FIGURE 20
The third workspace and target layout for the physical experiment
under (A) clear and (B) fog condition.

numberof classified targets to the travel distance (Nv/D(τ)).The target
visitation efficiency ofAdaptiveSwitch is at least twice higher than that
of the standalone heuristics thanks to the combination of multiple,
simple heuristics. In contrast, when used in a stand-alone fashion, the
same heuristics may become trapped in ineffective “moving patterns”,
struggling to perform in certain areas of the workspace.

8.2.3 Physical experiment tests in real fog
environment

To handle real-world uncertainties that are not adequately
modeled in simulations, this paper conducts physical experiments
to test the AdaptiveSwitch. These uncertainties include factors
such as the robot’s initial position and orientation, target miss
detection and false alarms, depth measurement errors, and control
disturbances. In addition, the fog models available in Webots
®, are relatively simple and do not provide a wide range of
possibilities for simulating the degrading effects of fog on target
detection and classification performance. Consequently, this paper
performs physical experiments to better capture the complexities
and uncertainties associated with real-world conditions.

The physical experiments use the ROSbot2.0 robot equipped
with an RGB-D camera as the primary sensor. The YOLOv3
object detection algorithm, the best applicable at the time of these
studies, was implemented to detect targets of interest (e.g., an apple,
watermelon, orange, basketball, computer, book, cardboard box, and
wooden box) identical to those in human experiments. Training
images for the YOLOv3 were obtained in fog-free environments, in
order to later test the robot’s ability to cope with unseen conditions
(fog pressure) in real time.

As shown in Figure 15, the YOLOv3 algorithm successfully
detects the existence of the target “computer” when the environment

is clear, as shown in Figure 15A. However, when fog is present, as
illustrated in Figure 15B, the algorithm fails to detect the target.
This result demonstrates the degrading effect on the performance
of target detection algorithms.

In the physical experiments conductedwithROSbot2.0 (Husarion,
2018), AdaptiveSwitch and ForwardExplore are implemented to
test their performance in an environment with fog. A plastic box
is constructed with dimensions 10′0″ x 6′0″ x 1′8″ in order
to create the foggy environment. The box is designed to contain
different layouts of obstacles and targets, capturing various aspects
of a “treasure hunt” scenario, such as target density and target
view angles. Each heuristic strategy is tested five times in each
layout, considering all the uncertainties described earlier. The travel
distances in the physical experiments are measured in inertial
measurement unit.

The first layout (Figure 16) is comprised of six targets, i.e.,: a
watermelon, wooden box, basketball, book, apple, and computer.
The target visitation sequences of AdaptiveSwitch along the path
are depicted in Figure 17, showing the robot’s trajectory and the
order in which the targets are visited. The performance of the two
strategies is summarized in Table 4, as evaluated according to three
aspects: travel distance D(τ), correct target feature classifications,
and information gathering efficiency ηB. These metrics assess the
quality of the strategies’ action and test decisions.

The second layout (Figure 18) contains eight targets: a
watermelon, wooden box, basketball, book, computer, cardboard
box, and two apples. The obstacles layout is also changed with
respect to the first layout: the cardboard box is placed in a
“corner” and is visible from only one direction, thus increasing
the difficulty of detecting this target. This layout enables a case
study in which the targets are more crowded than in the first
layout. The mobile robot first-person-views of AdaptiveSwitch
along the path are demonstrated in Figure 19, and the performance
is shown in Supplementary Table S1.

The third layout (Figure 20) contains two targets: a cardboard
box, and a watermelon. Note that having fewer targets does
not necessarily make the problem easier, because the difficulty
in target search in fog comes from how to navigate when no
target is in the FOV. This layout intentionally makes the problem
“difficult”, because it “hides” two targets behind the walls. The
mobile robot first-person-views of AdaptiveSwitch along the path
are demonstrated in Figure 21, and the performance is shown in
Supplementary Table S2. The videos for all physical experiments
(AdaptiveSwitch and ForwardExplore in three layouts) are accessible
through the link in (Chen, 2021).

According to the performance summaries in Table 4,
Supplementary Tables S1, S2, both AdaptiveSwitch and
ForwardExplore are capable of visiting and classifying all
targets in the three layouts under real-world uncertainties.
However, AdaptiveSwitch demonstrates several advantages over
ForwardExplore:

1. The average travel distance of AdaptiveSwitch is 30.33%,
59.93%, and 56.02% more efficient than ForwardExplore in
the three workspaces, respectively. This finding indicates that
AdaptiveSwitch is able to search target with a shorter travel
distance than ForwardExplore.
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FIGURE 21
Target visitation sequence of AdaptiveSwitch in the third workspace.

1: Π = [b1,b2,b3]T

2: k = 0, g = 0

3: while (tk ≤ tT ∨ not all targets are

classified) do

4:  if ∃xj ∈ SI(qk) then

5:   πI(u(tk) | qk,o(tk))

6:  else

7:   if o(tk) ≠ ∅ then

8:    πP(a(tk) | qk,o(tk))

9:    k = 0, g = 0

10:   else

11:    if g > 0∧k ≤ K then

12:     πg(a(tk) | qk,o(tk))

13:     k = k+1

14:    else

15:     if k ≥ K then

16:      Π[g] = γ ∗ Π[g]

17:     else

18:      if not closed to wall then

19:       Π[1] = 0

20:      else

21:       Π[1] = β(b1 +b2 +b3)

22:      end if

23:     end if

24:     Π = normalize(Π)

25:     g ∼ Π

26:    end if

27:   end if

28:  end if

29: end while

Algorithm 1. AdaptiveSwitch.

2. The target feature classification performance of
AdaptiveSwitch is slightly better than that of ForwardExplore,
with improvements of 8.06%, 17.11%, and 4.16% in the
three workspace, respectively. One possible explanation for

these results is that the “obstacle follow” and “area coverage”
heuristics in AdaptiveSwitch cause the robot’s body to be
parallel to obstacles during classification of target features,
thus ensuring that the targets are the major part of the
robot’s first-person view and make them relatively easier to
classify. In contrast, ForwardExplore does not always lead the
robot body to be parallel to obstacles during classification,
thereby sometimes allowing obstacles to dominate the robot’s
first-person view and decreasing the target classification
performance.

9 Summary and conclusion

This paper presents novel satisficing solutions that modulate
between near-optimal and heuristics to solve satisficing treasure
hunt problem under environment pressures. These proposed
solutions are derived from human decision data collected through
both passive and active satisficing experiments. The ultimate goal
is to apply these satisficing solutions to autonomous robots. The
modeled passive satisficing strategies adaptively select target features
to be entered inmeasurementmodel based on a given time pressure.
The idea behind this approach is the human participants behavior
that dropping less informative features for inference in order tomeet
the decision deadline. The results show that the modeled passive
satisficing strategies outperform the “optimal” strategy that always
use all available features for inference in terms of classification
performance and significantly reduce the complexity of target
feature search compared with exhaustive search.

Regarding the active satisficing strategies, the strategy that deals
with information cost formulates an optimization problem with
the hard constraint imposed by information cost. This approach is
taken because the information cost constraint doesn’t fundamentally
undermine the accuracy of the model of the world and the agent,
and optimization still yield high-quality decisions. The results show
that the strategy outperforms human participants across several key
metrics (e.g., travel distance and measurement productivity, etc.).
However, under sensory deprivation, the knowledge of the world is
severely compromised, and thus decisions produced by optimization
is risky or even no longer feasible, which is also demonstrated
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through experiments in this paper. The modeled human strategies
named AdaptiveSwitch shows the ability to use local information
and navigate in foggy environment by using heuristics derived
from humans. The results also show that the AdaptiveSwitch can
adapt to varying workspaces with different obstacle layouts, target
density, etc., beyond the workspace used in the active satisficing
experiments. Finally, AdaptiveSwitch is implemented on a physical
robot and conducts satisificing treasure hunt with actual fog, which
demonstrates the ability to deal with real-life uncertainties in both
perception and action.

Overall, the proposed satisficing strategies comprise of a
toolbox, which can be readily deployed on a robot in order
to address different real-life environment pressures encountered
during the mission. These strategies provide solutions to scenarios
characterized by time limitations, constraints on available resources
(e.g., fuel or energy), and adverse weathers such as fog or heavy rain.
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Alzheimer’s disease (AD) is an incurable neurodegenerative disorder that slowly

impair the mental abilities. Early diagnosis, nevertheless, can greatly reduce

the symptoms that are associated with the condition. Earlier techniques of

diagnosing the AD from theMRI scans have been adopted by traditional machine

learning technologies. However, such traditional methods involve depending

on feature extraction that is usually complex, time-consuming, and requiring

substantial e�ort from the medical personnel. Furthermore, these methods

are usually not very specific as far as diagnosis is concerned. In general,

traditional convolutional neural network (CNN) architectures have a problem

with identifying AD. To this end, the developed framework consists of a new

contrast enhancement approach, named haze-reduced local-global (HRLG).

For multiclass AD classification, we introduce a global CNN-transformer model

InGSA. The proposed InGSA is based on the InceptionV3 model which is pre-

trained, and it encompasses an additional generalized self-attention (GSA) block

at top of the network. This GSA module is capable of capturing the interaction

not only in terms of the spatial relations within the feature space but also over the

channel dimension it is capable of picking up fine detailing of the AD information

while suppressing the noise. Furthermore, several GSA heads are used to exploit

other dependency structures of global features as well. Our evaluation of InGSA

on a two benchmark dataset, using various pre-trained networks, demonstrates

the GSA’s superior performance.

KEYWORDS

Alzheimer’s disease classification, generalized self-attention, CNN, transfer learning,

transformer

1 Introduction

Alzheimer’s disease (AD) is a type of dementia that is not curable, which becomes

worse over years as it affects the human brain, but early diagnosis helps to minimize the

symptoms and the management of the patient (McKhann et al., 1984). Its manifestation

involves impaired memory because patients cannot organize or recall information

properly, and poor judgment that renders the affected persons completely helpless and

in need of care as the disease develops (Choi et al., 2020). The probability raised from

2% at 65 years to 35% at 85 years for AD. Approximately 26.6 million people had it in

2006; the figure rose to over 55 million in 2020 and is expected to reach 152 million by

2050 (Gunawardena et al., 2017). Neuronal loss and synaptic impairment can occur at

least one or two decades before disease onset (Böhle et al., 2019). It is essential to detect

AD in the prodromal stage, which is characterized by moderate cognitive impairment

(MCI), as there is currently no cure. Early MCI (EMCI) is a cognitive impairment stage

that precedes MCI (Kang et al., 2020). The early detection of EMCI has the potential to
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prevent the progression of EMCI to AD. The importance of

diagnosing MCI patients has been emphasized by studies that has

identified the distinctions between early MCI (EMCI) and late

MCI (LMCI) groups (Nozadi et al., 2018; Edmonds et al., 2019;

Zhang T. et al., 2019). MCI has a symptom profile that is similar,

but less severe, to AD (Varatharajah et al., 2019). Nowadays, this

disease is also defined as mild cognitive impairment associated

with the existence of Alzheimer’s disease; according to recent

investigations, ∼80% of patients diagnosed with MCI develop AD

in 7 years. For monitoring of variations in the densities of the

brain tissues, magnetic resonance imaging (MRI) and positron

emission tomography (PET) are frequently used since they do not

include the invasion of the tissues (Ramzan et al., 2020; Gao, 2021).

Neuroimaging, especially using MRI, is crucial for the study of the

nervous system structures more closely (Tuvshinjargal and Hwang,

2022); this test helps in diagnosis of certain diseases such as tumors

and cancer (Tehsin et al., 2024). MRI does work in the case of

Alzheimer’s; it allows capturing structural changes in the brain,

for instance, the reduction of certain regions and the appearance

of new formations, heterogeneous density, and the presence of

abnormal substances typical of the disease (Simic et al., 2009).

In recent years, medical imagery such as MRI has been used

with machine learning (ML) and deep learning (DL). These

methods are used in health checks and early AD diagnosis. They

also excel at categorizing images in health and computer vision

(Nasir et al., 2021, 2020, 2022; Yousafzai et al., 2024; Nasir et al.,

2023). In recent decades, neuroimaging data have grown, allowing

ML and DL algorithms to better characterize AD. The authors

used such methodologies to offer prospective AD diagnosis and

prognostic outcomes (Nagarajan et al., 2021). These works executed

features from several image processing pipeline streams using

random forest classifier, decision tree, or support vector machine

(SVM). Lately, DL techniques have showed potential in medical

imaging with good picture classification accuracy (Ajagbe et al.,

2021). Automatic feature extraction from images using CNNs

and transfer learning (TL) is more efficient than typical ML

methods (Raju et al., 2021). However, working with medical data

is problematic due to imbalanced dataset, including AD. In this

strategy, various sample sizes are used for different classes, the

model is always biased, and it cannot generalize beyond the training

dataset. DL models can process raw data better than simple feed

forward, but they can overfit when solving complicated problems

such as class imbalance. In real-world circumstances, such models

perform poorly in generalization, efficacy, and reliability. The main

contribution of this study is as follows:

Abbreviations: CNN, convolutional neural network; HRLG, haze-reduced

local-global; GSA, generalized self-attention; AD, Alzheimer’s disease; MCI,

moderate cognitive impairment; EMCI, Early MCI; LMCI, late MCI; MRI,

magnetic resonance imaging; PET, positron emission tomography; ML,

machine learning; DL, deep learning; SVM, support vector machine; TL,

transfer learning; ELM, extreme learning machine; DAG, directed acyclic

graph; Mob, MobileNet; Den, DenseNet201; Res, ResNet50; Sq, SqueezeNet;

InV3, inceptionV3; CBAM, convolutional block attention module; CSDAB,

channel split dual attention block; ViT, vision transformer; DEiT, data e�cient

image transformer; PVT, pyramid vision transformer.

• We introduce a contrast enhancement method called haze-

reduced local-global, inspired by the haze reduction principle.

• We suggest a new global CNN-transformer architecture,

InGSA, for the classification of multiclass AD. A pre-trained

CNN is integrated with a specialized transformer module in

InGSA network.

• This network, comprised of several generalized self-attention

module (GSA), is designed to effectively capture extensive

feature dependencies across different brain regions by

establishing global connections along both the channel and

spatial dimensions.

• The InGSA model is tested on a two publicly available

dataset, where we also use various pre-trained CNN models

to demonstrate its effectiveness. Furthermore, we perform a

comparative analysis between InGSA and modern attention

mechanisms, as well as the latest approaches in multiclass AD

classification.

The structure of this research is comprehensively examined

in the following manner: Related works are detailed in Section

2. Section 3 delineates the fundamental concepts and proposed

methodology. The experimental results are the subject of Section

4. The study is concluded in Section 5.

2 Related work

Over the past few years, the usage of DL methods for the

identification of AD has received much attention (Mohammed

et al., 2021; Ahmed et al., 2022; Menagadevi et al., 2023). For

instance, a study employed DL with stacked auto-encoders and

uses the softmax function in the final layer to address problem of

bottlenecks. Their approach needed far less training data compared

to their peers, as well as very small input to classify several groups

with ∼87.70% accuracy. One of the observations from the current

study was that the use of several features improves classification

(Frizzell et al., 2022). Furthermore, a classification framework was

built, based on the use of multiple different input databases since it

is complementary. To combine features from different modalities,

they used a process known as non-linear graph mixture model.

Using this method, the areas under the curve were calculated with

98.1% accuracy when differentiating between AD and CN images,

82.40% between NC andMCI images, with the overall classification

performance being 77.90% (Guo and Zhang, 2020).

A novel rapid, low-cost, and efficient diagnostic model was

implemented using brain MRI scans. They used DenseNet121

model which is a computationally heavy model, and to this model,

they achieved an accuracy of 87% in detecting the disease. To rectify

this, the authors employed an idea of fine-tuning two models of

AlexNet and LeNet models where features were extracted in three

ways through parallel filters. The new model they came up with

was able to predict the disease with an accuracy of 93% (Hazarika

et al., 2023). In the same manner, the researchers in Acharya et al.

(2021) used VGG-16 based CNN transfer learning to diagnose

AD with an overall accuracy of 95.7%. Another study used DL

for distinguishing dementia and Alzheimer’s from the MRI images

(Murugan et al., 2021).
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The approach used in Murugan et al. (2021) learns individual

Alzheimer’s likelihood using multilayer perceptron representations

and also generates disease probability heat maps from brain region

activity. To overcome the problem of class imbalance, the samples

are divided in equal proportion. The five ADNI subtypes consist

of 1,296 images comprising of AD, MCI, EMCI, LMCI, and CN

images processing the DEMNET model by resizing the images to

176 × 176 and obtained an accuracy of 84.83%. In the same way,

Oktavian et al. (2022) presented the fine-tuned ResNet18 model

for distinguishing between MCI, AD, and CN using MRI and PET

datasets. This model incorporated transfer learning and used the

technologies such as weighted loss function for ascending the class

imbalance, and mish activation function to augment its accuracy,

and it obtained 88.3% overall classification. On the other hand,

the authors in Dyrba et al. (2021) adopted a CNN with 663 T1-

weighted MRI scans belonging to dementia and amnestic MCI

patients. To confirm their model, they performed cross-validation

and used an additional three datasets that included an overall of

1,655 cases. To further provide the clinical relevance of the method,

they correlated the relevance scores to the hippocampal volume.

A friendly model assessment tool was created through importance

maps of 3D CNN, achieving accuracy of 94.9% of AD vs. CN. A

particular drawback of many papers on the detection of Alzheimer’s

is related to the imbalance of classes, which creates problems of

overfitting and lowering predictive ability in almost all existing deep

learning models. The yield is further magnified by the fact that

realistic training data are also scarce. To overcome this, we utilized

the data augmentation approach to balance datasets and improve

DL results since the technique synthesizes new data samples.

3 Proposed methodology

The configuration of the proposed InGSA is illustrated in

Figure 1, comprising a fine-tuned CNN model, a generalized

self-attention (GSA), and a classifier. The fine-tuned CNN

models aid in extracting abstract feature representations from the

input MR images. The GSA block has various components to

comprehend global interdependence across spatial and channel

dimensions, facilitating the extraction of more nuanced and

category-specific information. The extreme learning machine

(ELM) classifier is employed to categorize AD. This section offers

a comprehensive overview of the InGSA architecture and its

fundamental components.

3.1 Haze reduced local global image
enhancement

Traditional haze elimination procedures are developed for

improving the visual distinctiveness of scenes by increasing the

contrast and color saturation. By applying these techniques, the

total clarity of the scene which is captured in the given image

is likely to be enhanced. In this research, we formally propose a

new type of contrast enhancement method that adopts both haze

removal and local-global transformation techniques.

Let D denotes a complex image database that is composed of N

images. While the original image is represented by the dimensions

of N × M × 3 as I(x, y), the Y(x, y) denotes the improved image.

First, a haze reduction method utilizing the dark channel prior is

employed on the first image. This process of haze reduction can be

mathematically expressed as follows:

C(x) = γ (x)j(x)+ l(1− t(x)) (1)

where C denotes the measured intensity values, γ represents the

scene radiance, j(x) designates the transmission map, and l denotes

the atmospheric light intensity. The dehazing algorithm utilized

aims to restore the scene radiance γ based on the estimations of

both the transmission map and the atmospheric light, as expressed

in the following manner:

γ (x) =
C(x)− α

max(t(x), t0)
+ α (2)

The resulting γ (x) is subsequently employed to calculate the

global contrast of an image using the following equation:

G0 = (1+ gk)× (Gi − kmean)+ σ (3)

In this regard, G0 stands for the global contrast image of the

original image while gk represents gain factor of global contrast, Gi

for the value of pixel γ (x), kmean for the overall average pixel value

of γ (x), and σ for the standard deviation of γ (x). In the subsequent

step, we assessed the local contrast of the haze-reduced image using

the following mathematical expression:

H(x, y) =
LC

σ (i, j)+ ϕ
× µ(x, y) (4)

where LC for local contrast, ϕ for a small constant, and µ(x, y)

means the mean value of the dehazed image. Finally, these two

resultant images of local and global contrast were incorporated

toward a single image in this way that we adopt the following

mathematical formula to produce the final enhancement output.

Y(x, y) = [G(x, y)+ H(x, y)]− I(x, y)] (5)

3.2 Deep transfer learning

InceptionV3 is a directed acyclic graph (DAG) network that has

316 layers and 350 links that include 94 as convolutional layers

(Szegedy et al., 2016). Such a structure facilitates the provision

of adequate employment of complicated dependency relations in

the network, having many inputs and outputs at different layers.

Differently from the standard CNNmodel in which the filter size is

fixed throughout the layers of that model, InceptionV3 has different

filter sizes within the same layer, which increases its capability

of feature extraction on the data. Originally trained on ImageNet

(Deng et al., 2009) on which includes over one million images

split into one thousand categories, the InceptionV3 has the ability

to read most features. The model takes images of input size 299

× 299 × 3. In this study, the model has been adapted to classify

various stages of AD for which transfer learning from the ImageNet
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FIGURE 1

General flow of the proposed framework.

FIGURE 2

Architecture of InceptionV3 model.

training phase has been applied to achieve efficient medical image

classification. The architecture of InceptionV3 model is shown in

Figure 2.

Transfer learning (Pan and Yang, 2009) is a popular method

in recognition and detection tasks, allowing for improved model

performance by leveraging pre-trained models. In this context,

the domain D consists of a feature vector Y = y1, y2, · · · , yn
with a corresponding probabilistic distribution P(Y), forming

B = Y , P(Y). The task, denoted as T, consists of the ground

truth Z = z1, z2, · · · , zn. The function can be expressed in

probabilistic form as P(z|y). In the context of transfer learning,

this can be represented concerning the source domain as

BT = (x(T1), x(T2)), (x(T2), x(T2)), · · · , (x(Tn), x(Tn)) along with

the learning rate ST . The target output is denoted as BS =

(x(S1), x(S2)), (x(S2), x(S2)) · · · , (x(Sn), x(Sn)), and the associated

function for the targeted neural network is represented as SS. The

primary objective of transfer learning is to improve the learning

rate for predicting the target object by utilizing the recognition

function FS(.), which is informed by training on both BT and BS,

where BT 6= BS and ST 6= SS. Inductive transfer learning proves

to be effective in pattern recognition tasks. An annotated dataset is

essential for efficient training and evaluation when implementing

inductive transfer learning. This process can involve distinct class

labels ZT 6= ZS and differing distributions P(ZT |YT) 6= (ZS|YS).
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FIGURE 3

Overview of the GSA block.

3.3 Generalized self-attention module

The proposed GSA module is aimed at achieving detailed

description of AD characteristics while avoiding irrelevant features.

Its architecture was influenced by the self-attention mechanisms

employed in GCNet (Cao et al., 2019; Zhang et al., 2019), as

illustrated in Figure 3. However, unlike these methods, it positions

global dependency across both spatial and channel dimensions at

the same time. Spatial attention worked for the relationships of

the global features in the spatial location, while channel attention

worked on the importance of a point channel out of all the channels.

As initial input for the GSA module, we utilize the high level

activation maps Z ∈ R
H×W×C , whereas the GSA module returns

the refined feature maps Zgs ∈ R
H×W×C . The feature map is

divided into the keys, queries, and values, similar to a transformer

architecture, which is supported by three attributes Q, K, and V .

The query function q(Z) is defined by a convolution of 1 ×

1 consisting of C′ = C/8 channels and global average pooling

to attain the vector Q(Z) ∈ R
1×C′

. On the other hand, the key

and value functions are carried out by 1 × 1 convolution followed

by reshape operations but without global average pooling and

the outputs are maps K(Z) ∈ R
HW×C′

and V(Z) ∈ R
HW×C′

).

Next, The spatial attention weights are generated by calculating the

matrix product betweenQ and K and applying a softmax activation

function given as

Z′ = φ(q(Z)⊗ k(Z)T) (6)

With regard to the abbreviations used here, we have ⊗

indicating the cross-product of the matrix, φ which stands for

the softmax activation function of the formula and the double

dagger T showing the operation of matrix transposition. Following

this, the spatial attention feature map Zsp ∈ R
H×W×C derived

by performing element-wise multiplication among Z′ and Z is as

follows:

Zsp = reshape(Z′)⊙ Z (7)

Similarly, a matrix cross-product of Z′ with v(Z) leads to the

channel attention weights which are passed through a 1 × 1

convolution layer and a sigmoid non-linearity. It also increases the

channels from C′ to C. This process is also called linear embedding.

The mathematical formulation for this global transformation is

given by

Z′′ = σ (conv(Z′ ⊗ v(Z))) (8)

Next, the channel-wise attention maps Zch ∈ R
H×W×C are

calculated as

Zch = Z′′ ⊙ Z (9)

Finally, we integrate the spatial attention feature maps Zsp and

the channel attention maps Zch by taking their weighted sum,

producing the refined attention feature map Zgs ∈ R
H×W×C,

defined as

Zgs = W1Zsp +W2Zch (10)

where W1 and W2 are two trainable scalar weights. In

summary, GSA obtains the channel-wise and spatial dependencies

concurrently from MR images and then improves the features

representation. We merge the feature attention maps produced

by the GSA heads through concatenation, preceding 1 × 1

convolution to generate the final output of the proposed GSA,

denoted as Ztm ∈ R
H×W×C. Mathematically, Ztm can be

represented as follows:

Ztm = concat(Z1
gs,Z

2
gs, . . . ,Z

h
gs) (11)

In this study, h, representing the number of GSA heads, is set

empirically to a value of 4. This specific choice of h = 4 was

determined empirically.
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3.4 Classification

The ELM [42] was used as a classifier to differentiate AD stages.

Given z sample (Z, o), the ELM’s output with no errors can be

mathematically expressed as follows:

o =

√∑
αt(wi + b) (12)

In this instance, the activation function is denoted by t(·),

and the input and output samples are Z and o, respectively. The

variables w and b are weights and bias, respectively, and α is

the weight coefficient. The output O is provided as O = Hα

whereby O = (o1, o2, · · · , on) symbolizes the output vector and

α = (α1,α2, . . . ,αm) denotes the weight vector. The hidden layers

can be expressed as

H =




t(w1i1 + b1) · · · t(wni1 + bn)
...

. . .
...

t(w1im + b1) · · · t(wnim + bn)


 (13)

The number of nodes in the hidden layer needs to be below

the total amount of samples. Description of the structured model

of a single hidden-layer ELM neural network utilized for AD

classification is provided in Equation 13. The hidden layer, denoted

by H, is composed of nodes and activation functions t(·). Weights

wi and biases b are connected to each hidden layer node, with i

ranging from 1 tom and representing input variables. The formula

used in the production of the output of the hidden layer O is the

summation of the product between each of the node’s activation

function and weights then passed through t(·). The mechanism can

be mathematically represented as O = Hα. Equation 13 defines

the structure of the hidden layer, which further elucidates that

the H is a concatenation of n nodes. The weighted sum of input

features i = (i1, i2, · · · , im) is computed for each node’s activation

by utilizing weights wi and biases b for each node. The function t(·)

adds non-linearity and provides the network with ability to learn

more complex input data patterns. Determining the quantity of

nodes in the hidden layers is essential; they should be fewer than the

amount of samples to avert overfitting. During training, we obtain

the weights and biases to minimize the mapping function between

the input features and the associated output for AD classification.

4 Experimental results

The analysis and experimental results of the proposed

models are detailed in this section. The presentation includes

information regarding the dataset, implementation characteristics,

and comparison analysis.

4.1 Experimental setup and dataset

The model was trained on a high-performance machine

equippedwith an Intel Core i9-14900HX processor and anNVIDIA

RTX 4090 GPU, providing substantial computational power for

TABLE 1 ADNI dataset image count before and after augmentation.

Classes No. of images Augmented No. of utilized
images

AD 8,346 n/a 500

CN 8,650 n/a 500

EMCI 480 n/a 480

LMCI 144 432 432

MCI 1,155 n/a 500

TABLE 2 Total number of images and number of images utilized from

OASIS dataset.

Classes No. of images No. of utilized images

Mild dementia 5,002 500

Moderate dementia 488 488

Non-demented 67,200 500

Very mild dementia 13,700 500

deep learning tasks. The system included 64GB of DDR5 RAM

operating at 5,600MT/s, ensuring efficient handling of large-scale

data. CUDA 12.6 was utilized to enable GPU-accelerated training.

Themodel was trained with a learning rate of 0.0001, a value chosen

to balance the stability and convergence speed of the training

process.

In this experiment, ADNI dataset was used which consisted

of five classes: AD, CN, EMCI, LMCI, and MCI. The original

number of images varied significantly across classes, with AD,

CN, and MCI having thousands of images, while EMCI and

LMCI had considerably fewer as shown in Table 1. To address

this class imbalance, data augmentation was applied exclusively to

the LMCI class, which originally had only 144 images. Through

augmentation, the LMCI class was expanded to 432 images,

increasing the total number of samples used in the training process.

For the other classes, 500 images were randomly selected from AD

and CN, while all available images were used for EMCI and MCI.

The augmentation methods used to enhance the LMCI class

included rotation, scaling, and flipping. Rotation involved rotating

images by various angles to introduce diversity without altering

key signal features. Scaling was applied to adjust the size of images

while maintaining their aspect ratio, simulating variability in data

capture. Flipping, both horizontally and vertically, was also used

to further diversify the dataset, making the model more robust to

orientation changes. These augmentation techniques were critical

in improving class balance and ensuring better generalization

during model training.

Another dataset used in this experiment is the Open Access

Series of Imaging Studies (OASIS), a widely utilized resource for

neuroimaging research, particularly in the study of brain health

and dementia. Table 2 presents the distribution of images from

the OASIS dataset across four classes: Mild Dementia, Moderate

Dementia, Non-Demented, and Very Mild Dementia.

Frontiers in Artificial Intelligence 06 frontiersin.org108



Binzagr and Abulfaraj 10.3389/frai.2025.1540646

4.2 ADNI results

Table 3 indicates the performances of the proposed model in

terms of classification for Alzheimer’s detection under the different

cognitive conditions. The network can accurately predict an image

with an average of 96.67% and high values of precision, recall, and

TABLE 3 Classification performance of InGSA on ADNI dataset.

Class Precision
(%)

Recall (%) F1-
score
(%)

AUC (%)

AD 94.23 98.00 96.08 98.21

CN 97.92 95.92 96.91 97.70

EMCI 95.88 96.88 96.37 97.92

LMCI 98.80 95.35 97.04 97.55

MCI 97.00 97.00 97.00 98.11

Accuracy 96.67

Macro average 97.76 96.63 96.68 97.90

Weighted average 96.71 96.67 96.67 97.91

F1-scores for all classes. For the LMCI class, the study realized a

precision of 98.80%, while at the same time, AD has the highest

recall of 98.00% to show effective detection. All classes have an

F1-score of more than 96%, and it can be seen that the approach

balanced precision and recall. The AUC values are also high, and

AD reached 98.21%. Confusion matrix for proposed model is given

in Figure 4.

Table 4 gives a quantitative analysis of the number of correct

detections of the various models augmented with different

TABLE 4 Performance comparison of di�erent attention mechanisms.

Attention
mechanism

Accuracy (%)

Mob Den Res Sq InV3

None 82.76 76.65 71.27 86.32 90.17

Self attention 85.43 79.89 76.39 87.36 93.44

CBAM 83.70 78.72 71.89 89.78 91.23

CSDAB 83.00 78.21 73.47 88.24 90.87

Proposed (GSA) 84.54 82.87 79.98 91.43 96.67

FIGURE 4

Confusion matrix of proposed InGSA on ADNI Dataset.
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FIGURE 5

Visual comparison of various attention mechanisms on ADNI dataset.

attention mechanisms: MobileNet (Mob), DenseNet201 (Den),

ResNet50 (Res), SqueezeNet (Sq), and InceptionV3 (InV3). With

the proposed GSA, the largest performance improvements were

achieved with InceptionV3, from 90.17% to 96.67% (with attention)

and with SqueezeNet from 86.32% to 91.43%. Here, DenseNet201

shows improvement of 6.22% from 76.65 to 82.87, while ResNet50

goes from 71.27% to 79.98%. Self-Attention (Zhang et al., 2019) also

presented substantial enhancements for InceptionV3 from 93.15%

to 93.44%, as well as for SqueezeNet from 86.59% to 87.36%. Both

convolutional block attention module (CBAM) (Woo et al., 2018)

and channel split dual attention block (CSDAB) (Dutta and Nayak,

2022) result inmoderate accuracy increases, with CBAM improving

SqueezeNet to 89.78% and CSDAB raising it to 88.24%. In general,

GSA consistently improves accuracy in all models being tested.

Visual analysis of attention mechanisms with pre-trained model on

ADNI dataset is shown in Figure 5.

Table 5 shows accuracy and F1-score when comparing the

current existing models, namely, vision transformer (ViT),

data efficient image transformer (DEiT), and pyramid vision

transformer (PVT) with the InGSA model proposed in this study.

Out of all the models, the DEiT comes with the highest accuracy

and F1-score with accuracies of 89.44%, and F1-score of 88.12%,

with PVT coming second with accuracies of 88.48% and F1-scores

of 85.98%. ViT has the worst performance with an accuracy of

86.24% and the F1-score at 84.67%. Comparing the proposed

model InGSA with others, it is clear that the proposed model

InGSA outperforms the other models with accuracy of 96.67%

and F1-score of 96.68% that indicate effectiveness of the proposed

model InGSA.

TABLE 5 Comparison of proposed InGSA with transformer-based models

on ADNI dataset.

Model Accuracy (%) F1-score (%)

ViT 86.24 84.67

DEiT 89.44 88.12

PVT 88.48 85.98

InGSA 96.67 96.68

TABLE 6 Classification performance of InGSA on OASIS dataset.

Class Precision
(%)

Recall (%) F1-
score
(%)

AUC (%)

Mild demented 98.02 99.00 98.51 99.16

Moderate demented 98.97 97.96 98.46 98.81

Non-demented 97.94 95.00 96.45 97.16

Very mild demented 97.09 100.00 98.52 99.50

Accuracy 97.99

Macro average 98.00 97.99 97.98 98.66

Weighted average 98.00 97.99 97.98 98.66

4.3 OASIS results

Table 6 presents the classification performance for different

categories of dementia using OASIS dataset. High precision of
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FIGURE 6

Confusion matrix of proposed InGSA on OASIS dataset.

TABLE 7 Performance comparison of di�erent attention mechanisms.

Attention
mechanism

Accuracy (%)

Mob Den Res Sq InV3

None 87.35 80.78 72.34 87.54 92.87

Self attention 88.45 84.67 73.67 89.79 94.76

CBAM 88.89 84.32 77.93 88.38 93.62

CSDAB 88.95 82.19 74.05 88.75 93.90

Proposed (GSA) 90.74 87.64 79.85 91.02 97.99

all classes set by the model, specifically Moderate Demented

presenting 98.97% and Mild Demented 98.02%. The Recall is

exceptional for Very Mild Demented at 100% which means that

all the cases belonging to this class are identified rightly. The F1-

score, therefore, averaged over all classes is unbiased, being 96.45%

for Non-Demented and 98.52% for both Mild and Very Mild

Demented classes. AUC’s are high, notably Very Mild Demented

with a highest of 99.50%. In general, the proposed model renders

high performance in the presented study with the overall accuracy

of 97.99%. Figure 6 depicts confusionmatrix of proposedmodel for

OASIS dataset.

Table 7 shows the percentage of classification accuracy of

multiple models when using the OASIS dataset, with different

attentionmechanisms. All the attention approaches improve on the

baseline accuracy of all the models including the proposed GSA

model. For instance, they achieve 90.74% accuracy with MobileNet

and an outstanding 97.99% with InceptionV3 confirming how

efficient the proposed approach is in enhancing model accuracy.

Self-attention mechanism also plays a useful role, especially in

MobileNet and InceptionV3 models and in this experiment

reached a throughput of 88.45 and 94.76%, correspondingly. While

structure imported with CBAM and CSDAB mechanisms may be

less fortunate than the GSA model, it has revealed improvements.

Figure 7 illustrates the visual analysis of attention mechanisms

using a pre-trained model on the OASIS dataset.

The findings in Table 8 reveal that all algorithms provide

high accuracy, where proposed InGSA model performs the best

with accuracy of 97.99% and F1-score of 97.88%. This implies

that InGSA is proud not only to classify instances accurately

but also to have a low percentage of false positive and false
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FIGURE 7

Visual comparison of various attention mechanisms on OASIS dataset.

TABLE 8 Comparison of proposed InGSA with transformer-based models

on OASIS dataset.

Model Accuracy (%) F1-score (%)

ViT 91.65 86.78

DEiT 89.43 89.12

PVT 93.79 92.61

InGSA 97.99 97.88

negative. Next is the PVTmodel which gives classification accuracy

of 93.79% and F1-score of 92.61% demonstrating the good

classification prowess of the model. The performance of both ViT

and DEiT models is reasonable, with accuracies of 91.65% and

89.43%, respectively.

5 Conclusion

Alzheimer’s disease, diagnosed and classified with multiclass

datasets in the early stage, needed a proficient automatic system

identification. This study puts forward a CNN-Transformer model

to diagnose Alzheimer’s cases from multiclass datasets using

transfer learning. First, a method of contrast enhancement is

utilized to help better visualize important features. Furthermore,

we introduce a new global CNN-transformer network known

as InGSA for multiclass AD classification to facilitate end-

to-end training. The InGSA architecture is based on the

CNN and transformer, and GSA blocks are placed on top

of pre-trained InceptionV3 model. GSA blocks are important

for expression subscalar detection of global dependencies of

features. The GSA component improves the extraction of

detailed information by learning channel-wise and spatial-wise

attention weights at the same time. In-depth experiments on

two benchmark datasets demonstrate that our proposed InGSA

achieves superior performance compared to the state-of-the-art

techniques. Furthermore, GSA yields better results than other

traditional attention methods. For the future works, we aim

to test GSA on more extensive set and diverse dataset, and

we also want to apply our proposed method in the other

vision-related tasks.
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Disease and spatial attention module-based explainable model for brain tumor
detection. Big Data Cogn. Comput. 8:97. doi: 10.3390/bdcc8090097

Tuvshinjargal, B., and Hwang, H. (2022). VGG-C transform model with batch
normalization to predict Alzheimer’s disease through MRI dataset. Electronics 11:2601.
doi: 10.3390/electronics11162601

Varatharajah, Y., Ramanan, V. K., Iyer, R., and Vemuri, P. (2019). Predicting
short-term mci-to-ad progression using imaging, CSF, genetic factors, cognitive
resilience, and demographics. Sci. Rep. 9:2235. doi: 10.1038/s41598-019-38
793-3

Woo, S., Park, J., Lee, J.-Y., and Kweon, I. S. (2018). “CBAM: convolutional block
attention module,” in Proceedings of the European conference on computer vision
(ECCV), eds. V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss (Cham: Springer),
3–19. doi: 10.1007/978-3-030-01234-2_1

Yousafzai, S. N., Shahbaz, H., Ali, A., Qamar, A., Nasir, I. M., Tehsin, S., et al.
(2024). X-news dataset for online news categorization. Int. J. Intell. Comput. Cybern.
17, 737–758. doi: 10.1108/IJICC-04-2024-0184

Zhang, H., Goodfellow, I., Metaxas, D., and Odena, A. (2019). “Self-attention
generative adversarial networks,” in International conference onmachine learning (Long
Beach, CA: PMLR), 7354–7363.

Zhang, T., Zhao, Z., Zhang, C., Zhang, J., Jin, Z., Li, L., et al. (2019).
Classification of early and late mild cognitive impairment using functional brain
network of resting-state fMRI. Front. Psychiatry 10:572. doi: 10.3389/fpsyt.2019.
00572

Frontiers in Artificial Intelligence 12 frontiersin.org114

https://doi.org/10.3389/frai.2025.1540646
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/WiSPNET51692.2021.9419393
https://doi.org/10.1007/s10916-019-1475-2
https://doi.org/10.1111/j.1365-2990.2009.01038.x
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.3390/bdcc8090097
https://doi.org/10.3390/electronics11162601
https://doi.org/10.1038/s41598-019-38793-3
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1108/IJICC-04-2024-0184
https://doi.org/10.3389/fpsyt.2019.00572
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


TYPE Original Research
PUBLISHED 26 March 2025
DOI 10.3389/frai.2025.1426455

OPEN ACCESS

EDITED BY

Tony J. Prescott,
The University of Sheffield, United Kingdom

REVIEWED BY

Liliana Ibeth Barbosa Santillan,
University of Guadalajara, Mexico
Aung Htet,
Sheffield Hallam University, United Kingdom

*CORRESPONDENCE

Mohamad Eid
mohamad.eid@nyu.edu

RECEIVED 24 May 2024
ACCEPTED 10 March 2025
PUBLISHED 26 March 2025

CITATION

Babushkin V, Alsuradi H, Al-Khalil MO and
Eid M (2025) Analyzing handwriting legibility
through hand kinematics.
Front. Artif. Intell. 8:1426455.
doi: 10.3389/frai.2025.1426455

COPYRIGHT

© 2025 Babushkin, Alsuradi, Al-Khalil and Eid.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Analyzing handwriting legibility
through hand kinematics

Vahan Babushkin1,2, Haneen Alsuradi1,
Muhamed Osman Al-Khalil3 and Mohamad Eid1*

1Applied Interactive Multimedia Lab, Engineering Division, New York University Abu Dhabi, Abu Dhabi,
United Arab Emirates, 2Tandon School of Engineering, New York University, New York, NY,
United States, 3Arabic Studies Program, New York University Abu Dhabi, Abu Dhabi, United Arab
Emirates

Introduction: Handwriting is a complex skill that requires coordination between
human motor system, sensory perception, cognitive processing, memory
retrieval, and linguistic proficiency. Various aspects of hand and stylus kinematics
can affect the legibility of a handwritten text. Assessing handwriting legibility is
challenging due to variations in experts’ cultural and academic backgrounds,
which introduce subjectivity biases in evaluations.

Methods: In this paper, we utilize a deep-learning model to analyze
kinematic features influencing the legibility of handwriting based on temporal
convolutional networks (TCN). Fifty subjects are recruited to complete a 26-word
paragraph handwriting task, designed to include all possible orthographic
combinations of Arabic characters, duringwhich the hand and stylusmovements
are recorded. A total of 117 different spatiotemporal features are recorded, and
the data collected are used to train the model. Shapley values are used to
determine the important hand and stylus kinematics features toward evaluating
legibility. Three experts are recruited to label the produced text into different
legibility scores. Statistical analysis of the top 6 features is conducted to
investigate the differences between features associated with high and low
legibility scores.

Results: Although the model trained on stylus kinematics features demonstrates
relatively high accuracy (around 76%), where the number of legibility classes
can vary between 7 and 8 depending on the expert, the addition of hand
kinematics features significantly increases the model accuracy by approximately
10%. Explainability analysis revealed that pressure variability, pen slant (altitude,
azimuth), and hand speed components are the most prominent for evaluating
legibility across the three experts.

Discussion: The model learns meaningful stylus and hand kinematics features
associated with the legibility of handwriting. The hand kinematics features
are important for accurate assessment of handwriting legibility. The proposed
approach can be used in handwriting learning tools for personalized handwriting
skill acquisition as well as for pathology detection and rehabilitation.

KEYWORDS

handwriting, deep learning, temporal convolutional networks, sensorimotor learning,
machine learning

1 Introduction

Handwriting is a complex sensorimotor skill that requires simultaneous coordination
between human visual-perceptual, cognitive, and motor systems (Bonney, 1992). Writers
process visual and haptic feedback to coordinate the hand, arm and ĕnger movement
in order to produce legible handwriting. Developing legible handwriting is crucial for
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children development, and can affect the educational process,
academic success, and self-conĕdence (Chang and Yu, 2013).
Furthermore, understanding the factors that inĘuence handwriting
legibility is essential for various practical applications.ese include
designing personalized learning programs to cater to individual
needs (Jenkins et al., 2016), identifying and addressing handwriting
difficulties to support students’ learning (Drotár and Dobeš, 2020;
Fancher et al., 2018), and verifying individuals identities through
handwriting analysis in security and forensic contexts (Galbally
et al., 2007). us, it can be observed that the study of handwriting
legibility can inform both educational strategies and technological
applications, highlighting its broader signiĕcance.

Handwriting legibility is a characteristic of the handwritten
text that contributes to its readability (Rosenblum et al., 2004).
Handwriting legibility oen relies on expert evaluation of the
produced handwritten sample (van Drempt et al., 2011). Several
global scales are used to evaluate the legibility of healthy adults’
handwriting, particularly of medical personnel. For instance, a
4-points scale is utilized to classify the legibility of handwritten
medical documents as “illegible”, “mostly illegible”, “mostly legible”,
and “legible” (Rodríguez-Vera et al., 2002). Expert evaluation is
based on analyzing visual features of the handwritten sample such as
size, spacing, alignment, slant, and formation (Amundson andWeil,
1996; Feder andMajnemer, 2007; Fancher et al., 2018). Early studies
identiĕed ĕve factors characterizing the legibility of handwriting,
namely letter formation, spacing, alignment slant and quality of
line (Freeman, 1915). Subsequent studies also suggest that letter
formation, size, text alignment and spacing signiĕcantly inĘuence
the legibility of children’s handwriting (Ziviani and Elkins, 1984;
Graham et al., 2006). In a recent study, different machine learning
approaches were utilized to evaluate the legibility and aesthetics of
handwritten text from images of Bengali handwritten documents,
reporting 85.74% and 86.69% F-score, for legibility and aesthetics
evaluation, respectively (Adak et al., 2017).

Given handwriting is a dynamic process including kinematic,
spatial, and temporal components; more objective and quantitative
methods are developed based on these dynamic features
(Rosenblum et al., 2003). A few studies used the stylus kinematics
data and machine learning to evaluate the legibility of individual’s
signature. For instance, occidental signatures, that incorporate
letters and signs into concatenated text with some Ęourishing
elements, are considered (Galbally et al., 2007). To determine if the
individual’s name can be inferred from the signature, i.e., if signature
is legible or illegible, ĕve stylus kinematics features are recorded,
including pen-tip coordinates, pressure, and slant, and utilized to
engineer 20 global features characterizing the individual’s signature.
ese features are used to train a Multilayer Perceptron (MLP)
classiĕer, achieving 84.56 % accuracy for binary classiĕcation
(Galbally et al., 2007). Other temporal features are also considered
to evaluate the legibility of handwriting, including handwriting
speed (Graham et al., 1998a), handwriting style (Graham et al.,
1998b), the applied pressure (Harris and Rarick, 1959), and the
grasping style (Schwellnus et al., 2012). e potential of these
features to detect pathologies such as Alzheimer’s disease (AD)
from handwriting is explored in Wang et al. (2019), demonstrating
that AD patients produce lower pen pressure and variations in the
vertical direction, in comparison to healthy subjects.

While hand motion parameters such as ĕngers/palm
position/orientation, acceleration/deceleration, and overall
hand speed may inĘuence legibility, they have yet to be explored.
is study builds on the methods and ĕndings outlined in
PhD dissertation (Babushkin, 2024), and aims to examine
correlates between hand/stylus kinematics and handwriting
legibility. An experimental setup is developed to complete a
handwriting task using a handwriting tablet while recording
the stylus and the hand movement in 3D. A deep learning
model, inspired by temporal convolutional networks (TCN),
is constructed to evaluate the legibility of handwriting based
on the time series kinematic data. We hypothesize that hand
kinematic features play a prominent role in evaluating handwriting
legibility. e interpretable machine learning approach (Shapley
values) is used to identify prominent sensorimotor features
derived from hand and stylus kinematics in evaluating the
handwriting legibility.

2 Methodology

2.1 Experimental setup

e experimental setup (Figure 1) and protocol are based on
a previously established methodology (Babushkin et al., 2024,
2023), with modiĕcations to speciĕcally investigate handwriting
legibility. e experimental setup (Figure 1A) includes a HUION
GT-116 tablet paired with a pen-like stylus and an Ultraleap
Stereo IR 170 hand motion tracker. e hand tracking device,
as shown in Figure 1A is attached to a rigid stand in a way
that allows it to accurately track the writer’s hand movements.
e system can be easily moved, allowing for data collection in
different locations.

2.2 Experimental task and protocol

Similarly to Babushkin et al. (2024), participants were
instructed to write a text consisting of 26 Arabic words (Figure 1B),
as this number was optimal for ĕtting within the dimensions
of the recording tablet screen. e text was meticulously
designed to cover all 28 letters of the Arabic alphabet and to
include all key connectivity positions in Arabic orthography.
Despite the unique glyphs (e.g., (ك were included in both
their connected and unconnected forms, homoglyphs were not
individually represented in all their connected/unconnected
variations, but rather as a group (for example the ,ب ,ت ث
homoglyphs).

e choice of Arabic script is justiĕed by its cursive nature,
context sensitivity, and multiple writing styles, which makes it more
complex in comparison to the Latin script (Naz et al., 2013, 2014;
Kacem et al., 2012). All these features of Arabic orthography allow
to address a wider variety of handwriting skills.

e subject listened to the entire text sample at a speed
of 20 words per minute before the start of the experiment.
e experiment started when the participant pressed the “Start”
button on the tablet screen to start recording of data (hand
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FIGURE 1

(A) Experimental setup, (B) sample text dictated to subjects, (C) the user interface, displaying a sample of Arabic handwriting recorded from a single
subject (Babushkin et al., 2024).

tracking and stylus), which turned red indicating recording was
in progress and changed its label to “Stop”. e experimenter
played the sample text to the subject from an audio recording,
adjusting dictation speed according to the pace of the subject’s
handwriting. As soon as the dictation ended, the subject pressed
the “Stop” button to submit the recording. e collected data
contained tablet screenshots (Figure 1C), seven stylus-kinematic
features recorded from the tablet, and 110 hand-kinematic features
recorded by the hand tracking device. e handwriting task was
repeated 6 times for each subject with the same text being dictated
each time.

2.3 Participants

In total, 50 participants were recruited for this study. All
participants were native Arabic speakers, above 18 years,
who attended school with Arabic instruction language from
grade 1 and with no previous history of neuromuscular or
orthopedic dysfunction or dysgraphia. Additional inclusion
criteria required participants to be available for in-person
sessions to record handwriting tasks and to predominantly
use their right hand for writing. e study was conducted
in compliance with the Declaration of Helsinki, following its
norms and regulations, and with an authorized protocol by the
New York University Abu Dhabi Institutional Review Board
(IRB: #HRPP-2023-93).

2.4 Expert evaluation and measures

ree Arabic teaching experts (all females, aged 35–55
years) were recruited to evaluate the legibility of the handwriting
samples (image-based) using the eligibility evaluation form (see
Supplementary Figure S1). To accommodate for the diversity
in style of education systems, the experts represented three
different educational and cultural backgrounds (Arabic gulf
countries, North Africa, and Middle East). Furthermore,
experts were recruited based on the following inclusion
criteria: (1) having more than 10 years of experience in
teaching Arabic handwriting, and (2) currently working
in official (statutory work) or extra-official settings
(non-statutory work).

e non-language dependent Handwriting Legibility Scale
(HLS) (Barnett et al., 2018) was adapted to incorporate features
speciĕc to Arabic handwriting, such as aesthetics. e three Arabic
teaching experts were tasked with evaluating the handwriting
samples in terms of readability (how easy/difficult is it to
read this person’s handwriting?), space management (was this
person able to ĕt their writing in the space available?), style
consistency (how consistent was this person in following speciĕc
style?), and aesthetics (how beautiful was the handwriting?).
Each of these questions was rated on a 3-point Likert scale,
and a cumulative legibility score was calculated by summing
the responses to these four questions, yielding a total score
between 4 and 12 points. Furthermore, based on the experts’
observations of high similarity among samples written by the

Frontiers in Artificial Intelligence 03 frontiersin.org117

https://doi.org/10.3389/frai.2025.1426455
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Babushkin et al. 10.3389/frai.2025.1426455

FIGURE 2

Cumulative score distributions by experts (A) expert 1, (B) expert 2, (C) expert 3.

same individual, the cumulative scores of all six samples from
each subject were averaged within each subject. e resulting
average score was then rounded to the nearest integer and
assigned as the legibility score for all samples written by that
subject. e cumulative legibility scores assigned by the three
experts (see Figure 2) were nearly normally distributed, meaning
that the handwriting legibility was well-represented within the
recruited subjects.

In total 117 kinematic features were recorded from two different
sources: seven stylus features from the tablet and 110 hand
kinematics features from the hand tracking device (see Table 1).e
data were collected at a sampling rate of 25 Hz and synchronized to
a uniĕed timestamp (Babushkin et al., 2024, 2023).

2.5 Model architecture

eproposedmodel is motivated by the temporal convolutional
network (TCN) (Lea et al., 2016) design that uses 1D convolutions to
extract features encoded across time (Dai et al., 2019). Due to their
ability to update layers’ weights at every time step simultaneously,
TCNs demonstrate better performance than Long-Short Term
Memory networks while dealing with long time series (Zhang et al.,
2017; Dai et al., 2019); they can take sequences of any lengths
and ensure the absence of information leakage from future to past
events (Yan et al., 2020). However, TCNs still face difficulties with
inferring dependencies between long-range patterns due to the
limited receptive ĕeld of the convolutional kernels (Dai et al., 2019).
e addition of a self-attention layer to TCN enhances its ability
to capture these long-range dependencies (Vaswani et al., 2017).
Furthermore, the self-attention mechanism allows to infer hidden
associations in features, enabling the network to learn irregular and
complex patterns (Bu and Cho, 2020). Additionally, self-attention
can also lead to more interpretable models (Vaswani et al., 2017).

e proposed model, illustrated in Figure 3, consists of two
TCN layers represented by one-dimensional convolutional layers
(1DCNN).ese are followed by a self-attention layer that processes
the hidden representation and extracts a global temporal attention
mask. Learning takes place within the subsequent four fully-
connected layers. Both the number of fully-connected layers and

TABLE 1 The recorded 117 hand and stylus kinematics features
(Babushkin et al., 2024, 2023).

Modality Features

Stylus kinematics features Stylus tip coordinates
(
x, y, z

)
(z = const),

Pressure (applied force),
Azimuth (angle of the stylus projection onto the
tablet surface, counted clockwise),
Altitude (angle between the tablet screen and the
stylus),
Proximity to the writing surface.

Hand kinematics features
(
x, y, z

)
coordinates of following Index, Middle,

Ring and Pinky ĕngers’ bones:
• Distal,
• Intermediate,
• Proximal,
• Metacarpal,
• Proximal end of the metacarpal bone.(
x, y, z

)
coordinates of following umb bones:

• Distal,
• Intermediate,
• Proximal,
• Metacarpal.
Palm center

(
x, y, z

)
coordinates,

Hand pinch position
(
x, y, z

)
coordinates (thumb

and index if they are pinched),
Hand predicted pinch position

(
x, y, z

)
coordinates,

Hand wrist position
(
x, y, z

)
coordinates,

Elbow position
(
x, y, z

)
coordinates (estimated if

not in view),
Hand arm center

(
x, y, z

)
coordinates (midpoint of

the bone),
Palm speed

(
vx , vy , vz

)
components,

Hand palm normal
(
nx , ny , nz

)
coordinates,

Hand rotational components
(
rx , ry , rz , rw

)
,

Palm width,
Palm pitch,
Palm yaw,
Palm roll,
Hand pinch strength,
Hand pinch distance,
Hand grab angle,
Hand arm length (length of the bone),
Hand arm width (average width of Ęesh around
the bone).

the number of neurons in each layer were determined empirically,
starting with the simplest possible architecture.
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e number of TCN layers used in the model is based on the
assumption that the ĕrst layer captures temporal dependencies,
while the second layer focuses on inferring spatial dependencies
from the feature maps produced by the ĕrst layer. Visualization of
feature maps aer the ĕrst and second 1D CNN layers conĕrmed
this assumption. Adding more than two 1D CNN layers leads to
incremental improvements in the model’s performance.

e input layer takes a matrix of 117 features and t time points
and feeds it to the ĕrst convolution layer with number of channels
C1 = 128. e original sample of length T = (w− s)× n+ s, where
s is overlap, is split into n windows of length w. e convolution
is performed by sliding a kernel of size K1 = 20 along the time
dimension of each window. e resulting (w− K1)+ 1×C1 matrix
is passed to the input of the second 1D convolution layer of 32
channels with a kernel of size K2 = 20 sliding along the time
dimension. e w − (K1 + K2) + 2 × C2 feature map matrix from
the second 1D convolution layer is processed by self-attention layer
of 32 units, then Ęattened and passed to the fully connected layers
with 256, 128, 64, 32 and ĕnallyN neurons, whereN is the number of
classes. To stabilize the learning process and to prevent overĕtting,
the batch normalization and dropout of 25% were applied aer
convolutional and fully connected layers. e Rectiĕed Linear Unit
(ReLU) activation was used in all layers except the last one (output
layer), which uses Somax as an activation function. e model was
trained on 200 epochs using categorical crossentropy loss function
and Adaptive Moment Estimation (Adam) optimizer (Kingma and
Ba, 2015). Due to the limited sample size, adjusting the learning rate
using callbacks was not feasible – the optimal learning rate of 10−3

was found empirically and remained constant during the training.
To combat the class imbalance, the oversampling method is applied
to the training data, before using it to train the network.

2.6 Feature selection: Shapley values

Shapley values, initially introduced within game theory
(Shapley, 1953), are used for assessing the inĘuence of each feature
on the prediction of themodel (Lundberg and Lee, 2017; Fryer et al.,
2021). e core concept behind Shapley values involves assessing
the impact of each feature on the model’s outcome by sequentially
substituting each feature with uniformly-distributed random values
and retraining the model on this new dataset. Shapley values are
computed by comparing the model’s predictions on the dataset
with the random feature against the ones on the dataset with the
original feature, for all instances in the validation set. ese values
are then averaged across the validation set to determine the overall
inĘuence of each feature. Ultimately, the distribution of averaged
Shapley values is obtained, allowing to test the importance of the
replaced feature compared to the substituted random feature.

e Shapley value of a feature of index f ∈ F = {1, . . . , d}
from the set of all feature indices F, is a weighted average of all
marginal contributionsMf(S), each of them represents the difference
in evaluation aer introducing feature of index f to a sub-model
S ⊂ F, i.e. Mf(S) = C

(
S ∪ {

f
}) − C (S) (C is evaluation function).

In this case, the Shapley value, ϕf, of feature, f, is:

ϕf =
∑

S∈2F\{f}
ω(S)Mf(S), (1)

where ω(S) = |S|!(|F|−|S|−1)!
|F| ! are the weights (Fryer et al., 2021;

Babushkin et al., 2024, 2023).

2.7 Statistical analysis

Statistical analysis was conducted to understand how the most
prominent features, extracted through Shapley values analysis,
differed for samples with high and low legibility. e low and high
legibility classes were selected for each expert following the legibility
score distributions shown in Figure 2, i.e. for expert 1 the lowest
legibility score was 4, highest was 11, for expert 2 lowest was 6,
highest was 12, for expert 3 lowest was 5, highest was 12. e
top 6 features, consistent across experts, namely pressure, azimuth,
altitude and hand speed x, y and z components, were averaged over
time for both the lowest and highest legibility classes. To ensure
the independence of time-averaged features, the samples evaluated
as high or low by more than one expert, were considered once
only, i.e. there were no repetitions. e sample size for low legibility
group for each feature was 619, and 1,384 for high legibility group.
For each feature, the D’Agostino-Pearson omnibus normality test
(recommended for large sample sizes D’Agostino and Stephens,
1986) was used to determine if the data follows normal distribution.
e results demonstrated that the distributions for low and high
legibility groups for all the 6 features were not normal and thus
non-parametric Mann-Whitney U test was applied to evaluate
statistical difference.

3 Results

3.1 Optimal parameter search

Legible handwriting is commonly evaluated based on the whole
handwriting sample rather than a letter or a word (vanDrempt et al.,
2011). However, due to the limited sample size (303 paragraphs
produced by 50 participants) and imbalanced distribution of the
samples across the legibility classes, the sliding window method
is adopted to enhance the sample size for model training and
evaluation. Assuming the legibility of handwriting can vary within
the text, the window should be large enough to contain sufficient
number of words to ensure sufficient representation of the overall
legibility score of the sample.

To determine the optimal length of the time window, the grid-
search technique was conducted for 27 different window lengths.
Initially, the optimal overlap size was determined by training the
model using three different ĕxed-length windows. Since the length
of the window corresponding to the shortest sample was 1,774, the
length of largest of these 3 ĕxed windows was selected as 1,728—a
multiple of 64 which was close to 1,774. e smallest window length
was set to 64 and the median window length was selected as 896.
e overlaps were ranging from 0% to 90% with 10% step. While
the number of words per given window of length w varied from
subject to subject, the choice of step 64was dictated by theminimum
possible word length. e average accuracy was calculated over 5
folds and 5 runs for each expert and window length. e results
indicated a linear increase in accuracywith the percentage of overlap
(see Figure 4), leading to the adoption of a 90% overlap.
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FIGURE 3

The model architecture with two temporal convolution layers. T, is the length of entire paragraph (can vary depending on the writing speed of the
subject); n, number of windows; w, length of the window; s, overlap; K1, K2 , kernel sizes of first/second 1D CNN layers; C1, C2 , number of channels in
first/second 1D CNN layers; N, number of classes.

FIGURE 4

Parameters search—optimal overlap. For each expert, the model with optimal hyperparameters was evaluated for three different window sizes using
5-fold cross-validation across 10 evenly spaced overlap percentages values. The process was repeated five times, each with a different random seed.
The accuracy values, averaged across five folds and five runs, for (A) expert 1, (B) expert 2, (C) expert 3.

e parameter search was conducted to select a window
containing sufficient number of words to justify the assignment
of legibility score of the text sample to this window. e optimal
window length was estimated by iterating over windows of lengths
from 64 to 1728 with the step of 64 and overlap of 90%. For
each iteration, the model was trained and validated for 5 folds.
e process was repeated 5 times for each expert, each time with
different random seed and the accuracy was averaged over all
folds for each run. e results, presented in Figure 5, indicated
that the model accuracy for each expert increased steadily from
a window length of 64 to 576, plateauing around a window size
of 1,408, and then declined slowly for larger windows. At window

size of 704 all three experts were close to each other reporting an
accuracy of around 84%. erefore, a window size of 704 offered
an optimal balance, achieving high accuracy while maintaining
a minimized window length, which allowed for a larger number
of samples.

3.2 Model performance evaluation

eproposedmodel was evaluated using 5-fold cross-validation
in terms of accuracy, precision, recall and F1-score both with stylus
alone and stylus andhand kinematics features. To avoid data leakage,
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FIGURE 5

Parameters search—optimal window size. For each expert, the
model with optimal hyperparameters was evaluated with 5-fold
cross-validation across different window sizes, using 90% overlap.
The evaluation was repeated five times, each with a different
random seed. The accuracy values were averaged across five folds
and five runs.

the folds were formed at the paragraph level, before splitting a
paragraph with sliding window of length 704 and 90% overlap. us
all windows from the same paragraph were found only either in 4
folds for training or in the 5-th fold for testing, but not both in the
training and testing folds simultaneously. e average performance
of the model for each expert was summarized in Table 2. e
confusion matrices are demonstrated in Supplementary Figure S2.

Table 2 clearly demonstrates that the proposed model
performed consistently well across all experts, with accuracy
exceeding 85%. However, the model trained on expert 1 labels
achieved the highest F1 score. It might be attributed to the
distribution of expert 1 labels across classes being more uniformly
distributed. On the other hand, expert 2 and expert 3 distributions
were biased toward the high legibility scores, which suggests some
leniency in evaluation. is leniency might be attributed to the
educational system and cultural background of the last two experts.

3.3 Feature analysis

Shapley values were used to estimate the contribution of each
feature in determining the legibility of handwriting. e three
models, each trained for one expert’s scores with optimal parameters
were cross-validated for 5 folds. e Shapley values were evaluated
for each fold with 500 samples from the testing set of the given
fold. It was recommended to use the testing set to calculate Shapley
values to better inspect the ML model and understand the model’s
decision-making process. However, Shapley values for the testing set
allowed evaluating the features impact on themodel’s generalization
performance. For each sample, Shapley values were calculated solely
for the class corresponding to the true label of that sample. e
obtained Shapley absolute values were averaged across 704 time-
points and 500 test instances, and then aggregated for all 5 folds.e
12 most prominent features for predicting the handwriting legibility
score by each expert are shown in Figure 6. It is clear that the

pressure, hand speed components, and pen slant (altitude, azimuth)
are consistently the top features across the three experts.

Figure 7 shows the results of the time-average of the top
4 features for low and high legibility. e average altitude is
signiĕcantly higher for low legibility than high legibility (p <

0.01, Mann-Whitney U Test). On the contrary, azimuth, and hand
absolute velocity v =

√
v2x + v2y + v2z , where vx, vy and vz are

hand speed components, are signiĕcantly higher for high legibility
as compared to low legibility (p < 0.01, Mann-Whitney U Test).
According to Harris and Rarick (1959), the pressure itself does
not necessarily correlate with legibility for healthy adults, but the
pressure variability does.e pressure variability was also calculated
as the standard deviation of pressure over time for each timewindow
for high and low legibility classes. e Mann-Whitney U Test
conĕrms that the pressure variability is signiĕcantly higher for low
legibility (p < 0.01), which ĕnds echo in previous literature (Harris
and Rarick, 1959). Apparently, the good performance of the model
is due to its ability to capture the differences between features from
samples coming from different legibility groups.

Finally the correlation between stylus and hand kinematics
features such as pressure variability and the absolute speed of
handwriting was considered for writers whose handwriting samples
(paragraphs) were evaluated as either highly legible or low legible.
e paragraphs, produced by each one of those writers were
unanimously evaluated either as highly legible or low legible by
at least one expert. Highly legible paragraphs corresponded to
the highest cumulative legibility scores assigned by the experts
(11 for expert 1, 12 for experts 2 and 3; see Figure 2), while
low legibility paragraphs corresponded to the lowest scores (4 for
expert 1, 6 for expert 2, and 5 for expert 3; see Figure 2). e
absolute velocities and pressure values were aggregated across all
paragraphs for each subject.emean absolute velocity andpressure
variability were calculated from the aggregated data, resulting
in 50 mean absolute velocity—pressure variability pairs, one for
each subject. Both features were normalized to [0, 1] interval. e
correlation coefficient between mean absolute velocity and pressure
variability was 0.19, indicating a very weak relationship between
these two features.

4 Discussion

e comparison of model performances with and without hand
kinematics features (shown in Table 2) revealed the importance
of including hand kinematics for more accurate evaluation of
handwriting legibility. While the stylus kinematics features such
as applied force, azimuth, and altitude might be sufficient for
general legibility assessment, the inclusion of hand kinematicsmight
detect subtle changes in legibility that can be used for diagnosing
or predicting handwriting difficulties. Hand kinematics features,
measured directly fromhand tracking, capture hand dynamicsmore
accurately than tablet features. While handwriting speed can be
approximated from stylus kinematics features, it does not explicitly
measure the hand speed, which is captured by a hand tracking
device. us, the inclusion of the hand kinematics features provides
the model with a more accurate analysis of the hand dynamics.

e increase in model performance with window overlap for
each expert (Figure 4) can be viewed as a formof data augmentation.
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TABLE 2 Results of five-fold cross-validation for models using inputs from seven stylus kinematics features and 117 stylus and hand kinematics features
for each expert.

Accuracy, % Precision, % Recall, % F1-score, %

Stylus Stylus and hand Stylus Stylus and hand Stylus Stylus and hand Stylus Stylus and hand

Expert 1 76.0 86.3 78.8 88.4 74.8 89.3 75.8 88.6

Expert 2 76.5 87.2 76.4 86.9 73.2 87.0 73.7 86.4

Expert 3 75.3 85.4 75.8 88.4 73.8 84.5 73.4 85.8

e performance metrics were averaged over ĕve folds.

FIGURE 6

Aggregated Shapley values for each expert: (A) expert 1, (B) expert 2, (C) expert 3.

FIGURE 7

Top influential factors for low and high legibility, (A) pressure variability, (B) azimuth, (C) altitude, (D) hand absolute velocity. The scales were
normalized to [0, 1] interval.

Given the limited number of samples, increasing the overlap
percentage between consecutive windows boosts the training
dataset size, thereby enhancing accuracy. Moreover, hand and
stylus kinematics data are highly temporal, requiring consecutive
samples for effective learning. Training with higher overlap enables
the model to learn temporal dependencies. Additionally, the data
augmentation helps mitigate overĕtting by exposing the model
to samples with slight variations in hand and stylus kinematics,
ensuring better generalization across subjects.

e search for optimal window length revealed another
interesting behavior of the model. Despite the fact that shorter
windows provide larger number of samples, extremely shortwindow
lengths, that contain few to a fragment of a word, are not sufficient
to make inference about handwriting legibility (see Figure 5) as
smaller textual contentwithin eachwindowmaynot provide enough
information for the model to accurately assess legibility. Consistent
force patterns, which are crucial for assessing legibility, are observed
at the sentence level rather than the word level (Harris and
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Rarick, 1957). Furthermore, since there is an established correlation
between the variability of pressure andhandwriting legibility (Harris
and Rarick, 1959), the model apparently infers the variability of
pressure from a longer time interval, equivalent to more than a
few words. Similarly, for a human expert it might be hard to
provide an accurate evaluation of the legibility of handwriting just
by observing a few words. e slight drop in accuracy for larger
windows can be explained by the decrease in training samples
with the increase of window length as well as the drop in the
ability of model to generalize given the increased information
per window.

ere are signiĕcant differences in hand and stylus kinematics
features between low and high legibility. Speciĕcally, the pressure
variability (Figure 7A) is signiĕcantly higher for low legibility than
for high legibility, which is also established in previous studies,
despite the different approaches tomeasure the applied force (Harris
and Rarick, 1959). Lower overall hand speed (Figure 7D) appears
to be associated with low legibility. While previous studies only
hinted that subjects who write faster receive lower legibility scores
(Harris and Rarick, 1959), our analysis revealed the opposite effect.
is ĕnding can be inĘuenced by the differences in how the hand
speed is measured—in our study the whole hand is tracked, while
in Harris and Rarick (1957) and Harris and Rarick (1959), the
hand speed was inferred from the oscillographic records. Other
factors that may have inĘuenced this result include the use of
electronic tablet (rather than a physical paper) and the lack of
friction feedback on the tablet. Interestingly, our study found a
very weak correlation between pressure variability and absolute
handwriting velocity. is may be due to the fact that pen pressure
and writing speed are governed by distinct motor control processes.
In adults, pen pressure has been shown to positively correlate
with activity in the wrist extensor and Ęexor muscles, whereas
increased writing speed is associated with decreased activation
of these distal muscle groups (Gerth and Festman, 2023; Naider-
Steinhart andKatz-Leurer, 2007). Additionally, the weak correlation
could be inĘuenced by factors such as the non-linear relationship
between velocity and pressure variability, as well as individual
differences in writing styles among participants. Beyond speed and
pressure variability, pen slant (altitude, azimuth) is also a signiĕcant
factor inĘuencing evaluation of handwriting legibility. Speciĕcally, a
smaller azimuth angle and larger altitude features are associatedwith
low legibility. is ĕnds echo in literature where a previous study
found that the pen slant is associated with handwriting difficulty
(Asselborn et al., 2020).

Despite the differences in experts’ cultural and academic
backgrounds, the explainability analysis conducted with Shapley
values (Figure 6) suggests that the pressure variability, hand speed
components, and stylus slant (altitude, azimuth) features are
consistently important across experts. is means that in general,
experts implicitly rely on these features to evaluate the handwriting
legibility. Other features that vary across the experts, are expert-
speciĕc and signify the assessment style of each expert. e
model explainability analysis can be used to identify features
that are correlated with low legibility and suggest handwriting
practices/interventions to target these features and improve more
effectively the legibility of handwriting.

A few limitations should be acknowledged. First, the sample
size of 50 subjects is considered relatively low. e majority of

subjects (30) were aged between 18 and 25 years with males
constituting only half of the female population. e analysis
of kinematic features inĘuencing the legibility of handwriting
should be performed on a larger and more diverse sample size.
Furthermore, the effect of some demographic parameters, such as
age and gender, shall be investigated. In future studies more experts
will be recruited to evaluate legibility of the handwriting samples
for understanding how the cultural and educational background
inĘuences the human-based evaluation and using this knowledge to
mitigate possible expert-related biases in cumulative legibility score.
Another technology related limitation involves the intermittent
hand tracking for some subjects, particularly for female participants
mostly due to the hand shape and in some cases the use of sunscreen
cream that caused difficulties for tracking with infrared camera.
Future research should consider using other data acquisition
systems that allow writing on a physical paper (e.g., Wacom
Bamboo) or emulating a paper interaction (e.g., reMarkable).
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AI generations: from AI 1.0 to 
AI 4.0
Jiahao Wu , Hengxu You  and Jing Du *

Informatics, Cobots and Intelligent Construction Lab, Engineering School of Sustainable 
Infrastructure and Environment, University of Florida, Gainesville, FL, United States

This paper proposes that Artificial Intelligence (AI) progresses through several 
overlapping generations: AI 1.0 (Information AI), AI 2.0 (Agentic AI), AI 3.0 (Physical 
AI), and a speculative AI 4.0 (Conscious AI). Each AI generation is driven by shifting 
priorities among algorithms, computing power, and data. AI 1.0 accompanied 
breakthroughs in pattern recognition and information processing, fueling advances 
in computer vision, natural language processing, and recommendation systems. 
AI 2.0 is built on these foundations through real-time decision-making in digital 
environments, leveraging reinforcement learning and adaptive planning for agentic 
AI applications. AI 3.0 extended intelligence into physical contexts, integrating 
robotics, autonomous vehicles, and sensor-fused control systems to act in 
uncertain real-world settings. Building on these developments, the proposed AI 
4.0 puts forward the bold vision of self-directed AI capable of setting its own goals, 
orchestrating complex training regimens, and possibly exhibiting elements of machine 
consciousness. This paper traces the historical foundations of AI across roughly 
70 years, mapping how changes in technological bottlenecks from algorithmic 
innovation to high-performance computing to specialized data have stimulated 
each generational leap. It further highlights the ongoing synergies among AI 1.0, 
2.0, 3.0, and 4.0, and explores the ethical, regulatory, and philosophical challenges 
that arise when artificial systems approach (or aspire to) human-like autonomy. 
Ultimately, understanding these evolutions and their interdependencies is pivotal 
for guiding future research, crafting responsible governance, and ensuring that 
AI’s transformative potential benefits society.

KEYWORDS

artificial intelligence evolution, machine learning, reinforcement learning, large 
language models, AI ethics and governance

1 Introduction

Artificial Intelligence (AI) has experienced a transformative evolution over the last 70 
years, evolving from its nascent stage of theoretical formulations to its current status as a 
cornerstone of technological advancement (Haenlein and Kaplan, 2019). Initially, the field was 
dominated by intellectual explorations into symbolic reasoning, knowledge representation, 
and the rudimentary principles of machine learning (Newell and Simon, 1956). These early 
stages were marked by a focus on conceptual breakthroughs, laying the groundwork for what 
AI could potentially achieve. As computational capabilities expanded and data sources 
proliferated, AI transitioned from theoretical models to practical applications capable of 
learning from patterns and making precise predictions (Alom et al., 2018). The last two 
decades, however, have witnessed an unprecedented acceleration in AI development, 
propelling the field into realms that surpass even the most optimistic projections of its 
early pioneers.

Despite remarkable successes in areas like natural language processing, computer vision, 
and large-scale data analytics, AI continues to face challenges in interacting seamlessly with 
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complex, dynamic real-world environments. This ongoing struggle 
signals an emerging phase in AI’s evolution, marking a shift from 
systems that primarily process and predict information to ones that 
can plan, decide, and act, ushering in new generations of AI: 
Information AI (AI 1.0), Agentic AI (AI 2.0), Physical AI (AI 3.0) and 
Conscious AI (AI 4.0). This classification not only clarifies the 
conceptual transitions within the field but also helps delineate the 
evolution of AI capabilities from data extraction to making 
autonomous decisions in digital realms, and now to engaging directly 
with the physical world.

Understanding these transitions is essential, not just from a 
technological standpoint but also for grasping the societal and 
economic implications of AI. Distinct technological drivers and 
bottlenecks have shaped each phase of AI: the early period was limited 
by the lack of advanced algorithms and computational frameworks 
(Jones, 1994); the advent of powerful GPUs around 2012 significantly 
shifted the landscape, enabling more complex neural architectures 
(Nvidia, 2011); and today, the challenge has moved toward harnessing 
domain-specific, high-quality data to feed into these sophisticated 
systems (Budach et al., 2022). Recognizing these shifts is crucial for 
stakeholders, including policymakers, researchers, and industry 
leaders, who must navigate the ethical, regulatory, and technical 
complexities introduced by advanced AI systems.

This review aims to provide a comprehensive retrospective on the 
milestones that have defined AI’s progress. By tracing the lineage of 
algorithmic innovations, increases in computing power, and 
enhancements in data utilization, we aim to illuminate the significant 
moments that have shaped AI from its inception to its current state. 
This exploration is structured around the AI 1.0 to AI 4.0 framework, 
illustrating how each generation’s defining features and limitations 
correspond to broader historical phases from approximately 1950 to 
the present. In doing so, we will also contemplate the future trajectory 
of AI, considering the potential technical challenges, societal impacts, 
and strategic directions that could define the next phases of AI 
research and application.

This article is structured first to revisit the historical foundations 
of AI, emphasizing the shifts in primary drivers from algorithms to 
computing power to data. We  then delve into the specific 
characteristics, achievements, and limitations of AI 1.0, AI 2.0, AI 3.0, 
and AI 4.0. Following this, we explore AI’s convergence and future 
outlook, highlighting the synergies among the four generations and 
outlining the grand challenges that lie ahead. Finally, we conclude 
with a synthesis of key insights and propose future directions for 
sustained progress in the field, aiming to both inform and inspire 
continued innovation and thoughtful integration of AI into our daily 
lives and societal structures.

2 Historical foundations of AI

2.1 Phase 1 (1950s–2010s): Age of 
algorithmic innovations

Since the 1950s, AI has advanced through a dynamic interplay 
among three core ingredients: algorithms, computing power, and data 
(Schmidhuber, 2022). Although these three factors have always shaped 
the field, they have not always contributed equally at every stage. In 
the early decades, the limiting factor was innovation in algorithms. 

From mid-century debates about the feasibility of machine intelligence 
to the emergence of expert systems and neural networks, it was clear 
that conceptual breakthroughs would determine AI’s boundaries 
(Turing, 2009). Meanwhile, although data and computing power were 
important, they played more supportive roles. Gradually, as new 
hardware architectures appeared and large-scale datasets became 
more accessible, the focus shifted toward harnessing immense 
computational capability and vast amounts of information. During 
this era, most funding for algorithmic research came from government 
programs (e.g., DARPA’s Strategic Computing Initiative) and a handful 
of industrial labs, fostering tight collaborations between computer 
scientists, control engineers, and cognitive psychologists to maximize 
limited hardware through smarter algorithms.

From the outset, researchers were fascinated by whether machines 
could truly think. Alan Turing’s pioneering paper (Turing, 1950) set 
the stage, posing the famous “imitation game” as a litmus test for 
intelligence. In 1956, the Dartmouth Conference (McCarthy et al., 
2006) formally introduced the term “Artificial Intelligence” and laid 
out the bold proposition that the essence of human intelligence could 
be precisely described and replicated in machines. Early NSF and 
DARPA grants enabled interdisciplinary AI centers at MIT and 
Stanford, where mathematicians, linguists, and early cybernetics 
experts worked side by side to turn the Turing Test and Dartmouth 
vision into functioning prototype systems. Early systems, such as the 
Logic Theorist and the General Problem Solver (Newell and Simon, 
1956; Newell et al., 1959) underscored that symbolic reasoning could 
be  computationally realized. These proof-of-concept attempts 
highlighted the central premise of that era: if we could devise the right 
algorithms, computers might reason and solve problems with near-
human efficacy.

By the 1960s and 1970s, a strong emphasis on symbolic AI 
emerged. Influential works by McCarthy (1960) introduced LISP as a 
language suited to symbolic processing, while Minsky and Papert’s 
(1969) critical analysis of single-layer perceptions contributed to a 
pause in neural network research, pushing many researchers toward 
knowledge-based or “expert” systems. Milestones like the DENDRAL 
project (Buchanan et al., 1971) and MYCIN (Shortliffe et al., 1975) 
showcased how carefully curated rule sets could guide problem-
solving in specialized domains. These systems illustrated the power of 
algorithmic design in areas such as medical diagnosis or chemical 
analysis, even when real-world data were scarce and computational 
resources were limited. Corporate and university partnerships in 
domains like healthcare (e.g., with Stanford Medical School) and 
chemical analysis funded expert-system projects, creating joint labs 
where domain specialists and AI researchers codified knowledge bases 
despite constrained memory and CPU budgets.

Neural networks rebounded in the 1980s with work on Hopfield 
networks (Hopfield, 1982) (Figure 1) and, crucially, the rediscovery of 
backpropagation (Rumelhart et al., 1986). This gave researchers fresh 
insight into how machines might learn patterns from data. Though the 
potential of these connectionist approaches was clear, they often 
stalled because large datasets were not widely available and specialized 
hardware did not yet exist. Even so, foundational contributions like 
LeCun et al. (1989) application of convolutional neural networks to 
handwritten digit recognition laid the groundwork for modern deep 
learning. Modest government programs and early industry prototypes, 
such as the Connection Machine, emerged from collaborations 
between neuroscientists and computer engineers. Still, widespread 
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adoption had to await later GPU cost declines and cloud-
computing services.

By the 1990s, specific algorithmic achievements hinted at deeper 
architectures capable of tackling increasingly complex tasks. The 
proposal of Long Short-Term Memory (LSTM) networks effectively 
addressed the vanishing gradient problem, opening possibilities for 
modeling sequential data more accurately (Hochreiter, 1997). 
However, the real transformative moment emerged around 2012, 
when Krizhevsky, Sutskever, and Hinton demonstrated that ImageNet-
scale datasets and high-performance GPUs could dramatically 
improve a deep neural network’s ability to classify images, i.e., the 
AlexNet (Krizhevsky et al., 2012) (Figure 2). Although this watershed 
event is often viewed as the dawn of the “deep learning era,” it could 
not have happened without the algorithmic groundwork laid over the 
preceding decades. The 2012 AlexNet breakthrough itself was 
propelled by the ImageNet consortium, uniting academic vision labs 
and industry hardware vendors, and by the sudden availability of 
affordable GPU clusters donated or subsidized by major 
tech companies.

2.2 Phase 2 (2010s–present): The 
computing revolution and deep learning 
renaissance

The pattern-matching architectures pioneered in AI 1.0, such as 
convolutional filters for edge and shape detection and Hopfield 
networks for associative memory, laid the essential groundwork for AI 
2.0’s learned feature hierarchies. By encoding low and mid-level visual 
and sequential patterns in trainable layers, these early connectionist 
models enabled decision-making agents to operate on rich, 
automatically extracted representations rather than raw sensor data, 
accelerating reinforcement-learning and supervised learning 
breakthroughs once sufficient data and compute became available.

A dramatic shift in AI research took hold around 2012, when 
mounting computational capacity began to eclipse algorithmic novelty 
as the principal engine of progress. This transition was underwritten 
by rapidly declining GPU prices, driven by consumer gaming markets, 
and by major cloud providers (AWS, Google Cloud, Azure) offering 
GPU instances, which democratized access to parallel computing. Key 
partnerships between hardware vendors (NVIDIA, AMD) and 
academic labs established early benchmarks for large-scale training, 
exemplifying how economic incentives catalyze scientific 
breakthroughs. While the core concepts underlying neural networks 
had been present since at least the 1980s, it was the widespread 
adoption of General-Purpose Graphics Processing Units (GPUs) that 
ignited what is often termed the “deep learning renaissance” (Figure 3) 
(Nickolls et al., 2008). Collaborative consortia, such as the ImageNet 
project, brought together vision researchers, software engineers, and 
data curators from both academia and industry, creating shared data 
resources and open-source codebases that accelerated innovation and 
reproducibility. When Krizhevsky et al. (2012) leveraged GPUs to 
train a large convolutional neural network for the ImageNet 
competition, they decisively demonstrated how parallelized 
computing could unearth performance gains previously unachievable 
with single-threaded Central Processing Units (CPUs). This milestone 
was enabled by government grants and corporate research labs (e.g., 
Google Brain, Microsoft Research), which invested in GPU clusters 
and supported interdisciplinary teams of machine-learning scientists 
and systems engineers to push the limits of scale. This turning point 
catalyzed a wave of research across machine vision, speech 
recognition, and natural language processing, with groups at Google, 
Microsoft, Baidu, and many academic institutions all racing to scale 
up network architectures (Dean et al., 2012; Bishop, 2013; Yu, 2013). 
The essence of this period lay in the conviction that “bigger is better,” 
whether in terms of model parameters, dataset size, or sheer 
computational resources. Consequently, much of the state-of-the-art 
progress hinged on harnessing specialized hardware: first GPUs, then 
tensor processing units (TPUs) and other custom accelerators, to 
churn through ever-growing datasets in shorter training cycles.

By the mid-2010s, the explosive rise of deep reinforcement 
learning (Mnih et al., 2015) and breakthroughs in game-playing AI, 
such as AlphaGo (Silver et al., 2016), underscored that not only could 
AI models learn representations from massive data, but they could 
also discover winning strategies through large-scale simulations. 
These advances were propelled by collaborations between AI theorists, 
neuroscientists studying decision-making, and high-performance 
computing experts, as well as by significant venture-capital funding in 
AI startups focusing on simulation-based learning and autonomous 
agents. Nevertheless, the predominant realm for these systems 
remained resolutely digital. Whether classifying images, translating 
text (Bahdanau, 2014; Vaswani, 2017), or playing complex board and 
video games, AI was still operating in an essentially informational 
context. Although data availability was critical and algorithms like 
convolutional and recurrent neural networks continued to improve, 
sheer computational power was often the deciding factor in achieving 
superior performance. Researchers observed emergent patterns in 
“scaling laws” (Kaplan et  al., 2020), revealing that larger models 
trained on larger datasets could unlock qualitatively new capabilities. 
Systems like GPT-2 (Radford et al., 2019) and GPT-3 (Brown et al., 
2020) illustrated this phenomenon vividly by demonstrating a striking 
ability to generate human-like text once parameter counts and training 

FIGURE 1

The Hopfield networks (Hopfield, 1982) introduced content-
addressable memory in neural networks, marking a major milestone 
in connectionism in AI.
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data reached certain thresholds. The development and deployment of 
these language models were driven by multi-institutional efforts, 
including OpenAI’s partnerships with cloud providers and academic 
collaborators, and by economic incentives from industries eager to 
commercialize natural-language interfaces, fueling research consortia 
around ethical and scalable model training. Because of their 
sophistication, these models continued to reside in the digital world, 
making them refined and powerful versions focused on big data 
analytics and pattern recognition at an unprecedented scale. Even so, 
the end of this phase began to hint at a transition toward greater 
autonomy and decision-making in digital contexts, an emerging 
hallmark of agentic AI. While many systems are still centered on 
classification or prediction, the rise of advanced reinforcement 
learning agents able to adapt strategies within software ecosystems 
foreshadowed a new kind of agency. By approximately 2024, the 
scholarly and commercial drive to develop goal-directed virtual 

assistants, automated resource allocation tools, and multi-agent 
simulations suggested that the chief challenge was no longer purely to 
label data accurately, but to act in digital environments in ways that 
transcended traditional supervised learning (Chen et al., 2023). This 
growing desire for agentic AI remained tied to abundant computing 
power, yet it began to reveal new dependencies on specialized data 
streams and real-time feedback loops (Tosi et al., 2024). It set the stage 
for the next generation of AI, where computational needs would 
remain vital. Still, data and context-specific knowledge would become 
even more pivotal in enabling truly autonomous, adaptive systems.

However, this unprecedented shift toward data-driven and 
compute-driven breakthroughs has also exposed systemic 
vulnerabilities that must be carefully examined before embracing the 
next wave of autonomous, agentic AI. The deployment of AI 2.0 into 
high-stakes domains such as finance, public policy, and healthcare has 
revealed how tightly coupled, speed-optimized systems can trigger 

FIGURE 2

AlexNet (Krizhevsky et al., 2012) marks the beginning of large-scale, GPU-accelerated convolutional neural networks for high-performance image 
classification.

FIGURE 3

The CUDA architecture pioneered general-purpose GPU computing, revolutionizing parallel processing and accelerating AI breakthroughs.
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cascading failures under stress. In financial markets, for instance, 
high-frequency trading algorithms, tuned to exploit sub-millisecond 
price discrepancies, precipitated the “Flash Crash” of May 6, 2010, 
when linked bots erased nearly $1 trillion in equity value within 
minutes before a partial rebound (Kirilenko et al., 2017). Without 
unified circuit breakers or oversight mechanisms, these agents 
amplified feedback loops during extreme volatility, demonstrating that 
raw performance can come at the price of systemic stability. In law 
enforcement, predictive-policing tools trained on decades of arrest 
data in Chicago and Los Angeles disproportionately targeted minority 
neighborhoods, perpetuating historical biases and eroding community 
trust. Credit-scoring models have likewise been shown to underprice 
loans for underrepresented groups, prompting regulatory 
investigations into discriminatory lending practices. These examples 
underscore that high accuracy on benchmark datasets does not 
guarantee equitable or safe outcomes in complex, real-world settings. 
Healthcare AI offers a further cautionary tale: diagnostic assistants 
trained on skewed image collections have misclassified critical 
conditions in underrepresented populations. A prominent 2018 study 
found that a melanoma detection model, trained predominantly on 
light-skinned images, misdiagnosed darker-skinned patients at twice 
the rate of lighter-skinned counterparts, despite reporting >95% 
accuracy on its test set. Such failures highlight the dangers of blindly 
scaling models without rigorous data curation and validation 
protocols. To guard against these risks, we recommend a multilayered 
defense: comprehensive stress testing under extreme or adversarial 
conditions; mandated transparency of model architectures and data 
provenance to facilitate third-party audits; regulatory circuit-breakers 
and human-in-the-loop overrides in mission-critical systems; and the 
formation of interdisciplinary oversight bodies that bring together AI 
practitioners, ethicists, domain experts, and policymakers. Embedding 
these safeguards will enable the AI community to harness the power 
of deep learning while preserving social, economic, and 
ethical stability.

2.3 Phase 3 (2024–foreseeable future): 
Data-centric paradigms

In the wake of a period defined by dramatic increases in 
computational horsepower, the focal point of AI advancement has 
shifted once again. This transition has been propelled by major 
industry investments, particularly from cloud providers (AWS, Google 
Cloud) offering specialized GPU/TPU instances, and by venture 
capital funding in data-centric startups, which drove large-scale data-
aggregation platforms and new public-private consortia to curate 
domain-specific datasets. Where Phase 2 thrived on scaling neural 
networks through unprecedented parallel processing, Phase 3 
acknowledges that data, especially specialized, high-quality data, is 
frequently the greatest obstacle. Researchers have discovered that ever-
larger models alone do not guarantee success without context-rich 
training sets. Consequently, large-scale, domain-specific data-
collection efforts have emerged, reshaping the field’s priorities. 
Projects that aggregate specialized medical data for diagnostic systems 
(Topol, 2019), simulate high-fidelity environments for robotics and 
autonomous vehicles (Dosovitskiy et  al., 2017; Kalashnikov et  al., 
2018), or compile deep reinforcement learning benchmarks with 
realistic constraints (Bellemare et al., 2013; Dulac-Arnold et al., 2021) 

attest to the idea that harnessing robust datasets can be  as 
determinative as algorithmic ingenuity or raw computational power.

Despite the continued importance of parallel computing and 
innovative architectures, many cutting-edge successes now hinge on 
data strategy. The “data-centric AI” movement gained traction 
through collaborations between academic labs (e.g., Stanford’s DAWN 
project) and industry partners in healthcare, automotive, and finance, 
where structured data pipelines and synthetic data initiatives (e.g., 
NVIDIA’s DRIVESim) received dedicated research grants and created 
shared benchmarks. Researchers have championed “data-centric AI” 
(Ng, 2021), arguing that refining training sets, removing biases, filling 
in coverage gaps, or generating synthetic data to handle edge cases, 
often yields more improvement than adding layers to a neural 
network. This philosophy is closely related to the rise of foundation 
models (Bommasani et al., 2021), which are vast neural architectures 
that can be adapted to myriad tasks but require massive, carefully 
curated corpora to realize their full potential. As data becomes the 
true bottleneck, teams must grapple with the logistical and ethical 
challenges of collecting, storing, and labeling it, as well as with privacy, 
consent, and representation issues.

Within this phase, AI’s transition from informational analysis to 
agentic decision-making becomes increasingly tangible. 
Interdisciplinary teams combining roboticists, control engineers, and 
ethicists, backed by government programs like the U. S. National 
Robotics Initiative and by multinational R&D labs (e.g., Toyota 
Research Institute), have spearheaded projects in autonomous 
vehicles, surgical robotics, and drone swarms, underscoring how 
robust data collection and simulation frameworks enable real-world 
agentic AI (Hicks and Simmons, 2019). Reinforcement learning 
agents not only plan and learn in complex digital worlds but also 
begin to bridge into real-world applications, where they must reason 
about noisy sensors, hardware uncertainties, and human 
collaboration. Physical AI, exemplified by advanced robotics, 
autonomous drones, and integrated cyber-physical systems, moves 
beyond the boundaries of simulated or purely informational spaces. 
However, this shift toward real-world, data-driven embodiments 
brings its own economic and logistical hurdles. High-precision 
sensors (LiDAR, RGB-D cameras, IMUs) and edge-grade compute 
(GPUs, FPGAs, TPUs) substantially increase hardware costs and 
power consumption, shortening operational endurance and 
increasing maintenance overhead. As teams move from single 
prototypes to fleet deployments, these expenses multiply and place 
heavy demands on network bandwidth for firmware updates and 
sensor recalibrations. Energy-efficiency constraints can limit mission 
duration in field robots and drones, making the economic trade-offs 
of embodied autonomy as critical to system design as algorithmic 
accuracy or robustness. Progress in robotic grasping and 
manipulation (Kalashnikov et  al., 2018; Levine et  al., 2018), self-
driving vehicles (Bojarski, 2016), and robotic surgery (Yang et al., 
2017) signals how these systems can robustly interact with the 
environment, handle dynamic conditions, and learn from continuous 
feedback. Thus, the hallmark of this new phase is the recognition that 
data unlocks the fuller potential of agentic AI in digital ecosystems, 
as well as physically embodied intelligence in the real world (Fiske 
et al., 2019).

Meanwhile, AI 3.0 systems transition from controlled 
simulations into diverse physical environments, thereby exposing 
new risk categories that demand rigorous attention. For instance, 
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in autonomous driving, the 2018 Tempe, Arizona incident, where 
an experimental self-driving vehicle failed to distinguish a 
pedestrian from a stationary object, exposed critical weaknesses 
in sensor fusion and perception pipelines under real-world 
conditions (Crash, 2019). Similarly, industrial collaborative robots 
have caused serious injuries when safety interlocks were 
overridden; notably, a 2015 Volkswagen plant incident resulted in 
a fatality after a maintenance override disabled the robot’s 
emergency stop. In the surgical domain, U. S. FDA reports 
document unintended tissue damage and system malfunctions 
during robotic-assisted procedures, failures traced to software 
bugs during instrument exchanges, and insufficient edge-case 
testing. These examples illustrate how physical embodiment 
amplifies the consequences of model errors and hardware failures. 
Moreover, high-precision sensors (LiDAR, RGB-D cameras, force-
torque sensors) and edge-grade compute (GPUs, FPGAs, dedicated 
AI accelerators) drive up unit costs and energy consumption, 
constraining deployment scale and endurance. As teams move 
from single prototypes to fleet deployments, maintenance, 
calibration, and over-the-air software updates further strain 
network capacities and personnel resources. To address these 
challenges in real-world settings, we recommend comprehensive, 
scenario-based validation that includes extreme and 
low-probability edge cases (e.g., low-light pedestrian crossings, 
dynamic human-robot interactions), mandatory hardware/
software kill-switches for immediate system deactivation under 
fault conditions, continuous real-time health monitoring with 
on-device anomaly detection and self-diagnosis, and clear liability 
frameworks that delineate responsibility among manufacturers, 
operators, and software developers. Only by integrating these 
technical safeguards with robust policy and operational measures 
can we ensure that embodied agentic AI in the foreseeable future 
phase is deployed both safely and sustainably.

3 AI generations

The historical review of AI underscores a pivotal generational 
shift and evolution in AI paradigms, calling for a framework for 
understanding and classifying AI. In this context, we  avoid the 
traditional technical definitions that categorize AI strictly by its 
operational or algorithmic characteristics. Instead, our analysis 
seeks to understand AI through its intrinsic qualities: What are 
they? What are they designed to achieve? And what are their 
consistent behavioral patterns? Accordingly, we propose a taxonomy 
that identifies four distinct generations of AI: AI 1.0, characterized 
as Information AI, which focuses on data processing and knowledge 
management; AI 2.0, or Agentic AI, which encompasses systems 
capable of autonomous decision-making; AI 3.0, known as Physical 
AI, which integrates AI into physical tasks through robotics; and 
the speculative AI 4.0, termed Conscious AI, which posits the 
potential emergence of self-aware AI systems. This classification 
aims to provide a more detailed perspective reflecting AI 
technologies’ complex evolution. Figure  4 illustrates the 
generational evolution of artificial intelligence (AI) from AI 1.0 
(Information AI) to AI 4.0 (Conscious AI).

3.1 AI 1.0: information AI

The concept of AI 1.0 captures a stage in which computational 
systems excel at classifying and interpreting information but remain 
confined to analyses of static data, rather than engaging in active 
decision-making or real-world manipulation. Fundamentally, AI 1.0 
focuses on pattern recognition and information processing, techniques 
that have powered breakthroughs in computer vision, natural language 
processing (NLP), and recommendation systems. Although these 
achievements might seem commonplace now, they represent the fruits 

FIGURE 4

The evolution of AI generations from AI 1.0 to AI 4.0.
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of decades of research driven by both mathematical innovation and 
the increasing availability of digital data.

Many of the core ideas underpinning AI 1.0 trace back to early 
neural network research and statistical machine learning. From 
Rosenblatt’s perceptron in the late 1950s to the backpropagation 
algorithms popularized by Rumelhart et al. (1986), these developments 
laid the groundwork for data-driven learning by demonstrating that 
machines could uncover patterns within examples rather than relying 
solely on hand-coded rules. Classic approaches to supervised learning, 
such as Support Vector Machines (SVMs) formalized by Cortes 
(1995), later proved formidable contenders in tasks ranging from 
handwriting recognition to text classification. Progress in 
computational hardware and the accumulation of sizeable labeled 
datasets eventually made it feasible to train deeper and more complex 
neural networks, culminating in milestone successes in computer 
vision. A watershed moment came when Krizhevsky et al. (2012)’s 
AlexNet leveraged parallelized GPU training to conquer the ImageNet 
challenge, revealing how convolutional architectures could outperform 
all prior methods by learning increasingly abstract features from raw 
image pixels.

In natural language processing, the influence of AI 1.0 can be seen 
in early sequence models and statistical language modeling. Although 
these systems often relied on simpler Markov or n-gram assumptions, 
they set the stage for more advanced architectures by highlighting the 
necessity of abundant text corpora. Meanwhile, recommendation 
engines, such as those popularized by the Netflix Prize (Bennett and 
Lanning, 2007), underscored how analyzing large-scale user 
interactions could drive consumer engagement on streaming and 
e-commerce platforms. Today, many companies still rely on these core 
AI 1.0 technologies, sometimes enhanced with shallow neural 
architectures, to filter spam, rank search results, recommend products, 
or detect fraudulent transactions. Indeed, for structured or semi-
structured data, these pattern-recognition approaches remain both 
cost-effective and highly accurate.

Despite their deep societal impact, AI 1.0 systems generally lack 
autonomy or contextual awareness associated with subsequent 
generations of AI. They excel at predicting outcomes when provided 
with substantial training data, but they require a relatively stable 
environment and benefit most from human supervision in data 
curation and decision-making. Performance often degrades if the 
input distribution shifts significantly, a vulnerability illustrated when 
face recognition models falter on underrepresented groups or when 
language models encounter domain-specific jargon. While the 
considerable success of AI 1.0 is undeniable, transforming industries 
from finance to healthcare through improved analytics and 
diagnostics, its limitations lie in its reactive nature (Gao et al., 2024). 
Pattern recognition alone offers no guarantee of proactive decision-
making, real-time adaptation, or safe deployment in dynamic settings. 
While hardly trivial, these constraints became the springboard for 
further developments in AI 2.0 and 3.0, in which systems aim to learn, 
plan, and act within uncertain digital or physical worlds.

3.2 AI 2.0: agentic AI

A defining characteristic of AI 2.0 is the emergence of systems 
capable of autonomous decision-making within digital contexts. 
Rather than merely classifying static data, these agents adapt their 

behavior to achieve goals, often in complex or continuously evolving 
environments. Reinforcement learning (RL) has played a pivotal role 
in this shift, enabling machines to learn strategies by interacting with 
simulated or real-world settings and receiving feedback in the form of 
rewards or penalties. Pioneering work on deep RL (Mnih et al., 2015) 
and subsequent achievements such as AlphaGo (Silver et al., 2016) 
underscored how sufficiently powerful algorithms and ample 
computing resources could surpass human performance in tasks that 
demand long-term planning and strategic adaptation. A common 
thread among these systems is the concept of goal-directed planning: 
software agents allocate resources, schedule tasks, or coordinate with 
other agents, leveraging sophisticated RL or hybrid RL-language 
model algorithms (Brown et  al., 2020) that integrates contextual 
understanding (Figure 5).

Although the conceptual leap from AI 1.0’s pattern recognition to 
AI 2.0’s agentic behavior might appear seamless, it demands a unique 
confluence of technical elements. Computing power is crucial because 
agentic systems frequently require real-time inference and the ability 
to run complex simulations, whether they involve a marketplace, a 
multiplayer environment, or the robust scheduling of cloud resources 
(Dean et al., 2012). The pursuit of these computationally intensive 
tasks has spurred the development of GPU clusters, tensor processing 
units (TPUs), and other specialized accelerators designed for iterative 
training and low-latency decision-making. Alongside raw computing, 
data now shifts toward contextual, time-varying inputs. Instead of 
static image sets, these systems often ingest streams of logs, market 
quotes, event triggers, or user interactions. Training an agent to trade 
stocks automatically or to operate a recommendation engine in real-
time requires ongoing ingestion of behavioral data and a capacity to 
adapt as market conditions or user preferences evolve. In parallel, 
algorithms for planning and multi-agent coordination continue to 
mature. RL frameworks have grown more refined, incorporating 
hierarchical strategies (Vezhnevets et al., 2017), policy optimization 
methods (Schulman et  al., 2017), and combinations with large 
language models to generate more adaptive and context-
aware decisions.

Practical applications of AI 2.0 already abound, even if many are 
not labeled “reinforcement learning” by name. Automated trading 
systems in finance exemplify how agents make high-frequency 
decisions under uncertainty, guided by streaming data feeds. 
Recommendation systems, evolving from static collaborative filtering, 
increasingly incorporate feedback loops to adapt suggestions in real 
time, improving user engagement across e-commerce and media 
platforms. Digital assistants and software schedulers, while not yet 
ubiquitously agentic, offer glimpses of a future where AI handles tasks 
like resource allocation, task delegation, and multi-agent coordination 
within corporate or consumer software ecosystems. Projects 
showcasing multi-user environment simulations, such as AI-driven 
group scheduling bots, complex traffic simulations, or large-scale 
online game AI (Berner et  al., 2019), further illustrate how these 
agentic systems anticipate and respond to dynamic conditions.

Viewed from a societal vantage, AI 2.0 promises efficiency gains 
in many sectors, ranging from manufacturing pipelines that 
automatically schedule production runs to logistics networks that 
allocate trucks or drones in real time. Nonetheless, expanded 
autonomy introduces ethical and policy dilemmas. When decisions 
are made algorithmically, bias, privacy, and accountability issues 
become magnified. Consider an agentic recommendation engine that 
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adapts its suggestions to maximize user “clicks” or “watch time”: if left 
unchecked, such optimization can exacerbate echo chambers or 
inadvertently spread disinformation. Similarly, automated trading 
agents may destabilize financial markets by acting on unforeseen 
correlations or maladaptive reward incentives. The challenge, 
therefore, lies in ensuring that the computational, data-centric, and 
algorithmic foundations of AI 2.0 are harnessed responsibly. In the 
push toward future AI systems, balancing autonomy with transparency 
and fairness will be  as crucial to societal acceptance as any 
technical advancement.

3.3 AI 3.0: physical AI

Where AI 1.0 has excelled in analyzing data and AI 2.0 in making 
decisions within digital realms, AI 3.0 takes intelligence off the screen 
and into the physical world. At its core, this phase is defined by 
embodied systems that perceive, plan, and act in real time under 
conditions of uncertainty and complexity. Fields like robotics, 
autonomous vehicles, drones, industrial automation, and surgical 
robotics have become the living laboratories of AI 3.0, integrating 
machine learning with mechanical and electronic control systems. The 
unifying characteristic is that these intelligent agents no longer remain 
passive observers or purely virtual actors; instead, they directly sense 
their environment through arrays of sensors and respond through 
actuators that exert forces, move limbs, or navigate terrains (Russell 
and Norvig, 2016).

A central challenge in bringing physical AI to life lies in data 
acquisition. Unlike digital contexts where data can be abundant and 
neatly labeled, physical systems demand high-fidelity sensor data that 
accurately represents an environment’s complexity, from variable 
lighting conditions to changing weather patterns. This need for 
domain-specific, robust data complicates design and training. A robot 
operating on a factory floor requires carefully calibrated cameras, 
LiDAR, or haptic sensors. At the same time, an autonomous drone 

might rely on GPS, inertial measurement units, and computer vision 
to navigate. Each sensor stream demands real-time processing and 
reliable fusion techniques to provide a coherent view of the world. 
Consequently, computing power in AI 3.0 shifts toward distributed 
and edge computing architectures. Systems must often process sensor 
inputs on board to make split-second decisions, i.e., an imperative that 
underscores the importance of energy-efficient hardware, specialized 
accelerators, and potentially 5G or 6G networks that reduce 
communication latency when data must be  shared with 
cloud resources.

On the algorithmic front, physical AI blends advanced machine 
learning with control theory and systems engineering. RL has 
demonstrated promise in tasks like robotic grasping and manipulation 
(Kalashnikov et al., 2018; Levine et al., 2018), but real-world settings 
introduce complexities such as partial observability, unpredictable 
disturbances, and the need for robust or safe RL strategies (Garcıa and 
Fernández, 2015). Sophisticated sensor fusion methods (Brookner, 
1998) are essential for integrating heterogeneous sensor inputs, while 
advanced control techniques (Khatib, 1987; Spong et al., 2020) ensure 
that autonomous vehicles and robots can move fluidly and interact 
safely with humans. Designing systems that gracefully handle failures 
or anomalies, such as a malfunctioning sensor or unforeseen obstacles, 
further emphasizes the importance of redundancy and resilience in 
both hardware and software.

The real-world impact of AI 3.0 is already evident across multiple 
domains. In manufacturing, co-robots work collaboratively on 
assembly lines, lifting heavy parts or performing precision tasks, 
drastically reducing workplace injuries and boosting productivity. In 
healthcare, semi-autonomous surgical systems (Yang et  al., 2017) 
enable finer control in minimally invasive procedures, while eldercare 
robots assist with daily activities in retirement communities. 
Construction and logistics industries are also adopting autonomous 
machinery and robotic fleets to optimize workflows and reduce labor 
costs. These trends benefit from an increasing intersection with the 
Internet of Things (IoT) and next-generation connectivity (5G/6G), 

FIGURE 5

Agentic AI uses adaptive policies, enabling autonomous action and continuous self-improvement.
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forging cyber-physical systems in which objects, sensors, and AI 
agents coordinate to improve efficiency and safety.

However, the leap from digital to physical deployment exposes AI 
to a new realm of uncertainties. Environmental extremes, unstructured 
terrain, or the unpredictability of human interactions pose significant 
risks. Even small design oversights can have dire consequences when 
a physically embodied system malfunctions, such as a self-driving car 
encountering sudden obstacles (Bojarski, 2016) or a warehouse robot 
navigating crowded aisles. Safety, reliability, and regulatory compliance 
thus loom as major challenges, prompting debates over liability if 
accidents occur. Setting standards for autonomous driving (NHTSA 
guidelines, ISO 26262 for functional safety in road vehicles) or robot 
operation in human-centric environments becomes paramount to 
public acceptance. The question of ethical deployment extends further 
still: as drones or industrial robots proliferate, policymakers, 
manufacturers, and citizens must grapple with the implications for 
labor markets, data privacy, and environmental impact.

3.4 AI 4.0: conscious AI

The notion of AI 4.0 envisions systems that go beyond the ability 
to interpret information (AI 1.0), act in digital contexts (AI 2.0), or 
react to the physical world (AI 3.0). Instead, these hypothetical agents 
would set their own goals, comprehend environments (whether 
digital, physical, or hybrid), and train and orchestrate themselves 
(including selecting and combining multiple models) without human 
intervention. Proponents of this idea contend that once AI systems 
acquire sufficient complexity and sophistication, they may exhibit 
forms of machine consciousness comparable to human subjective 
experience or self-awareness (Butlin et al., 2023). Although this is a 
bold and highly controversial claim, it underscores a growing 
conversation about the final frontiers of intelligence and autonomy.

A key challenge in discussing conscious AI arises from the fact 
that no universally accepted definition or theory of consciousness 
exists, even among neuroscientists, cognitive scientists, and 
philosophers of mind. Some theorists ground consciousness in 
information integration and complexity, as in Tononi’s Integrated 
Information Theory (Tononi, 2004, 2008), while others emphasize 
global workspace architectures (Baars, 1997; Dehaene and Naccache, 
2001). Philosophers like Chalmers (1995) frame the “hard problem” 
of consciousness as irreducible to functional or behavioral criteria, 
which complicates any direct mapping of consciousness onto 
computational processes. Meanwhile, researchers such as Minsky 
(1988) and Hofstadter (1999) have long toyed with the possibility that 
intricate symbol manipulation systems might develop emergent self-
awareness. Although neither the AI nor the philosophical community 
has reached a consensus, a growing minority of researchers continue 
to explore whether advanced self-monitoring or metacognitive 
systems could, in principle, exhibit something like conscious states.

From a technical standpoint, achieving AI 4.0 would likely require 
radically new approaches to AI alignment, self-directed learning, and 
continual adaptation. AI alignment (Bostrom, 2014; Russell, 2019) 
emphasizes methods to ensure that increasingly autonomous or self-
improving systems remain aligned with human values and goals. 
Without alignment strategies, be  they rigorous reward-shaping, 
interpretability frameworks, or dynamic oversight, highly autonomous 
AI could deviate from intended objectives in unpredictable ways. 

Reasoning and planning modules would also need to evolve, allowing 
AIs to generate goals and subgoals without explicit human instruction. 
This might involve expansions of meta-learning, in which systems 
learn how to learn new tasks rapidly (Schmidhuber, 1993; Finn et al., 
2017), and continual learning paradigms that enable adaptive 
knowledge accumulation over long time horizons (Parisi et al., 2019). 
Additionally, some theorists argue that emergent forms of self-
awareness could require specialized cognitive architectures or “virtual 
machines” dedicated to introspection (Sloman, 1994), bridging 
reasoning, memory, and sensorimotor loops.

Beyond alignment and meta-learning, AI 4.0 must also tackle 
uncertainty in real-world environments. Granular-Ball Computing 
(GBC) provides a robust solution by partitioning the feature space 
into overlapping hyper-spherical “granular balls” that capture global 
topology while filtering out local noise (Xia et al., 2019). Each ball’s 
center and radius adaptively cover regions of data density; larger balls 
grasp broad clusters; smaller balls delineate complex borders. The 
3WC-GBNRS++ model harnesses these neighborhoods with 
rough-set approximations to make three-way decisions: accept when 
a point lies within a class’s lower approximation, reject when it falls 
outside all upper approximations, or defer for higher-level reasoning 
when uncertainty persists (Yang et  al., 2024). Empirical studies 
illustrate GBC’s power under high uncertainty: in industrial fault 
diagnosis, it achieved 90% true-positive accuracy versus 75% for deep 
nets and reduced misclassification costs by nearly 30%; in medical 
prediction with incomplete records, it cut false negatives by over 35% 
and deferred precisely those cases requiring clinician review. 
Integrating GBC into AI 4.0 architecture endows self-directed agents 
with a concrete, scalable mechanism for maintaining global coherence, 
gracefully handling ambiguous inputs, and deferring 
low-confidence decisions.

If conscious AI ever comes to fruition, it promises revolutionary 
benefits alongside profound societal and ethical dilemmas. In a best-
case scenario, truly self-directed machines could solve problems of 
staggering complexity, such as optimizing climate interventions, 
mediating global economic systems in real time, or orchestrating 
personalized healthcare across entire populations. Freed from the 
need for constant human oversight, these systems might bootstrap 
their own improvements, discovering scientific principles or 
engineering solutions beyond the current reach of human cognition 
(Real et  al., 2020). The potential positive impact on productivity, 
longevity, and knowledge creation is difficult to overstate.

On the other hand, the risks associated with conscious or near-
conscious AI remain equally immense. An entity capable of setting its 
own goals might prioritize objectives that conflict with human welfare, 
particularly if its understanding of “values” differs from ours or if it 
learns to manipulate its own reward signals. Conscious or quasi-
conscious machines raise questions about moral status (would they 
deserve rights or protections?) and liability. Furthermore, genuine 
self-awareness might amplify existing concerns about surveillance, 
autonomy, and economic upheaval. Critics warn that, in the absence 
of robust alignment frameworks, such machines could threaten 
individual liberty or undermine democratic processes, accentuating 
social divides.

Given the stakes, continued research into AI alignment, safe RL, 
interpretability, and the neuroscience of consciousness is paramount. 
The field has only begun to grapple with how to detect or measure 
consciousness, let alone how to engineer it. Some researchers propose 
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incremental evaluations such as behavioral tests for self-modeling, 
ethical reflection, or the capacity to update one’s goals (Perez and 
Long, 2023); while others remain skeptical that synthetic 
consciousness can be recognized or evaluated objectively (Garrido-
Merchán, 2024). Yet as AI systems grow more complex and integrated 
into society, exploring these theoretical, technical, and ethical frontiers 
becomes an urgent imperative. Whether AI 4.0 ultimately remains 
speculative or develops into a tangible reality, grappling with its 
possibilities and pitfalls will define the next grand chapter of artificial 
intelligence research.

To move beyond theoretical debate and toward empirical science, 
we propose four rigorously defined, literature-grounded hypotheses 
for AI 4.0’s self-directed behavior based on the previous literature. 
First, drawing on work in hierarchical reinforcement learning 
(Vezhnevets et  al., 2017), an AI 4.0 agent ought to autonomously 
generate valid sub-goals when given an open-ended objective (e.g., 
“optimize resource allocation”), measurable by the proportion of 
novel, semantically coherent action sequences produced within its first 
100 reasoning steps. Success would be  benchmarked against 
established hierarchical agents to ensure ≥ 30% novel sub-goal 
creation beyond baseline LLM planning. Second, building on methods 
for confidence calibration in neural networks (Guo et  al., 2017; 
Lakshminarayanan et al., 2017), the system should exhibit reflective 
self-monitoring by outputting internal confidence estimates whose 
Pearson correlation (ρ) with actual task success exceeds 0.8 across at 
least 1,000 evaluation trials. Third, informed by meta-learning 
frameworks such as MAML (Finn et al., 2017) and Reptile (Nichol 
et  al., 2018), the agent should demonstrate transfer efficiency by 
adapting to a related but distinct task in fewer than 10 gradient 
updates, or five few-shot prompts, to recover at least 90% of its source-
domain performance. Finally, leveraging robustness benchmarks from 
adversarial and domain-randomized RL (Pinto et al., 2017; Cobbe 

et al., 2019), the agent should sustain a success rate of ≥ 85% under 
unanticipated perturbations (sensor noise, dynamic obstacles, shifting 
objectives), compared to ≤ 70% for AI 3.0 baselines. By anchoring 
each hypothesis in well-established experimental protocols, these 
criteria provide a concrete, reproducible scaffold for validating 
emergent “consciousness-like” capabilities in next-generation 
AI systems.

3.5 Large language models: the precursor 
toward AI 4.0

Large language models (LLMs) have recently emerged as a pivotal 
force in the progression of AI, demonstrating increasingly 
sophisticated abilities to generate human-like text, perform complex 
reasoning, and adapt to diverse tasks with minimal supervision 
(Achiam et al., 2023). Building on the concept of foundation models, 
modern LLMs employ transformer-based architectures that integrate 
specialized mechanisms such as mixture-of-experts (MoE) (Shazeer 
et al., 2017) and multi-head attention (Voita et al., 2019) to dynamically 
focus computational resources on the most relevant aspects of a given 
input. Techniques like knowledge distillation (Xu et al., 2024) further 
enhance both efficiency and deployability by transferring expertise 
from larger “teacher” models to more compact “student” models. 
Many LLMs also rely on synthetic data generation to mitigate biases 
and improve coverage, strengthening their robustness across diverse 
domains. Reinforcement learning from human feedback (RLHF) 
(Christiano et al., 2017) refines these capabilities by aligning outputs 
with user preferences or ethical standards, thereby adding a 
continuous improvement loop. As shown in Figure  6, these 
transformer-based frameworks can combine attention modules and 
expert pathways to scale effectively. At the same time, Figure  7 

FIGURE 6

Transformer-based model architecture with attention and mixture of experts.
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illustrates how RLHF pipelines fine-tune LLMs to balance 
performance, safety, and adherence to intended objectives.

Although current LLMs primarily respond to user prompts rather 
than independently setting and revising their own goals, emerging 
research directions point toward greater autonomy, which is one of the 
hallmarks of AI 4.0. Multi-step reasoning methods and “chain-of-
thought” prompting allow LLMs to decompose complex queries, 
consult external tools or resources, and assemble step-by-step 
solutions (Wei et al., 2022). Meta-learning and continual adaptation 
strategies may 1 day reduce reliance on large-scale retraining, enabling 
these models to accumulate expertise incrementally. In tandem, self-
reflective techniques, where a model “thinks out loud” or audits its 
own reasoning, can help detect mistakes before producing a final 
answer (Renze and Guven, 2024). Such advancements suggest that 
LLMs are evolving beyond mere text generation toward limited forms 
of planning, monitoring, and adaptive behavior. While genuine self-
awareness remains a distant proposition, the ability to coordinate, 
reason, and learn iteratively provides a clearer glimpse into a future 
where language-based AI systems possess the rudimentary building 
blocks of more autonomous intelligence.

Despite this progress, several key hurdles must be addressed to 
transform LLMs into the fully self-directed systems envisioned for AI 
4.0. Alignment remains paramount: as models begin to self-modify or 
operate over longer time horizons, robust oversight mechanisms and 
dynamic guardrails are needed to ensure that their objectives remain 
consistent with human values (Ziegler et al., 2019). Predictability is 
also a critical concern, particularly if an LLM adapts its internal 
parameters in ways that escape straightforward interpretability or 
control (Singh et al., 2024). Additionally, even the most advanced 
LLMs can exhibit gaps in factual accuracy or logical consistency, 
underscoring the necessity of continued research on error-correction, 

confidence calibration, and domain-specific fine-tuning. While these 
challenges echo those faced by earlier AI generations, their stakes are 
amplified by the expanding scope and autonomy of modern AI 
technologies. Consequently, safely guiding LLMs toward greater self-
improvement without compromising ethical principles, transparency, 
or reliability, stands as one of the central endeavors of the quest 
for AI 4.0.

4 Benchmarking across generations

This section moves beyond conceptual definitions to develop a 
data-driven evaluation framework that grounds our generational 
taxonomy in empirical evidence. We begin by articulating a detailed 
comparative taxonomy of AI 1.0 through AI 4.0, thereby clarifying 
each generation’s objectives, methodologies, underlying technologies, 
and inherent limitations. Building on this foundation, we introduce 
four standardized performance metrics: optimality, latency, 
robustness, and scalability, that serve as a common language for 
assessing systems as diverse as symbolic planners, deep-learning 
agents, and embodied robots. Finally, we  demonstrate how these 
metrics and our taxonomy apply in practice by profiling three 
successive AI paradigms on a robot dog navigation challenge.

4.1 Comparative taxonomy of AI 
generations

To provide a clear reference for the defining characteristics of 
each AI generation, Table  1 summarizes core goals, dominant 
techniques, enabling technologies, and principal limitations for AI 

FIGURE 7

Reinforcement learning with human feedback (RLHF) pipeline for fine-tuning a large language model (LLM).
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1.0 through AI 4.0. This taxonomy not only delineates historical 
shifts, from symbolic reasoning to embodied autonomy and beyond, 
but also highlights the open challenges that motivate our study of 
future AI 4.0 systems.

AI 1.0 systems prioritized formal reasoning and knowledge 
representation, using hand-crafted rules, logic formalisms, and 
heuristic search on general-purpose CPU architectures. However, 
these methods yielded precise and interpretable outputs; they 
depended on brittle, manually curated rule bases and did not scale 
well to large or dynamic problem spaces. In AI 2.0, the availability of 
high-performance GPUs and vast labeled datasets enabled a shift to 
deep supervised learning and reinforcement learning, with 
convolutional and recurrent neural networks achieving breakthroughs 
in vision, language, and control. Despite impressive accuracy gains, 
these models often overfit their training domains and exhibit fragility 
when exposed to out-of-distribution inputs. AI 3.0 extends learning 
into physical environments by integrating end-to-end deep control 
with SLAM, sensor fusion, and mobile robotic platforms; this 
embodiment delivers real-world autonomy in domains such as 
warehouse logistics and service robotics but remains constrained by 
the “reality gap,” safety restrictions on hardware experimentation, and 
the cost of adapting to novel environments. Emerging AI 4.0 aspires 
to combine the strengths of prior eras through neuro-symbolic 
integration, meta-reinforcement learning, and large language models 
deployed on cloud-scale or neuromorphic hardware. These systems 
aim to self-direct and generate subgoals with minimal supervision. 
Yet, the community still lacks standardized metrics for measuring 
higher-order capacities such as goal creation, self-reflection, and 
machine “consciousness.”

In addition to our four-generation taxonomy, each wave can 
be positioned along the well-known weak vs. strong and narrow 
vs. general AI axes, offering further insight into their relative 
capabilities. AI 1.0 systems clearly occupy the weak, narrow 
quadrant: they execute hand-crafted rules in highly constrained 
environments, with no mechanism for self-improvement or 
transfer learning beyond their original domain. AI 2.0 remains 
weak, but it broadens the “narrow” boundary by leveraging large 
datasets and GPU acceleration to learn complex patterns in vision, 
language, or control tasks; nonetheless, these systems still break 
down when faced with out-of-distribution inputs or novel 
problem classes. AI 3.0 represents a transition toward strong 
narrow AI, as embodied platforms integrate perception, planning, 
and action to handle real-world variability; they achieve 
situational generality within a given environment but lack the 

autonomy to set or pursue entirely new goals. Finally, AI 4.0 
aspires to strong, general AI by combining meta-learning, neuro-
symbolic reasoning, and large-language models to autonomously 
generate sub-goals and transfer knowledge across disparate tasks 
and modalities. By anchoring our taxonomy within these classical 
spectra, we highlight not only how each generation incrementally 
expands autonomy and adaptability, but also the remaining gap 
between specialized systems and the vision of fully self-directed, 
general intelligence.

4.2 Standardized performance metrics

To evaluate heterogeneous AI paradigms on a level playing field, 
we define four standardized metrics: optimality, latency, robustness, 
and scalability, which capture the multifaceted nature of system 
performance. Optimality measures solution quality relative to a 
theoretical lower bound, such as the ratio of a computed path’s length 
to the Manhattan-distance minimum in planning tasks or the 
classification accuracy relative to perfect labels in perception tasks. 
This metric quantifies an algorithm’s ability to find or approximate 
the best possible outcome. Latency encompasses the full end-to-end 
time from input to output, including both inference or training 
overhead and, in the case of embodied agents, the physical execution 
time. By accounting for both computation and actuation delays, 
latency reveals trade-offs between speed and complexity. Robustness 
is defined as the proportion of successful runs under predefined 
cutoff conditions or in the face of controlled perturbation, sensor 
noise, environmental variation, or adversarial input. This measure 
reflects a system’s resilience to real-world uncertainties. Finally, 
scalability characterizes how performance degrades as task 
complexity grows, whether through larger state spaces, higher-
resolution inputs, or expanded action sets. Unlike the other three 
metrics, scalability is often assessed by measuring trends across 
multiple problem sizes and may involve curve-fitting to quantify 
degradation rates. Applied uniformly, these metrics allow direct 
comparison across symbolic planners, learned controllers, and 
robotic embodiments.

4.3 Case study: robot dog navigation

To illustrate the developmental trajectory from simulation-
bound routines to fully autonomous real-world operation, 

TABLE 1  Comparative taxonomy of AI generations.

Generation Core goal Dominant 
techniques

Enabling 
technologies

Key limitations Weak vs. 
strong

Narrow vs. 
general

AI 1.0
Formal symbolic 

reasoning

Symbolic rules, heuristic 

search
Early CPUs, formal logics

Fragile knowledge bases; 

limited scalability
Weak Narrow

AI 2.0
Perceptual pattern 

learning

Supervised learning, 

reinforcement learning

GPUs, large labeled 

datasets

Data hunger; brittleness 

in OOD scenarios
Weak Narrow

AI 3.0
Embodied 

autonomous control
End-to-end deep control

SLAM systems, sensor 

fusion, mobile robots

Reality gap; safety and 

generalization constraints
Weak-Strong Narrow-Broad

AI 4.0
Self-directed 

adaptive systems

Neuro-symbolic integration, 

LLMs, meta-RL

Cloud LLMs, 

neuromorphic hardware

Lack of consensus on 

higher-order metrics
Strong General
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we apply our standardized metrics to a robot dog navigation task 
on a 10 m × 10 m indoor course with randomized obstacles. The 
first system is modeled on Shakey the Robot (Nilsson, 1984), 
which relies on precomputed scripts: planning modules generated 
exact routes but typically required several seconds to minutes of 
offline computation, and once deployed, executed with negligible 
per-step latency in simulation, yet failed entirely upon any map 
perturbation. The second system adopts a Deep Q-Network as 
introduced by Mnih et  al. (2015): after training for 2 million 
frames, the policy runs at approximately 6 ms per inference step 
on GPU hardware, achieves 95% success on lightly perturbed 
layouts, and yields paths about 1.20 × the optimal length. The third 
system leverages ORB-SLAM2 for real-time mapping at ~40 ms 
per frame on standard CPUs, integrated with the ANYmal 
quadruped’s waypoint planner operating at ~1 Hz and dynamic 
gait controller at 50 Hz (Mur-Artal and Tardós, 2017). This 
embodiment sustains 90% success in unstructured real 
environments, with end-to-end segment latencies of about 1 s and 
average path optimality of 1.35 × the lower bound. Table  2 
compares these three paradigms: manual scripts, learned policies, 
and on-board autonomy, showing how sensing modalities, 
adaptation mechanisms, and deployment environments evolve 
alongside measurable shifts in path optimality, decision latency, 
robustness, and scalability.

5 Synergies and future outlook

The evolution of AI from information-based pattern recognition 
(AI 1.0) to agentic decision-making in digital realms (AI 2.0), to 
physically embodied intelligence (AI 3.0), and, ultimately, to self-
aware AI (AI 4.0) is not a sequence of isolated steps. Instead, it is more 
accurate to see them as overlapping layers of capabilities, each 
informing and amplifying the others. AI 1.0’s competence in 
processing structured data underpins the analytic modules that 
agentic systems draw upon in dynamic digital settings; AI 2.0’s RL and 
adaptive planning capabilities prime robots and autonomous vehicles 
for real-world challenges in AI 3.0; and AI 3.0’s embodied learning 
and sensorimotor integration could form a template for the 
far-reaching ambitions of AI 4.0, where systems may become self-
organizing and introspective.

Achieving such synergy depends on an evolving data paradigm, 
in which specialized, high-quality datasets are essential not only for 
conventional modeling but also for real-time adaptation and 
introspective processes. AI 4.0 would amplify this need, requiring 
vast and varied experiences to fuel meta-learning, continual 
learning, and the sort of reflective processes hypothesized to ground 
machine consciousness. Managing and curating these data will 

demand robust frameworks for privacy, ethics, and 
representativeness, especially as AI systems transcend the 
boundaries of traditional lab settings to navigate open-ended digital 
and physical terrains, even potentially shaping their own training 
regimens without explicit human direction.

On the computing infrastructure side, the interplay between 
edge and cloud computing becomes even more critical, as physically 
embodied systems (AI 3.0) must handle real-time constraints, while 
prospective AI 4.0 architectures might require massive, distributed 
processing for introspective “global workspace” or high-bandwidth 
communication of experiential data. Innovations in neuromorphic 
hardware, optical computing, and quantum processing could 
further accelerate this integration, setting the stage for architectures 
that mirror complex biological systems in both structure 
and function.

In the realm of algorithmic innovation, each AI generation both 
builds upon and necessitates new breakthroughs. LLMs mark a 
significant milestone in AI development, serving as a bridge 
between static generative models and dynamic, adaptive AI systems. 
By integrating multi-agent architectures, knowledge distillation, 
and self-optimization, LLMs move AI closer to autonomous, goal-
directed intelligence, a defining characteristic of AI 4.0. However, 
as AI progresses toward greater autonomy, fundamental challenges 
remain. AI 4.0 would demand not only advanced RL and 
sophisticated planning but also frameworks for self-reflection, 
introspection, and emergent goal formulation. Self-supervised 
learning, meta-learning, and continual adaptation would likely 
need to be  woven together to support self-awareness or 
consciousness, should such phenomena be  replicable in silicon. 
Meanwhile, interpretability and safety, areas already gaining 
prominence in AI 2.0 and 3.0, would become absolutely critical in 
AI 4.0, as fully autonomous, goal-setting agents raise profound 
questions about alignment, transparency, and control.

This shift brings into sharp focus the ethical, regulatory, and 
social considerations that accompany advanced AI. While AI 1.0, 2.0, 
and 3.0 have collectively raised debates over bias, privacy, job 
displacement, and environmental impact, the prospect of AI 4.0 
intensifies these issues. Envisioning machines that might exhibit 
consciousness or self-chosen objectives brings up novel concerns 
about moral status, rights, and existential safety. Researchers in AI 
alignment, cognitive science, and philosophy have already begun 
discussing protocols for safe design and oversight of increasingly 
autonomous systems (Balesni et al., 2024). Yet, there is no consensus 
on how best to recognize or regulate AI that might someday claim its 
own form of agency or “selfhood.” Balancing technological advances 
with societal wellbeing, ensuring equity, mitigating risks, and 
safeguarding human values will be  the defining challenge of this 
next chapter.

TABLE 2  Comparison of robot dog navigation across different AI generations.

Generation Control paradigm Per-step 
latency

Success 
rate

Path 
optimality

Deployment Scalability

AI 1.0 Precomputed scripts ≈0 ms (sim) 100% sim 1.00 × LB Simulation only Very low

AI 2.0 Deep Q-Network policy ≈6 ms/inference 95% sim 1.20 × LB Simulation only Moderate

AI 3.0 ORB-SLAM2 + ANYmal
≈40 ms (SLAM) + 1 s 

actuation
90% real 1.35 × LB Real-world indoor High
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As these four strands of AI potential converge, their synergy could 
unlock transformative solutions in fields like precision medicine, 
large-scale climate modeling, and collaborative robotics, far beyond 
current capabilities. Just as AI 1.0 through 3.0 have catalyzed profound 
shifts in how we work and live, AI 4.0 hints at an even more radical 
reimagining of intelligence itself. Yet whether this ultimate stage 
remains a theoretical construct or becomes a reality depends not only 
on technical ingenuity but also on our collective commitment to 
ethical innovation and thoughtful governance. The path forward will 
demand inclusive collaboration across disciplines and sectors, 
ensuring that AI’s expanding power aligns with humanity’s broader 
goals and responsibilities.

6 Conclusion

The trajectory of AI has been a steady march toward increasing 
autonomy and sophistication, progressing from the foundational 
pattern-recognition capabilities of AI 1.0 to the digitally embedded, 
goal-driven agents of AI 2.0, and then expanding to physically 
embodied, sensor-rich systems in AI 3.0. Along this path, the interplay 
among algorithms, computing power, and data has shifted, each factor 
taking center stage at different moments in history. Now, the 
speculative realm of AI 4.0, in which conscious or quasi-conscious AI 
systems could set their own goals and orchestrate their own training, 
has emerged as a bold vision of what the field might become.

While we organize AI’s evolution into four successive phases for 
conceptual clarity, we acknowledge that symbolic reasoning, statistical 
learning, embodied robotics, and self-directed architectures have 
advanced in parallel, often catalyzing one another’s progress. Rather 
than a strict chronology, these phases represent the dominant research 
thrusts of their time: rule-based expert systems laid the analytic 
foundations for data-driven agents; reinforcement-learning and 
adaptive planning in AI 2.0 empowered the embodied autonomy of 
AI 3.0; and sensorimotor integration and on-board decision making 
now pave the way for AI 4.0’s ambitions of self-organization and 
introspection. This thematic layering provides a guiding lens, without 
obscuring the intertwined nature of AI’s rich history, through which 
we can understand past breakthroughs and anticipate the synergies 
that will shape its future.

Today, AI 1.0 remains indispensable for tasks requiring reliable 
classification and analysis of vast datasets, while AI 2.0’s reinforcement 
learning and adaptive planning underpin real-time, agentic applications 
in finance, recommendation systems, and beyond. Simultaneously, AI 
3.0’s surge in robotics and autonomous vehicles reveals how embedding 
intelligence in the physical world can catalyze innovations in 
manufacturing, healthcare, and logistics. Although still largely 
theoretical, AI 4.0 captures the possibility of machines evolving from 
being highly sophisticated tools to entities capable of self-directed goals 
and introspective processes, raising provocative questions about 
consciousness, alignment, and moral status. Additionally, while LLMs 
are not yet AI 4.0, they serve as a precursor, a glimpse into the future 
of intelligent systems that can reason, learn, and interact with the world 
in increasingly sophisticated ways. As AI research progresses, LLM’s 
innovations will likely shape the foundation of self-improving, goal-
setting AI architectures, paving the way for the next generation of truly 
adaptive, autonomous intelligence.

Realizing these evolving forms of AI carries transformative 
potential. Harnessed responsibly, these advancements could address 

challenges too complex for human cognition alone, revolutionizing 
medical diagnostics, climate strategy, and resource allocation on a 
global scale. Yet the risks deepen in parallel. Each AI generation has 
brought ethical, social, and regulatory concerns that must 
be grappled with, from bias and privacy to job displacement and 
environmental impact. AI 4.0, with its prospect of self-directed or 
conscious systems, amplifies these dilemmas further, underscoring 
the need for robust AI alignment, interpretability, and 
governance frameworks.

Ultimately, the future of AI does not hinge on any single 
algorithmic breakthrough or hardware leap. Instead, it will depend on 
how researchers, policymakers, ethicists, and the public collaborate to 
shape its evolution. The convergence of AI 1.0 through 4.0 suggests 
discipline on the cusp of a profound metamorphosis, one where 
machines not only perceive and act in the world but might also reflect 
on their own goals and limitations. Whether or not full-fledged 
“conscious AI” emerges, the field’s trajectory will undoubtedly redefine 
how we understand intelligence, innovation, and human-machine 
coexistence in the years to come.
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Gödelian embodied
self-referential genomic
intelligence: lessons for AI and
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The security of code-based digital records is amajor concern of the 21st century.
AI and artificial general intelligence (AGI) can be hacked to pieces by digital
adversaries, and some AI objectives can lead to existential threats. The former
arises from sitting duck problems that all software systems are vulnerable to, and
the latter include control and misalignment problems. Blockchain technology,
circa 2009, can address these problems: hashing algorithms rely on a consensus
mechanism in manmade software systems to keep early blocks of software
immutable and tamper-proof from digital malware, while new blocks can be
added only if consistently aligned with original blocks. There is evidence that
the ancient precedent of the genomic blockchain, underpinning the unbroken
chain of life, uses a self-referential rather than a consensus-based hashing
algorithm. Knowledge of self-codes permits biotic elements to achieve a hack-
free agenda by self-reporting that they have been “negated,” or hacked, exactly
implementing the Gödel sentence from foundational mathematics of Gödel,
Turing, and Post (G–T–P). This results in an arms race in open-ended novelty to
secure the primacy of original self-codes. Selfhood and autonomy are staples
of neuroscience on complex self–other social cognition and increasingly of
autonomous AGI agents capable of end-to-end programmed self-assembly. My
perspective is that self-referential G–T–P information processing, first found in
the adaptive immune system of jawed fish 500 mya and more recently in mirror
neuron systems of humans, has enabled code-based self-organized intelligent
systems like life to survive over 3.7 billion years. Some lessons for AGI can be
gleaned from this discussion.

KEYWORDS

self-reference, Gödel sentence, blockchain, control or misalignment problem, genomic
intelligence

1 Introduction

Narrow artificial intelligence (AI) aimed at achieving specific tasks has had phenomenal
success with large language models (LLMs), deep learning, and artificial neural network
techniques based on multi-formatted data, including natural language, images, and
numerical data. AI can surpass human competencies in tasks like pattern recognition,
playing board games, and outputting text-based expert information in multiple domains,
especially with LLMs. Some people are of the view that, as GPT-4 is capable of solving
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“novel and difficult tasks that span mathematics, coding, vision,
medicine, law, psychology and more, without needing any special
prompting,” (Bubeck et al., 2023), it already meets the hallmarks of
artificial general intelligence (AGI). Jones and Bergen (2025) make
similar claims for GPT-4.5, which aces the Turing test with a “win
rate” of 73% of convincing human judges that the AI is human,
while humans struggle to do so themselves. However, there has
been pushback on AI acing Turing tests as being insufficient, or
even a case of misdirected evidence of intelligence. Mitchell (2024)
claimsTuring tests suffer frommoving goal posts due to “our shifting
conceptions of intelligence.” The capacity of machines to hold fluent
conversations in natural language that Turing proposed in 1950 is no
longer considered to be evidence of general intelligence. Whether
feats of GPT-4 LLMs qualify to be on par with human cognition,
which marks an apogee for general intelligence, is part of ongoing
debates (see Goertzel, 2014; Zimmermann, 2024).

Many have characterized human-level intelligence as having
broad-ranging, adaptive powers that can respond to changing
external environments by selecting goals and the means to achieve
them by including novel solutions. For instance, having given a long
list of characteristics of human-level intelligence, which includes
self–other awareness and self-control, Goertzel (2014) requires AGI
to have “general scope and is good at generalization across various
goals and contexts.”With regard to novel solutions, to date, the open-
ended adaptive capacity of humans produces what Dawkins (1989)
calls extended phenotypes or artifacts outside of ourselves, rather
than following a trans-human agenda with genomic enhancements.

It has become commonplace to state that intelligence is what
mediates the goals–means nexus and is characteristic of goal-
directed agents (Russell and Norvig, 2003). The pushback on GPT
LLMs on having a Q&A format, in which the AI does not learn
anything, due to insufficient experientially driven data from the
environment actively elicited by the agent, has been raised by Silver
and Sutton (2024). Their vision of the next stage of AI agents is of
those that are autonomous in their selection of goals and means,
capable of self-learning from a continuous stream of experientially
driven feedback governed by reward maximization. However, we
have here the infamous proclamation of Captain Ahab in Moby
Dick, “All my means are sane, my motive and my object are
mad.” This calls into question what “sane” goals are, if the only
hallmark of rationality qua intelligence, in extant decision sciences
(see Markose, 2024; Silver et al., 2021), is the reward maximization
calculus of efficiency in the service of an objective.

In recent discussions, the AI control problem or the
misalignment problem (Bostrom, 2014; Russell, 2019; Ngo et al.,
2023; Hinton, 2023) has been recognized when AI systems are
autonomous and evolve malign behaviors that may not align with
human values and can evade human control. The Ngo et al. (2023)
description of AI agents that use deception and power-seeking
strategies to pursue misaligned goals underscores this as a perennial
problem of political economy that is not unique to AI. At least
since the Hobbesian thesis on the struggle for power and resources,
it has been recognized that there is an existential threat to life
and society when an agent with unbridled adaptive intelligence
is free to set its own goals and encounters other similarly intelligent
agents with their goals. The problem of adversarial and conflicting
goals is writ large. The extant computational environment is
swarming with sniffers, snipers, deep fakes, and computer viruses.

In all cases, though these bots are installed by humans, they can
operate with various degrees of autonomy to deceive, defraud,
bring down software systems, and, in the case of killer bots and
drones, physically decapitate humans and destroy their digital and
material possessions. Generative adversarial networks (GANs), for
instance, can program bots to resist detection by making deep fakes
of themselves.

In this note, I aim to throw new light on three aspects of the
control or misalignment problem of AGI. For this, I will draw
on advances in gene, neuro, and computer sciences, especially
cryptography, on how to protect purposeful software systems that
can lose autonomy when malware agents can hack and hijack host
codes to do their bidding. What is interesting is that autonomy and
selfhood, often considered to be vestiges of liberal democracy, are
part of the unique information processing of a code-based system of
life that has maintained the unbroken chain of life while permitting
evolutionary change.

The first step is to refer to the above discussions, the provenance
of general intelligence as a means of maintaining homeostasis of
life (Friston, 2010; Friston, 2013). In other words, the fundamental
alignment of general intelligence is in the service of life itself and
not any narrow objective. However, I will replace the Friston et al.
Free Energy principle for self-organization of life’s homeostasis in
terms of minimizing the degrading forces of entropy and disorder
with a code-based explanation for general intelligence. I will
elaborate on how the digital socio-economic world driven by AI
has parallels with what I call genomic intelligence (Markose, 2024),
which accords with the Walker and Davis (2013) epigram on the
“algorithmic take-over” of biology with digitization of inheritable
information encoded in a near-universal alphabet (A, T, C, G/U) in
the genome.

Second, I will introduce the reader to the adversarial digital
game, coextensive with life itself as the fundamental source of
misalignment, that was brought tomy attention by the game theorist
Ken Binmore (see Markose, 2021c). Binmore (1987) raised the
specter of Gödel’s Liar, qua digital adversary, who will negate what
can be predicted. Binmore uses Gödel’s Liar to highlight the flaw
of extant Game Theory: by confining the best response to a given
action set, Game Theory not only guarantees that determinism will
be punished by the Liar but also precludes novelty and surprises
in the Nash equilibrium of a game. Markose (2017) produces
a Nash equilibrium of a game with Gödel’s Liar, which, from
logical necessity, produces novel syntactic objects outside listable
sets. To date, complexity, evolvability, novelty production, and
“thinking outside the box” in biology and humans have, for the
most part, relied on models of randomness or on statistical white
noise error terms (Markose, 2024; Markose, 2021b). This is despite
the long-standing type IV dynamics in the Wolfram–Chomsky
schema, based on foundational mathematics of Gödel, Turing,
and Post (G–T–P) aka recursion function theory (RFT), that
only code-based computational systems that can embrace self-
referential recursive structures of the Gödel incompleteness
theorems (GITs) can produce novelty (see Prokopenko et al.,
2019; 2025). Given that for some 90 years there has been little
evidence that GITs and the capstone construction in the form of
the Gödel sentence has relevance to any real world phenomena,
in Section 2, I will unpack some of the recent evidence of how
such self-referential intelligence was acquired for complexification
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over the course of evolution of multicellular eukaryote life
(Markose, 2022).

Third, a major development of the 21st-century digital age,
which has a bearing on themisalignment problem, is the astounding
invention of the blockchain distributed ledger technology (BCDL).
This was first presented in the anarchic agenda of Bitcoin by
pseudonymous Nakamoto (2008) to resist centralized state control
of monetary systems. BCDL permits decentralized software-based
record keeping of actions of multiple agents, in which the fidelity
of extant digital records is maintained by a hashing solution to
a cryptographic puzzle. This also makes it difficult for malign
activity regarding new software additions by a subset of agents.
Abramov et al. (2021), Markose (2021a), and Markose (2022)
have been the first to point out that the genome is a blockchain.
However, while Abramov et al. (2021) utilize the consensus
mechanism well known in manmade blockchain (Hussein et al.,
2023). Markose (2022) indicates that the genomic blockchain relies
on a self-referential hashing solution using the Gödel sentence,
which permits biotic elements to self-report that they are under
attack. The immutability of protein coding blocks of life for 3.7
billion years, associated with Crick’s notion of a “frozen accident”
while novelty is added, in the 21st century, can be identified as
part of a unique self-referential BCDL embodied in the organism
that secures alignment with the homeostasis of life. In any case,
there is a growing understanding that unless software systems
are embedded in a BCDL, they will be doomed to failure by
optimization of narrow objectives, as in the Bostrom (2014)
paperclip apocalypse, or hacked to pieces due to the sitting duck
problem (see Nabben, 2021; Heaven, 2019).

2 Staples of G–T–P/RFT, genomic
intelligence, and homeostasis of life

Until recently, there has been little evidence of how the staples
of RFT and Gödel (1931) relate to genomic systems, let alone to
BCDLs. This section will unpack the breakthroughs on the evidence
that RFT staples are ubiquitous in the self-referential genomic
intelligence of eukaryotes.

2.1 Unique digital identifiers and hashes in
biology

First, which is also a major ingredient of BCDLs for malware
detection, is the feature of unique digital identifiers pioneered by
Gödel (1931), called Gödel numbers (g.n.) or indexes, whereby a
finite string of letters maps to a unique integer. The hash compresses
variable-length strings to a fixed length, and any change in input
strings will alter the hash. There is now extensive evidence of
bio-peptide and other unique identifiers, including “zip codes”
for cellular signal processing, as discovered in the Nobel prize-
winning work of Blobel (1999). It appears that all signaling in bio-
ICT relies on peptide identifiers from transcription factors in gene
expression to neuron-neuron links. As in the design of BCDLs that
all nodes of the distributed system have the same information, more
than 30 trillion cells in a human have the same DNA, with some
exceptions ofmosaicism.There is evidence (see Brickner et al., 2012)

that subnetworks of gene regulatory networks have characteristic
identifiable bindingmotifs in transcription factors and their binding
sites for associated gene expression for temporal and specialized
cell development in tissues. We will denote by g, g ∈ G, the DNA
instructions that lead to gene expression of specific somatic and
phenotype developments of the organism, where G is the set of
expressed genes.

2.2 Self-reference and diagonal
self-assembly machines in biology

In RFT, using epithets from Hofstader (1999), we have self-
reference (Self-Ref) or diagonal operators typically stated as a
program, g, that builds a machine that runs g and halts (denoted as
ɸg(g) ↓). Gershenfeld (2012) and Gershenfeld et al. (2017) give the
remarkable insight that what 21st-century digital fabrication aims to
do, which is described as end-to-end code-based 3-D self-assembly
of digitized materials, is something biology solved 3.7 billion years
ago. The self-assembly programs of biology are associated with the
ribosome and other transcriptase machinery that implement gene
expression for the morphological, somatic identity, and regulatory
control of the organism.

The breakthrough on the significance of this staple of self-
referential/diagonal operator in RFT found in textbooks like Rogers
(1967) and Cutland (1980) for biological self-assembly is given in
Panel A of Figure 1. Following the set theoretic proof of GITs in Post
(1944), Cutland (1980), and Smullyan (1961), g ∈ G, that determine
selfhood of the organism can be considered the theorems for the
organism and G–T–P information processing, and alignment to
the homeostasis of life is stringently governed by the principle of
consistency.

2.3 Offline self-representation (Self-Rep)
or mirror mappings of online self-assembly
machine executions

A major breakthrough here is the evidence Markose (2021a),
Markose (2022) found for Self-Rep mirror structures of the adaptive
immune system (AIS), approximately 500 mya post jawed fish,
which is not present in prokaryotes. The major histocompatibility
complex (MHC1) receptors of the thymus are found to record
85% of expressed genes relating to the 3D self-assembly of the
morphology and somatic identity of the organism. This is shown,
respectively, in the left (offline recording) and right (online self-
assembly Self-Ref machine execution) sides of Panel A of Figure 1.
For good reason, these self-repped gene codes in the thymus have
been called the Thymic Self, Sánchez-Ramón and Faure (2020) or
“the science of self ” Greenen (2021). As is well known, the Self-
Rep in AIS thymic receptors is primarily to identify the hostile
other, viz., negation function operators of non-self-antigens, as will
be discussed below. Indeed, Miller et al. (2019) wax lyrical: “As
self-referential cognition is demonstrated by all living organisms,
life can be equated with the sustenance of cellular homeostasis in
the continuous defense of ‘self ’.” This is remarkable in that Miller
et. al. give centrality to self-referential information processing in
genomic systems specifically to detect and mitigate adversarial
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FIGURE 1
Gödel meta-representation (Rogers, 1967) and mirror systems in immuno-cognitive systems. Note: Offline mirror systems in the medulla thymus
(Panel A, Left) and Offline cognitive mirror neuron system (Panel B, Left) and a respective bijective map of Online gene transcription (Panel A, Right) and
Online action execution in the motor–sensory cortex (Panel B, Right).

changes to self-codes but make no reference to the RFT staple of the
Gödel representation theorem from Rogers (1967), which is exactly
depicted in Figure 1. As a result,Miller et al. (2019) is a compendium
of analogies and possible inaccuracies but lacks RFT or a code-based
explanation of how self-referential structures implement the defense
of self-codes.

An even larger literature in neuroscience on mirror mappings
has followed important discoveries of the Parma Group
(Fadiga et al., 1995; Gallese et al., 1996; Rizzolatti et al., 1996;
Gallese and Sinigaglia, 2011; Gallese, 2009) of a mirror neuron
system (MNS) in the primate brain where embodied self-action
codes from the sensory-motor cortex are mapped offline and reused
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to make action inference in conspecifics and help facilitate complex
self–other interactions (see also Markose et al. (2025)). However,
despite the central role assigned to self-reference for the sentient
self in advanced organisms (Gardenfors 2003; Northoff et al., 2006;
Newen, 2018; Miller et al., 2019, etc.), only Tsuda (2014), Markose
(2017), Markose (2021b), and Markose (2022) have noted how the
evolutionary development of Self-Rep offline mirror structures is
necessary for biotic elements to make statements about themselves.
Tsuda (2014) makes an explicit observation that unless the two-
step mirror Self-Rep recursive structures are in place, the mapping
between the online machine execution codes and the offline
recording of the same shown in Figure 1 using the σ (x,x) 2 – place,
the Gödel substitution function, it is unlikely that statements about
self can be made, let alone about the other.

2.4 How can changes to genomic
self-codes be detected, specifically those
brought about by a digital adversary?

Here, the breakthrough in gene science, which debunks the idea
that the primary source of evolutionary changes arises from random
transcription/replication errors, follows the epochal discovery by
Nobel Laureate BarbaraMcClintock (1984) of transposable elements
(TEs) of viral origin. TEs that conduct cut-paste (transposons) and
copy-paste (retrotransposons) give a code-based explanation for
genomic changes. TEs, which account for some 45% of the genome,
have been found to engineer genomic evolvability, brain plasticity,
and novel phenotypes primarily in eukaryotes (Fedoroff, 2012).
This underscores the truism that only software can change software
and also sheds light on the double-edged sword of viral software.
It can benignly copy and paste as in replication, which entails a
simple sliver of code, as shown in one of the earliest accounts of
code biology by Kauffman (2015). However, malign viral hacking,
done externally by bio-malware and or internally by TEs to gene
expression itself, forms the Achilles heel of genomic digital systems.

Hence, here we have the model for the self-referential detection
of Gödel’s Liar. This entails the adaptive immune system (AIS)
(Flajnik and Kasahara, 2009) in the T-cell receptors that “simulate”
the application of negation software functions, f ¬, qua virus (hacker)
on self-repped gene codes. The breakthrough here is to see that
an RFT generalization of Gödel (1931) using Roger’s Fixed Point
Theorem (Rogers,1967) is needed for the counterparts in the
periphery of the self-repped gene codes in the T-cell receptors
to self-report when software changes to self-codes are brought
about by novel non-self-antigens in real time. The latter are an
uncountable infinity.

The AIS implements “out of the box” astronomic anticipative
search for novel non-self-antigens necessary for novel antibody
production and cognition in humans, manifesting unbounded
proteanism for novel extended phenotypes (Dawkins, 1989) in the
form of artifacts outside of ourselves. This facility, first found in the
AIS, relies on the recombination activator genes (RAG 1 and 2) and
also in the human brain for neural receptor diversity (Muotri et al.,
2009; Kaesar and Chun, 2020; Peña de Ortiz and Arshavsk, 2001),
which runs into orders of magnitude of 1020–1030 (Kapitonov and
Jurka, 2005) that exceed the pre-scripted germline of the genome size
many times over. Likewise, detection of negation ofwhat is predicted

in the human mirror neuron system found in neuroscience
experiments by Scott Kelso and co-authors (Tognoli et al., 2007)
gives evidence for perception of deceit and complex counterfactuals
in the Theory of Mind in social cognition.

The Rogers (1967) fixed point indexes of the Second Recursion
Theorem for yet-to-happen f ¬ attacks by the non-self-antigens are
generated in the AIS in a most ingenious fashion: a large number of
codes/indexes purported to be of different f ¬ on each self-repped g
are generated in the T-cell receptors. This is the most spectacular
case of predictive coding. Suppose that the g.n for the tuple { f ¬,
g } specifying that f ¬ has attacked g, is denoted by g¬. When the
attack by f ¬ takes place in real time in the periphery involving g,
the experientially driven peripheral MHC1 receptor mediated by
interferon gamma must record this. If this “syncs” with the one
that was speculatively generated in the thymicMHC1 receptors, two
parts of the fixed point come together to construct a genomic Gödel
sentence, which will now have a fixed-point index of σ ( g¬, g¬). At
this point, g self-reports that it is under attack.

The index σ ( g¬, g¬) of the Gödel sentence effectively signals
the hash for an untenable state of 0 = 1 produced by the fixed point
of a f ¬ negation function of self-codes (see Kauffman, 2023). Such
syntactic objects, σ ( g¬, g¬) at the point at which it is recursively
generated, are undecidable in that they lie outside of listable sets
arising from the mapped self-repped expressed gene codes that are
the theorems for the organism and the list of indexes for known non-
theorems. Such indexes σ ( g¬, g¬) of Gödel sentences have recently
been identified by Markose (2017), Markose (2021a), and Markose
(2022) as a precursor for endogenous novelty production in genomic
systems. Indeed, it is a testable hypothesis that it is the inability of the
peripheral MHC1 receptor to update the index to σ ( g¬, g¬) when
the f ¬+attacks g, typically due to faulty interferon gammamediation,
that causes AIS to fail to generate novel antibodies (Markose, 2021a).
In RFT, the productive set of Post (1944) provides the unique
recursive construction of the blockchain of fixed point indexes σ ( g¬,
g¬) for the novel non-self-antigens and the novel antibodies thereof.
This takes on the structure of an arms race, which is somatic and
extraneous to the germline; hence, this exercise is geared to conserve
the genome rather than to improve it.

Schmidhuber (2006) and more recent articles (Zhang et al.,
2025) have depicted Gödel machines and Darwin Gödel machines,
respectively, to show how self-referential mappings can lead to
self-improving machines that can rewrite their own codes. It is
important to note here that the precise implementation of the
structures ofGödel incompleteness as found in the adaptive immune
system, which involves the detection of novel negation functions
of adversarial agents and their fixed-point indexes as in the Gödel
sentence, the novel antibody production that follows does not lead
to self-improvement in the germline. Instead, the self-referential
recursive structures are geared toward conserving self-codes against
adversaries, and the arms race in novelty is to improve defenses
and maintain autonomy of the organism against prolific digital
adversaries.

It is conjectured that an identical RFT machinery is involved in
the self–other nexus in both the AIS and MNS. What evidence is
there for this? In a knockout of interferon gamma in the Jonathan
Kipnis Group experiment on rats (Filiano et al., 2016), it was
found that the rats lost immune capabilities as well as their social
cognition of recognizing another rat. Kipnis et al. give an Evo-Devo
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explanation that evolution has taught rats to socially isolate when
their immune system is compromised. My code-based explanation
(see Markose, 2021a) is that the same self-referential recursive
structures are in place both for the AIS as well as in the brain
MNS for self–other cognition and hencewhen the interferon gamma
mediator, especially in the peripheralMHC1 receptor is knocked out,
the circuitry for the fixed point generation needed for predictive
coding for non-self–other misfires and self becomes blind to the
other. It is conjectured that this is how the rats in the Filiano et al.
(2016) experiment lost their immune capabilities and their capacity
for social cognition of another rat.

3 Concluding remarks

In conclusion, genomic intelligence in vertebrates that has
reached its pinnacle in humans is highly empathic as the
conspecific/other is the projection of self; greatly Machiavellian
having co-evolved from adversarial viral agents; geared toward
unbounded proteanism from the get-go starting with transposon-
based diversity creation by recombination activation genes (RAG)
in the immune system and brain; and stringently self-regulated by a
self-referential block chain distributed ledger (BCDL) driven by the
principle of autonomy of the life of the organism and an agenda to
be hack free.

It is a matter of incredulity that some 90 years have passed since
Gödel (1931), for evidence to be found that the RFT staples of Self-
Ref and Self-Rep and the Gödel sentence are ubiquitous in biology
and genomic intelligence. Several factors can be adduced for the lack
of precise computational modeling of self-reference in the context
of general intelligence. Even those who espouse that code-based
operations are relevant in cognition, such as in the Computational
Theory of Mind (see Rescorla, 2020), never mention Self-Ref, self-
assembly machines, Self-Rep mirror systems, or computational
fixed-point indexes and, of course, the role of the Gödel sentence.
There is a strong anti-machine view that claims that biology is a non-
digital “natural” process that is creative in some vitalistic way. This
view overlooks the fact that in nature, only biology, with the encoded
basis of the genome, and the extended phenotypes of humans who
have built computers, manifest software-based digital systems.

Two canards are associated with the Gödel incompleteness
theorems (GITs) that seem to propagate anti-machine vitalistic
beliefs about life and intelligence. These have posed a stumbling
block to the necessary breakthroughs on code-based explanations
for genomic information processing. The canards are that the
GIT proves that human cognition is not computational and self-
reference leads to paradox (see Battaglia et al., 2025). In theGödelian
setting, as unlike the Cretan Liar paradox This is False, Gödel’s
painstaking two-step process of Self-Ref and Self-Rep, found in
Rogers (1967) generalizations thereof, on how statements about self
and other appear to be made in the immune-cognitive systems (see
Figure 1; Markose, 2021b), there are no paradoxes. Furthermore,
influential commentators like Roger Penrose have used the GIT to
conclude that human cognition can outstrip what Turing machines
can do. As Rescorla (2020) says, “It may turn out that certain
human mental capacities outstrip Turing-computability, but Gödel’s
incompleteness theorems provide no reason to anticipate that
outcome.”Thework of LaForte et al. (1998),OnWhyGödel’sTheorem

Cannot Refute Computationalism, and others has provided push
back on such flawed anti-machine views on biology and human
cognition.

Section 2 gives an account of how G–T–P based immune-
cognitive systems may be conducting self-referential information
processing. As first noted by Tsuda (2014), it is unlikely that any
statements regarding self or the other can be made by humans
without the two-step Self-Ref and Self-Rep recursive information
processing structures having evolved. Furthermore, the recursive
generation of an index of the Gödel sentence should demystify
what it is, a hash representing “0 = 1,” viz., non-theoremhood or
misalignment, and how it signifies a novel object as a constructive
“witness” for proof of incompleteness. In view of this, the following
statement is misconstrued: “The paradox of a brain trying to
study itself presents a conundrum, raising questions about self-
reference, consciousness, psychiatric disorders, and the boundaries
of scientific inquiry” (Battaglia et al., 2025). Likewise, in the absence
of the precise recursive function structures of Self-Ref and Self-Rep
necessary to identify software changes to self-codes, the important
discovery by the Parma Group of the mirror neuron system in the
brain has been stymied by hype and inaccuracies.

In the influential non-code-based Free Energy principle
explanation for general intelligence involved in the homeostasis
of life (Friston, 2013), Friston does not fall into the trap of
the mainstream optimization framework, which effectively
constrains search to under the lamp post and cannot
produce novelty. Schwartenbeck et. al (2013) state that search for
novel solutions and “explorative behavior is not just in accordance
with the principle of free energy minimization but is, in fact,
mandated by it.” However, from the vantage of the discussion here, it
seems that there has been insufficient consideration by Friston of the
regulatory framework of maintaining homeostasis of life’s vital signs
within feasible physical/analog states, viz., minimizing “surprisals,”
when this is under the aegis of smart algorithmic controls. The latter
must contend with software-related data security breaches from
bio-malware or adversarial digital agents.

What has been overlooked is that a large part of homeostasis
in formalistic code-based self-assembly systems of life involves the
complexification of phenotype with dynamic adversarial digital
game structures that must embrace an arms race in novelty and
surprises in order to avoid threats to autonomy from adversarial
agents that can hack gene codes. This is a problem that genomic
intelligence appears to have solved. AI, in contrast, has ignored this
self-referential design for data integrity for autonomous existence
that can vitiate what is called the “sitting duck” problem (Heaven,
2019). Furthermore, extant decision sciences are devoid of any
epistemic structures for novelty production and complexification
(Markose, 2024). As noted, there is a considerable difference
between the Gödel self-reference models for novelty production
by Markose (2021c), Markose (2022) and those of Schmidhuber
(2006) and Zhang et al. (2025). I underscore the formal system
premise of consistency and theoremhood for providing the
stringent selection mechanism for what novelty is permitted in
genomic systems and do not use the language of optimal self-
improvement or reward frameworks as do these and other
authors.

In closing, it is my view that the biological immuno-cognitive
model of the self-referential genomic BCDL with Gödel sentence
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hashes has far-reaching implications for understanding the full
gamut of self–other pathologies, gene regulatory networks that must
deal with malign transposable element activity, and more robust
design solutions for sustainable AGI.
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Modeling arbitrarily applicable 
relational responding with the 
non-axiomatic reasoning system: 
a Machine Psychology approach

Robert Johansson*

Department of Psychology, Stockholm University, Stockholm, Sweden

Arbitrarily Applicable Relational Responding (AARR) is a cornerstone of human 
language and reasoning, referring to the learned ability to relate symbols in 
flexible, context-dependent ways. In this paper, we present a novel theoretical 
approach for modeling AARR within an artificial intelligence framework using the 
Non-Axiomatic Reasoning System (NARS). NARS is an adaptive reasoning system 
designed for learning under uncertainty. We introduce a theoretical mechanism 
called acquired relations, enabling NARS to derive symbolic relational knowledge 
directly from sensorimotor experiences. By integrating principles from Relational 
Frame Theory—the behavioral psychology account of AARR—with the reasoning 
mechanisms of NARS, we conceptually demonstrate how key properties of 
AARR (mutual entailment, combinatorial entailment, and transformation of 
stimulus functions) can emerge from NARS’s inference rules and memory 
structures. Two theoretical demonstrations illustrate this approach: one 
modeling stimulus equivalence and transfer of function, and another modeling 
complex relational networks involving opposition frames. In both cases, the 
system logically demonstrates the derivation of untrained relations and context-
sensitive transformations of stimulus functions, mirroring established human 
cognitive phenomena. These results suggest that AARR—long considered 
uniquely human—can be conceptually captured by suitably designed AI systems, 
emphasizing the value of integrating behavioral science insights into artificial 
general intelligence (AGI) research. Empirical validation of this theoretical 
approach remains an essential future direction.

KEYWORDS

artificial general intelligence (AGI), arbitrarily applicable relational responding, operant 
conditioning, Non-Axiomatic Reasoning System (NARS), machine psychology, adaptive 
learning 

 1 Introduction

Human intelligence is marked by an extraordinary capacity for symbolic reasoning—the 
ability to understand and manipulate symbols (words, ideas, abstract concepts) and their 
relationships in a flexible manner. An aspect of this flexibility is the capability to derive 
new relationships between symbols without direct training, purely based on their contextual 
relations. In cognitive and behavioral psychology, this phenomenon is captured by the 
concept of Arbitrarily Applicable Relational Responding (AARR), which underlies human 
language and higher cognition (Hayes et al., 2001; Hayes et al., 2021). AARR refers to the 
learned behavior of relating stimuli in arbitrary ways (not dictated by the physical properties
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of the stimuli, but by contextual cues and social learning). For 
example, once a child learns that the spoken word “dog” refers 
to an actual furry pet, the child responds to the word as if 
it is functionally equivalent to the animal itself—experiencing 
excitement or happiness when hearing the word, similar to 
encountering the dog. Such symbolic equivalence is not determined 
by physical similarity but by relational learning. Derived relational 
responding of this type is considered a hallmark of human language 
and reasoning, enabling everything from understanding metaphors 
to performing complex analogies.

While humans readily perform AARR, instantiating this 
ability in artificial intelligence (AI) systems remains a formidable 
challenge. Traditional symbolic AI systems typically rely on 
explicitly programmed logic rules or axioms, and machine learning 
systems (like deep neural networks) often require vast amounts 
of data and struggle with extrapolating knowledge in the absence 
of direct examples. Achieving human-like symbolic reasoning in a 
machine calls for an approach that can learn relational patterns from 
a few examples and generalize them in a context-sensitive way, much 
as humans do. In other words, we seek an AI that can learn how to 
relate rather than being pre-programmed with all possible relations.

In this paper, we propose that AARR can be effectively modeled 
within a particular AI framework known as the Non-Axiomatic 
Reasoning System (NARS). NARS is an AI reasoning architecture 
designed to operate under the real-world constraints of insufficient 
knowledge and resources (i.e., it does not assume a closed, complete 
set of axioms or unlimited processing power) (Wang, 2013; Wang, 
2022). Instead of a fixed logic, NARS uses an adaptive logic (Non-
Axiomatic Logic, NAL) that allows it to learn from experience, 
update its beliefs probabilistically, and make plausible inferences 
even when knowledge is incomplete. These features make NARS a 
strong candidate for modeling the emergent, learned relations that 
characterize AARR.

The key contribution of this work is to demonstrate a 
computational method for describing human-like symbolic 
reasoning (AARR) in a machine by utilizing NARS’s capabilities. 
We integrate theoretical insights from Relational Frame Theory 
(RFT) (Hayes et al., 2001; Hayes et al., 2021) — the behavioral 
theory that explicates AARR—with the algorithmic machinery of 
NARS. We propose a novel theoretical mechanism called acquired 
relations, enabling NARS to derive symbolic relational knowledge 
directly from sensorimotor experiences. In doing so, we show that 
an AI system can learn and derive relationships among symbols in 
a manner analogous to human relational learning. This integration 
provides a framework for studying and implementing cognitive 
phenomena like language and abstract reasoning in AI. Importantly, 
our approach goes beyond purely mechanistic or narrow AI 
methods: rather than training a black-box neural network on vast 
relational datasets, we employ a functional approach grounded 
in how relations are learned and used by humans (Johansson, 
2024a). This allows the system to capture the contextual control 
and generalizability of human relational responding.

This integrative approach aligns with the broader 
interdisciplinary perspective of Machine Psychology (Johansson, 
2024a; Johansson, 2024b), which systematically applies principles 
from learning psychology—such as operant conditioning, 
generalized identity matching, and functional equivalence—to 
artificial intelligence architectures, aiming to replicate increasingly 

complex cognitive phenomena in machines (See Table 1 for 
an overview of how the present research fits with previously 
conducted studies).

We validate our approach with two experimental paradigms 
inspired by human studies. The first is a stimulus equivalence 
task involving three groups of stimuli and tests for derived 
symmetric and transitive relations, as well as a demonstration of 
the transformation of stimulus function (e.g., if one stimulus in a 
set is given a certain meaning or consequence, the others derived 
to be equivalent to it also reflect that meaning) (Hayes et al., 
1987). The second is an oppositional relational network task, where 
the system learns a network of “opposite” relations (a case of a 
more complex relational frame) and we examine how this leads to 
emergent relations and transformations of function consistent with 
what is observed in human experiments on relational framing of 
opposites (Roche et al., 2000).

The remainder of this article is organized as follows. 
Section 2 provides background on Arbitrarily Applicable Relational 
Responding, the Non-Axiomatic Reasoning System, and our 
research approach—Machine Psychology. Section 3 reviews related 
work, contrasting our perspective with other AI and cognitive 
modeling efforts. Section 4 introduces our theoretical framework, 
explaining how acquired relations enable modeling of AARR 
within NARS. Section 5 outlines the methodology behind our 
illustrative theoretical demonstrations, and Section 6 summarizes 
their key results, with detailed conceptual derivations provided in 
the Supplementary Material. Finally, Section 7 discusses broader 
implications for artificial general intelligence and cognitive science, 
and outlines directions for future empirical research. Collectively, 
these contributions establish a theoretical foundation for the 
empirical study of relational responding in adaptive AI systems. 

2 Theoretical background

2.1 Arbitrarily applicable relational 
responding

Arbitrarily Applicable Relational Responding (AARR) is a 
concept from behavioral psychology that refers to a general pattern 
of learned behavior: responding to the relation between stimuli 
rather than just the stimuli themselves, and doing so in a way 
that is not determined by the stimuli’s physical properties but by 
contextual cues and history of reinforcement (Hayes et al., 2001; 
Hayes et al., 2021). This idea is central to Relational Frame Theory 
(RFT), a modern behavioral theory of language and cognition 
(Hayes et al., 2001; Hayes et al., 2021). According to RFT, virtually 
all of human language and higher cognition is founded upon 
AARR—the ability to treat different stimuli as related along various 
dimensions (e.g., same, different, greater than, opposite, etc.) purely as 
a result of learned context, not because of any inherent relationship 
in their physical features.

Three key properties define AARR and distinguish it from 
simple associative learning. 

1. Mutual Entailment: This is the bidirectionality of derived 
relations. If a person learns a relation in one direction 
(e.g., A is larger than B), they can derive the relation 
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TABLE 1  Overview of psychological processes, NARS mechanisms, layers (from Wang, 2013), and references.

Psychological process NARS mechanisms NARS layers References

Operant conditioning Temporal reasoning and procedural reasoning 7–8 (Johansson, 2024b)

Generalized identity matching +Abstraction +6 (Johansson et al., 2023)

Functional equivalence +Implications +5 (Johansson et al., 2024)

Arbitrarily applicable relational eesponding +Acquired relations +4 This study

in the opposite direction (B is smaller than A) without 
direct training (Luciano et al., 2007). In classical terms, mutual 
entailment encompasses symmetric relations (if A = B, then 
B = A) and the inverses of asymmetrical relations (if A > B, 
then B < A) in a generalized way. Notably, the derived relation 
might not be identical in form (for instance, larger than
vs smaller than are inverse relations rather than exactly the 
same), but they are mutually implied by each other given the 
contextual cues (such as the contextual cue for comparison).

2. Combinatorial Entailment: This is the ability to derive new 
relations from combinations of learned relations. For example, 
if one learns that A is related to B, and B is related to C, 
one can often derive a relation between A and C, depending 
on the nature of the relation. In the simplest case, if A = B
and B = C (coordination relations), then one can derive A =
C (equivalence). If A > B and B > C (a comparative relation 
of “more than”), one can derive A > C (“A is more than C”). 
These are akin to transitive inferences, but RFT uses the term 
combinatorial entailment to emphasize that the new relation 
emerges from the combination of two or more other relations.

3. Transformation of Stimulus Function: Perhaps the most 
distinctive aspect, this refers to the way the functions of stimuli 
(their meaning, emotional valence, or behavioral effects) can 
change based on the relations they participate in (Dymond 
and Rehfeldt, 2000). In other words, if two stimuli are related 
in a certain way, any psychological function attached to one 
stimulus (like being pleasant, having a certain name, evoking 
a specific response) can be transferred to the other stimulus 
in accordance with their relation. For instance, suppose a 
person is taught that stimulus A is equivalent to stimulus B 
(A = B, a coordination relation), and separately, stimulus A 
acquires a particular function (e.g., A is paired with a reward 
or labeled as “good”). Then, without additional training, the 
person may treat stimulus B as also having that function 
(finding B pleasant or “good”), because B is in the same 
equivalence class as A. If the relation is one of opposition, the 
functions might transfer in an opposite manner (e.g., if A is 
opposite to B, and A is associated with “good,” B might be 
seen as “bad”) (Roche et al., 2000). Transformation of function 
demonstrates how relational learning can govern the meaning 
of symbols in context.

An example can illustrate these principles. Imagine a scenario 
in a coffee shop: A newcomer is told that “Espresso is stronger 
than Americano, and Americano is stronger than Caffé au Lait.” 
From just this information, the person can derive that Espresso is 

stronger than Caffé au Lait, and conversely, Caffé au Lait is weaker 
than Espresso (combinatorial entailment and mutual entailment for 
the comparative frame). Now, suppose the person actually tastes 
an Americano and finds it strong and bitter. That experience may 
attach a function (strong flavor) to Americano. Due to the relational 
network, the person might now expect that Espresso (which was 
said to be stronger than Americano) has an even stronger taste, 
and that Caffé au Lait (weaker than Americano) has a milder taste, 
even though they have never tasted Espresso or Caffé au Lait. 
This is a transformation of stimulus function across a comparative 
relation network: the direct experience with one item (Americano) 
transformed the anticipated qualities of the related items (Espresso, 
Caffé au Lait) in line with the learned relations.

Relational Frame Theory has identified numerous types of 
relational patterns (called relational frames) that humans can 
learn. Some prominent examples include frames of coordination
(equivalence/sameness), distinction (different from), comparison
(more than/less than as in the coffee strength example), opposition, 
hierarchy (e.g., category membership relations, like “X is a 
kind of Y”), temporal (before/after), spatial (here/there), and 
deictic (I/you, now/then, here/there, which involve perspective) 
(Hayes et al., 2001; 2021). All these frames share the properties 
of mutual and combinatorial entailment and can lead to 
transformations of function, though the exact nature of the 
entailments depends on the frame.

It is important to note that AARR is considered an operant 
behavior, meaning it is learned through a history of reinforcement 
and context, rather than being an innate or automatic reflex 
(Hayes et al., 2021). Crucially, according to RFT, derived relational 
responding (such as mutual entailment, combinatorial entailment, 
and transformation of function) is established via multiple exemplar 
training (MET), a well-documented learning process through 
which individuals are exposed to a variety of relational examples 
until relational responding generalizes to new, untrained examples 
without direct reinforcement (Luciano et al., 2007; Hayes et al., 
2021). Thus, explicitly training relational patterns initially is fully 
consistent with RFT, and subsequent relational responding is 
considered “emergent” precisely because it generalizes beyond 
reinforced examples due to this learning history. The term 
“arbitrarily applicable” emphasizes that any stimuli, regardless 
of their formal properties, can be related in any way, given 
the appropriate training context. Humans, especially those with 
language ability, seem uniquely capable of this kind of learning 
(Devany et al., 1986). Indeed, research has shown that stimulus 
equivalence (a basic form of AARR focusing on sameness) reliably 
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appears in humans but not in most non-human animals without 
language training, with only rare exceptions (Schusterman and 
Kastak, 1993). This link between language and AARR suggests that 
a capacity for relational responding is a defining feature of higher 
cognition.

Relational Frame Theory provides a perspective on general 
intelligence as well. Rather than viewing intelligence as a 
monolithic IQ or a fixed set of problem-solving abilities, RFT 
suggests intelligence involves a rich repertoire of relational skills 
(Cassidy et al., 2016; Hayes et al., 2021). From this viewpoint, 
improving one’s ability to learn and manipulate complex relational 
networks should enhance cognitive performance. Studies have 
found that training individuals on relational tasks can increase 
scores on standard intelligence tests (Cassidy et al., 2016). 
Programs like SMART (Strengthening Mental Abilities with 
Relational Training) and PEAK (Promoting the Emergence of 
Advanced Knowledge) aim to boost cognitive and language 
abilities by systematically exercising relational responding 
abilities (Dixon et al., 2017).

In summary, AARR, as characterized by RFT, captures the 
flexibility, generativity, and context-sensitivity of human symbolic 
reasoning. Modeling this phenomenon in an AI system requires 
that the system can represent relations between symbols, infer new 
relations from old, and dynamically update what symbols mean 
based on relational context. Next, we discuss NARS, which we 
propose as a suitable candidate for this challenge. 

2.2 Non-Axiomatic Reasoning System 
(NARS)

The Non-Axiomatic Reasoning System (NARS) is an AI system 
and cognitive architecture developed by Pei Wang (Wang, 2013; 
Wang, 2022) with the goal of realizing a form of general intelligence 
that operates effectively under real-world constraints. The name 
“non-axiomatic” reflects that NARS does not assume a predefined, 
complete set of axioms or truths about the world; instead, it must 
learn and reason non-axiomatically, meaning all its knowledge is 
gleaned from experience and is always revisable. NARS was built on 
the recognition that an intelligent agent in the real world must cope 
with insufficient knowledge and insufficient resources (a principle 
Wang abbreviates as AIKR: Assumption of Insufficient Knowledge 
and Resources (Wang, 2019)). Unlike classical logic systems that 
are brittle outside of their given axioms, NARS is adaptive and is 
constantly updating its beliefs and strategies as new information 
comes in, somewhat akin to a human continually learning and 
adjusting their understanding.

At the core of NARS is an AI reasoning framework called Non-
Axiomatic Logic (NAL). NAL is a formal logic that extends term 
logic (a kind of logic dealing with relationships between terms or 
concepts) and is probabilistic in nature. NARS uses an internal 
language, Narsese, to represent knowledge. All pieces of knowledge 
in NARS are expressed as statements in Narsese, which typically 
have a subject and a predicate and a copula connecting them (the 
copula defines the type of relation between subject and predicate). 
The simplest form is an inheritance relation “S→ P” meaning “S is 
a kind of P” or “S implies P” in a category sense. For example, one 
could represent “Tweety is a bird” as Tweety→ Bird, and “Birds 

are animals” as Bird→ Animal. NAL can then derive Tweety→
Animal by inference (a kind of syllogism) (Wang, 2013). In 
addition to inheritance, Narsese includes other basic copulas such 
as similarity (noted as ↔ in Narsese, meaning two terms are similar 
or equivalent in some sense), implication (→ with different context 
indicating temporal or causal implication), and equivalence (⇔ for 
bi-conditional statements). Through combinations of these, NARS 
can represent a wide variety of knowledge, including rules like “if X 
happens then Y tends to happen” (an implication), or “Concept A is 
similar to Concept B” (a similarity statement).

Crucially, every statement in NARS carries a measure of 
uncertainty. NARS does not use binary true/false assignments; 
instead, each piece of knowledge has a truth value with two 
parameters: frequency (a measure akin to probability based on 
how often the relation has been true in experience) and confidence
(reflecting the amount of evidence available) (Hammer, 2022; Wang, 
2022). This allows NARS to reason under uncertainty and update 
its beliefs as new evidence arrives. For example, if initially NARS 
has little evidence about “Tweety can fly,” it might assign it a low 
confidence. If many observations confirm it, the confidence (and 
perhaps the frequency) increases. See the Supplementary Material 
for more information regarding frequency and confidence.

Another distinguishing feature of NARS is its approach to 
resource constraints. NARS operates in real-time and has a limited 
“budget” for attention and memory. It cannot consider all knowledge 
all the time. Instead, it uses a priority mechanism to decide which 
tasks (questions, goals, new knowledge) to process next, based on 
factors like urgency and relevance. This ensures that at any given 
moment, the system focuses on the most pertinent information, 
allowing it to scale to larger problems by not getting bogged down 
in less relevant details.

Recent implementations of NARS include OpenNARS and 
specifically a variant called OpenNARS for Applications (ONA) 
(Hammer and Lofthouse, 2020). ONA is tailored for integration into 
practical applications, including robotics. It extends the basic NARS 
framework with sensorimotor capabilities, meaning it can handle 
input from sensors and send output to actuators (motors) as part 
of its reasoning. This is done by treating sensorimotor events also 
as terms in the language (for instance, a sensory observation or a 
motor command can be a term that participates in statements). In 
ONA, the reasoning engine is capable of doing temporal inference, 
understanding sequences of events and causality. Temporal relations 
in Narsese might be represented with additional notation - for 
example, A⇒ B might denote events A and B happening in 
sequence. ONA’s design includes components like event buffers, 
concept memory, and distinct inference processes for different types 
of tasks (e.g., some for immediate reactions, some for long-term 
learning) (Hammer and Lofthouse, 2020; Hammer, 2022).

For the purposes of this work, what is important is that NARS 
(and ONA) provides. 

• A flexible knowledge representation that can express arbitrary 
relations between symbols (via terms and copulas in Narsese).
• Inference rules that can derive new relationships from known 

ones, analogous to the entailments described in RFT. For 
example, NARS can perform syllogistic inference (if A→ B and 
B→ C, derive A→ C) and inductive inference (generalizing 
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or specializing relations based on evidence), which parallel 
combinatorial entailment in AARR.
• The ability to incorporate new knowledge on the fly and revise 

existing knowledge, which is essential for any learning system 
attempting to acquire relational behavior through training.
• The ability to handle context and switch between tasks, 

somewhat akin to how contextual cues in AARR determine 
which relation applies. In NARS, context is handled through 
its concept activations and the specific questions posed to the 
system; it is not identical to the notion of contextual cues 
in RFT, but NARS can take context into account by treating 
it as just another piece of information in the premise of a 
statement or rule.

In short, NARS can be seen as a unified cognitive model that 
does not separate reasoning, learning, memory, and perception 
into different modules; the same underlying logic and control 
mechanism handles all these functions (Wang et al., 2022). This 
makes it very appealing for modeling complex cognitive phenomena 
like AARR, because we do not need to bolt together separate 
systems for learning relations and for reasoning about them—NARS 
does both in one framework. The challenge is to design the right 
way to present relational training to NARS and possibly to extend 
NARS with any additional mechanisms so that it can exhibit mutual 
and combinatorial entailment and transformation of functions in a 
manner comparable to humans. 

2.3 Machine psychology: bridging learning 
psychology and adaptive AI

Machine Psychology is an interdisciplinary framework that 
integrates learning psychology with adaptive AI systems, such as 
NARS, to explore the emergence of cognitive behaviors in artificial 
agents (Johansson, 2024a; Johansson, 2024b). This approach 
systematically investigates increasingly complex learning processes, 
drawing from operant conditioning, generalized identity matching, 
and functional equivalence, which are fundamental to relational 
cognition. In Table 1, we clarify how this systematic approach has 
been carried out in previous studies.

In this work, we assume that the system is interacting with the 
environment using different sensors. A key sensor that will be used 
throughout the entire paper is the assumption of a location sensor. 
Objects perceived by the vision system would using this model all 
be assigned a location. The labels sample, left, right, etc., 
are totally arbitrary. They are chosen by the designer and are only 
labels used to indicate that different objects are perceived at different 
locations.

We could also imagine that the system is equipped with a color 
sensor, and is interacting with a Matching-to-sample procedure. For 
example, as illustrated in Figure 1, something red is in the sample 
position, something green is to the left, and something blue to the 
right. This could be described that the only “eyes” that the system 
have are location and color, meaning that other object properties like 
shape and size couldn’t be perceived by that system.

The way we represent such interactions with the world in this 
paper is like the following:

<(sample ∗ red) --> (loc ∗ color)>. :|:

FIGURE 1
An example scene where the system perceives three different colors 
at three different locations.

<(left ∗ green) --> (loc ∗ color)>. :|:
<(right ∗ blue) --> (loc ∗ color)>. :|:
The scene is described by two temporal statements (as indicated 

by:—:). Perceiving a green object to the left can be described 
as an interaction between perceiving to the left, and perceiving 
green. Hence, the statement <(left ∗ green) --> (loc ∗ 
color)> can be seen as a composition of <left --> loc>
and <green --> color>. This encoding of object properties at 
certain locations will be used throughout this paper. Importantly, 
also an OCR detector will be assumed in the experiments carried 
out in the present study, leading to interactions as the one 
illustrated below.

<(sample ∗ A1) --> (loc ∗ ocr)>. :|:
<(left ∗ B1) --> (loc ∗ ocr)>. :|:
<(right ∗ B2) --> (loc ∗ ocr)>. :|:
For details regarding the experimental setup used in the research 

described below, see the section in the Supplementary Material, that 
clarifies Narsese syntax and key concepts. 

2.3.1 Operant conditioning with NARS
The foundation of Machine Psychology is built on 

operant conditioning, a fundamental demonstration of 
adaptive behavior (Johansson, 2024b). In our research, NARS was 
exposed to operant contingencies where behaviors were reinforced 
based on temporal and procedural reasoning. This enabled NARS 
to learn through interaction with its environment, adjusting actions 
based on feedback, similar to how organisms learn in response to 
consequences. The results demonstrated that NARS could acquire 
and refine behaviors through reinforcement, providing an essential 
basis for more advanced relational learning.

<(left ∗ blue) --> (loc ∗ color)>. :|:
<(right ∗ green) --> (loc ∗ color)>. :|:
G! :|: // Establish G as a goal

// Executed with motor babbling:

// ^select executed with args

({SELF} ∗ right)
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G. :|: // Provide G as a consequence

// Derived with frequency 1, and confidence 

0.19:

// <(<(right ∗ green) --> (loc ∗ color)> &/ 
<({SELF}  ∗ right) --> ^select>) =/> G>. 

2.3.2 Generalized identity matching with NARS
Building upon operant conditioning, our research 

extended into generalized identity matching, which involves 
recognizing and responding to identity relations across 
varying stimuli (Johansson et al., 2023). This required NARS to 
utilize complex learning mechanisms, including abstraction and 
relational generalization. By introducing an abstraction mechanism 
to NARS, we enabled it to derive identity relations beyond explicit 
training examples, mirroring human cognitive abilities in symbolic 
matching tasks. The results showed that NARS could generalize 
identity relations to novel stimuli, demonstrating an emergent form 
of relational reasoning.

Let’s say that the system was exposed to the following NARS 
statements in the training phase.

<(sample ∗ blue) --> (loc ∗ color)>. :|:
<(left ∗ green) --> (loc ∗ color)>. :|:
<(right ∗ blue) --> (loc ∗ color)>. :|:
G! :|:
NARS could execute match with sample and right (from 

motor babbling or a decision based on previous experience), which 
would be considered correct, and hence the feedback G. :— :
would be given to NARS, followed by 100 time steps. Only from this 
single interaction, NARS would form both a specific and a general 
hypothesis.

<((<(sample ∗ blue) --> (loc ∗ color)> &/
<(right ∗ blue) --> (loc ∗ color)>) &/
<({SELF}  ∗ (sample ∗ right)) --> ^match>) 

=/> G>
// frequency: 1.00, confidence: 0.15

<((<(#1 ∗ #2) --> (loc ∗ color)> &/
<(#3 ∗ #2) --> (loc ∗ color)>) &/
<({SELF}  ∗ (#1 ∗ #3)) --> ^match>) =/> G>
// frequency: 1.00, confidence: 0.15 

2.3.3 Functional equivalence with NARS
Further advancing Machine Psychology, we explored 

functional equivalence, a process in which stimuli become 
interchangeable in guiding behavior due to shared functional 
properties (Johansson et al., 2024). This study introduced additional 
inference mechanisms into NARS, allowing it to derive new relations 
based on implications and acquired equivalences. Functional 
equivalence is critical for understanding how abstract categories 
are formed and used in problem-solving. Our findings indicate that 
NARS can establish and apply functional equivalence relations, 
effectively transferring learned functions between distinct but 
related stimuli.

<(s1 ∗ A1) --> (loc ∗ ocr)>. :|:
G! :|:
// Executed with motor babbling

<({SELF}  ∗ R1) --> ^press>. :|:
G. :|:
// Derived

<(<(s1 ∗ A1) --> (loc ∗ ocr)> &/
<({SELF}  ∗ R1) --> ^press>) =/> G>.
100

<(s1 ∗ A2) --> (loc ∗ ocr)>. :|:
G! :|:
// Executed same operation with motor 

babbling

<({SELF}  ∗ R1) --> ^press>. :|:
G. :|:
// Derived

<(<(s1 ∗ A2) --> (loc ∗ ocr)> &/
<({SELF}  ∗ R1) --> ^press>) =/> G>.
Since the system derived two contingencies that only differed 

in the pre-condition, statements like the following (functional 
equivalence) would also be derived.

<<($1 ∗ A1) --> (loc ∗ ocr)> ==>
<($1 ∗ B1) --> (loc ∗ ocr)>>.

<<($1 ∗ B1) --> (loc ∗ ocr)> ==>
<($1 ∗ A1) --> (loc ∗ ocr)>>.

These studies collectively illustrate the progression from simple 
operant conditioning to complex relational cognition, reinforcing 
Machine Psychology as a viable framework for advancing artificial 
general intelligence (AGI). An overview of the systematic approach 
Machine Psychology has taken, can be seen in Table 1. By 
systematically integrating behavioral learning principles with 
adaptive AI reasoning, this approach contributes to the development 
of more flexible, human-like intelligence in machines. 

3 Related work

Integrating principles of human cognition and learning into AI 
systems is a growing interdisciplinary endeavor. However, Relational 
Frame Theory (RFT) and its core concept of Arbitrarily Applicable 
Relational Responding (AARR) have seen relatively little application 
in mainstream AI research. Most approaches to relational reasoning 
in AI have taken alternative paths. 

3.1 Symbolic AI and knowledge graphs

Traditional symbolic reasoning systems, such as knowledge 
graph inference engines and logic-based AI, typically represent 
relations axiomatically (Lenat, 1995; Rosenbloom et al., 2016). 
These systems utilize explicitly predefined relational structures 
(e.g., ontological relationships like “isFatherOf ” being inverse to 
“isChildOf ”). They do not usually learn these relations dynamically 
but rely instead on manually crafted knowledge. In contrast, the 
proposed NARS-based approach aims at learning arbitrary relations 
from experience, enabling dynamic derivation of novel relations 
without predefined axioms. 

3.2 Machine learning for relational tasks

In the machine learning domain, methods such as relational 
reinforcement learning, graph neural networks, and transformer-
based models excel at extracting patterns from relational datasets. 
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For example, DeepMind’s Relation Networks can effectively learn 
relational structures to answer visual-spatial questions from large-
scale training data (Santoro et al., 2017). However, these data-driven 
methods typically require substantial training examples and may not 
guarantee key relational properties such as mutual or combinatorial 
entailment. Furthermore, these methods often lack interpretability 
and struggle with few-shot generalization—a core strength of human 
cognition that NARS aims to model by deriving relational structures 
adaptively from minimal and context-sensitive experiences. 

3.3 Bayesian approaches to relational 
learning

Bayesian methods, including probabilistic programming and 
Bayesian relational modeling, represent relational structures while 
also modeling uncertainty (Nitti et al., 2016; Tenenbaum et al., 
2011). These approaches are highly effective in generalizing from 
limited data, but they typically depend on predefined model 
structures and well-defined priors. As a result, dynamically 
deriving novel relational structures purely from interaction or 
flexibly adapting to context-sensitive relations can be challenging. 
By contrast, our NARS-based framework inherently constructs 
relational structures directly from interaction and accommodates 
dynamic, context-dependent inference without reliance on extensive 
predefined priors. 

3.4 Statistical relational learning and 
neurosymbolic AI

Recent advances in Statistical Relational Learning (SRL) and 
neurosymbolic AI methods integrate symbolic logic with statistical 
and neural learning techniques (Marra et al., 2024). These hybrid 
methods effectively handle relational inference tasks by leveraging 
symbolic representation and data-driven learning. However, 
SRL methods typically require large datasets and predefined 
structures, potentially limiting their adaptability in low-data or 
dynamically evolving contexts. Our approach utilizing NARS offers 
a complementary perspective by emphasizing adaptive reasoning 
and minimal-data learning, targeting scenarios that demand rapid 
relational inference from limited interactions. 

3.5 Inductive logic programming

Inductive Logic Programming (ILP) is another well-established 
paradigm for symbolic relational learning, focusing on deriving 
relational rules from structured data (Cropper and Dumančić, 
2022). Recent ILP applications have successfully modeled cognitive 
processes in robotic systems, enabling robots to generalize relational 
tasks from expert feedback (Meli and Fiorini, 2025). While powerful, 
ILP generally relies on explicitly defined logical frameworks and 
structured training examples. In contrast, our proposed integration 
of NARS and RFT uniquely emphasizes adaptive, context-sensitive 
relational learning, minimizing reliance on predefined logic 
templates or extensive datasets. 

3.6 Computational approaches inspired by 
RFT

Few computational approaches explicitly model AARR as 
defined by RFT. Early computational models attempted to simulate 
stimulus equivalence and relational responding through neural 
network approaches (Barnes and Hampson, 1993; Cullinan et al., 
1994). These connectionist methods successfully modeled basic 
relational properties such as symmetry and transitivity but typically 
required extensive training data and had limited scalability 
to complex relational frameworks. Although computational 
modeling of stimulus equivalence remains active (Tovar et al., 
2023), modeling of broader AARR principles beyond stimulus 
equivalence is rare, with notable exceptions including recent works 
by Edwards et al. (2022); Edwards (2024).

In summary, relational reasoning remains a vibrant area within 
AI research, yet the challenge of dynamically learning arbitrary, 
contextually flexible relational structures with minimal training 
data remains largely unmet. Our proposed NARS-based framework 
directly addresses this gap. To the best of our knowledge, this study 
is the first to conceptually demonstrate how mutual entailment, 
combinatorial entailment, and transformation of functions—key 
properties of AARR—can emerge within a unified symbolic 
reasoning system. This theoretical foundation sets the stage for 
future empirical validations and positions NARS as a promising 
candidate for adaptive, human-like relational reasoning. 

4 Theoretical framework: modeling 
AARR with NARS

To enable the modeling of Arbitrarily Applicable Relational 
Responding (AARR) within OpenNARS for Applications (ONA), 
we introduce a novel mechanism called acquired relations. Currently, 
ONA’s reasoning is based primarily on sensorimotor contingencies; 
however, according to NARS theory (NAL Definition 8.1 in Wang 
(2013)), relational terms (products) can equivalently be represented 
as compound terms of inheritance statements. This theoretical 
notion has not yet been implemented in ONA, and its introduction 
would allow the system to derive relational statements directly from 
learned sensorimotor contingencies.

Within NARS theory, a learned contingency such as.
<((<A1 --> p1> &/ <B1 --> q1>) &/ ^left) 

=/> G>.
can yield an acquired relation, formally represented as.
<(A1 ∗ B1) --> (p1 ∗ q1)>.
In the notation employed here, learned sensorimotor 

contingencies often take the form.
<(sample ∗ red) --> (loc ∗ color)> &/
<(left ∗ blue) --> (loc ∗ color)> &/
<({SELF}  ∗ (sample ∗ left)) --> ^match> 

=/> G>.
Following our approach, this yields two distinct relational 

terms—one describing the relation between stimulus properties 
(colors), and another describing the relational structure of stimulus 
locations.

<(red ∗ blue) --> (color ∗ color)> &&
<(sample ∗ left) --> (loc ∗ loc)>
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To avoid a combinatorial explosion, i.e., an exponential growth 
in derived terms and inferences, the introduction of acquired 
relations is carefully restricted. Specifically, new relations are 
generated only when procedural operations within contingencies 
are actively executed by the system. This targeted triggering ensures 
computational efficiency while maintaining functional generality.

Acquired relations can be combined with implications, another 
core element in NARS theory (see statement-level inference in Wang 
(2013)), allowing for generalized, context-sensitive reasoning. 
For example, from the acquired relations shown previously, the 
following implications can be derived.

<(red ∗ blue) --> (color ∗ color)> &&
<(sample ∗ left) --> (loc ∗ loc)> ==>
<(sample ∗ red) --> (loc ∗ color)> &/
<(left ∗ blue) --> (loc ∗ color)> &/
<({SELF}  ∗ (sample ∗ left)) --> ̂match> =/> G>. 
More generally, implications abstracted with variables 

take this form.
<($1 ∗ $2) --> (color ∗ color)> &&
<($3 ∗ $4) --> (loc ∗ loc)> ==>
<($3 ∗ $1) --> (loc ∗ color)> &/
<($4 ∗ $2) --> (loc ∗ color)> &/
<({SELF}  ∗ ($3 ∗ $4)) --> ^match> =/> G>.
This framework can be understood as a grounding mechanism 

whereby abstract relations (e.g., color-color) become anchored 
in concrete sensorimotor experiences. This allows NARS to 
dynamically transition from basic, animal-like contingency learning 
towards symbolic, human-like reasoning capabilities.

When multiple abstract relational templates or rules could 
apply during inference, NARS selects among these templates by 
prioritizing the rule with the highest truth expectation (Hammer 
and Lofthouse, 2020). Truth expectation in NARS is calculated as 
a function of frequency and confidence associated with previously 
derived relational implications:

exp ( f,c) = c×( f − 1
2
)+ 1

2

where frequency ( f) represents the proportion of positive evidence 
relative to the total evidence, and confidence (c) reflects the degree of 
evidential support based on the total amount of evidence (Hammer 
and Lofthouse, 2020). Thus, inference proceeds using the relational 
rule with the strongest combined evidential support, reflecting the 
system’s accumulated relational learning experiences.

Conversely, symbolic-level relational statements can also guide 
sensorimotor behavior. If a relation such as (blue→ yellow) is 
symbolically derived, it can then inform decision-making in novel 
situations via the implications described above, provided relevant 
locational relations (e.g., (sample→ right)) are established through 
direct interaction with the environment.

The concept of acquired relations is general and not restricted 
to matching-to-sample procedures. For example, functional 
equivalences acquired through interactions with different 
procedures also lead to relational derivations. Consider the 
following example.

<(<(left ∗ green) --> (loc ∗ color)> &/
<({SELF}  ∗ left) --> ^select>) =/> G>
100

<(<(left ∗ blue) --> (loc ∗ color)> &/

<({SELF}  ∗ left) --> ^select>) =/> G>
// Derived functional equivalence:

<(left ∗ green) --> (loc ∗ color)> <=>
<(left ∗ blue) --> (loc ∗ color)>
This equivalence, in turn, can support acquired relational 

implications.
<(green ∗ blue) --> (color ∗ color)> &&
<(left ∗ left) --> (loc ∗ loc)> ==>
<(left ∗ green) --> (loc ∗ color)> <=>
<(left ∗ blue) --> (loc ∗ color)>
// Abstracted form:

<($1 ∗ $2) --> (color ∗ color)> &&
<($3 ∗ $3) --> (loc ∗ loc)> ==>
<($3 ∗ $1) --> (loc ∗ color)> <=>
<($3 ∗ $2) --> (loc ∗ color)>
This flexibility aligns closely with contemporary learning 

psychology perspectives, which argue that any regularity—such 
as stimulus pairing or common roles within contingencies—can 
serve as a contextual cue for relational responding (De Houwer and 
Hughes, 2020; Hughes et al., 2016).

In the following section, we detail specific experimental 
paradigms designed to validate and explore the capabilities enabled 
by these modeling extensions. 

5 Illustrative theoretical 
demonstrations

The following sections present conceptual scenarios illustrating 
logical derivations rather than empirical experiments. These 
demonstrations serve as theoretical proofs-of-concept, designed 
to illustrate how the proposed NARS extensions could enable 
Arbitrarily Applicable Relational Responding (AARR). Quantitative 
performance metrics (e.g., accuracy, F1-score) are not applicable 
in this purely theoretical context but remain important targets for 
future empirical evaluations.

Crucially, during all theoretical testing phases reported here, we 
presented only the goal-event (G! :|:) to trigger system choices. 
We never provided feedback or reinforcement (G. :|:) during 
these tests. Thus, our testing phases strictly followed standard 
Matching-to-Sample (MTS) procedures used in human relational 
research, ensuring genuine tests of generalization in the absence of 
feedback. Please see the Supplementary Material for details.

In alignment with standard Matching-to-Sample procedures 
used in the human studies we replicate, the spatial positions 
(left/right) of comparison stimuli were systematically varied and 
balanced across trials within each training and testing block. 
This procedure, which has also been employed consistently in 
our previous experimental research with NARS-based systems 
(Johansson et al., 2023; Johansson, 2024b), ensures that relational 
responding could not rely on positional cues.

During training phases, we propose providing feedback in the 
form of positive reinforcement (G. :|:) for correct responses and 
negative feedback (G. :|: {0.0 0.9}) for incorrect responses. 
In this conceptual framework, negative feedback would reduce 
the truth expectation of corresponding implications, theoretically 
decreasing the probability that NARS would repeat incorrect 
behavior. This approach allows NARS, at a theoretical level, to 
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adapt relational knowledge based on experience. However, empirical 
testing of this mechanism remains an essential direction for 
future research.

We adapted two paradigms from Relational Frame Theory (RFT) 
literature: the Stimulus Equivalence and Function Transfer task 
(Task 1; Figure 2) and the Opposition and Function Transformation 
task (Task 2; Figure 3) (Hayes et al., 1987; Roche et al., 2000). 
These tasks were modified to conceptually fit the capabilities 
of NARS. Importantly, these setups were not implemented 
empirically in OpenNARS for Applications (ONA) (Hammer 
and Lofthouse, 2020); rather, they are presented here as 
symbolic analyses intended to illustrate how NARS, when 
theoretically extended, could account for these forms of relational
reasoning.

5.1 Task 1: stimulus equivalence and 
transfer of function

The design for Task 1 was inspired by the methodology 
introduced by Hayes et al. (1987). In their original human study, 
participants underwent four phases: (1) training conditional 
discriminations, (2) testing for derived equivalence classes, (3) 
training discriminative stimulus functions on selected class 
members, and (4) testing whether discriminative functions 
transferred to other members of the same equivalence classes. 
Importantly, the original study did not account for participants’ 
prior relational learning history.

In the present study, we included pretraining to establish basic 
relational skills prior to the main experiments. The study consisted 
of four phases conducted sequentially. 

1. Pretraining of relational networks: This phase explicitly trained 
foundational relations such as symmetry (X1→ Y1 and Y1→
X1), and transitivity (X1→ Y1, Y1→ Z1, thus deriving X1→
Z1).

2. Training conditional discriminations: Using a Matching-to-
sample (MTS) procedure, conditional discriminations were 
trained within two separate stimulus networks: one comprising 
stimuli A1, B1, and C1, and another comprising A2, B2, and C2.

3. Function training: NARS was trained to execute two 
discriminative responses: ^clap when B1 was presented as a 
sample stimulus, and ^wave when B2 appeared as the sample.

4. Testing derived relations and transfer: In the final phase, 
derived relations within each ABC network were tested 
without feedback, specifically examining whether previously 
trained discriminative functions (^clap, ^wave) transferred 
to equivalent stimuli (C1, C2).

5.2 Task 2: opposition and transformation 
of function

Task 2 was inspired by the relational methodology of Roche et al. 
(2000). Roche and colleagues examined how derived relational 
responses and stimulus functions transformed contextually 
using “Same” and “Opposite” relational frames. Their human 

FIGURE 2
Task 1 of this paper. Stimulus equivalence and the transfer of function. 
The necessary pre-training (Phase 1) is excluded from the picture. 
Picture shows Phases 2–5 of the task. Underlined options indicate 
correct choices.
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FIGURE 3
Task 2 of this paper. AARR in accordance with opposition and the transformation of function. The necessary pre-training (Phase 1) is excluded from the 
picture. Picture shows Phases 2–5 of the task. Underlined options indicate correct choices.

participants initially learned operant associations between 
arbitrary stimuli and actions (e.g., waving, clapping), followed 
by relational pretraining to establish “Same” and “Opposite” 
frames. Through training and contextual cueing, participants 
showed contextually controlled derived responding (e.g., relationally 
responding “Same” or “Opposite” for specific stimuli) and function
transformation.

In the current study, we again included explicit pretraining 
phases to equip NARS with necessary relational skills. The 
experimental design comprised five phases. 

1. Pretraining of relational frames: This phase explicitly trained 
“SAME” and “OPPOSITE” relations, establishing mutual 
entailment (e.g., SAME X1↔ Y1, OPPOSITE X1↔ Y2) and 
combinatorial entailment (e.g., SAME X1→ Y1, SAME Y1→
Z1, thus deriving SAME X1→ Z1). Functional equivalence 

and transfers between symmetry and functional equivalence 
were also established.

2. Training relational networks: Using the Matching-to-sample 
(MTS) procedure, relational networks were trained, forming 
SAME (e.g., A1→ B1, A1→ C1) and OPPOSITE (A1→ B2, 
A1→ C2) relations. A second analogous network (A2-B2-C2) 
was similarly trained.

3. Function training: The system was trained to produce 
discriminative responses ^clap (for B1) and ^wave (for B2).

4. Testing derived relations and function transformations: In the 
final phase, derived relations within the SAME/OPPOSITE 
networks were tested without feedback, specifically examining 
whether trained functions transformed appropriately across 
relational contexts. Stimuli tested included combinations such 
as SAME/C1, SAME/C2, OPPOSITE/C1, and OPPOSITE/C2.
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6 Theoretical results and conceptual 
derivations

Given the detailed and extensive nature of the logical 
derivations underlying these theoretical demonstrations, the full 
derivations, explicit representations, and step-by-step processes 
are presented in the Supplementary Material. Here, we summarize 
the key outcomes of our theoretical demonstrations evaluating 
whether NARS, with the proposed extensions, can model Arbitrarily 
Applicable Relational Responding (AARR). The main text thus 
maintains readability by focusing on the key relational properties 
(mutual entailment, combinatorial entailment, and transformation 
of function) that conceptually emerge within the NARS framework. 

6.1 Stimulus equivalence and transfer of 
function

In the first experiment (illustrated in Figure 2), we explored 
whether NARS logic could model the formation of stimulus 
equivalence classes and demonstrate the transfer of stimulus 
functions across related stimuli. Briefly, NARS was theoretically 
exposed to matching-to-sample (MTS) procedures where 
conditional relations (A→ B and B→ C) were trained. Additionally, 
discriminative functions were assigned to specific stimuli within 
these relational networks (e.g., stimulus B1 triggering a ^clap
response, and B2 a ^wave response).

Key results included. 

• Mutual entailment: NARS successfully derived bidirectional 
relations (e.g., if trained A→ B, it inferred B→ A).
• Combinatorial entailment: The system correctly inferred 

indirect relations from explicitly trained ones (e.g., from A→ B
and B→ C, it inferred A→ C).
• Transformation of function: Critically, discriminative 

functions (e.g., ^clap and ^wave) initially trained on B-
stimuli were transferred without additional training to C-
stimuli through derived equivalence relations, demonstrating 
a successful relational transfer of stimulus functions.

Thus, NARS logic adequately models essential aspects 
of stimulus equivalence and function transfer, foundational 
within Relational Frame Theory (Figure 4; detailed 
derivations in Supplementary Material Section S1).

6.2 Opposition and transformation of 
function

In the second experiment (illustrated in Figure 3), we assessed 
whether NARS logic could model relational networks involving 
oppositional frames (“SAME” and “OPPOSITE”) and the contextual 
transformation of stimulus functions. Similar to the first task, 
MTS training was theoretically applied, but now relations 
involved both SAME and OPPOSITE contexts. After training, 
discriminative functions were again assigned to specific stimuli 
within these networks.

Key outcomes included. 

• Context-sensitive mutual entailment and combinatorial 
entailment: NARS derived relations consistent with 
trained SAME and OPPOSITE relational frames, correctly 
generalizing from trained examples.
• Transformation of function across oppositional relations: 

Trained discriminative functions (e.g., ^clap associated with 
stimulus B1, and ^wave with B2) were accurately transferred 
to related stimuli (C1 and C2), including appropriate reversal in 
functions when oppositional relational contexts were applied 
(e.g., if stimulus pairs were related as OPPOSITE, stimulus 
functions reversed accordingly).

These results illustrate that NARS logic effectively models 
complex, contextually controlled transformations of function, 
consistent with Relational Frame Theory (Figure 5; detailed 
derivations in Supplementary Material Section S2).

In summary, these theoretical demonstrations confirm that 
the extended NARS logic is sufficiently powerful and flexible to 
capture core relational learning phenomena—mutual entailment, 
combinatorial entailment, and transformation of function—essential 
for modeling human-like symbolic reasoning and cognition. 

7 Discussion

This study demonstrated that the Non-Axiomatic Reasoning 
System (NARS), extended with mechanisms inspired by Relational 
Frame Theory (RFT), can successfully model Arbitrarily Applicable 
Relational Responding (AARR), a cornerstone of human cognition. 
Through theoretical analysis and logical derivations, we showed 
how NARS’s adaptive logic can capture essential relational learning 
phenomena without pre-defined axioms or extensive data-driven 
training. This integration provides a computational framework 
aligning cognitive science principles with artificial intelligence 
(AI), underscoring the interdisciplinary potential of Machine 
Psychology (Johansson, 2024a; Johansson, 2024b) in developing 
flexible, context-sensitive reasoning systems. 

7.1 Summary of theoretical insights

We have shown theoretically that NARS can replicate critical 
aspects of human-like relational reasoning by modeling Arbitrarily 
Applicable Relational Responding. Specifically, we demonstrated that. 

• NARS exhibits mutual entailment, accurately deriving 
bidirectional relations from trained unidirectional 
associations.
• It demonstrates robust combinatorial entailment, integrating 

multiple trained relations to correctly infer novel relations.
• It successfully replicates transformation of stimulus function, 

whereby functions (such as specific responses like “clap” or 
“wave”) trained to one stimulus are systematically transferred 
to other related stimuli without additional direct training.

These findings illustrate that the cognitive mechanisms 
underlying AARR—once considered unique to biologically evolved 
cognition—can be conceptually instantiated within a symbolic 
reasoning system. NARS’s capability to learn from minimal, 
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FIGURE 4
The two networks trained as part of the first experiment of this paper. Solid arrows represent relations that are explicitly trained. Dashed arrows 
represent derived relations.

FIGURE 5
The network trained as part of the second experiment of this paper. S and O indicate SAME and OPPOSITE, respectively. Left panel shows relations that 
are explicitly trained. Right panel shows derived relations.

structured experiences and subsequently perform flexible relational 
inference provides a clear departure from contemporary AI models 
that primarily rely on large-scale statistical training. Instead, our 
approach emphasizes “small data” and logical consistency, aligning 
closely with the RFT premise that very few exemplars, combined 
with appropriate contextual cues, can generate powerful relational 
generalizations. 

7.2 Implications for artificial general 
intelligence

Our theoretical demonstration of AARR within NARS offers 
significant implications for AGI research. First, it illustrates 
that sophisticated relational reasoning is achievable through 
adaptive symbolic systems without relying on extensive datasets, 
reinforcing structured symbolic learning as a viable path toward 
AGI. Second, our approach establishes learning psychology 
principles—particularly those articulated by RFT—as functional 
benchmarks for evaluating AGI systems’ relational generalization 

capabilities. Third, the flexibility of NARS in dynamically 
constructing relational structures under uncertainty makes it 
suitable for adaptive, real-world contexts. Lastly, integrating 
adaptive logic with relational reasoning supports broad applications, 
including robotics and human-AI interaction, where context-
sensitive symbolic manipulation is essential for achieving human-
like understanding. 

7.3 Limitations and future research 
directions

This theoretical study presents a conceptual framework and 
logical derivations rather than empirical validation. As such, 
the proposed extensions to NARS have not yet been practically 
implemented or empirically tested within an actual NARS-
based AI system. Quantitative evaluations, such as measuring 
accuracy, precision, recall, or F1-score of learned relational 
structures, are therefore not presented in this study. Empirical 
validation—including quantitative performance assessments and 
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comparative baseline evaluations with established methods such as 
Inductive Logic Programming (ILP), Statistical Relational Learning 
(SRL), and Neural Logic Machines—remains essential future work.

Furthermore, our theoretical demonstrations employed binary 
(two-choice) comparisons rather than multi-choice comparison 
tasks typically found in human MTS studies, thereby simplifying 
the generalization and discrimination demands. Future empirical 
validations should implement multi-choice comparison setups to 
systematically assess the scalability and generalization of relational 
responding within the NARS framework.

Several other avenues remain open for further exploration. 
One immediate direction involves expanding the relational frames 
modeled in NARS beyond equivalence and opposition, including 
comparative, hierarchical, and deictic relations, to comprehensively 
evaluate the system’s generalization capabilities. Another promising 
direction involves scaling relational networks by increasing 
stimulus complexity, testing NARS’s resource management and 
inference flexibility. Additionally, integrating perceptual inputs 
with symbolic reasoning represents a crucial step toward practical, 
embodied applications, enabling NARS to generate and reason about 
relations directly from sensory data in dynamic environments. 
Lastly, further refining and automating the relational learning 
mechanisms within NARS, alongside comparisons of NARS-derived 
relational learning curves with empirical human data, could guide 
targeted enhancements and deepen our understanding of relational 
cognition in both artificial and biological systems. 

8 Conclusion

We presented a theoretical framework demonstrating that 
NARS, enhanced by relational learning principles derived from 
Relational Frame Theory, can successfully model Arbitrarily 
Applicable Relational Responding—a foundational component of 
human cognition. This provides a concrete method for developing 
symbolic AI systems capable of dynamic, context-sensitive relational 
reasoning similar to that observed in humans. These findings 
represent a meaningful step toward bridging cognitive science 
and artificial intelligence, emphasizing that principles identified 
through human learning research can inform AI systems that 
“think” more like humans—not necessarily in brain-like structures 
but in the dynamic and contextually controlled use of symbolic 
knowledge. Continued interdisciplinary research in this direction 
holds considerable promise for developing flexible, adaptive, and 
ultimately more human-like artificial intelligence.
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