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Evidence suggests that socioeconomic position (SEP) may shape the gut microbiota
(GM), representing a mechanism through which social and environmental factors may
drive health inequalities, yet no systematic review has examined this association. In this
narrative systematic review, we searched PubMed, Web of Science, and Scopus up to 30 KEYWORDS
November 2024 for observational studies examining associations between measures of ~ Microbiome; microbiota;
SEP and GM diversity, composition, or function in participants of any age, ethnicity, or microbiology; gut
location. We identified 1,479 unique studies, of which 26 met the inclusion criteria for ~ Microbiome; social

X : .. . determinants of health;
this review. Associations were observed between SEP indicators and GM features, socioeconomic position;
including alpha (a) and beta (B8) diversity, taxonomic composition, and functional socioeconomic factors;,
pathways. Notably, socioeconomic patterns in a-diversity differed by context, with public health
greater diversity observed in advantaged groups in high-income countries (HICs) but
in disadvantaged groups in low- and middle-income countries (LMICs). Differences in
B-diversity suggest that advantaged and disadvantaged groups have distinct GM
profiles. Furthermore, considerable heterogeneity was evident across studies, particu-
larly in sampling, sequencing, and analytical methods. Overall, socioeconomic-related
differences in the GM are evident globally, highlighting the microbiota as a potential
target for interventions aimed at reducing health disparities. Further research employ-
ing larger and more diverse cohorts, longitudinal designs, metagenomic sequencing
approaches, and comprehensive measurement and adjustment of key covariates is
needed to deepen understanding of this relationship.

Background

The gut microbiome (GM)—a complex ecosystem of trillions of microorganisms, including bacteria,
viruses, fungi, and archaeca—influences many aspects of human physiology via neural, hormonal and
immunological pathways. The composition of the GM changes over the lifespan, with recent research
emphasising that environmental factors often exert a stronger influence on microbial composition than
genetics."”” Given that the GM is greatly influenced by environmental factors, it has the potential to serve
as a mechanism through which social, political, and economic conditions may contribute to health
disparities.>*

Socioeconomic position (SEP), a person’s rank in the social hierarchy shaped by factors like education,
occupation, and income, is one of the most significant social determinants of health (SDoH)”. There is
robust evidence for a socioeconomic gradient in health, whereby individuals from disadvantaged SEP
experience poorer health outcomes. SEP shapes a range of interconnected factors that can get “under the
skin” to influence human biology, with emerging research identifying the GM as a potential mediator in
the relationship between SEP and health.® SEP has the potential to influence the GM through multiple
interconnected pathways, including psychosocial stressors, social networks, health behaviours, early-life
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exposures, and characteristics of the built environment.””® The human microbiome can be viewed as a
biological reflection of the SDoH, encapsulating both current and early-life socio-environmental condi-
tions, as evidenced by shifts in GM composition following migration from non-industrialised to indus-
trialised environments.”""

The GM changes across the life course due to developmental, dietary, and environmental factors. During the
“first 1000 days” after birth, rapid colonisation occurs—a critical period for immune and metabolic develop-
ment shaped by delivery mode, breastfeeding, and solid food introduction, with disruptions potentially causing
long-term health consequences.'' The infant microbiota stabilises into an adult-like composition around age
three. Whether a distinct paediatric microbiome exists beyond infancy remains unclear, with conflicting
evidence on taxonomic differences between children and adults.">"> The adult microbiome is relatively stable
with an established functional core, though susceptible to disruption by dietary changes, infections, and
antibiotics.'" In older age, reduced physical activity and immune dysregulation associate with dysbiosis,
including pathogen overgrowth and reduced a-diversity.'* SEP measurement also varies by life stage: infant
and childhood studies capture household or parental SEP, while adult studies assess individual-level measures
(e.g., education, occupation, and income), representing fundamentally different socioeconomic dimensions that
do not fully align with biological developmental stages.

To our knowledge, no systematic review has yet synthesised the evidence on the association between
SEP and the GM, a research area that has gained momentum in the past five years due to advances in
sequencing technologies and bioinformatic approaches. This systematic review provides a comprehensive
overview of the growing global literature on the relationship between individual- and neighbourhood-level
SEP and GM features, including diversity, composition, and function. We included studies from both
high-income (HICs) and low- and middle-income countries (LMICs), as SEP is experienced differently
across these contexts, and research shows notable differences in GM between them.!® Given that the GM
differs across age and geography, assessing diverse populations is essential to understanding the functional
and health implications of socioeconomic-driven changes in microbiome composition.

Methods

This systematic review adheres to the relevant criteria of the PRISMA statement'® and was registered on
PROSPERO (CRD42024622112).

Search strategy and selection criteria

We systematically searched PubMed, Web of Science, and Scopus for articles from database inception to
30 November 2024. Only peer-reviewed, full-text studies in English were eligible. Three main search terms
were used: “microbiota”, “socioeconomic”, and “sequencing”, including related MeSH terms and key-
words. Additional studies were identified via references of relevant articles.

Inclusion criteria for articles were: (1) observational studies (cross-sectional, case-control, cohort); (2)
participants of any age, location, or ethnicity; (3) amplicon (e.g., 16S rRNA) or metagenomic sequencing of
faecal samples; (4) at least one socioeconomic factor as exposure (e.g., income, wealth, occupation,
education, neighbourhood-level SEP); and (5) GM composition and/or function as outcome (taxonomic
composition, a/p-diversity, functional pathways, or enterotypes). A visual overview of the GM outcomes

examined is provided in Figure S1 (supplementary materials).

Screening and data extraction

Titles and abstracts were screened using Rayyan.'” The primary reviewer (JR) screened all studies;
secondary reviewers (PVW, MK) each independently screened a randomly selected 10% subset. Studies
meeting criteria or with unclear eligibility proceeded to full-text screening, conducted by JR (100%) and
PVW/MK (10% each, randomly selected). Conflicts were resolved by discussion or a third reviewer.
Reasons for exclusion at the full-text stage were documented. JR extracted data from included studies.
Extracted data from articles included: title; authors; country; country income classification (HIC/LMIC);
publication year; study design; sample size; sample characteristics; sample collection/processing details
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(e.g., storage, preservation, DNA extraction); socioeconomic variables; microbiota assessment methods;
bioinformatics pipelines; GM characterisation methods (a/P-diversity, taxa, pathways); associations
between SEP and microbiome (including direction of association); statistical methods; confounders
measured; and raw data availability.

Assessment of methodological quality

Study quality was assessed using the National Heart, Lung, and Blood Institute’s Study Quality Assessment
Tools."® JR assessed all studies; PVW and MK each independently assessed 25% of studies (randomly
selected) to verify consistency in quality ratings. As the tools lack predefined cutoffs, studies were
holistically rated as “Good” (minimal bias, robust methods), “Fair” (some limitations not compromising
core findings), or “Poor” (substantial flaws limiting validity). Age, sex, and BMI were considered key
confounders given their associations with both SEP and microbiome composition. The complete quality
assessment is provided in the supplementary materials (Table S4 and S5).

Results

Our search yielded a total of 1479 potentially relevant studies (after 216 duplicates were removed). After
initial screening, 40 studies were selected for full-text review (Figure 1), of which 26 studies met criteria for
inclusion in the systematic review (Table 1).

All included studies were cross-sectional; one study collected infant GM samples at two time points but
examined SEP-microbiome associations cross-sectionally rather than longitudinally.** 19 studies were in HICs
and seven in LMICs. Geographically, 11 studies were from the USA, five in Europe, five in Asia, two in Africa,
and three across North America and New Zealand (Table 1). Regarding age distribution, 12 studies examined
adults (18+; 8 HICs, 4 LMICs), 10 examined children aged 3—13 (8 HICs, 2 LMICs), and 4 examined infants

[ Identification of studies via datab and regi: ] [ Identification of studies via other methods ]
—
5 Records identified from:
= _ 3 Records removed before
E gﬁﬁﬁ:jii (:n 6_723')695) »| screening: Records identified from:
s Web of Science (n = 745) Duplicate records (n = 216) Citation searching (n = 9).
§ Scopus (n = 274)
!
—
Records screened »| Records excluded
(n=1,479) (n=1,447)
Reports sought for retrieval > Reports not retrieved Reports sought for retrieval | Reports not retrieved
2 (n=32) (n=1) (n=9) "l (n=NA)
c
@
: ! !
3
(2]
Reports excluded:
Reports assessed for eligibility o pSEP not assessed (n = 6) Reports assessed for eligibility N
(n=31) Non-faecal sample (n = 1) (n=9) "| Reports excluded:
SEP confounded with Poor methodological quality
ethnicity (n = 1) (n=1)
Duplicate dataset (n = 2) SEP not assessed (n = 2)
Outcome is not gut
microbiota (n = 1)

v

Studies included in review
(n=26)

[ Included ] [

Figure 1. PRISMA flowchart depicting the process used to determine study inclusion. We systematically searched
PubMed, Web of Science, and Scopus for articles from database inception to 30 November 2024. Only peer-reviewed,
full-text studies in English were eligible. Three main search terms were used: “microbiota”, “socioeconomic”, and
“sequencing”, including related MeSH terms and keywords. Additional studies were identified via references of relevant
articles. A total of 26 studies met the inclusion criteria and were included in the review.
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aged 0-2 (3 HICs, 1 LMIC). One study included participants aged 8-84 but was classified as an adult study
because children comprised only 6% of the sample'. Two studies were from the same research group and based
on the same population, with some possible participant overlap.”>*> Sample sizes ranged from 41 to 8,202
participants.

22 studies used 16S rRNA amplicon sequencing for GM analysis; one also used shotgun metage-
nomics.”* Four studies employed shotgun metagenomic sequencing."®***> All studies reported at least
partial specimen collection, storage, and DNA extraction methods, though many lacked details on time
from collection to freezing. Of the 22 studies using 16S rRNA sequencing, 21 reported the taxonomic
reference database and 17 specified the database version. Among these 21 studies, nine employed amplicon
sequence variants (ASVs) for taxonomic classification while 13 used operational taxonomic units (OTUs).
Raw sequencing data were publicly available for 16 studies, while ten studies did not report accession
numbers or make their data publicly accessible. All studies reported sequencing methods and bioinfor-
matic pipelines; further details are provided in the supplementary materials (Table S2).

SEP was measured by various individual- and neighbourhood-level indicators, with 14 studies assessing
multiple SEP measures. The most common individual-level SEP measures were education and income.
Education was typically assessed as the highest qualification achieved or years of schooling, while income
was reported at the household level in seven studies and individual level in three."*>*” Three LMIC studies
used asset-based SEP indices,®*%>® including household items, water access, and flooring materials, though
weighting methods were not reported. Seven studies assessed neighbourhood-level SEP (Table 2). SEP
measurement varied by life stage, with infant and child studies predominantly using parental education,
household income, and school-level measures, while adult studies primarily employed individual income,
educational attainment, neighbourhood deprivation indices, and occupational measures such as the
Occupational Socioeconomic Index.

Quality assessment classified five studies as good, 17 as fair, and four as poor. Poor-rated studies lacked
clearly stated research questions, defined populations, valid SEP measures, and any confounder adjust-
ment. Fair-rated studies met most quality criteria but inconsistently adjusted for key confounders. Good-
rated studies demonstrated clear population definitions, larger samples (700-2,000 participants), valid and
diverse SEP measures, robust methods, and comprehensive confounder adjustment.

Across studies, results were often framed primarily in terms of statistical significance, sometimes
without providing exact p-values or effect size estimates. Significance thresholds differed across studies,
with most using FDR-adjusted q < 0.05, some q < 0.01, and others using unadjusted p < 0.05.

In the reviewed literature, 24 studies examined a-diversity, with a variety of metrics being used. Different a-
diversity measures capture distinct aspects of diversity, such as richness, evenness, or phylogenetic relationships.
15 studies reported a significant association between SEP and GM «a-diversity, however the direction of

Table 2. Summary of the neighbourhood-level SEP exposures examined in the reviewed literature.

Neighbourhood-level SEP Description
Neighbourhood income’ Average neighbourhood income using Statistics Netherlands (2015).
IMD (Index of Multiple Deprivation)® Measure of relative deprivation in England for small areas, combining 37 indicators grouped

into seven domains: income, employment, education, health, crime, barriers to housing and
services, and living environment.

SDI (Socioeconomic Deprivation Index)®' Composite measure of area-level deprivation based on seven measures from the American

Community Survey (ACS): poverty, education, single-parent households, rented and
overcrowded housing, car access, and unemployment among adults under 65.
NZDep2013 (New Zealand Deprivation Deprivation score for each meshblock, a geographic unit defined by Statistics New Zealand
Index 2013)% with a median population of approximately 81 people in 2013. Combines nine variables
across eight domains: internet access, income, employment, education, home ownership,
family structure, overcrowding, and car access.
Measure of economic conditions using six socioeconomic factors from the 2014 5-Year ACS
data. Includes: unemployment, dependency, educational attainment, per capita income,
crowded housing, and poverty.
Neighbourhood SEP score>® Constructed by the author using neighbourhood median household income, educational
attainment (percentage of adults over 25 with a high school diploma), employment
(percentage of adults seeking work), and median owner-occupied home value.

Neighbourhood SEP score?' Constructed by the author using the same variables as Miller et al.>® but includes additional
variables: percentage of households receiving public assistance, households below the
federal poverty threshold, and housing conditions (median owner-occupied home value and
percentage of vacant households).

EHI (Economic Hardship Index)*°
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association varied (Figure 2), with six studies reporting a positive association and eight reporting a negative
association.

Negative associations—where disadvantaged SEP linked to higher a-diversity—were mostly from
LMICs.>'*?%**38 Although conducted in Israel, a HIC, Lapidot et al.”>*> focused on the Arab minority,
who are socioeconomically disadvantaged compared to the Jewish majority. Other studies from HICs that
found negative associations included two US ethnically diverse cohorts.”®*' and one Australian pre-term
infant study.?” Positive associations—where disadvantaged SEP linked to lower a-diversity—were only
found in HICs, mainly the US and Europe."***?%***® Most involved predominantly participants identi-
fying as “White”; only one had a more ethnically diverse but extremely small sample.*

Some studies reported specific SEP-a-diversity associations. Galley et al.** found that in high-income
households, children of obese mothers had higher GM «a-diversity than those of non-obese mothers,
however this was not observed in low-income households. Kwak et al.>' observed a positive association
between educational attainment and a-diversity, but no association with neighbourhood income or
deprivation. Mulder et al.*® found that among multiple early life stress domains, only socioeconomic
stress and low maternal education were associated with GM diversity, suggesting that SEP may signifi-
cantly influence the early-life microbiome.

Across the reviewed literature, 23 studies examined f-diversity, with a range of metrics being used. The
most commonly used measure was Bray-Curtis dissimilarity, however many studies employed multiple
measures. 17 studies found significant associations between SEP and f-diversity, six found no such
association, and three did not assess S-diversity (Figure 3). Two studies reported specific SEP-f-
diversity correlations. Zuniga-Chaves et al.** found an association only when comparing the top 15%
most disadvantaged (85th percentile EHI) to the rest of the sample, with no difference at the 50th
percentile split suggesting non-linear associations. Similarly to a-diversity, Galley et al.** observed that
B-diversity differed significantly between children of obese and non-obese mothers only within the high-
income group.

19 studies reported differences in taxonomic composition, identifying 358 unique taxa significantly
associated with SEP, predominantly at the genus level. Of these, 61 taxa showed consistent associations with
SEP across two or more studies. Associations spanned five phyla: Bacteroidetes, Firmicutes, Actinobacteria,
Proteobacteria, and Verrucomicrobia, with Firmicutes being the most frequently reported. At the phylum
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Figure 2. Summary of a-diversity results coloured by the type of metric used. Blue: richness and evenness; green:
phylogenetic diversity; red: richness only; yellow: all metric types. Levin et al.>* from a HIC (USA) reported a significant
association, but the direction was unspecified; Galley et al.** was excluded from Figure 2 because the observed
association between SEP and a-diversity was dependent on obesity status.
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Figure 3. Geographic distribution of studies investigating the association between SEP and GM diversity. Galley et al.**

was excluded from Figure 3 because the observed associations between SEP and diversity were dependent on obesity
status. Symbol colours represent a-diversity associations (blue: significantly positive; red: significantly negative; yellow:
significant but unspecified direction; grey: non-significant; white: not examined). Symbol shapes indicate B-diversity
associations (circle: significant; triangle: non-significant; diamond: not examined). Grey-shaded countries had at least one
study reporting a significant association. Symbols are placed at country centroids when specific locations were not
provided (e.g., USA, China).

level, associations with SEP were typically evenly distributed between positive and negative effects across both
HICs and LMICs (Figure 3A, supplementary materials).

At the family level, Lachnospiraceae, Ruminococcaceae, and Prevotellaceae were most frequently
associated with SEP (Figure 4). Prevotellaceae showed predominantly negative associations in both HICs
and LMICs, while Ruminococcaceae was predominantly positively associated in HICs with mixed patterns in
LMICs. Lachnospiraceae exhibited mixed associations in both populations, though slightly favouring positive
associations in HICs. Several families exhibited population-specific patterns: Bifidobacteriaceae showed mixed
associations in HICs but exclusively positive associations in LMICs, while Acidaminococcaceae was negatively
associated in HICs but more positively in LMICs. Bacteroidaceae showed consistent positive associations
across both populations, with only a single negative association reported in LMICs.

21 genera were associated with SEP in two or more studies, with Bacteroides and Prevotella most
frequently reported (eight and thirteen studies, respectively; Figure 5). Bacteroides showed exclusively
positive associations across both HICs and LMICs, indicating a consistent pattern for this genus, while
Prevotella was predominantly associated with disadvantaged SEP in both settings. Several genera exhibited
population-specific patterns. Bifidobacterium was exclusively positively associated with advantaged SEP in
LMICs but showed predominantly negative associations in HICs (two of three studies). Faecalibacterium
was consistently positively associated in HICs (4 studies), with only one LMIC study reporting a negative
association. Some taxa were population-specific: Frisingicoccus and Acidaminococcus were reported only
in HICs, whereas Phascolarctobacterium appeared exclusively in LMICs.

Nine studies reported associations between SEP and species-level taxa,"®%>*?72123440 yith Prevotella
copri most frequently identified, followed by Faecalibacterium prausnitzii and Bacteroides fragilis. P.
copri was consistently associated with disadvantaged SEP across five studies in both HICs and LMICs. In
contrast, B. fragilis was associated with advantaged SEP in LMICs (three studies), while F. prausnitzii
showed mixed patterns, with one association with disadvantaged SEP in LMICs and exclusively positive
associations in HICs (three studies). Only one study in this review examined strain-level differences by SEP
in an LMIC, finding that wealthier individuals harboured distinct strains of Eubacterium rectale compared
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Figure 4. Family-level taxonomic associations with SEP across HICs and LMICs. Blue: higher abundance in advantaged
SEP; red: higher in disadvantaged SEP. Bars represent the number of studies reporting associations for each taxon. Only
taxa with =2 studies reporting the same direction of association (positive or negative) in either population are shown.

to those with disadvantaged SEP.® SEP was the strongest predictor of GM variation among the factors
examined—highlighting the importance of investigating strain-level taxonomic differences by SEP, espe-
cially given that strains within the same species can differ in functional activity.

Cross-life stage comparisons are limited by the predominance of studies conducted in adults and in HICs, as
well as by the scarcity of replicated findings in younger age groups; only five taxa in children and one taxon in
infants showed consistent directional associations across multiple studies. Despite these limitations, age-stratified
analyses reinforce the overall findings of higher Prevotella abundance in disadvantaged SEP groups and higher
Bacteroides (and the related Parabacteroides) abundance in advantaged SEP groups across the life stages
(Figure 6). However, we observe some life stage-specific patterns. Bifidobacterium showed an association with
disadvantaged SEP in infants** but predominantly with advantaged SEP in children and adults.>'**”** Similarly,
Clostridium was associated with advantaged SEP in infants and children,*>* whereas in adult studies,
three studies reported associations with disadvantaged SEP."**’ In adults, strong SEP associations emerge across
multiple taxa beyond Prevotella and Bacteroides, including Blautia, Streptococcus, Clostridium,
Eubacterium, and Akkermansia. Furthermore, age-stratified analysis reveals that significantly positive SEP-
a-diversity associations were predominantly found in adult studies (supplementary Figure 5), whereas signifi-
cantly negative associations were observed consistently across all life stages. Additional figures illustrating SEP-
microbiome associations across life stages and at all taxonomic levels are provided in the supplementary materials
(Figures 2A—4E).

Table 3 summarises the functional and health implications of the most frequently reported SEP-associated
taxa, with SCFA production emerging as a predominant function. SCFAs, produced by anaerobic fermentation
of indigestible polysaccharides like fibre and starch, exhibit anti-inflammatory and antimicrobial effects,
support gut integrity, and play a major role in the gut-brain axis.*® Acetate, propionate, and butyrate—the
primary SCFAs produced by GM*' —play key roles in health, with Bifidobacterium spp., Faecalibacterium
prausnitzii, and Bacteroides fragilis identified as main producers,”” all found to be associated with SEP in this
review.
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Figure 5. Genus-level taxonomic associations with SEP across HICs and LMICs. Blue: higher abundance in advantaged
SEP; red: higher in disadvantaged SEP. Bars represent the number of studies reporting associations for each taxon. Only
taxa with =2 studies reporting the same direction of association (positive or negative) in either population are shown.

Eight studies conducted functional analyses, using tools such as PICRUSt2 for 16S rRNA data and
HUMANN or ShotMAP for shotgun metagenomics; six reported associations between SEP and metabolic
pathways."*2%212>3% Collectively, these studies identified 182 SEP-associated pathways, with five showing
consistent associations across more than one study (Table 4), illustrating how socioeconomic disparities
may influence metabolic processes relevant to host health. Three studies examined SEP-functional pathway
associations in children****?? and three in adults."®' In children, no pathways showed replicated
associations across studies. Across all life stages, most identified pathways were associated with advantaged
SEP, with only one exception: a TCA cycle pathway (incomplete reductive citrate cycle, acetyl-CoA to
oxoglutarate) was associated with disadvantaged SEP in two studies.

Discussion

This systematic review provides a comprehensive overview of studies examining the relationship between
GM and individual- and neighbourhood-level SEP across diverse populations and ages. Individuals from
disadvantaged SEP groups consistently exhibited distinct microbiomes compared to those from advan-
taged backgrounds as observed by significant associations between SEP and f3-diversity. Studies reporting
no association had small sample sizes (<200), suggesting insufficient statistical power to detect such
differences and underscoring the need for larger cohorts to examine SEP-related microbiome variation.

Alpha diversity: Geographic variation and the epidemiological transition

Defining a “healthy” GM is challenging due to substantial intra-individual variability; however, high
microbial diversity combined with the presence and abundance of specific beneficial taxa and functional
pathways are generally seen as indicators of good gut health.®® A-diversity showed contrasting patterns by
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Figure 6. Genus-level taxonomic associations with SEP across life stages. All taxa associated with SEP in any age group are
displayed. Blue: higher abundance in advantaged SEP; red: higher in disadvantaged SEP. Bars represent the number of studies
reporting associations for each taxon. The infant panel is predominantly represented by findings from a single HIC study,**
which reported multiple taxonomic associations, whereas the other two infant studies reported fewer associations.

geography: disadvantaged SEP was associated with increased diversity in LMICs but decreased diversity in
HICs (Figure 3). These opposing findings highlight the complexity of SEP-a-diversity relationships, which
are influenced by diet, BMI, ethnicity, and geography—factors that many studies in this review did not
fully account for.

Geography notably shapes gut microbial composition, with consistent patterns observed in HICs' but distinct
profiles in LMICs and populations undergoing urbanisation.’” In HICs, the SEP-a-diversity relationship
reinforces the link between advantaged SEP and better health outcomes,® with higher a-diversity associated
with better health and viewed as a marker of a more stable, resilient gut ecosystem. Lower a-diversity is generally
recognised as a hallmark of dysbiosis, a disrupted microbiome state often linked to disease development.®’
However, this relationship between SEP and «-diversity varied in LMICs, where disadvantaged SEP was
associated with higher a-diversity. Most microbiome research focuses on HICs, with limited representation of
LMICs and ethnic minorities, as evidenced by this review.

This review’s a-diversity findings align with the epidemiological transition, which describes the shift
from mortality being predominantly caused by infectious diseases to chronic, non-communicable condi-
tions as societies undergo economic development.> From this perspective, health disparities arise as
lower-income and ethnic minority groups often undergo this shift more slowly than advantaged SEP
groups. In developing countries, industrialisation drives dietary changes—such as higher intake of
processed, high-fat foods—and reduced physical activity, leading to increased BMI and obesity, which
are linked to lower gut a-diversity.®> Non-industrialised populations show higher gut microbial diversity
than industrialised populations, suggesting industrialisation is driving global microbial loss.*”’

The opposing SEP-diversity associations observed in HICs and LMICs highlight that SEP operates
through context-specific mechanisms. This challenges the notion of universal microbiome-based health
interventions and suggests that strategies to address SEP-related microbiome disparities must be tailored
to population-specific contexts.
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Table 3. Frequently reported SEP-associated microbial taxa (genera [g] and species [s]), including direction of
association, key functions, and known links to health and disease.

Associations with health and

Taxon Association with SEP Functional implications disease References
Bacteroides (g) Advantaged SEP in HICs ~ Core member of GM; produces Reduced in patients with CD, [48,49]
B. ovatus (s) and LMICs acetate, propionate, butyrate, and colitis, 1BD.
B. uniformis (s) succinate; involved in protein and
B. fragilis (s) glycan metabolism; anti-

inflammatory effects; diverse
antimicrobial resistance

mechanisms.
Prevotella (g) Predominantly Metabolises carbohydrates and Associated with inflammatory [50]
P. copri (s) disadvantaged SEP in mucin; produces propionate; P. conditions; high abundance
HICs and LMICs copri is the most dominant species  linked to rheumatoid arthritis;
in the genus. reduced in obesity.
Eubacterium (g) Advantaged SEP in HICs,  Produces butyrate and propionate; Reduced in IBD; associated with [51]
Disadvantaged SEP in species can carry out bile acid and obesity; considered a target for
LMICs cholesterol transformations in microbial therapeutics.
the gut.
Alistipes (g) Advantaged SEP in LMICs Produces acetate; involved in Protective in liver fibrosis, colitis, [52]
inflammation modulation and and cardiovascular disease;
potential role in the gut-brain axis.  pathogenic in CC and depression.
Parabacteroides (g) Advantaged SEP in HICs ~ Produces acetate, propionate, and Found to be depleted in obesity, [53]
butyrate; wide carbohydrate metabolic syndrome, and IBD.

utilisation abilities; P. distasonis
exhibits notable antibiotic

resistance.
Bifidobacterium (g) Advantaged SEP in LMICs Produces acetate and lactic acid; one Regarded as a key bacterium with [54]
of the earliest gut colonisers; health-promoting effects
involved in metabolic regulation, throughout life; certain strains are
immune modulation, and established probiotics.
pathogen protection.

Faecalibacterium (g) Predominantly Produces butyrate and anti- Depleted in various gut diseases; [55]
Faecalibacterium advantaged SEP in HICs  inflammatory molecules (e.g., negatively associated with
prausnitzii (s) and LMICs shikimic and salicylic acids); pathogenesis of CD, IBD, and

supports metabolic and immune prostate cancer; potential
regulation, and colon protection. probiotic candidate.

Akkermansia (g) Predominantly Mucin degradation; production of Associated with reduced [56]
Akkermansia advantaged SEP in HICs acetate and propionate; maintains inflammation; protective against
muciniphila (s) intestinal mucus integrity. metabolic, neurological, and

infectious diseases; reduced
abundance in obesity, type 2
diabetes, IBD.

Clostridium (g) Mixed associations in HICs  Core microbiome genus; produces Linked to obesity; decreased in CD;  [57-59]

and predominantly butyrate; probiotic role via C. difficile can cause infections
advantaged SEP in supporting epithelial energy, gut and gut dysbiosis.
LMICs barrier integrity, and immune

interaction. Genus contains both
beneficial (C. butyricum) and
pathogenic species (C. difficile).

HICs = high-income countries; LMICs = low- and middle-income countries; CD = Crohn'’s disease; IBD = inflammatory bowel disease; CC =
colorectal cancer; IBS = irritable bowel syndrome.

Life-stage patterns in SEP-microbiome associations

Beyond geography, country income classification, and ethnicity, age is a critical moderator of
SEP-microbiome associations, given substantial life-course changes in the gut microbiome and age-
related differences in how SEP is measured. SEP also operates through distinct mechanisms across the
life course, shaping delivery mode, feeding practices, and environmental exposures in early life, and
reflecting cumulative exposures alongside current living conditions in adulthood. Whether early-life SEP
establishes enduring microbiome trajectories or can be modified by later-life SEP remains unclear,
highlighting the need for longitudinal life-course studies.

Some studies observed age-dependent associations for specific taxa. Clostridium, for instance, was
predominantly associated with advantaged SEP in infant and child studies but with disadvantaged SEP in
adult studies. Interpretation at the genus level is challenging because Clostridium encompasses both
beneficial species and pathogens,”” and the species linked to SEP likely differ across age groups.
Associations with advantaged SEP in early life may reflect beneficial, commensal species promoted by
breastfeeding and dietary diversity, whereas associations with disadvantaged SEP in adulthood may
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Table 4. Summary of microbial pathways associated with SEP, including direction of association, pathway functions, and

potential health implications.

Microbial pathway Association with SEP Function and association with health Potential health implications  References
TCA cycle IV Disadvantaged SEP in HICs  Oxidises acetyl-CoA from carbs, fats, May reflect dietary patterns -
(2-oxoglutarate and proteins to produce NADH and linked to disadvantaged SEP
decarboxylase) FADH, for ATP; this variant converts in HICs and less efficient
2-oxoglutarate to succinate through energy metabolism.
succinate semialdehyde, bypassing ATP
synthesis, maintaining biosynthetic
precursor and electron carrier
production even at high ATP levels.
Fucose degradation Advantaged SEP in HIC Fucose, a key gut sugar, is released by May indicate increased SCFA [41]
and LMIC bacterial fucoidases (e.g., Bacteroides production, reflecting a
spp.) and metabolised into SCFAs used diverse, health-promoting
by microbes; supports host-microbiome  microbiota.
interactions.
Polyamine Advantaged SEP in HIC Polyamines regulate gene expression, cell May indicate a health- [42]
biosynthesis | and LMIC growth, stress response, and immune beneficial microbiota,
modulation, including reducing potentially linked to
inflammation and supporting gut probiotic-rich diets.
barrier; probiotics can raise polyamine
levels, linked to increased lifespan
in mice.
Purine ribonucleosides  Advantaged SEP in HIC Breaks down purine nucleosides into uric  May suggest protective effects [43]
degradation and LMIC acid; gut bacteria use purines as carbon/  via reduced uric acid levels.
energy sources; higher abundance of
purine-degrading bacteria linked to
lower circulating uric acid; elevated uric
acid is linked to noncommunicable
diseases such as atherosclerosis.
L-lysine biosynthesis | ~ Advantaged SEP in 2 Produces essential amino acid L-lysine May support anti- [44,45]

and |l studies (HIC and LMIC);
disadvantaged SEP in 1

study (HIC)

from aspartate, important for growth,
bone development, and calcium
absorption; poly-L-lysine has been found
to exert anti-inflammatory effects in
the gut.

inflammatory effects.

HICs = high-income countries; LMICs = low- and middle-income countries; SCFAs = short-chain fatty acids.

indicate opportunistic species favoured by poor diet quality, chronic stress, and adverse environmental
conditions. This finding also highlights the limitations of genus-level taxonomic resolution for under-
standing SEP-microbiome relationships. Without species- or strain-level identification, such as through
shotgun metagenomics, it is unclear whether observed findings reflect biologically meaningful shifts or
simply changes in the species across life stages. Bifidobacterium showed the opposite pattern, with one
infant study reporting higher abundance in individuals with disadvantaged SEP. This finding is
unexpected, as many Bifidobacterium species are established early in life through vaginal delivery and
breastfeeding.'’ The predominant association of Bifidobacterium with advantaged SEP in child and adult
studies may reflect greater dietary diversity and access to prebiotic foods; however, inconsistency within
age groups prevents conclusive interpretation.

Pathways linking SEP to the microbiome and health

SEP and health are theoretically linked through material, psychosocial, and behavioural pathways.>’
Material factors encompass environmental conditions such as sanitation, crowding, water access, animal
exposure, and pollution; psychosocial factors include chronic stress, income insecurity, social support, and
discrimination; and behavioural factors include diet, breastfeeding, physical activity, smoking, alcohol use,
and healthcare access. Applying this framework to SEP-microbiome associations helps contextualise our
findings and illustrates how these pathways shape microbiome composition across settings and life stages,
with downstream effects on immune, metabolic, and inflammatory processes.

Disadvantaged SEP differs greatly between HICs and LMICs; in LMICs, it often involves poor access to
clean water, inadequate sanitation, and increased animal exposure, leading to greater microbial and
parasitic contact that may elevate a-diversity.” Household crowding, an indicator of disadvantage and
stress, is linked to higher morbidity and mortality.** It increases interpersonal contact, potentially
promoting microbial exchange and raising a-diversity through both beneficial and harmful bacteria.
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Zuniga-Chaves et al.*’ reported that greater economic hardship was associated with increased colonisation

and diversity of multidrug-resistant organisms, potentially reflecting reduced microbiome resilience in
disadvantaged populations. However, gaps remain in understanding how household crowding influences
horizontal microbiota transmission and whether associations are confounded by antibiotic use, diet, or
healthcare access.

In HICs, advantaged SEP groups typically have greater access to nutritious, high-fibre, and fermented
foods linked to greater microbial diversity, while disadvantaged groups face food insecurity and consume
cheaper, high-fat, low-fibre diets linked to lower microbial diversity.”®> Dietary fibre directly provides
substrate for SCFA-producing bacteria; its absence deprives beneficial commensals of energy sources.
Economic constraints drive consumption of inexpensive, calorie-dense processed foods that are nutrient-
poor and fibre-deficient. Overall, disadvantaged SEP in HICs is associated with nutritional trade-offs,
chronic stress, altered neonatal health (e.g., lower breastfeeding, higher caesarean rates), and increased
antibiotic use—along with various other factors—all contributing to reduced microbiota diversity,
increased pro-inflammatory species, and poorer metabolic health. In LMICs, dietary patterns show
opposite SEP gradients: westernised, processed diets are more accessible to wealthier individuals, while
less wealthy groups continue to consume traditional, fibre-rich, agrarian diets, potentially contributing to
their higher a-diversity.”® However, patterns in LMICs are less well established due to limited data and
ongoing industrialisation, contributing to considerable variation between populations in LMICs.®’

Ethnicity as a modifier of SEP-microbiome associations

Alongside urbanisation, ethnicity plays a role in shaping the link between SEP and the GM. Ethnic
background shapes culture, which in turn influences diet, lifestyle, and childcare practices—key factors
driving GM variation.®® Comparisons between HICs and LMICs may reflect ethnic as well as geographical
differences.

Studies in HICs showing positive SEP-a-diversity links mostly involved European participants, while those
reporting negative associations had more ethnically diverse cohorts. In the US, Kwak et al.”' found that
participants identifying as “Black”, “Hispanic”, and “foreign-born” had more disadvantaged SEP compared to
“White” or “US-born individuals”. They and others®>* also observed higher a-diversity—specifically Faith’s
Phylogenetic Diversity (PD)—among individuals with disadvantaged SEP, with significant differences across
ethnic groups. However, no other studies in this review examined Faith’s PD in relation to SEP, and those
reporting positive associations used different metrics, limiting conclusions. These findings suggest ethnic
minorities in HICs may retain dietary and cultural practices supporting microbial diversity despite socio-
economic disadvantage. Overall, confounding from the collinearity between ethnicity and SEP makes it
challenging to isolate the specific effects of SEP on the GM.

Microbiome and health

Having discussed how SEP shapes microbiome composition through multiple pathways, we now describe
how these microbiome differences may affect health through taxonomic profiles, functional capabilities,
and host interactions.

Taxonomic associations and enterosignatures

Beyond diversity, several taxa and metabolic pathways showed consistent associations with SEP. Distinct
bacterial enterosignatures have been characterised: Bacteroides-dominated profiles are more common in
Western populations, while Prevotella-dominated profiles predominate in non-Western groups.”” These
patterns primarily reflect dietary differences—Western diets high in animal protein and fat favour
Bacteroides, whereas plant-based diets rich in complex carbohydrates and fibre promote Prevotella.”
Migration studies demonstrate the microbiome's rapid responsiveness to dietary change: Southeast Asians
moving to the USA show replacement of Prevotella strains providing plant fibre-degrading enzymes with
Bacteroides species.'® This plasticity suggests microbiome-targeted interventions could potentially attenu-
ate SEP-associated microbiome differences through dietary and environmental modifications.
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We identified associations between advantaged SEP and higher Bacteroides abundance, and disadvan-
taged SEP and higher Prevotella, across HICs and LMICs and age groups. However, the functional and
health implications of these enterosignatures likely vary by context. In HICs, Bacteroides enrichment with
advantaged SEP likely reflects access to diverse, animal-protein-rich diets. Prevotella enrichment with
disadvantaged SEP is more ambiguous: it may reflect retained traditional fibre-rich diets in ethnic
minorities, greater reliance on plant-based staples (legumes, grains), or distinct Prevotella species/strains
with different functional capabilities.71 In LMICs, Prevotella enrichment more likely reflects traditional,
fibre-rich diets. Without detailed dietary data and species-level resolution, rarely available in reviewed
studies, Prevotella enrichment with disadvantaged SEP cannot be interpreted as beneficial or detrimental.

Functional pathways: SCFAs and metabolic health

The GM exhibits considerable functional redundancy: that is different taxonomic compositions can
perform similar metabolic functions, while similar taxonomic profiles may differ substantially in functional
output.”> This underscores the importance of examining microbial function alongside taxonomy when
interpreting SEP-microbiome relationships.

SCFA production emerged as the predominant function among SEP-associated taxa. SCFAs regulate
glucose homeostasis, lipid metabolism, immune tolerance, blood-brain barrier integrity, and neural
function,*®*” processes directly implicated in the chronic diseases that show strong SEP gradients such
as obesity, diabetes, and cardiovascular disease.” If reduced SCFA production contributes to SEP-health
disparities, the microbiome may represent a modifiable intervention target. However, critical evidence
gaps remain: most studies examined only taxonomic composition rather than SCFA concentrations or
functional profiles.

The GM produces neurotransmitters (GABA, serotonin, dopamine) and their precursors,73 contribut-
ing to gut-brain axis communication. Several SEP-associated taxa identified in this review—including
Bifidobacterium, Parabacteroides, and Bacteroides fragilis—are established GABA producers,” raising
the possibility that socioeconomic microbiome differences could contribute to mental health disparities.
However, no studies have directly linked SEP-associated microbiome changes to neurotransmitter levels or
mental health outcomes.

The microbiome also influences health through immune regulation, gut barrier integrity, and metabolic
pathways relevant to SEP-related disparities. Early-life microbial exposure shapes immune development
and tolerance;'! disrupted colonisation—from lower breastfeeding rates, higher caesarean delivery rates,
and greater antibiotic exposure in disadvantaged populations—may impair immune development and
increase the risk of allergic diseases and asthma, which exhibit SEP gradients.”* The microbiome maintains
barrier integrity through metabolite production and tight junction regulation; barrier dysfunction allows
bacterial products (e.g., lipopolysaccharide) to translocate, driving chronic low-grade inflammation
implicated in obesity, diabetes, and cardiovascular disease.”® Additionally, microbial regulation of bile
acid metabolism, vitamin synthesis, and nutrient bioavailability further links the microbiome to metabolic
health. Although few studies directly examined associations between SEP and GM functional pathways,
only five pathways were consistently associated across two studies, limiting definitive interpretation. These
diverse pathways through which the microbiome influences health establish it as a critical mediator linking
SEP to health outcomes, offering a potentially modifiable target for interventions aimed at reducing health
inequities.

Heterogeneity, limitations, and recommendations

This review identifies key knowledge gaps and limitations to guide future research. Most studies were
cross-sectional, limiting the ability to establish temporality and assess changes in microbiome composition
over time. None of the studies conducted power calculations, raising concerns about whether they were
sufficiently powered to detect associations. Sample collection and processing protocols also varied widely,
with some studies failing to report key details such as time between collection and freezing. Furthermore,
some studies had socially homogeneous, generally advantaged samples with narrow SEP ranges,® limiting
capture of full socioeconomic variation.
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SEP measurement varied substantially across studies, reflecting both developmental stage and geo-
graphic context, precluding meta-analysis. LMIC studies typically used asset-based indices, whereas HIC
studies relied on income, education, or occupation. Infant and child studies predominantly used
household-level or parental SEP measures, whereas adult studies employed individual-level indicators.
Some combined multiple indicators into cumulative scores; others analysed them separately, complicating
comparisons. These differences reflect a deeper challenge: SEP indicators are not directly comparable
across life stages due to both conceptual and measurement differences. Moreover, SEP is dynamic, not
captured by measurement at a single time point—it changes over time and may exert effects that are
cumulative, time-sensitive, or life-stage-specific. Early-life SEP may exert critical-period influences on
microbiome development, whereas adult SEP more often reflects accumulated exposures. Age-specific
confounding further complicates cross-age comparisons. Evidence on SEP-microbiome relationships in
infancy remains sparse, despite the “first 1000 days” representing a critical developmental period during
which SEP may exert particularly influential effects.

Study populations varied widely, ranging from healthy to diseased participants and spanning infancy to
adulthood. Exclusion criteria differed, including inconsistent handling of recent antibiotic use.
Inconsistent adjustment for key covariates may have biased findings or caused relevant studies to be
missed. Some studies did not report effect sizes and variance measures necessary for meta-analysis,
providing only p-values or qualitative descriptions of significant associations.

To improve comparability across diverse socioeconomic and geographic contexts, future studies should
adopt standardised SEP measurements that account for geographic context (e.g., asset-based indices in
LMICs; income or education in HICs) and life stage (household-level indicators for children; individual-
level measures for adults), while clearly reporting which indicators were used and how they were
operationalised. Analytical rigour would be enhanced by consistently collecting and adjusting for core
confounders—including age, sex, BMI, antibiotic use, health behaviours, and early-life exposures such as
delivery mode and breastfeeding—and reporting effect sizes, confidence intervals, and variance measures
rather than p-values alone. Transparent reporting of recruitment strategies, including response rates and
population characteristics, is also needed.

Substantial methodological heterogeneity in microbiome characterisation also prevented meta-analysis.
Among 16S rRNA studies, considerable variation existed in hypervariable regions sequenced, sequence
processing methods (OTUs vs. ASVs), bioinformatic pipelines, and reference databases—differences
known to affect taxonomic identification and abundance estimates. Some recent studies continued
using OTU-based clustering® despite the availability of ASV methods, which provide higher taxonomic
resolution and greater reproducibility by preserving exact sequence variants rather than clustering reads at
arbitrary similarity thresholds.”® While OTU use may be justified in earlier studies predating ASV
standardisation, its continued use in recent studies represents a missed opportunity for improved
resolution. Additionally, five studies relied on the outdated GreenGenes (v13.8) database from
2013,%3%323337 31d two used outdated SILVA versions despite more recent releases being available.?®?°

Beyond these methodological choices, inherent limitations of 16S rRNA sequencing constrain interpre-
tation of SEP-microbiome associations, including limited taxonomic resolution, susceptibility to primer
bias, and inability to assess functional potential.”” Shotgun metagenomic sequencing overcomes these
limitations by providing species- and strain-level resolution, functional profiling, and detection of multiple
microbial domains.”® Indeed, the fungal microbiome (mycobiome) is increasingly recognised as an
important determinant of health and disease,” yet to our knowledge, its relationship with SEP remains
unexplored.

Data quality and reproducibility would be strengthened through detailed reporting of sample collection
protocols (including time to freezing), DNA extraction, sequencing parameters, and bioinformatic
pipelines, ideally following established guidelines such as STORMS.*® Depositing raw sequencing data
in public repositories would further enhance cross-study comparability and facilitate meta-analyses.

As the field evolves, best practices continue to shift, complicating fixed “gold-standard” guidelines;
nevertheless, clearer guidance and improved reporting remain essential (Figure 7). Future studies should
prioritise: (1) implementing life-course study designs that capture SEP exposure across multiple develop-
mental stages; (2) conducting power calculations and recruiting diverse cohorts with broad SEP ranges; (3)
collecting and adjusting for key covariates consistently; (4) adopting metagenomics or multi-omics
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Figure 7. Recommendations for future GM social epidemiology research: ensure collection of sociodemographic data
and key covariates; adoption of metagenomic sequencing for greater taxonomic resolution; integration of multi-omics
approaches to capture microbial activity and metabolism; improved transparency in methods and analysis to support
reproducibility and cross-study comparability; increased standardisation across microbiome studies; and the use of large,
diverse cohorts to ensure adequate statistical power and generalisable findings. Created with Canva.

approaches for improved taxonomic and functional resolution; (5) comprehensive reporting following
established guidelines such as STORMS; and (6) using up-to-date databases like SILVA for 16S rRNA
sequencing.

Despite these limitations, the findings demonstrate that SEP influences GM composition, likely
through different pathways across geographic, ethnic, and developmental contexts. In HICs, disad-
vantaged SEP associates with reduced SCFA-producing bacteria and lower a-diversity, whereas in
LMICs, disadvantaged populations typically exhibit higher a-diversity. These patterns position the
microbiome as a potential biological pathway partially mediating SEP-health disparities and a
promising intervention target. Given its plasticity to dietary and environmental factors, interventions
could operate at multiple levels: targeted delivery of beneficial microbes or metabolites (e.g., SCFA-
producers), dietary interventions promoting fibre-rich and minimally processed foods, early-life
interventions that promote breastfeeding and healthy colonisation, and policy measures addressing
food insecurity, maternal health support, and sanitation in disadvantaged communities. Such inter-
ventions may help reduce health inequities, provided future studies establish causal relationships and
identify microbiome changes with meaningful health impacts.
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