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Abstract—The hybrid EEG-fNIRS Brain-computer 
interface (BCI) combines the high temporal resolution of 
electroencephalography (EEG) with the high spatial 
resolution of functional near-infrared spectroscopy (fNIRS) 
to enable comprehensive brain activity detection. However, 
integrating these modalities to obtain highly discriminative 
features remains challenging. Most existing methods fail to 
effectively capture the spatiotemporal coupling features and 
correlations between EEG and fNIRS signals. Furthermore, 
these methods adopt a holistic learning paradigm for the 
representation of each modality, leading to unrefined and 
redundant multimodal representations. To address these 
challenges, we propose a disentangled multimodal 
spatiotemporal learning (DMSL) method for hybrid EEG-
fNIRS BCI systems, which simultaneously performs 
multimodal spatiotemporal coupling and disentangled 
representation learning within a unified framework. 
Specifically, DMSL utilizes a compact convolutional module 
with one-dimensional temporal and spatial convolution 
layers to extract complex spatiotemporal patterns from each 
modality and introduces a multimodal attention interaction 
module to comprehensively capture the inter-modality 
correlations, enhancing the representations for each 
modality. Subsequently, DMSL designs an adaptive multi-
branch graph convolutional module based on reconstructed 
channels to effectively capture the spatiotemporal coupling 
features, incorporating modality consistency and disparity 
constraints to disentangle common and modality-specific 
representations for each modality. These disentangled 
representations are finally adaptively fused to perform 
different task predictions. The proposed DMSL 
demonstrates state-of-the-art performance on publicly 
available datasets for mental arithmetic, motor imagery, and 
emotion recognition tasks, exceeding the best baselines by 
2.34%, 0.59%, and 1.47%, respectively. These results 
demonstrate the effectiveness of DMSL in improving EEG-
fNIRS decoding and its strong generalization ability in BCI 
applications. 

 
Index Terms—BCI, EEG, fNIRS, multimodal representation 

learning. 
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I. INTRODUCTION 

RAIN-computer interfaces (BCIs)[1] facilitate 

human-computer interaction by establishing direct 

communication between external devices and the 

brain, bypassing peripheral muscles. BCIs have found 

applications in a wide range of fields, including robot control, 

workload detection, and emotion recognition, playing a 

crucial role in helping patients with limb disability or other 

neuromuscular degeneration [2], [3], [4].  

BCIs utilize a variety of modalities, including 

stereoelectroencephalography (SEEG), functional magnetic 

resonance imaging (fMRI), electroencephalography (EEG), 

and functional near-infrared spectroscopy (fNIRS). Among 

these modalities, EEG and fNIRS have become prominent in 

both research and practical applications [5], [6], [7], [8], [9] due 

to their non-intrusive nature and relative ease of operation. 

Combining these two modalities enables a more comprehensive 

understanding of brain activity. EEG records brain activity via 

scalp electrodes [10], has good temporal resolution but limited 

spatial precision, and is susceptible to artifacts and noise [11]. 

In contrast, fNIRS measures cerebral blood flow and 

metabolism [12], [13], has better spatial resolution and less 

noise than EEG, but poor temporal resolution. Since near-

infrared light does not interfere with electrical signals, the 

synchronous measurement of EEG and fNIRS has become 

increasingly popular [14]. Studies have shown that hybrid EEG-

fNIRS BCI systems achieve improved classification accuracy 

compared to single-modality BCI systems by employing 

appropriate fusion methods [15]. 

Despite progress in EEG-fNIRS BCI research achieved 

through traditional machine learning [16], [17], [18], [19], [20], 

[21], [22] and deep learning methods [23], [24], two core 

challenges persist. First, current models still struggle to 

effectively capture the spatiotemporal coupling features and 

cross-modal correlations between EEG and fNIRS signals. 
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Second, they treat the representation of each modality in a 

holistic learning manner without decomposing the features into 

distinct components (e.g., common and modality-specific 

representations). This oversight often results in noise or 

redundancy due to the inherent heterogeneity across modalities, 

which ultimately leads to suboptimal and unrefined multimodal 

representations. 

To address the abovementioned challenges, we propose a 

novel disentangled multimodal spatiotemporal learning (DMSL) 

method for hybrid EEG-fNIRS BCI systems. DMSL is 

designed to simultaneously capture multimodal spatiotemporal 

coupling features and disentangle modality-specific and 

common representations, thus providing more refined and 

effective multimodal representations. Notably, DMSL adopts a 

hybrid fusion method that synergistically integrates the inherent 

capability of early fusion in modeling inter-modality 

relationships with the distinctive strength of late fusion in 

preserving intra-modality information. In contrast to previous 

methods [25], [26], which apply disentangled representation 

learning to raw modalities, we are the first to apply this 

technique to enhanced modalities—those enriched with cross-

modality information. This innovative approach enables richer 

and more precise feature extraction, as demonstrated by our 

experimental results.  

The main contributions of our work can be summarized as 

follows: 

1) We propose a novel multimodal learning framework 

that simultaneously performs multimodal 

spatiotemporal coupling and disentangled 

representation learning within a unified structure. 

2) We design a multimodal attention module that uses one 

modality to iteratively extract complementary features 

from the hybrid modality, integrating them via residuals 

to improve robustness. 

3) We develop an adaptive graph convolution module with 

multi-branch mapping and attention fusion to capture 

complex spatiotemporal patterns. 

4) Experiments demonstrate that DMSL achieves state-of-

the-art performance on mental arithmetic, motor 

imagery, and emotion recognition tasks. 

The remainder of this article is organized as follows. 

Section II presents a review of the related work. Section III 

briefly introduces the adopted datasets for evaluation. Section 

VI presents the proposed DMSL in detail. The experimental 

results and analysis are discussed in Section V. Finally, the 

conclusions are summarized in Section VI. 

II. RELATED WORK 

Given the complexity of EEG and fNIRS signals—which 

originate from multiple brain regions and exhibit temporal 

fluctuations—researchers have developed various approaches 

to harness their spatiotemporal information [16], [17]. 

Traditional machine learning methods, such as Linear 

Discriminant Analysis (LDA), Support Vector Machines 

(SVM), and k-Nearest Neighbors (k-NN), are widely adopted 

in hybrid EEG-fNIRS BCI systems. These methods primarily 

rely on feature-level or decision-level fusion, where manually 

extracted features from EEG and fNIRS, or their respective 

decision scores, are combined to boost classification 

performance [18], [19], [20], [21], [22]. However, their heavy 

reliance on manual feature engineering limits their ability to 

effectively capture the intricate spatiotemporal dynamics 

inherent in EEG and fNIRS signals. 

The rise of deep learning has driven significant 

breakthroughs in hybrid EEG-fNIRS systems. Many current 

deep learning methods employ late fusion, where features 

extracted from EEG and fNIRS are merged in the later stages 

[23], [24]. Yet, late fusion often fails to capture the inherent 

temporal and spatial correlations between the two modalities, 

resulting in suboptimal classification performance. As a result, 

recent efforts have shifted toward early fusion techniques, 

which integrate modalities at an earlier stage (e.g., raw signals 

or low-level features) to more effectively model inter-modality 

relationships [27], [28], [29]. Notably, methods like [28] and 

[29] address the alignment challenge posed by EEG and fNIRS 

(e.g., differing temporal resolutions and recording locations) 

using interpolation-based approaches. Unfortunately, this 

introduces additional noise, increases model complexity, and 

may ultimately degrade overall performance. 

Recent progress in spatiotemporal and multimodal 

methodologies has further advanced this field. For example, 

STA-Net [30] focused on spatial-temporal alignment to 

improve hybrid EEG-fNIRS decoding; Bunterngchit et al. [31] 

introduced selective channel representation combined with 

spectrogram imaging for simultaneous EEG-fNIRS 

classification; and ASTDF-net [32] demonstrated the value of 

attention-based spatial-temporal dual-stream fusion for EEG-

only emotion recognition—providing valuable insights for 

multimodal learning design. These advances have promoted the 

development of EEG-fNIRS BCIs, but several critical 

challenges remain. STA-Net [30] fails to capture deep 

spatiotemporal coupling features, Bunterngchit et al. [31] adopt 

a holistic learning approach without feature decomposition that 

introduces redundancy, and ASTDF-net [32], which only 

targets EEG, cannot model inter-modal correlations. 

III. DATASETS 

This study adopted the 2017 Berlin Open Dataset HBCI [20] 

and the ENTER dataset [33] to evaluate our model.  

(a) HBCI Dataset 

The HBCI dataset includes 29 subjects (28.5±3.7 years). The 

experimental paradigm is presented in Figure 1 (a). Every subject 

completed 6 sessions, including 3 motor imagery (MI) sessions 

and 3 mental arithmetic (MA) sessions, and each session was 

composed of 20 trials. Each trial began with a 2-second visual 

introduction of the task, then there was a 10 s task period and 

concluded with a randomly allocated rest period of 15 to 17 

seconds.  

EEG and fNIRS data were collected simultaneously, with 

sampling frequencies of 1000 Hz for EEG and 12.5 Hz for fNIRS. 

The electrode positions are illustrated in Figure 1 (b). EEG 

signals were recorded from 30 channels, while fNIRS signals 
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were collected from 36 channels, consisting of 14 transmitters 

and 16 receivers. 

We split the data into two datasets based on the completed 

tasks: the MA dataset (baseline and mental arithmetic) and the 

MI dataset (left-hand motor imagery and right-hand motor 

imagery). We downsampled the EEG to 200Hz and the fNIRS to 

10Hz, then divided both signals into 3-second segments starting 

from the task onset, with a 1-second time step. Thus, the sizes of 

the EEG signals and fNIRS signals were 30 channels×600 times 

and 72 channels×30 times, respectively, where the fNIRS data 

were stacked by HbO and HbR in the channel dimension, and 

there were a total of 600 samples (10 segments×30 trials×2 tasks) 

for each subject.  

(b) ENTER Dataset 

The ENTER dataset, collected and organized by researchers 

from Taiyuan University of Technology (TYUT), is an EEG-

fNIRS dataset for emotion recognition. The channel 

distributions are shown in Figure 1 (c). It utilizes 64 EEG 

channels and 18 fNIRS channels, and was collected from 50 

college students (25 males, aged 22.92±1.71; 25 females, aged 

24.12±1.67) while they watched emotional video clips. The 

EEG data were recorded at a sampling rate of 1000 Hz with 64 

channels, and the fNIRS data were recorded at a sampling rate 

of 11 Hz with 18 channels. The task is a four-class emotion 

recognition: sad, happy, calm and fear.  

Similarly, we downsampled the EEG to 200Hz and the fNIRS 

to 10Hz, then divided both signals into 3-second segments 

starting from the task onset, with a 1-second time step. Thus, the 

sizes of the EEG signals and fNIRS signals were 62 

channels×600 times and 36 channels × 30 times, respectively, 

where the fNIRS data were stacked by HbO and HbR in the 

channel dimension, and we extract a portion of the data, with a 

total of 600 samples (10 segments×60 trials) for each subject.  

IV. METHODS 

A.  Overview 

Figure 2 depicts the overall framework of the proposed DMSL. 

The DMSL consists of four modules: 1) a channel reconstruction 

module that generates rich spatiotemporal patterns for each 

modality; 2) a multimodal attention module that 

comprehensively captures inter-modality correlations and 

enhances the representations for each modality; 3) a multi-branch 

graph convolutional module with modality consistency and 

disparity constraints for disentangled representation learning and 

effective spatiotemporal coupling feature capture; and 4) a 

classification module that adaptively fuses the disentangled 

representations and performs task predictions.  

B.  Channel Reconstruction Module  

The variation in cognitive processes in the brain is reflected in 

the activation levels across different timestamps and brain 

regions. Taking motor imagery as an example, there are different 

stable patterns when imagining the left or right hand at specific 

time nodes or brain regions [34]. To effectively explore intricate 

cognitive patterns, we design the feature extraction module by 

decomposing the 2D convolution operation into two 1D layers.  

Assume 𝑬(0) is the input from the EEG, and 𝑭(0) is the input 

from the fNIRS, where 𝑬(0) ∈ ℝ𝐶𝑒×𝑆𝑒 , 𝑭(0) ∈ ℝ2𝐶𝑓×𝑆𝑓 . Here, 

𝐶(⋅)  is the number of channels, and 𝑆(⋅)  is the number of 

sampling points. We reconstruct channels by adding a dimension 

of depth, with each reconstructed channel getting different 

information from the original inputs.  

For the EEG sub-model, as outlined in Table I, the specific 

formulas of the two convolution layers are as follows: 

𝑬1
𝑘(𝑖, 𝑗) = ∑ 𝑾1

𝑘(1, 𝑗)𝑬(0)(𝑖, 𝑗 + 𝑡)

𝑇−1

𝑡=0

+ 𝒃1
𝑘 , (1) 

𝑬2
𝑙 (1, 𝑗) = ∑ ∑ 𝑾2

𝑙,𝑘(𝑖, 1)𝑬1
𝑘(𝑖, 𝑗)

𝐶𝑒

𝑖=1

𝐾

𝑘=1

+ 𝒃2
𝑙 , (2) 

𝑖 = 1,2,3, … , 𝐶𝑒; 𝑗 = 1,2,3, … , 𝑆𝑒 − 𝑇 + 1; 
𝑘, 𝑙 = 1,2,3, … , 𝐾. 

 

Here, 𝑾1
𝑘 ∈ ℝ1×𝑇 denotes the one-dimensional filter used for 

temporal convolution (with 𝑇 = 25 as in [34]) . 𝑾2
𝑙,𝑘 ∈ ℝ𝐶𝑒×1 

represents the one-dimensional filter for spatial convolution 

across the 𝐶𝑒 channels. 𝒃1
𝑘  and 𝒃2

𝑙  are the bias terms for each 

respective layer. The output of the first layer is denoted as 
𝑬1={𝑬1

𝑘}𝑘=1
𝐾 ∈ ℝ𝐾×𝐶𝑒×(𝑆𝑒−𝑇+1), and the final output is given 

by 𝑬2 = {𝑬2
𝑙 }𝑙=1

𝐾 ∈ ℝ𝐾×1×(𝑆𝑒−𝑇+1). 

The first two layers focus on time dimension and electrode 

channel interactions, respectively, followed by batch 

normalization and the use of ELUs for nonlinearity. The third 

 

  

(a) (b) (c) 

Fig. 1. (a) The paradigm of the experiment, in which MI task includes left-hand motor imagery (LF) and right-hand motor imagery (RI), and 

MA task includes baseline (BL) and mental arithmetic (MA). (b) The positions of the EEG electrodes (blue and black dots) and fNIRS channels 

(black lines) in the MA and MI datasets. (c) The positions of EEG electrodes (blue dots) and fNIRS channels (red lines) in the ENTER dataset. 
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layer does average pooling to reduce overfitting and complexity  

(with 𝐾 = 40  as in [34]). Finally, the feature map from the 

convolution module is reordered by squeezing and transposing 

dimensions, and all feature channels at each time point are input 

as tokens into the subsequent module.  

For the fNIRS sub-model, we perform a similar operation, as 

shown in Table I. We design the kernel sizes to match the feature 

dimensions of fNIRS with those of EEG, simplifying the 

calculation. Since fNIRS has a low time resolution and does not 

contain much information in the frequency domain, only two 

convolution modules and rearrangement are used for fNIRS 

branches in the embedding layer. 

After passing through the feature extractor of the two sub-

models, we obtain 𝑬(1)  and 𝑭(1)  for the two modalities. Here, 

𝑬(1)  ∈ ℝ𝑀×𝐾   and  𝑭(1) ∈ ℝ𝑀×𝐾  serve as the preliminary 

extracted features input to the subsequent multimodal attention 

module, with 𝑀 denoting the number of time points.  

C.  Multi-modal Attention Module 

Considering that the primary feature of these two modalities 

contains redundant and complementary information, a simple 

concatenation may introduce irrelevant information and result in 

suboptimal performance. Inspired by MulT [35], we propose a 

Multi-modal Attention module to facilitate data exchange 

following the feature extraction of the channel reconstruction 

module. Notably, MulT is mainly applied to unaligned multi-

modal language sequences, while our module is for hybrid 

EEG-fNIRS BCI systems and aims to enhance the single-modal 

feature representation by leveraging the hybrid modality in time 

series.  

Specifically, the Multi-modal Attention Module consists of 

two stages: one is the feature concatenation (CAT) layer, and the 

other is the Modality Attention Interaction (MAI) modules 

connected in series, as shown in Figure 2. In the MAI module, 

the multimodal features initially fused by concatenation will be 

transformed into a set of different key/value pairs, so as to 

conduct dynamic attention interactions with the corresponding 

single modalities (queries). This design allows the queries to 

focus on the intrinsic properties of the single modalities, while 

guiding the model to complement fNIRS with temporal details 

and EEG with spatial localization from the hybrid modalities. At 

each layer of the MAI module, the single-modal branches will 

update their sequences through the multi-head attention and 

residual structures. 

After passing through the channel reconstruction module, we 

obtain a pair of preliminary features of the two modalities, 

represented as 𝑼(1) ∈ {𝑬(1), 𝑭(1)} ∈ ℝ𝑀×𝐾 . By concatenating 

them, we obtain the hybrid features of the two modalities, 𝑷 =

[𝑬(1), 𝑭(1)] ∈ ℝ2𝑀×𝐾 . We then embed 𝑷  into two spaces, 

denoted as 𝑲 = 𝐿𝑁(𝑷)  and 𝑽 = 𝐿𝑁(𝑷) , while defining the 

query for each block 𝑙 as 𝑸(𝑙) = 𝐿𝑁(𝑼(𝑙)), where 𝐿𝑁 represents 

layer normalization, 𝑙 = 1, … , 𝑁 and 𝑁 is the number of blocks. 

The attention interaction for the l-th block is defined as follows: 

𝑼1
(𝑙)

= 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1
(𝑙)

, ℎ𝑒𝑎𝑑2
(𝑙)

, … , ℎ𝑒𝑎𝑑ℎ
(𝑙)

)𝑾𝑜
(𝑙)
，    (3) 

 
Fig. 2. Framework of the proposed DMSL model. The entire framework consists of four parts: (1) The Channel Reconstruction Module generates 
features with rich spatiotemporal patterns for each modality. (2) The Multi-modal Attention Module comprehensively captures inter-modal 
correlations and enhances the representation of each modality. (3) The Multi-branch GCN Module with modality consistency and disparity 
constraints is used for disentangled representation learning and capturing effective spatiotemporal coupled features. (4) And the Classification 
Module adaptively fuses the disentangled representations and performs task prediction. 
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TABLE I 
THE STRUCTURE OF THE FEATURE EXTRACTION LAYER 

Layer Layer In Out kernel stride 

EEG 

embedding 

Temporal 

Conv 
1 𝐾 (1,25) (1,1) 

Spatial Conv 𝐾 𝐾 (𝐶𝑒,1) (1,1) 

Avg Pooling 𝐾 𝐾 (1,75) (1,25) 

Rearrange (𝐾, 1, 𝑀) → (𝑀, 𝐾) 

fNIRS 

embedding 

Temporal 

Conv 
1 𝐾 (1,10) (1,1) 

Spatial Conv 𝐾 𝐾 (2𝐶𝑓,1) (1,1) 

Rearrange (𝐾, 1, 𝑀) → (𝑀, 𝐾) 
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ℎ𝑒𝑎𝑑𝑖
(𝑙)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑸(𝑙)𝑾𝑞,𝑖

(𝑙)
(𝑲 𝑾𝑘,𝑖

(𝑙)
)𝑇

√𝑑𝑘
) (𝑽𝑾𝑣,𝑖

(𝑙)
)，       (4) 

where h represents the number of heads, 𝑾𝑜
(𝑙)

∈ ℝ𝐾×𝐾  is the 

output projection matrix of the l-th block, 

𝑾𝑞,𝑖
(𝑙)

,  𝑾𝑘,𝑖
(𝑙)

 𝑎𝑛𝑑 𝑾𝑣,𝑖
(𝑙)

∈ ℝ𝐾×𝑑𝑘  are the projection matrices for 

queries, keys, and values, respectively, and 𝑑𝑘 = 𝐾/ℎ  is the 

dimension of the key vector. Specifically, the attention score 

matrix 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(⋅) ∈ ℝ𝑀×2𝑀  calculated in formula (3) is 

utilized to gauge the extent of attention that the i-th time step 

within the single modality directs towards the j-th time step of 

the hybrid modality. Accordingly, the i-th time step of 𝑼1
(𝑙)

 in 

formula (3) represents the weighted aggregate of the elements 

in 𝑽 , where the weight is ascertained by the i-th row of 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(⋅).  

Next, the two residual processes in the l-th block are 

represented by the forward propagation: 

𝑼2
(𝑙)

= 𝐿𝑁(𝑼(𝑙)) + 𝑼1
(𝑙)

,                         (5) 

𝑼(𝑙+1) = 𝐹𝐶 (𝐿𝑁(𝑼2
(𝑙)

)) + 𝑼2
(𝑙)

,                 (6) 

where 𝐹𝐶  is the feedforward layer, and 𝑼(𝑙+1) ∈

{𝑬(𝑙+1), 𝑭(𝑙+1)} ∈ ℝ𝑀×𝐾 . 

Finally, the output 𝑯 ∈ {𝑯𝑒 , 𝑯𝑓} ∈ ℝ𝐾×𝑀  of the two 

modalities is represented as: 

{𝑯𝑒 , 𝑯𝑓} = {(𝑬(𝑁+1))
𝑇

, (𝑭(𝑁+1))
𝑇

}.               (7) 

The advanced features learned through the MAI module have 

a more comprehensive fusion feature representation, which can 

improve the expression ability and generalization ability of 

features. 

D.  Multi-branch Graph Convolution Module 

At the end of the MAI module, the results of the two 

modalities have potential relevance and differences in 

spatiotemporal patterns. We further use a multi-branch graph 

convolution module to explicitly extract the complex features 

contained in 𝑯 ∈ {𝑯𝑒 , 𝑯𝑓}. This enables us to balance these 

features, assigning greater weights to more conducive features, 

and less weights to those that have confusing properties [36], 

[37]. 

Specifically, at this stage, the output representations of the 

MAI module are mapped to two distinct GCN branches: the 

common GCN branch and the private GCN branch, as depicted 

in Figure 2. The output dimensions of GCN satisfy 𝑀𝑜𝑢𝑡 =
𝑟𝑜𝑢𝑛𝑑(0.85 × 𝑀), as this value yields the best performance 

during hyperparameter tuning.  

The common GCN branch employs a parameter-sharing 

encoding function 𝐶(𝐸,𝐹)(∙)  to learn the common 

representations 𝒁𝑐𝑒 ∈ ℝ𝐾×𝑀𝑜𝑢𝑡  and 𝒁𝑐𝑓 ∈ ℝ𝐾×𝑀𝑜𝑢𝑡 . The 

formulas are as follows: 

𝒁𝑐𝑒 = 𝐶(𝐸,𝐹)(𝑯𝑒 ; 𝜃𝑐),                              (8) 

𝒁𝑐𝑓 = 𝐶(𝐸,𝐹)(𝑯𝑓; 𝜃𝑐),                              (9) 

where 𝐶(𝐸,𝐹)(∙) is based on a graph convolution network, and 

𝜃𝑐 represents its shared parameters. 

The private branch for the EEG modality uses the private 

encoding function 𝑃𝐸(∙)  with the parameter 𝜃𝑒
𝑝

to learn the 

private representation 𝒁𝑒 ∈ ℝ𝐾×𝑀𝑜𝑢𝑡 . Similarly, the private 

encoding function 𝑃𝐹(∙) with the parameter 𝜃𝑓
𝑝

 for the fNIRS 

modality learns the private representation 𝒁𝑓 ∈ ℝ𝐾×𝑀𝑜𝑢𝑡 . The 

formulas are as follows:  

𝒁𝑒 = 𝑃𝐸(𝑯𝑒 ; 𝜃𝑒
𝑝

),                               (10) 

𝒁𝑓 = 𝑃𝐹(𝑯𝑓; 𝜃𝑓
𝑝

),                               (11) 

where 𝑃𝐸(∙) and 𝑃𝐹(∙) are also realized by graph convolution 

networks. 

The specific implementation of the graph convolution 

network is as follows. For the feature representation 𝑯 =
[𝒉1, 𝒉2, . . . , 𝒉𝐾]𝑇 ∈ ℝ𝐾×𝑀 , we dynamically construct a graph 

structure 𝒢 = (𝑨, 𝑯)  for each sample. This graph structure 

enables the model to learn the associations between different 

convolutional kernel channels. Following [38], the adjacency 

matrix is defined as: 

𝑨 = Φ𝑅𝑒𝐿𝑈(𝑨𝑏𝑎𝑠𝑒 ∘ 𝑴𝑨𝑺𝑲),                   (12) 

where the ReLU activation function is deployed to guarantee 

the non-negative property of the adjacency matrix, ∘ denotes 

element-wise multiplication. We presuppose that the node 

linkage is undirected, and the elemental adjacency matrix of the 

graph structure 𝑨𝑏𝑎𝑠𝑒 ∈ ℝ𝐾×𝐾  is symmetric, represented by: 

𝑨𝑏𝑎𝑠𝑒 = [
𝒉1 ⋅ 𝒉1 ⋯ 𝒉1 ⋅ 𝒉𝐾

⋮ ⋱ ⋮
𝒉𝐾 ⋅ 𝒉1 ⋯ 𝒉𝐾 ⋅ 𝒉𝐾

],                (13) 

and ⋅ is the dot product. From a neuroscience perspective, the 

dot-product of feature vectors from reconstructed channels 

(integrating spatiotemporal info) quantifies similarity between 

spatiotemporal synergetic patterns, aligning with dynamic 

neural coupling in cognitive tasks [28], [38]. 𝑴𝑨𝑺𝑲 ∈ ℝ𝐾×𝐾 is 

a trainable symmetric matrix, which is initialized as 𝑴𝑨𝑺𝑲 =
𝟏

𝟐
(𝝃 + 𝝃𝑇), where 𝝃~𝓝(0, 𝜎2). 

We adopt the normalization of the adjacency matrix, which 

is denoted as: 

𝑨̃ = 𝑫−
1

2(𝑨 + 𝑰)𝑫−
1

2,                          (14) 

where 𝑫 = diag(𝑑1, 𝑑2, … , 𝑑𝐾) is the degree matrix of 𝑨, with 

𝑑𝑚 = ∑ 𝑨(𝑚, 𝑛)𝑛 , and 𝑰 is the identity matrix. 

With the feature matrix 𝑯  and the normalized adjacency 

matrix 𝑨̃ ∈ ℝ𝐾×𝐾 constructed, the GCN layer is formulated as: 

𝒁 = Φ𝑅𝑒𝐿𝑈(𝑨̃(𝑯𝑾 − 𝒃)),                    (15) 

where 𝑾 ∈ ℝ𝑀×𝑀𝑜𝑢𝑡  is the weight matrix, 𝒃 is the bias vector. 

We interpret the two types of representations from a 

neuroscientific perspective as follows. 

Common representations primarily capture the cross-modal 

neural synergy that is simultaneously expressed in EEG and 

fNIRS signals. These representations may reflect neural 

processes occurring in brain regions where the two modalities 

exhibit task-related co-activation [39], [40], such as frontal lobe 

activation during mental arithmetic [30], sensorimotor 

activation during motor imagery [41], and the frontoparietal 

activation during emotion recognition [42]. 

In contrast, private representations are extracted from 

modality-specific GCN branches and are expected to 

complement the shared subspace by encoding unique 
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physiological signatures dominated by each respective 

modality. Given the high temporal resolution of 

electrophysiology, EEG-based private representations are 

likely to emphasize rapid neural oscillation dynamics across 

specific frequency bands (e.g., beta, or gamma) [10]. 

Conversely, fNIRS-based representations are likely to capture 

spatially distributed hemodynamic changes, specifically the 

distinct concentration shifts of oxygenated (HbO) and 

deoxygenated (HbR) hemoglobin associated with sustained 

cortical activation [12]. 

E.  Classification Module 

Now we have two specific embeddings 𝒁𝑒 ∈ ℝ𝐾×𝑀𝑜𝑢𝑡  and 

𝒁𝑓 ∈ ℝ𝐾×𝑀𝑜𝑢𝑡 , as well as two general embeddings 𝒁𝑐𝑒 ∈

ℝ𝐾×𝑀𝑜𝑢𝑡  and 𝒁𝑐𝑓 ∈ ℝ𝐾×𝑀𝑜𝑢𝑡 . We further combine their 

channel dimension and feature dimension to convert the data 

into vectors with a length of  𝑑 = 𝐾 × 𝑀𝑜𝑢𝑡. Considering that 

sample labels can be associated with one or even a combination 

of them, we use the attention mechanism to learn their 

corresponding importance, as follows: 

(α𝑒, α𝑐𝑒) = 𝑎𝑡𝑡(𝒗𝑒, 𝒗𝑐𝑒),                        (16) 

(α𝑓 , α𝑐𝑓) = 𝑎𝑡𝑡(𝒗𝑓 , 𝒗𝑐𝑓),                        (17) 

where 𝒗𝑒 , 𝒗𝑐𝑒 ∈ ℝ1×𝑑  represent the normalized embeddings 

obtained by applying 𝐿2-normalization to the flattened 𝒁𝑒  and 

𝒁𝑐𝑒  , and α𝑒  and α𝑐𝑒  represent the attention values between 

them. Similarly, α𝑓 and α𝑐𝑓 follow the same principle. 

We use a shared weight vector 𝒒 ∈ ℝ𝑑×1  to obtain the 

attention value 𝜔𝑒 as follows: 

𝜔𝑒 = 𝒗𝑒𝒒.                                  (18) 

Similarly, we can get the attention value 𝜔𝑐𝑒  of the 

embedded vector 𝒗𝑐𝑒 . Then, we use the softmax function to 

normalize the attention values 𝜔𝑒  and 𝜔𝑐𝑒  to obtain the final 

weight: 

𝛼𝑒 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜔𝑒) =
𝑒𝑥𝑝(𝜔𝑒)

𝑒𝑥𝑝(𝜔𝑒)+𝑒𝑥𝑝(𝜔𝑐𝑒)
.           (19) 

A larger 𝛼𝑒  indicates that the corresponding embedding is 

more important. Similarly, we can get 𝛼𝑐𝑒 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜔𝑐𝑒). 

Then, we combine these two embeddings to get the final 

embedding 𝒗𝐸𝑜𝑢𝑡: 

𝒗𝐸𝑜𝑢𝑡 = 𝛼𝑒 ∙ 𝒗𝑒 + 𝛼𝑐𝑒 ∙ 𝒗𝑐𝑒 .                     (20) 

After obtaining 𝒗𝐸𝑜𝑢𝑡 ∈ ℝ1×𝑑 , we further perform a linear 

transformation to obtain the class predictions: 

𝒚𝐸𝑜𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒗𝐸𝑜𝑢𝑡𝑾𝑒 + 𝒃𝑒),              (21) 

where 𝑾𝑒 ∈ ℝ𝑑×𝐶 , 𝒚𝐸𝑜𝑢𝑡 ∈ ℝ1×𝐶 , and 𝐶  is the number of 

classes. Similarly, given 𝒗𝑓 and 𝒗𝑐𝑓,  we obtain 𝒚𝐹𝑜𝑢𝑡 ∈ ℝ1×𝐶  

by following the same steps in Eqs. (18)-(21). 

Subsequently, we add the two predictions together to obtain 

the final output: 

𝒚̂ = (𝒚𝐸𝑜𝑢𝑡⨁𝒚𝐹𝑜𝑢𝑡)/2,                         (22) 

where ⨁  represents the element-wise addition. Here, 𝒚̂ =
[𝑦̂𝑐] ∈ ℝ1×𝐶 , with 𝑦̂𝑐 representing the probability of belonging 

to category c.  

F.  Objective Optimization 

1) Task loss 

In the case of fNIRS and EEG data, it is easy to over-match 

the results of classification, and label smoothing [43] can 

prevent the model from becoming over-confident and improve 

generalization.  

During training, we calculate the cross-entropy loss for each 

batch of samples with size B (represented as 𝒀̂ = [𝑦̂𝑏,𝑐] ∈ ℝ𝐵×𝐶) 

and take the average within the batch: 

ℒ𝑡𝑎𝑠𝑘 =
1

B
∑ ∑ −𝑦𝑏,𝑐

𝐿𝑆𝐶
𝑐=1 𝑙𝑜𝑔(𝑦̂𝑏,𝑐)𝐵

𝑏=1 ,            (23) 

where 𝑦̂𝑏,𝑐 is the predicted probability of the b-th sample in the 

batch for category c,  𝑦𝑏,𝑐
𝐿𝑆  is the smoothed true probability for 

the same sample and category. 

2) Consistency loss 

For the two output embeddings 𝒁𝑐𝑒  and 𝒁𝑐𝑓 of 𝐶(𝐸,𝐹), we use 

a consistency constraint to further enhance their commonness. 

Firstly, the embedded matrices are normalized to 𝒗𝑐𝑒  and 

𝒗𝑐𝑓 . Let 𝑽𝑐𝑒 ∈ ℝ𝐵×𝑑  and 𝑽𝑐𝑓 ∈ ℝ𝐵×𝑑  be the matrices whose 

rows denote 𝒗𝑐𝑒 and 𝒗𝑐𝑓, where B denotes the batch size. Then, 

two matrices, 𝑺𝑒 ∈ ℝ𝐵×𝐵  and 𝑺𝑓 ∈ ℝ𝐵×𝐵 , are utilized to 

capture the similarity between samples: 

𝑺𝑒 = 𝑽𝑐𝑒𝑽𝑐𝑒
𝑇 ,                                 (24) 

𝑺𝑓 = 𝑽𝑐𝑓𝑽𝑐𝑓
𝑇 .                                 (25) 

Consistency means that the distance between the two 

similarity matrices is narrowed to obtain the following 

constraints: 

ℒ𝑐 =
‖𝑺𝑒−𝑺𝑓‖

𝐹

2

𝐵2 ,                                 (26) 

where ‖∙‖𝐹
2  is the squared Frobenius norm. 

3) Difference loss 

We apply orthogonal constraints to ensure that the graph 

convolution of private channels and common channels captures 

different aspects of the input. Let 𝑽𝑒 ∈ ℝ𝐵×𝑑  and 𝑽𝑓 ∈ ℝ𝐵×𝑑 

be the matrices whose rows correspond to 𝒗𝑒 and 𝒗𝑓, where B 

is the batch size. The topological relationships between the 

representations of the private and common channel outputs are 

aligned by minimizing the square F-norm of the difference 

matrix, normalized by the matrix size: 

ℒ𝑑 =
‖𝑽𝑒𝑽𝑐𝑒

𝑇 ‖
𝐹

2

𝐵2 +
‖𝑽𝑓𝑽𝑐𝑓

𝑇 ‖
𝐹

2

𝐵2 .                   (27) 

4)  Overall objective function 

Combining the task loss ℒ𝑡𝑎𝑠𝑘, the consistency loss  ℒ𝑐, and 

the difference loss ℒ𝑑, the final calculation formula is: 

ℒ = ℒ𝑡𝑎𝑠𝑘 + 𝛼ℒ𝑐 + 𝛽ℒ𝑑,                     (28) 

where 𝛼, 𝛽 are trade-off parameters. 

V. EXPERIMENTS 

A.  Experimental Setup 

To assess our proposed DMSL, benchmark datasets 

involving MI, MA and emotion recognition tasks are employed, 

as described in Section III. We adopt standard protocols [9], 

[29], [33] to evaluate the model performance. Specifically, we 

utilize leave-one-subject-out cross-validation (LOSO-CV) to 

verify individual differences and model generalization [44]. In 

each fold of the cross-validation, the data of one subject served 

as the test set, while the remaining subjects formed the training 

set. This process was repeated until all subjects had been tested. 
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The reported results are the average of all subjects. We utilize 

accuracy (ACC) and macro F1-score (F1) [9] to measure the 

model's performance. 

B.  Parameter Settings 

To evaluate our model more comprehensively, it is necessary 

to control certain variable factors. We set the batch size of the 

training set to 40 and the number of epochs to 60. Our model 

employs the AdamW optimizer [45], initialized with a learning 

rate of 0.001. To expedite training and enhance performance, 

we mitigate flooding levels during specific periods to maintain 

a continuous regularization effect [46]. We choose the 

consistency coefficient α and the difference constraint 

coefficient β from the candidate sets {0.01, 0.1, 1, 3, 10, 30}. 

Through hyperparameter tuning, the optimal values are 

determined as α=10 and β=3 for both MA and MI datasets, and 

α=10 and β=0.1 for the ENTER dataset. This configuration 

effectively balances modality consistency ℒ𝑐  and disparity 

constraints ℒ𝑑.  

C.  Baselines 

To rigorously evaluate the proposed DMSL, we compare it 

against established unimodal deep learning networks and state-

of-the-art (SOTA) hybrid EEG-fNIRS frameworks. 

For unimodal comparisons, we selected LSTM [47], which 

utilizes gating mechanisms for sequence dependency modeling; 

EEGNet [48], a compact architecture employing depthwise 

separable convolutions; and TSCeption [49], which fuses 

multi-scale convolutions with attention mechanisms. For 

fNIRS-specific analysis, we include fNIRSNet [9], designed 

with DHR and DWS convolutions to capture hemodynamic 

patterns. 

For multimodal comparisons, we benchmark against five 

SOTA methods representing diverse fusion strategies: EF-Net 

[50] and pth-PF [24] both employ CNN-based extraction with 

late fusion, where the latter utilizes kernel tensor multiplication 

for EEG, HbO, and HbR streams. M2NN [51] introduces an 

end-to-end framework integrating spatio-temporal learning 

with multi-task capabilities. EFMLNet [27] leverages 

Transformer-based multi-head attention to model cross-modal 

mutual learning between temporal EEG and spatial fNIRS 

features. Finally, Dual-EEGNet [52] implements an early 

fusion strategy via a Y-shaped architecture rooted in the 

EEGNet framework. 

D.  Classification Results  

In the LOSO-CV experiment, the relevant results of the 

average accuracy (avg ± std%) and F1 score of the test set are 

shown in Table II. In addition, the Wilcoxon signed-rank test 

with Holm-Bonferroni correction was used to analyze the 

differences between DMSL and the baseline methods. We 

define "*" to indicate a p-value less than 0.05, and "**" to 

indicate a p-value less than 0.001. For single-modal EEG and 

fNIRS models, the EEGNet and fNIRSNet models 

demonstrated strong learning capabilities, and their 

classification results were significantly better than those of the 

traditional LSTM and CNN classifiers. For the multimodal 

EEG+fNIRS model, the average accuracies of the DMSL model 

on the MA, MI, and ENTER datasets were 75.43%, 68.24%, 

and 45.40% respectively. Its classification performance was 

significantly better than that of the vast majority of baseline 

methods, with significant differences (Wilcoxon signed-rank 

test with Holm-Bonferroni correction, p < 0.05). While 

statistical significance was not observed for a few baselines, 

DMSL consistently maintained the highest mean accuracy, 

indicating superior robustness. Compared with Dual-EEGNet, 

which ranked second in accuracy, DMSL improved the 

accuracy by 2.34% and 0.59% on the MA and MI datasets, 

respectively; on the ENTER dataset, compared with pth-PF, 

which ranked second in performance, DMSL improved the 

accuracy by 1.47%. This indicates that multimodal fusion and 

our proposed strategy have enhanced the classification accuracy 

and generalization ability of the model. 

The confusion matrices in Figure 3 demonstrate that, 

compared with Dual-EEGNet, the DMSL method significantly 

enhances the classification accuracy of hybrid EEG-fNIRS data. 

In the MA task, DMSL achieves higher accuracy in predicting 

TABLE II 
RESULTS OF SUBJECT INDEPENDENT COMPARISON ALGORITHMS ON THE MA, MI, AND ENTER DATASET 

M d          Ty   
MA MI  NT   

A  (%) F1(%) A  (%) F1(%) A  (%) F1(%) 

L TM [47] 
    61.46** ± 6.35 60.63** 52.70** ± 2.45 52.35** 33.30** ± 8.49 31.28** 

fNI   65.35** ± 6.39 64.86** 59.32** ± 5.06 59.07** 38.30** ±13.32 36.74** 

   N   [48] 
    67.66** ± 9.17 65.30** 65.32 ±11.60 64.71 41.25* ± 8.31 39.24* 

fNI   69.29** ± 6.92 68.92** 60.47** ± 5.81 59.97** 37.20** ± 8.13 33.62** 

T         [49] 
    67.90** ± 8.34 66.88** 63.12** ± 8.66 62.01** 36.50** ± 7.26 31.93** 

fNI   66.11** ± 6.12 65.74** 58.81** ± 4.47 58.24** 40.20** ±11.66 37.52** 

fNI  N   [9] fNI   69.76** ± 7.41 69.48* 60.14** ± 6.49 59.74** 38.25** ± 9.45 35.29** 

 F-N   [50]    +fNI   66.78** ± 7.04 66.16** 57.47** ± 3.81 56.94** 43.73 ±11.26 41.02* 

   -PF [24]    +fNI   71.29** ± 6.07 71.02* 62.08** ± 5.83 61.50** 43.93 ± 8.22 41.71 

M2NN [51]    +fNI   67.16**± 7.27 66.75** 56.76** ± 5.58 52.02** 41.80* ± 4.86 38.03** 

 FMLN   [27]    +fNI   71.03**± 3.51 70.86** 62.10** ± 4.69 61.41** 39.23** ± 5.70 35.31** 

Du  -   N   [52]    +fNI   73.09* ± 7.25 72.61* 67.65 ± 9.64 67.10 42.68* ± 7.40 39.81* 

DM L ( urs)    +fNI   75.43 ± 7.28 75.04 68.24 ± 7.86 67.75 45.40 ± 7.74 43.60 

1)“*” represents the significant differences (p < 0.05, Wilcoxon signed-rank test with Holm-Bonferroni correction) compared to the DMSL. 
2)“**” represents the significant differences (p < 0.001, Wilcoxon signed-rank test with Holm-Bonferroni correction) compared to the DMSL. 
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MA and BL states by integrating EEG and fNIRS modalities, 

which compensates for the limitations of single-modal 

approaches. In the MI task, DMSL also improves the 

classification accuracy for left- and right-hand motor imagery, 

with increased true positive (TP) and true negative (TN) rates, 

showcasing its superior classification performance. For 

emotion classification within the ENTER dataset context, 

DMSL effectively discriminates between emotional states like 

Sad, Happy, Calm, and Fear. It reduces misclassifications 

across these affective categories, and thus proves its capability 

in handling multi-dimensional emotional data analysis based on 

hybrid modalities.  

E.  Ablation Studies 

1) Importance of Modality. 

Firstly, we delete modalities separately to explore the 

performance of DMSL, as shown in Table III. To ensure 

comparability, we retained the feature extractors and graph 

convolutions of private channels in DMSL, only changed the 

interactive attention to self-attention, and removed the graph 

convolution of public channels, the attention mechanism, as 

well as the consistency and difference loss functions. When the 

EEG modality is deleted, the performance of the model 

significantly declines, indicating that the EEG modality 

   
(a) MA, Dual-EEGNet (c) MI, Dual-EEGNet (e) ENTER, Dual-EEGNet 

   
(b) MA, DMSL (ours) (d) MI, DMSL (ours) (f) ENTER, DMSL (ours) 

Fig. 3. The confusion matrices of Dual-EEGNet and DMSL, where each column represents the true labels and each row represents the predicted 
labels of the model. The results of the MA, MI, and ENTER datasets are shown, where MA and BL respectively denote mental arithmetic and 
baseline, and Left and Right respectively denote the left hand and right hand in MI. 

TABLE III 
RESULTS OF ABLATION RESEARCH ON LOSO VALIDATION METHOD 

M d   
D   s   MA D   s   MI D   s    NT   

A   ± s d A   ± s d A   ± s d 

DM L 75.43 ± 7.28 68.24 ± 7.86 45.40 ± 7.74 

I   r   c   f M d    y 

w/      67.71 ± 6.20 59.98 ± 3.98 38.75 ±10.20 

w/  fNI   73.71 ± 8.72 66.28 ±12.96 44.15 ± 9.49 

I   r   c   f    s r     

w/  ℒ𝑑 74.56 ± 7.49 67.61 ± 7.39 45.23 ± 8.08 

w/  ℒ𝑐 74.37 ± 7.00 67.86 ± 8.19 44.97 ± 8.33 

w/  ℒ𝑐+ℒ𝑑 73.05 ± 7.38 65.93 ± 7.46 44.53 ± 8.13 

I   r   c   f D ff r             s 

w/  P  s  1 73.48 ± 6.99 60.26 ± 3.99 41.20 ± 9.10 

w/  P  s  2 74.43 ± 7.18 66.76 ± 6.95 44.60 ± 9.92 

w/   AT (V r     1) 71.98 ± 6.62 61.85 ± 4.32 39.65 ± 9.46 

w/   AT (V r     2) 74.57 ± 7.29 68.29 ± 8.42 42.08 ± 9.52 

“w/o” represents remo al for t e mentioned factors. 
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dominates the multi-modal task. However, under the direction 

of the hybrid features, the discriminative features contained in 

it can be extracted effectively. In addition, compared with 

multi-modal DMSL, the performance of single-modal is always 

poorer. This indicates that our model can effectively extract the 

complementary features among different modalities, which is 

beyond the capabilities of single-modal models. 

2) The importance of constraint. 

We individually remove losses to verify the impact of 

different constraints. When the difference loss (ℒ𝑑) is absent, 

the model relies on the consistency loss (ℒ𝑐) to learn various 

multimodal representations, and the model performance will 

deteriorate. In addition, we observe that the consistency 

constraint enhances model performance. When both constraints 

are absent, the worst performance highlights the crucial role of 

constraints in multi-branch representation learning. 

3) The importance of different components.  

We discuss the importance of different components. The key 

improvement of the DMSL method is the addition of an 

improved Multi-modal Attention module to learn fusion 

features and a Multi-branch GCN module for disentangled 

representation learning to capture complex spatiotemporal 

relationships inherent in signals. Therefore, we conducted 

ablation studies on the dataset, as shown in Table III, in which 

the Multi-modal Attention module (Phase 1) and Multi-branch 

GCN module (Phase 2) were deleted, respectively. It can be 

seen that when Phase 1 is removed, the classification 

performance of the model drops most significantly, with 

decreases of 1.95%, 7.98%, and 4.20% on the MA, MI, and 

ENTER datasets, respectively. The results indicate that the 

multi-head attention mechanism is beneficial. Applying 

disentanglement to the enhanced modalities, which are refined 

through the multi-head attention mechanism, rather than 

directly to the raw modalities, enables richer and more precise 

feature extraction. When Phase 2 is deleted, the experimental 

results will decline. This indicates that applying disentangled 

representation learning can enhance the performance of feature 

extraction.  

In addition, we replace hybrid modal guidance with its single 

modal version (denoted as ‘w/o CAT (Variant 1)’ in Table III). 

The observed performance declines of 3.45%, 6.39%, and 5.75% 

on the MA, MI, and ENTER datasets, respectively, further 

confirm that without hybrid guidance, the extracted features 

lack cross-modal complementarity. We also replace the hybrid 

modal guidance with another single modal guidance (denoted 

as ‘w/o CAT (Variant 2)’ in Table III). The observed 

performance declines of 0.86% and 3.32% on the MA and 

ENTER datasets, respectively, further confirms that our 

improved strategy of enhancing single-modal branches with 

hybrid modalities plays a more guiding role than the single-

modal enhancement strategy, thereby demonstrating the 

superiority of our proposed MAI over MulT [35]. 

F.  Visualization 

T   v  u    d ff r         ds’ c        y     x r c     

highly distinct features from EEG and fNIRS signals, we 

employ the t-SNE technique [53] to visualize the features 

generated in a 2D embedding space. Utilizing t-SNE, the high-

dimensional output from the final fully connected layer of all 

training models is transformed into a two-dimensional feature 

space for visual analysis. Figure 4 shows the t-SNE 

   
Mutual Information:0.0121 Mutual Information: 0.0033 Mutual Information: 0.0084 

Orthogonality:0.2404 Orthogonality: 0.2117 Orthogonality: 0.1482 
(a) α=0 and β=0 on MA (b) α=0 and β=0 on MI (c) α=0 and β=0 on ENTER 

   
Mutual Information: 0.0998 Mutual Information: 0.1450 Mutual Information: 0.0269 

Orthogonality: 0.0017 Orthogonality: 0.0013 Orthogonality: 0.0092 
(d) α≠0 and β≠0 on MA (e) α≠0 and β≠0 on MI (f) α≠0 and β≠0 on ENTER 

Fig. 4. Scatter Visualize both common and private representations in the test set on three tasks. α= , β=  indicates no consistency and difference 
constraints, and vice versa. C_1, C_2, P_1 and P_2 correspond to 𝑍𝑐𝑒, 𝑍𝑐𝑓 , 𝑍𝑒 and 𝑍𝑓, respectively. The colored dots (red for C_1 centroid, dark 

red for C_2 centroid, blue for P_1 centroid, green for P_2 centroid) mark the centroids of each cluster, aiding in assessing the central tendency 
of common and private representation distributions.  
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visualization (with class centroids clearly marked) of the 

centralized common and private representations on the test set 

for the three tasks. α = 0, β = 0     s    r   s    c  s s   cy 

constraint and difference constraint, and vice versa. Red and 

pink dots correspond to common representations, while green 

and blue dots correspond to private representations. We 

visualized common representations 𝐶_ = {𝑍𝑐𝑒 , 𝑍𝑐𝑓} and private 

representations 𝑃_ = {𝑍𝑒, 𝑍𝑓}  of learning without or with 

consistency loss and difference loss on three tasks. 

When α = 0, β = 0 , as seen in Figure 4 (a)-(c), the 

distributions of 𝐶_  and 𝑃_  sometimes overlap, and no clear 

common representation cluster is formed. Conversely, when 

α ≠ 0, β ≠ 0 , as shown in Figure 4 (d)-(f), where class 

centroids of C_ are positioned to reflect integrated common 

information, and the indistinct boundary reflects tight cross-

modal neural synergy. At the same time, for private 

representations, as evidenced by the separate clusters of green 

( 𝑍𝑒 ) and blue ( 𝑍𝑓 ) dots and their distinct centroids, each 

subspace specific to a mode is separable, where the difference 

constraint eliminates the potential representation of redundancy. 

To quantitatively demonstrate the disentanglement 

performance, we introduce mutual information and 

orthogonality metrics as shown in Figure 4. Mutual Information 

measures the statistical dependence between common 

representations, where a higher mutual information indicates a 

greater degree of aggregation. Orthogonality quantifies the 

angular separation between common and private 

representations, with values closer to 0 reflecting high 

orthogonality. As shown in Figure 4, incorporating consistency 

and difference constraints results in higher mutual information 

and lower orthogonality across all tasks, demonstrating 

improved feature disentanglement. 

G.  Parameter Sensitivity Analysis 

We c  duc    s  s   v  y     ys s  f   r     rs α   d β to 

gain a deeper understanding of their effects on model 

performance, thus providing a strong reference for parameter 

selection in practical applications. The results are presented in 

Figure 5. 

Parameter α: To evaluate the effect of α, we fixed β at 3 for 

the MA and MI datasets, and at 0.1 for the ENTER dataset—

these values correspond to the optimal β  identified during 

hyperparameter tuning. As α  varies from 0.01 to 10.0, the 

accuracies of MA and MI remain relatively stable, exhibiting 

small fluctuations and an upward trend. However, when α 

reaches 30.0, the accuracy of MI drops sharply, suggesting that 

overly strong modality consistency constraints may interfere 

with effective optimization of the task loss (i.e., classification 

loss). In contrast, the ENTER dataset shows consistently low 

and stable accuracy across all α  values, indicating limited 

sensitivity to this parameter. 

Parameter β: To evaluate the effect of β, we fix α at its 

optimal value of 10 for all datasets. For the MA dataset, as β 

increases from 0.01 to 10.0, the accuracy first decreases slightly 

and then increases and stabilizes. For the MI dataset, the 

accuracy rises steadily when β ranges from 0.01 to 3.0, and 

shows a downward trend when β exceeds 3.0. Regarding the 

ENTER dataset, the model achieves optimal accuracy when β

=0.1. These results reflect that different datasets have varying 

degrees of sensitivity to changes in β, and an appropriate range 

of β values needs to be selected in practical applications to 

ensure optimal model performance. 

H.  Computational Complexity Analysis 

We rigorously analyze the model's computational complexity 

(based on one batch), comparing it with existing BCI models. 

As can be seen from Table IV, the DMSL model ranks second 

in terms of the number of parameters and third in terms of 

FLOPs among the compared models. Specifically, while 

maintaining a relatively reasonable number of parameters and 

FLOPs, DMSL (Ours) outperforms models such as Dual-

EEGNet and pth-PF in classification performance, achieving a 

better balance between computational efficiency and 

classification effectiveness. Moreover, compared with models 

with a large number of parameters and FLOPs, DMSL (Ours) 

has a significant advantage in terms of computational resource 

consumption and is more suitable for deployment in resource- 

constrained devices. 

 
( ) P r     r α 

 
( ) P r     r β 

Fig. 5. Analysis of parameters α and β. 

TABLE IV 
THE NUMBER OF MODEL PARAMETERS 

Model Parameters FLOPs 

EF-Net 4.00M 27.18G 

pth-PF 0.63M 0.50G 

M2NN 5.36M 4.35G 

EFMLNet 3.76M 14.80G 

Dual-EEGNet 0.05M 0.77G 

DMSL（Ours） 0.21M 1.96G 
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VI. CONCLUSION 

This paper introduces DMSL, a novel multimodal learning 

framework that enables multimodal spatiotemporal coupling 

and disentangled representation learning within a unified 

structure. We propose a multimodal attention module to 

comprehensively capture inter-modality correlations and 

enhance the representations for each modality. Additionally, we 

present a multi-branch graph convolutional module based on 

reconstructed channels, incorporating modality consistency and 

disparity constraints to facilitate disentangled representation 

learning and effective spatiotemporal coupling feature capture. 

Experimental results show that DMSL outperforms the state-of-

the-art EEG-fNIRS fusion method, exceeding the best baseline 

by 2.34%, 0.59% and 1.47% on the MA, MI, and ENTER 

datasets, respectively. Furthermore, ablation studies 

demonstrate the effectiveness of our fusion strategy and the 

importance of consistency constraints. The t-SNE visualization 

further indicates that our model has an excellent ability to 

feature learning. 

Overall, DMSL offers a flexible framework that can be 

extended to other hybrid EEG-fNIRS BCI tasks, providing a 

promising foundation for future research in multimodal and 

spatiotemporal learning. 
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