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Summary

� Intraspecific variation between crop wild relatives (CWRs) represents a source of untapped

genetic diversity for crop improvement. At the same time, improving photosynthesis in crops

has the potential to enhance yield. Thus, exploring variation for photophysiology within

CWRs is an important, yet underexplored, research area.
� We describe a common garden experiment where 320 wild barley accessions were grown

across two seasons. A photophysiology phenotyping pipeline was employed to quantify > 30

traits within this diversity panel. Population genetics, genome-wide association analyses

(GWAS) and deep phenotyping were performed to address local adaptation hypotheses.
� Heritable variation was detected across this photophysiological spectrum, with genotype-

by-environment (G × E) interactions being prevalent. Evidence for local adaptation was

observed in the form of subpopulation differences, signals of selection and allele frequency

variation associated with markers identified via GWAS. Phenotyping of representative acces-

sions across distinct water availabilities highlighted a role for stomatal conductance (gs) in

adaptation to dry environments.
� We identified substantial variation in key photosynthesis-associated traits in a CWR closely

related to barley, an economically important crop species. Our results demonstrate that this

variation is partially due to local adaptation, where plasticity in gs appears important for main-

taining photosynthesis and biomass accumulation in water-restricted conditions.

Introduction

Genetic gain for yield in barley ranges between 0.43% and
1.07% per annum (Cossani et al., 2022; Åstrand et al., 2024;
Giménez et al., 2024). These rates of yield increases will be insuf-
ficient to meet future demands, especially considering the chal-
lenges posed by climate change (Åstrand et al., 2024).
Consequently, breeding barley varieties for improved yields that
are stable in the face of reduced resource inputs and environmen-
tal stress is a key priority for future food security (Jiang
et al., 2025). Photosynthetic conversion efficiency is a major
determinant of yield potential (Monteith et al., 1997); thus,
improving photosynthesis has become increasingly recognised as
a viable target for increasing crop yields (Long et al., 2006; Zhu
et al., 2010). Across the major non-leguminous C3 species, this
conversion efficiency is lowest on average in barley (Slattery &
Ort, 2015). There are several strategies available to alleviate asso-
ciated conversion inefficiencies (reviewed by Croce et al., 2024).
One approach is to explore natural variation of photosynthesis as

a source of novel genes and alleles that could help fine-tune
photosynthesis to specific environmental conditions and enhance
yield (reviewed by Theeuwen et al., 2022). To this end, it is perti-
nent to consider the work of Gao et al. (2024) who evaluated
multiple photosynthesis-related parameters via chlorophyll fluor-
escence across 23 spring barley varieties. Here, traits that define
the rate at which atmospheric CO2 is assimilated demonstrated
moderate-to-high heritability. The presence of a discernible
genetic basis to these traits highlights their amenability to breed-
ing. Moreover, Gao et al. (2024) observed certain
photosynthesis-associated parameters were significantly correlated
with yield, providing evidence to support the notion that improv-
ing photosynthesis in barley could also improve yield.

Although the ancestors of domesticated barley evolved in harsh
environments, modern barley has largely been bred and culti-
vated in agronomically managed environments (Jiang et al.,
2025). This is in stark contrast to crop wild relatives (CWRs) that
have not passed through a domestication bottleneck and persist
across environmentally challenging habitats (Tanksley &
McCouch, 1997). As a result, CWRs maintain much higher
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degrees of genetic variability between distinct ecotypes than their
domesticated relatives and have been challenged in much harsher
environments over thousands of years (Zhang et al., 2017). Con-
sequently, CWRs represent an untapped resource of genetic var-
iation for improving photosynthesis under environmentally
challenging situations.

There are excellent opportunities to leverage the variation that
exists in CWRs to improve photosynthesis in domesticated bar-
ley. For example, the recently published pangenome of barley
incorporates 23 wild barley genomes (Jayakodi et al., 2024),
which allows identification of structural variants that have been
lost due to domestication. Additionally, there are two established
and well-sequenced diversity collections of wild barley that per-
mit genome-wide association studies (GWAS) to identify
marker–trait associations (Prusty et al., 2021; Sallam et al.,
2024).

The Barley 1 K (B1K) collection of over 1000 wild barley
accessions (first described in Hübner et al., 2009) is an ideal
model system for studying local adaptation. Distinct genetic clus-
ters exist among these accessions, where there is minimal gene
flow due, in part, to geographic barriers. Environmental variables
have been shown to explain a significant proportion of the
genetic variation across subsets of the B1K (Hübner et al., 2009;
Chang et al., 2022). These existing studies serve as an encoura-
ging precursor for studying local adaptation and natural variation
of photosynthesis within wild barley as a CWR.

Local adaptation is a widely recognised phenomenon
(reviewed by Hereford, 2009), but the traits and genes involved
are often unknown. To this end, there have been very few studies
that have explored the role photosynthesis plays in local adapta-
tion. Moreover, these studies tend to be concentrated on the
model species Arabidopsis (Arabidopsis thaliana). For example,
Elfarargi et al. (2023) demonstrated that a population of Arabi-
dopsis which colonised an island characterised by fog-based pre-
cipitation had much higher rates of stomatal conductance (gs) to
promote local adaptation to humid conditions via an anisohydric
strategy. Taking a different approach, Oakley et al. (2018)
observed that a quantitative trait loci (QTL) regulating the
photosynthetic response to cold stress also regulated local adapta-
tion measured as reproductive fitness.

The study presented in this paper extends the above-described
approaches by showcasing the most comprehensive screening of
photosynthesis across natural accessions of a CWR. Utilising 320
accessions from the B1K diversity collection, we reveal extensive,
heritable variation across traits defining light-saturated photo-
synthesis, the response of photoprotection and PSII quantum
yields to dynamic irradiance and limitations to light-saturated
photosynthesis. We provide evidence to suggest that this varia-
tion is partially a result of differential selection across the various
subpopulations for differing photophysiological properties. Spe-
cifically, we highlight how gs may play a key role in facilitating
local adaptation to drier environments. More broadly, this
research showcases that extensive variation in photosynthesis is
present in wild barley and that some of this variation may be
greater than what has been demonstrated in domesticated barley
(Gao et al., 2024).

Materials and Methods

Plant material and common garden experiments

This study incorporated 320 accessions from the B1K collection
that are genetically representative of the original 1020 accessions
comprising the collection (Elfarargi et al., 2023). Common gar-
den experiments incorporating these accessions were carried out
in 2021 and 2022 at the National Institute of Agricultural Bot-
any (Cambridge, UK). The sites of the two common garden
experiments were c. 870 m apart (Supporting Information
Fig. S1). In 2021, all 320 accessions were included (Table S1). In
2022, 270 accessions of the original 320 were included
(Table S1). Alpha lattice twice-replicated designs were employed
for the common gardens such that each accession was represented
by two plots. Each replicate of the experiment consisted of eight
blocks of 40 plots in 2021 and six blocks of 45 plots in 2022.
Each plot was separated by 30 cm from adjacent plots. In both
years, plots consisted of four rows. The outer two rows were
made of drilled spring barley (cv Laureate), with the two inner
rows being hand-transplanted wild barley. Rows were spaced
10 cm apart and were 40 cm long. Each inner row of wild barley
consisted of eight transplanted plants. Before transplanting, the
wild barley was hand-sown in modular trays of M2 potting com-
post for germination in an ambient temperature glasshouse. Fol-
lowing germination, the wild barley was then moved into a
vernalisation room set to 5°C for 1 month. Before transplanting,
the plants were moved outside to acclimate to outside conditions.
Transplanting into the common garden occurred in late April.
Precise dates of drilling, sowing, vernalisation and transplanting
are provided in Table S2.

Phenotyping pipeline

We developed a high-throughput phenotyping pipeline to screen
a multitude of traits (Fig. S2). All phenotyping was performed
within 10 d of heading date. Heading date was scored daily on a
plot-by-plot basis as the emergence of the spike out of the flag
leaf sheath (Zadoks et al., 1974). A plot was considered to be
heading if > 50% of the plants within that plot were heading.
Days to heading (DTH) was calculated as the days between the
dates of transplanting and heading on a plot basis.

Three plants were phenotyped per plot, with plants from each
plot phenotyped on the same day. Plants to be phenotyped were
flagged with a barcoded tag. On the day before phenotyping,
flagged plants were cut at the base of the main stem, with the cut
end immediately placed into water. Excised stems were then
returned to the laboratory and recut under water into individual
10-ml centrifuge tubes to maintain the water column. Stem har-
vesting was completed between 15:00 and 17:00 h, after which
the excised stems were left on the laboratory bench at room tem-
perature overnight. Phenotyping proceeded the next day at
06:30 h and continued until 14:30 h. We have previously shown
that phenotyping performed on excised stems in barley generates
data that are comparable to phenotyping leaves attached to the
plant (Ferguson et al., 2023).
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Light-saturated gas exchange of the penultimate leaf was mea-
sured using LI-6400XT infra-red gas analysers (Li-Cor Inc., Lin-
coln, NE, USA) equipped with 6400-40 leaf chamber
fluorometer LED light sources. Before measuring gas exchange,
leaves were light-acclimated under a series of LED panels for
30 min. The LED panels were set to a saturating irradiance of
1800 μmol m�2 s�1 photosynthetically active radiation (PAR) at
leaf level to match the PAR setpoint in the leaf chambers of the
infra-red gas analysers. The remaining conditions in the leaf
chambers were set as follows: 25°C block temperature,
400 μmol s�1 air flow, 65–75% relative humidity (RH) and
400 μmol mol�1 reference CO2 concentration. Once moved
from under the LED panels and into the leaf chambers, gas
exchange was logged every 10 s for 15 min. The mean values
from the last 2 min were taken for light-saturated photosynthesis
(Asat) and stomatal conductance to water vapour (gs), which were
also used to calculate intrinsic water-use efficiency (iWUE) as
Asat/gs. In 2022, we additionally performed a mini light response
(A–Q ) curve following this measurement of light-saturated gas
exchange. Here, a program was immediately initiated after the
15 min of high light to incrementally drop the light intensity in
the following steps: 1800, 1100, 500, 300, 150 and 50. Two
minutes after each light step, photosynthesis was logged before
dropping to the next light level.

A randomly selected subset of accessions (Table S1) was
selected for phenotyping the response of photosynthesis to
changes in the intracellular concentration of CO2 (A–Ci curve).
All accessions used for A–Ci curves in 2021 were also used in
2022, with some additional accessions added in 2022. These
measurements were performed using LI-6800 infra-red gas ana-
lysers equipped with a standard 6 cm2 leaf chamber (Li-Cor
Inc.) with environmental conditions set as follows: 25°C tem-
perature (heat exchanger), 400 μmol s�1 air flow, 65% relative
humidity (RH), 400 μmol mol�1 reference CO2 concentration
and 1800 μmol m�2 s�1 PAR. Once stomatal conductance and
photosynthesis were stable, an A–Ci curve program was
initiated to log rates of gas exchange at the following CO2

reference concentrations: 400, 300, 200, 100, 50, 400, 400,
700, 1000, 1300 and 1800 μmol mol�1, waiting between 1.5
and 3 min between each CO2 step depending on standard sta-
bility criteria.

Following gas exchange phenotyping, the penultimate leaf was
excised and photographed. The leaf was then carefully folded into
a coin envelope and placed into a drying oven set at 60°C for 7 d.
The photographs of the leaves were used to measure leaf area
using Easy Leaf Area (Easlon & Bloom, 2014). Once the leaves
were fully dried, we calculated specific leaf area as the ratio of the
leaf area to dry mass.

Finally, c. 3 × 1 cm strip of tissue from the flag leaf (all other
phenotyping performed on the penultimate leaf) was cut and
used for chlorophyll fluorescence in a FluorCam closed chloro-
phyll fluorescence imaging system (Photon Systems Instruments,
Brno, Czechia) exactly as described previously (Ferguson
et al., 2025). We measured the quantum efficiency of PSII
(Fv/Fm) as well as the response of non-photochemical quenching
(NPQ) and photosystem II (PSII) operating efficiency (ΦPSII) to

an actinic light (1800 μmol m�2 s�1) being switched on for 600 s
and then off for 800 s.

An c. 3 × 1.5 cm strip of tissue was excised from the dried
leaves used to calculate SLA and ground in a bead mill. The
ground, dried tissue was precisely weighed (0.5 mg� 10%)
into individual tin capsules and underwent analysis for leaf car-
bon (%C) and leaf nitrogen (%N) as a percentage of dried mass,
as well as carbon isotope composition (δ13C) and nitrogen iso-
tope composition (δ13N). These measurements were carried out
using a Costech Elemental Analyser attached to a Thermo DELTA
V mass spectrometer (Thermo Fisher Scientific Inc.) via Conflo
IV in continuous flow mode.

Photosynthesis modelling

The light-response (AN–Q ) data generated in 2022 were fitted
using the custom fit_AQ_curve() function available on the
‘AQ_curves’ Github repository (Tomeo, 2024). This function
uses the non-rectangular hyperbola model described in Lobo
et al. (2013). From this, we obtained estimates for respiration in
the light (RL) and the apparent maximum quantum yield
(ΦCO2max).

The CO2-response (A–Ci) data were fitted according to the
FvCB model (Farquhar et al., 1980) using the fitacis() function
from the PLANTECOPHYS R package (Duursma, 2015). We used
the bilinear method to estimate transition points. From this, esti-
mates of the maximum rate of Rubisco carboxylation (Vcmax), the
maximum rate of electron transport for RuBP regeneration (Jmax)
and triose phosphate utilisation (TPU) limitation were obtained
on a ci basis. We additionally estimated the stomatal limitation
(SL) on photosynthesis following Long & Bernacchi (2003).

We used linear and exponential models to describe the induc-
tion of NPQ in response to the actinic light being switched on.
We also used an exponential model to describe the relaxation of
NPQ and recovery of ΦPSII in response to the actinic light being
switched off. We have described these models previously (Fergu-
son et al., 2025). These models allowed us to determine the fol-
lowing: the slope of the initial induction of NPQ (NPQlinear);
the amplitude (NPQind-amp) and rate (NPQind-rate) of NPQ
induction; the amplitude (NPQrel-amp), rate constant
(NPQrel-rate) and model offset (NPQrel-res) of NPQ relaxation;
the amplitude (ΦPSIIrec-amp), rate (ΦPSIIrec-rate) and model offset
(ΦPSIIrec-res) of ΦPSII recovery.

Statistical analyses

Unless stated, all data handling and statistical analyses were per-
formed within R (R Core Team, 2021) using GGPLOT2 (Wick-
ham, 2009) for graphing.

We used the H2cal() function from the INTI R package
(Lozano-Isla, 2024) to generate breeding values (Best Linear
Unbiased Predictors (BLUPs) and Best Linear Unbiased Estima-
tors (BLUEs)). Mixed models were constructed that incorporated
genotype, block, column, replicate, and days post heading as
fixed (BLUPs) or random (BLUEs) predictors of trait values on a
year-by-year basis. We also produced joint-year models that
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include interactions between these predictors and year. The var-
iance components from these models were used to calculate
broad-sense heritability (H2) according to Cullis et al. (2006) and
Piepho & Möhring (2007). Piepho and Möhring estimated herit-
ability was defined as follows: H 2

PM = 1� PEV=σ2g
� �

. Here, PEV
represents the mean prediction error variance of the genotypic
BLUPs and σ2g represents the estimated genotypic variance from
the mixed model. Cullis estimated heritability was defined as fol-
lows: H 2

C = 1� PEV= 2σ2g
� �� �

. Here, PEV represents the mean
prediction error variance of the genotypic BLUPs and σ2g repre-
sents the estimated genotypic variance from the mixed model.

Pairwise trait correlations and correlations between the same
traits across years were examined via the Pearson correlation coef-
ficient (r) and associated P-values (P ) using the cor() base R func-
tion. Significant correlations were defined as those where
P< 0.05. Differences in traits and bioclimatic parameters
between subpopulations were tested via one-way analysis of var-
iance (ANOVA) comparison of means testing using the aov()
function in R. Significant differences between subpopulations
were defined as those where P< 0.05. Post hoc Tukey tests were
performed to determine which subpopulations were significantly
different from one another. This was achieved using the
HSD.test() function from the AGRICOLAE R package (Mendiburu
& Simon, 2015). Bioclimatic parameters (Fick &Hijmans, 2017)
were obtained for the point of collection of all accessions
using the extract() function from the TERRA R package
(Hijmans, 2025).

A quantitative estimate of phenotypic plasticity (G × E) was
estimated by calculating the difference in trait values for each
accession between field years, weighted by the average population
value for each respective year. This was computed using the for-
mula: (Population Mean 2021+ BLUE accession value 2021)�
(Population Mean 2022 + BLUE accession value 2022). This
approach captures the extent of phenotypic variation in response
to environmental differences between years.

Population genetics

A previously published customised SNP genotyping dataset for
wild barley (Tiwari et al., 2024) was used for population genetics
and genome-wide association analyses.

For phylogenetic analyses, we first converted the VCF format
of the previously described SNP dataset to a ‘genind’ object using
the loci2genind function from the PEGAS package (Paradis, 2010).
We then calculated a neighbour-joining tree (dendrogram) with
bootstrap support based on Nei’s distance, using the aboot func-
tion from the POPPR package (Kamvar et al., 2015). Finally, we
extracted the genotype order from the tree to properly align and
sort the structure plot.

For STRUCTURE analyses, we first converted the VCF format to
a numeric matrix using a custom function. To estimate the opti-
mal number of subpopulations (dimensions), we used the esti-
mate_d function from the ALSTRUCTURE package (Cabreros &
Storey, 2019), which is based on the method from (Leek, 2011).
We then applied the alstructure function from the same package
to compute global ancestry estimates under the admixture model,

utilising the ALSTRUCTURE algorithm (Cabreros & Storey, 2019).
A genotype was assigned to a subpopulation if it had an admix-
ture proportion > 50% in one ‘cluster’ (subpopulation).

We performed analyses to detect signals of natural selection
using the DRIFTSEL R package (Karhunen et al., 2013). DRIFTSEL is
a Bayesian method that compares predicted and observed mean
additive genetic values to generate the S statistic, which indicates
whether population divergence is driven by divergent selection
(S� 1), stabilising selection (S� 0), or genetic drift (intermedi-
ate S values). This method is particularly effective for small data-
sets and can differentiate between drift and selection even when
QST (divergence in quantitative traits) and FST (divergence in
neutral molecular markers) are equal, assuming that phenotypic
variation is determined by additive genotypic variation. To esti-
mate the coancestry coefficient matrix, we used the RAFM package
(Karhunen & Ovaskainen, 2012). Both the RAFM and DRIFTSEL

models were fit using 15 000 Markov chain Monte Carlo
(MCMC) iterations, with the first 5000 iterations discarded as
burn-in and the remaining samples thinned by a factor of 2,
resulting in 5000 posterior distribution samples. Due to a lack of
information on the dams and sires of the phenotyped wild barley
individuals, we made a slight modification to RAFM and DRIFTSEL.
We adopted a conservative assumption that each genotype’s dam
and sire are the same and that all genotypes are unrelated.

We carried out a genome-wide association study (GWAS)
using three independent, iterative statistical models to enhance
accuracy. These models included the multi-locus mixed model
(MLMM; Segura et al., 2012), the Bayesian-information and
Linkage-disequilibrium Iteratively Nested Keyway (BLINK; Huang
et al., 2019) and the Fixed and Random Model Circulating Prob-
ability Unification (FarmCPU; X. Liu et al., 2016). All analyses
were performed in R using GAPIT v.3 (Wang & Zhang, 2021),
applied to both BLUEs and BLUPs. These GWAS models are
described in the associated references, but all included cofactors
to account for population structure (three principal components)
and kinship. To prioritise ‘high-confidence’ marker–trait associa-
tions, herein termed quantitative trait loci (QTL), we retained
only those identified with both BLUEs and BLUPs across a
joint-years model for further analysis. The genome-wide statisti-
cal significance threshold for all methods was set using the Bon-
ferroni correction (α= 0.05), which adjusts the threshold
according to the number of SNPs tested.

Alongside comparing mean trait values (as mentioned in the
previous section), we also compared allele frequencies of SNPs
that passed the above-described significance threshold across sub-
populations. This was achieved by converting the genotype into
allele frequencies with homozygous reference alleles coded as 0
and homozygous alternate alleles coded as 1.

Targeted experiment on representative genotypes from
Steppe Jerusalem and Desert Jordan subpopulations

To test hypotheses regarding the adaptive capacity to reduced
water availability, we selected six accessions for phenotyping
under distinct water availabilities. These accessions were selected
based on principal component analyses (PCA) performed using
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prcomp(). The PCA biplot was visualised using fviz_eig() (Kas-
sambara & Mundt, 2020). The traits used for the PCA were leaf
area, SLA, Asat, gs, δ13C, δ15N, DTH, final NPQ, NPQrel-amp

and maximum NPQ. We selected six accessions that well-
represented the total phenotypic trait spaces (Fig. S3). Three of
these accessions were assigned by our STRUCTURE analysis
(Fig. 1b) to the ‘Desert Jordan’ subpopulation (B1K-05-12,
B1K-05-08 and B1K-12-10), and three were assigned to the
‘Steppe Jerusalem’ subpopulation (B1K-17-17, B1K-10-01 and
B1K-49-10).

Seeds from these accessions were placed in petri dishes con-
taining damp filter paper. These were then wrapped in alumi-
nium foil and transferred to the fridge for 6 d before moving to
room temperature for 4 d. Germinated seedlings were trans-
planted into 1.5-l pots containing 950 g of topsoil. Once the
plants were established, a known mass of polypropylene beads
was placed on top of the soil to limit evaporation from the soil.
Plants were grown under glasshouse conditions (Cambridge Uni-
versity Botanic Garden, Cambridge, UK). A nematode biological
control treatment (Steinernema fletiae and Steinernema carpocap-
sae; Koppert Biological Systems, Haverhill, UK) was applied to
each pot on 7 d post-transplanting to control scarid fly. Environ-
mental conditions in the glasshouse were set as follows: 60% rela-
tive humidity (RH), 28°C day temperature, 23°C night
temperature. Day length was set to 16 h. A TinyTag Ultra 2
TGU-4500 (Gemini Data Loggers, Chichester, UK) was placed
in the glasshouse for the duration of the experiment to record
temperature and RH (Fig. S4). A BF5 sunshine sensor and GP1
data logger (DELTA-T Devices, Cambridge, UK) were also
placed in the glasshouse to measure incident radiation (Fig. S5).

Pots were initially well-watered for 14 d to allow for plant
establishment before being exposed to two contrasting water
availability treatments. Here, the plants were either maintained at
40% relative soil water content (rSWC) or 80% rSWC, where
100% rSWC is equivalent to field capacity. Pots were maintained
at target rSWCs on a daily basis as described previously (Fergu-
son et al., 2019). Eighteen soil-only control pots were used to
account for direct evaporation from the soil and these were dis-
tributed equally among the treatment pots.

A–Ci response measurements were performed 34–40 d post-
transplanting on recently fully expanded leaves using LI-6400XT
infra-red gas analysers (Li-Cor Inc.) as described previously (Fer-
guson et al., 2023). Five plants per accession per treatment were
measured between 07:00 and 16:00 h. Data were processed as
described in the ‘Photosynthesis modelling’ section.

At the 55th day post-transplanting, all leaves from each plant
were excised and a top-down photograph was taken to measure
total leaf area using Easy Leaf Area (Easlon & Bloom, 2014).

Two-way ANOVAs were carried out to analyse the data from
our glasshouse experiment. This was performed by using the
aov() function in R, with genotype nested within subpopulation,
to test for statistically significant differences between rSWC treat-
ment and subpopulation (and potential interactions). The
TukeyHSD() function in R was used to determine significant
pairwise interactions. shapiro.test() and leveneTest() were used to
test for the normality and equal variance assumptions of

ANOVA. Parameters that did not meet the normality
assumptions (total leaf area and iWUE) were log-transformed
before performing further statistical analysis. Note that for total
leaf area, the equal variance assumption was not met. Percentage
change was determined by calculating the change in parameter
mean between the 80% and 40% rSWC treatments for each sub-
population, dividing by the 80% rSWC parameter mean and
multiplying by 100.

Results

Wild barley diversity is structured in genetic clusters across
the Southern Levant that demonstrate distinct bioclimatic
profiles

The population structure of the wild barley accessions incorpo-
rated as part of this study was investigated using STRUCTURE. We
observed clear clustering of individual accessions into distinct
subpopulations (Fig. 1a). Using a conditional factor model, we
determined that the optimum number of subpopulations (K )
was eight (Fig. 1b), with 69 accessions being classified as admixed
(Table S1). In general, our analyses suggest subpopulation speci-
ficity (Evanno et al., 2005).

The identified subpopulations clustered geographically. Con-
sequently, we named these subpopulations according to the
regions where they were collected (Fig. 1c; Table S1): Mediterra-
nean North (71 accessions), Mediterranean Sharon (37 acces-
sions), Mediterranean Galilee (41 accessions), Coastal Sharon (8
accessions), Mediterranean Jordan (29 accessions), Steppe Jerusa-
lem (48 accessions), Desert Jordan (19 accessions) and Desert
Negev (33 accessions). The Mediterranean subpopulations domi-
nate the northern and western parts of the sampling area. The
Coastal and Steppe subpopulations are primarily located in tran-
sitional zones between the Mediterranean and Desert regions,
whilst the Desert subpopulations are concentrated in the South-
ern and Eastern arid regions. Admixed individuals are predomi-
nantly found at the interfaces between these regions, suggesting
genetic exchange in areas of overlapping environmental condi-
tions.

To gauge the potential for climatic drivers of differentiation
between the geographically distinct subpopulations, we obtained
bioclimatic variables using the latitudinal and longitudinal coor-
dinates associated with the point of collection of all accessions.
We then compared these bioclimatic variables across subpopula-
tions (Figs 1d, S6). Accessions aligned to the Desert
subpopulations come from areas characterised by low precipita-
tion and high temperatures. Contrastingly, the point of origin of
the Mediterranean accessions tended to be much wetter and
milder in temperature. The regions harbouring the Coastal and
Steppe accessions occupied intermediary climatic regions. We
additionally used a neighbour-joining method (Nei’s distance) to
compute genetic distances and generate an unrooted phylogenetic
tree of all accessions (Fig. 1e). This approach corroborated our
STRUCTURE analyses and confirmed the geographic clustering of
the identified subpopulations. Here, the Mediterranean subpopu-
lations form a distinct clade that is separate from the clades that
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Fig. 1 Population genetic structure of 320 wild barley (Hordeum spontaneum) accessions across Israel. (a) Unrooted neighbour-joining (NJ) tree computed
by Nei distance. (b) Results of the STRUCTURE analyses at K= 2–8. (c) Map showing the geographic sites where accessions were collected. Sites are coloured
according to the STRUCTURE-defined subpopulations that the associated accessions belong to. Multiple accessions are collected from each site, where all
accessions from the same site were assigned to the same subpopulation. (d) Differences in average monthly precipitation between subpopulations. (e)
Unrooted neighbour-joining tree computed by Nei distance. Accessions are coloured according to the STRUCTURE-defined subpopulations they belong to.
Accessions are clustered into three major groups, which correspond to broad geographic areas (Mediterranean, Desert and Coastal/Steppe) as indicated by
coloured ellipses.
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incorporate the Desert and Coastal-Steppe subpopulations. This
supports the hypothesis that genetic differentiation is driven by
geographic isolation and adaptation to specific environmental
conditions.

Wild barley accessions demonstrate heritable variation for
photosynthetic and life history traits

We monitored daily temperature and water inputs (precipitation
and irrigation) during the 2021 and 2022 common garden
experiment. The 2022 growing season was markedly warmer
than the 2021 growing season (Fig. S7). Water inputs were simi-
lar between the 2 yr (Fig. S8).

Consistent with the warmer temperatures, we saw an overall
shift towards greater specific leaf area (SLA) in 2022 than in
2021 (Fig. 2a). However, we observed a marked reduction in
light-saturated photosynthetic assimilation (Asat), which was
reduced on average in 2022 than in 2021 (Fig. 2b). This
was matched to the trend for stomatal conductance (gs), which
was also reduced in 2022 (Fig. 2c). The overall reduction in Asat

and gs across all accessions was similar in magnitude, which is
reflected in intrinsic water-use efficiency (iWUE) variation being
similar in 2021 and 2022 (Fig. 2d).

The shift in variation for the above-described traits across each
of the common garden experiments was not consistent on an
accession-by-accession basis, since variation for most traits was

only weakly correlated across the two experiments. SLA was an
exception to this general trend, where accessions that demon-
strated high SLA in 2021 tended to also do so in 2022 and vice
versa (Fig. 2e). The same was also true of heading date (Fig. S9),
although we did note that a subset of accessions demonstrated
much earlier heading in 2022 (Fig. S10), which caused the distri-
bution to appear different when plotted (Fig. S9). In general,
these results suggest that variation in growth rate (indicated by
SLA; Y. Liu et al., 2016) and phenology was strongly influenced
by underlying genetics in these two environments. This sugges-
tion is supported by the extent of observed variation explained by
the accession term in the mixed linear models used to partition
variances for these traits (Table S3). Variation in Asat was margin-
ally correlated between the two common garden experiments
(Fig. 2f). However, gs and iWUE were not correlated at all
(Fig. 2g,h), which suggests there were strong genotype-by-
environment (G × E) interactions for water use in these acces-
sions (Figs 2c,d, S10). Traits related to the light-dependent
photosynthetic processes demonstrated moderate correlations
between the two experiments (Fig. S10).

We calculated heritability in order to estimate the extent to
which the overall variation could be associated with genetic varia-
tion. Average heritability estimated according to Piepho &
Möhring (2007) (H 2

PM) using the joint-year data was 0.37 for all
traits (Table 1). The area of the penultimate leaf showed the
highest H 2

PM (0.81). The number of DTH was less heritable

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2 Phenotypic BLUEs variation characterised across the B1K diversity set. (a–d) Histograms showing variation for specific leaf area, photosynthesis,
stomatal conductance and intrinsic water-use efficiency. Histograms are coloured according to the models the BLUEs are derived from, that is, the 2021
model, the 2022 model, or the joint year model (2021/2022). (e–h) Correlations between specific leaf area, photosynthesis, stomatal conductance and
intrinsic water-use efficiency between 2021 and 2022 field trials.
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(0.28). Traits associated with the light-dependent photosynthetic
reactions measured via Chl fluorescence tended to be moderately
heritable (0.29–0.59), whereas leaf gas exchange-associated traits
were generally less heritable (0.01–0.49). Apart from δ13C
(0.41), traits associated with leaf elemental composition demon-
strated low heritability (0.03–0.13). Depending on the trait,
H 2

PM estimated by the individual year models was different
(Table S4). Gas exchange-associated traits demonstrated higher
heritability in general in 2021 than in 2022. Conversely, traits
estimated via Chl fluorescence appeared more heritable in 2022.
These findings highlight that the extent of variation imparted by
the environment was different between the two growing seasons
in line with substantial G × E.

We next estimated the signal of selection (S ) for all traits
using DRIFTSEL (Karhunen & Ovaskainen, 2012). This allowed
us to test for the presence of differing evolutionary pressures
across subpopulations for these traits. The average S value for
all traits was 0.50, which is indicative of a neutral pattern of
selection between subpopulations due to genetic drift (Table 1).
However, a few traits did demonstrate strong evidence of diver-
gent selection between subpopulations, where S exceeded 0.95.
For example, SLA had an S value of 0.99, which may suggest
that the growth rate is under strong divergent selection

across subpopulations. Contrastingly, the S value for DTH was
moderate (0.44), suggesting that any potential differences in
selection for growth rates between the subpopulations may be
independent of floral transitioning. Interestingly, the parameters
derived from the Rubisco-limited (Vcmax) and electron
transport-limited (Jmax) portions of the A–Ci curve both demon-
strated high S-values.

We examined correlations across all pairwise trait interactions
(Figs 3, S11, S12). In general, pairwise trait correlations held true
across the two common garden experiments (Figs S10, S11), with
some exceptions. For example, in 2021, DTH demonstrated a
strong positive correlation with Asat and gs (Fig. S11), suggesting
that accessions that were more photosynthetically active tended
to be those that had transitioned to flowering later. In 2022, con-
versely, Asat was not associated with DTH (Fig. S12). Addition-
ally, in 2022, we observed multiple significant correlations
between δ13C and traits that relate to the response of NPQ and
ΦPSII to dynamic irradiance that were not present in 2021
(Figs S10, S11). δ13C is a useful proxy for WUE integrated over
the time in which the carbon forming the tissue was fixed (Leakey
et al., 2019); consequently, these associations may suggest that
variation in the kinetics of the light-dependent photosynthetic
reactions may have had more of a bearing on variation in WUE
in 2022 than in 2021. Consistent with this assertion, we only
observed a significant (negative) association between δ13C and gs
in 2021 but not in 2022 (Fig. S11), thereby suggesting that varia-
tion in stomatal physiology and behaviour may have been more
important in defining variation in WUE in 2021. This sugges-
tion is further supported by the presence of a significant, negative
association between gs and iWUE that was observed in 2021 only
(Fig. S11).

By examining pairwise trait correlations using the joint-year
BLUEs, we were able to determine phenotypic associations that
persisted despite apparent G × E interactions (Figs 1e,h, S10).
Interactions of interest here included the positive correlations
between the amplitude of NPQ induction and relaxation with
SLA and the amplitude of the recovery of ΦPSII with SLA
(Fig. 3). These associations may suggest that larger responses of
these light-dependent reaction-associated parameters to changes
in irradiance may be associated with growth rate and/or other
determinants of variation in SLA. In terms of photosynthetic
capacity, we observed expected associations that highlight the
importance of leaf nitrogen content and gs as determinants of Asat

(Fig. 3). Further, we observed a positive association between
Vcmax and Asat, but not Jmax and Asat, which suggests that varia-
tion in carboxylation by Rubisco is more important in limiting
net CO2 assimilation than capacity for RuBP regeneration across
this diversity set. Alternatively, this observation could also be a
result of lighter sampling of photosynthesis at higher CO2 con-
centrations, which may limit the number of data points available
to fit Jmax and TPU, meaning they may be less well constrained
than Vcmax.

We also observed a positive association between Asat and TPU
as derived from the A–Ci curve (Fig. 3), which suggests that more
effective export of triose phosphate is linked to higher rates of Asat
(Lombardozzi et al., 2018).

Table 1 Piepho & Möhring broad-sense heritability (H2
PM) estimated from

the joint year model for all traits measured across 2021 and 2022,
alongside the signal of selection (S) estimated for the same traits using
DRIFTSEL.

Trait H2
PM S

%N 0.08 0.38
%C 0.13 0.39
C : N 0.05 0.41
δ13C 0.41 0.43
NPQind-amp 0.34 0.46
NPQind-rate 0.39 0.36
NPQrel-amp 0.38 0.58
NPQrel-rate 0.55 0.4
NPQrel-res 0.52 0.39
ΦPSIIrec-amp 0.38 0.6
ΦPSIIrec-rate 0.56 0.37
ΦPSIIrec-res 0.46 0.47
NPQlinear 0.59 0.34
Maximum NPQ 0.44 0.53
Final NPQ 0.54 0.38
Final ΦPSII 0.29 0.37
DTH 0.28 0.44
Leaf mass 0.72 0.43
Leaf areas 0.81 0.65
SLA 0.44 0.99
Vcmax 0.49 0.84
Jmax 0.01 1
TPU 0.31 0.36
SL 0.14 0.34
Asat 0.34 0.64
gs 0.29 0.4
iWUE 0.01 0.59

When S� 1, this indicates divergent selection between the populations;
when S� 0.5, this indicates a neutral pattern (genetic drift); and when
S� 0, this indicates stabilising selection between populations.
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Observed phenotypic variation is regulated by multiple
QTL and shows evidence for local adaptation between
subpopulations

For our GWAS, we adopted multiple approaches for detecting
SNP–trait associations. Through these various approaches, we
identified 193 QTL using the joint-year data and 159 QTL using
the individual year data. We focused on those that were identified
using the joint-year data, as these were likely to be more geneti-
cally robust. Further, we prioritised high-confidence QTL as
those that were identified using both the joint-year BLUEs and
the joint-year BLUPs. In total, we identified 22 high-confidence

QTL that were located across all chromosomes except chromo-
some 6H (Table 2). Seven of these were associated with DTH,
one was identified for SLA, and one was associated with the mass
of the penultimate leaf. The remaining 13 QTL were linked to
traits associated with light-dependent photosynthetic processes
phenotyped via Chl fluorescence. Some of these 13 QTL were
non-unique since they were identified for closely related or co-
dependent traits.

Whilst the goal of this study was not to identify candidate
gene, we did explore all the genes within 100 kb (upstream and
downstream) of these high-confidence QTL. In only one instance
did we observe a highly obvious associated candidate gene. This

Fig. 3 Correlogram showing pairwise trait correlations between traits (BLUEs from the joint model). Significant correlations are highlighted with asterisks at
α= 0.05 (*), 0.01 (**) and 0.001 (***). The colour of the ellipses indicates the direction of the correlations. Trait names are coloured according to
associated trait groupings. Red, light-dependent reaction-associated traits; orange, leaf structure-associated traits; green, leaf chemical composition-
associated traits; black, gas exchange-associated traits.
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was for the QTL associated with NPQind-amp and maximum
NPQ on chromosome 2H. Here, we observed just one gene
within the 200 kb upstream and downstream window, which was
c. 49 kb away from the SNP defining this locus and annotated as
Rubisco small subunit (rbcS; HORVU.MOREX.r3.2HG010
4730). rbcS mutants are known to have perturbed NPQ light
responses and reduced maximum NPQ (Atkinson et al., 2017),
thereby highlighting the plausibility of rbcS as a candidate gene
here, although further validation would be needed.

For all the high-confidence QTLs we tested for differences in
the allelic frequency of the SNPs associated with those QTLs
between the identified subpopulations, following the approach of
Fustier et al. (2019). Here, we identified three QTLs/SNPs where
both allelic frequencies and trait variation for which the QTLs
had been identified were significantly different between the sub-
populations (Fig. 4). It is worth noting that only three of the 22
high-confidence SNP–trait associations showed such a pattern,
which reflects the conservative nature of our GWAS approach.
Further, it reflects the fact that population structure was included
as a covariate in our GWAS models, since this approach should
limit the ability to detect associations where allele frequency dif-
ferences coincide with population structure; however, complete
correction here is inherently limited.

The QTLs identified for DTH on chromosomes 3H and 5H
(1st QTL) demonstrated distinct allelic frequencies with respect
to the Desert Jordan subpopulation, which also demonstrated
markedly earlier flowering than the remaining subpopulations
(Fig. 4a,b). Given the significantly reduced precipitation that
characterises the region of origin for this subpopulation (Fig. 1d),
it could be suggested that there has been active selection on the

alternative allele at these two QTL in the Desert Jordan
subpopulation to promote early flowering as a drought adaptive
mechanism.

The second QTL identified for maximum NPQ on chromo-
some 5H had significantly higher allelic frequency in the Coastal
Sharon subpopulation, which also demonstrated significantly
higher maximum NPQ than the remaining subpopulations
(Fig. 4c,d). Coastal areas tend to receive more variable cloud
cover, and enhanced cloudy environments have been shown to
elicit higher maximum NPQ in Arabidopsis ecotypes due to a
lack of adaptation to high-light environments (Rungrat
et al., 2019). Thus, it is plausible to suggest that the alternative
allele at this QTL may be linked to an NPQ-derived adaptation
to the high light; therefore, it is selected for in the non-Coastal
Sharon accessions.

In order to further understand physiological mechanisms that
may underpin differential adaptation across these subpopula-
tions, we compared both absolute trait variation as well as varia-
tion in trait plasticity across the subpopulations (between the
2021 and 2022 growing seasons). Through this approach, we
observed that the desert subpopulations were most commonly
the outliers relative to the other subpopulations for both plasticity
and absolute metrics (Figs 5, S13, S14). For example, the Desert
Jordan subpopulation demonstrated significantly reduced SLA
compared with all other subpopulations except the Mediterra-
nean Sharon subpopulation (Fig. 5a). Curiously, the only subpo-
pulation to demonstrate significantly different δ13C compared
with other subpopulations was the Desert Negev subpopulation
(Fig. 5b), which tended to show the most negative values, which
would suggest reduced water-use efficiency. This may also be a

Table 2 High-confidence quantitative trait loci (QTL) identified.

Chromosome Position (bp) –Log10 (P-value) Trait GWAS detection method(s)

1H 119 640 256 5.84 DTH FarmCPU, BLINK
1H 434 934 408 6.40 NPQind-rate FarmCPU, BLINK
2H 18 515 412 7.39 Maximum NPQ FarmCPU, BLINK
2H 18 515 412 6.39 NPQind-amp BLINK
2H 465 880 175 10.63 DTH FarmCPU
2H 641 328 117 5.95 DTH FarmCPU
2H 651 770 486 5.45 NPQrel-amp FarmCPU, BLINK
3H 358 746 713 6.68 DTH FarmCPU
3H 578 465 223 5.64 NPQind-amp BLINK
3H 606 149 268 9.93 ΦPSIIrec-rate FarmCPU, BLINK
4H 548 294 745 9.74 Final ΦPSII FarmCPU, BLINK
4H 615 129 219 7.59 Final ΦPSII FarmCPU, BLINK, mlmm
5H 565 157 996 8.73 Maximum NPQ FarmCPU, BLINK
5H 571 285 042 5.65 SLA BLINK
5H 588 538 716 9.09 DTH FarmCPU, BLINK
5H 595 204 884 8.73 DTH FarmCPU
5H 601 142 082 6.92 Maximum NPQ BLINK
5H 603 003 010 9.32 Final ΦPSII FarmCPU, BLINK
5H 647 383 990 11.73 NPQlinear FarmCPU, BLINK
5H 647 383 990 7.62 NPQind-rate FarmCPU, BLINK
7H 65 422 726 8.41 Leaf mass FarmCPU
7H 641 762 783 9.43 DTH FarmCPU

Each row represents a significant SNP–trait association. The chromosome, basepair position, �log10 (P-value), associated trait and method of detection are
provided.

New Phytologist (2026) 249: 569–587
www.newphytologist.com

� 2025 The Author(s).

New Phytologist� 2025 New Phytologist Foundation.

Research

New
Phytologist578



result of differential post-photosynthetic fractionation in the
Desert Negev subpopulation. The Desert Jordan subpopulation
displayed by far the fastest flowering time, since DTH was signif-
icantly reduced in this subpopulation than in all other subpopu-
lations (Fig. 5c). We did not detect any significant differences
between the subpopulations for gs; however, it is notable that the
Coastal Sharon subpopulation, which is characterised by
the highest average monthly precipitation (Fig. 1d), had by far
the highest average gs (Fig. 5d).

With respect to differences in plasticity, the two Desert subpo-
pulations showed the greatest change in SLA between the grow-
ing seasons, where the variation in plasticity across these two
subpopulations was significantly more negative (indicating a shift
towards higher SLA in 2022) than three of the four Mediterra-
nean subpopulations (Fig. 5e). Variation in plasticity for δ13C
was relatively consistent across the subpopulations, with only the
Mediterranean Jordan and Steppe Jerusalem subpopulations
showing a significant difference (Fig. 5f). Conversely, plasticity
in DTH was much more variable with four post hoc groups iden-
tified. Here, the Desert Jordan subpopulation demonstrated the
greatest plasticity (indicating a shift towards earlier flowering in
2022) with the Steppe Jerusalem subpopulation showing the least
plasticity between the growing seasons (Fig. 5g). These two

subpopulations were also the only two to demonstrate
significantly different variation in gs plasticity, with the Desert
Jordan subpopulation showing relatively low plasticity and the
Steppe Jerusalem showing comparatively higher gs plasticity
(Fig. 5h).

To further test the capacity for G × E and its role in adaptation
to environments across distinct subpopulations, we selected three
accessions each from the Desert Jordan and Steppe Jerusalem
subpopulations based on PCA (Fig. S3). These six accessions
were grown under two distinct and consistently maintained water
availabilities. Plants grown under reduced water availability (40%
rSWC) demonstrated reduced total leaf area (Fig. 6; Table S5).
This was consistent across the two subpopulations, although
some genotypes demonstrated stronger reductions than others.
Whilst the observation was not particularly surprising, we do
note that the percentage decline was much more extreme across
the Steppe Jerusalem genotypes (77.74%) relative to the Desert
Jordan genotypes (54.32%).

During the above-described water availability experiment, we
profiled leaf-level gas exchange and performed A–Ci response
curves in order to generate data that may explain differences in
biomass accumulation. Here, we observed that Vcmax and Jmax

were significantly reduced across the Steppe Jerusalem accessions
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Fig. 6 Total leaf area of the six accessions
included in the detailed experiment that were
subjected to two distinct watering regimes to
maintain relative soil water content (rSWC) at
40% and 80%. The percentage change of the
mean for each accession between 80% and 40%
rSWC is inset within each subpanel alongside the
associated P-value obtained from post hoc Tukey
tests applied to the associated two-way ANOVA.
For each boxplot the horizontal line within each
box represents the median; the box boundaries
indicate the interquartile range (IQR) (25th and
75th percentile); whiskers extend to 1.5 × IQR;
and points beyond the IQR represent outliers.
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when grown at 40% rSWC compared with those at 80% rSWC
(Fig. 7a,b; Table S5). This effect was not mirrored by the Desert
Jordan accessions, where neither Vcmax nor Jmax was significantly
reduced when associated accessions were grown at 40% rSWC
(Fig. 7a,b; Table S5). Asat was significantly reduced across the
accessions from both subpopulations (Fig. 7c; Table S5), but the
magnitude of the reduction was much greater across the
Steppe Jerusalem accessions (52.65%) than in the Desert Jordan
accessions (37.39%).

The differences in G × E for photosynthetic capacity across the
two subpopulations may in part be explained by effects on gs
(Fig. 7d; Table S5). We observed that gs was significantly reduced
for both subpopulations when grown at 40% rSWC; however,
this reduction was much greater (71.45%) for the Steppe Jerusa-
lem subpopulation than for the Desert Jordan subpopulation
(45.63%). This suggests that the Desert Jordan accessions are
able to maintain normal photosynthetic capacity under reduced
water availability despite reduced gs.

Notwithstanding the significant decline in gs, iWUE of the
Desert Jordan accessions was not significantly different between
the two water availability treatments (Fig. 7e; Table S5), which is
further reflective of the adaptive capacity of the Desert Jordan
accessions and suggests that, despite restricting water loss, there is
no modulation between the amount of carbon gained per unit of
water lost under the tested drought scenario. Conversely, iWUE
of the Steppe Jerusalem accessions was significantly increased
when plants were grown under reduced water availability
(Fig. 7e; Table S5), suggesting that accessions from this subpopu-
lation may need to fine-tune this trade-off relative to how they
perform under optimal resource availability.

Discussion

We presently have a limited understanding of the extent to which
photosynthesis varies intraspecifically in any CWR of interest.
This study addresses this for the first time through a comprehen-
sive assessment of the natural variation of photophysiology across
wild barley. We showcase extensive photosynthetic diversity for
future barley improvement efforts. Below, we provide context on
how this natural variation could be harnessed for crop improve-
ment in the context of climate change.

We identified eight distinct subpopulations (Fig. 1b,c) that lar-
gely aligned with the recent work of Chang et al. (2022), consis-
tent with the presence of 164 common accessions between our
studies (Table S1). The relatively short geographic distances
between the distinct subpopulations reflect the unique nature of
the B1K collection region within Israel. Here, between relatively
short distances, one can find very different environments and
topographies. The apparent lack of gene flow between these sub-
populations reflects previous work on the B1K that used a differ-
ent marker system. This work also supported admixture between
accessions in border regions (Hübner et al., 2012). We obtained
climatic data from the point of collection of all accessions and
identified distinct differences in historical water availability
and growing temperatures (Figs 1d, S6). These environmental
parameters are well-known to have multifaceted effects on

photosynthesis (Chaves et al., 2009; Yamori et al., 2014) and are
critical in determining local adaptation (Stebbins, 1952).

We measured SLA of the penultimate leaf as an important trait
for defining investment of resources and plant growth (Lambers
& Poorter, 1992; Shirdelmoghanloo et al., 2022). SLA has been
utilised in barley breeding contexts as a proxy for grain yield
(Alqudah & Schnurbusch, 2015) and vigour (Rebetzke
et al., 2004). Consequently, we utilise SLA as a proxy for biomass
accumulation in our study. In alignment with previous observa-
tions in domesticated barley, we observed a strong genetic com-
ponent to SLA in wild barley (Table 1). Moreover, alongside
DTH (Fig. S10), SLA and its constituents showed the greatest
similarity in variation across the growing seasons (Figs 2, S10),
suggesting reduced G × E compared with photophysiological
traits. SLA also demonstrated a high S value (Table 1), suggesting
there is differential selection for SLA across the defined subpopu-
lations (Fig. 1). In general, SLA increases with resource availabil-
ity in the short term; however, long-term adaptation to
unfavourable habitats can also result in SLA increasing over evo-
lutionary time despite a lack of resources (Liu et al., 2023). In
this context, we note that accessions from the two desert environ-
ments demonstrate a significant difference in subpopulation-wide
SLA variation (Fig. 5a). Here, the Desert Jordan subpopulation
demonstrated the lowest SLA, which is in line with an expected
adaptation to limited water availability (Scheepens et al., 2010;
Wilcox et al., 2021). However, variation in SLA across the Desert
Negev subpopulation was similar to the majority of other subpo-
pulations, suggesting that these accessions may have undergone
longer term adaptation to reduced precipitation and/or there is a
strong influence on SLA coming from other environmental para-
meters, for example, light availability (Y. Liu et al., 2016).

In barley, like many other species, there is a strong association
between light availability and SLA (Gunn et al., 1999). We
observed significant positive associations between SLA and traits
that define the response of NPQ and ΦPSII to light (Fig. 3). Spe-
cifically, our results highlight that greater changes in the induc-
tion and relaxation of NPQ and recovery of ΦPSII are linked to
greater SLA and, potentially, greater biomass accumulation. A
similar observation was also made recently by Cowling
et al. (2022), who showed that NPQ dynamics were linked to
biomass accumulation across African rice landraces. We also
observed differences between subpopulations for NPQ and
ΦPSII dynamics (Fig. S13), highlighting how dynamic photo-
protection and photosynthesis may be linked to local adaptation.
Moreover, through our GWAS, we detected many marker–trait
associations for these NPQ- and ΦPSII-related traits (Table 2).
In one case, a very obvious candidate gene was in close proximity
to an identified marker. Here, rbcS was linked to genetic variation
in the amplitude of change in NPQ upon transitioning from high
light to darkness, which could relate to synchronisation between
the demand for ATP for CO2 fixation and acidification of the
thylakoid lumen (Ramakers et al., 2025). In another instance, we
observed a link between the frequency of alleles of a marker sig-
nificantly associated with maximum NPQ and subpopulation
variation in maximum NPQ (Fig. 4c,d). Here, the alternative
allele appeared fixed in the Coastal Sharon subpopulation, which
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also demonstrated significantly higher maximum NPQ than any
other subpopulation. In general, coastal environments tend to be
characterised by more cloud cover, which likely places significant
pressure to adapt photoprotective responses to dynamic light
conditions. It may be the case that Coastal Sharon accessions are
not exposed to strong selection pressure to adapt to a high-light
environment, thus there is no variation in the identified allele.
This would be in line with observations in Arabidopsis (Rungrat
et al., 2019).

Similar observations were made for two markers significantly
associated with variation in DTH (Fig. 4a,b). Here, the alterna-
tive allele at these two markers was dominant in the Desert Jor-
dan subpopulation, which also had the shortest DTH of any
subpopulation. This is plausibly a result of the evolution of a
drought escape strategy (reviewed by Kooyers, 2015) in the
Desert Jordan subpopulation. Previous common garden experi-
ments have shown that populations from xeric environments
tend to flower earlier (Knight et al., 2006; Lowry et al., 2015). As
with the SLA observation described above, this trend does not
hold true with the Desert Negev subpopulation, suggesting that
this environment is not as stressful in terms of water availability
and/or these accessions have evolved alternative drought avoid-
ance mechanisms.

With respect to Asat, we observed a substantial amount of var-
iation across the diversity panel (Fig. 2b) that was reasonably
consistent across the two growing seasons (Fig. 2f) despite a
strong contribution from the environment in determining the
variation (Table 1). The heritability estimates of photosynthesis
traits estimated from gas exchange in this study are reduced rela-
tive to domesticated barley (Gao et al., 2024). However, it is
worth noting that Gao et al. (2024) performed measurements
using plant material grown in controlled environments, thereby
limiting environmental noise. In addition, domesticated barley
has been specifically bred for stability (Kraakman et al., 2004),
which is not the case for wild species (Lachowiec et al., 2016).
Gao et al. (2024) observed a mean Asat across their studied barley
varieties of 17.2 μmol CO2 m

�2 s�1 and a maximum of 19.7
μmol CO2 m

�2 s�1. In our study, the average value for Asat from
the joint-year BLUEs was 20.19 μmol CO2 m

�2 s�1 and some
accessions demonstrated rates exceeding 30 μmol CO2 m

�2 s�1

(Fig. 1b). The Asat data from our 2022 growing season were
more comparable with those of Gao et al. (2024); however, there
were still some accessions with much higher rates of Asat. More-
over, the average Asat in 2021 was 23.31 μmol CO2 m

�2 s�1

(Fig. 1b). In general, these results showcase that there is a wealth
of variation in Asat in wild barley. Further, these results are indi-
cative of photosynthetic rates greater than those demonstrated in
domesticated barley. Despite this finding, it is pertinent to
remember that the associated phenotyping in both studies was
performed under contrasting environments, which may influence
the observed variation. Our work has made a start to better
understand the genetics underpinning the variation in wild bar-
ley, but this will require further experimentation of derived
crosses in controlled environments to maximise heritability.

Whilst we were unable to identify QTL associated with Asat

variation, we were able to assess patterns of variation that help to

better understand the basis for this variation. For example, a very
strong, positive association was observed with gs (Fig. 3). This
follows the well-characterised trend that enhancing photosynth-
esis in a C3 species typically requires concurrent increases in gs
(Leakey et al., 2019). This clearly has implications for WUE;
however, we note that the negative association between gs and
iWUE is not as strong as the gs-Asat association. This implies that
there are some accessions that can operate at high rates of Asat

with low or moderate gs, which would be ideal for breeding bar-
ley to drought-prone environments (Rebetzke et al., 2004).
Indeed, our experiment with six selected contrasting accessions
(discussed further below) highlights the trait combinations that
could be selected for. Another commonly observed association
we detected was the positive association between leaf nitrogen
content and Asat (Fig. 3), which reflects the investment in nitro-
gen of the Calvin Cycle and thylakoid proteins (Evans &
Clarke, 2019). We also observed a significant positive association
between δ15N and Asat (Fig. 3). There is some evidence that car-
bon metabolism and nitrogen assimilation, alongside the isotopic
composition of the external nitrogen source, are important in
determining δ15N (Evans, 2001; Kalcsits et al., 2014). Some of
the early work to understand genotypic differences in δ15N
comes from wild barley (Handley et al., 1997; Robinson
et al., 2000), where genotypic variation in δ15N was linked to
abiotic stress tolerance and also the capacity to retain N, which
would have implications for photosynthesis. This may also reflect
the association between leaf δ15N and DTH (Fig. 3), since floral
transitioning is typically associated with the remobilisation of
nitrogen and the onset of senescence (Distelfeld et al., 2014).
The importance of leaf nitrogen is further reflected in the positive
correlations between Vcmax and %N and Asat, which reflects the
investment of N in Rubisco (Luo et al., 2021) and confirms that
Rubisco activity is key for photosynthetic performance in barley.

As a final component to this study, we sought to understand
how differences in photophysiological plasticity may contribute
to adaptation in wild barley. To this end, we focused on acces-
sions from the Desert Jordan and the Steppe Jerusalem subpopu-
lations as the only two groups to show differences in gs plasticity
(Fig. 5d). Plants grown under reduced water availability showed
reduced total leaf area across both subpopulations (Fig. 6). This
is a fairly well-characterised response to water deficits in plants
and has also been observed recently in domesticated barley
(Moualeu-Ngangué et al., 2020). In general, this response reflects
(1) an attempt by the plant to reduce surface area for transpira-
tion; and/or (2) a reallocation of resources to promote root
growth for water acquisition (Chaves et al., 2009). Interestingly,
the clearest difference between populations was observed under
the 80% rSWC treatment, where Steppe Jerusalem accessions
developed markedly larger leaf area than Desert Jordan acces-
sions. This pattern suggests that genetic divergence in growth
strategy is most evident under moderate-to-high water availabil-
ity, whereas severe drought imposes a shared physiological limita-
tion. Such genotype-by-environment interactions imply that
adaptive differentiation may be more strongly linked to perfor-
mance under favourable conditions, potentially reflecting selec-
tion for resource-use efficiency in mesic environments. This
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hypothesis is in line with a recent study that focused on a wild C4

grass, Bouteloua gracilis, where populations from more arid envir-
onments tended to be smaller whilst demonstrating reduced plas-
ticity to water limitation (Bushey et al., 2023).

The relative maintenance in vegetative biomass accumulation in
Desert Jordan accessions compared with Steppe Jerusalem acces-
sions might be related to their ability to maintain photosynthetic
capacity under reduced water availability (Fig. 7a–c). Indeed,
recent work on wild relatives of wheat has shown that maintaining
photosynthesis under drought stress is key to maintaining biomass
accumulation (Mahmood et al., 2023). Given the link between gs
and photosynthetic capacity (Paillassa et al., 2020), we were sur-
prised to see that gs significantly declined in the Desert Jordan
accessions as well as the Steppe Jerusalem accessions (Fig. 7d).
Again, however, the magnitude of this response was far greater for
the Steppe Jerusalem accessions. In light of this observation and
given the previously described importance of gs for positively defin-
ing photosynthesis in wild barley (Fig. 3), it suggests that Steppe
Jerusalem accessions may have evolved mechanisms that allow con-
served water use by reducing stomatal opening with limited nega-
tive effects on photosynthesis. This means they do not have to
elicit a significant iWUE response, in contrast to the Steppe Jerusa-
lem accessions (Fig. 7e). In general, this highlights a degree of
uncoupling between gs and photosynthesis in the Desert Jordan
accessions, which is unusual for a C3 species but highly attractive
from the standpoint of improving the productivity of crops in
water-limited environments (Condon et al., 2004; Blum, 2005;
Leakey et al., 2019).
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ÉC, Vourlitis GL, Rodrı́guez Ortı́z CE. 2013. Fitting net photosynthetic light-

response curves with Microsoft EXCEL – a critical look at the models.

Photosynthetica 51: 445–456.
Lombardozzi DL, Smith NG, Cheng SJ, Dukes JS, Sharkey TD, Rogers A,

Fisher R, Bonan GB. 2018. Triose phosphate limitation in photosynthesis

models reduces leaf photosynthesis and global terrestrial carbon storage.

Environmental Research Letters 13: 074025.
Long SP, Bernacchi CJ. 2003. Gas exchange measurements, what can they tell us

about the underlying limitations to photosynthesis? Procedures and sources of

error. Journal of Experimental Botany 54: 2393–2401.
Long SP, Zhu X-G, Naidu SL, Ort DR. 2006. Can improvement in

photosynthesis increase crop yields? Plant, Cell & Environment 29: 315–330.
Lowry DB, Hernandez K, Taylor SH, Meyer E, Logan TL, Barry KW,

Chapman JA, Rokhsar DS, Schmutz J, Juenger TE. 2015. The genetics of

divergence and reproductive isolation between ecotypes of Panicum hallii. New
Phytologist 205: 402–414.

Lozano-Isla F. 2024. INTI: tools and statistical procedures in plant science. R package

v.0.6.9. [WWW document] URL https://CRAN.R-project.org/package=inti

[accessed 05 February 2024].

Luo X, Keenan TF, Chen JM, Croft H, Colin Prentice I, Smith NG, Walker

AP, Wang H, Wang R, Xu C et al. 2021. Global variation in the fraction

of leaf nitrogen allocated to photosynthesis. Nature Communications
12: 4866.

� 2025 The Author(s).

New Phytologist� 2025 New Phytologist Foundation.

New Phytologist (2026) 249: 569–587
www.newphytologist.com

New
Phytologist Research 585

https://github.com/rspatial/terra
https://CRAN.R-project.org/package=factoextra
https://CRAN.R-project.org/package=inti


Mahmood YA, DeSilva J, King IP, King J, Foulkes MJ. 2023. Leaf

photosynthesis traits and associations with biomass and drought tolerance in

amphidiploid and ancestral wheat genotypes. European Journal of Agronomy
147: 126846.

Mendiburu FD, Simon R. 2015. AGRICOLAE – ten years of an open source

statistical tool for experiments in breeding, agriculture and biology. PeerJ 3:
e1404v1.

Monteith JL, Moss CJ, Cooke GW, Pirie NW, Bell GDH. 1997. Climate and

the efficiency of crop production in Britain. Philosophical Transactions of the
Royal Society of London. Series B: Biological Sciences 281: 277–294.
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M. 2012. An efficient multi-locus mixed model approach for genome-

wide association studies in structured populations. Nature Genetics 44:
825–830.

Shirdelmoghanloo H, Chen K, Paynter BH, Angessa TT, Westcott S, Khan

HA, Hill CB, Li C. 2022. Grain-filling rate improves physical grain quality in

barley under heat stress conditions during the grain-filling period. Frontiers
in Plant Science 13: 858652.

Slattery RA, Ort DR. 2015. Photosynthetic energy conversion efficiency: setting

a baseline for gauging future improvements in important food and biofuel

crops. Plant Physiology 168: 383–392.
Stebbins GL. 1952. Aridity as a stimulus to plant evolution. The American
Naturalist 86: 33–44.

Tanksley SD, McCouch SR. 1997. Seed banks and molecular maps: unlocking

genetic potential from the wild. Science 277: 1063–1066.
Theeuwen TPJM, Logie LL, Harbinson J, Aarts MGM. 2022. Genetics as a key

to improving crop photosynthesis. Journal of Experimental Botany 73: 3122–
3137.

Tiwari LD, Bdolach E, Prusty MR, Bodenheimer S, Be’ery A, Faigenboim-
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