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Abstract—The hybrid EEG-fNIRS Brain-computer
interface (BCl) combines the high temporal resolution of
electroencephalography (EEG) with the high spatial
resolution of functional near-infrared spectroscopy (fNIRS)
to enable comprehensive brain activity detection. However,
integrating these modalities to obtain highly discriminative
features remains challenging. Most existing methods fail to
effectively capture the spatiotemporal coupling features and
correlations between EEG and fNIRS signals. Furthermore,
these methods adopt a holistic learning paradigm for the
representation of each modality, leading to unrefined and
redundant multimodal representations. To address these
challenges, we propose a disentangled multimodal
spatiotemporal learning (DMSL) method for hybrid EEG-
fNIRS BCl systems, which simultaneously performs
multimodal spatiotemporal coupling and disentangled
representation learning within a unified framework.
Specifically, DMSL utilizes a compact convolutional module
with one-dimensional temporal and spatial convolution
layers to extract complex spatiotemporal patterns from each
modality and introduces a multimodal attention interaction
module to comprehensively capture the inter-modality
correlations, enhancing the representations for each
modality. Subsequently, DMSL designs an adaptive multi-
branch graph convolutional module based on reconstructed
channels to effectively capture the spatiotemporal coupling
features, incorporating modality consistency and disparity
constraints to disentangle common and modality-specific
representations for each modality. These disentangled
representations are finally adaptively fused to perform
different task predictions. The proposed DMSL
demonstrates state-of-the-art performance on publicly
available datasets for mental arithmetic, motor imagery, and
emotion recognition tasks, exceeding the best baselines by
2.34%, 0.59%, and 1.47%, respectively. These results
demonstrate the effectiveness of DMSL in improving EEG-
fNIRS decoding and its strong generalization ability in BCI
applications.

Index Terms—BCI, EEG, fNIRS, multimodal representation
learning.
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[. INTRODUCTION

RAIN-computer interfaces (BCIs)[1] facilitate
Bhuman-computer interaction by establishing direct

communication between external devices and the
brain, bypassing peripheral muscles. BCIs have found
applications in a wide range of fields, including robot control,
workload detection, and emotion recognition, playing a
crucial role in helping patients with limb disability or other
neuromuscular degeneration [2], [3], [4].

BCIs utilize a variety of modalities, including
stereoelectroencephalography (SEEG), functional magnetic
resonance imaging (fMRI), electroencephalography (EEG),
and functional near-infrared spectroscopy (fNIRS). Among
these modalities, EEG and fNIRS have become prominent in
both research and practical applications [5], [6], [7], [8], [9] due
to their non-intrusive nature and relative ease of operation.
Combining these two modalities enables a more comprehensive
understanding of brain activity. EEG records brain activity via
scalp electrodes [10], has good temporal resolution but limited
spatial precision, and is susceptible to artifacts and noise [11].
In contrast, fNIRS measures cerebral blood flow and
metabolism [12], [13], has better spatial resolution and less
noise than EEG, but poor temporal resolution. Since near-
infrared light does not interfere with electrical signals, the
synchronous measurement of EEG and fNIRS has become
increasingly popular [14]. Studies have shown that hybrid EEG-
fNIRS BCI systems achieve improved classification accuracy
compared to single-modality BCI systems by employing
appropriate fusion methods [15].

Despite progress in EEG-fNIRS BCI research achieved
through traditional machine learning [16], [17], [18], [19], [20],
[21], [22] and deep learning methods [23], [24], two core
challenges persist. First, current models still struggle to
effectively capture the spatiotemporal coupling features and
cross-modal correlations between EEG and fNIRS signals.
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Second, they treat the representation of each modality in a
holistic learning manner without decomposing the features into
distinct components (e.g., common and modality-specific
representations). This oversight often results in noise or
redundancy due to the inherent heterogeneity across modalities,
which ultimately leads to suboptimal and unrefined multimodal
representations.

To address the abovementioned challenges, we propose a
novel disentangled multimodal spatiotemporal learning (DMSL)
method for hybrid EEG-fNIRS BCI systems. DMSL is
designed to simultaneously capture multimodal spatiotemporal
coupling features and disentangle modality-specific and
common representations, thus providing more refined and
effective multimodal representations. Notably, DMSL adopts a
hybrid fusion method that synergistically integrates the inherent
capability of early fusion in modeling inter-modality
relationships with the distinctive strength of late fusion in
preserving intra-modality information. In contrast to previous
methods [25], [26], which apply disentangled representation
learning to raw modalities, we are the first to apply this
technique to enhanced modalities—those enriched with cross-
modality information. This innovative approach enables richer
and more precise feature extraction, as demonstrated by our
experimental results.

The main contributions of our work can be summarized as
follows:

1) We propose a novel multimodal learning framework
that simultaneously performs multimodal
spatiotemporal coupling and disentangled
representation learning within a unified structure.

2) We design a multimodal attention module that uses one
modality to iteratively extract complementary features
from the hybrid modality, integrating them via residuals
to improve robustness.

3) Wedevelop an adaptive graph convolution module with
multi-branch mapping and attention fusion to capture
complex spatiotemporal patterns.

4) Experiments demonstrate that DMSL achieves state-of-
the-art performance on mental arithmetic, motor
imagery, and emotion recognition tasks.

The remainder of this article is organized as follows.
Section II presents a review of the related work. Section III
briefly introduces the adopted datasets for evaluation. Section
VI presents the proposed DMSL in detail. The experimental
results and analysis are discussed in Section V. Finally, the
conclusions are summarized in Section VI.

Il. RELATED WORK

Given the complexity of EEG and fNIRS signals—which
originate from multiple brain regions and exhibit temporal
fluctuations—researchers have developed various approaches
to harness their spatiotemporal information [16], [17].
Traditional machine learning methods, such as Linear
Discriminant Analysis (LDA), Support Vector Machines
(SVM), and k-Nearest Neighbors (k-NN), are widely adopted
in hybrid EEG-fNIRS BCI systems. These methods primarily

rely on feature-level or decision-level fusion, where manually
extracted features from EEG and fNIRS, or their respective
decision scores, are combined to boost classification
performance [18], [19], [20], [21], [22]. However, their heavy
reliance on manual feature engineering limits their ability to
effectively capture the intricate spatiotemporal dynamics
inherent in EEG and fNIRS signals.

The rise of deep learning has driven significant
breakthroughs in hybrid EEG-fNIRS systems. Many current
deep learning methods employ late fusion, where features
extracted from EEG and fNIRS are merged in the later stages
[23], [24]. Yet, late fusion often fails to capture the inherent
temporal and spatial correlations between the two modalities,
resulting in suboptimal classification performance. As a result,
recent efforts have shifted toward early fusion techniques,
which integrate modalities at an earlier stage (e.g., raw signals
or low-level features) to more effectively model inter-modality
relationships [27], [28], [29]. Notably, methods like [28] and
[29] address the alignment challenge posed by EEG and fNIRS
(e.g., differing temporal resolutions and recording locations)
using interpolation-based approaches. Unfortunately, this
introduces additional noise, increases model complexity, and
may ultimately degrade overall performance.

Recent progress in spatiotemporal and multimodal
methodologies has further advanced this field. For example,
STA-Net [30] focused on spatial-temporal alignment to
improve hybrid EEG-fNIRS decoding; Bunterngchit et al. [31]
introduced selective channel representation combined with
spectrogram  imaging for simultaneous EEG-fNIRS
classification; and ASTDF-net [32] demonstrated the value of
attention-based spatial-temporal dual-stream fusion for EEG-
only emotion recognition—providing valuable insights for
multimodal learning design. These advances have promoted the
development of EEG-fNIRS BCIs, but several critical
challenges remain. STA-Net [30] fails to capture deep
spatiotemporal coupling features, Bunterngchit et al. [31] adopt
a holistic learning approach without feature decomposition that
introduces redundancy, and ASTDF-net [32], which only
targets EEG, cannot model inter-modal correlations.

Ill. DATASETS

This study adopted the 2017 Berlin Open Dataset HBCI [20]
and the ENTER dataset [33] to evaluate our model.

(a) HBCI Dataset

The HBCI dataset includes 29 subjects (28.5+3.7 years). The
experimental paradigm is presented in Figure 1 (a). Every subject
completed 6 sessions, including 3 motor imagery (MI) sessions
and 3 mental arithmetic (MA) sessions, and each session was
composed of 20 trials. Each trial began with a 2-second visual
introduction of the task, then there was a 10 s task period and
concluded with a randomly allocated rest period of 15 to 17
seconds.

EEG and fNIRS data were collected simultaneously, with
sampling frequencies of 1000 Hz for EEG and 12.5 Hz for fNIRS.
The electrode positions are illustrated in Figure 1 (b). EEG
signals were recorded from 30 channels, while fNIRS signals
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were collected from 36 channels, consisting of 14 transmitters
and 16 receivers.

We split the data into two datasets based on the completed
tasks: the MA dataset (baseline and mental arithmetic) and the
MI dataset (left-hand motor imagery and right-hand motor
imagery). We downsampled the EEG to 200Hz and the fNIRS to
10Hz, then divided both signals into 3-second segments starting
from the task onset, with a 1-second time step. Thus, the sizes of
the EEG signals and fNIRS signals were 30 channelsx600 times
and 72 channelsx30 times, respectively, where the fNIRS data
were stacked by HbO and HbR in the channel dimension, and
there were a total of 600 samples (10 segmentsx30 trialsx2 tasks)
for each subject.

(b) ENTER Dataset

The ENTER dataset, collected and organized by researchers
from Taiyuan University of Technology (TYUT), is an EEG-
fNIRS dataset for emotion recognition. The channel
distributions are shown in Figure 1 (c). It utilizes 64 EEG
channels and 18 fNIRS channels, and was collected from 50
college students (25 males, aged 22.92+1.71; 25 females, aged
24.12+1.67) while they watched emotional video clips. The
EEG data were recorded at a sampling rate of 1000 Hz with 64
channels, and the fNIRS data were recorded at a sampling rate
of 11 Hz with 18 channels. The task is a four-class emotion
recognition: sad, happy, calm and fear.

Similarly, we downsampled the EEG to 200Hz and the fNIRS
to 10Hz, then divided both signals into 3-second segments
starting from the task onset, with a 1-second time step. Thus, the
sizes of the EEG signals and fNIRS signals were 62
channelsx600 times and 36 channels x 30 times, respectively,
where the fNIRS data were stacked by HbO and HbR in the
channel dimension, and we extract a portion of the data, with a
total of 600 samples (10 segmentsx60 trials) for each subject.

V. METHODS

A. Overview

Figure 2 depicts the overall framework of the proposed DMSL.
The DMSL consists of four modules: 1) a channel reconstruction
module that generates rich spatiotemporal patterns for each
modality; 2) a multimodal attention module that
comprehensively captures inter-modality correlations and

(b) (c)
Fig. 1. (a) The paradigm of the experiment, in which M task includes left-hand motor imagery (LF) and right-hand motor imagery (RI), and
MA task includes baseline (BL) and mental arithmetic (MA). (b) The positions of the EEG electrodes (blue and black dots) and fNIRS channels
(black lines) in the MA and MI datasets. (c) The positions of EEG electrodes (blue dots) and fNIRS channels (red lines) in the ENTER dataset.

enhances the representations for each modality; 3) a multi-branch
graph convolutional module with modality consistency and
disparity constraints for disentangled representation learning and
effective spatiotemporal coupling feature capture; and 4) a
classification module that adaptively fuses the disentangled
representations and performs task predictions.

B. Channel Reconstruction Module

The variation in cognitive processes in the brain is reflected in
the activation levels across different timestamps and brain
regions. Taking motor imagery as an example, there are different
stable patterns when imagining the left or right hand at specific
time nodes or brain regions [34]. To effectively explore intricate
cognitive patterns, we design the feature extraction module by
decomposing the 2D convolution operation into two 1D layers.

Assume E(© is the input from the EEG, and F(® is the input
from the fNIRS, where E(® € R¢*%, F(© g R2r*Sf Here,
Coy is the number of channels, and So is the number of
sampling points. We reconstruct channels by adding a dimension
of depth, with each reconstructed channel getting different
information from the original inputs.

For the EEG sub-model, as outlined in Table I, the specific
formulas of the two convolution layers are as follows:

T-1
EfGj) = Y WEALDEOG +0+bE, (D
t=0
K Ce
ES(L)) = ) ) WE G DEG,)) + b, @)
k=1i=1

i=123,..,C;j=123,..,5
k1=123,..,K.
Here, W% € R denotes the one-dimensional filter used for
temporal convolution (with T = 25 as in [34]). W5* € RC*1
represents the one-dimensional filter for spatial convolution
across the C, channels. b¥ and b} are the bias terms for each
respective layer. The output of the first layer is denoted as
E,={E¥}K_, € REK*Cex(Se=T+1) and the final output is given
by EZ — {Elz}{<:1 1= ]RKXlX(Se—T*'l).
The first two layers focus on time dimension and electrode
channel interactions, respectively, followed by batch
normalization and the use of ELUs for nonlinearity. The third

-T+1;
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Fig. 2. Framework of the proposed DMSL model. The entire framework consists of four parts: (1) The Channel Reconstruction Module generates
features with rich spatiotemporal patterns for each modality. (2) The Multi-modal Attention Module comprehensively captures inter-modal
correlations and enhances the representation of each modality. (3) The Multi-branch GCN Module with modality consistency and disparity
constraints is used for disentangled representation learning and capturing effective spatiotemporal coupled features. (4) And the Classification
Module adaptively fuses the disentangled representations and performs task prediction.

layer does average pooling to reduce overfitting and complexity
(with K = 40 as in [34]). Finally, the feature map from the
convolution module is reordered by squeezing and transposing
dimensions, and all feature channels at each time point are input
as tokens into the subsequent module.

For the fNIRS sub-model, we perform a similar operation, as
shown in Table I. We design the kernel sizes to match the feature
dimensions of fNIRS with those of EEG, simplifying the
calculation. Since fNIRS has a low time resolution and does not
contain much information in the frequency domain, only two
convolution modules and rearrangement are used for fNIRS
branches in the embedding layer.

After passing through the feature extractor of the two sub-
models, we obtain E® and F(V for the two modalities. Here,
E® e RMK  and FM € RM*K serve as the preliminary
extracted features input to the subsequent multimodal attention
module, with M denoting the number of time points.

C. Multi-modal Attention Module

Considering that the primary feature of these two modalities
contains redundant and complementary information, a simple
concatenation may introduce irrelevant information and result in
suboptimal performance. Inspired by MulT [35], we propose a
Multi-modal Attention module to facilitate data exchange
following the feature extraction of the channel reconstruction
module. Notably, MulT is mainly applied to unaligned multi-
modal language sequences, while our module is for hybrid
EEG-fNIRS BCI systems and aims to enhance the single-modal
feature representation by leveraging the hybrid modality in time
series.

Specifically, the Multi-modal Attention Module consists of
two stages: one is the feature concatenation (CAT) layer, and the
other is the Modality Attention Interaction (MAI) modules

connected in series, as shown in Figure 2. In the MAI module,
the multimodal features initially fused by concatenation will be
transformed into a set of different key/value pairs, so as to
conduct dynamic attention interactions with the corresponding
single modalities (queries). This design allows the queries to
focus on the intrinsic properties of the single modalities, while
guiding the model to complement fNIRS with temporal details
and EEG with spatial localization from the hybrid modalities. At
each layer of the MAI module, the single-modal branches will
update their sequences through the multi-head attention and
residual structures.

TABLE |
THE STRUCTURE OF THE FEATURE EXTRACTION LAYER
Layer Layer In Out kernel stride
Temporal
Coliw 1 K (1,25) (1,1
EEG Spatial Conv K K (C,,1) 1,
embedding 4 o pooling K K (1,75) (1,25
Rearrange (K,1,M) - (M,K)
Temporal
fNIRS Col:w ! Kk (1,10) (L1
embedding Spatial Conv K K (2G¢,1) (1,1)
Rearrange (K,1,M) -» (M,K)

After passing through the channel reconstruction module, we
obtain a pair of preliminary features of the two modalities,
represented as UM € {EM, F(M} € RM*X | By concatenating
them, we obtain the hybrid features of the two modalities, P =
[EW,FD] € R?M*K  We then embed P into two spaces,
denoted as K = LN(P) and V = LN(P), while defining the
query for each block [ as Q¥ = LN (UW), where LN represents
layer normalization, [ = 1, ..., N and N is the number of blocks.
The attention interaction for the /-th block is defined as follows:

Uy’ = Concat(head(’, heady’, ..., head WS, (3)



0]

Q(l)w(l} K wO\T
head = softmax (% (VW,(B , 4)

where / represents the number of heads, W € RK*K is the

output  projection  matrix of the /-th  block,
Ws‘)l., Wgcl)l and Wl(,lz € R¥*% are the projection matrices for

queries, keys, and values, respectively, and d, = K/h is the
dimension of the key vector. Specifically, the attention score
matrix softmax(-) € RM*2M calculated in formula (3) is
utilized to gauge the extent of attention that the i-th time step
within the single modality directs towards the j-th time step of
the hybrid modality. Accordingly, the i-th time step of Ugl) in
formula (3) represents the weighted aggregate of the elements
in V, where the weight is ascertained by the i-th row of
softmax(-).
Next, the two residual processes in the /-th block are
represented by the forward propagation:
U = LN(U®) +Uud, (5)
v = re (LN(UY)) + U, 6)
where FC is the and UWD g
{E(l+1),F(l+1)} € RMXK.
Finally, the output H € {H, H;} € R of the two
modalities is represented as:

(Ho H} = {(EY)", (FO)', @)

The advanced features learned through the MAI module have
a more comprehensive fusion feature representation, which can
improve the expression ability and generalization ability of
features.

D. Multi-branch Graph Convolution Module

At the end of the MAI module, the results of the two
modalities have potential relevance and differences in
spatiotemporal patterns. We further use a multi-branch graph
convolution module to explicitly extract the complex features
contained in H € {He,Hf}. This enables us to balance these

feedforward layer,

features, assigning greater weights to more conducive features,
and less weights to those that have confusing properties [36],
[37].

Specifically, at this stage, the output representations of the
MAI module are mapped to two distinct GCN branches: the
common GCN branch and the private GCN branch, as depicted
in Figure 2. The output dimensions of GCN satisfy M,,; =
round (0.85 X M), as this value yields the best performance
during hyperparameter tuning.

The common GCN branch employs a parameter-sharing

encoding function Cr)() to learn the common
representations  Z, € R\Mout and Z,, € R*Mout  The
formulas are as follows:
Z, = C(E,F)(He; 0°), ®)
Zep = Cpry(Hyp; 0°), ©)

where Cg ) (*) is based on a graph convolution network, and
6° represents its shared parameters.
The private branch for the EEG modality uses the private

encoding function Pg(-) with the parameter 8 to learn the
private representation Z, € RX*Mout . Similarly, the private
encoding function P (+) with the parameter 6}? for the fNIRS
modality learns the private representation Z, € R*Mout_ The
formulas are as follows:

ZEZPE(HQ;HE)! (10)

Zp = Pp(Hg; 07), (11)
where Pg(+) and Pg () are also realized by graph convolution
networks.

The specific implementation of the graph convolution
network is as follows. For the feature representation H =
[RY, h?,...,RX]T € RE¥*M  we dynamically construct a graph
structure G = (A, H) for each sample. This graph structure
enables the model to learn the associations between different
convolutional kernel channels. Following [38], the adjacency
matrix is defined as:

A = ®pory(Apgse © MASK), (12)
where the ReLU activation function is deployed to guarantee
the non-negative property of the adjacency matrix, o denotes
element-wise multiplication. We presuppose that the node
linkage is undirected, and the elemental adjacency matrix of the
graph structure 4,4, € RF*K is symmetric, represented by:

h' - h! h' - X
Apase = i H )

hX . h' hX . h¥
and - is the dot product. From a neuroscience perspective, the
dot-product of feature vectors from reconstructed channels
(integrating spatiotemporal info) quantifies similarity between
spatiotemporal synergetic patterns, aligning with dynamic
neural coupling in cognitive tasks [28], [38]. MASK € RX*X ig
a trainable symmetric matrix, which is initialized as MASK =

%(f + &), where E~V(0,02).
We adopt the normalization of the adjacency matrix, which
is denoted as:

(13)

A= D'%(A + I)D'%, (14)
where D = diag(d,, d,, ..., dg) is the degree matrix of A, with
dm = XnA(m,n), and I is the identity matrix.

With the feature matrix H and the normalized adjacency
matrix A € RK*K constructed, the GCN layer is formulated as:

Z = ®pey(A(HW — b)), (15)
where W € RM*Mout is the weight matrix, b is the bias vector.

We interpret the two types of representations from a
neuroscientific perspective as follows.

Common representations primarily capture the cross-modal
neural synergy that is simultaneously expressed in EEG and
fNIRS signals. These representations may reflect neural
processes occurring in brain regions where the two modalities
exhibit task-related co-activation [39], [40], such as frontal lobe
activation during mental arithmetic [30], sensorimotor
activation during motor imagery [41], and the frontoparietal
activation during emotion recognition [42].

In contrast, private representations are extracted from
modality-specific GCN branches and are expected to
complement the shared subspace by encoding unique



physiological signatures dominated by each respective
modality. Given the high temporal resolution of
electrophysiology, EEG-based private representations are
likely to emphasize rapid neural oscillation dynamics across
specific frequency bands (e.g., beta, or gamma) [10].
Conversely, fNIRS-based representations are likely to capture
spatially distributed hemodynamic changes, specifically the
distinct concentration shifts of oxygenated (HbO) and
deoxygenated (HbR) hemoglobin associated with sustained
cortical activation [12].

E. Classification Module

Now we have two specific embeddings Z, € R¥*Mout and
Z; € R¥*Mout | as well as two general embeddings Z,, €
]RKXMaut and Zcf € ]RKXMaut .
channel dimension and feature dimension to convert the data
into vectors with a length of d = K X M,,;. Considering that
sample labels can be associated with one or even a combination
of them, we use the attention mechanism to learn their
corresponding importance, as follows:

(ae, ace) = att(ve, vee), (16)

(o, ar) = att(vy, ver), a7
where v,,v,, € R'*? represent the normalized embeddings
obtained by applying L,-normalization to the flattened Z, and
Z., , and a, and o, represent the attention values between
them. Similarly, o and a.f follow the same principle.

We further combine their

We use a shared weight vector ¢ € R%*! to obtain the
attention value w, as follows:
We = V(. (18)
Similarly, we can get the attention value w. of the
embedded vector v.,. Then, we use the softmax function to
normalize the attention values w, and w., to obtain the final
weight:
exp(we)
exp(we)+exp(wee) (19)
A larger a, indicates that the corresponding embedding is
more important. Similarly, we can get a., = softmax(w..).
Then, we combine these two embeddings to get the final

a, = softmax(w,) =

embedding vg,,,.:
VEout = Qe " Ve + Ace " Vee- (20)
After obtaining vg,,; € R4, we further perform a linear
transformation to obtain the class predictions:

Yeout = SOftmax(Vge W, + be), (21
where W, € R¥*€ | ypo..r € R™C | and C is the number of
classes. Similarly, given vy and v r, we obtain Ypq,: € R1*¢
by following the same steps in Egs. (18)-(21).

Subsequently, we add the two predictions together to obtain
the final output:

Y = Veouwt®Yrour) /2, (22)
where @ represents the element-wise addition. Here, y =
[9.] € R, with §. representing the probability of belonging
to category c.

F. Objective Optimization

1) Task loss
In the case of NIRS and EEG data, it is easy to over-match

the results of classification, and label smoothing [43] can
prevent the model from becoming over-confident and improve
generalization.

During training, we calculate the cross-entropy loss for each
batch of samples with size B (represented as ¥ = [9, .| € RE*¢
and take the average within the batch:

Leask = 52521 251 —vES log (D), (23)
where 9, . is the predicted probability of the b-th sample in the
batch for category c, y{;fc is the smoothed true probability for
the same sample and category.

2) Consistency loss

For the two output embeddings Z, and Zf of Cg ), we use
a consistency constraint to further enhance their commonness.

Firstly, the embedded matrices are normalized to v, and
V. Let Vi, € R®*® and V; € R¥*? be the matrices whose
rows denote V., and v.s, where B denotes the batch size. Then,
two matrices, S, € R®*® and §; € R®*® | are utilized to
capture the similarity between samples:

S. = VceVge' (24)
Sf = chVZf- (25)

Consistency means that the distance between the two
similarity matrices is narrowed to obtain the following
constraints:

lse=sll;
Lo="—F E (26)
where ||*||% is the squared Frobenius norm.

3) Difference loss
We apply orthogonal constraints to ensure that the graph
convolution of private channels and common channels captures
different aspects of the input. Let V, € R®*¢ and V; € RE*¢
be the matrices whose rows correspond to v, and v, where B
is the batch size. The topological relationships between the
representations of the private and common channel outputs are
aligned by minimizing the square F-norm of the difference
matrix, normalized by the matrix size:
2
L, = veviely  1Vsverl,
B? B?
4) Overall objective function
Combining the task loss L4, the consistency loss L., and
the difference loss L, the final calculation formula is:
L= Lygs +ale +BLy,
where a, § are trade-off parameters.

@7

(28)

V. EXPERIMENTS

A. Experimental Setup

To assess our proposed DMSL, benchmark datasets
involving MI, MA and emotion recognition tasks are employed,
as described in Section III. We adopt standard protocols [9],
[29], [33] to evaluate the model performance. Specifically, we
utilize leave-one-subject-out cross-validation (LOSO-CV) to
verify individual differences and model generalization [44]. In
each fold of the cross-validation, the data of one subject served
as the test set, while the remaining subjects formed the training
set. This process was repeated until all subjects had been tested.



TABLE 1l
RESULTS OF SUBJECT INDEPENDENT COMPARISON ALGORITHMS ON THE MA, MI, AND ENTER DATASET
Model Signal Type MA Ml ENTER

ACC(%) F1(%) ACC(%) F1(%) ACC(%) F1(%)
LSTM [47] EEG 61.46** £ 6.35 60.63%* 52.70%% £ 2 45 52.35%* 33.30%* + 8.49 31.28%*
fNIRS 65.35%* £ 6.39 64.86%* 59.32%*% £ 5.06 59.07%* 38.30%* £13.32 36.74%**

EEGNet [48] EEG 67.66%* £9.17 65.30%* 65.32 £11.60 64.71 41.25% +£8.31 39.24*
fNIRS 69.29%* +£ 6.92 68.92%* 60.47*%* £5.81 59.97%** 37.20%* £ 8.13 33.62%*
TSCeption [49] EEG 67.90*%* £ 8.34 66.88%* 63.12*%* £+ 8.66 62.01%* 36.50%* £ 726 31.93**
fNIRS 66.11*%* +6.12 65.74%* 58.81** £ 447 58.24%** 40.20%* +£11.66 37.52%*
fNIRSNet [9] fNIRS 69.76%* +£7.41 69.48* 60.14** + 6.49 59.74%* 38.25%* £ 9 45 35.29%*
EF-Net [50] EEG+{NIRS 66.78%* +7.04 66.16%* 57.47%*% +3.81 56.94%* 43.73 £11.26 41.02*

pth-PF [24] EEG+{NIRS 71.29%* £ 6.07 71.02% 62.08%* +£5.83 61.50%* 43.93 +8.22 41.71
M2NN [51] EEG+{NIRS 67.16%*%+ 727 66.75%* 56.76*%* £ 5,58 52.02%* 41.80* £4.86 38.03%*
EFMLNet [27] EEG+{NIRS 71.03%*+ 3.51 70.86%* 62.10%* £ 4.69 61.41%* 39.23** £ 570 35.31%*
Dual-EEGNet [52] EEG+{NIRS 73.09% + 7.25 72.61%* 67.65 £9.64 67.10 42.68% + 7.40 39.81*
DMSL (ours) EEG+{NIRS 75.43 £7.28 75.04 68.24 +7.86 67.75 4540 +7.74 43.60

1) represents the significant differences (p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni correction) compared to the DMSL.
2)**” represents the significant differences (p < 0.001, Wilcoxon signed-rank test with Holm-Bonferroni correction) compared to the DMSL.

The reported results are the average of all subjects. We utilize
accuracy (ACC) and macro Fl-score (F1) [9] to measure the
model's performance.

B. Parameter Settings

To evaluate our model more comprehensively, it is necessary
to control certain variable factors. We set the batch size of the
training set to 40 and the number of epochs to 60. Our model
employs the AdamW optimizer [45], initialized with a learning
rate of 0.001. To expedite training and enhance performance,
we mitigate flooding levels during specific periods to maintain
a continuous regularization effect [46]. We choose the
consistency coefficient o and the difference constraint
coefficient B from the candidate sets {0.01,0.1,1,3, 10,30}.
Through hyperparameter tuning, the optimal values are
determined as =10 and =3 for both MA and MI datasets, and

0=10 and 3=0.1 for the ENTER dataset. This configuration

effectively balances modality consistency L. and disparity
constraints L.

C. Baselines

To rigorously evaluate the proposed DMSL, we compare it
against established unimodal deep learning networks and state-
of-the-art (SOTA) hybrid EEG-fNIRS frameworks.

For unimodal comparisons, we selected LSTM [47], which
utilizes gating mechanisms for sequence dependency modeling;
EEGNet [48], a compact architecture employing depthwise
separable convolutions; and TSCeption [49], which fuses
multi-scale convolutions with attention mechanisms. For
fNIRS-specific analysis, we include fNIRSNet [9], designed
with DHR and DWS convolutions to capture hemodynamic
patterns.

For multimodal comparisons, we benchmark against five
SOTA methods representing diverse fusion strategies: EF-Net
[50] and pth-PF [24] both employ CNN-based extraction with
late fusion, where the latter utilizes kernel tensor multiplication
for EEG, HbO, and HbR streams. M2NN [51] introduces an
end-to-end framework integrating spatio-temporal learning

with multi-task capabilities. EFMLNet [27] leverages
Transformer-based multi-head attention to model cross-modal
mutual learning between temporal EEG and spatial fNIRS
features. Finally, Dual-EEGNet [52] implements an early
fusion strategy via a Y-shaped architecture rooted in the
EEGNet framework.

D. Classification Results

In the LOSO-CV experiment, the relevant results of the
average accuracy (avg + std%) and F1 score of the test set are
shown in Table II. In addition, the Wilcoxon signed-rank test
with Holm-Bonferroni correction was used to analyze the
differences between DMSL and the baseline methods. We
define "*" to indicate a p-value less than 0.05, and "**" to
indicate a p-value less than 0.001. For single-modal EEG and
fNIRS models, the EEGNet and fNIRSNet models
demonstrated strong learning capabilities, and their
classification results were significantly better than those of the
traditional LSTM and CNN classifiers. For the multimodal
EEG+{NIRS model, the average accuracies of the DMSL model
on the MA, MI, and ENTER datasets were 75.43%, 68.24%,
and 45.40% respectively. Its classification performance was
significantly better than that of the vast majority of baseline
methods, with significant differences (Wilcoxon signed-rank
test with Holm-Bonferroni correction, p < 0.05). While
statistical significance was not observed for a few baselines,
DMSL consistently maintained the highest mean accuracy,
indicating superior robustness. Compared with Dual-EEGNet,
which ranked second in accuracy, DMSL improved the
accuracy by 2.34% and 0.59% on the MA and MI datasets,
respectively; on the ENTER dataset, compared with pth-PF,
which ranked second in performance, DMSL improved the
accuracy by 1.47%. This indicates that multimodal fusion and
our proposed strategy have enhanced the classification accuracy
and generalization ability of the model.

The confusion matrices in Figure 3 demonstrate that,
compared with Dual-EEGNet, the DMSL method significantly
enhances the classification accuracy of hybrid EEG-fNIRS data.
In the MA task, DMSL achieves higher accuracy in predicting
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Fig. 3. The confusion matrices of Dual-EEGNet and DMSL, where each column represents the true labels and each row represents the predicted
labels of the model. The results of the MA, MI, and ENTER datasets are shown, where MA and BL respectively denote mental arithmetic and
baseline, and Left and Right respectively denote the left hand and right hand in MI.

MA and BL states by integrating EEG and fNIRS modalities,
which compensates for the limitations of single-modal
approaches. In the MI task, DMSL also improves the
classification accuracy for left- and right-hand motor imagery,
with increased true positive (TP) and true negative (TN) rates,
showcasing its superior classification performance. For
emotion classification within the ENTER dataset context,
DMSL effectively discriminates between emotional states like
Sad, Happy, Calm, and Fear. It reduces misclassifications
across these affective categories, and thus proves its capability
in handling multi-dimensional emotional data analysis based on
hybrid modalities.

E. Ablation Studies

1) Importance of Modality.

Firstly, we delete modalities separately to explore the
performance of DMSL, as shown in Table IIl. To ensure
comparability, we retained the feature extractors and graph
convolutions of private channels in DMSL, only changed the
interactive attention to self-attention, and removed the graph
convolution of public channels, the attention mechanism, as
well as the consistency and difference loss functions. When the
EEG modality is deleted, the performance of the model
significantly declines, indicating that the EEG modality

TABLE Il
RESULTS OF ABLATION RESEARCH ON LOSO VALIDATION METHOD
Model Dataset MA Dataset MI Dataset ENTER
ACC =+ std ACC =+ std ACC =+ std
DMSL 7543 +£7.28 68.24 +7.86 4540 +7.74
Importance of Modality
w/o EEG 67.71 £6.20 59.98 £3.98 38.75 +10.20
w/o fNIRS 73.71 £8.72 66.28 £12.96 44.15+9.49
Importance of Constraint
w/o Ly 74.56 +7.49 67.61 £7.39 4523 +8.08
w/o L, 74.37 +7.00 67.86 +8.19 44,97 +8.33
w/o L.+Ly 73.05 +7.38 65.93 £7.46 44,53 +8.13
Importance of Different Components
w/o Phase 1 73.48 £6.99 60.26 +3.99 41.20+9.10
w/o Phase 2 7443 +£7.18 66.76 + 6.95 44.60 +£9.92
w/o CAT (Variant 1) 71.98 +£6.62 61.85+4.32 39.65+9.46
w/o CAT (Variant 2) 74.57 +£7.29 68.29 +8.42 42.08 £9.52

“w/o” represents removal for the mentioned factors.



dominates the multi-modal task. However, under the direction
of the hybrid features, the discriminative features contained in
it can be extracted effectively. In addition, compared with
multi-modal DMSL, the performance of single-modal is always
poorer. This indicates that our model can effectively extract the
complementary features among different modalities, which is
beyond the capabilities of single-modal models.

2) The importance of constraint.

We individually remove losses to verify the impact of
different constraints. When the difference loss (£,) is absent,
the model relies on the consistency loss (£.) to learn various
multimodal representations, and the model performance will
deteriorate. In addition, we observe that the consistency
constraint enhances model performance. When both constraints
are absent, the worst performance highlights the crucial role of
constraints in multi-branch representation learning.

3) The importance of different components.

We discuss the importance of different components. The key
improvement of the DMSL method is the addition of an
improved Multi-modal Attention module to learn fusion
features and a Multi-branch GCN module for disentangled
representation learning to capture complex spatiotemporal
relationships inherent in signals. Therefore, we conducted
ablation studies on the dataset, as shown in Table III, in which
the Multi-modal Attention module (Phase 1) and Multi-branch
GCN module (Phase 2) were deleted, respectively. It can be
seen that when Phase 1 is removed, the classification
performance of the model drops most significantly, with
decreases of 1.95%, 7.98%, and 4.20% on the MA, MI, and
ENTER datasets, respectively. The results indicate that the

multi-head attention mechanism is beneficial. Applying
disentanglement to the enhanced modalities, which are refined
through the multi-head attention mechanism, rather than
directly to the raw modalities, enables richer and more precise
feature extraction. When Phase 2 is deleted, the experimental
results will decline. This indicates that applying disentangled
representation learning can enhance the performance of feature
extraction.

In addition, we replace hybrid modal guidance with its single
modal version (denoted as ‘w/o CAT (Variant 1)’ in Table III).
The observed performance declines of 3.45%, 6.39%, and 5.75%
on the MA, MI, and ENTER datasets, respectively, further
confirm that without hybrid guidance, the extracted features
lack cross-modal complementarity. We also replace the hybrid
modal guidance with another single modal guidance (denoted
as ‘w/o CAT (Variant 2)’ in Table III). The observed
performance declines of 0.86% and 3.32% on the MA and
ENTER datasets, respectively, further confirms that our
improved strategy of enhancing single-modal branches with
hybrid modalities plays a more guiding role than the single-
modal enhancement strategy, thereby demonstrating the
superiority of our proposed MAI over MulT [35].

F. Visualization

To evaluate different methods’ capability in extracting
highly distinct features from EEG and fNIRS signals, we
employ the t-SNE technique [53] to visualize the features
generated in a 2D embedding space. Utilizing t-SNE, the high-
dimensional output from the final fully connected layer of all
training models is transformed into a two-dimensional feature
space for visual analysis. Figure 4 shows the t-SNE
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visualization (with class centroids clearly marked) of the
centralized common and private representations on the test set
for the three tasks. o = 0, p = 0 means there is no consistency
constraint and difference constraint, and vice versa. Red and
pink dots correspond to common representations, while green
and blue dots correspond to private representations. We
visualized common representations C_ = {Z cerZe f} and private
representations P_ = {Z e,Zf} of learning without or with
consistency loss and difference loss on three tasks.

When a=0,=0, as seen in Figure 4 (a)-(c), the
distributions of C_ and P_ sometimes overlap, and no clear
common representation cluster is formed. Conversely, when
a#0,+0, as shown in Figure 4 (d)-(f), where class
centroids of C_ are positioned to reflect integrated common
information, and the indistinct boundary reflects tight cross-
modal neural synergy. At the same time, for private
representations, as evidenced by the separate clusters of green
(Z.) and blue (Z;) dots and their distinct centroids, each
subspace specific to a mode is separable, where the difference

constraint eliminates the potential representation of redundancy.

To quantitatively demonstrate the disentanglement
performance, we introduce mutual information and
orthogonality metrics as shown in Figure 4. Mutual Information
measures the statistical dependence between common
representations, where a higher mutual information indicates a
greater degree of aggregation. Orthogonality quantifies the
angular  separation between common and private
representations, with values closer to 0 reflecting high
orthogonality. As shown in Figure 4, incorporating consistency
and difference constraints results in higher mutual information
and lower orthogonality across all tasks, demonstrating
improved feature disentanglement.

G. Parameter Sensitivity Analysis

We conduct a sensitivity analysis of parameters o and f to
gain a deeper understanding of their effects on model
performance, thus providing a strong reference for parameter
selection in practical applications. The results are presented in
Figure 5.

Parameter o: To evaluate the effect of o, we fixed 3 at 3 for
the MA and MI datasets, and at 0.1 for the ENTER dataset—
these values correspond to the optimal [ identified during
hyperparameter tuning. As o varies from 0.01 to 10.0, the
accuracies of MA and MI remain relatively stable, exhibiting
small fluctuations and an upward trend. However, when o
reaches 30.0, the accuracy of MI drops sharply, suggesting that
overly strong modality consistency constraints may interfere
with effective optimization of the task loss (i.e., classification
loss). In contrast, the ENTER dataset shows consistently low
and stable accuracy across all o values, indicating limited
sensitivity to this parameter.

Parameter 3: To evaluate the effect of B, we fix o at its
optimal value of 10 for all datasets. For the MA dataset, as 3
increases from 0.01 to 10.0, the accuracy first decreases slightly
and then increases and stabilizes. For the MI dataset, the
accuracy rises steadily when 3 ranges from 0.01 to 3.0, and
shows a downward trend when 3 exceeds 3.0. Regarding the
ENTER dataset, the model achieves optimal accuracy when B
=0.1. These results reflect that different datasets have varying
degrees of sensitivity to changes in B, and an appropriate range
of B values needs to be selected in practical applications to
ensure optimal model performance.

H. Computational Complexity Analysis

We rigorously analyze the model's computational complexity
(based on one batch), comparing it with existing BCI models.
As can be seen from Table IV, the DMSL model ranks second
in terms of the number of parameters and third in terms of
FLOPs among the compared models. Specifically, while
maintaining a relatively reasonable number of parameters and
FLOPs, DMSL (Ours) outperforms models such as Dual-
EEGNet and pth-PF in classification performance, achieving a
better balance between computational efficiency and
classification effectiveness. Moreover, compared with models
with a large number of parameters and FLOPs, DMSL (Ours)
has a significant advantage in terms of computational resource
consumption and is more suitable for deployment in resource-
constrained devices.

TABLE IV

THE NUMBER OF MODEL PARAMETERS
Model Parameters FLOPs
EF-Net 4.00M 27.18G
pth-PF 0.63M 0.50G
M2NN 5.36M 435G
EFMLNet 3.76M 14.80G
Dual-EEGNet 0.05M 0.77G
DMSL (Ours) 0.21M 1.96G
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VI. CONCLUSION

This paper introduces DMSL, a novel multimodal learning
framework that enables multimodal spatiotemporal coupling
and disentangled representation learning within a unified
structure. We propose a multimodal attention module to
comprehensively capture inter-modality correlations and
enhance the representations for each modality. Additionally, we
present a multi-branch graph convolutional module based on
reconstructed channels, incorporating modality consistency and
disparity constraints to facilitate disentangled representation
learning and effective spatiotemporal coupling feature capture.
Experimental results show that DMSL outperforms the state-of-
the-art EEG-fNIRS fusion method, exceeding the best baseline
by 2.34%, 0.59% and 1.47% on the MA, MI, and ENTER
datasets, respectively.  Furthermore, ablation studies
demonstrate the effectiveness of our fusion strategy and the
importance of consistency constraints. The t-SNE visualization
further indicates that our model has an excellent ability to
feature learning.

Overall, DMSL offers a flexible framework that can be
extended to other hybrid EEG-fNIRS BCI tasks, providing a
promising foundation for future research in multimodal and
spatiotemporal learning.
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