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Abstract

As digitisation grows, from social media to banking applications, malicious

software (malware) threats have become increasingly problematic. A large propor-

tion of malware is developed directly based on previous malware samples. This

allows low-skilled developers to modify known malware and reap the benefits.

This dissertation highlights how effective a standard programming paradigm, and

a low-performance computer can be in evading modern antivirus systems, demon-

strating that the security for mobile applications can be overcome without the need

for high-performance computers.

This dissertation aims to provide a standardised way to make Android applica-

tion code unrecognisable/hide its characteristics (obfuscate), highlighting security

vulnerabilities without the need for professional knowledge on the subject. Obfus-

cation can be used for legitimate purposes, such as protecting intellectual property

and hiding sensitive information or vulnerabilities in software code; conversely,

it has the illegitimate purpose of making malware more evasive. In this disserta-

tion, a program was developed using a genetic algorithm combined with several

preexisting tools and then tested using malicious Android applications.

The contributions of this research are two-fold. Firstly, existing research was

recreated using recent Android applications rather than pre-1995 DOS-era applica-

tions, making its insights relevant to current computer systems. Secondly, achieving

this with standard computer resources (i.e., not a high-performance computer), as

is typically used in related research, broadens the audience to which the results

are applicable. Key findings from this research are that, with obfuscation methods

built in the year 2020, a genetic algorithm can find sequences of obfuscation that

can bypass antivirus systems in 2025. The program achieved this with only control

and data flow manipulation-based obfuscation and produced good results with a

population of five after twenty-one generations. This finding is significant because

the methods used are not highly complex to implement, and in terms of computer

technology, five years is a significant amount of time.
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1
Introduction

1.1 Background

With the ubiquitous presence of digitisation, from social interaction to daily administra-

tive tasks, the problematic effects of malicious software (malware) have increased. There

are consistent reports of the growing threat from malware in academic literature, poli-

cies, and the media. For instance, the UK government is continually updating policies

in this regard, most recently [21]. An up-to-date report from a cybersecurity company

[9] shows the exponentially growing threat from Android malware. Consequently, there

is a need to protect against such ever-growing threats in the cat-and-mouse game of

digital security ([65], [36]).

Currently, a large proportion of malware is developed directly based on previous

malware samples [43]. This allows low-skilled developers to modify known malware

and reap the benefits. This dissertation highlights how effective a relatively standard

programming paradigm and a low-performance computer can be in evading modern

commercial antivirus systems, demonstrating that the security for mobile applications

can be overcome without the need of a high-performance computer.

The contributions of this research are two-fold. Firstly, existing research was recre-

ated using recent Android applications rather than pre-1995 DOS-era applications,
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making its insights relevant to current computer systems. Secondly, achieving this

without the need for high-performance computers, as is typically used in related re-

search, broadens the audience to which the results are applicable. This dissertation

lies at the intersection of three domains: malware analysis, the Android operating

system, and genetic algorithms. The dissertation aims to provide a standardised way

to make Android application code unrecognisable/hide its characteristics (obfuscate),

highlighting security vulnerabilities, without the need for professional knowledge on

the subject to get the best results. Obfuscation can be used for legitimate purposes, such

as protecting intellectual property, hiding sensitive information, and hiding vulnerabil-

ities in the code; conversely, it has the illegitimate purpose of making malware more

evasive. Obfuscation and detection of malware are continually evolving, techniques

used on a given application that successfully bypassed an antivirus system that worked

months ago may no longer be as effective today. For this dissertation the developed

program will rely on a genetic algorithm combined with several preexisting tools, and

will be tested using known malicious Android application samples.

Android was selected as a suitable domain for this dissertation because it provides

a wide range of freely available tools for malware analysis. For example, the Android

emulator which makes simulating an Android device possible, on a standard laptop.

Additionally, a lot of the malware for Android is on the application layer, which means

that less is needed to be known about the underlying framework of the operating system

to understand how malware samples work. The aforementioned conveniences of using

Android could also be found when looking at malware on embedded systems, like

Internet of Things (IoT) devices. However, a quick online search shows considerable

literature on Android and many developer tools available, most likely due to Android

being a global, open-source platform. This abundance of resources makes Android a

good choice compared to embedded systems, aligning this domain with the constraints

of the dissertation (see Section 1.4).



1.2 Research Questions 7

1.2 Research Questions

This dissertation aims to answer the following research questions:

• Genetic algorithms are known to solve a range of combinatorial optimisation prob-

lems. How effective are they, in different configurations, at finding combinations

of malware modifications that can surpass modern antivirus systems?

• A wide range of modifications can evade antivirus systems, from encryption to

randomisation. This dissertation addresses the question of how complex do the

modifications need to be to achieve this goal?

• When looking for ideal combinations, what are the ideal parameter settings for

the genetic algorithm, given the hardware it is running on?

1.3 Research Objectives

The research objectives below correspond to the chapters in this dissertation. The first

objective is covered by Chapter 2. The second and third objectives are addressed in

Chapter 3, with the final objective covered by Chapter 4.

1. Design and implement a genetic algorithm based program for obfuscation (Chap-

ter 2).

2. Test different implementation choices and their effectiveness at bypassing modern

commercial antivirus systems (Chapter 3).

3. Understand the computational performance of different algorithm configurations

(Chapter 3).

4. Highlight key issues in implementing such a system and further developments

that could be made (Chapter 4).
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1.4 Scope and Constraint

The three core constraints of this dissertation are:

1. The project needed to be completed within the one-year time limit, imposed by

the length of a master’s by dissertation.

2. There is no additional funding to be spent on developing this project (e.g., AWS

could not be used).

3. The computational power available was limited to that of a typical laptop, see

Section 2.2.1 for details.

As the project developed, the scope was added to focus specifically on applications

on the Android operating system and use modern commercial antivirus systems to

investigate the effectiveness of obfuscation.

1.5 Literature Review

This literature review aims to establish an understanding of theoretical ideas and

empirical results, which would then direct an applied research project within the

domain of machine learning and malicious software (malware). The literature review

will start by examining the general fields of machine learning and malware to then

concentrate on genetic algorithms applying concealment (obfuscation) to Android

applications. Android was selected as a platform as it is a widely used operating system,

and the literature revealed several factors that made it a practical system to work with,

given the three constraints from Section 1.4.

In the following section, the literature review begins with a textbook [43] and a

survey paper [51] to form a starting point, and sets the dissertation within the broader

context of machine learning and malware on Android.
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1.5.1 Preliminary Sources

The textbook [43] framed this research project within the broad domain of malware in

the Android environment. This textbook helped to understand the security features of

the Android operating system and highlighted several interesting ideas.

• That Android defence is performed in layers, and each layer can detect some, but

not all malware.

• Key security issues known on the Android platform, namely privilege escalation

malware, data theft or manipulation, accessing executable memory, accessing

kernel-level flags, and adding apps from outside Google Play, known as side-

loading.

• The accessibility application programming interface (API) affects security on the

Android platform because it has permission to cross the sandboxes setup on each

app, such as a screen reader assistant, which is classified as a security weakness.

• That malware developers for Android can use different languages to make auto-

mated analysis more complex.

• Reducing the surface area of attack to help reduce attack possibilities is done by

deleting unused code, making it inaccessible via permission, API structure, or

sandboxing apps.

The authors covered the broader implications of security within the Android ecosys-

tem. They explained how attacks are performed by large-scale, sophisticated attackers

and how chains of exploits can bypass Android and lead to a compromised system.

These complex chains of events can be executed over a period of months for additional

sophistication. Google has systems to scan applications on Google Play [41], as well as

system images produced by phone manufacturers [40], to detect security issues. Due

to the large-scale deployment of the Android operating system, there is a wide range

of attack options for malware developers. From a software perspective, an abstraction
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layer exists between the core operating system and phone manufacturers’ add-ons in

the Android system, which helps speed up security updates. [43] details how malware

is defined on the Android system, for example, how rooting is performed to escalate

malware privileges. The authors report that using public software libraries to spread

malware is the most successful vector for infection, in terms of the number of affected

devices. The general intention of malware developers on Android is to keep the mal-

ware operations within a grey area to avoid detection. For example, taking personal

information and selling it to facilitate accessing private bank accounts is a crime, while

taking personal information and selling the data for targeted advertising is not nec-

essarily a crime. The fact that there is crossover between legitimate data brokers and

malware developers makes the detection of illegitimate actors harder. [43] provided

a step-by-step guide to understand issues concerning malware within the Android

system. In terms of machine learning, the book’s scope was limited, as it only focused

on detecting malware and provided a few classification examples. Due to the wide

range of academic literature on malware and machine learning a survey paper was

employed to explore this topic.

The paper selected [51] focused on both machine and non-machine learning methods

to distinguish between benign software and malware. Non-machine learning techniques

used included statistical analysis, game theory, and entropy (e.g., using game theory

in the prediction of advanced persistent threats). Machine learning techniques include

clustering, decision trees, neural networks and reinforcement learning (e.g., neural

networks being used to understand network traffic). [51] also introduces new topics like

oligomorphic programs, programs that can change themselves during execution, and

using novel ideas for malware classification, like heat emissions and converting source

code to an image or sound. The paper also looks at well-known technical approaches

like API calls.

Consistent with reports from outlets across the internet, this paper states that in

recent years, malware has sharply risen for Android, IoT and Windows computers. The

authors state that the most common attack on Android devices is infecting legitimate
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applications, intending to collect the users’ personal information, which is confirmed

in [43]. The most common infection for internet-connected, IoT devices is harnessing

the device in a botnet, for use in a denial of service (DoS) attack. The authors state that

ransomware is regarded as the most laborious malware to deal with once an infection

occurs.

[51] gives a broad understanding of possible uses of different machine learning

techniques in the context of malware. This topic was discussed from the perspective of

generalised ideas and did not detail specific projects. This paper focused on detection

methods, highlighting the need for a suitable source of malware-related information

to perform research. There are several available databases online; some have been

suggested in this paper (e.g,. DREBIN [10] and EMBER-2018 [48]). Each database will

influence the type of research that can be done. This is because the type of informa-

tion recorded in the database influences what type of machine learning can be used

effectively. In the next section, we discuss a series of articles, selected to give a practical

understanding of projects developed using machine learning in the malware domain.

1.5.2 General Machine Learning and Malware Sources

In recent years reinforcement learning has been investigated as a suitable method for

malware detection (e.g., [34] and [71]). [34] looked at how Q-learning can be used for

static feature detection of potentially malicious, portable executable (PE) files. PE files

are the instructions used when running an EXE file. Q-learning was used to tune the

parameters of several of the feature detectors. Namely, Support Vector Machine (SVM),

Random Forest, K-Nearest Neighbours (KNN), Decision Tree and Naive Bayes. The

system extracted characteristics from the PE files, in some cases using the most common

n-grams as a comparison. The core idea in this prototype was for Q-learning to identify

the most successful characteristics to be used by the feature selection algorithm.

This prototype used a Tesla V100 GPU in an Nvidia DGX server, a high-performance

computer, with the code available on GitHub [35]. The results showed that having

a limited number of well-selected characteristics provided highly accurate solutions.
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Some classification detectors performed better than others, and using a limited number

of features helps reduce resource requirements and training times.

The authors assume that if one feature performs well in identifying a sample as

malware, then that feature is likely to be found in other malware samples. This is a

valid statement, as malware developers often copy known strategies and build on top

of pre-existing software [43]. On the other hand, this could mean that the developed

prototype will be limited to detecting specific malware families [24]. Malware families

are groups that identify how specific malware samples’ behaviour evolves, members

of a family also have similar features. The author used pyCUDA in preference to

CUDA C, which emphasises the flexibility of prototyping over computation speed.

The improvement obtained from applying Q-learning seems linked directly to the

underlying classification model. SVM and Naive Bayes had notable improvement

compared to the others, presumably because these methods are better at this type of

problem, regardless of parameter tuning. The idea of taking random action based on

a set of rules is interesting for an environment without well-defined actions. Which

are a requirement when using reinforcement learning. While [34] did focus on the

Windows operating system, which is outside the scope of this dissertation. Insight into

the application of reinforcement learning was valuable, although their prototype relied

on a large amount of computation during development.

Also using reinforcement learning, but this time, with an abstract representation

of malware behaviour, [71] looks at making a Breach and Simulation (BAS) system to

create an automated program to identify security issues. The idea is to enable computer

administrators to make the most effective decisions to secure their systems. The authors

compare multi-agent reinforcement learning (MARL) and a grammatical evolutionary

algorithm (GEA) [2] to solve a game theory structure problem. The GEA’s distribution

and the MARL convergence rate were used to compare the two algorithms. They

grouped the MARL episodes to correspond to the generations of the GEA. This made

the comparison easier.

The prototype looks for a mixed strategy Nash equilibrium. A concept from game
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theory, whereby each player in the game does not benefit from changing their own

strategy, resulting in the game stagnating. When looking for equilibrium, MARL

and GEA were used in the attack and defence roles, and during testing, GEA was

better at attacking. They believe this could be due to excessive exploration of MARL

agents. MARL also had issues repeatedly trying the same actions. Both are well-known

problems when using reinforcement learning [66], known as the exploration-exploitation

dilemma, which makes MARL weak at defending. They believe low mutation in the

GEA preserved reasonable solutions, while high crossover increased stability between

different generations. The authors claim the unique element of this paper is the use of

mixed strategies rather than a pure equilibrium, which they state previous papers have

done. They used standardised scores from a database of known attack and defence

patterns to give context to the system, namely the common vulnerability scoring system

(CVSS) [64].

In [71], MARL was insufficient to solve the problem, but the authors clarified that

there were many more possibilities to explore to make MARL more suitable, such

as applying a rule to stop the agent from repeating itself. Malware was modelled

using predefined attack and defence patterns from CVSS. The authors did not infer

how this could be generalised to work when the answers to specific events are not

already recorded. An interesting idea gained from this paper is to have the parameters

of each algorithm inform each other so that they can train together, in a Generative

Adversarial Network (GAN) type setup [39]. This paper also highlighted the demanding

training requirements for MARL when dealing with complex environments, which can

also be seen in [34]. Both [34] and [71] suggest that reinforcement learning requires

extensive and computationally expensive training which goes against a constraint of

this dissertation (see Section 1.4).

In [63], the authors looked at techniques to obfuscate Android malware and hide

it from detection, using a non-machine learning algorithm. The authors developed a

prototype called DroidChameleon, which can apply various obfuscation techniques to

Android applications. For instance static obfuscation such as repacking, and dynamic
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ones, such as runtime encryption.

DroidChameleon uses APKtool [8]. They used DroidDream and FakePlayer mal-

ware samples to test if the application’s original functionality was intact after Droid-

Chameleon’s transformation. The results of applying DroidChameleon were confirmed

by testing to see if commercial antivirus programs could detect the samples. The authors

used malware that predated 2011 to ensure that the malware signature was well-known

to existing antivirus programs. The transformations were applied with increasing com-

plexity, and the test would be stopped if the antivirus failed. The authors claim that only

combining two transformations was typically needed to bypass the antivirus systems.

They suggest that their findings show that very few antivirus systems for Android use

static analysis. This is probably due to the privileges granted to third-party apps on

Android, restricting access to the source code of other applications.

The authors state that the bytecode of a transformed sample retains some of its core

semantic properties after compiling, and as such, they infer that compiling automatically

removes some of the source code transformations that were added. The ideas suggested

in this paper align with this dissertation’s research questions, however, the authors

relied on a considerable manual manipulation of code in testing and transformation,

whereas this dissertation aims to create a more systemic approach. Nevertheless, this

paper introduced two useful tools. Firstly, the web service av-test.org [69], that provides

benchmarking results for common commercial antivirus software on different operating

systems. Secondly, APKtool [8], a tool that allows source code level access to pre-

compiled applications, which is useful when using source code and malware samples.

Following the previous paper, a more in-depth look at non-machine learning was

explored. In [83] the authors look at generating malware samples by implementing

dynamic binding and reflection, which can then be used for testing antivirus software.

They called this system MYSTIQUE-S. MYSTIQUE-S uses a Dynamic Software Produc-

tion Line (DSPL), whereby the program is structured as a set of modular components

which can then be combined, on the fly, using linear programming. MYSTIQUE-S first

gets system information, then selects a modular feature based on three characteristics:
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aggressiveness, latency and detectability. The Behavioural Description Language (BDL)

provides a high-level description of behaviour and functionality. BDL was used as an

intermediary representation of the programs. The authors divide Android attack types

into four categories: financial, privacy leakage, phishing, and extortion. The authors

state that often malware shares similar code, and it is common for malware to be clones

of each other. This is also stated in the book [43]. They used sixteen real devices from

different brands during testing and ran the experiments on an Intel Xeon CPU with

64GB memory, which is a high-performance computer.

The authors claim that the application of additional obfuscation was unnecessary

due to the low detectability of the generated samples. This paper and its previous

counterpart [54] proposed using two methods, Software Product Line Engineering

(SPLE) and DSPL, similar to an evolutionary algorithm, in generating source code

samples. The authors claim that software production lines are more computationally

efficient than evolutionary algorithms, as they allow targeted control of outcomes,

compared to evolutionary algorithms that use much computation exploring suboptimal

options. The deployment of software production lines in this paper seems to require

substantial computer resources, considering how much the samples were transformed.

Performance is a repeating theme in the literature ([83], [34] and [71]). Along

this theme, [36] looks at deploying a performance sensitive prototype on Android,

using deep-learning methods for on-device malware protection; they call this system

MobiTive. On Android devices, some security features are done server-side [43]. If

people download apps from third-party locations, server-side checks can be bypassed.

Another potential issue with server-side security is that the system can be manipulated if

the network is compromised. The authors state that the volume of data being collected

on mobile devices is increasing due to widespread use, which in turn produces a

growing need for better mobile device protection. The paper is developed on top of the

author’s previous work and the work from [17]. To reduce computational complexity,

they looked directly at the API calls and the manifest files from source code, without

decompiling. The Classes.dex file contains an API table which matches the executable
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symbols to API strings. Only API calls suspected of being malware were checked,

which was assessed by manual inspection. The experiment took place on six real-time

physical devices. The prototype model was trained on a server, after which the trained

model can be run on the mobile device. The prototype was built on a high-performance

computer, 192GB RAM and a GeForce 2080Ti GPU with Linux OS.

[36] used an Inter-procedural Control Flow Graph (ICFG) and Call Graph (CG) to

map the API calls, and evaluated the performance of using different features in the

model. The authors trained seven different models to see which would be best. The

Recurrent Neural Network (RNN) worked better than the rest. They compared their

results to three other learning-based systems that run on Android devices and found

that their results were faster and more accurate. This paper showed that combining

different features improved detection rates and using abstract data types, ICFG and

CG to represent the malware helped to make model training manageable, but there

was a significant requirement for computer power. While some scaling down of this

project could be done, previous experience has shown that any non-trivial training of a

network-based model is time and resource-consuming. Besides using the TensorFlow

Lite framework, [36] did not highlight many factors when considering performance.

It also did not cover aspects of data poisoning, a well-known issue when training

networks like the authors have proposed. Data poisoning is the process of feeding data

to a model with the intention to affect its training, which has been discussed in [43].

For this dissertation finding an appropriate benchmark was challenging. There are

two main reasons for this. Firstly, the computers being used were often much larger than

what is available for this dissertation; this renders the insights yielded from the papers

slightly irrelevant. Secondly, it was found that how a framework is deployed affects its

performance; for example, if it is distributed or on a GPU/CPU, which can make results

irrelevant as well. Some frameworks are optimised for specific deployments, and often

papers would not fully cover this aspect. This is one area where the academic literature

does not cover specific information on the topic. While this is a research gap, the

practical application of such research, which benchmarks these specific configurations,
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would not be commonly used and is probably not of great academic value. Nonetheless,

[12] highlights some of the previously mentioned limitations for benchmarking papers

that can be applied to this dissertation. Interestingly [12] shows that, depending on how

often the fitness function needs to be evaluated during a run, effects which framework

is faster. For example, the authors compared several frameworks, such as GPlearn and

karooGP. In the lower half of evaluations, GPlearn is better than karooGP, but in the top

half karooGP is faster than GPlearn.

In the article [56] the authors used a computer system comparable to the one available

for this dissertation. Using PE files, the authors used Genetic Programming (GP) to

evolve malware samples. They called this system MAGE. MAGE aims to make as

varied malware as possible; it does not focus on making new malware variants. The

generated samples can then be used to train antivirus systems. MAGE modifies two

malware samples, one a COM file, the other an EXE file; the samples were called Timid

and Intruder.

Intra-population Jaccard similarity and Euclidean distance were used as a fitness

function in [56]. Jaccard similarity was implemented using a vector, so that the intra-

population fitness could be calculated, making the fitness value more robust. As

expected, the fitness function had a major impact on run time. When the fitness value

was created by scanning generated samples with an online antivirus system, a single run

of 500 generations took 72 hours. With intra-population fitness, the time was reduced

to thirty minutes. The authors claim that comparing individuals in the population to

each other consistently drove new changes in the population and led to better evolution

than an antivirus detector by itself. This is because an antivirus detector can be tricked

with some changes, and it can take some time before the system gets updated with the

potential to recognise these changes. The authors report that against sixty antivirus

systems supplied by VirusTotal, evolved samples evaded detection with a 90% success

rate.

To be operated on by the GP, samples were disassembled, if the resulting individual

could not be reassembled, then it was regarded as invalid and excluded from the
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experiment. The operators were designed to keep the samples intact, and the authors

assumed the generated code is valid. Mutations are the modifications made to the code.

The mutations are control flow, data transformation and code layout. A single-point

crossover, in a fixed position, was used, as care needed to be taken so that the crossover

did not affect the execution of the program and invalidate the sample.

The total number of samples in the GP was very low compared to evolutionary

algorithms in general, with a total population of twenty. Mutation is higher than typical

at 80%. The total generations were 500, within the range expected when using GP. The

experiments were performed on a standard machine using an Intel i5, 8GB of RAM

and Linux. The samples were run on a virtual machine, and consisted of Assembly

programs from the DOS era that would not run on a modern computer. The use of

computer programs of this age makes this project much more computationally effective,

as old programs from DOS are much smaller and simpler than programs today.

Shannon entropy and Mann-Whitney tests were also used in [56] to assess how

MAGE changed the population after running, and could be used to judge the effective-

ness of the fitness functions. Using a multi-objective fitness function that uses multiple

values to generate an individual fitness value is a useful idea to have when training an

evolutionary algorithm to discern something as complex as a malware sample. This

paper helped evaluate several methods that can be used for a fitness function. Con-

sidering the quality of the results obtained with a working prototype that runs on a

typical-sized computer, this paper was regarded as a reasonable proposition on which

to base this dissertation.

There were also two heavily referenced programs in the literature, ADAM [70],

AAMO [58]. These prototypes either did not work or had limited functionality, and

as such, they were not reviewed further. The use of an evolutionary algorithm was

mentioned in several papers as a possible solution method. Previous experience has

shown that evolutionary algorithms can obtain good results without large amounts of

computation but require a relatively large amount of memory storage. Evolutionary

algorithms operate on source code samples, which removes the reliance on premade
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databases, and gives more development flexibility to the dissertation.

1.5.3 Adversarial Systems and Evolutionary Algorithms

Adversarial Systems have gained popularity in recent years after the development of the

Generative Adversarial Network (GAN) in the seminal paper [39]. In [71] the authors

inferred the use of a generator/discriminator architecture in the malware domain. The

core idea to be explored in this section is developing two converse agents that help train

each other in a unified goal, in the context of malware generation and detection.

The authors of [15] use Genetic Programming (GP) to find adversarial malware

samples by injecting code into PE files. The prototype they developed was called

AIMED. Generated samples are evaluated by antivirus systems, Sophos, ESET and

Kaspersky, and a machine learning classifier, a gradient boosted decision tree. Kaspersky

was believed to be the best at detecting the generated malware. The authors highlight

the importance of static analysis as it can be performed before the sample executes and

is able to act maliciously.

In each generation, the generated samples were tested for validity in terms of their

ability to execute. This could be a resource consuming process, compared to having

non-invalidating operators. One novel idea from [15] was to create part of the fitness

value from how many generations a malware sample has been operated on. The two

fittest population members are selected to create the offspring in the next generation.

An individual’s sandboxing and antivirus evaluation took about 15-30 seconds. The

authors state that a 10% mutation rate was required to be better than a completely

random program.

Benchmarking was performed by testing against random code injection and a rein-

forcement learning agent. The random system worked comparably well when applying

small changes to the samples, but performed poorly when injecting lots of code. Simi-

larly reinforcement learning produced a large amount of corrupted files, which waste

available computation and inevitably slows development. The authors tested cross-

validation by training AIMED on one specific antivirus system, then seeing if the
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generated sample would bypass another. The generated samples achieved up to 82%

in this regard. From a database of 6880 files, samples were randomly selected to be

transformed by AIMED. AIMED had an invalidation rate of about 24%, but this was

after classifying 76% of the available files as unmodifiable, which means this system is

not very good in a general application.

Following a similar idea [65] looked at transforming malware by applying obfusca-

tion, which can be used to predict future malware modifications. Therefore, it could

highlight new malware before it becomes an issue. The project uses GP for generation

and detection, and is a fully automated system. Each individual is a mobile applica-

tion; the initial population is all valid malware examples. The training data was taken

from MalGenome [84], and the benign applications were downloaded directly from the

Google Play Store. Testing was performed for each application on six Android emula-

tors and each emulator was running a different antivirus program. The GP algorithm

terminates once a set number of generations have eventuated. The applications were

decompiled and converted into call graphs (CG), which the GP operates on. The CG can

then be converted back into an application using the author’s custom software, which

is unavailable for download. The authors use several tools to confirm that each tree

was valid. Using a CG limits what programs can be run, excluding those with recursive

functions.

Crossover was known to produce broken trees as a node’s parameters and return

values always need to align with its neighbours; rather than use a check to preserve the

tree’s integrity, the crossover rate was set low at 10%. The mutation rate was 80%, and

the population size was 15. Mutation was the application of six different obfuscation

techniques: rename local identifier, junk code insertion, data encryption, two-fold code

reordering, three-fold code reordering, and register realignment. The fitness score was

between 0 and 1, 0 being the best; if the malware did not run, it would be set to 1. The

malware samples run for one minute on each emulator, and an antivirus system would

attempt to detect malware within this time frame; the result from all emulators was

added together to create the fitness value of the individual. The one-minute limit was
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decided from experiential data, and by definition, it would exclude complex malware

that takes more time to analyse. This, of course, was a trade-off to reduce the algorithm’s

run time to a manageable scale.

Additionally, [65] developed a GP based antivirus detector, as the second part of

the adversarial system. This system classified samples using known malware features

and was trained to select the most common features needed to identify a given sample.

The fitness value was calculated using the true positive rate * false positive rate. To test

the detection rate of co-evolved samples, a comparison was made between evolved,

co-evolved and the application of the professional obfuscation tool, Kelix Klassmaster.

The authors claim that the result of this comparison depended on which antivirus

system was used in the test.

In some cases, identical results were obtained, as seen in Table IV of [65], implying

that neither system could effectively bypass the features used by the antivirus system.

Testing each evolved sample required a lot of computation and relied on static analysis.

This paper showed rigorous testing and even tested the system during different antivirus

updates, which has not been seen in prior research.

1.5.4 Additional Tooling

Additional software tools were sought to make the project manageable within the given

time constraints (see Section 1.4). The following paper was found to be the most suitable

for this purpose [7]. In this paper the authors developed a tool to protect against code

analysis called Obfuscapk. It aimed to provide a free, off-the-shelf solution to apply a

range of obfuscation techniques, to be used in further academic research. It has a range

of techniques that can be applied via a terminal interface. Several trivial techniques can

be applied, as well as renaming, encryption, code injection and reflection. Obfuscapk

was tested on 1000 Android applications; the tests were performed using Monkey, a tool

from the Android development platform. The tests were used to confirm if Obfuscapk

leaves an application functionally intact. In 83% of the applications tested, functionality

was unaffected by Obfuscapk. The authors state that applying reflection caused the
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most failures during testing. VirusTotal [74] was used to check how well Obfuscapk

applied obfuscation. A single case study was performed manually to perform this test.

They used a Dell XPS with 16 GB of RAM and an OnePlus Android phone with 8 GB of

RAM for testing.

Obfuscapk was developed several years ago, and as such, the obfuscation techniques

it implements are not as effective as they were at the time of publication (see Section

2.2.3). This is an expected outcome as antivirus systems are constantly updated to better

combat malware development techniques, including obfuscation. While testing on 1000

applications is substantial. Due to the wide range of Obfuscapk’s functionality and the

evolution of Android application development over time. Using a single case study

leaves many assumptions about how well Obfuscapk will perform in general regarding

obfuscation effectiveness. However, the authors did make it clear that the testing of

1000 applications was for stability of the application, not effectiveness at obfuscation.

1.5.5 Summary

The sections in this chapter represent categories used to guide the review process. Addi-

tionally, the papers reviewed revealed several common themes that further influenced

the dissertation. Abstract data types like CG or feature databases, as seen in [36] and [71],

were commonly referred to when using machine learning, but not with evolutionary

algorithms specifically. Fitness functions were often cited as being simpler, metric-based

functions. The authors state that this approach was more effective due to the efficiency

of running a metric-based function repeatedly. In papers directly modifying malware

samples, there were two groups these papers could be categorised into: creating new

malware or changing existing malware, for example [15] and [56] respectively. A key

note about these two definitions is that they are not formally defined and the difference

between the two is unclear. Without a formal definition, these descriptions can become

arbitrary.

Several papers reviewed noted the importance of static analysis when detecting

malware. Interestingly, Windows Defender seems to rely mainly on dynamic analysis.



1.5 Literature Review 23

This was determined during the development of this dissertation, as very few malicious

files were deleted before they were interacted with. It was far more typical for malicious

files to be removed by Windows Defender once interaction with the file had begun. This

observation is backed up by the Windows Defender documentation [33]. According to

av-test.org [69], Windows Defender has consistently been a top-performing antivirus

system. As such, a critical and large scale commercial antivirus system relies heavily on

dynamic analysis; the importance attributed to static analysis is of questionable validity.

From a theoretical standpoint, detecting malware before it starts running its malicious

code would be best. Static analysis is also typically more straightforward to implement

because it does not require running the malware to perform analysis. Nevertheless, it

would seem, from the behaviour of Windows Defender, that in a real-world setting,

static analysis might not be the best practice, which contradicts the commonly held

belief in the literature.

The testing performed in different papers varied significantly. As well as the inter-

pretation of a successful test. There were roughly five testing styles in the reviewed

papers. Either testing prototypes against each other, testing a prototype against a small

case study, or testing a large sample size of batch testing. [71] and [15] where at either

end of this spectrum. The final two styles were using locally installed antivirus systems

or a pre-configured antivirus web service, for example [65] and [56] respectively. Each

one of these testing styles has its own benefits and disadvantages. The most influential

factor in selecting a testing method for this project was feasibility. Large sample testing

requires additional programming, planning and computer power, so only a small case

study will be possible. The use of a pre-configured antivirus web service is of the same

benefit. The definition and intentions of the testing performed in each paper were

always clearly stated, but when reading them from an outside perspective, the test

may not cover all aspects of development required. For example, in [7], there is no

indication of how well the tool generally works in obfuscation, just whether it produces

uncorrupted applications.

By using the tool developed in [7], some of the extensive testing required to ensure
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the correct functionality of the program developed in this dissertation, was mitigated.

The reliance on a preexisting tool, which had associated testing, reduced development

time and computational resource requirements for this project. By adopting this proto-

typed tool, the developers’ testing could also be adopted. In addition to the preexisting

testing done by the paper’s authors, testing was also performed during development of

this dissertation, which can be seen in Section 2.2.1 and 2.3.4. This includes a recreation

of the case study from the publication. To confirm the tool’s current performance.

As already stated in Section 1.5.2, there is a gap in the literature on the topic of

benchmarking for such a specific project as this one. While benchmarking will not be

the primary focus of this project, attention will be given to the effectiveness of a chosen

implementation in addressing the given problem and computational expense. Besides

the general idea for a project, one of the most valuable pieces of information gained

from this literature review was to understand approximate numbers for the parameter

settings when using an evolutionary algorithm. Parameter tuning of machine learning

is a time-consuming process. The parameter values, provided by several papers (e.g.,

[56] and [65]), provided an initial starting point for the parameter tuning process and

shortened development time. The provided values also helped legitimise development

decisions. The reviewed papers also detailed how to implement the operators of an

evolutionary algorithm within the domain of malware, and this again reduced the

trial-and-error required to get viable results.

This dissertation will lay a practical groundwork towards making more intelligent

and robust antivirus systems. To put more pressure on malware developers. Conse-

quently, more expert knowledge will be required to develop undetectable malware and

reduce the volume of successfully evasive malware being created. Currently, a large

proportion of malware is developed directly based on previous malware samples [43].

This allows low-skilled developers to modify known malware samples and reap the

benefits. By training antivirus systems on a range of yet unseen modifications to known

malware, the systems will be able to predict what types of modifications could be made

to malware families in the future. The additional defence these systems provide will
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help protect everyday activities on mobile devices. Mobile devices form a dominant

part of everyday life, from banking to socialising. This concept of social benefit has been

directly adopted from [65], [36] and [43].
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Developing a Genetic Algorithm for Software

Obfuscation

2.1 Introduction

This chapter details the prototype developed during this dissertation. It provides

background information on the theoretical and technical aspects of the three core

elements: the Android system, malware analysis and genetic algorithms. Section 2.3

details specific design choices that were made, of which a more in-depth investigation

is found in Chapter 3.

2.1.1 Genetic Algorithms

Genetic algorithms (GA) are computer algorithms for manipulating lists, which are a

subdomain of evolutionary algorithms (EA). One of the most famous results of an EA

was using it to evolve a novel design for an antenna used on a NASA spacecraft that

had not been thought of via current methods at the time [45]. GA’s are heuristic search

algorithms based on ideas from evolution in biology. They are designed to simulate

"survival of the fittest" as proposed by Darwin. GA’s use a guided random search to

find a solution to a problem. GAs are typically used for combinatorial optimisation
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problems, for example, the Knapsack Problem, maximising a total value while being

constrained by a total cost.

The key components of a GA are the individual’s representation, the population of

potential solutions, and its operators [50].

The individual representation, also known as a chromosome or genome in GAs,

is an abstraction of the solution. It has two interpretations: the phenotype and the

genotype. The genotype represents the problem within the GA and allows the operator

to manipulate the individual effectively. In contrast, the phenotype is the actual real-

world solution to the problem, which is directly converted from the genotype. In some

cases, genotype and phenotype are the same, or in the case of this dissertation, they

are entirely separate entities. In this dissertation, the genotype and phenotype are

separate entities because of how the mutation function is implemented. An element in

an individual is a gene, an individual is the chromosome, and a set of chromosomes is a

population (see Figure 2.1).

Figure 2.1: An illustration of a gene, chromosome, and population. strX is a string.

The population is the search space for the solution. The global search space is all

possible solutions that an individual can represent. The population is made from an

initial starting set of individuals. The population could start with a specific set or a

randomly generated set. In this dissertation, the population starts with an identical set

of individuals. The process of applying a sequence of operators to individuals in the

population is called a generation. Once a stopping condition is met, given the parameter

set, the best individual from any generation is the best solution yielded. The stopping
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condition can be defined by the fitness function, a limit on the number of generations or

computational time.

The operators are how the GA searches the problem space. These operators are

crossover, mutation and selection. Selection allows chromosomes to pass to the next

generation. Selection uses a fitness function to measure how well an individual fits

the solution criteria. The criteria could be a specific result or a measurement taken

from a specified result. The selection of individuals can be performed in several ways,

for example, completely replacing the next generation or only replacing a selection

of a few individuals. Mutation is about exploring the problem space. It makes slight

changes to an individual; this could be random changes or specific alterations. Crossover

exploits the current best solutions in the population; it combines elements from existing

individuals to create new ones.

Developing an efficient GA is a nuanced and time-consuming process; therefore,

using one of the well-known GA libraries is typical. There are many available implemen-

tations of GA. The main languages used are Java, Python, C++ and traditionally LISP.

Python, by far, has the most implementations, but several are not customisable and can

only be used for numerical problems. Typically, implementations based on TensorFlow

or PyTorch are focused on numerical optimisation problems; their operators can not be

easily customised and are designed to work on vectorised numbers. Conversely, this

dissertation requires high customisability to enable the GA to operate with Android ap-

plications. Because of this, flexibility was the key characteristic in the selection process

when narrowing down the wide range of Python-based implementations.

2.1.2 Malware Analysis

Malware analysis lies in the domain of cybersecurity. Its intention is to understand

the underlying functionality of a program and determine whether its functionality

is malicious or benign. Analysis can be performed manually by a human or by an

automated computer system. In most cases, automated systems are relied upon due to

their cost-effectiveness and scalability, which are needed to handle the vast amount of
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daily threats. Manual analysis is used in special cases and to help develop automated

systems. Such an analysis will aim to determine if the program’s actions could have

malicious intent and then grade the program appropriately.

A typical way to grade programs after analysis would be to place the program within

a specific category. For example, the dropper category, whereby a seemingly benign

program is designed to install a malicious component in the future. Often, a specific

definition of what malicious behaviour is exhibited is immaterial; however, from an

analysis perspective, attention must be given to the trade-off between false positives

and false negatives of an analytical interpretation. Automated techniques typically use

records of learned behaviour to understand patterns that indicate malicious behaviour.

A recent famous example of malware analysis was during the infection of WannaCry

malware in 2017, which affected the NHS (some classify this malware as a ransomware

worm [3]). In the case of WannaCry, researchers determined that the program accessed

a remote server, known as a command and control server, after installation. Then, by

redirecting traffic from the server, WannaCry’s malicious actions were neutralised.

There are four basic steps to malware analysis:

1. Acquisition: Getting a copy of the program for analysis requires mitigating

potential infections and successfully decompiling and running the program. This

step prepares the program for the next two steps.

2. Static Analysis: Examining the program without executing it. The source code

and package can be analysed to get any available metadata and understand

its functionality. This information can help inform the next step of analysis, and

understand possible threats and characteristics. Permissions and access granted by

the app can indicate what the program is capable of, but techniques like permission

escalation, colluding with another app, and reflection can hide this. Other notable

issues include using encryption, naming conventions or code injection.

3. Dynamic Analysis: Executing the program in a sandboxed environment. Then

observe its behaviour and determine its interactions with the system and network.
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This step helps infer information that can not be determined from the source code

alone. Command and control servers can play a large role in dynamic analysis.

These servers can be used to get additional malware code, as well as customise the

execution of the malware to suit different environments, which helps the program

evade detection methods.

4. Analysis Report: Determine if any threats are present and how effective they are.

In complex examples, static and dynamic analysis will need to be repeated, as

they both help uncover the truth about what the program is doing.

Malware developers utilise obfuscation techniques to hide the intention of pro-

gram code, which hinders the analysis of potential malware. By making malware

more challenging to detect, weaknesses can be exposed in current detection methods,

highlighting areas where these detectors could improve. There are several types of

obfuscation: encryption, encoding, control/data flow, and renaming/randomisation.

Their definitions can be found below. Different methods have different objectives; some

are more effective against manual analysis than automated analysis, and vice versa.

While others are more effective against different stages of analysis, one method could

bypass a static analysis but would be detected by dynamic analysis.

• Encryption: Involves encrypting any part of the program. That could be an

external asset, data or an entire part of the program. Once bytes are encrypted, it

is hard to determine what has been encrypted until it is decrypted. For example,

in polymorphic code [13], a program continually re-encrypts itself as it executes,

constantly changing the program’s signature. Besides making analysis in general

difficult, this method would be highly effective against an automated analysis

tool.

• Encoding: When parts of the program are written in different programming

languages. This obfuscates code because known behaviour can be rewritten

in different target-dependent languages, which automated analysis would be
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specifically susceptible to. For example, a program can have malicious content

written into machine code for a specific target computer’s CPU [43].

• Control and data flow: Additional functionality added to the program, which

changes data access or how control passes through the program, for example,

adding additional if statements that do not change the program’s core function-

ality but still need to be evaluated at runtime. The if statement could be made

more complex by adding a mathematical equation that needs to be evaluated to

determine the Boolean value required in the conditional statement. This can affect

a wide range of analysis methods.

• Renaming and randomisation: Changing the names of libraries and variables

makes manual analysis harder and bypasses checks for sensitive functionality like

access to encryption libraries. The order of lines in files can also be manipulated.

For example, randomising a configuration file can affect methods like n-grams.

2.1.3 Android Operating System

The Android operating system (OS) is the most widely used OS in the world [18]. It is

predominantly for touch screen, mobile systems and is based on the Linux kernel; it

functions as a multi-user system whereby each application is a different user. Android

OS is a free and open-source project developed by the Open Handset Alliance, a

technology consortium whose most predominant member is Google [5]. Applications

of the Android OS system have the .apk extension, which is a .zip file that contains all

that is needed to install the application on a device. Applications can be downloaded

from various online stores as well as manually installed by the user. Large device

manufacturers have their own third-party application stores like Amazon Appstore,

Samsung Galaxy Store, and Huawei AppGallery [44]. Different stores provide different

services. For example, the Google Play store has servers that can host the apps for you,

do basic stress testing on different physical devices, and allow the use of the Android

Software Development Kit (SDK), which enables developers to access a wide range of
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pre-made software features like mapping. Android OS has a range of built-in security

features. For example, each Android application has its own security sandbox, which

includes the following features:

• A unique user ID, which the application is unaware of.

• Application permissions can only be used by the designated ID.

• A virtual machine is used to run he application’s code, isolating it from other

applications.

• The OS controls the running of application processes.

Android applications are commonly written in Java and other supported languages

such as C++ and Kotlin. There are software libraries that allow the use of JavaScript

and native machine code as well. There are four main components to the APK package:

assets, metadata, manifest file and DEX files. Assets contain any additional data the

application has stored. Metadata contains information about compilation and the

development of the application. The manifest file configures the application for the

system; it contains information about entry points to the application, what version of

Android is required, and requested permissions. The DEX file is the main code for the

application. There are four core components of an application’s code: activities, services,

broadcast receivers and content providers [27].

• Activities: are the main entry points, for example, the windows you see on screen.

• Services: are entry points for background functionality, such as footsteps counting.

• Broadcast receivers: are accessed resources generated from outside the application,

for example, receiving a text message.

• Content providers: are shared memory access, for example, a SQL database.

Execution of a program is performed by the Android runtime (ART). Historically,

this was performed by Dalvik, hence the Dalvik executable file (DEX). ART was fully
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released around 2014, but many of Dalvik’s features are still supported. One of the

reasons for the development of ART is improved garbage collection. ART uses ahead-

of-time compilation (AOT) and the on-device tool dex2oat to compile applications at

install time [25].

Figure 2.2: Android framework overview [29].

2.2 Methodology

2.2.1 Setup

• Hardware specifications and runtime environment: Python, Windows 11 home

laptop, 16GB RAM, Ryzen 7 4000 series CPU.

• Software and tools used: Standard Python libraries, PowerShell, CURL, DEAP,

Obfuscapk, Android Studio Suite.
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2.2.2 Genetic Algorithm

A genetic algorithm (GA) was selected to search for the best combination of obfuscation

that can be applied to a given sample. A GA can manage large problem spaces, is

adaptable to different domains and has reasonable computational complexity. The

GA was combined with an obfuscation library called Obfuscapk [7]. There are twenty

obfuscation techniques available to use in Obfuscapk, but in this dissertation, up to

fourteen techniques will be used in total. Different levels of obfuscation can be produced

depending on which techniques are applied and in which order. Taking three of the

fifteen techniques would give 2,730 permutations. Selecting all fifteen techniques gives

1,307,674,368,000 permutations. Obfuscation is also relative to individual programs,

hence trying to exhaustively explore this large problem space by brute force would

be unfeasible. A GA can heuristically explore a space of this magnitude and is also

adaptable to complex problems requiring domain-specific implementation.

Typically, a GA framework will provide a template for managing the population, cre-

ating operators, applying operators in each generation, and miscellaneous features like

storing statistics to assess the algorithm’s performance. For non-numerical problems,

the developer supplies an individual’s representation, mutation and fitness function.

When choosing an efficient programming framework for this dissertation, support

for a GA and genetic programming (GP), a related evolutionary algorithm, was an

important factor. When searching for a solution, a GP seemed more powerful than

a GA at performing task-specific operations. In the initial stages of development, a

GP was used to apply obfuscation directly to the APK. A core issue that arose when

implementing an GP, was that once the APK had been modified, the modifications were

not necessarily still in the source code after compilation and disassembly, either creating

an invalid APK or creating no change in the course code. The development time taken

while working with GP provided a good understanding of the underlying principles

for applying obfuscation. Consequently, the dissertation transitioned to using a GA

with a prebuilt obfuscation library for mutation. When considering the computational

complexity of a potential framework, a trade-off between the programs requirements
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and speed of development was considered. The slowest parts of this program are mainly

external tools used by the GA. Additionally, in this dissertation, the GA performs a

limited number of generations rather than requiring a specific end goal, further reducing

the algorithm’s potential load on the system. In some GA based projects, there could

be thousands of generations with thousands of individuals in each population. In

this dissertation, each generation has fewer than twenty individuals and runs for

fewer than one hundred generations. These points meant practical considerations for

the GA framework performance were more about reducing development time than

computational time.

The key choice when selecting a representation was whether to use an abstract data

type (e.g., a tree structure or a feature list) or source code samples. A benefit of using an

abstract representation would be the application of preexisting methods, of which better

algorithms would be available to solve the problem. On the contrary, using source

code via disassembly gives a one-to-one mapping for the application’s functionality

and is computationally efficient, taking seconds to perform the task. Using an abstract

representation requires more computation time and is an onto mapping. An onto

mapping makes converting back to source code difficult, which makes the testing of

obfuscation results less reliable. Abstract data types also make the system vulnerable

to the algorithm trying to exploit the abstract representation to get the best results.

Additionally, using source code as opposed to an abstract data type means that any

choices made do not place a limit on later development choices. In summary, the

phenotype is the APK file as it allows more robust testing of the results of the GA. The

genotype was dictated by how the operators apply the obfuscation; in this case, it is a

list of techniques for Obfuscapk to apply.

Ideally, each phenotype would be checked against an array of antivirus programs.

However, this would be a slow process if performed in each generation and could

create a bias regarding the program’s size being operated on, because at this point, it

is unclear if obfuscation techniques are size-independent. For instance, when adding

junk code, if the original code has 100-line and 25 junk lines are added, the overall
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effect on the project is 25% change in the source code; conversely, inserting 25 lines

into a 10,000-line program, that is only 0.25% change. In this dissertation, the program

was structured as shown in Figure 2.3. The GA is run based on the program’s size,

using a lightweight fitness function to compare the file data of each APK, and at regular

intervals, a more robust antivirus system test is applied. Comparison of APK file data

shows how obfuscation has changed the byte structure of the application, but it does not

show how well the obfuscation works. An antivirus system determines the effectiveness

of obfuscation after a number of generations have passed. There are several popular

online tools for providing antivirus system tests, the most common being VirusTotal

[74]. This type of online service allows access to a range of antivirus tools and can be

utilised as the primary testing metric for this project.

Fitness Metrics

To choose an appropriate fitness function there are two primary considerations, good

computational performance and accurate representation of the relative differences

of individuals in the population. Six metrics were investigated for a suitable fitness

function: Jaccard, Levenshtein, n-gram, cdifflib, entropy and hashing. Consideration

was given to metrics, computational efficiency and accuracy at mapping the individuals

in the population, as the fitness function can be a bottleneck of a GA (see Section 3.2.2

for in-depth experiments)

Jaccard similarity [14] is used to compare the similarity between two data sets. This

was the first attempt at a fitness function. This function works by dividing strings,

using white space, into subsets and then comparing the sets of subsets. A trivial

implementation suffers significantly from the order in which changes are inserted into

an individual; a line changed at the beginning of the file will have the most impact, as it

will shift the order of all subsequent lines. Cross-referencing checks in-between lines

will be very resource-intensive. Jaccard similarity compares code using the following

calculation:

setX = split(strX)
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inter = set1 ∩ set2

union = set1 ∪ set2

similarity = count(inter)/count(union)

n-gram [53] can measure underlying features in the program. It works by cutting the

sequences into blocks of length n+1 and dividing the common blocks by the total unique

blocks. n is typically set between one and three. An n-gram compares code using the

following calculation:

i = [0 . . . len(strX)− n+ 1]

gramX = step([i : i+ n])

common = gram1 ∧ gram2

total = gram1 ∨ gram2

similarity = count(common)/count(total)

For example:

1. Similarity: 101 / 101101 = 0.667

2. Split both strings in to length two words, n=2

(a) 101 = (10): 1, (01): 1

(b) 101101 = (10): 2, (01): 2, (11): 1

3. a = total identical characters in both strings (10): 1, (01): 1

4. b = total unique characters from both strings (10): 2, (01): 2, (11): 1

5. Similarity = length(a) / length(b) = 0.667 rounded to three decimal places.

cdifflib is a modern version of Gestalt pattern matching algorithm. It measures how

different sequences are in a given set. It is written in C and packaged specifically for

Python [16]. cdifflib works by counting matching words in each sequence. This function
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runs in the worst case in quadratic time and in linear time in the best case. Its behaviour

is dependent on how many elements the sequences have in common. cdifflib compares

code using the following calculation:

l = len(min(str1, str2))

i, j ∈ {0 . . . l − 1} where i ≤ j

n ∈ {0 . . . l}

matches = step(str1[i : i+ n] == str2[j : j + n])

M = count(matches)

similarity = 2.0 ∗M/len(str1 + str2)

For example:

1. Similarity: 101 / 101101 = 0.667

2. Match(i=0,j=0,n=1)=10, match(i=0,j=0,n=2)=101, match(i=1,j=1,n=1)=01

3. Similarity = 2*3/(3+6) = 0.667 rounded to three decimal places.

Entropy, a well-known algorithm for measuring the noisiness of a signal, is also used

in malware detection. Entropy can measure a program’s noise and show it changes over

time. The noisiness of a sample can be used to indicate the application of obfuscation,

repacking and encryption, which is used to speculate on the presence of malware [60].

Entropy is calculated using the following formula:

u = unique(strX)

p = [0 . . . u/len(strX)]

entropy(strX) = −Σ(p ∗ log2(p))

similarity = |(entropy(str1)− entropy(str2))|/max(entropy(str1), entropy(str2))
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Levenshtein distance [59] can be used to compare how many changes are needed to

make the two words the same. It runs in O(m ∗ n), where ’m’ and ’n’ are the lengths of

the strings being compared.

Hashing and fuzzy hashing are algorithms whereby data is converted to a hash

and then compared. This has the following issues: there is a very slim chance that an

identical hash can be produced for different data, but most importantly, only slight

changes in the data can yield significant changes in the hash produced, making it

unreliable for a fitness function.

Figure 2.3: Program architecture overview.

Figure 2.4: Genetic algorithm flowchart.
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2.2.3 Obfuscation

Initially, a custom obfuscation program would be built, however, it became clear this

would be unfeasible given the time constraints of this dissertation. Therefore, a pre-

existing obfuscation tool would be required. Android Studio has an inbuilt tool to do

this [30]. R8 is a compiler allowing developers to shrink, obfuscate, and optimise an

application code. Customisability of R8’s functionality is limited, and from manual

inspection of malware source code, it appears to be a commonly used tool by malware

developers, so further application of this tool will not give additional obfuscation to the

program. R8 use can be observed by comparing source code traits to samples provided

on R8 webpage. For example, import statements that look like "a.a.a.b".

Another common tool used is Proguard, available on GitHub [42]. This tool has a

broader range of features; it can shrink, optimise, obfuscate, and pre-verify Java source

code. It has more features for obfuscation than R8. Code obfuscation is available on

resource files, the manifest file, stack traces and package names [61]. There is a broader

range of available obfuscation categories, such as renaming and data/control flow

manipulation, but the tool still lacked separate control of methods in each category.

To increase the GA’s success rate, a wide range of unique obfuscation methods must

be applied so that an individual in the population can have a wide range of variation.

Several other obfuscation tools were mentioned in the literature, which are not free to

use or have a limited free trial version available. The dissertation did not consider these

products due to the constraints of using a timed trial version. Among them are:

• Zelix klassmaster [49].

• Dexprotector [22].

• DashO [20].

• Allatori [4].

One project with a lot of potential in the literature review was Obfuscapk. Obfuscapk

provides control over a wide range of obfuscation techniques, it is stable and can run in
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APK Name Original File Applying 18 Techniques Time Taken
com.spike.old 40/76 [75] 18/76 [76] 10 minutes

comet-bot 44/76 [77] 20/76 [78] 2 minutes

Table 2.1: Test results from VirusTotal, after applying all eighteen of Obfuscapk’s obfuscation
techniques.

a reliable amount of time on the available hardware. Therefore, Obfuscapk was deemed

to be a suitable tool to combine with a GA. Before the GA could be developed, manual

tests were performed to get a baseline understanding of how the obfuscation applied

by Obfuscapk works. Two malware samples were selected for testing comet-bot.apk and

com.spike.old. comet-bot.apk was selected as it was used to benchmark in the Obfuscapk

paper. This allows a direct comparison to understand the current effectiveness of

Obfuscapk. com.spike.old was selected as this sample has been used since the early

research stage of this dissertation to understand different malware related concepts.

The following test, (see comet-bot in Table 2.1) was performed in March-April 2025 to

recreate an experiment result from the Obfuscapk paper [7]. In Table 2.1, the VirusTotal

ratio is made out of 76 because this includes the vendors that could not process the file,

making the ratio more consistent between different tests, as the number of available

vendors can change between experiments. It can be seen that the techniques are not as

successful as they were when the paper was released. The authors in [7] claim a ratio

from VirusTotal of 0/58 (zero detections out of 58 vendors). Checking the same link

today, thereby accessing the historical records at VirusTotal, shows 26/63. The results

shown in Table 2.1 confirm that the radio has increased. [7] was published in 2020, the

results are expected to differ as antivirus systems improve.

Obfuscapk relies on three external dependencies. Firstly, Android Studio’s zipalign

is a zip archive alignment tool and optimiser that is required to make an installable

application. Secondly, Android Studio’s apksigner signs an APK, allowing supported

Android OS versions to verify the signature. Finally, APKtool is a popular assem-

bler/disassembler for APK packages, which uses smali/baksmali to convert an APK

into assembly-like code, which can be repacked into an APK afterwards. Baksmali

is generated from the DEX file, which contains machine code. In some cases, when
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using smali/baksmali, the APK changes in size, while the program remains functionally

the same. Experimentation showed this is because smali/baksmali performed some

optimisation (see Figures 2.5 and 2.6).

As Obfuscapk would be run repeatedly on an APK, understanding the repeated

application’s effects would be valuable. Three experiments were performed to achieve

this. One, manually adding a single line to the source code and repacking using APKtool

(see Figures 2.7 and 2.8). Two, the repeated repacking, assembling/disassembling, using

APKtool (see Table 2.2). Three, using VirusTotal to check experiment two’s results and

the results of applying all Obfuscapk techniques at once (see Table 2.3).

Figure 2.5: Java hello world example, if statement is always true, so the code will always assign
the value 999, then does nothing with it.

Experiment One: Added a single NOP instruction (No-Operation, spend a defined

number of CPU cycles) to com.spike.old.apk, then repacking with APKtool. A vast drop

in detection was found when uploading to VirusTotal. The sample’s behaviour and

genealogy were still detectable (see Figures 2.7 and 2.8).

Experiment Two: Repeatedly repacking an APK with APKtool. cdifflib ratio was

used to measure this process’s effect. Therefore, understanding how much effect, if
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Figure 2.6: Smali hello world example. The code has an entry point structured and one register
assigned, but otherwise the code literally does nothing.

Figure 2.7: VirusTotal report for com.spike.old.apk with no changes made.
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Figure 2.8: VirusTotal report for com.spike.old.apk with added NOP instruction then repacked.

any, the continued use of APKtool would change the fitness value of an individual.

When using cdifflib, a value of 1.0 would show no change, and 0.0 would be completely

different. In summary, repacking has the effect of changing the original source code by

a ratio of 0.426 in the first test, but a subsequent repack has a result of 0.978. Comparing

the original with the repacked-repacked results in a ratio of 0.426 again. Showing that

subsequent use of APKtool has little effect on the APK similarity (see Table 2.2).

APK Name Original/Repack Once Original/Repack Twice Repack Once/Repack Twice
com.spike.old 0.426 0.426 0.978

comet-bot 0.358 0.358 0.904

Table 2.2: Test results comparing the repeated repacking of an APK file using cdifflib.

Experiment Three: Most interestingly, just using APKtool had almost the same effect

as running all the 18 obfuscapk techniques on com.spike.old.apk, only bypassing one

additional vendor. The difference ratio from cdifflib after applying all 18 techniques was

0.424 for com.spike.old.apk/ com.spike.old-obfuscated-all.apk. For comet-bot.apk, two to five

additional vendors were bypassed using all 18 techniques compared to just applying

APKtool. The difference ratio from cdifflib after applying all 18 techniques was 0.172

for comet-bot.apk/comet-bot-obfuscated-all.apk (see Table 2.3).

The experiments showed that the sample selected affected the outcome. comet-bot.apk,

is particularly susceptible to changes from obfuscapk compared to com.spike.old.apk.
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APK Name Original File Repacking Once Repacking Twice Applying 18 Techniques
com.spike.old 40/76 [75] 19/76 [79] 19/76 [80] 18/76 [76]

comet-bot 44/76 [77] 22/76 [81] 25/76 [82] 20/76 [78]

Table 2.3: Test results comparing the repeated repacking, and applying obfuscation of an APK
file using VirusTotal.

This could be because the changes are, in part, relative to the volume of file data being

operated on. comet-bot.apk is approximately 55KB while com.spike.old.apk is approxi-

mately 2,400KB. The smaller program is easier to manipulate with fewer changes. These

experiments also show that while repacking had some effect on changing the static

characteristics of the APK, consecutive runs of APKtool have only a minor effect on

the file data. This means that changes made over many generations can be attributed

to applying obfuscation techniques rather than simply reordering the bytecode by as-

sembling/disassembling it. The GA can then search for complementary and effective

combinations of obfuscation techniques that can be used to bypass modern antivirus

vendors.

There are four options to determine if obfuscation is working: doing a manual

inspection, feature-based methods, installing antivirus systems on a local machine, or

getting results from an online antivirus system. In either case, static analysis will be

used as it is more convenient to implement, and dynamic analysis typically requires

static analysis as a preliminary step:

• Manual inspection: Would be time-consuming and not reflect what happens in

the real world, as generally automated tools are used to detect malware, which

makes this an impractical solution.

• Local machine antivirus systems: Would require additional computational re-

sources, which makes this an unfeasible solution.

• Feature-based methods: Like YARA rule set, or a database of known malware

features, limit analysis to specific samples and obfuscation techniques.

• Online antivirus systems: Will allow the developed algorithm to be tested in a

real-world context and reduce the computation used by the local machine. The
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ratio of detected/total antivirus vendors is used as a metric to compare results

from an online testing system.

In the literature, the most popular web service for testing with antivirus systems is

VirusTotal. Several other alternatives provide free access, as shown in the list below:

• VirusTotal [74] - There are a range of well-known antivirus vendors available

about 76 AV in total including AVG , Avast-Mobile, SymantecMobileInsight,

McAfeeD. The report provides results directly from, threat labels and categories

family labels as well as YARA rule set and MITRE ATT&CK techniques. VirusTotal

is also able to run the application in a sandboxed environment. There is a free

version with limited functionality and number of request that can be made within

a given time period.

• Jotti [46] - works well, a limited but specific information provided in the report.

There are 13 vendors, has good API support and the free version is reliable and

robust.

• Metadefender [55] - The provided report covers a wide range of details, but

limited capability to detect malware. Using the free version, all vendors were

bypassed once a few obfuscation techniques were applied.

• Kaspersky [1] - need to pay for a workable report but can get very basic report for

free via API.

• Cookkoo sandbox [19] - produces a 10/10 score and provides some in-depth

details, very low limit of use, you do not know when you will get your results, it

can take over a day in the worst case.

These antivirus web services provided a report detailing information about an

uploaded APK. The reported information can range anywhere from a simple, mali-

cious/benign label, to details about suspicious functions in the APK (see Figure 2.7).

The graphical user interface (GUI) of VirusTotal is very reliable, but when accessing the
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service programmatically, it was found that the free access to VirusTotal had issues. The

response from the server was often not fulfilled, and the time needed to wait varied

from day to day, probably due to a queuing system used to control free requests to

the server. This time frame was expanded, but still, on occasion, there would be no

response. This might be due to the number of requests being posted to the service

at that time. Jotti was the clear choice for this dissertation, due to its reliability and

detailed reporting.

2.2.4 Android Operating System

There are some practical considerations that make the Android operating system (OS) a

good choice for this dissertation. Android applications are relatively small, and there is

a wide range of free resources for application development. Most importantly, working

with Android applications on a Windows computer helps protect against some acci-

dental infection. This is because few malware samples are developed as multiplatform

programs, meaning they do not have the functionality to perform malicious behaviour

on an Android and Windows computer simultaneously. That said, Windows Defender

does recognise some Android malware, and therefore, security exceptions need to be

created in order to run a genetic algorithm that interacts with malware; otherwise,

newly modified files get automatically deleted.

Android Studio is a free resource that comes with a built-in emulator that allows

developers to run applications on various simulated hardware configurations, such as

watches, tablets and phones. This emulator can be used to test the effects of malware.

In this dissertation, testing was performed on simulated mobile phones, as they are a

widely used Android consumer product, and there will also be lots of available malware

samples to choose from. Android Debug Bridge (ABD) interacts with the emulator via a

command-line interface. ABD allows tools and shell scripts to be run on the simulated

device to aid analysis and testing.
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2.2.5 Data Collection

Figure 2.9: Screenshot of Android Studio. (1) Different emulator for hardware phone can be
created. (2) The file system of the emulated phone can be accessed via GUI.

Figure 2.10: (1) Emulator from start up. (2) Emulator loaded. (3) Interaction with GUI can be
done with mouse.

There are three main ways to obtain malware samples. Firstly, getting the source

code, secondly getting an identifying hash, and finally downloading a database of

features:

• Source code: Malware samples can be downloaded from GitHub [11] or other

code respirators like Vx-underground [72].

• Identifying hashes: A unique number that can be used to identify a program,

known as a hash ID. Online antivirus systems use hash ID’s [74] to identify
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malware samples. Either allowing the malware samples to be downloaded, or

providing access to information stored about the related samples.

• Databases of features: Contain details like manifest file permissions and function

calls. Databases can be found via GitHub [52] and also Kaggle [47], a common

approach used in machine learning.

For this dissertation, source code was chosen because it allows direct manipulation

of the APK, after which the functionality of the APK can be tested. The APK samples

were collected from GitHub and identified from a reference in the literature [7] [43]. The

samples were found by following web links directly, or referenced hashes were used to

locate specific samples. The samples were tested on the Android emulator to see if they

could run their basic functionality, be installed, and interact with the Graphical User

Interface (GUI) and OS. When selecting samples, three key points were considered:

• The disk size of the malware: This affects the overall runtime, huge files make

the program run slower due to the nature of moving and compiling and affect

Obfuscapk runtime.

• Anti-emulator design: Some malware are designed not to work on an emulator

to avoid being analysed. This can be determined with a trial-and-error method or

using prior knowledge of the sample.

• Malware structure: In various cases, malware samples are not complete programs.

Not having a full GUI component makes testing more complex. Therefore, a basic

idea of the sample structure is required to understand whether it is a complete

program. Source code samples stored online can come in various formats other

than a complete malware sample. They can be a package to be loaded by an-

other program, a specific GUI activity which needs a host activity to run, or a

background activity without any explicit GUI activity. Structuring samples like

this is typical in software development where developers often recycle and reuse

well-known code bases to make software development easier.



50 Developing a Genetic Algorithm for Software Obfuscation

• Malware functionality: For example, if the malware launches from the hardware

power off button being pressed, which is not available on a software emulator.

• SDK number: Some applications have a maximum and minimum SDK number

requirement, which can be an issue as the emulator does not simulate all SDK

versions.

A simple testing procedure was used. An example of this is as follows:

1. Is it installable?

2. Check if the file structure of the installed sample is present on the OS system. When

looking at the emulator’s file structure, some files may have the incorrect names

(e.g., file.json != type(zip)). This is due to the prior application of obfuscation.

3. Does the application open from the home menu? Using the GUI interface, the

installed application asks for the correct permissions. Permissions are requested

by the application when launched for the first time.

4. Look for consistent system messages specific to the application (see Figure 2.11).

Logcat is a command-line tool that logs all system messages, which includes

messages written by the developer using the Log class (see Figures 2.12 and

2.13). Logcat is memory-limited, so the time the logs are taken dictates which

logs can be seen. Logcat was used to record the first six seconds of the program

running without selecting permissions. This record can then be used to compare

whether the program makes the same function calls after being processed by the

GA. The log records are checked using a text difference checker [23], combined

with technical knowledge of how Android and the application work, for example,

looking for suspect file names like sniffer or encryption.

There are two other methods that can be used for testing that were not used at this

stage. Monitoring a program’s access to shared memory locations/network traffic and

Frida, a code injection tool. Frida allows interaction with the underlying code of the
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Figure 2.11: Example commands to interface with emulator and collect actions of an application.

Figure 2.12: List of all Process Ids (PID) on the Android emulator, photo application highlighted.

application at runtime, this can be used in conjunction with the other methods already

mentioned above to dive deeper into what the program is doing. Frida required the

installation of a server on the Android emulator. Android emulators need a substantial

amount of resources to run. For example, if the emulated OS needs four gigabytes

of RAM, the hardware system supporting the emulator must provide more than four

gigabytes of RAM due to the additional overhead emulators require for additional

computation. The running of the Frida server increases the already strenuous overhead

of running an application on the emulator, which causes errors when accessing files

remotely. Therefore, Frida will not be used for testing. Looking at shared memory

locations/network traffic for installed applications can help further understand the

program’s functionality. However, in this dissertation, the emulator is not connected
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Figure 2.13: Log dump from a photo application. A message on the second line states that the
CPU model is unusual, the application is running on an emulated CPU. Three messages refer to
a class loader, which shows the application loading additional system classes.

to an external network, so monitoring network traffic is redundant. Looking at shared

memory location access is application dependent and, in some cases, can be visible from

the log dumps; consequently, these methods were not explored further at this stage.

For automating an application’s interaction, a tool called Monkey is referred in the

literature. Monkey sends a stream of random user interaction to the application; this can

be used to confirm that the application is functioning as expected. It was found that

Monkey is error-prone, causing the application to crash, making it too unreliable for

testing. There is the deprecated tool Monkeyrunner which can be used to send direct

commands to the application and be used similarly to Monkey. App Crawler and UI

Automator have superseded Monkeyrunner [28].

2.3 Implementation

This program can be formalized as below, see Algorithm 1 for further description of the

developed prototype:

Search space: set S : {x̂ | where x̂ is a valid APK}
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Goal: x∗ ∈ S

Fitness function: f : S → R

Objective Function (GA): x∗ = argmax or argmin
x∈S

f(x)

Population: set P (t) = {x1, x2, . . . , xn} where xi ∈ S

Fitness: for xi ∈ P (t), compute f(xi)

Selection: map P (t) → P ′(t)

Mutation : P ′(t) → P (t+ pm) where pm ∈ [M1 : xt,M2 : xt,M3 : xt]

Algorithm 1 Pseudocode of the developed prototype

Initialise program
Get Jotti score of sample
while runs ≤ maxRuns do

Initialise SGA
→ randomly generate population
while generation ≤ maxGeneration do ▷ Run SGA

Tournament selection from population
Mutation on randomly selected individuals
Fitness evaluation of whole population ▷ Using n-grams
→ add fittest individual to hall of fame

end while
Select best individuals from hall of fame for this run ▷ From any generation
→ Get Jotti score of selected individuals

end while
Select best individual from all runs ▷ Individual with lowest Jotti score

The package Distributed Evolutionary Algorithms in Python (DEAP) laid the foun-

dation of the GA in this dissertation. The modifications made to DEAP included a

custom fitness and mutation function. This required the development of a class object

to manage how the GA can make modifications to APK files. The development of the

class object allowed easy scalability to the prototype, allowing future functionality to be

added. Several of the operations performed by the GA are handled with command-line

instructions. For example, renaming the APK after modifications to track changes. An

individual from the GA creates a custom command-line instruction used to control
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Obfuscapk. Obfuscapk is the package that provides the core functionality of applying

mutation to an APK in the form of obfuscation. The GA is run from a main loop, after

the GA runs the best APK is selected with Jotti (see Figure 2.3). Then, a selection process

is used to choose the APK as the input for the next GA run. The prototype is set up in a

generator/discriminator configuration, with the GA being the generator and Jotti being

a discriminator. In future work Jotti could be replaced or enhanced with a more robust

discriminator with a better feedback signal. This configuration also allows for easily

resetting the GA, from a previous run, because any APK generated by the GA can be

used as a starting point for another run.

When selecting a GA, there are two key architectures: steady state GA (SSGA)

or Simple GA (SGA). SGA is known for faster convergence rates and exploiting the

best solutions, which leads to the disadvantage of premature convergence and loss of

population diversity. Conversely, in an SSGA, the population is replaced more slowly

and a wider selection of individuals remain between generations, lowering premature

convergence. Using a generator and discriminator configuration increases population

diversity by resetting the population after each run, reducing premature convergence

and increasing population diversity overall. Therefore, combining an SGA and the

generator/discriminator configuration will lessen the negative effects of a SGA’s low

population diversity and benefit the SGA in exploiting the best available solutions. This

makes an SGA a clear choice compared to the slower and explorative SSGA.

When the prototype is executed, the main loop runs for a set number of runs. In

each run, the SGA performs the same number of generations, so the total generations

performed during one execution is maximum number of generation * number of runs.

Statistical metrics of minimum, maximum, average and standard deviation were used

to judge the prototype’s performance. The prototype’s success is measured by tracking

the trend of whether more or fewer antivirus vendors can detect the APK files between

consecutive runs. The antivirus vendors were provided by the web service Jotti. During

development, a range of different runs and generations were tested to get statistical

significance, as this is a stochastic system. In addition to the stochastic nature of an SGA,
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antivirus vendors are continually being updated, which can change their response to a

specific malware sample, and there are no guarantees which antivirus vendors will be

available when connected to Jotti. The issues related to Jotti are covered in the related

Section 2.3.5. Testing was done over a few months, giving a more realistic view of how

the prototype is performing as antivirus systems change over time.

A completely random version of the prototype was also built, which applied mu-

tations with the probability of 1.0 and randomly selected an individual at the end of

each run. This benchmarked the SGA against an entirely random, uncontrolled search.

Testing was performed as an iterative process. The prototype was sensitive to the

following parameters:

• Population size: With larger populations, the probability of generating good

initial individuals increases. The larger the population, the slower the runtime of

the prototype. This was set around 3-10 individuals in the population.

• Mutation: This is the main operation to search the solution space, and the sec-

ondary operation was crossover. Mutation was set high (0.5-0.8), and crossover

was eventually disregarded as it led to a higher level of invalid individuals (i.e.,

created invalid commands for Obfuscapk). The high level of mutation allows each

run to explore many possibilities from the starting population.

• Number of Generations: This parameter affected how often the mutation was

applied during each run. The higher the number, the slower the runtime. There

was a trade-off between having more runs with fewer generations or vice versa.

Maximum generations was set between 3 and 8.

An overview of the SGA can be seen in the list below; the following sections expand

on these points in more detail.

• Representation: List of strings [str, ..., str] = one individual.

• GA architecture: Simple GA, tournament selection is used to select the offspring,

the operators are applied, then the offspring replace the current generation.
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• Crossover: None.

• Mutation: Code injection, randomisation, renaming, encryption via Obfuscapk.

• Selection: One tournament with k individuals.

• Fitness function: File data matching via similarity metric and antivirus detection

via Jotti.

2.3.1 Generation

In this dissertation, the SGA will terminate based on the maximum number of genera-

tions. The SGA runs for a set number of generations, and after each run, another fitness

value is calculated using Jotti. The amount of modifications applied by each mutation is

fixed. Therefore, the relative number of modifications applied to an APK is greater if the

file is smaller, for modifications like code injection. Adjusting the number of generations

relative to the file size means that larger samples will get more obfuscation applied to

them.

An example of how the SGA explores possible solutions is as follows. The starting

size is two, with five generations per run and three runs. Each run would have an upper

bound of 1.6 ∗ 106 possible permutations of modifications to explore. There are two

starting options for modifications taken when the population is initialised, and up to

five additional modifications taken via mutations in each run. At the end of each run,

the best individual is entered into the next run as the new phenotype, and the genotype

is reset, so that the same number of permutations can be explored again.

There is no cloning of parents in the new generations; offspring make up the new

generation entirely. Tournament selection helps reduce loss of diversity, as even low-

fitness individuals may still be selected as parents and have a chance to be modified in

the next generation to explore their unseen potential. There is a trade-off when consider-

ing how many runs and generations to use. Small populations have a quicker runtime,

but provide lower exploration. While large populations provide higher exploration but

much slower runtime, there is a trade-off between having lots of short runs or fewer
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Figure 2.14: Obfuscators implemented in Obfuscapk [7].

long runs. After each run, the best individual is saved independently of the GA. Section

3.2.3 shows experimentation with different selection processes after each SGA run.

2.3.2 Representation

Each genotype is a list of strings. The strings are different commands for the Obfuscapk

package (see Figure 2.14), and the commands are selected without replacement. An

example individual could be [MethodRename, Nop, RandomManifest]. MethodRename

renames methods in the APK. Nop, injects a NOP instruction. RandomManifest, will

randomise the manifest file. Each genotype also has the following Obfuscapk commands

automatically added to the end [Rebuild, NewAlignment, NewSignature]. Rebuild reapplies

APKtool to ensure the signature of the DEX file has changed. NewAlignment ensures all

uncompressed files in the APK are aligned relative to the start of the file. NewSignature

re-signs the APK, a correct file signature is required for installing on Android OS.

These three commands are automatically added to an individual because they are all

standard functions that would be applied after modifications to an APK are made. Their

application ensures higher stability and enables the APK to be installed and run. The

phenotype of the individual is the APK.

When applying Obfuscapk to an APK, there is no guarantee that the APK will remain

a functionally valid application. The Obfuscapk paper [7] showed that after applying

Obfuscapk, 47 out of 1000 APKs were broken. Therefore, if Obfuscapk broke an APK,

the fitness value of that individual was set to the worst possible outcome, effectively

removing it from the selection process. Consequently, the final individuals from the



58 Developing a Genetic Algorithm for Software Obfuscation

Figure 2.15: Obfuscapk architecture.[7]

SGA will always result in a correctly functional input for Obfuscapk, so no need for

corrective measures. All individuals are initialised to the same size; their length can

change by applying mutation, resulting in variable-length final solutions. Once the

phenotype individual had been created, its name was changed to record precisely what

obfuscation techniques were used in its creation. The individual genotype represents

commands sent to Obfuscapk; the resulting APK phenotype is then tested for fitness.

2.3.3 Crossover

Crossover is known to exploit good individuals by preserving parts of their genotype.

However, using crossover can create invalid input for Obfuscapk, by creating dupli-

cates of some commands, consequently, corrective measures would be required to use

crossover, which would prove to be time consuming and inefficient. In some cases,

a high level of mutation can, by chance, correct this issue by removing the offending

command. To substitute the effect of crossover, the best possible individual is stored

in an independent list after each generation, which is not included in the population

selection process. This ensures that any good individual will not be lost due to mutation,

preserving good genotypes.

2.3.4 Mutation

Mutation is performed on the genotype by selecting one of three functions: adding

a new unique command to the individual, removing a command, or reordering the

current commands the individual represents. The mutations are applied to the phe-
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Figure 2.16: Illustration of byte code inspection. (1) Shows encoded source file. (2) Shows
encoded values represent elements in a lookup table, each element in the table translates into a
machine instruction.

notype by Obfuscapk (see Figure 2.15). Obfuscapk creates an object that represents

program features, like how many registers a function can access. Obfuscapk unpacks

the DEX files to be converted to/from Dalvik bytecode via smali/baksmali, which

allows the application of obfuscation to the source code. Unpacking is performed by

APKtool, Figure 2.16 shows how this is done conceptually. The obfuscation techniques

of Obfuscapk are applied with regular expressions, inserting and manipulating new

lines of text and AES encryption.

A genotype minimum length of two made Obfuscapk more reliable. Obfuscapk

internally tracks if a technique has already been used, and each time the fitness function

runs, the internal state of Obfuscapk is reset. After each run, the command list to which

the mutation operator has access is reset, this way, a thorough amount of obfuscation is

applied to each APK during consecutive runs. In each generation, all APKs are saved

for further research, regardless of their fitness.

There are five categories of obfuscation in Obfuscapk that can be applied with

mutation: trivial, reflection, encryption, code manipulation and renaming (see Figure

2.14). The mutation in this dissertation excludes the use of the reflection and encryption

categories. Reflection is when a Java function is assigned at runtime and can be used

as an effective obfuscator. In the Obfuscapk paper, the reflection category was cited
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as the most common failure when testing, so it was excluded from experimentation.

Encryption, the process of converting code into an inaccessible format, was also a source

of common failures when applied repeatedly during testing. While it is theoretically

possible to re-encrypt encrypted data, Obfuscapk does not have strong support for

this. Encryption is also relatively easy to detect, as it produces noisy data, and its

excessive use can be an indicator of malware, trying to hide its intentions, ([43], [60])

accordingly, it was excluded from this project. The remaining three categories have

fourteen techniques available for application via mutation. From the trivial category,

Rebuild, NewAlignment and NewSignature, were always applied, therefore not included

in the mutation function. These techniques increase the stability of new individuals.

The three obfuscation categories, applied by mutation, and their eleven corresponding

techniques can be seen the list below, Algorithm 2 helps explain the functionality of

Obfuscapk further:

1. Trivial: [RandomManifest], Effective if someone is using the order of the manifest

file as a signature.

2. Renaming: [ClassRename, FieldRename, MethodRename], Which changes functions

and variable names to make code inspection harder.

3. Code manipulation: [ArithmeticBranch, Reorder, CallIndirection, DebugRemoval,

Goto, MethodOverload, Nop], This wastes compute cycles and changes the running

characteristics of the program. It includes manipulating data and control flow, re-

moving debug information, using method overloading and injection of redundant

code.

2.3.5 Selection

There are three principal ways to do selection within an SGA:

• Proportional Selection: The probability of selecting an individual positively

correlates with the individual’s fitness. So the fittest individual is most likely to be

selected as a parent.
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Algorithm 2 Pseudocode of how obfuscation is performed by Obfuscapk

Input sample and obfuscation methods to be applied
Initialise sample for processing
→ Decompile using APKtool and scan for locations to modify code
→ Example: finding the end of a function or creating a list of function names
Modify decompiled code to apply obfuscation, examples:
→ Insert new instruction ▷ with text insertion
→ Rename or redirection ▷ with text insertion
→ Reorder ▷ with text insertion
→ Apply encryption ▷ with javax.crypto

• Tournament Selection: The population is randomly sampled. Out of the sample

group, the fittests are selected as parents.

• Ranked and Random selection: All individuals have the same probability of

being selected; there is no selection pressure. This is mainly used when picking

from individuals with very similar fitness values.

Tournament selection was used in this dissertation; it is a popular selection method

in the literature and aims to balance exploitation with exploration with a simple im-

plementation. Elitism, whereby the best individual was copied directly to the next

generation without modification, was not used, as SGA is known to exploit the best

individuals. At the end of each generation, the best individual was stored in a list

independent of the population to have a record of the best individuals at the end of

each run. This was valuable as the termination criteria of the SGA is a set number of

generations, not a specific fitness outcome. When using a fitness outcome as a termina-

tion criterion, keeping the best outcomes in the population with elitism could help steer

the population towards a specific solution.

A mono-fitness score is used for each individual. Jotti produces an additional fitness

value after the SGA has run and is used to select individual for the next run starting

sample. For potential further development, a multi-variable fitness score could be used

to combine both of these values. In this case, if proportional selection were experimented

with, some additional customisation would be needed, as Jotti produces a minimising

fitness score (i.e., better obfuscation means fewer antivirus detections); this would need
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to be inverted. Otherwise, the fittest, the closest to zero, would actually have the lowest

probability of being selected. When using a multi-variable fitness score, the weighting

of fitness values can also be explored, whereby the more valuable fitness (i.e., Jotti score)

could have a multiplier applied, so that it has a larger impact on the selection process.

Fitness function

The metric used to calculate the fitness value needs to balance the measurement of

obfuscation strength with the efficiency of implementation. The more variation between

the original APK and the current individual APK’s code, will result in a better fitness

value. The idea being that modifications made via mutation, will show as a change in

the file data of the APK. During consecutive runs of the SGA, the phenotype is used to

judge an individual’s fitness.

During early development, cdifflib was used as a fitness function, as it is easy to use.

But after some experimentation, it became clear that cdifflib has issues mapping how

the mutation affects the Jotti score (Figure 2.17). Further testing was required to deduce

which algorithm would best suit the fitness function (see Section 3.2.2). The encoding of

the APK was also considered during testing, as fundamentally, it is the encoded data

being compared by the fitness function, and the encoding changes how the APK data is

structured.

Jotti

The SGA looks at the file data of the APK to detect variation between its individuals.

After the SGA is finished, the best individuals are uploaded to Jotti to judge the most

well-obfuscated APK. Figure 2.18 shows the Jotti GUI. Based on the Jotti score, the best

individual is selected for the next run of the SGA. Jotti is a web service that provides

reports from various antivirus vendors. Once an APK is uploaded, all available antivirus

vendors analyse the file, generating a report, that provides information about the current

version of antivirus vendors as well as any information that vendors have inferred from

the uploaded APK (see Figure 2.19). Jotti typically has access to up to thirteen antivirus
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Figure 2.17: Test showing how cdifflib does not map well to the Jotti Score. Fitness measured by
cdifflib (top left), does not match AV score ratio measured by Jotti (bottom). AV score ratio starts
to go up, while fitness stays consistent.

Figure 2.18: Jotti’s Graphical User Interface.

Figure 2.19: Raw Json report from Jotti.
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programs. The number available to make a report is determined at the connection

time. The vendors supplied by Jotti are Avast, BitDefender, ClamAV, Cyren, Dr. Web,

MicroWorld, Fortinet, G DATA, Ikarus, K7 AV, Kaspersky, Trend Micro and VBA32.

Using real antivirus systems provided a real-world benchmark to determine if the

SGA is able to search for more evasive malware. The antivirus vendors on Jotti are

running on a Linux system, which is ideal as the Android OS is a Linux-based system.

Regardless of how many vendors were accessible, when connecting to Jotti, all ratios

were calculated using the maximum possible vendors available, thirteen. This makes

the fitness value more reliable over time, as the available vendors on Jotti are not always

the same. Otherwise, if fewer antivirus vendors are available in a subsequent run, the

fitness score will increase, even if the same number of vendors detect the malicious

APK.

The Jotti report contains details ranging from "found nothing" to more specific infor-

mation about how the uploaded file functions, for example Trojan-Spy.AndroidOS.Banker.

This definition can be broken down into three parts. AndroidOS, the operating system

of the malware sample. Trojan-Spy, the sample behaviour, it pretends to be a different

program and then spies on the user. Banker, the malware looks for banking details. The

details provided are specific to each vendor and are not considered as part of the fitness

value. Otherwise, the lack of uniformity will make the fitness value very noisy. To

make the fitness score from the Jotti report, the total number of vendors that responded

with malware detection is divided by the total number of vendors (i.e., detections/total

vendors = fitness value). The fitness score ranges from the worst (1) to the best (0).

AV-Test.org can be used to understand how well the antivirus vendors on Jotti

will perform. The exact version of the provided vendors could not always be found;

however, AV-Test.org gives a general idea of how well the vendor’s software could

perform. Figure 2.20 shows the ratings from AV-Test.org. Four antivirus systems have

not been graded by AV-Test.org: ClamAV, Cyren, Fortinet, and VBA32. ClamAV is

an open-source antivirus system. Cyren and Fortinet are "threat intelligence" and

presumably not included as an antivirus by AV-Test.org definition. VBA32 seems to be
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Figure 2.20: Associated score from AV-Test.org for related antivirus vendors available from Jotti.
Six is the best score possible.

a typical antivirus system available on VirusTotal.

Jotti API is a premium service that allows free use for research purposes. Typically,

the free version of these types of services has a limit on the number of requests within a

given time frame. The terms and conditions received from Jotti did not explicitly state a

limit of this kind, but as they were generous in providing access, and it plays a crucial

role in this project, care has been taken to keep Jotti use to a minimum. By using Jotti in

a generator/discriminator type system, access to Jotti has been dramatically reduced.

If Jotti were used as the fitness function within the SGA, its use would dramatically

increase, because every time a change is made to an individual, that individual needs to

be uploaded to Jotti again.

Additionally, two practical considerations exist for not using Jotti inside the SGA.

Firstly, the process of running Jotti is much slower than that of the previously mentioned

fitness functions, so the overall time complexity of the SGA would increase. Secondly,

as Jotti is a web service, on rare occasions, the connection may not be complete due

to network outages or server-side issues. In this case, the SGA will have to wait for a
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response, or a substitute fitness metric will be required, slowing the program further.

The generator/discriminator architecture (see Figure 2.3) helped speed up the develop-

ment stage of this dissertation, as it naturally isolates Jotti and SGA programming code,

which makes troubleshooting of both systems much quicker.

Originally, VirusTotal was used instead of Jotti. VirusTotal typically has 65-72

vendors available, while Jotti has typically 11-13, which makes using VirusTotal a better

solution for more robust testing of APK samples. Unfortunately, when using the free

API of VirusTotal, its reliability was much lower than Jotti’s. This reliability is critical

when doing multiple runs of the SGA, as it can significantly slow the running of the

program, and in the case of VirusTotal, can completely halt the program when no

response is found. It seems that on some days when using VirusTotal, the program

can be left waiting an indeterminable amount of time for a response. Consequently

Jotti was used instead, and to avoid issues with Windows Defender checks, client URL

(CURL) was used to access the web services (see Figure 2.21). Using CURL makes access

to web services much easier to debug as it provides a complete description of what

is happening with the connection, rather than relying solely on debugging features

implemented by the service provider.

Figure 2.21: In depth details of URL response provided by CURL.
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Experimentation with Performance and Obfus-

cation

3.1 Introduction

This chapter details four experiments to better understand the effectiveness of the

simple genetic algorithm (SGA) prototype in terms of performance and obfuscation.

Each section details how the experiments were performed, displays associated graphs,

and analyses their experimental results.

For all experiments, the samples were based on comebot.apk. It was found from

experimentation that the algorithm starts to reach its transformation limit at around

six runs as the best fitness values generated were around 0.011. This value cannot get

much lower for a minimising fitness function as it is close to zero. In this case, zero

represents a totally different APK. It was seen from experimentation that the range of

transformation generated by the SGA is, approximately a Jotti score of 0.1 to 0.7. The

lowest a Jotti score can be is 0 (no vendor detections). Sections 3.2.3 and 3.3.1 contain

probabilistic experiments, therefore, they require a sample size to produce statistically

significant results. The remaining experiments are deterministic consequently, repeating

the experiment will not produce different results.
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3.2 Performance of Genetic Algorithm

3.2.1 General Optimisation

The initiation parameters dramatically affected the run-time of the executed proto-

type. Consequently, increasing the prototype’s runtime. Profiling was used for after-

development optimisation, determining what optimisation could be performed. Profil-

ing was performed with cProfile and visualised with snakeViz. Additionally, timeit was

used for general speed analysis.

Figures 3.1 and 3.2 show the snakeViz visualisation of the profile of two different

prototype configurations. The package Obfuscapk is clearly the slowest part of the

prototype. By accessing the call stack, you can see that the slowest subprocesses are

all linked to Obfuscapk. The total runtime was eighteen minutes for three runs with

three generations and a population of three. Eighteen minutes is a reasonable time for

execution, given the initial parameters at this stage in development. However, profiling

adds additional overhead that slows the prototype’s execution time. Additionally,

the execution time will be affected by other active processing being managed by the

operating system simultaneously.

Over 50% of the prototype’s execution time was spent on Obfuscapk, accordingly, it

makes sense to optimise Obfuscapk before any micro-optimisation is performed. As

Obfuscapk performs a substantial amount of computation in the prototype, the first

logical attempt at speeding up the prototype would be to run the prototype with a

different interpreter. Python is a language specification, meaning different interpreters

can be written to process Python code, each with unique design choices. The typical

Python interpreter is built using the C language, cPython (see Figure 3.4) [38], but several

other implementations exist.

Two popular specialised interpreters, PyPy and Numba, were inspected to see if they

positively affect the prototype’s runtime. PyPy is written in its own language called

the RPython language [68]. PyPy does not fully support the complete ecosystem of

Python packages and is intended to benefit large, complex Python prototypes. Figure
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3.3 show that PyPy is slower than the standard Python interpreter; this seems to be

due to the use of yapsy, a Python plugin management toolkit. This was determined by

following the prototype’s execution in the command console. Numba was unsuitable for

this dissertation as it only speeds up specific types of code, like vectorised functions.

Simply gaining runtime speed by switching to different interpreters was not an option.

Figure 3.1: Profile of the SGA based prototype execution. Each rectangle represents a function in
the prototype, the volume of each rectangle correspond to the runtime of the function compared
to the overall runtime of the prototype.

Figure 3.2: Profile of the Random based prototype execution. Each rectangle represents a function
in the prototype, the volume of each rectangle correspond to the runtime of the function
compared to the overall runtime of the prototype.

There are three remaining options to speed up the overall runtime of a prototype. Pre-

compiling individual files, parallelisation and multithreading. To make the prototype
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suitable for such a process, pre-compiling individual files would require rewriting code,

which, in the case of Obfuscapk would not be practical, as its code base is considerably

large. There are two options for using a drop-in form of multithreading without the need

to rewrite the logic of this prototype: using the built-in features of the DEAP package

and the built-in multiprocessing package of Python. Both methods failed to work.

It would seem that the APKtool, which provides core functionality to Obfuscapk, is

incompatible with external threading. APKtool is a Java-based program that already has

multithreading, and this does not seem to work correctly once Python implements its

own multithreading functions. Multithreading or parallelising this prototype correctly

would require substantially rebuilding the prototype, which was deemed not feasible.

Consequently, only micro-optimisation could be performed. This was achieved by

generating strings as efficiently as possible and making the code as concise as possible.

Focus was specifically given to string generation because the SGA generates many

different strings for each individual in the population. Figure 3.5 shows the runtime

comparisons of using different strings generation methods in Python. To make the

code more concise, rethinking the programming logic was required, as well as using list

comprehension, where possible.

Figure 3.3: Three runs of the prototype executed using the PyPy interpreter.
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Figure 3.4: Three runs of the prototype executed using the cPython interpreter.

Figure 3.5: Time comparison of four different methods to make a string in Python.

3.2.2 Compare the Effects of Different Fitness Functions and Encod-

ings

This experiment aims to understand the effect, if any, of different algorithms used as

the fitness function and how data encoding affects this calculation. The experiment was

performed by comparing an APK’s fitness value using different encoding and fitness

function algorithms. The different encoding and algorithms were compared based on

their runtime and the effectiveness of mapping modifications to the APK. The accuracy

of the fitness function in mapping the desired solution is important if the SGA is going

to be effective in finding the ideal solution. Every time an individual is modified, the

fitness function is used, so even a small performance increase will benefit the overall

performance of the prototype.
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Figure 3.6: APK file read with the standard encoding.

Figure 3.7: APK file read with the UTF-8 encoding.

Figure 3.8: APK file read with the UTF-16 encoding.
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In an ideal situation, experimenting with encoding an APK would require unpacking

the APK and then encoding each composite file to determine its suitability. As there

are other valuable experiments to be performed, in this experiment, the whole APK file

encoding will be altered as a whole. Figures 3.6, 3.7 and 3.8 show how the structure of a

specific APK changes with different encodings. The fitness function uses this structure

to compare two APK’s. The Android documentation [32] details how the DEX file is

encoded by combining Mnemonic and bit encoding. In the bottom half of Figures 3.6

and 3.7, raw data from the manifest file can be read (see highlighted text in figures),

without opening the APK. Information about activities, the pixel density of the layout

and a partial reference to a certification used can be seen. In Figure 3.8, the encoding

translates the APK to a wide range of different languages and icons, predominantly

Kanji/Hanzi characters, originating from China. In all cases the output of the encoding

is primarily random to the observer. Once the correct encoding strategy is implemented

the stored contents can be observed, as discussed in Section 2.1.3.

The first stage of the experiment was to determine which encoding should be used

in the later stage of the experiment. Unigrams were used to compare various encoding

types to see how they affect the similarity score of two APK files. When using different

encodings, the larger encoding of 32-bit, results in fewer comparisons by the fitness

function. At this stage in the experiment, only sensitivity to comparable differences is

considered, not the speed of making the comparisons. Ideally, this experiment would

include the encoding method the Android system does itself; unfortunately, an off-the-

shelf solution to perform this could not be found, for this reason, encoding methods

were selected from the standard Python codec [37]. For selecting encoding and results,

see Table 3.1. The reasoning for selecting these encodings is as follows. Firstly, ASCII

and 8-bit Unicode Transformation Format (UTF) are two of the most common encodings

used. 32-bit UTF was selected because the encoding used by Android on DEX files is

used to encode 32-bit values [32]. 16-bit UTF was selected to give an intermediary value

between the 8-bit and 32-bit encoding. By experimenting with a range of UTF encoding,

the size of the encoding blocks can also be compared, as initial experimentation showed
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Encoding Name Languages Represented Similarity
ASCII English [37] 1

UTF-8 Unsigned All languages that have unicode [73] 0.554
UTF-8 Signed All languages that have unicode [73] 0.554

gb2312 Simplified Chinese [37] 0.511
big5 Traditional Chinese [37] 0.499

UTF-16 All languages that have unicode [73] 0.432
UTF-16 Little-endian All languages that have unicode [73] 0.432
UTF-16 Big-endian All languages that have unicode [73] 0.432

UTF-32 All languages that have unicode [73] 0.347

Table 3.1: Results from comparing Comebot.apk and Comebot.1.8.apk using uni-grams and the
respective encoding. The lower the similarity, the larger the measured dissimilarity between the
two APKs is.

that Chinese style characters were generated, and an encoding for both simplified and

traditional Chinese was selected for experimentation.

This experiment (see Table 3.1) showed that: unsigned, signed, big-endian or little-

endian encoding had no notable effect on the similarity scores. UTF-8, UTF-16, UTF-

32 and standard encoding (which the APK already is in) were selected for further

experimentation. This selection was made because their similarity scores are spread

between the two limits of possible outcomes (0.347 - 0.554). ASCII was excluded because

the result of one shows that this encoding forces the fitness function to fail. A result of

one indicates that both APK are the same, while both APKs are different in this test.

The next stage of the experiment involved testing the selected encoding with a range

of different fitness functions. Namely, n-grams, cdifflib and Levenshtein distance. A

custom and package implementations of n-grams were used, to test which was faster.

In each trial, the fitness function was run ten times, therefore the fitness function was

run for a total of 100 times. This simulated the maximum runtime of the SGA. The

fitness function will be run a maximum of once for each individual in the population.

Realistically, each generation of the SGA was smaller than this. The minimum runtime

was selected to compare the runtime of each fitness function. If using average instead,

the resulting time will include an amalgamation of other processes running on the CPU

simultaneously. Using the minimum indicates the ideal speed at which the algorithm

runs by itself, with the minimum interference from other processes. This observation is
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stated in the source code of the timeit package used to perform the experiment.

The main experiment was performed by comparing two APKs and getting a similar-

ity score. Each comparison is labelled to indicate which APKs were used. For example,

mod_0/mod_2 means Comebot.apk compared to Comebot.0.10.apk. Table: 3.2 provides

more details on the APKs used in the experiment. For results see Figures 3.9, 3.10,

3.11 and 3.12. Levenshtein distance is a maximising fitness functions, while others

are minimising. Therefore, when the two APKs compared are identical, Levenshtein

distance will produce a value of zero, a perfect match, while minimising functions have

a full bar, a value of one. While this can be modified by inverting the results of the

function, the methods have been left in their natural form.

APK Name Representative Name Obfuscators Applied Jotti Score
Comebot.apk mod_0 none 0.69

Comebot.0.10.apk mod_2 two 0.46
Comebot.8.0.10.13.3.6.apk mod_6 six 0.46

Table 3.2: APK names and description of applied obfuscation used in this sections experiments.
The higher the Jotti score the higher the number of detections.

Figure 3.9: Pair-wise tests for all fitness functions using UTF-8 encoding. The relative difference
between bar heights shows the relative similarity between APKs. For the maximising function of
Levenshtein distance, as the bars get higher the dissimilarity is higher. The remaining functions
are minimising, therefore vice versa. Note that time is scaled down for Levenshtein and cdifflib.
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Figure 3.10: Pair-wise tests for all fitness functions using UTF-16 encoding. The relative dif-
ference between bar heights shows the relative similarity between APKs. For the maximising
function of Levenshtein distance, as the bars get higher the dissimilarity is higher. The remaining
functions are minimising, therefore vice versa. Note that time is scaled down for Levenshtein
and cdifflib.

Figure 3.11: Pair-wise tests for all fitness functions using UTF-32 encoding. The relative dif-
ference between bar heights shows the relative similarity between APKs. For the maximising
function of Levenshtein distance, as the bars get higher the dissimilarity is higher. The remaining
functions are minimising, therefore vice versa.
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Figure 3.12: Pair-wise tests for all fitness functions using standard encoding. The relative
difference between bar heights shows the relative similarity between APKs. For the maximising
function of Levenshtein distance, as the bars get higher the dissimilarity is higher. The remaining
functions are minimising, therefore vice versa.

Analysis of Results

Algorithm 3 depicts the structure for the experiments run in this section. The se-

lected fitness function should be efficient, able to map to the Jotti score range and

detect a difference between similar APKs. Comebot.0.10.apk (i.e., mod_2) and Come-

bot.8.0.10.13.3.6.apk (i.e., mod_6) have been selected due to their close similarity in

terms of obfuscation techniques applied, requiring the fitness function to be sensitive to

this difference. An insignificant difference between similar samples means that the met-

ric will produce poor inter-generational fitness, whereby further sample modifications

may not be recognised. The ideal outcome is that the selected fitness function shows

each pair-wise test getting incrementally more dissimilar.

In both Levenshtein distance and cdifflib, the similarity score had unstable behaviour

with respect to changes in the encoding. In Figures 3.9 and 3.10, the green and purple

bars change relative height depending on which encoding was used. Both cdifflib and

Levenshtein distance did not map the similarity as expected. In terms of performance,

both cdifflib and Levenshtein were the worst affected, as the size of the encoding gets

smaller (see Figures 3.9 and 3.10), both of these functions’ runtime needed to be scaled
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by either a factor of 10 or 100 to fit within the same scale as the other results.

n-gram is the best choice as it is performance efficient and also sensitive as expected.

To further investigate this function, the standard deviation (SD) of all n-gram results

was compared (see Figure 3.13). It can be seen that both standard and UTF-32 encoding

have the best performance and sensitivity. In standard and UTF-32, both have the same

SD, which is higher than the other encoding methods, meaning the spread of values

is the widest. The spread between the different tests is needed to define individuals

in the population. As the Jotti score approaches zero, standard and UTF-32 encoding

have proportionately less room for representing individuals, compared to UTF-8 or

UTF-16. Overall, the performance benefit of using standard encoding makes it the best

choice. Standard encoding requires less programming than UTF-32 as it is the format

Python reads binary files by default. Other than using the same encoding methods as

the Android system, an additional improvement to this experiment could be using a

wider range of similarity metrics and encodings in the early stages of the experiment.

Therefore, reducing any bias created by looking at a limited range of encoding using

n-grams only.

Figure 3.13: Standard deviation of similarity and minimum time performance, for all n-gram
experiments. For UTF-32 and standard encoding the minimum time is between 0.06-0.07.
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Algorithm 3 Pseudocode of Experiment from Section 3.2.2

For each encoding: ▷ Select Encoding
→ compare Comebot.apk to Comebot.1.8.apk
For each Fitness function: ▷ Select Fitness function
→ compare mod_0 to mod_0 and plot line and bar graph
→ compare mod_0 to mod_2 and plot line and bar graph
→ compare mod_2 to mod_6 and plot line and bar graph
→ compare mod_0 to mod_6 and plot line and bar graph
For each implementation of n-grams: ▷ Select Fitness function
→ compare and plot

3.2.3 Compare Elitism, Passing and Random Sampling in the Main

Loop

Parameter Name Elitism Passing Random
Number of trials 10 10 10

Number of runs per trial 4 4 4
Number of generations per run 4 4 4

Number of tndividuals per generation 5 5 5
Mutation rate 80% 80% 80%

Tournament size 3 3 3
Individual size 2 2 2

Table 3.3: Experiment parameters for Section 3.2.3. In this experiment the average of the final
Jotti score, histogram, the average fitness value and size of all individuals in each generation
were used to analyse results. The average runtime for one trial was 29 minutes.

During a prototype execution, the main loop collects the best individual from the

last SGA run and tests each individual with Jotti to see how effective obfuscation has

been. There are three ways the main loop can select which individual is passed to start

the next SGA run. Either always passing the fittest individual from all runs, passing the

best individual from the last run or random selection from the list of the best individuals

so far. For this experiment, these three methods will be called elitism, passing and

random, respectively.

This experiment looks at how each of these design choices affects the ability of

the SGA to find the most effectively obfuscated APK. Each experiment had five trials.

There were three experiments in total, firstly looking at the average fitness value of the

population (see Figure 3.14), secondly looking at the average size of the individuals
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(see Figure 3.15) and finally looking at the Jotti score at the end of each run (see Figure

3.16). In each experiment, for each configuration, there were four individuals in the

population, with 4 generations * 4 runs * 10 trials, a total 160 generations per test

case. Each experiment produces results for fitness and size (maximum, minimum and

average) and the Jotti score for each run. Each configuration can be judged on its overall

trend by averaging these results.

Figure 3.14: Average fitness of all individuals across five trials (i.e., 80 generations) using
different selection methods. Each generation has the Max fitness (i.e., the worst) and Min fitness
(i.e., the best).
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Figure 3.15: Average size of all individuals across five trials (i.e., 80 generations) using different
selection methods. Each generation has the Max fitness (i.e., the longest) and Min fitness (i.e.,
the shortest).

Figure 3.16: Average Jotti score at the end of each run across all five trials (20 runs in total). The
lower the Jotti score the less antivirus detections.
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Analysis of Results

Algorithm 4 depicts the structure for the experiments run in this section. A minimising

fitness function was used therefore, in terms of best results passing is the most effective

selection method, with random selection being the worst. The average fitness of passsing

was also the lowest, even though its maximum was in the middle, which implies that

the fitness distribution was biased towards lower values, which is ideally what should

be explored by the SGA.

To confirm this observation, a count of the fitness being above or below the average

was performed for each configuration. The data frequency was counted into two bins,

either more than > average or less than < average. In Figure 3.17, the lighter coloured bars

represent the values below the average, and the darker colours above the average. The

best selection method would encourage the SGA to produce proportionately smaller

fitness values overall. Green represents passing, showing that the less than bin has more

values than the more than bin, ergo the population is trending towards lower values.

Passing is clearly the best selection method. An improvement to this experiment would

be to have performed the fitness function experiment first, as this experiment was

performed using cdifflib, an ineffective fitness metric, hence the Jotti score flattens out

quickly (see Figure 3.16).

3.3 Effectiveness of Obfuscation

3.3.1 Compare the Effects of Different Obfuscation Techniques

There are five categories of obfuscator provided by Obfuscapk namely: trivial, renaming,

code, encryption and reflection. In this dissertation, both reflection and encryption have

been excluded for performance reasons. In the trivial category, only the RandomMani-

fest technique was applied via mutation, with the remaining technique automatically

applied. Consequently, this experiment aims to understand the effectiveness of the

renaming and code categories obfuscators, with the trivial category applied as usual.
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Figure 3.17: Comparisons of histograms for each selection method, from all three fitness metrics.
The histograms are created around the respective data’s average. Less than (the average) on the
left-hand side of the respective histograms and more than on the right.

The Jotti score was used to determine which obfuscation categories were more impactful.

The prototype was executed for each test case five times, with the initiation parameters

of seven runs, five individuals in the population and three generations. Hence, with 5

generations * 7 runs * 10 trials, with a total of 210 generations per test case. There are

five tests in total; their configuration can be seen in Table 3.4.

The first step was to look at the average Jotti score at the end of each run, in each test

configuration, to see which one performed best. Taking the average across all five trials

helps reduce the effect of outliers and gives an overall view of results (see Figure 3.18).

In this experiment, the lower the score, the better and tests two, three and five show the

most consistency. To further investigate these three tests, the minimum value of each

run was selected to see which tests performed best in the ideal case (see Figure 3.19). Test

three seems to fluctuate more than the other two, which could be since the obfuscators

being selected are more random than the other two tests, or poor service coverage

provided by Jotti at that time. To better understand these fluctuations, linear regression

could be used to compare slopes calculated from each test. As so few observations per

variable are available, a method suitable for small sample sizes was used. Ideally, the
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Algorithm 4 Pseudocode of Experiment from Section 3.2.3

For each test case: ▷ Create test data
while trials ≤ numberoftrials do

while runs ≤ maxRuns do
Initialise SGA with test case
while generation ≤ maxGeneration do ▷ Run SGA

Selection
Mutation
Fitness evaluation

end while
end while

end while
Get min, max and average individual fitness and size: ▷ Process test data
→ Average values and plot bar chart
Get Jotti score from each run:
→ Average values and plot line graph
Get min, max and average individual fitness:
→ Do frequency analysis using the average then plot histogram

Jotti score would always be monotonically decreasing. To measure the "monotonicity" of

each test, consecutive values were subtracted from each other x[n+1]− x[n], producing

a negative number if the values are decreasing. These results were counted if X =< 0,

and the standard deviation of all values was taken. A lower standard deviation and

higher total count would show that the test results are more consistent and closer to

being negatively monotonic (see Figure 3.20). Using the minimum or average Jotti score

for the count of X =< 0, made no difference in the distinction of each test’s relative

performance.

Test Name Categories Included
Test One Renaming
Test Two Code

Test Three Code and Renaming randomly mixed
Test Four Code applied first then Renaming
Test Five Renaming applied first then Code

Table 3.4: Obfuscator categories used in each test group.

Analysis of Results

Algorithm 5 depicts the structure for the experiments run in this section. It is clear

from this experiment that code category by itself is the most effective obfuscator. It
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Parameter Name Test One Test Two Test Three Test Four Test Five
Number of trials 10 10 10 10 10

Number of runs per trial 7 7 7 7 7
Number of generations per run 3 3 3 3 3

Number of individuals per generation 5 5 5 5 5
Mutation rate 80% 80% 80% 80% 80%

Tournament size 3 3 3 3 3
Individual size 2 2 2 2 2

Table 3.5: Experiment parameters for Section 3.3.1. In this experiment the average of the final
Jotti score after each run, histogram, standard deviation and the average and minimum fitness
value of all individuals in each generation were used to analyse results. The average run time
for one trial was 84 minutes.

Figure 3.18: The Average Jotti scores of each run, for all tests.

produces the best final results and has the most consistent level of "monotonicity".

Figure 3.21 shows a visualisation of the average Jotti score in the first and final run,

showing each test configuration’s progress towards the ideal outcome of zero, the centre

of the hexagon. In this figure, it can clearly be seen that test five started in a better

position than the other tests, indicating that not all vendors were available at the start

of the test. Even with this observation, it can be clearly seen that test two had the most
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Figure 3.19: The minimum Jotti score of each run from tests two, three and five.

significant improvement. The radar graph was selected as it makes a clear comparison

between starting and end Jotti values with the symmetry of the hexagon; the use of

lines or bars does not get this point across as clearly.

It is important to note that because each test contains different categories, it also

contains a different number of obfuscation techniques. Renaming has four techniques

in total, and code has eight. This limits the largest possible size of an individual in the

population and the number of variations an individual could have, as techniques cannot

be applied twice in the same session due to the design of Obfuscapk. Consequently, this

experiment alone does not prove unequivocally whether code modifications are more

effective than renaming.
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Figure 3.20: Histogram of Jotti score given (x[n+1] - x[n]) =< 0 and also it’s standard deviation
(SD).

Figure 3.21: Comparisons between the average first and last run of all test groups.
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Algorithm 5 Pseudocode of Experiment from Section 3.3.1

For each test case: ▷ Create test data
while trials ≤ numberoftrials do

while runs ≤ maxRuns do
Initialise SGA with test case
while generation ≤ maxGeneration do ▷ Run SGA

Selection
Mutation
Fitness evaluation

end while
end while

end while
Get Jotti score from each run: ▷ Process test data
→ Average values from each trial and plot line graph
Get Jotti score from each run:
→ Select minimum value from each trial and plot line graph
Get Jotti score from each run:
→ Do frequency analysis using values that sequentially increase then plot histogram with SD
Get Jotti score from first and last run:
→ Create radar plot
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3.3.2 Comparison of Previous and Post Population

This experiment aims to understand the difference, if any, between the original popula-

tion, the population generated by the SGA and a population generated by a random

mutation, without selection pressure. For brevity, these test groups are known as Origi-

nal, SGA and Random respectively. The populations were generated by running each

experiment using the following initial parameters: three generations, five individuals

in the population and seven runs. To make the comparison between populations, file

size, number of unique API calls, percentage of unique external API calls and entropy

were used. These metrics give a general sense of how the APK has been transformed.

Both entropy and file size indicate the extent of obfuscation from a broad overview.

API calls reveal obfuscation specific to function redirection and renaming, as well as

a rough estimate of how much of the sample’s source code appears to be outside the

file system. To create the two test groups, fifty APKs were randomly selected from

approximately 250 APKs generated from the SGA, and fifty were randomly selected

from approximately 250 APKs generated from the random process. The sampled APKs

represented the best APKs at the end of each generation. These APKs had a range of

obfuscation applied from heavy to light, depending on whether they were created in

an early or later stage of execution. API calls were traced from the main entry point of

the APK using Androguard [6] as an analysis tool and were collected as if to make a call

graphs (CG) and processed as a list of names.

The first step was to see if the dataset was normally distributed as this would indicate

which statistical methods could be used. To test for normality the dataset’s value range

was divided in to bins and a count of values that fell into each bin was made. Sturges’s

rule [57] was used to select the number of bins for the histogram, k = 1 + log2(n), with

n = number of values. The interval was calculated by (max(x) −min(x))/k. Figures

3.22 and 3.23 confirm the dataset to be non-normally distributed, the data is multi-

modal distribution as there is both a major and minor mode. Therefore an appropriate

nonparametric test needs to be selected.

Out of the common nonparametric tests, Mann Whitney U and Wilcoxon signed rank
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Figure 3.22: Histogram of Random APK’s entropy, major mode right.

test could be suitable for this task as they are both used to compare two groups of data

and produce a significance score. If the produced score is above or below a threshold

value, then the given hypothesis can be accepted. In this early stage research there is

no hypothesis to prove, the aim of this experiment is to identify what, if anything, has

changed, hence common nonparametric tests are inappropriate at this stage.

Parameter Name SGA Random Original
Number of trials 12 12 Not applicable

Number of runs per trial 7 7 Not applicable
Number of generations per run 3 3 Not applicable

Number of individuals per generation 5 5 1
Mutation rate 80% 80% Not applicable

Tournament size 3 3 Not applicable
Individual size 2 2 Not applicable

Table 3.6: Experiment parameters for Section 3.3.2. File size, number of unique API calls, per-
centage of unique external API calls, entropy, histograms, percentage difference and Pearson
correlation were used in the analyse of results. The Original test group, was created by dupli-
cating the original sample used in SGA and Random 50 times. The tool Androguard was used
to create call graphs that were used to determine API calls, this process takes approximately 8
hours for 50 samples as obfuscation makes analysis slower.

The next step of the experiment was to visually compare the results from the different

test groups, namely Random to Original and SGA to Original. In both test cases the

number of unique calls increase dramatically and the proportion of external calls

deceased, with SGA having the clearest decrease (see Figures 3.24 and 3.25).
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Figure 3.23: Histogram of Random APK’s external API calls, major mode left.

Figure 3.24: Unique API calls of Random vs. Original APKs. In the Original about 9% of the
code is accessed for external libraries, as this is a unique count it is only a rough indication of
what percentage of the programs code is stored in the APK.
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Figure 3.25: Unique API calls of SGA vs. Original APKs. In the Original about 9% of the code
is accessed for external libraries, as this is a unique count it is only a rough indication of what
percentage of the programs code is stored in the APK.

When comparing the largest amount of unique calls, there is little difference once

the outlier in Random is taken in to account. In both cases, the external calls do not

increase pass the original proportion as they become hidden and replaced with new

unique calls. The original APK had 44 unique API calls in total, so in both cases the

amount of obfuscation applied is significant.

It can be seen that in both cases the file size and entropy has been affected by

obfuscation (see Figures 3.26 and 3.27). Low entropy means the data being measured is

more predictable, an increase in entropy is used as a possible indication of malware [62].

Ideally the applied obfuscation would not increase entropy. Compared to the volume of

entropy in the original file, the applied techniques entropy is relatively low and in the

case of SGA the proportion did not increase significantly in relation to file size. This

could be due to Obfuscapk using code templates in its eight code based obfuscators,

consequently repeated application will create similar patterns throughout the code.

To gain a clearer understanding of which generation method effected each metric the

most, the Pearson correlation coefficient was determined for each comparison (see Table

3.7). There is a significant positive correlation in both cases for file size and entropy, as

the file size gets bigger so does its entropy, there is negligible difference between the
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Figure 3.26: Entropy and file size of Random vs. Original APKs.

two test groups. In respect to API calls, there is a marginal negative correlation, again

with negligible difference between the two test groups. Pearson correlation coefficient

formula is:

n = Number of pairs of observations

Pearson correlation =
n ∗ Σ(SGA ∗ Random)− Σ(SGA) ∗ Σ(Random)√

[n ∗ Σ(SGA2)− Σ(SGA)2][n ∗ Σ(Random2)− Σ(Random)2]

APK Origin File Entropy - File Size Unique Calls - External Calls
SGA 0.949051619 -0.432872374

Random 0.934926878 -0.455393819

Table 3.7: Pearson correlation coefficient for SGA and Random datasets.

Analysis of Results

Algorithm 6 depicts the structure for the experiments run in this section. To better

understand if SGA or Random is producing more effectivity obfuscated APKs a com-

parison of ten final Jotti scores was made. Figure 3.28 shows that SGA is producing

the more evasive results consistency, as the resulting Jotti scores are lower. To make a

concise comparison the percentage difference formula was used:



94 Experimentation with Performance and Obfuscation

Figure 3.27: Entropy and file size of SGA vs. Original APKs.

Figure 3.28: Results from ten consecutive executions of the SGA and Random based prototypes.
A lower Jotti score indicates fewer antivirus detections.
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APK Origin Accumulative Jotti Score Accumulative runtime
SGA 1.692307692 7 Hours : 15 Minutes

Random 3.153846154 5 Hours : 11 Minutes
Percentage Difference 60.32% 33.39%

Table 3.8: Overall comparison of ten SGA and Random executions, using percentage difference
formula.

Percentage difference =
|Σ(SGA)− Σ(Random)|

(Σ(SGA) + Σ(Random))/2
∗ 100

It can be seen in Table 3.8 that the Random’s performance time is 33.39% less than

SGA, which accounts for the additional selection process in SGA. The accumulative

Jotti score of SGA is about 60.32%, lower than Random meaning there was a significant

improvement with the selection method added.

Algorithm 6 Pseudocode of Experiment from Section 3.3.2

For each test case: ▷ Create test data
while trials ≤ numberoftrials do

while runs ≤ maxRuns do
Initialise SGA with test case
while generation ≤ maxGeneration do ▷ Run algorithm

Selection
Mutation
Fitness evaluation

end while
end while

end while
Get Random entropy and external API calls: ▷ Process test data
→ Do frequency analysis and plot histogram
Get All API calls:
→ Compare Random Vs Original and SGA Vs Original plot line graph
Get All entropy and file size:
→ Compare Random Vs Original and SGA Vs Original, plot line and bar graph
Get the final Jotti score from 10 trials:
→ Compare Random Vs SGA, plot line graph
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4
Discussions, Conclusions and Future Work

In terms of the three domains of this dissertation the key findings are, that with ob-

fuscation methods built in the year 2020, a genetic algorithm can find sequences of

obfuscation, for Android applications, that can bypass antivirus systems in 2025. The

program achieved this with only control and data flow manipulation-based obfuscation

and produced good results with a population of five after twenty-one generations. This

finding is significant because the methods used are not highly complex to implement,

as shown during the dissertation, and in terms of computer technology, five years is

a significant amount of time. For the dissertation’s design and application, using a

generator/discriminator type implementation provides natural encapsulation of code

structure which helps both troubleshoot during development and provides accessibility

when applying new features.

The contributions of this research are two-fold. Firstly, existing research was recre-

ated using recent Android applications rather than pre-1995 DOS-era applications,

making its insights relevant to current computer systems. Secondly, achieving this with

standard computer resources (i.e., not a high-performance computer), as is typically

used in related research, broadens the audience to which the results are applicable.

Comparing the research outcomes to expectations from the literature review, in partic-

ular [56], the outcomes were as expected. Repeated obfuscation can bypass antivirus
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systems.

4.1 Research Limitations

The first limitation was the use of Obfuscapk, while concurrently its use made the

dissertation possible within the given constraints. The Obfuscapk package was a

limiting factor for several reasons:

• It used boilerplate implementations of code obfuscation, which limits the range of

obfuscation capabilities.

• It was built with various tools, making simple optimisation strategies fail. Its

runtime contributed to the majority of the prototype’s total runtime.

• Due to stability issues, reflection and encryption obfuscation methods could not

be applied; ideally, these would have been experimented with to varying degrees.

The second set of limiting factors concerned the calculation of the Jotti feedback

signal, used to guide the SGA search:

• As there was no definition between different vendors, the Jotti score is the same

regardless of which vendors made the detection (i.e., if Avast or BitDefender

make a detection, the same value of one detection is used to calculate the Jotti

score). This reduces the uniqueness of the feedback signal. A solution could be for

the antivirus vendors to be ranked based on their AV-test.org rank, then use the

ranking to weigh the Jotti score calculation.

• Considering how many commercial antivirus companies are actively making

products worldwide, Jotti has limited vendors available. Consequently, the Jotti

score does not indicate how generated samples would be detected globally. Using

VirusTotal, with a broader range of vendors, would make the detection ratio metric

more realistic. This diversity could help drive the generation of more evasive

samples.
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The final limitations concern how testing was performed:

• Performing experiments with a wider range of APKs would yield more reliable

test results, and allow the use of statistical methods that require a large observation

set (see Section 3.3.1). This could be achieved by collecting samples representing

a malware’s historical developments (i.e., samples of the same application from

different years, 2005, 2010, etcetera).

• Specific experiment parameters could have been improved. For example:

– Using encoding methods that closely mimicked those used by the Android

OS and a wider range of comparison metrics (see Section 3.2.2).

– Simultaneity experimenting with the selection method from inside the SGA

and the main loop (see Section 3.2.3).

• The functionality testing of an APK does not generalise well (see Section 2.2.5).

Current testing depends on understanding each APK’s operations and relies on

the applied obfuscation not dramatically changing what is printed to the console

log. More reliable testing of generated samples could be performed using the

automation features of the Android App Crawler [26] and UI Automator [31]

tools.

• There is no testing to investigate how often the SGA invalidates an APK, which is

critical to understand the stability of this prototype. Additionally, some transfor-

mations can be lost after compiling (see [63] and Section 2.2.3). So precisely how

effective this prototype is at applying obfuscation is unknown until the measure of

post and previous compilation is taken as well as a large-scale test of the functional

completeness of a range of generated samples.

scikit posthocs and scipy stats were used to investigate the suitability of statistical

analysis functions that could better facilitate understanding of the generated data.

Statistical functions suitable for non-normally distributed datasets with two or more

sample groups showed few significant results, or results that showed significant for one
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function were not significant in another. For example in Table 4.1, Test 5 has significant

results, but manual inspection of the dataset shows that Test 2 obtained the best Jotti

score overall. Therefore, a range of more primitive statistical analyses was carried out,

as seen in the dissertation. In this dissertation, the most significant results are the Jotti

scores, which indicate the effectiveness of the applied obfuscation. The Jotti score tends

to fluctuate, which is not ideal for statistical analysis. This could be due to three factors:

There are only 13 vendors available, of varying degrees of obfuscation detectability.

Genetic algorithms are non-deterministic, and applying more obfuscation does not

necessarily produce better obfuscation. For better statistical analysis, multiple original

APK samples (for example, taken from different time periods), as suggested in Chapter

4, could provide a more robust dataset for analysis; however, this is not realistic given

the time frame and efficacy of the prototype. For example, it can be seen in Chapter

2 Table 2.1 that "spike.old.apk" takes ten minutes to apply all obfuscation methods

while "comet.bot.apk" takes two minutes. The shortest probabilistic experiment was

3.2.3, when using "comet.bot.apk" it takes about fifteen hours in total to perform. Using

"old.spike.apk" there would be up to a 5 times increase in runtime.

Test Name Test One Test Two Test Three Test Four Test Five
Test One 1.0 0.894136 1.0 1.0 0.978233
Test Two 0.894136 1.0 1.0 1.0 0.007965

Test Three 1.0 1.0 1.0 1.0 0.2142
Test Four 1.0 1.0 1.0 1.0 0.0519
Test Five 0.978233 0.007965 0.2142 0.0519 1.0

Table 4.1: Dunn’s tests on the Jotti scores from Section 3.3.1.

4.2 Future Research

The two primary considerations for future development of this dissertation would

be in redeveloping the generator and discriminator components. This would aim to

improve the application of obfuscation and enable the prototype to be used for larger

applications. For example, using Windows programs ([15], [65]).

1. Developing a generator using a genetic program (GP) to enable custom-built
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obfuscation functions, overcoming the limited flexibility of genetic algorithms and

enabling the utilisation of crossover.

2. Consideration would need to be given to the performance of the mutation func-

tions (see Section 3.2.1). Using CUDA C to find locations in the sample for code

injection and encryption would make the sample transformation more time effi-

cient [67]. Performing the disassembly of the sample on the CPU would give the

benefit of using existing tools.

3. Upgrading the discriminator with a machine learning agent, like reinforcement

learning. In this configuration, the generator can record metadata about generated

samples to inform the discriminator during training, for example, which types

of obfuscation have been used on a sample, and the discriminator can be trained

in detecting malware and produce a more innate signal in return to maximise

co-training between the two components, linking training parameters [71].

The development of the dissertation produced two unexpected by-products, which

are both noteworthy for future research:

• Section 3.2.2 showed the application of different encodings revealed internal

information from the APK. This could be explored as a heuristic when training a

machine learning model to understand malware samples.

• As stated in Jotti’s terms and conditions, the web service processes uploaded

files for antivirus companies as training data. Investigating how dataset diversity

benefits antivirus developers is a beneficial avenue for further research.
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Glossary

Antivirus program/antivirus system: A program for detecting malicious software.

API: Application Programming Interface - rules for software to communicate with each

other.

APK: Android Package Kit - a file extension for Android Applications.

Application: A piece of software built for an end users.

DEAP: Distributed Evolutionary Algorithms in Python - a GA and GP framework.

Evolutionary Algorithm: A category of optimisation algorithms that includes the ideas

of crossover, mutation, selection and generations. Both GA and GP are types of evolu-

tionary algorithm.

Framework: A software suite that enables developers to build alongside an existing

paradigm.

GA: Genetic Algorithm - a programming paradigm to manipulate lists.

Generator/Discriminator: A software architecture where one component classifies data

(discriminator) and the other transforms data (generator).

GP: Genetic Program - a programming paradigm to manipulate programs.

GUI: Graphical User Interface.

Malware: A malicious piece of software.

Obfuscation: Making a program unintelligible, hiding its characteristics.



102 Glossary

OS: A computer operating system.

Package: A piece of software intended for software development.

Program: A piece of software.

Prototype: A piece of experimental software.

Sample: A stored application.

Sandbox: A software tool that isolates running applications.

SDK: Software Development Kit.

SGA: Simple Genetic Algorithm - a genetic algorithm where an intensive level of modi-

fication is performed in each generation.

Tool/Tools: Software programs used for a specific purpose.

Vendor: An installation of an antivirus program.
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