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Abstract—The rapid expansion of the low-altitude economy
(LAE) necessitates robust and intelligent integrated sensing and
communication (ISAC) systems. These systems are critical for
managing dense airspace, ensuring safe navigation of drones and
electric vertical take-off and landing (eVTOL), and delivering
seamless data services. This paper explores the transformative
potential of large language models (LLMs) in advancing ISAC
technologies for LAE applications. LLMs, with their profound
capabilities in contextual understanding, multi-modal data fu-
sion, and probabilistic reasoning, can be leveraged to interpret
complex sensing data, optimize communication resources, and
facilitate intelligent decision-making in dynamic environments.
As a concrete example, we introduce an LLM-based multi-scale
three-dimensional (3D) localization framework. This algorithm
utilizes an LLM as a cognitive engine to integrate and analyze
the acquired data streams and is capable of providing multi-scale
positioning for unmanned aerial vehicles (UAVs). Moreover, we
outline a number of key technical challenges as well as potential
solutions associated with LLM-aided ISAC for LAE.

Index Terms—AI, ISAC, LLM, Low-Altitude Economy

I. INTRODUCTION

THE low-altitude economy (LAE) is emerging as a strate-
gic area of technological development, driven by the

rapid deployment of unmanned aerial vehicles (UAVs) and
urban air mobility (UAM). Applications such as logistics
delivery, emergency response, infrastructure inspection, and
low-altitude tourism are expanding rapidly, with the global
market expected to reach trillions of dollars in the coming
decade. Enabling these applications requires a reliable and
intelligent support system, with wireless communication serv-
ing as the backbone for real-time control, precise navigation,
and coordinated airspace operations. To fulfill these func-
tions, the underlying communication infrastructure must meet
stringent performance requirements that support centimeter-
level positioning and ultra-reliable low-latency communication
(URLLC). However, in dense urban environments, conven-
tional terrestrial cellular networks often suffer from multi-
path fading, signal blockage, and limited coverage. These
limitations highlight the need for more robust and adaptable
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communication infrastructures to ensure reliable and scalable
LAE deployment [1].

To address these demands, integrated sensing and com-
munication (ISAC) has attracted considerable attention as a
key enabling technology in sixth-generation (6G) wireless
systems [2]. By co-designing communication and radio sens-
ing functionalities within a unified platform, ISAC facili-
tates more efficient spectrum utilization and enhances envi-
ronmental perception. This dual functionality is particularly
suited to LAE scenarios, where UAVs and electric vertical
take-off and landing (eVTOL) aircraft require both reliable
connectivity and high-precision localization to ensure safety
and coordination. Recent advances in high-frequency spectrum
access and massive multiple-input multiple-output (MIMO)
techniques have significantly improved sensing resolution and
spatial awareness. However, in low-altitude environments char-
acterized by mobility, heterogeneity, and mission variability,
ISAC must fulfill multiple performance objectives such as
data transmission, object detection, and trajectory tracking.
Conventional optimization methods, which often rely on static
modeling and handcrafted designs, exhibit limited flexibility
in such dynamic conditions and are insufficient to fully exploit
ISAC’s potential in LAE, thus calling for intelligent method-
ologies [3].

The limitations of these traditional approaches have stimu-
lated growing interest in artificial intelligence (AI) as a means
of improving the adaptability and intelligence of ISAC systems
[3]. AI techniques have achieved notable success in communi-
cation tasks including channel estimation, resource allocation,
and interference mitigation, as well as in sensing-related tasks
such as target detection, beamforming, and environmental re-
construction. Joint optimization of communication and sensing
through AI has also been explored to increase ISAC efficiency.
However, the majority of existing AI models are small in scale,
tailored to specific tasks, and heavily reliant on supervised
training with labeled data. These characteristics limit their
scalability and generalization, particularly in the dynamic and
heterogeneous settings of LAE-oriented ISAC.

In this context, large language models (LLMs) provide a
critical advantage over conventional AI approaches for advanc-
ing ISAC intelligence [4]. Specifically, unlike conventional AI
methods designed for isolated tasks, LLMs inherently support
joint optimization, contextual adaptation, and intelligent coor-
dination, which are essential for managing the multimodal,
dynamic, and safety-critical demands of low-altitude ISAC
operations. These attributes align well with the complex
requirements of LAE scenarios, in which communication,
localization, and sensing must be jointly optimized under
varying environmental and mission conditions. Recent studies
have demonstrated the feasibility of LLMs in applications
such as beam prediction, channel modeling, and semantic
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Fig. 1. Recent LLM-aided ISAC Designs for LAE.

communication, indicating their potential to unify diverse
ISAC functions within a single adaptable framework. Further-
more, LLMs provide enhanced transparency and robustness
in decision-making, which are critical for safety-critical aerial
operations.

Looking ahead, the integration of LLMs into ISAC systems
is expected to significantly enhance the capabilities of LAE
infrastructure. At the physical layer, LLMs can improve mod-
eling accuracy and signal prediction under complex propaga-
tion conditions. At the network layer, they support dynamic
spectrum allocation, interference coordination, and resource
orchestration across distributed UAV networks. Additionally,
semantic-aware communication powered by LLMs facilitates
mission-oriented information exchange and situational aware-
ness, thereby improving collision avoidance, traffic control,
and cooperative planning. The capacity of LLMs for gener-
alization and multi-agent reasoning makes them particularly
suitable for addressing the diverse and evolving challenges
in low-altitude systems. These developments position LLMs
not as incremental tools but as strategic enablers for next-
generation ISAC in support of a resilient and intelligent LAE.

II. RECENT LLM-AIDED ISAC DESIGNS FOR LAE

A. LLM-Based Optimizations for ISAC

As shown in Fig. 1, the integration of LLMs with opti-
mization techniques for ISAC systems is an emerging inter-
disciplinary field. It primarily focuses on leveraging LLMs’
powerful reasoning and generative capabilities to enhance
the modeling, solving, and optimization of complex ISAC
problems. In general, LLMs can be used for the following
purposes

• LLMs as optimizers: A key concept is using LLMs
themselves as optimizers. For example, techniques like
optimization by PROmpting (OPRO) utilize LLMs (e.g.,

GPT-4) to iteratively generate and evaluate solutions
based on a natural language description of the problem
[6].

• LLMs for algorithm generation and automation: LLMs
are employed to automate the modeling and solving
of optimization problems. Frameworks like operations
research LLM agent (OR-LLM-Agent) can transform
natural language descriptions of operations research prob-
lems into mathematical models and then into executable
solving code.

• Synergy with traditional optimization algorithms: The
combination of LLMs and traditional optimization al-
gorithms is synergistic. LLMs can assist in designing
and improving optimization algorithms (e.g., generating
enhanced code for combinatorial optimizers), while tradi-
tional optimization algorithms can optimize LLM archi-
tectures and reduce their resource consumption through
methods like model weight merging.

• Integration with other AI techniques: LLMs are often
combined with other AI paradigms like deep reinforce-
ment learning (DRL) for ISAC optimizations. For in-
stance, DRL is used to optimize UAV trajectory, power
allocation, and beamforming in ISAC systems, while
LLMs can serve as intelligent coordinators and knowl-
edge engines in such integrated systems.

In recent years, a flurry of research activities has been
reported concerning the use of LLMs for solving optimiza-
tion problems for ISAC-aided UAV networks. In a specific
case study, in [6] the authors investigated a UAV network
equipped with ISAC capabilities. In this system, multiple
UAVs collaboratively perform sensing to locate ground users
while simultaneously providing communication services. To
balance the trade-offs between communication and sensing
performance, a multi-objective optimization (MOP) problem
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was formulated. As detailed in [6], LLMs are employed not
merely as function approximators but as black-box search
operators for multi-objective optimization in UAV-ISAC net-
works. Unlike traditional solvers, the LLM-based approach
iteratively refines solutions via natural-language prompting,
effectively navigating complex trade-offs between sensing
accuracy and communication.

Furthermore, in [7], a pre-trained GPT-2 model was fine-
tuned for channel prediction in multi-antenna systems. Unlike
conventional recurrent or convolutional networks that rely only
on task-specific training data, this LLM-based approach lever-
ages transferred structural knowledge from language modeling
to capture long-range temporal dependencies in channel state
sequences, leading to stronger generalization under complex
channel conditions. Subsequently, the authors of [8] extended
this idea to beam prediction. Here, the contextual sequence
modeling capability of the LLM enables more robust infer-
ence of beamforming vectors from historical measurements,
especially under the rapidly changing UE mobility patterns
commonly encountered in LAE, outperforming LSTM or
transformer models trained from scratch.

It is worth noting that with the deepening of research, LLM-
based optimizations have the following possible applications
in the ISAC-based LAE:

• UAV-enabled data collection and communication: LLM-
based and DRL-based methods can optimize UAV path
planning, transmitted power of IoT devices and UAVs,
and resource allocation to optimize data freshness (e.g.,
minimize age of information) and maximize communica-
tion rates while considering sensing detection freshness.
This is crucial for applications like drone communications
and smart cities.

• Beamforming design: Machine learning, including poten-
tial LLM-guided strategies, is used for predictive beam-
forming design in ISAC systems, especially for vehicles
with complex behaviors or UAV-based platforms. This
enhances signal transmission efficiency and target sensing
accuracy.

• Automated modeling and solving: LLM-agent frame-
works can potentially automate the transformation of
natural language descriptions of ISAC scenarios (e.g.,
multi-UAV task allocation) into precise mathematical
models and subsequently into executable code, reducing
reliance on expensive domain experts.

Furthermore, studies in [6]-[8] highlight that training and
operating large LLMs require substantial computational re-
sources and extensive datasets, which can pose considerable
obstacles to both research and practical deployment, partic-
ularly for resource-limited edge devices in ISAC networks.
Another significant challenge lies in interpreting the decision-
making processes behind LLM-generated solutions or algo-
rithms, which often remain opaque. To address this, techniques
such as code evolution graphs are being actively explored
to visualize and analyze the iterative development of code
produced by LLMs during optimization, thereby enhancing
interpretability.

In conclusion, LLMs serve not only as larger neural net-
works but also as flexible reasoning engines. They integrate
domain knowledge, adapt through prompting or lightweight
fine-tuning, and unify the sensing-communication-decision
processes within a single, adaptable framework.

B. LLM-Enhanced Multi-agent Systems for ISAC

In LAE-ISAC scenarios, multi-agent systems (MAS) are
essential for distributed coordination among UAVs. While
conventional MAS often rely on predefined rules or rein-
forcement learning with limited adaptability, LLMs introduce
a higher-level reasoning and contextual coordination capa-
bility that is difficult to achieve with traditional methods.
Specifically, LLMs enable agents to interpret natural-language
task descriptions, dynamically assign roles based on real-time
context, and facilitate cross-agent knowledge transfer. The
core idea is to leverage the advanced reasoning, planning,
and communication capabilities of LLMs to enable multiple
autonomous agents to collaborate effectively. This is a shift
from traditional optimization methods to more adaptive, in-
telligent, and self-organizing systems. Research in this area
is progressing rapidly, with frameworks being developed to
optimize the structure, role allocation, and model selection
for these multi-agent teams dynamically based on the task at
hand.

In general, LLM-enhanced MAS for complex tasks like
ISAC typically operate on several key principles:

• Task decomposition and collaboration: Complex ISAC
tasks (e.g., joint resource allocation, trajectory planning,
beamforming) are decomposed into smaller sub-tasks.
Specialized agents, each potentially powered by an LLM
optimized for a specific function, handle these sub-tasks.
They collaborate through communication to achieve the
global objective.

• Dynamic agent profiling and role allocation: Each agent
can be assigned a specific profile or role (e.g., “spectrum
allocator,” “target tracker,” “communication optimizer”)
based on its expertise. LLMs help generate and manage
these roles dynamically to suit the problem.

• Learning and adaptation: These systems can be designed
for continuous learning and adaptation. Agents can learn
from their interactions with the environment and other
agents, refining their strategies and policies over time
to improve performance in dynamic ISAC environments.
This can involve techniques from reinforcement learning
(RL), particularly multi-agent RL (MARL) [9].

Motivated by the aforementioned compelling benefits of
LLM-enhanced MAS, in [9] the authors proposed a novel
multi-agent system, namely CommLLM, which is capable of
solving communication-related tasks using natural language.
To overcome inherent limitations of standalone LLMs,such
as outdated knowledge, lack of domain-specific reasoning,
and limited evaluation capabilities, the system integrates three
core modules: Multi-agent data retrieval (MDR) for extracting
and summarizing communication knowledge, multi-agent col-
laborative planning (MCP) for generating feasible solutions
from multiple perspectives, and multi-agent evaluation and
reflection (MER) for iterative refinement of solutions. The au-
thors demonstrated the effectiveness of CommLLM through a
case study on automated design of a semantic communication
model, showing that it can produce functional and optimized
code without prior explicit knowledge. This work highlights
the potential of LLM-driven multi-agent systems for intelligent
and adaptive 6G network optimization.

Moreover, in [10] a multi-task fine-tuning framework based
on LLMs, namely LLM4WM, was specifically designed for
wireless channel-associated tasks such as channel estimation,
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prediction, beam management, and environment sensing. To
adapt general-purpose LLMs to the specialized domain of
wireless communications, the authors introduced a mixture
of experts with low-rank adaptation (MoE-LoRA) fine-tuning
strategy, along with customized pre-processing and multi-
task adapter modules. These components help align high-
dimensional channel data with the semantic space of the LLM
while enabling efficient parameter updates. The framework
demonstrates strong performance across six distinct tasks,
outperforming conventional deep learning models and single-
task LLM fine-tuning baselines in both full-sample and few-
shot settings. Overall, LLM4WM effectively harnesses the
representational power of LLMs for complex wireless com-
munication tasks, offering a scalable and unified solution for
multi-task learning in 6G systems.

It is worth noting that the described capabilities of LLM-
based MAS suggest several promising application areas, such
as: (1) dynamic resource management: Automating and opti-
mizing the allocation of spectral resources, power, and band-
width between sensing and communication functions in real-
time based on perceived environment and mission goals; (2)
coordinated beamforming and signal processing: Managing
complex multi-antenna systems for simultaneous sensing and
communication, where agents collaborate to calculate optimal
beamforming vectors that meet both sensing accuracy and
communication rate requirements; (3) UAV swarm coordi-
nation for ISAC: Controlling swarms of UAVs performing
ISAC tasks. Agents could manage individual UAV trajectory
planning, collaborative sensing coverage, and communication
relaying, ensuring efficient data collection and transmission
while avoiding conflicts; and (4) network traffic analysis
and security: Employing multiple agents to monitor network
traffic (sensing function) collaboratively, detect anomalies or
security threats, and automatically implement countermeasures
(communication function) across the network.

In conclusion, LLM-enhanced MAS represent a promising
paradigm for developing more adaptive and intelligent ISAC
systems. By leveraging the strengths of LLMs in reasoning
and coordination, these systems have the potential to manage
the inherent complexities and trade-offs in ISAC dynamically.
However, challenges related to computational efficiency, re-
liability, and integration need to be addressed for practical
deployment. This area is likely to see significant growth,
potentially leveraging techniques like automated MAS genera-
tion (e.g., MAS-GPT) and dynamic routing (e.g., MasRouter)
tailored for ISAC requirements.

C. LLM-Aided Multi-Modal ISAC

The integration of LLMs with multi-modal ISAC (MM-
ISAC) systems presents a highly promising and valuable
direction for in-depth research. Unlike single-modal ISAC,
MM-ISAC combines diverse sensing modalities (e.g., radar,
LiDAR, and computer vision) with communication systems,
resulting in synergistic performance improvements. By jointly
leveraging multi-dimensional perceptual data and communi-
cation signals, MM-ISAC enhances spectral and energy effi-
ciency, reduces hardware costs, and improves overall system
robustness through multi-source data fusion. Furthermore, it
facilitates high-precision sensing and low-latency communi-
cation, enabling advanced applications including autonomous
vehicles and smart infrastructure.

MM-ISAC is evolving toward ultra-dense, heterogeneous
networks with embedded intelligence. LLMs can enhance such
systems by processing multi-modal data to support intelligent
decision-making, such as predictive resource allocation. Fur-
thermore, their capabilities in reasoning, planning, and coor-
dination can be leveraged to efficiently manage and optimize
multi-modal ISAC architectures.

Specifically, in [11] the authors proposed a novel framework
that integrates multi-modal LLMs with ISAC systems to
enhance performance in future 6G networks. The key contribu-
tion is utilizing multi-modal LLMs to process and align com-
plex multimodal sensing data (e.g., light detection and ranging
(LiDAR), radar, vision) with communication signals, enabling
deeper information understanding and joint optimization. This
approach improves cross-modal information fusion, general-
ization in dynamic environments, and supports applications
like intelligent transportation and drone swarms. A case study
on beam prediction demonstrates that the proposed framework
outperforms traditional methods, such as the random forest,
K-nearest neighbor and multi-layer perceptron methods. It
is also shown that the proposed multi-modal LLMs provide
remarkable proficiency in analyzing digitized sensing data
from various scenarios.

More recently, in [12], the authors outlined a comprehensive
system framework in which LLMs significantly enhance ad-
vanced contextual comprehension, robust object recognition,
adaptive decision-making, and efficient edge-cloud collab-
oration for the Internet of Things (IoT). Furthermore, the
study emphasized critical challenges that must be overcome
to fully leverage LLM-driven MM-ISAC systems, such as
the scarcity of high-quality multi-modal datasets, substantial
computational demands, delicate power-latency trade-offs, and
constrained edge resources. In response, several promising
solutions were proposed, including synthetic data generation,
effective modal compression, knowledge-guided domain adap-
tation, and synergistic co-design of signal processing with
LLMs. The key findings of [12] underscore the considerable
potential of LLMs to markedly improve sensing accuracy,
communication efficiency, and intelligent automation across
various IoT domains, including autonomous vehicles and
smart industries.

Building upon the aforementioned research in [11]-[12]
and integrating existing studies on ISAC [2]-[4], potential
applications of LLM-aided multi-modal systems may also
include:

• Multi-device edge AI: Coordinating multiple ISAC de-
vices (e.g., drones, sensors) for collaborative sensing,
feature extraction, and low-latency inference at the edge.

• Robust beamforming and signal processing: Optimizing
beamforming vectors and signal processing pipelines by
leveraging multiple models to handle complex near-field
scenarios or wideband systems.

• Autonomous system coordination: Managing UAV
swarms or robotic teams for tasks like search-and-rescue,
where sensing, communication, and path planning require
adaptive coordination.

LLM-aided MM-ISAC represents a promising direction for
developing intelligent, adaptive, and robust systems that lever-
age collective modal intelligence. By dynamically coordinating
multiple specialized modalities, these systems can overcome
limitations of single modalities and address complex sensing-
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communication trade-offs. However, challenges related to
computational efficiency, integration, and reliability must be
addressed for practical deployment.

D. Other Emerging LLM-Empowered Communications for
LAE

The integration of LLMs with reconfigurable intelligent
surfaces (RIS), semantic communication and near-field com-
munication represents a transformative advancement in future
communication systems. LLMs enhance these technologies
through intelligent optimization, context-aware processing,
and efficient resource management.

Specifically, in [13] the authors proposed an innovative
framework that integrated LLMs with RIS to enhance energy
efficiency and reliability in 6G Internet of Vehicles (IoV). The
key contribution lies in utilizing LLMs to analyze real-time
IoV data—such as channel state, vehicle mobility, and quality
of service (QoS) requirements—to dynamically optimize RIS
phase shifts and wireless resource allocation in complex vehic-
ular environments. By combining RIS-assisted non-orthogonal
multiple access (NOMA), the system significantly improves
signal coverage and mitigates blind zones. The method also
shows strong adaptability in multi-vehicle settings, outper-
forming conventional RIS strategies with random phase shifts
and systems without RIS.

Compared to RIS, semantic communication represents an-
other paradigm shift in 6G communications, emphasizing the
transmission of meaning rather than solely syntactic elements.
In [14], the authors proposed a novel semantic communica-
tion framework integrating LLMs, namely LLM-SemCom, to
enhance semantic accuracy, adaptability, and personalization
in 6G systems. The key contributions include: (1) a structured
semantic triple representation (head, relation and tail) to re-
duce LLM hallucinations and ensure verifiable semantics; (2)
knowledge-base-free LLM processing for dynamic adaptation
across domains without static knowledge constraints; and (3)
retrieval- augmented generation (RAG)-enhanced personaliza-
tion to tailor outputs to user preferences while preserving
semantic fidelity. Experimental results demonstrate that LLM-
SemCom significantly outperforms existing methods like deep
learning enabled semantic communication systems.

Moreover, [15] proposed a novel framework that integrates
LLMs into near-field communications for the LAE. The au-
thors first identified a natural synergy between LAE—which
relies on UAVs—and near-field beamfocusing in extremely
large-scale MIMO (XL-MIMO) systems, where spherical-
wave propagation allows precise energy focusing in both angle
and distance domains. To address the unique challenges of
this scenario, including mixed near- and far-field user distribu-
tions and complex three-dimensional (3D) geometry with base
station height and tilt, the authors introduced a new system
model and defined an effective near-field region. The core
contribution of [15] is an LLM-based optimization scheme
built upon a fine-tuned GPT-2 model, which jointly performs
user classification (near-field vs. far-field) and optimizes multi-
user precoding and power allocation. The model uses specially
designed adapters and loss functions to handle non-convex
constraints and ensure user fairness. Simulations demonstrate
that the proposed method outperforms conventional bench-
marks (including CNN- and transformer-based approaches)
in both classification accuracy and spectral efficiency across

various system parameters, validating its robustness and gen-
eralization capability for real-world LAE applications. In the
design, the fundamental challenge is bridging the domain gap
between natural language and physical signal domains (e.g.,
CSI, beamforming vectors). This is achieved through:

• Specialized input embedding/pre-processing: High-
dimensional, structured communication data (e.g.,
time-space-frequency CSI, channel impulse responses)
are transformed into a sequence of tokens that LLMs
can process. Techniques like patching (dividing data
into local blocks), numerical encoding (normalization,
discretization), and embedding layers map continuous
physical parameters into the LLM’s feature space.

• Retention of pre-trained knowledge: Often, the pre-
trained LLM’s core layers (e.g., attention blocks) are kept
frozen or efficiently fine-tuned to preserve their general-
world knowledge and reasoning abilities, which are then
adapted to the communication domain.

Based on [15], further potential applications of LLMs for
near-field LAE include: (1) near-field channel modeling and
prediction: LLMs could model the complex spatial character-
istics of near-field channels (especially for LAE), capturing
user position, array geometry, and frequency dependencies
more effectively than traditional models, potentially predicting
channel variations with high accuracy. (2) resource allocation
and optimization: LLMs could intelligently allocate resources
like power and bandwidth in near-field LAE networks, con-
sidering the unique interference patterns and multi-user de-
pendencies in this regime. (3) system state estimation and
calibration: LLMs might assist in estimating user positions
or calibrating large arrays in the near-field based on received
signals, leveraging their sequence analysis capabilities. At
the same time, as shown in Fig. 2(d), when a sequence
of continuously sampled observations along a trajectory is
input, the localization results for each point exhibit spatially
coherent motion trends, indicating that the framework can
already capture the dynamic features of trajectories.

Using LLMs to empower RIS, semantic communication
and near-field communication for LAE is a forward-looking
research concept with significant potential but also consider-
able challenges. Current research demonstrates the viability
of LLMs for physical layer tasks like channel prediction,
providing a foundation. For example, as shown in [15], success
in near-field LAE will likely depend on innovative archi-
tectures for handling spatial electromagnetic data, efficient
tuning strategies, and robust integration schemes combining
data-driven LLM strengths with model-based communication
theory. As 6G research progresses towards native AI inte-
gration, investigating LLMs for managing the complexities
of advanced systems like near-field LAE is a promising and
potentially transformative direction. However, addressing the
challenges of complexity, reliability, and integration will be
crucial for practical deployment.

III. AN LLM-BASED MULTI-SCALE 3D LOCALIZATION
FOR LAE

As operational demands in complex 3D airspace continue
to grow, high-precision positioning has become a critical
foundation to ensure flight safety, communication reliability,
and task efficiency.
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Fig. 2. An example of 3D UAV localization based on LLM.

However, the low-altitude environment introduces multipath
propagation, strong interference, and rapid channel variations,
which pose significant challenges for conventional techniques.
To address these issues, this work leverages single-shot or-
thogonal frequency-division multiplexing (OFDM) signals and
LLMs to achieve efficient and accurate UAV positioning1.

As illustrated in Fig. 2, UAVs are distributed within a cell-
sized 3D space, where multiple base stations transmit OFDM
signals. These signals are reflected by UAVs and received back
through a fading channel. At the receiver, the cyclic prefix (CP)
is removed, followed by a discrete Fourier transform (DFT)
to obtain frequency-domain representations. An inverse DFT
(IDFT) is then performed to reconstruct time-domain signals,
preserving both temporal and spectral features and effectively
enhancing robustness against channel variations.

Then, as shown in Fig. 2(a), the specific LLM used in this
study is built upon the encoder structure of the GPT-2 model.
It consists of a 12-layer Transformer with a hidden dimension
of 768 and employs a 12-head self-attention mechanism.
The model contains approximately 83 million parameters in
total, among which only about 2.56 million are fine-tuned to
adapt it to the sensing task. As shown in Fig. 2(a), in our
design, the preprocessing process of LLM mainly includes two
core stages: feature extraction and embedding fusion. First,

1Although this example specifically investigates high-precision localization
as a core sensing task, we employ the general term ‘ISAC’ to maintain
alignment with standard field nomenclature and to encompass the wider range
of potential sensing functionalities.

frequency-domain and time-domain signals undergo initial
feature extraction through a three-layer convolutional network
with identical structures. The extracted features are then ex-
panded and merged, followed by further fusion via a 1D con-
volutional layer to form the data embedding. Simultaneously,
the 3D coordinates of each base station are mapped to the
corresponding dimensions of a high-dimensional vector using
sine-cosine functions of varying frequencies to create a cosine
positional encoding, generating the positional embedding. Fi-
nally, the data embedding and positional embedding are added
together, achieving the fusion of signal features and spatial
information to provide a joint input representation for the
subsequent model. Benefiting from the large parameter scale
and cross-domain representation capability of the LLM, the
model can automatically capture complex nonlinear channel
features and maintain high feature extraction capability even
with limited or noisy data. A parameter-efficient fine-tuning
strategy is adopted, freezing most parameters while updating
only critical components such as layer normalization and
positional embeddings, which significantly reduces training
and inference overhead while fully exploiting the expressive
power of the large model.

To achieve precise 3D positioning, the framework employs
three classification heads and three regression heads in parallel.
The classification heads predict UAV grid indices in 3D space,
rapidly narrowing the search region, while the regression heads
refine coordinate offsets within each grid cell, achieving sub-
grid accuracy. A key strength of this design is its adaptability
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to different spatial resolutions: fine grids (e.g., 0.1 m) en-
able centimeter-level precision at higher computational cost,
whereas coarser grids (e.g., 0.5 m or 1 m) reduce complexity
while maintaining adequate accuracy for latency-sensitive or
resource-constrained scenarios.

Simulation results with a 0.1 m spatial resolution validate
the effectiveness of the proposed approach. As shown in
Fig. 2(c), under high SNR conditions, all models—including
long short-term memory (LSTM), Transformers, convolutional
networks (CNNs), gate recurrent units (GRU), and recurrent
neural network (RNN)—perform similarly. But due to the
round-trip path loss experienced by sensing signals, the effec-
tive SNR of the sensing link is typically much lower than that
of the communication link, making positioning capability un-
der low-SNR conditions particularly worthy of consideration.
Obviously, in low-SNR scenarios, the LLM-based framework
demonstrates superior robustness. Notably, the LSTM model
exhibits the largest positioning error, while the proposed ap-
proach consistently achieves the highest accuracy, highlighting
the advantage of large models in noise resilience, deep feature
extraction, and generalization. At the same time, as shown in
Fig. 2(d), when a sequence of continuously sampled obser-
vations along a trajectory is input, the localization results for
each point exhibit spatially coherent motion trends, indicating
that the framework can already capture the dynamic features
of trajectories.

Although this work focuses on UAV localization, the pro-
posed framework shows strong potential for broader ISAC
applications. Leveraging grid-based classification, fine-grained
regression, and the transfer capability of large language mod-
els, it can be extended to vehicle positioning in intelligent
transportation systems, indoor localization in smart factories,
and joint radar-communication tasks. This demonstrates that
combining single-shot OFDM signaling with large language
models provides a robust, accurate, and scalable solution for
diverse wireless localization scenarios.

IV. FURTHER ISSUES FOR LLM-AIDED ISAC DESIGNS

The integration of LLMs into ISAC for LAE shows promis-
ing potential, but the field is still in its early stages. Current
research mainly focuses on proof-of-concept work, leaving key
theoretical and practical challenges unresolved. These include
model specialization for multi-modal, mission-specific tasks,
ensuring low-latency inference under resource constraints, and
developing trustworthy frameworks for safety-critical oper-
ations. This section outlines key areas that require further
exploration to enable the practical deployment of LLM-aided
ISAC in low-altitude environments, as illustrated in Fig. 3.

A. Multimodal and Few-Shot Adaptation for ISAC UAVs

UAV localization in low-altitude environments involves
multi-source sensor data, including OFDM echoes, visual
imagery, and LiDAR signals, making multimodal fusion highly
complex. At the same time, high-quality labeled data are
scarce, and conventional LLMs are prone to over-fitting in
few-shot scenarios.

Future research efforts should concentrate on developing
LLM architectures that are capable of multi-modal feature
fusion and few-shot adaptation, thereby improving general-
ization and positioning accuracy. Key technical strategies may
include modality-specific embeddings, cross-modal attention

mechanisms, and meta-learning approaches. Such architectures
would allow ISAC-LLMs to efficiently learn from limited
heterogeneous data and support multitask UAV localization in
low-altitude operations. Concurrently, it is essential to design
adaptive resource allocation schemes that dynamically balance
communication and sensing requirements in real time.

B. Real-Time Inference and Dynamic Update for LAE

Real-time adaptability is a critical requirement for ISAC
in the LAE, where UAVs and eVTOLs must perform pre-
cise localization and rapid decision-making amidst constantly
changing environmental conditions. However, existing LLMs
exhibit significant inference delays and computational over-
head, which hinder their ability to meet the ultra-reliable low-
latency communication (URLLC) demands of the LAE. This
issue is particularly pronounced in ISAC, where the integration
of communication, sensing, and control functions must occur
under highly dynamic conditions such as rapid mobility,
multipath interference, and variable mission scenarios.

Future research should therefore prioritize the development
of real-time inference mechanisms that enable LLMs to pro-
cess data and adapt swiftly to evolving operational conditions.
The adoption of edge computing and distributed processing
frameworks can facilitate the offloading of inference tasks to
geographically distributed nodes, thereby reducing response
times and alleviating computational bottlenecks. Additionally,
the incorporation of incremental learning techniques and task-
specific adaptation mechanisms will be crucial for ensuring
that LLMs maintain high accuracy and low latency across a
broad range of operational contexts.

C. Trustworthy and Explainable ISAC-LLM for Safety-Critical
Operations

Safety-critical tasks in low-altitude environments demand
highly reliable localization, communication, and sensing. The
“black-box” nature of LLMs may lead to mislocalization,
erroneous target detection, or communication failures, posing
significant operational risks.

Future research should emphasize trustworthiness and ex-
plainability, leveraging causal reasoning, interpretable machine
learning, and reinforcement learning from human feedback
to enhance transparency and human oversight [16]. Robust
validation frameworks are essential to ensure that ISAC-
LLM outputs comply with the high safety requirements of
low-altitude operations, supporting critical missions such as
emergency response, logistics, and air traffic management.
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