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Abstract

Human pose classification, along with related tasks such as action recognition, is a crucial
area in deep learning due to its wide range of applications in assisting human activities.
Despite significant progress, it remains a challenging problem because of high inter-class
similarity, dataset noise, and the large variability in human poses. In this paper, we
propose a lightweight yet highly effective modular attention-based architecture for human
pose classification, built upon a Swin Transformer backbone for robust multi-scale feature
extraction. The proposed design integrates the Spatial Attention module, the Context-
Aware Channel Attention Module, and a novel Dual Weighted Cross Attention module,
enabling effective fusion of spatial and channel-wise cues. Additionally, explainable Al
techniques are employed to improve the reliability and interpretability of the model. We
train and evaluate our approach on two distinct datasets: Yoga-82 (in both main-class
and subclass configurations) and Stanford 40 Actions. Experimental results show that our
model outperforms state-of-the-art baselines across accuracy, precision, recall, F1-score,
and mean average precision, while maintaining an extremely low parameter count of only
0.79 million. Specifically, our method achieves accuracies of 90.40% and 87.44% for the
6-class and 20-class Yoga-82 configurations, respectively, and 94.28% for the Stanford 40
Actions dataset.

Keywords: lightweight; multi-scale; human pose; classification

1. Introduction

Human pose and action classification are fundamental tasks in computer vision and
deep learning, aiming to identify a person’s posture or activity in still images or video se-
quences [1,2]. These tasks have broad applications in areas such as smart fitness, healthcare
monitoring, rehabilitation, sports analysis, surveillance, and human-computer interac-
tion [3-5]. A specialized subset of this field is yoga pose classification, which focuses on
identifying specific postures practiced in yoga. Unlike general activity recognition, yoga
pose classification requires a fine-grained understanding of body-part alignment and subtle
differences in joint orientation. This can vary significantly even between visually similar
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poses [6]. It is particularly valuable in domains such as virtual fitness training [7], posture
correction [8], and interactive health systems [9-11].

Typically, pose and action classification pipelines begin by extracting visual features
from input images or sequences. This is followed by modeling the spatial arrangement of
body parts and contextual dependencies across different regions. These features are then
mapped to a set of predefined classes [12]. In traditional systems, handcrafted features
or pose estimation outputs were commonly used [13]. However, these approaches often
suffered from sensitivity to noise, occlusions, and variations in lighting or viewpoint [14].

The introduction of deep learning has brought significant progress to this field [15].
Convolutional neural networks (CNNs) initially dominated pose and action recognition
by learning hierarchical visual representations directly from images [6,16]. More recent
advancements, such as Transformer-based approaches [17,18] and Swin Transformers [19],
have helped models to capture long-range dependencies, hierarchical features, and en-
hanced relationships among body parts. Several works have successfully applied these
architectures to yoga pose recognition, sports activity classification, and human action
detection, achieving remarkable improvements over earlier CNN-based methods [20]. In
parallel, attention mechanisms have been widely incorporated into deep learning frame-
works to highlight the most informative spatial and temporal features. These features
allowing models to better discriminate between subtle variations in human poses [21,22].
By focusing computational resources on key regions or feature channels, attention-based
methods improve recognition accuracy while maintaining efficiency.

Despite all these advancements, important challenges remain unresolved. The high
similarity between certain classes, large intra-class variation caused by differences in
individual execution of poses or actions, and dataset issues such as imbalance or noise still
limit the accuracy and generalizability of existing models. Furthermore, many state-of-
the-art methods rely on heavy architectures with high computational costs, making them
unsuitable for real-time or resource-constrained environments. Another critical issue is
the lack of interpretability, as most systems do not provide meaningful insights into their
decision-making process, which reduces trust in practical applications.

To address these challenges, we propose a novel multi-scale deep learning architecture
based on a modular attention design and a Swin Transformer backbone. Our model is
trained and evaluated across multiple yoga pose datasets to demonstrate its robustness
in handling pose variations and class imbalances. Specifically, our architecture begins by
extracting hierarchical features from four stages of a pretrained Swin Transformer, which
is kept frozen to retain its robust visual representations and prevent overfitting. This also
significantly reduces training time and computational cost. The resulting multi-scale feature
maps are unified in resolution and channel dimension through our feature fusion module.
Furthermore, to enhance pose representation, we apply an Enhanced Spatial Attention
(SPA) module and a Context-Aware Channel Attention Module (CCAM) to concatenated
feature maps at different semantic levels. After that, a Dual Weighted Cross-Attention
(DWCA) module is introduced to model relationships over spatially and channel-wise
attended features. Finally, the output feature map of the DWCA module goes through
global average pooling and passes through a compact, expressive classifier head.

Overall, our model design enables effective representation of subtle pose differences,
adapts well to intra-class variation, and offers interpretable, attention-driven outputs
with minimal latency, making it well suited for yoga pose classification applications. The
contributions of our work are summarized as follows:

*  We propose a novel attention-based deep learning architecture that integrates multi-
scale hierarchical features with both spatial and channel attention mechanisms for
effective yoga pose classification.
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¢ Achieves state-of-the-art accuracy on Yoga-82 and Stanford 40 Actions with an extremely
low parameter count (0.79 million), making it suitable for real-time applications.

e  Utilizes and proposes modified modules such as SPA and CCAM.

*  Introduces learnable gating to balance cross-attended and raw fused features, improv-
ing fine-grained pose discrimination.

¢ Employs explainable Al techniques to increase the interpretability and trustworthiness
of our model.

*  Accurately distinguishes subtle intra-class variations, which is crucial for yoga pose
classification.

The rest of this paper is organized as follows. In Section 2, we review some of the
related works. Section 3 presents the details of our proposed architecture and attention
modules. Section 4 outlines the experimental setup and dataset configuration, followed
by an evaluation of performance and qualitative analysis. Finally, Section 5 concludes the
paper and discusses future directions.

2. Related Works

Early approaches to human pose and action classification relied primarily on hand-
crafted features and pose keypoints extracted through human pose estimation tech-
niques [12,13]. While these methods provided foundational insights, they were highly
sensitive to environmental variations, such as changes in lighting, occlusions, or errors
in keypoint localization [14]. As a result, their ability to generalize across diverse and
complex human poses was limited. A review of the existing literature shows that a variety
of strategies have been introduced for automated human pose detection, which can be
broadly categorized into three main groups: transformer-based methods, transfer learning
approaches, and attention mechanisms.

2.1. Transformers

Transformers have recently gained significant attention in human pose and action
classification due to their ability to capture long-range dependencies across spatial and
temporal dimensions. Unlike CNNs, which primarily rely on local receptive fields, Trans-
formers provide a global context that is particularly beneficial for modeling complex body
configurations. For instance, Hassanin et al. [23] introduce two novel modules, Cross-Joint
Interaction and Cross-Frame Interaction, which explicitly encode both local and global
dependencies between body joints. This design enables the network to capture subtle
inter-frame variations and fine-grained joint relationships, which are critical for precise
pose understanding. Hongwei Zheng et al. [24] leveraged a Transformer-based hierar-
chical autoregressive modeling scheme to generate dense 2D poses from sparse skeleton
inputs, addressing occlusion challenges in 2D-to-3D human pose estimation. By tokenizing
skeletons into multi-scale hierarchical representations, this approach strengthens spatial
dependencies through Skeleton-aware Alignment, which aligns closely with the ability of
Transformers to model long-range relationships.

2.2. Transfer Learning

Transfer learning has known as a powerful strategy to improve model performance in
scenarios with limited labeled data by leveraging knowledge from related source domains.
It enables models to generalize better across tasks or datasets, making it particularly useful
in applications such as human activity recognition and multi-task sensor-based learning.
Isgiider et al. [25] demonstrated the use of Federated Transfer Learning to leverage motion
sensor data for multiple tasks, including human activity recognition and device position
identification. By applying transfer learning across ten smaller datasets in the OpenHAR
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framework, this approach enables task-specific and personalized models without cen-
tralized data aggregation. Thukral et al. [26] introduced Cross-Domain HAR, a transfer
learning framework for sensor-based human activity recognition that leverages publicly
available datasets to overcome limited labeled data in target domains. By employing a
teacher—student self-training paradigm, it effectively bridges differences between source and
target domains, including variations in sensor placement and activity types. Akash et al. [27]
applied transfer learning with VGG-16, ResNet, and DenseNet-121, combined with Neural
Architecture Search, to improve classification accuracy on the Yoga-82 dataset.

2.3. Attention Mechanism

Attention mechanisms have also been widely used in human pose classification to en-
hance feature learning and emphasize the most informative regions of the image. Xiongwei
and Zifan Wang [28] proposed TCN-Attention-HAR, a recognition model that combines
temporal convolutional networks with attention mechanisms to enhance human activity
recognition from wearable sensor data. The attention module highlights key temporal
features, allowing the model to focus on the most informative signals and improve recogni-
tion accuracy across benchmark datasets. Lei Zhang et al. [29] introduced a multi-channel
hybrid deep learning framework that integrates convolutional, recurrent, and attention
modules for sensor-based human activity recognition. The attention mechanism enables the
model to emphasize the most informative spatial and temporal features, thereby improving
recognition accuracy in multi-position sensor fusion scenarios. Weirong Sun et al. [30]
enhanced action recognition by introducing a k-NN attention-based Video Vision Trans-
former (ViViT), which refines the standard self-attention mechanism. By focusing only on
the most relevant tokens and discarding noisy or non-informative ones, the model reduces
computational complexity while maintaining strong spatio-temporal modeling. Elaheh
Dastbaravardeh et al. [31] introduced a CNN-based framework enhanced with channel
attention mechanisms (CAMs) and autoencoders for action recognition in low-resolution
and small-size videos. The CAMs allow the network to focus on the most discriminative
feature channels, improving recognition accuracy while keeping computational costs low.

Overall, recent advances in human pose and action recognition highlight the effective-
ness of integrating Transformers, transfer learning strategies, and attention mechanisms
into deep learning frameworks. Transformers contribute by modeling long-range spatial
dependencies and capturing fine-grained joint relationships, while transfer learning enables
robust generalization across domains with limited labeled data. Attention mechanisms
further enhance recognition by emphasizing the most discriminative features in both spatial
and temporal dimensions, improving efficiency and accuracy in complex or low-quality
data scenarios. Despite these advances, challenges remain in reducing computational over-
head, handling occlusions, and ensuring generalization across diverse conditions, which
are essential for the reliable deployment of human pose recognition applications.

3. Proposed Method
3.1. Overview

In this study, we propose a deep learning architecture for robust image classification
across diverse yoga pose datasets. The overall architecture of our model is illustrated
in Figure 1. Our method integrates several key components to enhance classification
performance. First, we employ a pretrained Swin Transformer as the backbone to extract
hierarchical, multi-scale feature maps from four distinct stages. These features are processed
through dimension reduction layers to ensure computational efficiency. Subsequently, we
implement a sophisticated feature enhancement pipeline, incorporating Enhanced SPA,
CCAM, and DWCA modules to emphasize critical spatial and channel-wise information.
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The resulting feature representations are merged, globally pooled, and fed into a lightweight
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Figure 1. An overview of the architecture of the proposed method. We show the predicted labels
from Yoga-82 dataset as an example; however, the proposed method is the same for both datasets.

3.2. Backbone

The backbone of our model is built upon the Swin Transformer. Specifically, we used
the swin_b (base) variant with a patch size of 4, a window size of 7, and an input size of
224 x 224. The Swin Transformer employs a hierarchical architecture with shifted window-
based self-attention, enabling it to capture both local and global contextual information
efficiently. This model generates four feature maps at different scales, which are critical for
our multi-scale feature fusion strategy. By freezing the backbone parameters, we preserve
the learned representations while reducing computational overhead during training, en-
suring that the model focuses on fine-tuning the subsequent attention and classification
modules. The selection of the Swin Transformer as our backbone is motivated by several
key advantages. First, its hierarchical structure and window-based attention mechanism
provide a balance between computational efficiency and the ability to model long-range
dependencies, making it ideal for processing high-resolution images such as those used
in our study. Second, the pretrained weights of the Swin Transformer, derived from ex-
tensive datasets like ImageNet, offer a strong initialization point, enhancing the model’s
ability to generalize across diverse classification tasks, specifically for human images as
considered in our paper. Additionally, its feature extraction capability, as evidenced by
the multi-scale outputs, aligns seamlessly with our architecture’s need for rich, multi-level
feature representations. These characteristics make the Swin Transformer a superior choice
over traditional convolutional neural networks or other transformer-based models for our
application, ensuring robust performance in complex image classification scenarios.
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Algorithm 1: Overall explanation of our framework.

Require: Input image x
1: Extract multi-level features using freezed Swin transformer:
2: {By, By, B3, B4} < Backbone(x)
3: Channel reduction and spatial interpolation:
4: fori=1to4 do
B} < channelreduction(B;)
L B} < Interpol(B;,size = By)
5: Features concatenation:
6: Caty < (BY)&(BY)
7: Caty < (BY)&(BY)
8: Cats < (BY)&(BY)
9: Apply spatial attention:
10: Sq < Catq
11: Sy < Caty
12: Apply Context-Aware Channel Attention:
13: C1 « Caty
14: Cp < Cats
15: Fuse spatial features:
16: S < Merge(51&S,)
17: Fuse channel features:
18: C <— Merge(C1&Cy)
19: Feature reduction:
20: S < channelreduction(S)
21: C < channelreduction(C)
22: Dual weighted cross attention:
23: D + (5)&(C)
24: Global average pooling:
25 G < GAP(D)
26: Classification:
27: § < Classifier(G)
28: return

3.3. Multi-Scale Feature Extraction

Our proposed method begins with feature extraction using the Swin Transformer
backbone, which generates four feature maps (B1, By, Bs, By), increasing channel dimen-
sions from 128 at block 1 (By) to 1024 at block 4 (B4) and reducing spatial dimensions from
H =W =56inblock 1 (B1) to H=W =7 in block 4 (By4). To standardize feature representa-
tion and facilitate effective multi-level fusion, we pass each of these feature maps through a
channel reduction and spatial interpolation (CRSI) module. This module first changes the
number of channels to a fixed intermediate channel size using a 1 x 1 convolutional layer
(denoted as BZ{ ), where i € 1,2, 3,4, and then upsamples them using bilinear interpolation
to match the spatial resolution of the first block, denoted as Bj’. These operations are
implemented in Equations (1) and (2):

Bl/ = COHVle(Bi) (1)

B! = Interpol(B]; size = (Hy, Wy) (2)

where Interpol represents the interpolation operation.
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3.4. Spatial Attention

To emphasize informative regions within each feature map, we propose an SPA.
As shown in Figure 2, this module augments traditional attention by leveraging multi-scale
spatial context, enabling the model to better focus on semantically salient areas such as
limbs, alignment, and body contours in yoga poses. To implement this spatial attention,
firstly, we utilized both average pooling and max pooling, followed by concatenation to
capture complementary context from the input feature map, denoted as (x), with (c, h, w)
dimensions. The implementation of this is shown in Equation (3).

Feap(x) = Concat(avg(x), max(x)) 3)

where avg(x) and max(x) represent average pooling and max pooling, respectively. F.)
values have been assigned to two different convolutional branches with different kernel
sizes, denoted as F;1 and F,». In our SPA, we used two different kernels with size of 7 x 7
and 3 x 3, which is illustrated in Equations (4) and (5). Also, each convolution layer in our
SPA includes a batch normalization followed by a sigmoid activation function.

Fsq1 = 0(BN(Convyy7(Feap(x)))) 4)

Fspp = 0(BN(Convsy3(Feap(x)))) (5)

where o represents the sigmoid function and BN represents batch normalization. Af-
ter these steps, we summed up the F,;; and F;;; via an element-wise addition, followed by
an attention multiplication with the input feature map, which is shown in Equation (6):

Fspa = (x) X (Fsal + FsuZ) (6)

Conv 7x7
|
Sigmoid

h
> Average-Polling —|
w

—————  Max-Pooling

128

!

Cony 3x3
Sigmoid

Figure 2. The illustration of the Spatial Attention module.

3.5. Context-Aware Channel Attention

To enhance the discriminative power of the learned features, we incorporate a CCAM
into our architecture. The illustration of this module is shown in Figure 3. This module is
designed to emphasize the most informative channels by adaptively weighting them based
on global contextual cues. It captures both global average pooling and global max pooling
from the input feature map, enabling the model to understand the broader context of the
image. Each of these two pooled features is then passed through a lightweight multi-layer
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perceptron (MLP), which is denoted as F;;,. As shown in Equation (7), this MLP consists
of two convolutional layers: the first reduces the number of channels to one-sixteenth of
the original with a 1 X 1 convolution, followed by a ReLU activation, while the second
convolution, with 1 x 1 kernel size, restores the channel dimension to match the dimension
of the feature map before the MLP.

Fyip = Convyyw1(Relu(Convyxq) @)

As described earlier, both the global average pooled and global max pooled descriptors
are passed through the MLP to produce two attention maps, denoted as Fgp and Fgypp.
Then, in order to avoid losing spatial features from the original input, a sum up like residual
connection in resnet has been added between the output of each MLP with the output
feature map of GAP(x) or GMP(x), as expressed in Equations (8) and (9):

Fgap = Epip(GAP(x)) + GAP(x) ®)

Fgmp = Fyu1p(GMP(x)) + GMP(x) ©9)

where GAP and GMP represent global average pooling and global max pooling, respectively.
Finally, the combined output of both Fg,) and Fgyppy is passed through a sigmoid function
and then multiplied with the input feature map (x) to produce the final channel attention
map, as shown in Equation (10):

Fecam = (x) x (0(Fgap + Fgmp)) (10)

where o represents the sigmoid activation function. This mechanism allows the model to
selectively focus on more relevant features, improving classification performance in tasks
such as yoga pose recognition.

— Global Average pooling — '11_
256

Conv1lx1
Relu
|
L
|
Conv1lx1
:

sigmoid ‘ H
’T 256 w
w

1

- Global Max pooling e

256

Conv1lx1
Relu
|
Conv1lx1

Figure 3. The architecture of the Context-Aware Channel Attention.

3.6. Dual Weighted Cross Attention

A novel module is proposed to enhance the interaction between different feature rep-
resentations. The architecture of this module is illustrated in Figure 4. Unlike conventional
cross-attention modules that apply fixed query (Q), key (K), and value (V) projections, our
DWCA introduces learnable gating parameters that dynamically control the contribution
of each input stream to the combined Q, K, and V representations. This approach was
adopted due to the importance of both input feature maps, which are the outputs of Spatial
Attention (Fsps) and CCAM (Fecam). To the best of our knowledge, existing cross-attention
or gated-attention approaches typically apply gating at the feature level or attention output,
rather than explicitly controlling the participation of multiple inputs at the level of individ-
ual Q/K/V projections. This design allows the model to flexibly emphasize one feature
stream or jointly exploit both, depending on the input characteristics and task requirements.
In addition to improving feature interaction, this dynamic behavior can implicitly reduce
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unnecessary computation when one input stream is considered less informative, making
DWCA particularly suitable for resource-constrained settings. Three separate 1 x 1 con-
volutions are applied to each input feature map. The resulting features are then scaled
using learnable gates via element-wise multiplication. Finally, the gated outputs from both
branches are combined through element-wise addition to compute the final query (Q), key
(K), and value (V) representations. These operations are shown in Equations (11)—(13).

56 ‘B

56

yl — Sigmoid ——— | a

y2 — Sigmoid — ]

l

Conv1x1

&

q

¥3 — Sigmoid —l

q

l l y4 — Sigmoid — B
Comvix1l  Convix1
® S
N> g 128 %
56X 56 E_.'E E
§ 1
1]
. =
A N £ = e X
N 2 128 EL S, | |
a = s Z E EB——’
) 56 X 56 I — 28
j 56

Reshape

/
y 128

1_
Conv1x1

[

: \ 56 X 56 4 head
(%Té): 15
Conv1x1 Conv1x1 @ é

1-a P
- 2

56, AB

56

Figure 4. The architecture of the proposed Dual Weighted Cross Attention.

Q= (C0n01><1<Fspa) X ‘Xq) + (Convy 1 (Fecam) x (1 — “q)) (11)
K = (Convy 1 (Fspa) X a) + (Convyxq(Fecam) X (1 — ay)) (12)
V = (Convy i (Fspa) X ay) + (Convy ey (Fecam) % (1 — ay)) (13)

where & represents the learnable parameter of our designed module. The parameter
« is initialized to 0.5, corresponding to an equal contribution from both inputs at the
beginning of training, and is dynamically updated through backpropagation. No additional
normalization layer is applied within the DWCA module, because the gating parameters
are constrained through a sigmoid activation, implicitly bounding the fusion weights
and mitigating potential scale imbalance. Furthermore, we have batch normalization and
layer norms in our classification head and adding more could lead to over-normalization.
The resulting Q, K, and V tensors are then reshaped to a size of (C, H x W), where C is
the number of channels and H x W is the flattened spatial dimension. Specifically, each
of these tensors is split into h attention heads along the channel dimension, where the
dimensionality of each head is d = C/h. For each head, attention is computed individually,
as detailed in Equation (14):

Qt.Kt
Vid

where Qf, K!, and V' represents the reshaped tensors of query, key, and value, respectively.

Attention(Q,V,T) = Softmax( Wi (14)

In addition to input-level blending, DWCA incorporates a learnable gating mechanism
at the output stage to dynamically decide between attention-enhanced features and the
original fused representations. After computing the attention-weighted representations,
the output is projected back to the original feature dimension. Simultaneously, the two input
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feature maps are concatenated and reduced to the baseline feature maps dimension, which
is denoted as Feoncat- This operation and final output are shown in Equations (15) and (16).

Feoncat = Concat(st, Fccam) (15)

DWCA = (B x Attention) + (1 — B) X Feat) (16)

where f is the learnable gating parameter. This j is the same as &, set as 0.5 initially and
changed during the learning procedure. This gating mechanism allows DWCA to adap-
tively emphasize either the cross-attended features or the raw fused features, depending
on which provides more informative cues for the task. Overall, DWCA offers a flexible
mechanism for feature interaction, enabling more precise reasoning over pose-specific
representations in complex visual scenes.

3.7. Loss Function

For training our model, we employ the Cross-Entropy Loss, a widely used objec-
tive function for multi-class classification tasks. Cross-entropy measures the discrepancy
between the predicted probability distribution and the ground-truth labels, penalizing
incorrect predictions with higher loss values. This formulation encourages the model to as-
sign higher confidence to the correct class while reducing the probability of misclassification.
The implementation of this function is shown in Equation (17)

1

Floss = _ﬁ []/i'log(]?i)"_(l_]/i) '10g<1_?i” (17)

INygls

where N is the number of classes, y; represents the label, and #; is the probability of
positive class.

4. Experimental Result
4.1. Dataset

In this study, we utilized two different datasets to enhance the generalization capa-
bility of our model. One of these datasets is the Yoga-82 dataset [32], which contains
approximately 16,800 images of yoga poses captured in various positions. These images are
hierarchically organized into 6 main categories, which are further divided into 20 subcate-
gories. Each of these subcategories is further split into finer subclasses, resulting in a total of
82 pose classes. The second dataset used in this study is the Stanford 40 Actions dataset [33].
As its name suggests, this dataset contains images of different actions categorized into
40 distinct classes. In total, the dataset comprises 9532 images.

4.1.1. Yoga-82

The Yoga-82 dataset serves as the primary dataset for our work. To evaluate our model
comprehensively on this dataset, we trained it in two separate phases: in the first phase,
we focused on the 6 main classes, while in the second phase, we expanded the training
to include all 20 subclasses of these 6 classes. One of the key challenges of this dataset is
its high intra-class variability and inter-class similarity, as many yoga poses share subtle
visual differences in posture and body orientation, making accurate classification difficult.
Additionally, the dataset contains some noisy or irrelevant samples, such as blank images
or images with only text, which can negatively affect model training. To mitigate this issue,
we carefully filtered out such incorrect samples before training to ensure cleaner and more
reliable data. For fair evaluation, we followed the original Yoga-82 dataset protocol and
split the data into training and testing sets in the same manner as reported in the base
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paper. The only difference is that 10% of the training data is further separated and used as
a validation set.

4.1.2. Stanford 40 Actions

The Stanford 40 Actions dataset is employed as the secondary dataset in our study to
evaluate and enhance the generalization capability of the proposed model. This dataset
presents significant challenges due to the high variability in human poses, diverse back-
grounds, and frequent occlusions, which make action recognition more complex. To main-
tain consistency and fairness, we follow the same train-test split strategy as outlined in the
original dataset paper.

4.1.3. Data Augmentation

To improve the robustness and generalization ability of our model, we applied a
series of data augmentation techniques during training. Specifically, we used random
resized cropping to ensure the model learns scale-invariant features by randomly cropping
and resizing the images to 224 x 224. A random vertical flip was included to simulate
variations in pose orientation, which is particularly beneficial for yoga poses and action
recognition tasks. We also applied color jittering with controlled adjustments to brightness,
contrast, saturation, and hue, which helps increase data diversity. Finally, all images were
normalized using the ImageNet mean and standard deviation to match the pretraining
statistics of the Swin Transformer backbone, enabling more effective transfer learning.

4.2. Experimental Settings

All experiments were conducted using Python 3.11.13 with PyTorch 2.6.0 as the
primary deep learning framework. We trained our model with a batch size of 16 and
an initial learning rate of 1 x 1073, optimized using the Adam optimizer. The training
process was carried out for 60 iterations (epochs). To ensure reliability and minimize
variance, the training process was repeated five times, and the average performance across
runs is reported as the final result. All experiments were conducted on Kaggle servers
equipped with an NVIDIA Tesla P100 GPU (16 GB VRAM), 13 GB of system RAM, and an
Intel Xeon 2.3 GHz CPU.

4.3. Training and Validation Analysis

Figures 5 and 6 present the training and validation diagrams of loss, accuracy, precision,
recall, F1-score, and MAP over 60 epochs. As shown in Figure 5, the training loss decreases
rapidly during the early epochs and gradually converges, indicating effective optimization
and stable learning behavior. Simultaneously, all training performance metrics exhibit a
consistent upward trend, with pronounced improvements in the initial stages followed by
smoother refinements in later epochs.

Figure 6 presents the corresponding validation curves, which closely follow the train-
ing trends across all metrics. After an initial rapid improvement phase, the validation
performance stabilizes with minor fluctuations, suggesting that the model generalizes
well to unseen data. Notably, the gap between training and validation curves remains
limited throughout the training process, indicating the absence of significant overfitting.
The steady behavior of MAP alongside classification metrics further confirms the robustness
and consistency of the learned representations.
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Figure 5. The diagram of training performance metrics across 60 epochs.
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Figure 6. The diagram of validation performance metrics across 60 epochs.

4.4. Evaluation Metrics

To comprehensively assess the performance of our model, we employed accuracy,
precision, recall, F1-score, and mean average precision (MAP) as evaluation metrics. In this
study, we used accuracy, precision, recall and F1-score, for comparing with other state of
the arts in Section 4 for both datasets and ablation study. Moreover, MAP was adopted as
an additional metric to compare our work with prior studies on the Stanford 40 Actions
dataset. Accuracy provides an overall measure of correctly classified samples, while
precision and recall evaluate the model’s ability to minimize false positives and false
negatives, respectively. The F1-score, which is the harmonic mean of precision and recall,
offers a balanced evaluation in cases of class imbalance. Furthermore, MAP was used to
capture the model’s performance across all classes by considering the average precision at
multiple recall thresholds, providing a more robust metric for multi-class classification.
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where True Positive (TP) represents the number of samples correctly predicted as belonging
to a given class, while True Negative (TN) denotes the samples correctly identified as
not belonging to that class. False Positive (FP) refers to the samples that are incorrectly
predicted as belonging to a class when they do not, and False Negative (FN) denotes the
samples that truly belong to a class but are misclassified. In Equation (22), the Average
Precision (AP) is computed by summing the product of precision and the change in recall at
each step (k) along the precision-recall curve. In Equation (23), N denotes the total number
of classes, and the mean Average Precision (MAP) is calculated as the average of the AP
values across all classes.

4.5. Comparison with State-of-the-Art Methods

Our proposed method demonstrates consistent improvements over existing ap-
proaches on both the Yoga-82 and Stanford 40 Actions datasets, as shown in Tables 1 and 2.
For a fair comparison, the reported results of baseline methods were taken directly from
their original publications. We note that their training settings (e.g., number of epochs, in-
put resolution, or data augmentation) may differ from ours; therefore, minor discrepancies
may exist. On Yoga-82, our model achieves an accuracy of 87.44% (20-class) and 90.4%
(6-class), outperforming Verma et al. [32] (84.42% and 87.2%) and Borthakur et al. [34]
(85%). Notably, our F1-score (86.39% for 20-class, 89.73% for 6-class) significantly surpasses
Borthakur et al.’s 71%, indicating a better balance between precision and recall. This im-
provement can be attributed to our method’s ability to capture fine-grained pose variations,
whereas prior works rely on rigid feature extraction, leading to misclassifications in similar-
looking poses. On the Stanford 40 Actions dataset, our method achieves competitive results
with a MAP of 94.28%, outperforming most existing approaches except Multi-Attention
Guided Network [35] (94.2%) and Body Structure Cues [36] (93.8%). The strong perfor-
mance in accuracy (90.27%) and F1-score (89.3%) suggests that our lightweight design
effectively retains discriminative power while reducing redundancy. This is particularly
evident in recall (89.47%), where our model generalizes better to underrepresented ac-
tion classes compared to methods like R*CNN [37] and ResNet-50 [38], which report no
recall values. The superior performance of our method stems from three key factors:
first, efficient feature fusion that preserves spatial and contextual information; second,
a parameter-efficient architecture that avoids overfitting while maintaining discriminative
capacity; and third, robustness to intra-class variations. While some high-capacity models
achieve marginally higher MAP, our method strikes a better balance between accuracy
and efficiency.
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Table 1. Comparison between our proposed method and some state-of-the-art architectures on the
Yoga-82 dataset. Numbers in bold represent the best performance.

Model Number of Classes  Accuracy (%)  Precision (%) Recall (%) F1-Score (%)  Params (Million)
Verma, Manisha, et al. [32] 6 87.2 - - - 22.59
Borthakur, Debanjan, et al. [34] 6 85.0 - - - -
Akash et al. [27] 6 85 87 83 83 -
Proposed method 6 90.40 90.29 89.24 89.73 0.79
Verma, Manisha, et al. [32] 20 84.42 - - - 22.59
Proposed method 20 87.44 87.26 85.75 86.39 0.79
Verma, Manisha, et al. [32] 82 78.88 - - - 22.59
Proposed method 82 80.16 81.01 77.78 78.41 0.79
Table 2. Comparison of our proposed method with other state of the art on Stanford 40 Actions
dataset. Numbers in bold represent the best performance.
Model MAP (%) Accuracy (%) Precision (%) Recall (%) F1-Score (%)
R*CNN [37] 90.90 - - - -
ResNet-50 [38] 87.20 - - - -
SAAM-Nets [39] 93.00 - - - -
Multi-Branch Attention [40] 90.70 - - - -
Top-down + Bottom-up Attention [41] 91.00 - - - -
Multi-Attention Guided Network [35] 94.20 - - - -
Body Structure Cues [36] 93.80 - - - -
Hosseyni et al. [42] 93.10 - - - -
Proposed method 94.28 90.27 89.65 89.47 89.30

4.6. Ablation Study

In this section, we conducted several ablation studies to evaluate our design in different
scenarios. For a fair comparison, all of the following ablations were evaluated on the same
settings. For example, all were trained on the yoga-82 dataset with the same number
of classes, the same augmentation, and the same number of epochs. First, as shown in
Table 3, we investigated the effectiveness of choosing different methods as our backbone.
Our experiments show that the Swin Transformer performs significantly better than other
strategies with our proposed method.

Table 3. Comparison between different models chosen as our backbone. Numbers in bold represent
the best performance.

Method Accuracy (%)  Precision (%) Recall (%) F1-Score (%)
Resnet 50 79.88 79.13 78.00 78.38
VGG 16 65.70 64.41 61.93 62.21
Efficient Net 70.01 67.98 66.01 66.98
Swin transformer 87.44 87.26 85.75 86.39

To assess the effectiveness of each core component in our architecture, we conducted
detailed ablation experiments, as shown in Table 4. Starting from a baseline model that
uses only the Swin Transformer backbone, we progressively introduced our proposed
modules: Enhanced SPA, CCAM, and DWCA. The addition of SPA improved accuracy
by capturing fine-grained spatial cues, while CCAM contributed further by emphasizing
informative channels based on global context. When both modules were applied together,
performance improved more significantly, indicating the complementary nature of spatial
and channel attentions. Finally, the integration of DWCA provided the most substantial
boost, demonstrating its strength in blending and refining the attended features through
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gated cross-attention. With all modules enabled, our model achieved the best performance
across all metrics, confirming that each module plays a crucial role in enhancing the
discriminative capability of the network. In terms of our claim of being lightweight, we also
computed real-time information, such as the number of parameters, FLOPs, and inference
time for each module. As shown in Table 4, our model used only 0.79 million parameters
with an inference time of 26.91 ms in the final version with all modules. Furthermore, these
numbers increased gradually from the baseline, which used 0.14 million parameters and
20.07 ms for inference time. These ablations overall demonstrate that our model consists
of several useful modules to achieve high performance while remaining lightweight and
practical for real-time applications.

Table 4. The effect of each module on our proposed method. Numbers in bold represent the
best performance.

Baseline Multi-Scale Aitll E::tlia;n CCAM DWCA Ac:zz)r)acy Pre(cozs)lon Rﬁ)za;ll F1-Score (%) P&I;Elltllie‘:ﬁ;s Flops (G) F}_rilrfneereznmc;
64.50 62.65 61.53 61.74 0.14 15.17 20.07
v 77.69 79.10 73.39 74.62 0.25 15.26 19.87
v 70.88 71.26 65.75 66.72 0.14 15.17 19.69
v 69.51 69.47 63.19 64.54 0.14 15.17 20.99
v 70.76 69.69 66.24 66.34 0.60 16.61 25.7
v v 81.35 81.04 79.62 79.87 0.25 15.26 21.69
v v 82.19 81.71 81.14 81.02 0.25 15.26 21.61
Swin v v 80.00 80.08 76.49 77.26 0.71 16.70 26.41
Transformer v v v 83.48 82.81 82.21 82.10 0.29 15.47 21.16
v v v 79.43 80.15 74.78 76.29 0.71 16.70 26.56
v v v 81.11 81.57 77.45 78.85 0.71 16.70 26.34
v v 72.20 71.33 67.99 68.69 0.14 15.17 20.05
v v 69.54 67.69 65.14 65.49 0.60 16.61 25.15
v v v 76.49 75.75 73.34 74.16 0.60 16.61 26.41
v v 70.25 69.35 63.93 64.45 0.60 16.61 25.88
v v v v 87.44 87.26 85.75 86.39 0.79 16.91 26.91

To further evaluate the design of our CRSI (channel reduction and spatial interpolation)
module, we tested multiple configurations that varied the number of output channels (64,
128, 256) and target spatial resolutions (14 x 14, 28 x 28, 56 x 56). Results from this
ablation, summarized in Table 5, show that increasing the spatial resolution leads to
better performance, highlighting the importance of preserving finer spatial details for pose
classification. Among all tested variants, the CRSI configuration with 128 channels and a
56x56 output resolution achieved the highest accuracy and F1-score, balancing richness of
feature representation with manageable model complexity. These experiments demonstrate
that both the spatial and channel configurations of the fusion stage play a critical role in
downstream classification accuracy and validate our design choice for CRSI as a compact
yet effective feature unification module.

Table 5. The effect of different spatial dimensions and channel numbers on enhancing our method in
CRSI. Numbers in bold represent the best performance.

Channels  Height Width  Accuracy (%) Precision (%) Recall (%) F1-Score (%)

64 56 56 78.47 79.34 74.54 75.69
64 28 28 78.53 78.52 74.23 75.42
64 14 14 80.06 79.19 76.45 77.44
64 7 7 79.49 79.84 74.68 75.95
128 56 56 87.44 87.26 85.75 86.39
128 28 28 80.18 79.51 76.71 76.89
128 14 14 78.29 77.65 75.85 76.22
128 7 7 82.52 82.47 79.56 80.41
256 56 56 78.59 78.63 76.12 76.85
256 28 28 77.21 79.01 72.68 74.31
256 14 14 79.43 77.73 77.08 76.92
256 7 7 77.78 78.24 73.12 7443
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We also conducted a focused ablation on the design of our Enhanced SPA module by
comparing it against standard CBAM-style spatial attention mechanisms using different
convolutional kernels. As shown in Table 6, employing only a 7 x 7 convolution or only
a 3 x 3 convolution yields modest performance gains over the baseline. However, when
both kernel sizes are combined, the accuracy and F1-score increase substantially to 86.87%
and 85.84%, respectively. This confirms that fusing multi-scale receptive fields enables the
network to better capture diverse spatial patterns across pose variations, thereby enriching
the attention maps used in downstream processing.

Table 6. Comparison of different used convolution of our SPA and the spatial attention of CBAM.
Numbers in bold represent the best performance.

Model Conv7x7 Conv3x3 Accuracy (%) Precision (%) Recall (%) Fl-score (%)
Spatial attention (from original cbam) v 80.06 79.64 77.32 78.01
Spatial attention (from original cbam) v 80.72 80.14 79.56 79.44

Our Spatial attention

v v 87.44 87.26 85.75 86.39

Additionally, to investigate the contribution of context modeling in the channel at-
tention mechanism, we compared our CCAM with a simpler, non-contextual variant.
As detailed in Table 7, the standard channel attention using only a 1 x 1 convolution
achieves lower performance, while the context-aware version with added 1 x 1 convolu-
tions and a residual connection attains a notable improvement across all metrics. This
boost, increasing the F1-score to 85.84%, demonstrates that capturing spatial context within
each channel is crucial for enhancing discriminative focus. By incorporating local context
and global semantics, CCAM allows the model to more effectively highlight informative
channels across different layers.

Table 7. An ablation study to show the effect of using CCAM on our proposed method. Numbers in
bold represent the best performance.

Model Residual Connection Conv1x1 Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Non-Context-Aware
Channel Attention v 82.07 82.68 78.87 80.24
Context-Aware
Channel Attention v v 87.44 87.26 85.75 86.39
We also provide an ablation to demonstrate the effectiveness of our proposed DWCA

compared to other fusion strategies such as addition, concatenation, or standard cross-
attention in terms of metric performance. As shown in Table 8, our proposed DWCA
performs significantly better than the other strategies. We believe one reason for this im-
provement is that the learnable weights help our model better assign and select key, query,
and value components, which is crucial for transformer-based cross-attention modules.
Table 8. An ablation study to show the effect of using DWCAA on our proposed method rather than
other fusion strategies. Numbers in bold represent the best performance.

Model Method Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Proposed Method Concat 83.48 82.79 82.74 82.57
Proposed Method Addition 82.52 82.32 81.01 81.07
Proposed Method  Cross-Attention 85.10 85.64 82.88 84.10
Proposed Method DWCA 87.44 87.26 85.75 86.39
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4.7. Confusion Matrix

A confusion matrix is a widely used evaluation tool in classification tasks, summa-
rizing the relationship between predicted and actual labels. Correct predictions appear
along the diagonal, while off-diagonal values indicate misclassifications. This visualization
not only reflects overall accuracy but also reveals which specific classes are often confused,
providing deeper insights into model performance. Figure 7 presents the confusion matrix
for the Yoga-82 dataset using its 20 subclasses. The diagonal dominance across most classes,
such as reclining-up facing, forward bend, and wheel-up facing, indicates that the model
effectively distinguishes the majority of poses. However, certain categories, including
split, legs bent, and normall legs in front, exhibit moderate confusion with visually similar
poses that differ only in subtle limb orientations or camera angles. These misclassifications
highlight the inherent difficulty of fine-grained yoga pose recognition, where high inter-
class similarity and intra-class variation coexist. Figure 8 illustrates the confusion matrix
for the Stanford 40 Actions dataset. Most action classes, such as applauding, climbing,
and riding a bike, show strong diagonal performance, confirming the model’s robustness
in recognizing diverse human activities. Nevertheless, actions with overlapping visual
cues, such as phoning versus texting a message and waving hands versus applauding,
occasionally result in misclassifications. This is largely due to shared contextual elements
and similar upper-body movements, which can pose a challenge even for high-performing
models. Despite these minor confusions, the overall results demonstrate consistently high
performance across both datasets.
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Figure 7. The confusion matrix illustration for the Yoga-82 dataset.
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Figure 8. The confusion matrix illustration for Stanford 40 Actions.

4.8. Gradient-Weighted Class Activation Mapping

Gradient-weighted Class Activation Mapping (Grad-CAM) is a widely used visualiza-
tion technique for interpreting convolutional neural network (CNN) decisions. It generates
class-discriminative localization maps by leveraging the gradients of a target class flowing
into the final convolutional layer, thereby highlighting the image regions most relevant to
the prediction.

In Figure 9, the Grad-CAM visualizations reveal the model’s attention patterns for
complex yoga poses in the Yoga-82 dataset, where subtle limb positions can be critical for
correct classification. Block 1 activations are usually spread over large body regions and
parts of the background, making it difficult to distinguish fine posture details. Block 2
introduces some structural cues, but the highlighted areas remain broad and imprecise.
By Block 3 and Block 4, the focus becomes more discriminative, centering on the main body
configuration; for example, the raised legs in legs straight up or the arched back in wheel,
among others. The attention modules then refine these maps further. SPA often emphasizes
large connected body areas, CCAM pinpoints several critical joints or limbs, and DWCA
frequently produces the sharpest focus on the most defining parts of the pose, such as the
extended arms in side facing or the bent torso in forward bend. Across many examples,
all three attention mechanisms surpass the localization quality of Block 4, with our model
sometimes achieving particularly well-targeted focus in the DWCA stage, aligning closely
with the most discriminative regions for each pose.
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Figure 9. An illustration of Grad-CAM with the Yoga-82 dataset. Bolder colors such as red represents

stronger attentions rather than blue and lighter colors.

In Figure 10, which illustrates Grad-CAM on a standard dataset, the maps demon-
strate how attention evolves from the earliest convolutional stages to the application of
specialized attention modules. In Block 1, activations are generally dispersed, often cover-
ing large portions of the scene, including irrelevant background areas. Block 2 begins to
capture some coarse action-related cues but still lacks clear separation between the object
of interest and surrounding regions. By Block 3 and Block 4, the focus becomes more
refined, with activations concentrating on areas such as the face and bubbles in blowing
bubbles, the rider and bicycle frame in riding a bike, or the fisherman’s torso and fishing
rod in fishing. The attention modules, such as SPA, CCAM, and DWCA, further enhance
this focus by suppressing less relevant regions and sharpening key features. SPA often
highlights the general action region, CCAM tends to capture multiple discriminative points
across the subject, and DWCA frequently provides the most precise localization, as seen in
its ability to lock onto the bubble wand, the body of the guitar, or the microscope eyepiece.
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Figure 10. An illustration of Grad-CAM with the Stanford 40 Actions dataset. Bolder colors such as
red represents stronger attentions rather than blue and lighter colors.

5. Conclusions

In this work, we presented a lightweight and modular attention-based architecture
for human pose classification, leveraging a Swin Transformer backbone for efficient multi-
scale feature extraction. By incorporating Spatial Attention, the Context-Aware Channel
Attention Module, and our proposed Dual Weighted Cross Attention module, the model
effectively fuses spatial and channel-wise cues while adaptively balancing attention-refined
features with direct feature concatenations. Extensive experiments on the Yoga-82 dataset
(in both main-class and subclass settings) and the Stanford 40 Actions dataset demonstrated
that our approach consistently outperforms state-of-the-art baselines across multiple evalu-
ation metrics, achieving high accuracy with only 0.79 million parameters. The integration of
explainable Al techniques further enhances the interpretability and trustworthiness of the
model’s predictions. Although our proposed method achieves strong performance, several
challenges remain in yoga pose classification and related human pose recognition tasks.
First, the high inter-class similarity between certain poses can still lead to misclassifications,
especially when differences are subtle and localized to small body regions. Second, dataset
noise and label inaccuracies, such as mislabeled or irrelevant images, can hinder generaliza-
tion. Third, the current approach operates on static images, and therefore, cannot leverage
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the temporal information present in pose sequences. To address these issues, future work
could explore incorporating part-based pose refinement modules to focus more precisely on
discriminative body regions, applying automated data-cleaning pipelines to reduce noise,
and integrating temporal modeling (e.g., Transformer-based video modules) to capture
motion cues in sequential data.

Author Contributions: A.S.: Conceptualization, Methodology, Software, visualization, Writing—
original draft preparation; M.-M.H.: reviewing & editing, Supervision; A.F.: Methodology, Investiga-
tion, visualization; M.F.: Supervision, reviewing & editing; V.A.: Supervision, reviewing & editing,
resources. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Both the Yoga-82 and Stanford 40 Actions datasets are publicly released
for non-commercial research purposes under the terms provided by their original authors. All images
used in this work are drawn directly from these datasets, and no additional personal data were
collected. The dataset licenses and usage terms can be found at the respective repositories: Yoga-82:
https:/ /www.kaggle.com/datasets/akashrayhan/yoga-82 (accessed on 25 May 2025); Stanford 40
Actions: http:/ /vision.stanford.edu/Datasets /40actions.html (accessed on 25 May 2025). Also the
source code of this study is publicly available at https://github.com/alirezasa7 /human-pose-and-
action-classification (accessed on 25 May 2025).

Acknowledgments: During the preparation of this manuscript, the authors used (ChatGPT-4.5) only
to improve grammar and readability. After that, authors reviewed all the contents and they take full
responsibility for the content of this publication.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Yan, L.; Du, Y. Exploring trends and clusters in human posture recognition research: an analysis using citespace. Sensors 2025,
25, 632.

2. Kakizaki, M.; Miah, A.S.M.; Hirooka, K.; Shin, J. Dynamic Japanese sign language recognition throw hand pose estimation using
effective feature extraction and classification approach. Sensors 2024, 24, 826.

3. Hussain, S.; Siddiqui, H.U.R; Saleem, A.A.; Raza, M.A.; Alemany-Iturriaga, J.; Velarde-Sotres, A.; Diez, LD.1.T; Dudley, S. Smart
physiotherapy: Advancing arm-based exercise classification with posenet and ensemble models. Sensors 2024, 24, 6325.

4. Duda-Gotawska, J.; Rogowski, A.; Laudanska, Z.; Zygierewicz, J.; Tomalski, P. Identifying infant body position from inertial
sensors with machine learning: Which parameters matter? Sensors 2024, 24, 7809.

5. Cruciata, L.; Contino, S.; Ciccarelli, M.; Pirrone, R.; Mostarda, L.; Papetti, A.; Piangerelli, M. Lightweight vision transformer for
frame-level ergonomic posture classification in industrial workflows. Sensors 2025, 25, 4750.

6. Aydin, V.A. Comparison of CNN-based methods for yoga pose classification. Turk. J. Eng. 2024, 8, 65-75.

7. Cao, Q.; Yu, Q. Application analysis of artificial intelligence virtual reality Technology in Fitness Training Teaching. Int. |. High
Speed Electron. Syst. 2025, 34, 2440084.

8.  Galada, A.; Baytar, F. Design and evaluation of a problem-based learning VR module for apparel fit correction training. PLoS
ONE 2025, 20, e0311587.

9.  Meghana, J.; Chethan, H.; KS, S.K.; SP, S.P. Comprehensive analysis of pose estimation and machine learning classifiers for precise
yoga pose detection and classification. Procedia Comput. Sci. 2025, 258, 3345-3356.

10.  Shih, C.L.; Liu, J.Y.; Anggraini, L.T.; Xiao, Y.; Funabiki, N.; Fan, C.P. A Yoga Pose Difficulty Level Estimation Method Using
OpenPose for Self-Practice System to Yoga Beginners. Information 2024, 15, 789.

11. Saber, A.; Fateh, A.; Parhami, P; Siahkarzadeh, A.; Fateh, M.; Ferdowsi, S. Efficient and accurate pneumonia detection using a
novel multi-scale transformer approach. Sensors 2025, 25, 7233.

12. Kumar, D.; Sinha, A. Yoga Pose Detection and Classification Using Deep Learning; LAP LAMBERT Academic Publishing: London,

UK, 2020.

https://doi.org/10.3390/s26041102


https://www.kaggle.com/datasets/akashrayhan/yoga-82
http://vision.stanford.edu/Datasets/40actions.html
https://github.com/alirezasa7/human-pose-and-action-classification
https://github.com/alirezasa7/human-pose-and-action-classification
https://doi.org/10.3390/s26041102

Sensors 2026, 26, 1102 22 of 23

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.
37.

38.

39.

Agrawal, Y,; Shah, Y.; Sharma, A. Implementation of machine learning technique for identification of yoga poses. In Proceedings
of the 2020 IEEE 9th International Conference on Communication Systems and Network Technologies (CSNT), Gwalior, India,
10-12 April 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 40—43.

Knap, P. Human modelling and pose estimation overview. arXiv 2024, arXiv:2406.19290.

Fateh, A.; Rezvani, M.; Tajary, A.; Fateh, M. Providing a voting-based method for combining deep neural network outputs to
layout analysis of printed documents. J. Mach. Vis. Image Process. 2022, 9, 47-64.

Saber, A.; Fakhim, M.S,; Fateh, A ; Fateh, M. A lightweight multi-scale refinement network for gastrointestinal disease classification.
Expert Syst. Appl. 2026, 308, 131029.

Askari, F; Fateh, A.; Mohammadi, M.R. Enhancing few-shot image classification through learnable multi-scale embedding and
attention mechanisms. Neural Netw. 2025, 187, 107339.

Fateh, A.; Mohammadi, M.R.; Motlagh, M.R.J. MSDNet: Multi-scale decoder for few-shot semantic segmentation via transformer-
guided prototyping. Image Vis. Comput. 2025, 162, 105672.

Liu, Z,; Lin, Y;; Cao, Y.; Hu, H.; Wei, Y,; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 10-17 October
2021; pp. 10012-10022.

Han, K,; Wang, Y.; Chen, H.; Chen, X.; Guo, J.; Liu, Z.; Tang, Y.; Xiao, A.; Xu, C.; Xu, Y,; et al. A survey on vision transformer. [EEE
Trans. Pattern Anal. Mach. Intell. 2022, 45, 87-110.

Fakhim, M.S.; Fateh, M.; Fateh, A; Jalali, Y. DA-COVSGNet: Double Attentional Network for COVID Severity Grading. Int. ].
Eng. 2025, 38, 1568-1582.

Fateh, A.; Rezvani, Y.; Moayedi, S.; Rezvani, S.; Fateh, F; Fateh, M. BRISC: Annotated Dataset for Brain Tumor Segmentation and
Classification with Swin-HAFNet. arXiv 2025, arXiv:2506.14318.

Hassanin, M.; Khamis, A.; Bennamoun, M.; Boussaid, F.; Radwan, I. Crossformer3D: Cross spatio-temporal transformer for 3D
human pose estimation. Signal Image Video Process. 2025, 19, 618.

Zheng, H.; Li, H.; Dai, W.; Zheng, Z.; Li, C.; Zou, J.; Xiong, H. Hipart: Hierarchical pose autoregressive transformer for occluded
3d human pose estimation. In Proceedings of the Computer Vision and Pattern Recognition Conference, Nashville, TN, USA,
10-17 June 2025; pp. 16807-16817.

I§g1'ider, E.; Durmaz Incel, O. FedOpenHAR: Federated Multitask Transfer Learning for Sensor-Based Human Activity Recognition.
J. Comput. Biol. 2025, 32, 558-572.

Thukral, M.; Haresamudram, H.; Ploetz, T. Cross-domain har: Few-shot transfer learning for human activity recognition. ACM
Trans. Intell. Syst. Technol. 2025, 16, 22.

Akash, M.; Mohalder, R.D.; Khan, M.A.M.; Paul, L.; Ali, EB. Yoga Pose classification using transfer learning. In Data-Driven
Applications for Emerging Technologies; CRC Press: Boca Raton, FL, USA, 2025; p. 197.

Wei, X.; Wang, Z. TCN-attention-HAR: Human activity recognition based on attention mechanism time convolutional network.
Sci. Rep. 2024, 14, 7414.

Zhang, L.; Yu, J.; Gao, Z.; Ni, Q. A multi-channel hybrid deep learning framework for multi-sensor fusion enabled human activity
recognition. Alex. Eng. J. 2024, 91, 472-485.

Sun, W.; Ma, Y.; Wang, R. k-NN attention-based video vision transformer for action recognition. Neurocomputing 2024, 574, 127256.
Dastbaravardeh, E.; Askarpour, S.; Saberi Anari, M.; Rezaee, K. Channel attention-based approach with autoencoder network for
human action recognition in low-resolution frames. Int. J. Intell. Syst. 2024, 2024, 1052344.

Verma, M.; Kumawat, S.; Nakashima, Y.; Raman, S. Yoga-82: A new dataset for fine-grained classification of human poses. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14-19
June 2020; pp. 1038-1039.

Yao, B,; Jiang, X.; Khosla, A.; Lin, A.L.; Guibas, L.; Fei-Fei, L. Human action recognition by learning bases of action attributes and
parts. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6-13 November 2011; IEEE:
Piscataway, NJ, USA, 2011; pp. 1331-1338.

Borthakur, D.; Paul, A.; Kapil, D.; Saikia, M.]. Yoga pose estimation using angle-based feature extraction. Healthcare 2023, 11, 3133.
Ashrafi, S.S.; Shokouhi, S.B.; Ayatollahi, A. Action recognition in still images using a multi-attention guided network with weakly
supervised saliency detection. Multimed. Tools Appl. 2021, 80, 32567-32593.

Li, Y,; Li, K.; Wang, X. Recognizing actions in images by fusing multiple body structure cues. Pattern Recognit. 2020, 104, 107341.
Gkioxari, G.; Girshick, R.; Malik, J. Contextual action recognition with r* cnn. In Proceedings of the IEEE International Conference
on Computer Vision, Santiago, Chile, 7-13 December 2015; pp. 1080-1088.

He, K.; Zhang, X.; Ren, S.; Sun, ]J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27-30 June 2016; pp. 770-778.

Zheng, Y.; Zheng, X.; Lu, X.; Wu, S. Spatial attention based visual semantic learning for action recognition in still images.
Neurocomputing 2020, 413, 383-396.

https://doi.org/10.3390/s26041102


https://doi.org/10.3390/s26041102

Sensors 2026, 26, 1102 23 of 23

40. Yan, S, Smith, J.S.; Lu, W.; Zhang, B. Multibranch attention networks for action recognition in still images. IEEE Trans. Cogn. Dev.
Syst. 2017, 10, 1116-1125.

41. Bas, C,; Ikizler-Cinbis, N. Top-down and bottom-up attentional multiple instance learning for still image action recognition.
Signal Process. Image Commun. 2022, 104, 116664.

42. Hosseyni, S.R.; Seyedin, S.; Taheri, H. Human Action Recognition in Still Images Using ConViT. In Proceedings of the 2024
32nd International Conference on Electrical Engineering (ICEE), Tehran, Iran, 14-16 May 2024; IEEE: Piscataway, NJ, USA, 2024;

pp- 1-7.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s26041102


https://doi.org/10.3390/s26041102

	Introduction
	Related Works
	Transformers
	Transfer Learning
	Attention Mechanism

	Proposed Method
	Overview
	Backbone
	Multi-Scale Feature Extraction
	Spatial Attention
	Context-Aware Channel Attention
	Dual Weighted Cross Attention
	Loss Function

	Experimental Result
	Dataset
	Yoga-82
	Stanford 40 Actions
	Data Augmentation

	Experimental Settings
	Training and Validation Analysis
	Evaluation Metrics
	Comparison with State-of-the-Art Methodsblack
	Ablation Study
	Confusion Matrix
	Gradient-Weighted Class Activation Mapping

	Conclusions
	References

