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Abstract— Digital Twin (DT) technology, a core pillar of Healthcare
4.0 (H4.0), enables intelligent, non-invasive, and personalized pa-
tient monitoring. This research presents a pilot Al-enabled Elec-
tromyography (EMG)-driven DT framework for muscular activity
assessments. The EMG data enables monitoring of muscle engage-
ments and provides a comprehensive representation of physiologi-
cal states. The raw EMG data, consisting of 7 activities, i.e., Sitting,
Standing, Walking, Relax, Stress Ball, Hand at Rest, and Fist, is sub-
jected to denoising techniques of mean removal, smoothing, and
digital filtering. Within the DT model, Al serves as the intelligence
core that transforms these denoised signals into relevant digital
states. Supervised and semi-supervised classifiers act as inference
engines, continuously refining the DT as new data is incorporated,
allowing it to evolve in synchrony with the patient’s condition. The

decision support using ML and DL is employed for EMG classification, utilizing statistical features and autonomous
feature extraction methodologies of AutoEncoder (AE) and Stacked AutoEncoder (SAE). The feature data is enriched
and enlarged through Gaussian noise feature data augmentation for both feature extraction approaches. The Fine KNN
algorithm provides classification accuracy of 94.6% and 91.6%. However, the autonomous feature extraction through
the SAE (32-16-32) with Medium KNN provides an overall accuracy of 96.4% and 93.3%. The promising results validate
the effectiveness of the proposed framework as a dynamic, Al-driven DT system for prospective holistic patient multi-

physiological monitoring and decision support.

Index Terms— Digital Twin, Electromyography, Classification, Multi-Physiological, Signal Processing, Machine Learning,

Deep Learning

[. INTRODUCTION

KELETAL muscle, the largest organ in the human body,

facilitates movement through coordinated muscle fiber
contractions. However, repetitive motion, poor posture, and ex-
cessive muscular exertion can lead to fatigue and degenerative
changes, resulting in Musculoskeletal Disorders (MSDs) [1]
such as myopathy, neuropathy, tendonitis, and fibromyalgia.
These conditions are often painful, debilitating, and a major
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cause of long-term disability [2]. MSDs account for approx-
imately 2% of the European Union’s (EU) gross domestic
product (GDP) in annual direct medical expenses [3]. With
the global population aging rapidly, the burden of medical
expenses is expected to rise substantially. In response, the
digital revolution is reshaping healthcare systems worldwide,
making services more accessible, cost-effective, and efficient.
Advancements in Information and Communication Technol-
ogy (ICT) play a crucial role in extending healthcare delivery
beyond geographical and social limitations.

One such diagnostic and monitoring technology gaining
prominence in the context of MSDs and digital healthcare
is Electromyography (EMG). EMG signals carry crucial in-
formation about muscle activity, originating from electrical
impulses generated by the central nervous system. These
impulses propagate into neuromuscular junctions and travel
along muscle fibers toward the tendons, where they initiate
muscle contractions by enabling sarcomere filaments to slide
past each other. The central nervous system controls the
strength and speed of these contractions by modulating the
number of motor units activated and their firing rates. Surface
Electromyography (SEMG), recorded from electrodes placed
on the skin, captures the combined Motor Unit Action Po-
tentials (MUAPs) within the detection area [4], [S]. EMG can



be recorded using two main techniques: invasive intramuscular
EMG and non-invasive surface EMG. Intramuscular EMG uses
needle electrodes inserted into the muscle, while surface EMG
offers a painless, non-invasive alternative. However, SEMG is
more prone to noise than intramuscular recordings because the
signal must pass through skin and fat layers, which introduces
Gaussian noise and impedance that can distort the signal’s
integrity [6]. The EMG signal denoising is a crucial part
of utilizing them for patient health monitoring and decision-
support.

Digital Twin (DT) technology, a cornerstone of ICT ad-
vancement in Healthcare 4.0 (H4.0), offers a transformative
solution for improving patient healthcare [7], [8]. By creating a
real-time virtual replica of a patient’s musculoskeletal system,
DT enables continuous, non-invasive monitoring using surface
EMG signals. These signals, once denoised and processed,
provide critical insights into muscle function, fatigue, and
neuromuscular health. DT systems can integrate EMG data
with Al models to detect early signs of disorders, personalize
rehabilitation, and simulate patient-specific outcomes [9]. This
integration of EMG with DT allows healthcare providers to
shift from reactive to proactive care. Clinicians can remotely
assess patient conditions, optimize therapy plans, and mon-
itor progress over time without requiring frequent doctor
visits. A digital extension of the patient, the DT reduces
healthcare costs, enhances accessibility, and supports long-
term management of MSDs through intelligent, data-driven
interventions. Unlike conventional monitoring tools, it is a
dynamic, continuously evolving model that assimilates each
new EMG data point to maintain a precise, personalized digital
replica of the patient’s physiological state. Fig. 1 provides a
generic representation of building a DT model.

Al serves as the analytical backbone of DT systems. While
DTs provide a continuously evolving digital representation of
the patient, AI models enhance the twin with the ability to
learn from data, recognize subtle neuromuscular patterns, and
predict emerging conditions [10]. In the context of EMG-based
DTs, ML and DL algorithms transform raw and denoised
signals into clinically meaningful digital states and the identifi-
cation of abnormal patterns. Al also facilitates personalization
by adapting the DT model to individual variability, ensuring
that the twin reflects not only generalized musculoskeletal
functions but also the patient’s unique physiological profile
[10], [11]. This fusion of DT and Al establishes a proactive,
intelligence-driven healthcare framework capable of support-
ing continuous monitoring, personalized rehabilitation, and
informed clinical decision-making [12].

A. Research Background

Digital Twins (DTs) are instantiated from the parameters
of their physical counterparts. Therefore, accurate, continuous
sensing is fundamental to building a faithful model. Sensors
constitute the first stage of data acquisition for any DT. For a
human DT, wearable sensors offer a clear advantage over al-
ternative methods [13]. Implantable sensors represent another
option: by operating inside the body, they can continuously
record and stream clinically relevant vital data, e.g. blood
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glucose [14], and thus exploit the real-time capabilities of
DTs. However, implants are invasive, often more expensive,
and harder to maintain, which can limit their feasibility and
scalability across patient populations. In contrast, wearable
devices provide similarly continuous monitoring while being
non-invasive, easier to deploy, and more cost-effective, mak-
ing them highly suitable for DT-driven healthcare workflows
[15], [16]. Moreover, wearables are essential enablers of the
Internet of Things (IoT) within the DT ecosystem, allowing
seamless persistent communication among all devices involved
in constructing and maintaining the twin [17].

Among the various biosignals acquired through wearable
sensing, EMG has gathered significant attention for its ability
to capture neuromuscular activity relevant to motor function
and rehabilitation [18]. Researchers have explored EMG for
applications such as gesture recognition, muscle fatigue analy-
sis, and activity classification. In recent years, Machine Learn-
ing (ML) and Deep Learning (DL) have gained prominence in
biomedical signal analysis [19], including EMG interpretation.
ML methods are either supervised, using labeled data to
build models, or unsupervised, finding patterns without labels.
DL automates the full process, learning features and models
directly from raw data through multilayer networks, removing
the need for manual feature extraction. The system predicts
the likelihood of stroke occurrence based on real-time EMG
biosignals during daily activities.

In a recent research, an IoT-based device was presented
that monitors EMG signals using wearable sensors and cloud
analytics [20]. The device analyzes muscle activity with ML
and sends real-time alerts for abnormalities, enabling contin-
uous, remote monitoring and improved neuromuscular care.
In [21], the author proposed an improved EMG detection
method (FM-ALED) using energy-based features and CFAR
refinement. It achieved lower error rates than existing methods,
with error probabilities as low as 0.0140 on synthetic data and
strong performance on real signals from healthy and Parkinson
subjects. In [22], a muscle rehabilitation monitoring system us-
ing spatiotemporal EMG signal analysis is proposed. Through
experiments with different joint angles and incorrect postures,
clear EMG features changes were observed. Notably, zero-
cross rate and median frequency showed >0.8 correlation for
fatigue detection, with zero-cross being more efficient compu-
tationally. The authors of [23] developed a real-time wearable
EMG monitoring system using flexible dry electrodes and an
adaptive SVM classifier. The system achieved 92% accuracy
in classifying six arm movements and demonstrated stable
signal quality across different skin conditions, highlighting its
suitability for practical rehabilitation and assistive applications.

A flexible, textile-based dry electrode for surface EMG ac-
quisition, integrated into a wearable sleeve. The system main-
tained signal quality comparable to gel electrodes and achieved
over 90% classification accuracy for hand gestures using
ML, demonstrating its potential for long-term, comfortable
EMG monitoring in wearable applications [24]. The authors
elaborated in depth on the use of ML and DL in identifying
abnormal neuromuscular patterns indicative of stroke risk,
enabling early intervention without relying on imaging tech-
niques [19]. The work in [25] discusses in depth the ML and
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Fig. 1: Foundational process for EMG-driven (DT) development: The creation pipeline starts with the acquisition of patient
EMG signals, which are then denoised and refined through feature extraction. These cleaned signals are mapped into the
digital space, where Al models are trained to accurately represent underlying physiological activities. Once established, the
DT enables real-time activity recognition, supports continuous monitoring, and facilitates interactive communication between
patients and healthcare providers

DL models for the interpretation of the EMG signals. The au-
thors of [26] proposed a hybrid transformer-based architecture,
TraHGR, for hand gesture recognition. It employs two parallel
processing pathways followed by a fusion center with a linear
integration layer, enhancing robustness and adaptability across
varying conditions. A stacking ensemble-learning model, the
Convolutional Vision Transformer (CviT), was proposed in
[27] for EMG signal classification. The approach incorporates
EMG signal fusion with parallel training and achieved 80.2%
accuracy on the NinaPro DB2 dataset. The work in [28]
presents a comparative analysis of ML algorithms for EMG-
based prosthetic arm control. Four classifiers of SVM, KNN,
Logistic Regression, and Decision Tree were evaluated for
multiclass classification. SVM achieved the highest accuracy
(83%), followed by KNN (77%), Logistic Regression (75%),
and Decision Tree (74%).

B. Research Novelty

Following are the contribution of this research toward
holistic human DT model.

1) A pilot study presenting an Al-enabled EMG DT frame-
work for continuous neuromuscular activity monitoring
and decision-support readiness, serving as a foundational
component for future clinical integration.

2) Supervised and semi-supervised learning enhanced with
Gaussian noise based-feature augmentation is employed
to strengthen the reliability of EMG classification. The
approach supports binary classification, which distin-
guishes active from inactive muscle states, and multi-

class classification, which accurately differentiates be-
tween seven physical activities. This layered classifica-
tion strategy ensures both baseline detection and fine-
grained activity recognition within the proposed EMG
DT model.

3) An innovative feature engineering and recursive op-
timization framework is developed to systematically
identify the most effective Machine Learning (ML) and
Deep Learning (DL) algorithms for EMG-based decision
support. By iteratively refining feature representations
and model parameters, the DT achieves improved adapt-
ability, robustness, and decision-support relevance across
diverse patient conditions.

I[I. PROPOSED AI-ENABLED DIGITAL TWIN MODEL FOR
EMG-BASED PATIENT MONITORING

The Fig. 2 illustrates the architecture of the proposed surface
EMG DT developed for patient monitoring and decision sup-
port analysis. The EMG DT is designed as a patient- specific
virtual replica that continuously mirrors neuromuscular activ-
ity by integrating acquisition hardware, signal pre-processing,
intelligent analytics, and decision-support interfaces into a
single framework.

Signal Acquisition and Pre-processing: The DT begins
with the acquisition of EMG signals using surface electrodes
connected to instrumentation amplifiers. The raw signals are
pre-processed through offset removal, denoising, wavelet de-
composition, and digital filtering. Additional steps, such as
feature extraction, ensure that the signals are transformed into
structured data suitable for modeling.
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Fig. 2: Conceptual Al-enabled EMG DT framework illustrating signal acquisition, intelligent activity modeling, and decision
support: The workflow shows how signals are acquired, processed, and used for activity modelling, Al-driven classification
decision support.

Activity Modeling and AI-Enabled Intelligence Layer:
The pre-processed EMG signals are integrated into the DT
environment, where they are mapped into patient activity
states (e.g., walking, sitting, standing, hand movements). At
the core of the DT lies an Al-enabled intelligence layer,
composed of supervised and semi-supervised adaptive learning
models. These models perform feature extraction, data aug-
mentation with Gaussian noise, and both binary and multi-
class classification. This layer acts as the inference engine
of the DT, continuously refining activity recognition and
maintaining robustness against noise and inter-subject variabil-
ity. To maintain the physiological integrity of non-stationary
EMG signals within the DT, data augmentation is applied at
the feature level rather than the raw signal or image level,
ensuring robustness to variability while avoiding distortion of
underlying neuromuscular characteristics.

In the proposed manuscript, the supervised and semi-
supervised feature extraction approaches are presented as
parallel and independent pipelines rather than as a unified fea-
ture fusion framework. Statistical features and autonomously
learned features obtained via AE/SAE are each evaluated sep-
arately, with their respective classifiers trained and tested inde-
pendently to assess comparative performance. The intention of
this design is to analyze how manually engineered features and
automatically learned latent representations performed under
identical experimental conditions, rather than to combine them
as joint inputs to a single classifier. Consequently, the study
does not aim to merge or fuse features from different learning
paradigms, but instead treats them as alternative representa-
tions within the Al-enabled DT framework, each following its
own training strategy and classification.

Digital Twin (DT) Synchronization: By continuously in-
tegrating new EMG segments, the DT maintains a living and
adaptive digital replica of the patient’s neuromuscular system.

Classifiers are not treated as independent predictors but as
embedded intelligence modules that evolve with each new
data stream, keeping the DT synchronized with the patient’s
physiological state in real time.

Decision-Support and Bi-Directional Interface: The DT’s
last part connects activity classification to a bidirectional
interface. The framework is intended to provide physician-
interpretable, Al-driven activity insights that show how pa-
tient monitoring data may be examined and contextualized.
Furthermore, the DT facilitates conceptual physician feedback
methods designed to improve monitoring tactics in the digital
model. This guarantees that the DT is both decision support-
ready and indicative of the patient’s condition, providing a
basis for upcoming healthcare decision-making processes.

I1l. EMG DATA & SIGNAL DENOISING

The sEMG signals were integrated from an external dataset
to represent muscle activity associated with various physical
tasks. The SEMG signals were obtained from the PIFv3
dataset, recorded with a SparkFun 3-lead AD8226 instrumen-
tation amplifier sensor from 32 participants across diverse
demographics [29]. The dataset includes raw EMG traces
(EMGRaw) and derived features such as EMGRMS, and
EMGMAV. While the archival metadata does not state the
original sampling rate, standard usage of the AD8226 in multi-
model wearable systems suggests it is approximately 1000Hz,
which is sufficient for capturing muscle activation bands from
20Hz to 450Hz.

Effective signal pre-processing is essential to ensure the
reliability of EMG and respiration data for feature extraction
and classification. Both signals are prone to noise, artifacts,
and baseline drifts, which can distort physiological informa-
tion. Fig. 3 provide the outline for the signal processing
steps applied to denoise EMG data. In [25], the authors
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provides a discussion on EMG signal processing and the
importance of denoising raw sensor data. In [30], the authors
present signal processing for their proposed Respiration DT
framework called "ResDT”.

To enhance signal quality, various digital filters were evalu-
ated for their effectiveness in denoising EMG and respiration
signals. This subsection presents a comparative analysis of
filters based on their ability to preserve key signal characteris-
tics while minimizing noise, guiding the selection of optimal
filtering strategies for each entity.

The activities provided in the dataset are Sitting, Standing,
Walking, Relax, Stress Ball, Hand at Rest, and Fist. The EMG
dataset was annotated with activity labels corresponding to
each timestamp during acquisition. During EMG signal acqui-
sition, each data point was time-stamped, and the correspond-
ing physical activity was recorded in parallel. This predefined
mapping between timestamps and activities eliminates the
need for activity recognition or detection algorithms. Instead,
the EMG data is directly segmented based on these times-
tamps, enabling targeted feature extraction for each specific
activity, such as standing, walking, or sitting. This approach
ensures precise alignment between the physiological signals
and the performed activities, facilitating focused analysis and
interpretation of muscle activation patterns relevant to each
task.

Raw EMG Data
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Fig. 3: EMG Pre-processing Pipeline and Filter Evaluation
for Denoising

The Table I provides parametric analysis for multiple digital
filters. The comparative analysis confirms Wavelet Decompo-
sition as the optimal EMG denoising technique, achieving the
highest SNR (26.50 dB), maximum entropy (4.9), and the least
negative pSNR (-14.89 dB). These metrics collectively indicate
superior noise suppression, enhanced information content, and
minimal signal distortion compared to conventional filters
like Butterworth, Elliptical, and Chebyshev. The raw EMG
signal denoising representation is provided in Fig. 4 to Fig.
7. The population-level wavelet denoising findings for 32
participants are shown in Table II, with narrow 95% confidence
intervals and a mean SNR of 26.5 £ 3.2 dB, indicating
consistent performance throughout the cohort. The distribution
of post-denoising SNR values is further shown in Figure 8§,
which verifies the robustness of the wavelet-based denoising
technique by showing little inter-subject variability and no
noticeable outliers.

Wavelet Decomposition excels due to its multi-resolution
analysis capability, enabling it to decompose signals across
various frequency bands with adaptive time-frequency local-
ization. This is critical for EMG signals, which are inherently
non-stationary with transient, multi-frequency characteristics.
Unlike fixed-parameter linear filters, wavelets can isolate noise
while preserving essential physiological information such as
muscle activation bursts. Thus, wavelet decomposition not
only enhances the signal quality quantitatively but also main-
tains the morphological integrity of the EMG signal, making
it the most robust and physiologically reliable filtering method
for biomedical applications.
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TABLE |: Comparison of Digital Filtering Techniques for
EMG Signal Denoising: SNR, Entropy, and pSNR Analysis
for a single subject

SNR-
SNR-Raw | Entropy- Entropy- SNR
Filter Type Py Processed Py P
(dB) Raw Processed (dB)
(dB)
Elliptical 0.03 3.57 9.31 3.80 -21.59
Butterworth -0.16 3.56 15.45 3.71 -19.20
Chebyshev
-0.15 3.57 12.80 3.95 -20.50
Type 1
Chebyshev
-0.16 3.57 10.33 3.06 -21.10
Type 11
Wavelet
0.13 3.57 26.50 4.9 -14.89
Decomposition
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TABLE II: Population-level wavelet-based EMG denoising
performance across 32 subjects. Values are reported as mean
=+ standard deviation with 95% confidence intervals.

Metric Mean + Std 95% CI

SNR (dB) 26.5 £ 3.2 [25.4, 27.6]
Entropy 490 £ 0.4 [4.75, 5.05]
pSNR (dB) | -14.89 £ 1.6 | [-15.4, -14.3]
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Fig. 8: Distribution of wavelet-based EMG denoising
performance across 32 subjects shown using a boxplot of
post-denoising SNR values

V. GAUSSIAN-BASED FEATURE AUGMENTATION

This section introduces a physiological constraint, feature-
level data augmentation methodology tailored for EMG DT
modeling. The methods enhance training data diversity and
robustness while preserving the neuromuscular characteristics
of inherently non-stationary EMG signals. Unlike raw signal
or image-level augmentation, the proposed approach operates
directly on denoised and segmented EMG feature vectors.
Low variance, zero mean Gaussian noise is injected to in-
troduce controlled variability that reflects realistic inter and
intra-subject differences without altering meaningful muscle
activation patterns.

The augmentation process is formally defined and applied
only to the training data within the DT learning pipeline to
prevent data leakage. Data augmentation is a crucial strategy
to overcome the limitations of small and imbalanced EMG
datasets, often encountered in biomedical signal analysis. By
generating synthetic data, augmentation enhances classifier
robustness, accuracy, and generalization [31]. In this research
work, the feature data augmentation is applied to the statistical
features extracted from EMG signals, aiming to improve
classification performance in scenarios constrained by limited
experimental data availability. While prior studies like [32]
employed image-based augmentation to expand EEG datasets,
this research focuses on time-series feature augmentation
tailored to EMG assessments. A detailed performance eval-
uation demonstrates that augmenting feature data significantly
improves model reliability and classification accuracy. Ad-
ditionally, authors of [33], [34] utilized similar feature data
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augmentation techniques for enlarging the feature data for
cerebral blood flow and stroke classification analysis.

In image processing, data augmentation typically involves
geometric transformations like scaling, rotation, and shifting,
or adding noise to the data. However, applying such geometric
transformations to time-series data is problematic because
they can disrupt the temporal structure and alter essential
frequency characteristics, rendering them ineffective for time-
domain features. Conversely, noise injection remains a viable
augmentation strategy for respiration data. Techniques such as
Gaussian, Pepper, Salt, and Poisson noise can be used to create
synthetic samples. Yet, due to the random and non-stationary
nature of EMG signals, noise types like Salt, Pepper, and
Poisson may introduce localized distortions that can degrade
the quality of the augmented feature data [32].

Feature-level data augmentation is adopted in this work due
to the non-stationary and physiologically sensitive nature of
time-series EMG signals. Applying augmentation directly at
the raw signal level, such as temporal scaling, shifting, or
high-intensity noise injection, can distort motor unit activation
patterns and modify the inherent time frequency characteristics
of EMG, resulting in physiologically unrealistic samples.
Likewise, image-based augmentation techniques are not well
suited for EMG analysis, as they require transforming one
dimensional EMG signals into image representations, which
introduces additional abstraction and potential artifacts that
are unrelated to actual neuromuscular activity. Instead, feature-
level augmentation is performed on denoised and segmented
EMG representations that already capture clinically mean-
ingful muscle activation characteristics. The addition of low-
variance Gaussian noise to statistical and later feature vectors
enable the generation of synthetic samples that reflect natural
inter and intra-subject variability while maintaining class-
discriminative information. This approach improves model ro-
bustness and generalization and aligns well with the objectives
of the proposed Al-enabled EMG DT framework.

In this research, Gaussian noise is applied at the feature level
(not on raw EMG), to create synthetic feature data. Gaussian
noise mean U is kept at 0, whereas, the variances 0 of 0.01
and 0.02 are analyzed. For each original feature vector X, m
augmented copies were generated according to:

xg£;=x+e(”, r=1,...,m, (1)
where each noise vector € was independently sampled from
a zero-mean Gaussian distribution, € ~ A/(0, 02I).

To prevent data leakage and ensure unbiased performance
evaluation, Gaussian noise augmentation was applied exclu-
sively to the training set after dataset shuffling and partitioning.
The dataset was split into 60% training, 20% validation, and
20% testing subsets, with 5-fold cross-validation performed on
the validation set.

V. CLASSIFICATION OF EMG-BASED ACTIVITIES
In the proposed Al-enabled EMG DT framework, classi-
fication models function as embedded inference engines that
map processed EMG feature representations to discrete physi-
ological activity states. This classification layer constitutes the

intelligence core of the DT, enabling continuous synchroniza-
tion between the physical subject and its digital counterpart. A
two-level classification strategy is implemented to support both
baseline and fine-grained neuromuscular assessment. Binary
classification distinguishes inactive and active muscle states,
while multi-class classification identifies 7 distinct physical
activities. Supervised and semi-supervised learning models are
integrated into this inference layer to ensure robustness, adapt-
ability, and reproducibility under varying signal conditions.

The Al execution and software workload were performed

using MATLAB 2024b and Python. The activities under con-
sideration from the dataset [29] are Sitting, Standing, Walking,
Relax, Stress Ball, Hand at Rest, Fist.

1) Binary class classification: This classification distin-
guishes between the body at rest and the body in motion
based on EMG signal activation. The EMG activities
”Relax” and ”Hand at Rest” are categorized as the body
at rest. In contrast, the activities ”Sitting”, ”Standing”,
”Walking”, ”Stress Ball”, and “Fist” are categorized
as body in motion or EMG active. The training data
is labeled as O for No-EMG activity and 1 for EMG
activity.

2) Multi-class classification: This classification involves
discriminating among the seven distinct EMG activity
classes. The training data is labeled as 1 for Standing, 2
for Sitting, 3 for Walking, 4 for Relax, 5 for Stress Ball,
6 for Hand at Rest, and 7 for Fist. Each class corresponds
to a specific physiological state or movement, allowing
for a detailed characterization of body posture and
activity based on EMG signal patterns.

A. Statistical Feature Supervised Classification

In statistical feature classification, the selected features are
mean (U), standard deviation (0), quartile deviation (%), range
(R), skewness (S), and kurtosis (K) [33], [34]. The features
are not extracted directly from the pre-processed EMG signal.
Instead, each EMG signal is associated with time stamps cor-
responding to different activities. The signal is first segmented
based on these time stamps, and then statistical features are
extracted from each segmented portion representing a specific
activity.

These statistical metrics capture essential aspects of the
EMG signal, such as amplitude variability, signal dispersion,
asymmetry, and sharpness, which are crucial for distinguish-
ing between different muscle contractions, activity levels, or
physiological states. By converting the raw EMG signal into
these features over sliding windows or epochs, the high-
dimensional time-series data is transformed into a compact and
structured form suitable for input into classification models
like Decision Tree, Support Vector Machine (SVM), Naive
Bayes, Ensemble, K-Nearest Neighbors (KNN), Discriminant
Analysis, or Neural Networks (NN). This study adopted a
progressive feature selection strategy, beginning with the mean
and standard deviation, which resulted in binary and multiclass
accuracies of 68.5% and 64.1%, respectively. When range and
kurtosis were added, the accuracies increased to 77.5% and
76.8%. The best outcomes were ultimately achieved using all
six statistical features, as reported in this research.



The different families of classification models are trained
on the new synthetic feature dataset. The entire dataset is
first shuffled and then split into 60% for training, 20% for
validation, and 20% for testing. The validation process further
utilizes a 5-fold cross-validation approach. The Table IV and
Table V provide the binary class and multi-class classification
of EMG signals with Gaussian noise feature data augmentation
with variance 0.01 and 0.02.

1) Fine KNN Classification Principle: The Fine KNN is
a distance-based non-parametric classification algorithm that
assigns a class label to a test sample based on the labels of
its nearest neighbors in the feature space. In this research,
the Fine KNN corresponds to a small value of K (typically
k = 1 in MATLAB), combined with the Euclidean distance
metric, resulting in a highly localized and fine-grained decision
boundary.

In the framework presented in Fig. 2, the Fine KNN
algorithm is part of the Al-enabled intelligence layer that
follows EMG signal acquisition, pre-processing, and statistical
feature extraction. At this stage, Fine KNN is employed as a
supervised classifier to map the extracted feature vectors into
discrete activity classes. These classification results are used
within the framework to support decision-making for activity
assessment.

Algorithm 1 Fine KNN for EMG Activity Classification

Input: Pre-processed EMG signal segments with class
labels (binary or 7-class)
Feature Extraction:
for each EMG segment do

Compute feature vector {u, 0, QD, R, S, K}
end for
Optional Data Augmentation:
Add Gaussian noise to feature vectors with variance 0.01
or 0.02
Dataset Partitioning:
Split data into 60% training, 20% validation, and 20%
testing sets
Apply 5-fold cross-validation on the validation set
Training (Fine KNN):
Select Euclidean distance metric
Set a small value of k
Store training feature vectors and corresponding labels
Inference:
for each test feature vector do

Compute distances to all training vectors

Select the K nearest neighbors

Assign class label using majority voting
end for
Output:
Predicted class labels and performance evaluation using
confusion matrix and ROC curve (for binary classification)
=0

The use of a small value of K enables the Fine KNN
classifier to focus on localized neighborhood structures in the
EMG feature space, making it well-suited for scenarios where
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EMG activity classes demonstrate locally separable feature
characteristics. Although small kK values increase sensitivity
to noise and outliers, this limitation is mitigated in the pro-
posed framework through effective EMG signal denoising and
Gaussian noise-based feature data augmentation.

Each EMG segment is represented by a low-dimensional
statistical feature vector

x eRY, 2

where d = 6 corresponds to the extracted features: mean,
standard deviation, quartile deviation, range, skewness, and
kurtosis.

Given a test feature vector Xy, the Euclidean distance to
each training sample X; is computed as

d
A (Xiest, Xi) = 4| D (Xiest,j — xij)". 3)
j=1

The Kk nearest training samples are identified based on
the minimum distance values. The predicted class label ¥ is
then assigned using a majority voting scheme among these
neighbors. For weighted KNN, closer neighbors contribute
higher influence to the final decision.

For binary classification, the output label is defined as
y € {0, 1}, corresponding to inactive and active EMG states,
respectively. For multi-class classification, the output label is
defined as:

ye{l,2,...,7}, 4

representing the seven distinct physical activities considered
in this study.

Feature importance was analyzed using permutation im-
portance and SHAP to evaluate the effectiveness of the se-
lected statistical features. Permutation importance quantified
the global contribution of each feature by measuring perfor-
mance degradation when features were randomly permuted,
while SHAP provided global and local explanations of feature
contributions to KNN predictions. Both methods consistently
identify dispersion-related features, particularly range, quartile
deviation, and standard deviation, as the most influential for
the classification task. In contrast, the mean feature exhibits a
negligible impact on model performance. This confirms that
classification performance is driven by statistically meaningful
variability descriptors and validates the importance of the
selected feature set. The Fig. 9 and Fig. 10 provide quantitative
evidence of feature effectiveness by visualizing both individual
and global SHAP-based feature contributions. The permutation
values for statistical features were Range (0.25), Quartile
Deviation (0.16), Standard Deviation (0.10), Kurtosis (0.09),
Skewness (0.03), and Mean (0.1).

2) Classification Analysis: The algorithms of Fine KNN
provide the best classification accuracies of 94.6% and 91.6%
for binary and multi-class, respectively, with Gaussian noise
feature data augmentation of 0.01. However, increasing the
Gaussian noise variance level from 0.01 to 0.02 led to a
noticeable drop in classification accuracy. This decline is
likely due to the higher noise introducing greater variability in
the features, which reduces the model’s ability to effectively



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (MAY 2024) 9

High
Range .4.;-! Sodood Pou .a*.p elowe Bf wess o o
Quartile Deviation I R s i ‘n-o+-a.). . .
Kurtosis .- m T S o e TE
Standard Deviation oo soen shmifepert W RE %
Skewness - Y *w- - £
Mean [
Low

0.4 0.2 00 02 04

SHAP value (impact on model output)

Fig. 9: SHAP summary plot showing the distribution and
direction of feature contributions across individual samples.
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Fig. 10: Mean absolute SHAP values illustrating the global
importance ranking of statistical features in the KNN
classifier.

separate the classes. As a result, the model struggles more
with accurate class identification, leading to overall lower
performance.

The Fig. 11 represents the confusion matrix of Fine KNN
binary class classification. The Fig. 12 provides a Receiver-
Operating Characteristic (ROC) curve for binary class clas-
sification. Additionally, the minimum classification error for
Fine KNN is provided in Fig. 13. For multiclass performance
evaluation, Fig. 14 illustrates the confusion matrix for the Fine
KNN model, while Fig. 15 presents the minimum classification
error achieved across the multiclass setup. The Table III
provides performance evaluation for binary and multiclass
classification. The observed performance gains across multiple
classifiers further validate the role of feature-level augmenta-
tion in improving model generalization.

Feature-level data augmentation improves classification per-
formance by increasing the effective size and diversity of the
training dataset while preserving the physiological character-
istics of EMG signals. The addition of low-variance Gaussian
noise introduces controlled variability within each class, which
enhances intra-class representation and improves class separa-
bility in the feature space. This leads to more stable decision
boundaries, reduced overfitting, and improved generalization,
particularly for small imbalanced datasets. Consequently, the
Fine KNN and SAE have benefited from denser neighbor-
hood structures and more robust latent representations, re-
sulting in higher classification accuracy. The authors of [35]-
[37] worked on improving classification accuracy using data
augmentation on small data sets, observing noise injection
techniques to prevent overfitting and improve the accuracy of

predictions.
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Fig. 11: Statistical Feature Based Binary Class Classification
Confusion Matrix with Fine KNN
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Fig. 12: Statistical Feature Binary Class Classification ROC
with Fine KNN
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Fig. 13: Optimizable Fine KNN in Binary Class
Classification
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Fig. 14: Statistical Feature Based Multi-class Classification
Confusion Matrix with Fine KNN
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Fig. 15: Optimizable Fine KNN in Binary Class
Classification

TABLE lll: Classification Metrics for Fine KNN — Binary and
MultiClass

Mode Class Precision | Recall | F1 Score
Binary Class 0 0.92 0.90 0.91
Class 1 0.96 0.96 0.96
Class 1 0.96 1.00 0.98
Class 2 0.94 1.00 0.96
Class 3 0.90 0.90 0.90
MultiClass | Class 4 0.88 0.75 0.81
Class 5 1.00 1.00 1.00
Class 6 1.00 1.00 1.00
Class 7 0.85 0.90 0.87
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TABLE IV: Supervised Binary Class Classification on Statis-
tical Features Enhanced by Gaussian Noise

Statistical Statistical
Groups Algorithm feature feature
with 0.01 Gaussian | with 0.02 Gaussian
Fine Tree 88.74 77.86
Decision
Medium Tree 85.26 80.34
Tree
Coarse Tree 91.04 77.66
Linear
Discriminant 79.64 70.96
Discriminant
Analysis
Quadratic
78.16 72.94
Discriminant
Gaussian
Naive 81.24 72.06
Naive Bayes
Bayes
Kernel
81.06 80.74
Naive Bayes
Linear
88.44 71.56
SVM
Quadratic
83.96 77.14
SVM SVM
Cubic
89.64 72.86
SVM
Fine Gaussian
83.46 69.24
SVM
Medium Gaussian
87.94 74.66
SVM
Coarse Gaussian
83.96 70.54
SVM
Fine KNN 94.6 88.3
Medium KNN 88.86 78.24
Coarse KNN 88.84 70.26
KNN
Cosine KNN 91.74 75.96
Cubic KNN 88.86 76.94
Weighted KNN 91.14 80.76
Ensemble
77.94 69.86
Boosted Tree
Ensemble Ensemble
87.56 83.24
Bagged Tree
Ensemble Subspace
81.44 69.46
Discriminant
Ensemble
Subspace 88.84 80.16
KNN
Narrow
Neural 91.54 81.16
Neural
Network
Network
Medium
Neural 88.46 80.34
Network
Wide
Neural 90.14 77.86
Network

Additionally, the Matthew Correlation Coefficient (MCC)
[38] is presented for binary class classification through equa-
tion 5. The MCC is 0.879 for the statistical feature-based
binary class classification with Fine KNN.

TP-TN—FP-FN
+/(TP+FP)-(TP+FN)-(TN+FP)-(TN+FN)

MCC = (&)
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TABLE V: Supervised Multi-class Classification on Statistical
Features Enhanced by Gaussian Noise

Statistical Statistical
Groups Algorithm feature feature
with 0.01 Gaussian | with 0.02 Gaussian
Fine Tree 90.0 76.62
Decision
Medium Tree 84.02 81.58
Tree
Coarse Tree 92.28 76.42
Linear
Discriminant 80.88 69.72
Discriminant
Analysis
Quadratic
76.92 74.18
Discriminant
Gaussian
Naive 82.48 70.82
Naive Bayes
Bayes
Kernel
79.82 82.0
Naive Bayes
Linear
89.68 70.32
SVM
Quadratic
82.72 78.38
SVM SVM
Cubic
90.88 71.62
SVM
Fine Gaussian
82.22 70.48
SVM
Medium Gaussian
89.18 73.42
SVM
Coarse Gaussian
82.72 71.78
SVM
Fine KNN 91.6 89.5
Medium KNN 87.62 79.48
Coarse KNN 90.08 69.02
KNN
Cosine KNN 92.98 74.72
Cubic KNN 87.62 78.18
Weighted KNN 92.38 79.52
Ensemble
79.18 68.62
Boosted Tree
Ensemble Ensemble
88.80 81.98
Bagged Tree
Ensemble Subspace
82.68 68.22
Discriminant
Ensemble
Subspace 90.08 78.92
KNN
Narrow
Neural 92.78 79.92
Neural
Network
Network
Medium
Neural 87.22 81.58
Network
Wide
Neural 91.38 76.62
Network

B. Autonomous Feature Semi-Supervised Classification

This study further discusses the accuracy achieved by
manually extracted features using various ML and DL al-
gorithms. However, automatic feature extraction is the pre-
ferred approach, as manually selecting relevant features can
be challenging and may lead to overlooking critical underly-
ing patterns. Automatic feature extraction not only enhances
classification accuracy but also reduces the risk of overfitting
compared to manual feature selection methods [39].

The AE and SAE models are employed for automatic
feature extraction within the proposed Al-driven EMG DT
framework. These models operate in an unsupervised manner,
learning compact low-dimensional latent representations from
EMG data without relying on class labels, thereby capturing
intrinsic signal characteristics and underlying patterns. In the
semi-supervised learning setting, the trained AE and SAE
models first minimize reconstruction loss to obtain robust
latent features, which are subsequently used as inputs to down-
stream classifiers trained with the available labeled data. To
improve generalization and reduce overfitting, early stopping
based on validation loss is applied during training, ensuring
stable and reliable performance across both unsupervised and
semi-supervised learning paradigms.

Fig. 16, Fig. 17 and Fig. 18 provides confusion matrix
and ROC for binary and multiclass Medium Neural Network
classification for SAE structure 32-16-32. Table VIII provides
classification Metrics for the Medium Neural Network in
Binary and MultiClass SAE 32-16-32.

In this research, semi-supervised EMG classification for
both binary and multi-class classification using AE, and SAE
for feature extraction, with architectures set up as 32-16-
32, 64-32-16-32-64, and 128-64-32-16-32-64-128. Table VI
provides detailed parameters for autonomous feature extrac-
tion through semi-supervised learning. The latent features
extracted through these methodologies are expanded and en-
riched through the feature data augmentation methodology of
Gaussian noise of 0.01 variance. The Table VII provides the
EMG activity classification accuracies of AE and SAE. The
highest classification accuracies for binary class and multi-
class are provided by SAE (32-16-32) with 96.4% and 93.3%,
respectively. It is important to observe that the increase in SAE
complexity does not increase the classification performance.

As the complexity of SAE architectures increases, a no-
table decline in classification accuracy is often observed.
Several factors contribute to this reduction in performance.
Primarily, deeper SAEs are prone to overfitting, where the
model starts capturing noise and irrelevant patterns rather
than meaningful features, which severely impacts its ability
to generalize to unseen data. Additionally, increasing depth
introduces the vanishing gradient problem during training,
limiting effective weight updates and reducing the model’s
learning capacity. The higher number of parameters in deeper
SAEs further demands a larger volume of diverse training
data to achieve reliable performance- a requirement that is
often unmet, particularly in biomedical datasets like EMG,
respiration, or stroke vitals signals. Excessive depth can also
lead to over-compression of features, resulting in the loss
of critical information necessary for accurate classification.
Consequently, these limitations collectively drive the declining
trend in accuracy as SAE architectures become more complex,
emphasizing the need to carefully balance model depth, data
availability, and task complexity to optimize performance.

The results indicate that although SAE (16-8-16) achieves
competitive accuracy, SAE (32-16-32) consistently provides
equal or slightly superior performance across most classifiers
and both binary and multi-class scenarios. In contrast, fur-
ther increasing the network depth leads to a degradation in



performance, which can be attributed to overfitting and in-
creased model complexity relative to the available EMG data.
These findings suggest that SAE (32-16-32) offers an effective
trade-off between representational capacity and generalization,
thereby justifying its selection as the adopted architecture.

According to equation 5, the MCC for Medium Neural
Network binary class classification comes out to be 0.92.
Indicating a stronger correlation between the predicted and
true classes compared to the Fine KNN model. This reflects
excellent binary class classification performance with high
reliability.

Neural Network - Binary Class

True Class

Predicted Class

Fig. 16: Medium Neural Network Binary Class
Classification of EMG activity using SAE (32-16-32)
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Fig. 17: Medium Neural Network ROC for Binary Class
Classification of EMG activity using SAE (32-16-32)
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Fig. 18: Medium Neural Network Multiclass Classification
of EMG activity using SAE (32-16-32)

TABLE VIII: Classification Metrics for Medium Neural Net-
work in Binary and MultiClass with SAE (32-16-32)

Mode Class Precision | Recall | F1 Score
Binary Class 0 0.93 0.95 0.94
Class 1 0.98 0.97 0.97
Class 1 0.92 0.73 0.81
Class 2 0.96 0.96 0.96
Class 3 0.96 0.96 0.96
MultiClass | Class 4 0.93 1.00 0.96
Class 5 0.91 1.00 0.95
Class 6 0.93 1.00 0.96
Class 7 0.96 0.93 0.95

A comparative analysis between statistical feature-based
methods and autonomous feature extraction approaches reveals
notable advantages of the latter in EMG time series clas-
sification. While statistical parameters provided respectable
binary and multiclass classification accuracies of 94.6 and
91.6, respectively, with the Fine KNN algorithm, the use of
autonomous feature extraction through AE and SAE yielded
even higher accuracies, achieving 96.4 for binary classification
while maintaining 91.6 for multiclass classification. This im-
provement highlights the capability of autonomous methods
to uncover deeper, more abstract representations within the
EMG signals that manual statistical features may overlook.
Unlike statistical approaches that rely on predefined metrics,
AEs and SAEs automatically learn complex patterns and rela-
tionships directly from the data, enhancing the model’s ability
to generalize across varying signal conditions and subjects.
Furthermore, autonomous methods reduce the dependency
on manual feature engineering, streamlining the classification
pipeline while providing a scalable solution adaptable to
different datasets. Overall, the comparative results demonstrate
that autonomous feature extraction can significantly enhance
classification performance, particularly in capturing the intri-
cate dynamics of EMG signals that are critical for accurate
activity recognition.
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TABLE VI: Configuration Details for AE and SAE Architectures in Semi-Supervised Learning

Model AE SAE (32-16-32) | SAE (64-32-16-32-64) | SAE (128-64-32-16-32-64-128)
Input Shape input_dim num_features num_features num_features
Encoder Layers 52 [32, 16, 32] [64, 32, 16, 32, 64] [128, 64, 32, 16, 32, 64, 128]
Decoder Layers input_dim [16, 32, output] [16, 32, 64, output] [16, 32, 64, 128, output]
Encoder Activation ReLU ReLU ReLU ReLU
Decoder Activation Linear Linear Linear Linear
Loss Function MSE MSE MSE MSE
Optimizer Adam Adam Adam Adam
Epochs 25 20 30 40
Batch Size 64 32 32 16
Validation Split 20% (0.2) 20% (0.2) 20% (0.2) 20% (0.2)
Encoded Data Shape | (samples, 52) (samples, 16) (samples, 16) (samples, 16)
Early Stoppage Enabled for all models (monitored on val_loss, patience = 15)

TABLE VII: Semi-Supervised EMG Classification Accuracies

Groups Algorithm AE SAE (16-8-16) SAE (32-16-32) SAE (64-32-16-32-64) SAE (128-64-32-16-32-64-128)
Binary Class | Multi Class | Binary Class | Multi Class | Binary Class | Multi Class | Binary Class | Multi Class | Binary Class Multi Class
Fine Tree 85.0 78.0 87 80.5 90.0 86.0 88.0 84.0 85.0 80.0
Decision Tree Medium Tree 84.0 77.0 86.5 79.5 89.0 85.0 87.0 83.0 84.0 79.0
Coarse Tree 83.0 76.0 85.8 78.5 88.0 84.0 86.0 82.0 83.0 78.0
Discriminant Analysis Linear Discriminant 84.5 71.5 87 80 89.5 85.5 87.5 83.5 84.5 79.5
Quadratic Discriminant 85.5 8.5 87.5 81 90.5 86.5 88.5 84.5 85.5 80.5
Naive Bayes Gaussian Naive Bayes 83.5 76.5 86.8 79.8 88.5 84.5 86.5 82.5 83.5 78.5
Kernal Naive Bayes 84.0 77.0 85.5 78.8 89.0 85.0 87.0 83.0 84.0 79.0
Linear SVM 85.5 8.5 87.2 80.8 90.5 86.5 88.5 84.5 85.5 80.5
Quadratic SVM 85.0 78.0 86.8 80 90.0 86.0 88.0 84.0 85.0 80.0
SYM Cubic SVM 84.5 71.5 86 79 89.5 85.5 87.5 835 84.5 79.5
Fine Gaussian SVM 84.0 77.0 85.2 78.2 89.0 85.0 87.0 83.0 84.0 79.0
Medium Gaussian SVM 83.5 76.5 85.8 79 88.5 84.5 86.5 82.5 83.5 8.5
Coarse Gaussian SVM 83.0 76.0 84.8 71.8 88.0 84.0 86.0 82.0 83.0 78.0
Fine KNN 88.0 81.0 90 83.5 95.0 92.0 94.0 88.8 91.0 86.5
Medium KNN 88.6 81.3 91 84.8 96.4 93.3 94.4 90.9 91.2 86.7
KNN Coarse KNN 87.5 81.0 89 83 96.0 92.9 94.0 90.7 91.0 86.5
Cosine KNN 87.0 80.5 89.2 835 95.5 92.5 93.5 90.3 90.5 86.0
Cubic KNN 87.5 80.8 89.5 84 95.8 92.8 93.8 90.6 90.8 86.2
Weighted KNN 87.0 80.5 89 83.8 95.5 92.5 93.5 90.3 90.5 86.0
Ensemble Boosted Tree 84.5 71.5 87 80.5 89.5 85.5 87.5 835 84.5 79.5
E Ensemble Bagged Tree 84.0 77.0 86.2 79.8 89.0 85.0 87.0 83.0 84.0 79.0
Ensemble Subspace Discriminant 83.5 76.5 86 79.5 88.5 84.5 86.5 82.5 83.5 8.5
Ensemble Subspace KNN 84.0 71.0 86.5 80.2 89.0 85.0 87.0 83.0 84.0 79.0
Narrow Neural Network 85.0 78.0 86.8 80 90.0 86.0 88.0 84.0 85.0 80.0
Neural Network Medium Neural Network 845 71.5 87.2 80.5 89.5 85.5 87.5 83.5 845 79.5
‘Wide Neural Network 84.0 71.0 86 79.5 89.0 85.0 87.0 83.0 84.0 79.0

VI. CONCLUSION

This paper presented a pilot Electromyography (EMG)-
based Digital Twin (DT) framework that integrates signal
processing and artificial intelligence for continuous neuro-
muscular activity monitoring and decision support in health-
care settings. To ensure accurate EMG monitoring within a
DT framework, robust model development requires extensive
testing and strategic feature data augmentation. Synthetic
EMG feature data were generated through Gaussian noise
injection, where low-variance noise (mean 0, variance 0.01)
improved classification performance by expanding the feature
space while preserving physiological signal characteristics.
In contrast, a higher noise variance (0.02) introduces feature
distortion, ultimately degrading model accuracy.

The integration of Artificial Intelligence (AI), particularly
through Machine Learning (ML) and Deep Learning (DL),
facilitates automated EMG classification and assists healthcare
professionals in making informed decisions. This study inves-
tigates five categories of ML and DL algorithms, emphasizing
both supervised and semi-supervised classification approaches

to enhance diagnostic accuracy and model adaptability. The
performance of the proposed EMG DT model was validated
using pre-processing metrics such as Signal-to-noise Ratio
(SNR), entropy, and peak SNR (pSNR). In addition, Al-based
evaluation is conducted using confusion matrices, Receiver
Operating Characteristic (ROC) curves, minimum classifica-
tion error, and Matthews Correlation Coefficient (MCC).

The application of Al using ML and DL provides a
foundational step toward automating EMG classification in
healthcare settings. This study evaluates five groups of ML and
DL algorithms using supervised and semi-supervised learning
on Gaussian noise augmented statistical and autonomously
extracted feature sets. The experimental results demonstrate
that Fine KNN acquired the best supervised performance using
statistical feature enlargement with low-variance Gaussian
noise augmentation, reaching 94.6% binary and 91.6% multi-
class accuracy. Furthermore, semi-supervised autonomous fea-
ture extraction using an SAE (32-16-32) architecture yielded
superior performance, achieving 96.4% binary and 93.3%
multiclass accuracy, highlighting the advantage of compact



latent representations for EMG-based activity modeling.

The performance gap between the multiple ML and DL
models is affected by feature representation quality, model
data compatibility, and robustness to EMG variability. Fine
KNN benefits from the locally separable structure of denoised
and feature augmented EMG data, while linear and parametric
models struggle with non-linear boundaries. In the semi-
supervised setting, the SAE (32-16-32) provides a compact
and discriminative latent representation, whereas deeper SAEs
suffer from reduced generalization due to over-compression
and increased complexity. Moreover, low-variance Gaussian
augmentation enhances intra-class density and robustness,
while higher noise levels distort features and reduce class
separability. Overall, the proposed EMG DT demonstrates
the feasibility of embedding Al-driven intelligence within a
synchronized DT framework for physiologically meaningful
activity monitoring. This work establishes a foundational step
toward scalable, multi-physiological DT systems for future
personalized healthcare applications.

VIl. FUTURE WORK

The current research is focused towards the development of
a pilot design of an EMG DT model for a futuristic Multi-
Physiological Digital Twin (MPDT) framework in combina-
tion with multiple human vital signs. Although the proposed
EMG DT has shown promising outcomes, future development
will be focused on assessing the practical usability and scaling
toward more human vital signs. The area of focus for future
work are:

1) Implement real-world clinical studies integrating respi-
ratory and EMG monitoring to enhance personalized
healthcare assessment and validate DT frameworks.

2) Develop standardized data fusion pipelines to integrate
heterogeneous signals (respiratory, EMG, ECG, PPG)
for a holistic human multi-physiological DT framework.

3) Acquire synchronized multi-sensory patient vital sign
data within clinical settings to support the development
of data-driven DT models.

4) Implement AI, ML, and DL methodologies to the
acquired multi-model data for improved physiological
classification and robust DT model realization.

5) Incorporate Explainable AI (XAI) techniques to improve
trust, transparency, and clinical adoption of DT-assisted
diagnostics and predictions.
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