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Abstract

Genetic Programming (GP) and its graph-based variant, Cartesian Genetic Program-

ming (CGP), have proved highly effective machine-learning frameworks that can evolve

human-readable programs that can match or exceed hand-crafted solutions across many

tasks. Strongly Typed Cartesian Genetic Programming (ST–CGP) extends CGP by assign-

ing explicit data-types to every input, output and operator, and allowing features to have

varying arities. These type constraints prune infeasible regions of the search space while

preserving CGP’s directed-acyclic-graph representation and single-row genome, leading

to faster, semantically correct evolution. Unlike standard CGP, ST–CGP also introduces

two forms of crossover—full two-point recombination and “genetic rewiring”—providing

a second source of variation that is rarely available in conventional CGP frameworks.

Because operators are typed, ST–CGP can be rapidly retargeted: numeric, boolean

and higher-level domain primitives (e.g. OpenCV filters) can coexist in a single run, en-

abling one framework to span diverse problem domains. This versatility is illustrated in

this thesis by three application areas. In computer vision, ST–CGP evolved segmentation,

detection and classification pipelines that solved benchmark object-sorting problems and

achieved convolutional-neural-network-level accuracy on a 27,000-image malaria-cell

dataset with far smaller training sets and CPU-only resources. In agriculture, it classified

field parcels into low, high and reference yield zones using laboratory soil measurements

with competitive accuracy and markedly low variance relative to traditional models. Fi-

nally, it learned predictive models mapping five-minute VOC gas “fingerprints” from an

electronic-nose sensor to multiple soil health indicators, delivering laboratory-grade pre-
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dictions, an application which has now been adopted by UK agronomists in commercial

practice.

Collectively, these results demonstrate that the combination of strong typing, an

enriched operator palette and novel crossover elevates CGP to a general-purpose, in-

terpretable evolutionary programming system capable of tackling data-rich tasks from

medical imaging to environmental sensing within a single unified framework.
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Chapter 1

Introduction

1.1 Motivation and Background

Automatic program synthesis has long promised to relieve engineers of routine coding,

yet widespread adoption has been hindered by two persistent difficulties. First, tradi-

tional tree-based Genetic Programming (GP), one of the most promising approaches,

relies on variable-length tree representations that are prone to “bloat,” generating ever-

larger programs during training without commensurate gains in fitness. Second, neither

canonical GP nor its graph-based variant, Cartesian Genetic Programming (CGP), pos-

sesses any notion of a data type by default. The absence of type information inflates

the search space with syntactically invalid candidates and limits the range of problems

that can be tackled in a single evolutionary run. Types have been introduced to GP in

the form of Strongly Typed GP, and have yielded significant gains in performance. How-

ever, similar approaches have not been applied to CGP. The relevant background and

literature is covered in more detail in Chapter 2.

The objectives of this thesis are twofold:

• First, design and implement a strongly typed variant of CGP.

• Second, determine whether the addition of strong typing to CGP yields benefits in

the evolutionary process or not, through testing on a variety of problem types.

1
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Strongly Typed Cartesian Genetic Programming (ST–CGP) addresses both issues by

marrying CGP’s fixed-length, acyclic genotype with a compile-time type system com-

parable to that found in modern statically typed languages. Each node advertises the

types of its inputs and outputs; evolutionary operators are constrained so that every

mutated individual is guaranteed to be type-safe before execution. In doing so, ST–CGP

reduces wasted evaluations, enables heterogeneous data flows and, crucially, preserves

CGP’s advantageous neutrality—up to 95% of nodes may remain dormant, providing a

rich reservoir of redundancy from which useful innovation can emerge.

1.2 Strongly Typed Cartesian Genetic Programming

Chapter 3 formalises the ST–CGP architecture. A library of polymorphic node functions

supports arbitrary arity, while genotype–phenotype conversion yields human-readable

functional programs. The evolutionary engine combines an “until-active” mutation scheme

with optional crossover, multi-population migration and NSGA-II multi-objective optim-

isation. Default hyper-parameters, identified through extensive toy-problem studies,

result in reliable performance across domains. Taken together, these design choices pro-

duce a machine learning algorithm that is expressive, computationally tractable and—

importantly—capable of generating programs whose logic can be inspected, tested and

trusted by domain experts.

1.3 Applications

To demonstrate generality, the thesis applies ST–CGP to three very different real-world

settings:

• Computer vision: After validating the image operator library on synthetic shape,

colour and texture tasks, ST–CGP was challenged with classifying 27,558 Giemsa-

stained cell images as malaria-infected or healthy. With as few as ten training

examples per class, the evolved classifiers achieved a mean accuracy of 0.966,
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surpassing the best convolutional-neural-network baseline reported for the same

dataset and doing so with far smaller data and compute budgets. The result-

ing programs remain interpretable: every pixel transform, channel selection and

threshold is explicit, enabling laboratory scientists to verify that the system is re-

sponding to biologically meaningful features rather than spurious artefacts.

• Soil-health assessment via yield labels: Working with agronomists, 405 samples

from 45 UK arable fields were labelled low-, high- or reference-yield and paired

with 15 chemical, physical and biological indicators. Against a suite of conven-

tional learners, ST–CGP placed second only to a tuned random forest, delivering

62.5% accuracy and a Matthews correlation of 0.436 while exhibiting the smallest

run-to-run variance—evidence that the typed search converges to stable, compact

explanations of complex agro-ecological interactions.

• Time series gas-sensor data: The PES electronic-nose test records multi-channel

resistance and capacitance curves as soil VOCs are released during a five-minute

heat cycle. ST–CGP evolved feature-extracting programs that map these “VOC

fingerprints” directly to the quantitative soil-health indicators established in the

yield study. The resulting models match—or exceed—laboratory accuracy while

reducing analysis time from days to minutes, enabling the technology’s commercial

deployment in routine farm management across the UK.

1.4 Thesis Outline

The remainder of the thesis is organised as follows. Chapter 2 reviews prior work

in computer vision and GP, motivating the need for a typed evolutionary framework.

Chapter 3 introduces ST–CGP in detail. Chapters 4 to 6 present the three application

studies summarised above, each concluding with a critical discussion of strengths and

limitations. Chapter 7 summarises the findings of this research; through these invest-

igations the thesis establishes ST–CGP as a practical and versatile tool for evolvable
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program synthesis in domains where type diversity, interpretability and data efficiency

are paramount.



Chapter 2

Literature Review

The software which forms the main focus of this thesis can appear complex to those

unfamiliar with the techniques used. There are two major components: the machine

learning component of the system uses a novel form of Cartesian Genetic Programming

as its basis, and this operates using Computer Vision principles which range from simple,

traditional image processing operators to more recent, complex and esoteric ones. This

chapter serves to help the reader understand the fundamental concepts used, by briefly

detailing the history and relevant research behind Genetic Programming and Computer

Vision. For many readers it will serve as a gentle reminder, but should a reader be

completely unfamiliar with these concepts and need more information, or simply wish

to study them in more detail, direction is given to the essential pieces of literature.

This chapter is structured as follows. Section 2.1 gives a very brief overview of

Computer Vision and the concepts pertinent to this research. Section 2.2 briefly details

the history and development of both tree-based and Cartesian Genetic Programming,

with a very brief comparison to cutting-edge LLM-based program synthesis. Finally,

Section 2.3 summarises the literature which combines the use of Genetic Programming

and Computer Vision.
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2.1 Computer Vision

Computer Vision is a vast subject with many aspects, and it is beyond the scope of this

section to attempt to explain it all. Instead, this section will give an overview of those

aspects which are pertinent to this research.

The purpose of Computer Vision is to allow computers to interpret and in some

sense understand images [1], similarly to how Machine Learning aims to give computers

the ability to learn. Ordinarily, the computer vision pipeline will roughly consist of

the following steps: pre-processing, feature extraction, and (usually) segmentation and

classification.

Pre-processing traditionally referred to techniques such as denoising, normalisation,

and colourspace transformation to name just a few. More recently, with the rise of (deep)

convolutional neural networks, image augmentation and similar pre-processing steps

have become more common. Image augmentation is a procedure whereby input images

are duplicated and modified to provide more training data [2]. This has proven to be

very effective at improving the training results of Convolutional Neural Networks [3], to

the surprise of some researchers.

Feature extraction is perhaps the most challenging aspect of Computer Vision: to

solve a particular problem it is necessary to extract the right features. It is these fea-

tures which are used and interpreted by some sort of algorithm, whether handwritten

or based on machine learning, to give a useful output. Feature extraction can consist

of techniques such as edge and corner detection, gathering statistics such as mean and

standard deviation of colour values, texture analysis, and so on [4]. Broadly speaking,

extracted features fall into one of three categories: shape, colour, and texture [5, 6].

Some features may qualify as a combination of two of these categories, or indeed all

three. Human vision has been demonstrated to work in a very similar way; the brain

contains distinct areas intended to process and interpret each of these three character-

istics [7]. These three categories are explored in a little more depth in the following

subsections.
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2.1.1 Shape

Shape is perhaps the most fundamental category of image feature: it describes what

an object actually looks like. Perhaps the most well-known set of shape descriptors are

Hu’s moment invariants [8], which describe the shape of an object irrespective of the

scale, rotation, or translation of the object. Another commonly used technique is the

Scale-Invariant Feature Transform (SIFT) [9], which captures the gradient structure in

an image patch around an interest point in such a way that is invariant to scale and

rotation. More recently, contour-based approaches have gained popularity as a way of

describing shape on the basis of detected edges in images [10, 11].

Shape features are used in a wide variety of applications from agricultural applica-

tions such as plant identification [12] and leaf classification [13], to medical applications

including cancer biomarker detection [14, 15] and classification of X-Ray, MRI and CT

scans[11], to image retrieval and target tracking systems [16].

2.1.2 Colour

As with shape features, colour-based features are used across a wide range of industries

and disciplines. Colour is one of the foremost methods by which content-based image

retrieval (CBIR) systems work [17]. Colour plays a big role in many agricultural systems:

for example, fruit ripeness detection[18, 19, 20], and even yield prediction [21]. In

retail, colour can be used to classify product images [22]. Colour is even used in self-

driving cars, to detect traffic light status [23] and to detect traffic signs [24].

Colour is most often analysed using histograms, which allow the colour distribution

of an image or region to be analysed [25]. An extension of this idea is the colour-

coherence vector (CCV) which augments the histogram with a measure of the coherence

of each colour: a colour is coherent if there are large regions of the image occupied

by that colour or similar colours, while an incoherent colour indicates that the pixels

corresponding to that colour are scattered in small disconnected clusters [26]. This

allows the spatial relationship of colours to be analysed.
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2.1.3 Texture

Texture describes the visual pattern or spatial arrangement of colours or intensity vari-

ations in an image or image region [27]. Perhaps the most widely used texture features

are Haralick’s Co-occurrence Features, also known as grey-level co-occurrence matrix

(GLCM) features. This technique quantifies texture by analysing the spatial relationships

between different grey-level intensities at a specified direction and orientation [28, 29].

This allows statistical measures to be computed which characterise the texture based on

how often specific grey-level combinations occur.

Gabor filters are another common technique, operating in a similar way to GLCM fea-

tures; they are a linear filter (adapted from a 1-dimensional filter first proposed in [30])

which is applied to an image at multiple scales and orientations [31]. This allows for

texture and edge information to be extracted, resulting in responses that effectively cap-

ture local frequency and orientation information. This mimics the early stages of the

human vision processing system [32].

Texture has been used in many applications. Medical applications include the detec-

tion of breast cancer tissue in stained cells [33] and pneumonia in x-ray images [34].

Agriculture makes another appearance: aerial images of crops can be classified using

texture [35], as well as the classification of leaf disease on crops [36]. There is even

some evidence that visual texture of lentils and rice grains can predict the physical tex-

ture after processing and cooking [37].

2.2 Genetic Programming & Program Synthesis

2.2.1 Tree-based GP

Genetic Programming (GP) is a type of Evolutionary Algorithm which operates on (and

produces as its output) computer programs. While Turing theorised about the possibility

of automatic programming, such a technique only appeared in the literature formally

in 1981 [38]. This initial paper introduced the community to a biologically inspired
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paradigm in which a simulation of Darwinian evolution and natural selection are used to

guide the machine learning process. Boolean expressions were represented as trees, and

badly performing trees were “killed off” and replaced with mutated versions, or versions

produced by “mating” two good rules. It was found that this technique produced better

results than standard linear discriminant analysis, and it was concluded that further

investigation was necessary.

GP next appeared in the literature half a decade later [39], wherein an attempt was

made to produce a language that could represent programs whilst being easily manip-

ulable by genetic operators. Two languages were used, which were adapted from Turing

complete languages—“goto” operators were removed to ensure programs would always

terminate. The languages were used with genetic operators to evolve programs with two

numerical inputs and one numerical output. This paper also used multiple scoring cri-

teria for the “evaluation score” of each program (how well it performed—known as the

fitness score in practically all GP research). For instance, long programs were penalised,

as were programs which took a long time to execute. This concept of a “multi-objective

fitness” score has been the subject of much later research. This research used a popula-

tion size of 50 programs.

While the previous two papers were the first formal publications based on GP, it be-

came more prominent due to Koza—indeed, Koza is practically synonymous with GP

for many researchers. Koza’s first introduced his version of GP in 1989 [40]: five prob-

lems were presented, of varying natures, and a GP system written in Lisp was used to

attempt to evolve a solution. In contrast to the previous GP research, a comparatively

large population size was used—between 300 and 500 individuals per population. Koza

followed this research with four books [41, 42, 43, 44] which are considered by many

to be the seminal work on the subject. The books present what tends to be thought of

as a “typical GP framework” where programs are represented as trees of function and

terminal nodes. A typical GP run in such a framework consists of a population of pro-

gram trees (typically in the range of 300-1000 for a standard problem), with multiple

generations, each of which sees a new population be generated through elitism, cros-
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sover, and mutation. A selection algorithm is used to determine which “parents” will be

used to produce new individuals. The first book also saw the introduction of Automat-

ically Defined Functions (ADFs) [41], where modular, reusable functions are evolved as

part of a GP run and used within the generated programs. This modularity allows more

powerfully expressive outputs.

In his books, Koza uses the term “human competitiveness” to describe how closely

an algorithm or program can compete with the performance of a human for a particular

task. Much of the literature focuses on achieving human competitiveness with GP, and in

2008 it was shown that human competitive results are common with GP. Indeed, many

pieces of research have resulted in human-competitive solutions—with [45, 46, 47, 48]

to name just a few.

The human competitive nature of GP has allowed it to be used as an “invention

machine” [49]. This echoes earlier research which used GP to invent solutions to two

problems which had been solved by humans in the past [50]. Human competitive solu-

tions have even been used to generate patentable solutions to problems [51].

The majority of GP driven solutions build trees that operate on a single data type.

In contrast, many programming languages in use today have many types. Many such

languages are strongly typed. This means that variables and functions have well defined

type constraints: these can be used to ensure syntactical correctness of programs. This is

generally a positive thing for human-driven software development. In 1995, Montana [52]

introduced Strongly Typed Genetic Programming (STGP). In STGP, every node, and

every terminal, has a type. This allows trees to be constructed in a way that they are

guaranteed to be syntactically correct. Montana demonstrated on two problems that en-

forcing type constraints resulted in more efficient problem solving. Other studies have

since used and extended STGP [53, 54, 55].

While GP can produce encouraging results, it is not without its downfalls. “Bloat” is

perhaps the most pernicious. Soon after the introduction of GP it was discovered that,

left unchecked, program size started to increase with each generation, with no increase

in fitness [41, 56, 57]. Indeed, in many cases, the best programs were actually those
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that were shortest [58].

The exact cause of bloat has been the source of much debate [59]: an early the-

ory [60] proposed that the success of an individual is related to its ability to have off-

spring which function similarly to the parent—GP therefore evolves larger and larger

individuals with similar functionality. This is known as the “replication accuracy” theory.

Another theory [61] has suggested that it may be a characteristic inherent to variable

length representations such as GP, especially when using a fixed evaluation function,

because a long program can have many more possible representations of the same solu-

tion than a short program. Other research suggests that bloat serves to protect the non-

redundant code, by making it much more likely that genetic operators will hit redundant

code. Perhaps the most widely accepted theory is the “crossover bias theory [62].” This

states that, because crossover frequently produces single-node or very small programs,

and because very small programs are very unlikely to perform well on most tasks, these

small programs will routinely be ignored by selection. As such, programs of an above

average size have a “selective advantage” over programs of a lower than average size,

and over time, this causes the mean program size to increase.

which states that crossover is biased towards selecting longer subtrees and therefore

results in larger offspring over time [63].

There have been several tactics for dealing with bloat, from applying “parsimony

pressure” [64] (where the fitness measure is decreased based on program length) to

setting absolute limits on the depth and breadth of generated programs [65]. However,

many of these techniques can negatively affect program performance [66]. Instead,

some researchers have turned to alternative ways of representing programs, eliminating

trees and tree-based genetic operators.

2.2.2 Graph-based Genetic Programming

Rather than representing GP individuals as trees, it is also possible to use a graph-based

program representation. An early example is Poli’s Parallel Distributed Genetic Pro-

gramming (PDGP) [67, 68]. PDGP represents individuals as directed graphs in which
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nodes correspond to functions and terminals and edges represent the flow of interme-

diate values; these graphs may be arranged, for example, on a two-dimensional grid of

nodes. PDGP enables non-parameterised reuse of subgraphs (i.e., reuse without expli-

cit subroutines): a reused subgraph is evaluated once and its resulting value is shared

wherever it is referenced, rather than being recomputed at each occurrence. PDGP

is able to use a direct representation to produce neural networks, recurrent transition

networks, and even finite state automata, and supports standard GP operators such as

mutation and crossover, It has been applied to a variety of problems, including natural

language recognition [69].

Other graph-based GP representations exist. Cartesian Genetic Programming (CGP)

is a form of GP introduced in 1999 [70], which represents individuals as directed acyclic

graphs. Each graph consists of a fixed amount of nodes, which in the original research

(and indeed most subsequent implementations) are represented as strings of integers.

Each node has two “connections” to other inputs. This representation has a number of

consequences.

While early implementations of CGP were fully connected, meaning all nodes were

“active” and there was no redundancy, representations quickly grew to include redund-

ant nodes. The reader will recall that in tree-based GP, individuals with a high degree of

redundancy (i.e. bloated individuals) are often worse than those without [58]. In con-

trast, CGP has been shown to benefit from a high degree of redundancy—with optimum

results being produced when ˜95% of nodes are redundant [71].

CGP does not typically make use of a crossover-like genetic operator. The graph

based representation means that mutation is the primary means by which individuals

are modified between generations [72]. This, combined with the fixed length repres-

entation, means that CGP does not suffer from bloat [73]. This matches the suggestion

in [61] that bloat may be inherent to variable length representations—CGP has a fixed

number of nodes. It should be noted that although the number of nodes is typically

fixed, the resulting program length is not (since the connections chosen define the even-

tual shape of the program).
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Despite the benefits of strong typing in GP, there has been little research in the same

area for CGP. Harding et al. took a step towards strongly typed CGP by introducing

Multi-Type CGP (MT-CGP) in 2012 [74]. In MT-CGP functions can accept one of two

types: a real number or a vector of real numbers. The operations performed by each

function change depending on the type passed in. The results showed that giving MT-

CGP access to more than one data type allowed evolution to quickly find competitive

results. In a later experiment, Wilson [46] extended MT-CGP to also include a matrix

type to enable CGP to process images without using direct pixel values as the inputs.

These papers were a step in the right direction, but do not constitute strong typing in

the same sense as STGP.

2.2.3 LLMs: An alternative program synthesis methodology

Large Language Models (LLMs) are a comparatively recent paradigm of machine learn-

ing, emerging from the combination of large-scale self-supervised learning and the trans-

former architecture [75]. Whilst earlier neural language models were already capable

of modelling simple syntactic patterns, the transformer enabled substantially improved

long-range modelling and, crucially, efficient scaling via parallel training. This scaling

trend culminated in so-called “foundation models” that exhibit strong in-context learning

behaviour, with perhaps the first widely-known model being GPT-3 [76]. Shortly there-

after, models trained or fine-tuned explicitly on code (and associated natural-language

data such as documentation, comment strings and issue discussions) demonstrated that

the same next-token prediction objective could be repurposed for program synthesis

tasks, including generating executable functions from natural language specifications [77].

Subsequent systems combined large-scale sampling with selection and filtering pipelines

to solve harder algorithmic tasks (e.g. competitive programming), indicating that per-

formance is often obtained not from a single deterministic generation but from gener-

ating many candidates and selecting those that satisfy constraints [78], not unlike GP

workflows.

In synthesis terms, LLMs typically construct programs by producing code tokens
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autoregressively conditioned on a “prompt”, a natural language description of the pro-

gram to be produced. This implicitly makes use of the statistical regularities of human-

written software. This process differs fundamentally from GP, which treats program syn-

thesis as an explicit search/optimisation process guided by a user-defined fitness func-

tion. The LLM approach can be markedly more sample-efficient in human time: once

trained, generation is rapid, can incorporate domain conventions, and can be guided

by natural-language specifications directly. However, it offers weaker guarantees: func-

tional correctness is not guaranteed, outputs may be brittle under small prompt vari-

ations, and “hallucination,” whereby LLMs output data that is false, non-existent, or

otherwise incorrect, is an issue which plagues LLMs to this day [79]. This necessit-

ates external verification (unit tests, static analysis, execution-based checking, or even

manual review by a human) and often extensive post-processing. By contrast, GP typ-

ically provides a clearer coupling between the objective and the synthesis procedure:

correctness and performance can be embedded directly in fitness evaluation. Another

difference is that GP can discover unconventional solutions not anchored to common

human coding patterns or knowledge. In contrast, LLMs are largely constrained to out-

putting patterns that were part of the training data; it is uncommon that novel solutions

outside of the training data are produced [80]. The corresponding disadvantages of GP

are well known: evolutionary search can be computationally expensive, sensitive to rep-

resentation and operator/terminal choices, and may require careful fitness shaping to

avoid deceptive landscapes. In practice, these paradigms are increasingly complement-

ary: LLMs provide strong priors and a convenient interface, whereas GP/CGP provide

an optimisation and verification framework with explicit behavioural grounding, and

significantly faster candidate generation, allowing orders of magnitude more solutions

to be attempted in a given time period.
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2.3 Machine Learning approaches to Computer Vision

Many varieties of machine learning have been applied to computer vision problems.

Genetic programming is certainly a worthwhile paradigm, and while neural networks

dominate the literature of today where computer vision research is concerned, much

research has nevertheless been done on the subject of applying GP to computer vision.

2.3.1 Genetic Programming Approaches

In general, GP applications for Computer Vision fall into three categories: classification,

enhancement (or processing/modifying images in some way), and feature extraction.

Some applications may combine two or even all three of these categories. Some of the

first GP research to focus on Computer Vision was performed by Tackett in 1993 [58],

shortly after GP was popularised by Koza’s first book. This research used GP to classify

features which had been extracted from images, rather than operating on the images

directly. Soon after, Andre used GP to evolve feature detectors [81], and Koza evolved

detectors that were able to distinguish between the letters “I” and “L” [42]. Both pieces

of research evolved 3 × 3 filters which were applied to an image. In general, this ap-

proach seems to be the most common way of applying GP to Computer Vision: filters

are easy to evolve, and use numerical types, so can be produced as part of a single-type

tree. Breunig attempted to evolve pattern recognition algorithms, with an emphasis on

ensuring evolved algorithms were location independent [82]. Although relatively few

runs produced successful results (roughly 30%), GP was able to evolve location inde-

pendent algorithms.

The GP Computer Vision research mentioned thus far has focused on classification

(with the exception of Tackett [58] who also used GP for feature discovery). Feature ex-

traction is equally well represented1: in one of the earliest examples, Ebner attempted to

evolve an interest operator identical to that of Moravec, and found that a close approx-

1Not just for Computer Vision: GP has been used for feature extraction for non-image domains by several

researchers [83, 84].
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imation could be generated [85]. Shao et al. more recently used GP to extract features

from images [86]. The multiobject GP feature extractor was used to classify features in a

number of known datasets. The results matched or outperformed many state-of-the-art

hand-designed features, as well as features generated by feature learning algorithms.

Image enhancement is a step which is used in nearly all hand-designed computer

vision algorithms [87]. One of the earliest examples of applying GP to enhancement is

the 1996 work by Poli et al. in which the problem was approached from the perspective

of image filtering [88]. GP was used to segment the human brain from MRI images by

evolving low-level filters and applying them to images. The experiment demonstrated

significantly better performance than the state-of-the-art neural networks at the time.

It was concluded that GP was promising and deserving of more research in the Com-

puter Vision domain. More recently, Zhang developed a pre-processing stage using GP

which used feature extraction to produce a maximally separating adaptive thresholding

algorithm [89]. This was used to segment images, as well as being applied as a proof-

of-concept to edge detection, where the results outperformed the Canny edge detection

algorithm based on minimal Bayes risk.

The majority of GP Computer Vision research has used tree-based GP as the rep-

resentation. However, CGP has been demonstrated to work equally well. Montes and

Wyatt [90] used CGP to find centroids of objects in images. Similar work was done

by Paris et al. [91] in which image filters were automatically learned by a hardware

CGP system. The evolved filters used sequences of morphological and logical operators.

Sekanina et al. [72, ch. 6] used CGP to evolve a number of low-level filters for FPGAs, as

well as evolving more complex and advanced image operators such as dilation/erosion

using basic mathematical functions such as sin, square root etc. An image classification

task was also attempted: CGP was used to define transformations on medical images

which significantly improved classification accuracy when using predefined image fea-

tures.

Many of the CGP applications to Computer Vision used direct pixel values and evolved

low level filters. Wilson et al. [46] used an extended version of MT-CGP [74] to allow
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matrix input types. This was the first time that CGP had been used to process a whole-

image input. It was demonstrated that this input format allowed expressive programs to

be evolved. The programs were used for Atari game playing and were shown to be com-

petitive with state-of-the-art Atari benchmark controllers, while requiring less processing

time.

2.3.2 Deep Learning Approaches

It would be remiss not to briefly discuss deep learning in computer vision, given its

near-ubiquity in modern CV pipelines. A foundational and highly influential example of

neural networks applied to image recognition is LeCun et al.’s 1998 work on Convolu-

tional Neural Networks (CNNs) for document recognition [92]. However, it was not until

2012—with Krizhevsky et al.’s AlexNet result on ImageNet [93]—that the modern era

of deep learning in computer vision began in earnest. This seminal work demonstrated

that very large CNNs, trained using GPU acceleration on datasets containing millions of

labelled images, could dramatically improve large-scale visual recognition performance.

This was quickly followed by VGGNet in 2014 [94] and ResNet in 2015 [95], both of

which became widely used as “backbone” classification models (i.e., feature extractors)

underpinning many later architectures. Segmentation was also transformed by deep

learning; for example, U-Net [96] was an early and highly influential encoder–decoder

model introduced for biomedical segmentation, and it (and its variants) remains widely

used [97, 98, 99].

A common characteristic of these deep-learning approaches is their data and com-

pute requirements. Deep neural networks can achieve excellent accuracy, but typically

require substantial labelled datasets and expensive training (often multi-GPU). They are

also commonly regarded as “black boxes” [100], making their internal decision pro-

cesses difficult to interpret, despite extensive work on interpretability and explainability

methods [101, 102].

These developments provide a useful point of comparison for the methods developed

in this thesis. Rather than competing with deep networks on maximum benchmark ac-
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curacy, the aim here is to explore program synthesis: evolving explicit, auditable image-

processing pipelines (and pipelines for other problem domains) whose structure and

operators can be inspected and constrained without specialised inference runtimes. This

is particularly relevant in settings where labelled data are limited, where objectives in-

clude non-differentiable operators or hard constraints (e.g., morphology, conditional

logic, latency/throughput budgets), or where model transparency is a requirement. The

strongly-typed CGP variants introduced in this thesis further constrain the search to se-

mantically valid programs when operating over multiple data modalities (e.g., scalars,

vectors, and whole-image/matrix inputs), aiming to improve search efficiency and pro-

duce pipelines that are both interpretable and practically deployable.

2.3.3 Summary

A primary advantage of Genetic Programming (GP) for computer vision is interpretab-

ility: the learned solution is usually an explicit, human-readable program composed

of known operators, rather than an opaque set of learned parameters. This makes it

feasible to inspect, debug, and reason about failure modes (for example, sensitivity to

illumination, noise, or specific shapes or structures) [103]. In traditional, handcrafted

feature-based pipelines, interpretability exists at the level of manually chosen compon-

ents, but performance relies on hand-crafted design choices that may not transfer well

across datasets. GP retains transparency while also reducing the need for manual re-

design by automatically constructing end-to-end pipelines tailored to the task.

In comparison with deep-learning approaches, GP (and CGP) is often attractive in

situations where data, compute, or deployment constraints dominate. As mentioned,

deep neural networks have a large data requirement, and produce models that are dif-

ficult to audit or compress without additional engineering. GP can be comparatively

sample-efficient when strong primitives are available [104], and can optimise directly

for non-differentiable objectives (discrete morphology or conditional logic, for instance)

without surrogate losses. CGP strengthens these advantages through its graph-based

representation; its ability to reuse intermediate computations via a directed acyclic graph
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is well-suited to complex CV pipelines.



Chapter 3

Strongly Typed Cartesian Genetic

Programming

The words of the well-known saying “Everything should be as simple as possible, but not

simpler,” ring particularly true when it comes to programming, where the aim is often to

build systems that are at once robust, efficient, and yet not excessively complicated. This

“Occam’s razor-driven approach” is a delicate balance to strike, and the introduction

of a strong typing system to Cartesian Genetic Programming embodies this concept,

providing a method of simplifying the system in ways that are inherently robust.

Let us consider a metaphor in the form of the cultivation process of a lemon tree.

A gardener chooses a very specific set of care procedures, nutrients, and pruning tech-

niques based on the species of tree. This approach allows the tree to produce the best

possible lemons and minimises any issues that may arise. In a similar vein, if traditional

CGP can be compared to a “one-size-fits-all” cultivation approach due to its type-agnostic

methodology, then ST–CGP can be likened to a specific, tailored gardening plan, where

the unique “type” of each part of the system is taken into account, resulting in more

robust plants and better yields.

The key novelty of ST–CGP, which this chapter seeks to explore, is the introduction

of a robust typing system akin to those employed by high-level programming languages.

20
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Unlike conventional CGP, which interprets all data uniformly due to its lack of type

awareness, ST–CGP uses strong typing to delineate data and functions. This introduces

a structure that constrains and guides the generation of programs, reducing the search

space by discarding programs that do not comply with these constraints. The analogy

with the well-cultivated lemon tree comes full circle here: just as the gardener ensures

productive growth by guiding the tree’s development, ST–CGP directs program genera-

tion towards greater efficiency and correctness.

In complement to the strong typing system, ST–CGP also integrates additional tech-

niques that typically find less utilisation in the CGP approach. One instance is the in-

corporation of crossover, which is seldom employed in the traditional CGP methodology,

but finds its place in the ST–CGP framework. The latter segments of this chapter fur-

ther explore these supplemental methodologies, explaining their purpose and function

within the ST–CGP system.

3.1 Architecture

Genetic Programming is an inherently abstract domain, which can make for a challen-

ging implementation process. The process of designing a Genetic Programming system

entails a multitude of decisions regarding how each constituent part should be imple-

mented. This characteristic is not exclusive to tree-based Genetic Programming, but

extends to Cartesian Genetic Programming and, in turn, to the Strongly-Typed Cartesian

Genetic Programming proposed in this thesis.

In this section, we explore the architecture of the Strongly-Typed Cartesian Genetic

Programming system in depth, presenting a detailed exposition of each element and ex-

plaining the reasoning underpinning each design choice. The ultimate objective of this

exploration is to describe a “blueprint” that may be implemented by any reader pos-

sessing the requisite technical expertise, thus making the application of Strongly-Typed

Cartesian Genetic Programming accessible beyond the bounds of this work. The section

concludes by highlighting the differences between this architecture and that of the ori-
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ginal, untyped Cartesian Genetic Programming. Throughout this section notes will be

made about the “reference implementation” of ST–CGP. This refers to the implementa-

tion created by the author during this research.

3.1.1 Types

This thesis focuses on the application of strong typing to Cartesian Genetic Program-

ming, on the basis that applying strong typing to tree-based Genetic Programming resul-

ted in many benefits. Before explaining how ST–CGP uses types, it is important to clarify

the concept of strong typing and to understand the nature of types.

Types & Strong Typing

In programming, “types” are a way of categorising values or expressions based on their

characteristics, behaviour, and interactions. Put simply, they allow for the definition of

the set of possible values and operations that can be applied to an expression or value.

Types serve as a fundamental concept in most programming languages and help to en-

sure correctness and reliability in software engineering. They enable the compiler (or

interpreter) to enforce constraints on how values can be combined and manipulated,

and can therefore help to detect errors early in the development process by ensuring

syntactical correctness. The appropriate use of types contributes to robust and main-

tainable software, by facilitating easily readable, reusable code.

The author shall focus mainly on object-oriented languages in this thesis, as that is

what was used for the reference implementation of ST–CGP. Generally, object-oriented

programming languages break types into three categories:

• primitive types—the simplest types, from which other types are constructed—such

as integers, floating point numbers, and booleans.

• composite types—more complex types, formed using the primitive types of the

language—such as arrays, classes, and structures.
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• abstract types—used specifically in object oriented languages, and cannot be in-

stantiated directly, but rather serve as an aid to writing typed programs—such as

interfaces and abstract classes.

The definition and implementation of types varies widely across programming lan-

guages. Although there is some argument about the exact classification of languages, a

commonly accepted method is to designate typed languages as either strongly or weakly

typed, and either statically or dynamically typed. In this classification, strong typing

refers to type systems in which strict type checking is performed. Typically, explicit

type declarations are required, and type conversion is not performed implicitly. This

ensures that operations are only performed on values of compatible types, thereby re-

ducing the likelihood of unexpected behaviour and exceptions. Weak typing, on the

other hand, refers to type systems in which type conversions typically occur implicitly,

and type checking is less strict. This can lead to unexpected behaviour if the types are

not handled carefully. Static typing refers to languages which perform type checking at

compile time—before the program ever executes. Dynamic typing refers to languages

which perform type checking at runtime, as the program executes. Generally speaking,

statically typed languages are more likely to be strongly typed, and dynamically typed

languages are more likely to be weakly typed, but there are languages which do not fit

this trend: dynamic, strongly typed languages are fairly common, for example.

The selection between strong and weak typing, as well as static and dynamic typing,

relies on the specific objectives of the programming language’s design, the characteristics

of the problems expected to be tackled using the language, and various other consider-

ations. Each approach encompasses advantages and disadvantages, including factors

such as development simplicity and speed, code comprehensibility, ease of maintenance,

execution efficiency, and type safety.

The name “Strongly Typed Cartesian Genetic Programming” reveals the nature of its

typing system—it is strongly typed! It is also statically typed; thereby guaranteeing that

the evolved programs are both type-safe and syntactically valid prior to their execution.
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Types in ST–CGP

As previously mentioned, the programs generated by ST–CGP exhibit both strong and

static typing. However, the requirement for constructing syntactically valid programs

extends beyond the programs themselves. To ensure the generation of valid programs,

the entire ST–CGP system must possess an awareness of types1. Therefore, all elements

of the underlying CGP engine are equipped with type annotations, including function

inputs and outputs, as well as input and output variables of the system as a whole.

Furthermore, evolutionary operations such as mutation and crossover are designed to

maintain type-awareness, guaranteeing that these operations always produce individu-

als that are syntactically correct. A more comprehensive exploration of type usage in

functions is presented in subsection 3.1.2, while an extensive explanation of the type-

aware nature of evolutionary operators is provided in subsection 3.2.1.

The representation of types can vary across different implementations. In the ref-

erence implementation, the programmer is required to assign a unique string to each

type. Each component of an individual—i.e. each gene in the phenotype—possesses

a string property that stores one of these “type strings.” To illustrate, let’s consider an

example where the programmer designates two types: an integer value and a floating-

point value. In this scenario, the programmer might choose to assign the string "INT" to

the integer type and the string "FLOAT" to the float type. If these are the only specified

types, then all functions, inputs, and outputs must be either "INT" or "FLOAT".

3.1.2 Functions

Functions play a crucial role in the design and use of programming languages and sys-

tems. Programming languages can be classified into distinct categories based on their

approach to function construction and utilisation. These categories can be further sub-

categorised. The three most common categories are as follows:

1Technically, the generation of syntactically invalid programs could be permitted. However, in testing,

it was found that failing to constrain program generation to valid programs resulted in such a dramatic

degradation in performance that it was not worth pursuing further.
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• Imperative programming languages, like C, employ a series of statements to ma-

nipulate the state of a program. Procedural programming, a common subset of im-

perative programming, employs both functions and sequences of individual state-

ments to execute program logic.

• Functional languages, such as Lisp, utilise “pure” functions that do not alter the

program’s state. The output of a function remains constant when provided with

the same input. Programs in functional languages are often composed of inter-

connected function calls applied to input data, rather than a sequence of isolated

statements.

• Object-oriented languages facilitate program organisation through the use of classes,

which can incorporate both functions and properties (variables). These classes can

be instantiated, and typically support polymorphism, where subclasses can extend

other classes.

Programming style in ST–CGP

The programs generated by ST–CGP follow a functional style akin to Lisp; an example is

given in Fig. 3.1. Consequently, they share the characteristics associated with functional

languages, as mentioned earlier: lack of state within programs, outputs remaining con-

sistent for a given input, and the absence of isolated statements. This approach offers

both advantages and disadvantages. On the positive side, the resulting programs are

relatively readable for human comprehension, and interpreters can be easily developed.

Additionally, the absence of state simplifies the process of reasoning about and debug-

ging program execution. However, the lack of state and the absence of more intricate

paradigms like classes may restrict the expressive potential of the programs. Never-

theless, this research has discovered that such a programming style proves more than

sufficient for the selected problems.

Despite the functional nature of the output produced by ST–CGP, the implementa-

tion of ST–CGP itself is not bound by the same style requirement. In fact, the reference



26 CHAPTER 3. STRONGLY TYPED CARTESIAN GENETIC PROGRAMMING

(add 2 (sub 3 (round 1.2)))

Figure 3.1: An example of a program produced by ST–CGP. Whilst the program is simple,

note the lack of state, and its functional nature.

implementation is coded in C#, an object-oriented language. The author discovered

that the advantages offered by object-oriented programming were particularly valuable

during the implementation of the ST–CGP system. Notably, all system components were

defined as separate classes, facilitating a faster development process and greatly sim-

plifying debugging procedures. Additionally, employing an object-oriented approach

allowed for polymorphic implementation of functions in C#, even though the outputs of

ST–CGP do not inherently possess polymorphic characteristics. A brief discussion on this

matter is presented towards the end of this subsection.

Node Functions

In ST–CGP, a distinction is made between “Node Functions” and “Implementation Func-

tions,” in order to differentiate between functions written in the implementation lan-

guage and functions used in the ST–CGP outputs. For example, the function which de-

termines program fitness is an implementation function, whereas a function contained

in an ST–CGP program to add two numbers together is a node function. Node func-

tions are a proxy to implementation functions; in other words, each node function has a

corresponding implementation function.

Node Functions are the main constituents of individuals within ST–CGP. Each node

function must have an output type specified; void functions that do not return a value

are not permitted. Additionally, node functions can have any number of inputs, each of

which also have a type. Unlike CGP, which allows up to two parameters per function,

ST–CGP allows node functions of any arity to be supplied. This is because the mutation

mechanism described in subsection 3.2.1 is able to take into account the varying arities

of all node functions in the system. Function arity is determined from the number of
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input types specified. It is assumed that node functions are pure—although, in practice,

this is hard to enforce.

As mentioned, node functions are proxies to implementation functions—each node

function has a corresponding implementation function, and that is what is actually ex-

ecuted when the node function is executed by the ST–CGP interpreter. The ST–CGP in-

terpreter automatically supplies the inputs to the implementation function and receives

the output, before passing that to the next function in the program.

Finally, each node function is given a name. This name must be unique to each node

function from the perspective of ST–CGP outputs, so even if polymorphic implement-

ation functions are used, a separate node function must be used if different types are

to be supplied to the function. Fig. 3.2a demonstrates this concept with a polymorphic

implementation function (Fig. 3.2a which adds two numbers together. Due to the poly-

morphic nature of C#, both the inputs to, and the output of, the function can be specified

as the primitive type object. Two node functions can then be defined: one which uses

the implementation function with "INT" parameters (Fig. 3.2b) and one which uses it

with "FLOAT" parameters (Fig. 3.2c). In practice, the implementation function performs

all calculations using floating point numbers.

In the reference implementation, C#’s ability to provide function references is lever-

aged to allow the NodeFunction class to refer to the implementation function which is

executed. This is in contrast to CGP where a function table and lookup index is used.

3.1.3 Genotype & Phenotype Representation

In GP, “genotype” refers to the encoded representation of a candidate solution, whereas

“phenotype” refers to the decoded, executable program or expression that the geno-

type represents. In tree-based GP, the genotype is typically the tree-structured encoding

(nodes as functions/terminals and their connections), while the phenotype is the execut-

able program/function that the tree evaluates to; in CGP, the genotype is a fixed-length

genome formed of nodes (either arranged in a “grid” or a single linear “row”) encod-

ing a feed-forward directed acyclic graph. The genotype contains node functions plus
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object _Add(object arg1, object arg2) {

return Convert.ToDouble(arg1) + Convert.ToDouble(arg2);

}

(a) An implementation function that adds two numbers together, after converting them to float-

ing point numbers.

var addInt =

new NodeFunction("ADD_I", _Add, ["INT", "INT"], "INT");

(b) A node function that calls the "_Add" implementation function with two parameters of type

"INT", returning an "INT" value.

var addFloat =

new NodeFunction("ADD_F", _Add, ["FLOAT", "FLOAT"], "FLOAT");

(c) A node function that calls the "_Add" implementation function with two parameters of type

"FLOAT", returning a "FLOAT" value.

Figure 3.2: A polymorphic implementation function with several node functions, as used

in the reference implementation written in C#.
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connection genes, often with inactive “junk” nodes, while the phenotype is the result-

ing expressed computation graph/program formed by the active nodes. The process of

converting genotype to phenotype is called the genotype–phenotype conversion (also

commonly referred to as genotype-phenotype mapping, expression, or decoding). In

CGP, the genotype–phenotype conversion involves decoding the fixed-length genome

into a feed-forward DAG by assigning each node its function and input connections (re-

specting levels-back/acyclic constraints), then tracing backwards from the designated

output genes to identify the active nodes and assembling only this active subgraph into

the executable program.

Strongly Typed Cartesian Genetic Programming introduces a series of substantial

modifications designed to enrich the original CGP representation, thus facilitating the

new features such as strong typing, variable function arity, and so on. The way ST–

CGP implements evolutionary operations such as mutation and crossover, while strictly

adhering to type constraints, distinguishes it from conventional CGP.

This subsection is devoted to detailing the fundamental constituents of ST–CGP’s

genotype-phenotype representation, along with its distinctive characteristics and the ra-

tionale behind the necessary adaptations from the classic CGP model. The author will

describe how ST–CGP presents the genotype as a sequence of complex nodes, and the

phenotype as a directed acyclic graph, as well as what this means in practice. Special at-

tention will be paid to the type constraints of the nodes and their role in the construction

and execution of individuals. By the end of the subsection, the reader should understand

how the genotype and phenotype are represented and converted in ST–CGP, and by ex-

tension, in CGP (which is a broadly similar, if simpler, representation and conversion

process).

Genotype - The Grid

Cartesian Genetic Programming is named after its use of a two-dimensional grid to rep-

resent the genotype. This “grid” representation changed over time to be a grid with a

single row with many columns, as opposed to a grid with many rows and columns. ST–
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CGP adopts this single row representation2. An important distinction to highlight is that

ST–CGP does not utilise the levels-back parameter, which normally constrains the level

to which a node can reference previous nodes. In contrast, a particular node within the

ST–CGP grid can make references to any other node that holds a lower index.

Each grid in ST–CGP can have one or more output node. Each output node must

produce a value of the specified type—this type is excluded from mutation, so the grid

will always return values that correspond to the supplied output types. In the reference

implementation, when constructing a grid, the output types are specified as an array,

for example: ["INT", "INT"]. This will result in two output nodes, each of which must

return an "INT" value.

Nodes

While nodes in Cartesian Genetic Programming comprise three integers and the entire

genotype of an individual is a simple string of integers, ST–CGP adopts a more intricate

method. In ST–CGP, nodes possess a reference to a node function, not an index to a

function table. As hinted at previously, ST–CGP’s nodes are not limited to a fixed number

of inputs. Rather, they can have as many inputs as the node function necessitates. For

instance, a node featuring a function of 1-arity will require one input, while a node

with a function of 3-arity will necessitate three inputs. Notably, mutations may alter the

node function reference, leading to changes in the number of inputs for the node. A

convenient technique to accommodate this fluctuating number of inputs is to use arrays.

Grid outputs are a special case of node. Unlike program nodes, which have 0-N inputs

and always have exactly one node function, output nodes have no node function, and

always have a single input. This means that they are essentially just a pointer to a node

in the program. Output nodes have a fixed type, set by the user; as such, an output node

with type T must always point to a program node that outputs type T for the program

to be valid. An output node can have its pointer-like input modified by mutation much

2The reference implementation allows a two-dimensional grid to be specified if required, however in

testing this showed no advantage over a single row.
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like the inputs of any other node.

In the reference implementation, the List class provided by C# is employed to rep-

resent the input array, in preference to primitive arrays, offering the runtime additional

convenience functions. Besides the node function and inputs, each node is assigned an

index, signifying its position in the overall grid. This index serves as the reference for

nodes to other nodes within the grid, assisting the interpreter in navigating through the

grid during execution. Consequently, each node’s input array becomes a List<int>. It is

crucial to ensure these “node references” stay within the boundaries of the overall grid.

The reference ST–CGP interpreter carries out checks before grid execution to guaran-

tee this, and the evolutionary operators are designed to prevent node references from

exceeding grid boundaries.

The node function of a specific node defines its output type. Consequently, altering

the node function, perhaps through mutation, changes the output type of that node. As

previously discussed, output nodes are shielded from type changes, though alterations

to the node reference remain permissible. A situation could arise wherein evolutionary

operators modify the node function so that it demands inputs of a specific type, but no

nodes with lower indices provide the necessary output type. There are two potential

solutions to this challenge:

1. Adopt a fail-fast strategy: should an evolutionary operator lead to an invalid state

in which a node fails to locate a node of lower index outputting the correct type,

the operator should be discarded and the process retried.

2. Introduce a constraint to the system that mandates a zero-arity function for each

type. In a system with N pre-defined node functions and M types, populate the

first N nodes by applying all known node functions, assigning one to each node.

Lastly, exclude these nodes from the influence of evolutionary operators. As N is

always greater than or equal to M, it guarantees that for any modifiable node (a

node with index > N) there is always at least one node of lower index available

that can provide the required output type.
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Although the first solution appears simpler to implement and the second introduces

an additional constraint, the second solution proves to be superior in performance. The

initial solution tends to result in excessive computational waste during the evolution

process, whereas the second solution guarantees, subject to evolutionary operators re-

specting the unmodifiable nodes, there will be no failed operations. Consequently, the

mutation process is faster, reducing the generation time significantly. This, in turn, ac-

celerates the overall evolutionary process, leading to more efficient performance.

Nodes which can be modified by evolutionary operators are referred to as “program

nodes.” New genetic material is introduced to the population through changes to the

program nodes over the course of the evolutionary process. The output nodes and un-

modifiable nodes never change, and will be the same (apart from the input to the output

nodes) for each individual in the population.

In the context of evolutionary operators, each input for a node and the node function

are collectively considered as genes. This implies, for instance, that a node with a 2-arity

node function, consists of three genes: the node function itself and two inputs. These

genes can be the target of evolutionary operators, which may act on zero, one, or more

of these elements, depending on the operator.

Genotype to Phenotype Conversion

Despite the genotype being depicted as a two-dimensional grid, the phenotype, once

converted, is represented as a Directed Acyclic Graph, also known as a DAG. A DAG

is a type of graph comprising nodes and directed edges. Nodes typically encapsulate

either information or operations. In the context of ST–CGP, nodes equate to the ones

discussed in section 3.1.3. Directed edges can be visualised as arrows linking several

nodes. Importantly, the term “acyclic” denotes the absence of loops or cycles within the

graph, implying that once a node has been traversed, it is not possible to return to the

same node by following a series of edges.

Given the constraints imposed by ST–CGP, it is feasible to convert a DAG into a

tree-based representation. Following this transformation, code can be generated using
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in-order depth-first tree traversal. However, it should be highlighted that the conversion

from a DAG to a tree is not strictly required. Indeed, under the constraints set by ST–

CGP, code could directly be generated from the DAG. However, this functionality was

not implemented as part of this thesis. One disadvantage of the DAG-to-tree conversion

is the resulting duplication of both any reused nodes, whether they are terminal or an

internal node. This means that, during evaluation, the corresponding result of that node

will be recalculated as many times as it is reused. Fig. 3.3 demonstrates the entire

process of conversion from genotype to phenotype.

The reference implementation generates code in a functional programming style,

where all function calls are inlined. However, alternative programming styles could also

be adopted. Fig. 3.4a provides pseudocode that closely mirrors the code that would be

generated by the reference implementation, given the tree depicted in Fig. 3.3c. Con-

versely, Fig. 3.4b presents a potential procedural rendition of the same pseudocode.

3.2 Evolutionary Mechanisms

Evolutionary mechanisms hold a pivotal role in the design of any evolutionary algorithm

framework. These mechanisms, acting as the foundation and guiding principles of evol-

utionary processes, precisely delineate the manner in which the framework progresses

and refines its solutions. They serve to articulate the operation of evolutionary operators,

those being the drivers of diversity and innovation within the population.

The primary evolutionary operators in CGP—mutation and selection—all interact

with the evolving solutions in unique ways, generating variation and ensuring the sur-

vival and propagation of the most effective solutions. Mutation introduces spontaneous

changes, prompting new explorations in the solution space. Selection, meanwhile, acts

as a filter, prioritising solutions that exhibit a higher degree of fitness.

Furthermore, these mechanisms incorporate the overarching evolution strategy util-

ised to guide the development of the population over generations. This strategy de-

termines the core mechanics of how new solutions are generated, evaluated, and then
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(a) A simple grid in ST–CGP. Each node has an index, a function (here represented by the function

name), and a set of inputs. Note that node 2 is redundant; it is not actually used in producing

the output.
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(b) The directed acyclic graph resulting from the grid. Note the reuse of nodes.
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(c) The tree produced from the directed acyclic graph. Note that terminal nodes are now duplic-

ated - a drawback to this representation.

Figure 3.3: The process of Genotype-Phenotype conversion in ST–CGP.
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mul(add(3, 5), sub(5, 5))

(a) Functional pseudocode generated from the tree.

// Nodes

node0() {

return 3;

}

node1() {

return 5;

}

node3() {

return add(node0(), node1());

}

node4() {

return sub(node1(), node1());

}

node5() {

return mul(node3(), node4());

}

// Outputs

node6() {

return node5();

}

main() {

return node6();

}

(b) Procedural pseudocode generated from the tree.

Figure 3.4: Code generated from a tree.
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introduced back into the population. This influences the trajectory of the evolution,

steering it towards areas of the solution space that exhibit potential.

Additionally, evolutionary mechanisms have a hand in the selection of hyperparamet-

ers, the auxiliary numerical values that tune the behaviour of the evolutionary algorithm.

Hyperparameters might define population size, mutation rate, or the degree of selection

pressure, among other aspects. Their values can considerably impact the performance

of the evolutionary process.

The aim of this section is two-fold: first, to explain in simple terms how the evolu-

tionary operators in ST–CGP function, and second, to share the practical reasons behind

the selection of different methods and parameters. This discussion should make the

evolutionary specifics of ST–CGP more understandable, giving a clearer picture of how

its evolutionary mechanisms work.

3.2.1 Mutation

Similarly to CGP, mutation in ST–CGP is the primary method of introducing new genetic

material into populations. One of the standard methods of mutation in CGP is called

“until active” mutation, which seeks to mutate genes at random until an active gene

(one that is part of the set of active nodes) is changed:

1. The list of active nodes is recorded.

2. A node is selected at random from the program nodes.

3. A gene belonging to the node is selected at random.

4. One of the node’s genes is changed—either an input reference, or the node func-

tion. The new gene is selected at random.

5. The list of active nodes is recorded once more.

6. If the new list of active nodes matches original list, the process is repeated. Other-

wise, the mutation process concludes.
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This approach of modifying individuals was originally devised for systems that do

not incorporate typing. Naturally, the introduction of strong typing adds an extra layer

of complexity to such a function. To produce a semantically correct program tree, it is

essential that all nodes, including their arguments, align with the correct type. There

are two strategies by which this requirement can be met:

Option 1: When altering a function for a specific node, restrict the selection of potential

new functions to those which share an identical signature with the current function3.

When altering an input that is supplied as an argument to the node, ensure that the

newly chosen input has the same type as the previous input.

The main advantage of this option lies in its simplicity of implementation—one just

needs to select a new function or node that aligns with the types. However, upon more

careful examination, it becomes evident that this seemingly advantageous option car-

ries significant drawbacks. By confining the selection of new functions to those with

matching return types, the overall “type structure” of the individual remains static. This

drastically narrows down the search space accessible to that individual, often hindering

the individual from ever attaining an optimal solution.

Option 2: When altering a function for a specific node, permit any function to substi-

tute the current function. In a manner analogous to Option 1, when changing an input

presented as an argument to the node, it is required again that the newly chosen input

matches the type of the previous input. The advantage and disadvantage of this option

stand in contrast to Option 1—it offers an individual the capacity to traverse a substan-

tially larger portion of the search space by enabling the type structure of the individual

to evolve over time. However, the task of preserving semantic correctness escalates to a

significantly more complex challenge.

In designing ST–CGP, the author devised a technique that ensures the maintenance of

semantic correctness of an individual, even while allowing free substitution of functions

3This implies that both the return type and the argument types must be an exact match. For instance, if

the current function returns an "INT" and accepts ["INT", "INT"] as inputs, any replacement function

must also return an "INT" and accepts ["INT", "INT"] as arguments.
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as depicted in Option 2. This can be applied as part of a modified until active mutation

process, a detailed explanation of which follows.

Step 1: Record the list of active nodes

The initial step, as stated in the preceding list, is to record a list of the active nodes prior

to mutation. Active nodes are those which contribute to the generation of an output

from the individual, given a specific input. If a node is absent from the active list, it is

referred to as inactive or redundant. Research by Miller [71] revealed that a considerable

degree of redundancy is advantageous to the evolutionary process. In fact, an optimum

level of redundancy can be as high as 95%.

In order to collect the active node list for a specific output node, an in-order tra-

versal technique is used. This traversal begins at the output node, and the active list

is initialised to the empty set. Observant readers may find a similarity with the actual

evaluation of an output, which also utilises in-order traversal. As each node is visited

during the traversal, the index of that node is added to the active list if it isn’t already

part of it. Once the traversal is complete, the active list encompasses all active nodes

that are connected to the initial node. If an individual possesses multiple output nodes,

the active node list is assembled for each node. Subsequently, these lists are combined,

with any duplicate entries being removed.

In the reference implementation, the traversal function used to evaluating outputs,

gather active node lists, and ensure semantic type correctness leverages a stack to help

with traversal. For each node that is visited, its inputs are added to the top of the stack.

Then, the first item on the stack is popped, and processed by a callback supplied to

the traversal function. The callback is provided with a reference to the node that has

been popped. Once the callback has finished executing, any nodes used as inputs to

the current node are added to the stack. This is repeated until the stack is empty. This

method of traversal is by no means obligatory but presents a memory-efficient way of

performing depth-first in-order traversal.
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Step 2: Select a node at random

Following the collection of the active list, a node is randomly selected from the indi-

vidual’s program node list. This selection process employs a uniform probability distribu-

tion, meaning that each node possesses an equal likelihood of being chosen. Expressed

mathematically,

p(selection) =
1
|G| ,

where G symbolises the set of program nodes.

It should be noted that for the purposes of mutation the initial set of function nodes

kept at the beginning of the set of nodes are considered sacrosanct—they may not be

selected for mutation, and are not included in the selection process described above.

The reader is referred to Section 3.1.3 if a reminder of the purpose of these nodes is

required.

An important point to remember for mutation in this context is the unmodifiability

of the initial set of function nodes. These nodes, located at the start of the grid, are

excluded from mutation and are not part of the selection process.

Step 3: Select a gene from the node at random

Once a node has been selected, the next step involves choosing a gene associated with

that particular node for mutation. In the context of ST–CGP, the term “gene” encom-

passes both the inputs supplied to the node and the node function assigned to the node.

During each mutation cycle, precisely one gene is chosen for mutation. It is important to

note that altering the function assigned to the node can result in more than one change

to the grid, as explained later. Similar to the process of node selection, a uniform prob-

ability distribution is employed to select the gene. Each gene has an equal probability of

being chosen, ensuring a fair selection. To illustrate, consider a scenario where a node

has two inputs. In this case, there are three genes: the function and each of the inputs.

Consequently, each gene has a one in three chance of being selected.
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Step 4: Modify the gene

The modification of the chosen gene represents a crucial step in the process as it in-

troduces fresh genetic material into the individual. The specific method employed to

modify the gene varies based on whether an input or a function has been selected.

If the selected gene happens to be the node function assigned to the node, a new

node function is randomly chosen from the list of node functions that were defined

during the creation of the individual. It is worth noting that the specific type or arity

of the function is not significant at this stage—any discrepancies or inconsistencies in

terms of type or arity are addressed and resolved in Step 5.

Alternatively, if the selected gene corresponds to an input, a node is chosen at ran-

dom from the list of program nodes to replace the input. The replacement node must

adhere to the following constraints:

• The index of the replacement node must be strictly lower than the index of the

node being mutated.

• The replacement node must possess the same return type as the input being sub-

stituted.

While the new input will always have the correct type, there may be situations where

the inputs of that particular node are not syntactically correct. This can occur, for in-

stance, if an input to the node undergoes a mutation that alters its function and changes

its type accordingly. If such a situation arises, it will be rectified in Step 5.

Step 5: Ensure syntactic correctness

Ensuring type correctness represents the most intricate stage of mutation in ST–CGP and

serves as the most significant enhancement compared to conventional CGP. The preced-

ing step, which involves modifying the selected gene, has the possibility of yielding a

program that is syntactically incorrect. To maintain compliance with the prerequisite
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that all programs must be syntactically correct, an additional traversal of the individual

is necessary to address any problems. The procedure is carried out as follows:

1. Initialise a stack of nodes containing the list of output nodes.

2. Initialise a set of nodes—which will keep track of nodes which have been visited—

to the empty set.

3. While the stack is not empty:

(a) Pop the top node from the stack (refer to this as the current node).

(b) For each input type required by the node function on the current node (refer

to this as the current input):

i. If the return type of the node pointed to by the current input does not

match the required type, select a new node of the correct type with an

index less than the current node, and set the current input to the newly

selected input.

ii. If the current input (after the above step has been carried out) is not

present in the visited node list, push it onto the stack.

(c) If the input list contains more inputs than are required by the function, re-

move excess inputs.

(d) Add the node to the set of visited nodes.

Following the completion of this procedure, it is guaranteed that the active nodes

constitute a program that is syntactically correct. However, the same guarantee does

not extend to redundant nodes, as there may exist incorrect type structures within the

unused portions of the list of program nodes. Nevertheless, this is not a concern since

future mutations will once again enforce syntactic correctness by adhering to the afore-

mentioned procedure. In fact, granting the redundant nodes the freedom to disregard

type constraints yields two advantages. Firstly, it allows for a wider exploration of the

search space. Secondly, it reduces the time required for a mutation, as only the active

nodes are taken into consideration.
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Step 6: Determine if mutation must continue

Due to the random selection of a node from the complete set of program nodes in Step 2,

it is possible for mutations to exclusively occur within redundant sections of the program

nodes set, resulting in no impact on the actual program. In ST–CGP, an “until active”

mutation approach is utilised. This means that the mutation process is repeated until a

change is observed in the program. To initiate this step, the list of active nodes is once

again collected. If the newly obtained list of active nodes is identical to the one collected

at the beginning of the mutation, it indicates that the program remains unchanged, and

thus, mutation must be performed again. Conversely, if the lists differ, it signifies that

mutation has concluded.

Listing 1 is a pseudocode listing for this mutation technique. Note that Step 5 de-

scribed above begins on Line 23 of the listing.

1 originalActive = graph.activeNodes

2 activeChanged = false

3 while (activeChanged == false) {

4 selectedNode = select random node from graph

5 if (selectedNode is an output node) {

6 // output nodes have no function and just one input, so can only

change the input↪→

7 requiredType = selectedNode.outputType

8 selectedNode.inputs[0] = select random node where outputType ==

requiredType and index < selectedNode.index↪→

9 } else {

10 target = random int between 0 and num of inputs for selectedNode

11 if (target == 0) {

12 // change the function

13 newFunc = randomly choose any known node function

14 selectedNode.func = newFunc

15 } else {

16 // change an input

17 requiredType = selectedNode.inputs[target-1]



3.2. EVOLUTIONARY MECHANISMS 43

18 selectedNode.inputs[target-1] = select random node where

outputType == requiredType and index < selectedNode.index↪→

19 }

20 }

21

22 // fix inputs of all active nodes

23 nodesToFix = stack containing all output nodes

24 while (nodesToFix is not empty) {

25 currNode = nodesToFix.pop()

26 ensure currNode.inputs is the same length as currNode.func expected

input types↪→

27 for each input in currNode.inputs:

28 if (input is the wrong type) {

29 input = select random node where outputType == requiredType

and index < selectedNode.index↪→

30 nodesToFix.push(input)

31 }

32 }

33 newActive = graph.activeNodes

34 if (newActive != originalActive) {

35 activeChanged = true

36 }

37 }

Listing 1: Pseudocode for the typed until-active mutation technique used in ST–CGP.

3.2.2 Evolution Strategy

The term “evolution strategy” (ES) is commonly used to describe the parent–offspring

selection scheme by which candidate solutions are generated and a new set of parents is

chosen each generation. Broadly, an ES specifies how many parents are used to generate

offspring, how many offspring are produced, and whether selection is performed from

offspring only or from the union of parents and offspring. The most common schemes

are:
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• (1 + 1)-ES: One parent → one offspring. The next parent is chosen as the better

of the parent and offspring (elitist selection).

• (µ, λ)-ES: µ parents → λ offspring. The comma indicates that selection is per-

formed from the offspring only; all parents are discarded (non-elitist replacement).

• (µ + λ)-ES: µ parents → λ offspring. Selection is performed from parents ∪

offspring (elitist replacement), preserving the best-so-far individual.

Cartesian Genetic Programming commonly employs a (1 + λ)-ES selection scheme,

with a small λ often less than five. CGP typically allows neutral drift, whereby an

offspring with fitness equal to its parent may replace the parent. This permits changes

to inactive genes without loss of fitness. While much of the CGP literature adopts this

scheme, ST–CGP uses a slightly more intricate variant. The following procedures are

followed to generate a new population in each generation:

1. The individual with the highest fitness score from the previous generation is added

to the new population.

2. Half of the remaining population size is filled by generating individuals through

mutation of an individual selected via tournament selection.

3. A quarter of the remaining population size is filled by generating individuals through

mutation of the individual with the best fitness score from the previous generation.

4. The remaining portion of the population size is filled by randomly generating in-

dividuals.

• The preservation of the best individual “so far” throughout the evolution process,

ensuring that it is not lost between generations.

• The generation of the new population is not excessively biased towards the elite

members of the previous generation’s population, as approximately 50% of the

new population is generated through tournament selection.
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• Nevertheless, some preference is given to the elite members of the population

through the 25% elite selection.

• Additionally, each generation introduces entirely new genetic material, thereby

enhancing the diversity. This effect is particularly noticeable in the early stages of

evolution when programs tend to be shorter and less complex, making the newly

generated programs more likely to be relevant.

In the initial testing phase of ST–CGP, the effectiveness of the (1+ λ)-ES strategy was

evaluated, but it was found to be less successful compared to utilising a larger population

with the aforementioned technique. The author suggests that this discrepancy may be

attributed to the introduction of types, which, despite increasing the relevance of the

search space, also significantly increases its size. As such, a (1 + λ)-ES strategy alone

proves insufficient in adequately exploring the entire search space and achieving good

coverage. The technique described above proved to be a good compromise between

elitism and diversity.

3.2.3 Hyperparameters

As is customary in most GP frameworks, ST–CGP allows for the fine-tuning of hyperpara-

meters prior to commencing a run. However, in pursuit of user-friendliness and ease of

implementation, ST–CGP simplifies the hyperparameter selection process by omitting

certain hyperparameters typically associated with CGP. Therefore, ST–CGP presents a

concise set of exposed hyperparameters that can be adjusted to customise the system

according to specific requirements.

• Population size—the number of individuals in the population.

• Node count—the fixed 4 number of nodes contained in each individual.

4In the reference implementation, the number of nodes is fixed, though there is no technical reason

preventing it from being variable. Of course, the number of active nodes is variable due to nature of the

genetic operators.
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• Max. Generations—the maximum number of generations to be performed.

• Max. Time—the maximum amount of time5 for the entire evolution process.

• Fitness threshold—a value below which ST–CGP considers the problem “solved”

and will exit early.

Allowing both a maximum number of generations and a maximum evolution time

to be specified has several advantages. First, it supports fair comparisons between runs

and across techniques: a generation cap provides a clear, step-based measure of compu-

tational effort (i.e., how hard the evolutionary process was allowed to work), which is

useful when comparing search dynamics under similar evaluation models. In contrast,

a time cap reflects a real-world resource constraint: given the same wall-clock budget,

can one technique achieve more progress than another, especially when evaluation cost

varies due to implementation details (e.g., interpreters, caching, or parallelism)? Using

both criteria also makes termination more robust, preventing very slow runs from con-

suming excessive resources and very fast runs from implicitly gaining an advantage by

simply completing far more generations.

3.3 Advanced Optimisation Techniques

Genetic Programming systems are often used to tackle complex problems. To ensure

a timely exploration of such large and complex search spaces, advanced optimisation

techniques can be used. These techniques, which span from algorithmic enhancements

to computational shortcuts, play a pivotal role in equipping ST–CGP to effectively tackle

complex problems. They serve to enhance the efficiency of computations, bolster the

quality of solutions, and offer more flexibility in handling diverse problem domains.

Through the optimisation of ST–CGP, we can drive the evolution of solutions that are

not only optimal but are also found with greater computational efficiency. Hence, the

5In the reference implementation, specified in seconds.
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exploration and application of these advanced optimisation techniques are of crucial

importance in the progressive evolution of ST–CGP.

In this section, we explore the intricacies of Strongly Typed Cartesian Genetic Pro-

gramming (ST–CGP) in more detail, specifically focusing on the deployment of various

advanced optimisation techniques that serve to augment its performance.

Firstly, we explore the implementation of crossover, a prevalent concept in tradi-

tional Genetic Programming (GP) yet somewhat uncharted in the realm of Cartesian

Genetic Programming (CGP). The focus then shifts to multi-objective optimisation. The

challenge here is to handle competing objectives within the evolutionary process and

achieve a balance that satisfies, as far as possible, all objectives. Through this explora-

tion, we seek to illuminate the effects and potential benefits of multi-objective optimisa-

tion within ST–CGP.

The concept of “subgrids” is also examined, a technique that allows for the creation

and evolution of reusable small grids of nodes. These subgrids, which offer the prospect

of greater computational efficiency and modularity, can be seen as a unique tool in the

evolution of ST–CGP solutions.

Lastly, we investigate efficiency improvements, such as the application of memoisa-

tion caching. By storing the results of expensive function calls and reusing them when

the same inputs occur, memoisation caching presents an avenue for enhancing compu-

tational performance.

3.3.1 Crossover

In the realm of Genetic Programming, the technique of crossover has been extensively

studied and applied. However, its application within Cartesian Genetic Programming has

received considerably less attention. Unlike GP, CGP predominantly relies on mutation

operators to drive the evolution of its solutions. Crossover, on the other hand, allows for

the recombination of diverse solutions, thereby facilitating the exchange and blending

of successful characteristics. It is reasonable to assume that the benefits observed in GP

through the use of crossover could potentially extend to CGP if crossover were to be
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incorporated. Julian Miller, the late creator of CGP, noted that while the omission of

crossover was a deliberate design choice in the original form of CGP, it would still be

advantageous to investigate its potential benefits.

The author explored the application of two types of crossover to ST–CGP. The first

type, named “full crossover” in this study, closely resembles the standard two-point cros-

sover commonly employed in GP. The second type introduces a novel approach to cros-

sover called “genetic rewiring,” which enables crossover operations without altering

the structural composition of an individual.

Full Crossover and Genetic Rewiring

In tree-based GP, two-point crossover is a genetic operator which operates by first choos-

ing one crossover point in each of the two parent trees. Each point marks the root of a

subtree. These subtrees, comprising the selected node and all its descendants, are then

exchanged between the parents. The swap replaces each chosen subtree with the cor-

responding subtree from the other parent, creating two new offspring while preserving

the overall tree structure (and “shape”) of each.

ST–CGP includes a similar mechanism. Because its genome is linear rather than

tree-structured, two positions in the genotype are chosen at random for each individual.

Two parent individuals, drawn according to the chosen selection scheme (e.g., tour-

nament or random selection), then swap the sequence of nodes lying between these

positions. The type-fixing routine is subsequently executed to ensure syntactic validity.

Fig. 3.5 illustrates the application of the full crossover operator to two linear program

individuals. A contiguous block of three consecutive nodes is selected in each parent

(A4-A6 in Parent A and B2–B4 in Parent B; highlighted in red) and these blocks are ex-

changed. The dotted lines indicate the correspondence between swapped nodes (A4 ↔

B2, A5 ↔ B3, A6 ↔ B4). Although the starting positions differ between the parents,

the block length is chosen once and enforced for both parents, so the same amount of

genetic material is exchanged and the offspring remain the same length as their parents.

The relative order of nodes within each exchanged block is preserved.
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(a) Before applying full crossover. Selected equal-length blocks to be exchanged are high-

lighted (Parent A: A4–A6; Parent B: B2–B4). Dotted lines indicate node-to-node correspondence.

(b) After applying full crossover. Offspring produced by exchanging the highlighted blocks,

preserving node order and individual length.

Figure 3.5: Illustration of Full Crossover applied to two individuals.

Genetic rewiring refines the full crossover method outlined above. Whereas full

crossover selects crossover points randomly, without regard to the node types that lie

between them, genetic rewiring adds an additional constraint: a segment is eligible for

crossover only if the sequence of node types within that segment is identical in both

parents. This type-aware selection method increases the likelihood that the exchanged

segments will remain syntactically valid, with one caveat: as the segment length in-

creases, the likelihood of finding a matching segment of the same length in two in-

dividuals decreases. The segment length is initially chosen at random; if a matching

segment is not found (either due to the length being too long, or simply due to there

not being a matching segment in the two individuals), the operation is retried with a
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different length, strictly less than the length of the failed operation.

3.3.2 Multi-objective Optimisation

Complex real-world problems often exhibit a remarkable characteristic: their solutions,

despite the intricacy of the underlying challenges, can sometimes possess elegant simpli-

city (though this is not universally the case, and many natural phenomena do not admit

a suitably simple model). This observation has motivated researchers in the field of

evolutionary computation to seek optimisation techniques that strike a balance between

the complexity of solution representations and their performance. In the realm of Ge-

netic Programming, in particular, where programs are represented as trees, the issue of

program length, or “bloat,” has been a recurring concern. Bloat refers to the tendency

of evolved programs to grow excessively in size without proportionate improvements in

performance.

Numerous attempts have been made to address the issue of excessive code growth in

GP by modifying its operational mechanisms. However, an alternative approach called

Multi-objective Optimisation offers another avenue for tackling this problem. Unlike

traditional single-objective optimisation, which aims to find a single optimal solution,

multi-objective optimisation strives to identify a diverse set of solutions that represent

various trade-offs between competing objectives. For instance, when addressing the

concern of code growth, one may opt to employ the length of the program generated by

an individual as a minimisation objective. Or, consider the case of algorithm stagnation

observed in CGP, where population diversity decreases over time. One can introduce the

age of an individual as an objective to preserve and enhance diversity [105].

NSGA–II

ST–CGP introduces multi-objective optimisation to CGP using the same technique es-

tablished in [105]: the Non-dominated Sorting Genetic Algorithm II (NSGA–II). The

NSGA–II algorithm allows for multiple objectives to be optimised at the same time [106].

[105] demonstrated that using NSGA–II with CGP resulted in fewer fitness evaluations,
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higher rates of success, and smaller, more generalised programs. Two objectives were

used in addition to fitness: the age of the program and its size (the number of active

nodes; the total number of nodes was fixed). Employing age as an optimisation object-

ive is a concept which has been explored previously in the literature (see, for example,

[107, 108]) and is known to be a good way of enforcing genetic diversity. It does this by

ensuring “age-fair” competition, whereby individuals of a wide range of ages are kept in

the population, preventing individuals of a narrow range of ages from “taking over.”

NSGA–II is an extension of the original NSGA algorithm, which incorporates a novel

approach to sorting individuals based on non-domination levels. While NSGA–II can

generally be applied to any evolutionary algorithm, the implementation in ST–CGP has

some minor differences to the conventional algorithm. When NSGA–II is used, it replaces

the evolutionary strategy described in section 3.2.2. It operates as follows:

1. Initialisation: The first generation begins by randomly generating an initial popu-

lation of individuals.

2. Evaluation: The fitness of each individual is evaluated by assessing its performance

with respect to the multiple objectives of the optimisation problem. This evaluation

involves computing the objective function values for each individual.

3. Non-dominated sorting: The individuals in the population are sorted into different

fronts based on their non-domination levels. An individual is said to dominate an-

other individual if it performs better in at least one objective and does not perform

worse in any other objective. This sorting process creates a hierarchy of individuals

based on their dominance relationships.

4. Crowding distance calculation: The crowding distance of each individual is com-

puted to determine its diversity within a front. The crowding distance reflects how

much the surrounding individuals are spread out in the objective space. Individu-

als with larger crowding distances are preferred, to maintain diversity.

5. Selection: This is the primary means by which ST–CGP’s implementation of NSGA–
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II differs from the reference. The population for the next generation is created

through a combination of non-dominated sorting, crowding distance comparison,

and elitism. First, The first front (the Pareto front) is always added to the new

population to ensure the best individual for each objective is not lost. A small

percentage of the total population size is produced by random initialisation of

individuals, much like the strategy in section 3.2.2. Finally, a weighted random

selection is used to select a set of individuals, whereby individuals with higher

non-domination levels and greater crowding distances are given higher priority

for selection. This helps to ensure a diverse set of solutions. These individuals are

used for reproduction to fill the rest of the new population.

6. Reproduction: The selected individuals undergo genetic operations to create off-

spring. The operators always include mutation, and may include crossover, de-

pending on whether crossover has been enabled.

7. Termination: Steps 2-6 are repeated for multiple generations until a termination

criterion is satisfied. This criterion can be a fixed number of generations, a max-

imum runtime, or reaching a predefined convergence level of one or more object-

ives.

By iteratively applying the above steps, NSGA–II gradually evolves a population of

solutions that offers a good trade-off between conflicting objectives. The final result is a

set of non-dominated solutions called the Pareto front, representing the optimal trade-off

options for the given multi-objective optimisation problem.

3.3.3 Subgrids

Any software engineer who has spent even the briefest time writing code commercially

will be familiar with the DRY concept: “Don’t repeat yourself.” By developing modular,

reusable components of code, programmers ensure their work remains streamlined, ef-

ficient, and less prone to error. As an analogy, consider a chef who prepares a popular

dish many times over the course of a night. Instead of creating the dish from scratch
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each time, they prepare essential components in advance—say, a rich tomato sauce or

a set of chopped vegetables—to expedite the cooking process and maintain consistency

in taste and quality. This notion of reusability not only saves time but also makes it

easier to modify or rectify any individual component, improving overall efficiency and

reducing the chance of errors.

The importance of modularity and reusability is mirrored in Genetic Programming,

where the principle has found its expression in several ways. Perhaps the most well-

known is in the form of Automatically Defined Functions (ADFs). ADFs are reusable

sub-trees that can be called from various points in the genetic program, mirroring the

way in which methods or functions are reused in traditional programming. However, an-

other powerful way of expressing reusability is in the non-parametrised reuse offered by

Poli’s Parallel Distributed Genetic Programming [67] (as discussed in Chapter 2). PDGP

achieves reuse not by calling a subroutine with arguments, but by structurally sharing

sub-computations inside a program graph: the same node or subgraph can be provided

to multiple downstream consumers, so intermediate results are computed once and re-

used wherever needed. This is referred to as “non-parametrised” because the reused

fragment is not invoked with different inputs at different call sites; instead, it produces

a single value per evaluation, and multiple parts of the program can reference that

computed value. In contrast, ADFs support parametrised reuse by being re-evaluated

every time they are called, allowing the same evolved logic to be applied to different

inputs via arguments. This trades simple value sharing for more flexible, function-like

abstraction, at the cost of increased computational effort (multiple calls require multiple

evaluations).

In the context of Strongly Typed Cartesian Genetic Programming, the concept of

reusability is enabled through “subgrids.” Subgrids are an advanced optimisation tech-

nique aimed at evolving reusable code modules within the ST–CGP framework, much

like the ADFs of tree-based GP.

ST–CGP treats subgrids in an identical manner to regular grids. They undergo muta-

tion, can undergo crossover, and are executed using the same interpreter. Each subgrid
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consists of a single output node, which shares the output type with the main grid. Sub-

grids are assigned an index, enabling a subgrid with a higher index to access any subgrid

with a lower index, if multiple subgrids are employed per individual. In higher subgrids

and the main grid, each subgrid is represented by a zero-arity proxy node function. To

illustrate, suppose there are three subgrids. The first subgrid operates solely on the node

functions provided by the user. The second subgrid incorporates the same node functions

as the first subgrid, along with an additional node function named SUBGRID1. Similarly,

the third subgrid includes all the node functions available to the second subgrid, as well

as SUBGRID2. Lastly, the main grid encompasses all the node functions supplied by the

user, as well as SUBGRID1, SUBGRID2, and SUBGRID3.

The utilisation of subgrids in the context of ST–CGP holds the potential to introduce

a highly expressive and modular programming paradigm. Nevertheless, a significant

drawback associated with subgrids is the exponential increase in execution time. To

illustrate this, consider a scenario where a subgrid at the fifth level initiates multiple in-

vocations to a subgrid at the fourth level, which in turn calls a subgrid at the third level,

and so forth. Each invocation of the fifth-level subgrid leads to a cascade of additional

calls to subgrids at lower levels. Consequently, the size and complexity of the program

can expand at an astonishingly rapid rate. To mitigate this issue, it is advisable to im-

pose constraints on the number of subgrids employed, with the author having achieved

particular success by restricting it to a maximum of as few as two subgrids.

3.3.4 Efficiency Improvements

Regardless of the specific variant, GP demands an immense volume of computation: a

single run may evaluate millions or even billions of candidate solutions. Consequently,

to ensure that runs finish in good time, it can become necessary to implement various

optimisations, or “shortcuts” to improve efficiency.

Memoisation is one such example. Here, each newly generated individual is rep-

resented by a canonical form, in the case of ST–CGP, a hash of its parse tree, and its

fitness value is stored in a cache after computation. When the same individual, or one
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that is structurally identical, is encountered later in the run, the algorithm retrieves the

previously computed fitness from the cache instead of performing a fresh evaluation.

This simple lookup can dramatically reduce redundant computation, especially in search

spaces where duplicates arise frequently through mutation and crossover.

3.3.5 The Reference Implementation

We have seen several advanced techniques designed to facilitate faster, more relevant,

and less computationally intensive evolution in ST–CGP. It is worth noting at this junc-

ture that each technique covered is optional in the reference implementation: any, all,

or none of the techniques can be enabled when performing evolution. As such the use

of each technique represents the addition of a new hyperparameter to the system, thus

expanding the hyperparameter list to that shown in Table 3.2.

While the intention of additional optimisation techniques is to improve performance,

this is not guaranteed across all problem types. In practice, individual techniques may

introduce trade-offs (e.g., improved convergence speed at the cost of solution diversity)

and their effects can depend on properties of the task, such as noise, class imbalance, or

the dimensionality of the search space. Optimisations can also interact: a technique that

is beneficial in isolation may be neutral or even harmful when combined with others,

making it difficult to predict the net effect a priori.

A systematic evaluation could be used to quantify these contributions, most naturally

via an ablation study. ST–CGP would be run with all options enabled and then re-run

with individual techniques disabled, followed by runs in which pairs (and larger sub-

sets) of techniques are disabled, thereby testing combinations of settings (up to a full

factorial design, if computationally feasible). This would yield a matrix of configurations

and performance metrics—ideally reported over multiple random seeds—to identify ro-

bustly effective settings and to assess whether the best configuration differs by task.

Unfortunately, time constraints prevented a full ablation study from being conducted in

this research, with all combinations of settings, however a minimal set of ablation testing

was performed on the even parity test, the toy problem in described in Chapter 4, and
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the experiment described in Chapter 5. This resulted in a set of hyperparameters which

appear to perform well on multiple tasks. These were used in all experiments that follow,

unless otherwise stated, and can be found in Table 3.3. This set of hyperparameters fea-

tures a notably larger population size compared to conventional CGP implementations,

which in the empirical testing performed better than small populations.
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Parameter name Description Type Notes

Population size The number of individuals in each population integer

Node count The fixed number of nodes contained in each individual integer

Max. Generations The maximum number of generations to be performed integer -1 indicates no max

Max. time The maximum amount of time for the entire evolution pro-

cess, in seconds

integer -1 indicates no max

Fitness threshold A value below which ST–CGP considers the problem

“solved” and will exit early

float -1 indicates no

threshold

Use NSGA-II Whether to use NSGA-II multi-objective optimisation boolean

Use full crossover Whether to use full crossover to generate some individuals boolean

Use genetic rewiring Whether to use genetic rewiring to generate some individu-

als

boolean

Number of subgrids The number of subgrids to use in each individual integer 0 disables subgrids

Subgrid size The number of nodes each subgrid should have integer

Use function

memoisation

Whether to use function memoisation boolean Assumes all

functions are pure

Continued on next page
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Parameter name Description Type Notes

Use individual cach-

ing

Whether to use cached fitness evaluations for individuals boolean

Table 3.2: The hyperparameters exposed by the reference implementation of ST–CGP.
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Hyperparameter Selected value

Population size 300

Node count 250

Max. Generations 500

Max. time -1

Fitness threshold 1 × 10−6

Use NSGA-II true

Use full crossover true

Use genetic rewiring true

Number of subgrids 0

Subgrid size N/A (not used)

Use function memoisation true

Use individual caching true

Table 3.3: The default hyperparameters chosen empirically through minimal ablation

testing.

3.4 Testing ST–CGP

To verify that ST–CGP actually works, the well-known even-parity test was chosen. The

even parity test has long been considered a de facto standard for evaluating the per-

formance of GP and its derivatives [109, 41, 70]. Despite the development of more

complex benchmarks in recent years, it remains a relevant benchmark for comparison,

particularly in light of the fact that CGP has itself been evaluated using this test [110].

The even parity test aims to evolve a program that calculates the even parity bit of

a string of bits, starting with a string length of three bits and incrementing the length

each time a successful solution is found. The even parity bit is a simple method of error

checking in which the parity bit is equal to 0 if the number of 1-bits in the string is even,
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or 1 if the number of 1-bits in the string is odd. This can be calculated by performing an

exclusive-OR (XOR) on each bit in the string, an example of which is demonstrated in

this equation:

ep(1001) = 1 ⊕ 0 ⊕ 0 ⊕ 1 = 0.

While the even parity problem may not be complex in nature, traditional GP tech-

niques have struggled to generate solutions for longer strings, and have rarely been able

to generate a solution that works for any input length. A generic solution for untyped

techniques must first evolve an XOR function and then apply it successively to each bit

in the input string. This presents a significant challenge, particularly given the limited

capacity for loops in traditional GP approaches.

It is not just GP that struggles with the parity problem. Indeed, even neural net-

works often fail to solve the problem reliably. A key reason is that parity defines a highly

non-smooth input–output mapping: in the input space, adjacent bitstrings (Hamming

distance 1) are mapped to opposite outputs. Consequently, local similarity in the rep-

resentation does not translate into local similarity in the output, so small moves in the

search space induce maximal changes in behaviour. This undermines gradient-based

learning and, more generally, any optimisation process that relies on incremental im-

provements driven by local neighbourhood structure.

The introduction of types allows for a different approach to the problem. By incor-

porating the “array,” “bit,” “bool,” and “integer” types, as well as a few standard array

and mathematical operations, the system can operate at a higher level instead of relying

solely on the low-level exclusive-OR functions. For example, it is possible to calculate

the even parity bit of an array of bits by summing all non-zero bits using a for-each loop

and then calculating the result modulo 2. This solution is not only significantly simpler

than evolving a low-level solution, but it also works for input strings of any length.

To assess the impact of adding types on the evolution of a solution to the even parity

problem, two different configurations of ST–CGP were tested, one with multiple types,

and the other with a single type. In the latter case, a single type was provided to ST–

CGP: “bit”; this is essentially the same as an untyped approach. Each test was repeated
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Table 3.4: Genetic parameters used in tests.

Parameter Value

Max Generations 500

Population Size 300

Node Count 250

on bit strings of multiple lengths, from 3 to 8 inclusive. The default hyperparameters

referenced earlier were used for this test. It is important to note that the maximum

number of generations and the population size were fixed, resulting in a fixed number

of possible fitness evaluations, regardless of whether multiple types were used. If a

perfect solution was discovered during a run, the run was stopped and no further fitness

evaluations were performed. The tests were repeated 100 times to ensure robust results.

The parameters chosen for these experiments were determined through extensive

testing during the development of ST–CGP. It is noteworthy that the 1+4-ES6 evolution-

ary search, commonly used with CGP, was not employed in this study, as was similarly

reported in [74]. Instead, larger populations were utilised. Preliminary experiments in-

dicated that, at least for ST–CGP, larger populations produced considerably better results

than the 1+4-ES approach. This finding informed the selection of parameters for these

experiments.

For all tests, a set of basic operators was provided. These operators were designed to

operate on the “bit” type and are outlined in Table 3.5. For tests that employed multiple

types, additional operators were supplied to enable the utilisation of these types. These

operators are listed in Table 3.6. The additional operators facilitated the effective evolu-

tion of solutions, including generic solutions. Of particular significance is the “INPARR”

operator, which presents all input bits to the individual as a single array object. This

6A 1+4 evolutionary search is where in each generation four offspring are produced by one parent.

The parent is returned if all offspring have a lower fitness value. Otherwise, the offspring with the highest

fitness is returned.
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object can be utilised without the need for recursion or modification of the individual

structure, unlike conventional GP and CGP approaches which often struggle to evolve

generic solutions without these more complex options.
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Table 3.5: The operators supplied for every even parity test.

Operator Name Input Types Output Type Description

AND “bit,” “bit” “bit” AND of two bit values

OR “bit,” “bit” “bit” OR of two bit values

NOT “bit” “bit” NOT of a bit value (inverse)

NAND “bit,” “bit” “bit” NAND of two bit values

NOR “bit,” “bit” “bit” NOR of two bit values

ZERO - “bit” 0-arity function returning 0-bit value

ONE - “bit” 0-arity function returning 1-bit value

INP - “bit” Returns input at the current counter index, and increments counter
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Table 3.6: Additional operators supplied for multi–type even parity tests.

Operator Name Input Types Output Type Description

NEWARR - “array” 0-arity function returning empty array

INPARR - “array” 0-arity function returning an array containing the input as separate ints

ZERO_2 - “int” 0-arity function returning the value 0 as an int

ONE_2 - “int” 0-arity function returning the value 1 as an int

INPLEN - “int” 0-arity function returning the input length

FALSE - “bool” 0-arity function returning the false boolean value

TRUE - “bool” 0-arity function returning the true boolean value

BIT2BOOL “bit” “bool” Casts a bit to a bool. 0 = false, 1 = true

BIT2INT “bit” “int” Casts a bit to an int

MOD “int,” “int” “int” Modulus of two ints

ARRPUSH “array,” “int” “array” Appends an int to an array

COUNTNONZERO “array” “int” Returns number of non–zero elements in array

ADD “int”, “int” “int” Returns the sum of two ints

SUB “int,” “int” “int” Subtracts one int from another and returns the result

EQ “int,” “int” “bool” Returns true if two ints are equal

GT “int,” “int” “bool” Returns true if the first int is greater than the second

SUMARR “array” “int” Returns the sum of the elements of an array



3.4. TESTING ST–CGP 65

Table 3.7: Results from single type configuration.

input length mean gens s.d gens % solved % generic

3 444.34 41.26 85 0

4 481.72 19.30 60 0

5 — — 0 0

6 — — 0 0

7 — — 0 0

8 — — 0 0

3.4.1 Results

Tables 3.7 and 3.8 contain statistics on the number of generations required to solve the

problem and how often each configuration was able to evolve a program that solved the

problem. As NSGA–II was used, the output from evolution is a Pareto front of individu-

als; for the purposes of these results, the individual with the best fitness score is chosen.

The most striking result is the improvement in the number of cases for which a solution

could be evolved when multiple types are used. With multiple types, a working solution

was always generated, whereas with only the “bit” type, this was only the case for short

bit-strings. With a single type, no successful solution to bit-strings of length 5 or greater

was found in any of the 100 runs. Moreover, there was a major reduction in the number

of generations required to evolve a solution when using multiple types. This reduction is

clearly a consequence of the more sophisticated functions available with multiple types.

It is also interesting to observe how often the solution evolved was generic, able to

work on a bit-string of any length. For a length of 6 or greater, ST–CGP always evolved

a generic solutions; while for shorter lengths, length-specific solutions were found in a

proportion of cases.

Table 3.9 presents results on the even parity problem from previous GP studies. It

can be seen that ST–CGP matches or outperforms all these previous state-of-the-art ap-

proaches, especially on the higher input lengths. This comparison strengthens the notion
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Table 3.8: Results from multiple type configuration.

input length mean gens s.d gens % solved % generic

3 7.64 6.82 100 91

4 20.66 12.39 100 93

5 21.96 17.50 100 99

6 21.18 18.90 100 100

7 21.21 18.25 100 100

8 22.84 19.44 100 100

that ST–CGP is a worthwhile technique.

It should be noted that, while the runs with the larger primitive set were more suc-

cessful, this is likely due to the added ability for the resulting program to count the

number of bits (and it is especially important to acknowledge that many of the studies

referenced in 3.9 did not have access to such a function). As mentioned earlier, the

difficulty in the parity problem lies in each input bit being treated individually—when

one flips, the output flips too. When the input bits are able to be summed/counted,

this simplifies the challenge considerably. However, this also serves to prove the point:

giving ST–CGP access to such primitives means that it is able to solve problems more

easily. If the goal of ST–CGP is to have “general problem solving ability,” then it makes

sense to give as strong a set of priors as possible; for example, a sum function for bits,

or a suite of computer vision operators for CV tasks.
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Table 3.9: Results from previous studies.

Input Length N Standard GP [41] GP with ADFs [111] GP with LEF [112] SMCGP [110] ST–CGP

N <5 Solvable Solvable Solvable Solvable Solvable

5 Solvable Solvable Solvable Solvable Solvable

6 Not solvable Solvable Solvable Solvable Solvable

7 Not solvable Solvable Solvable Solvable Solvable

8 Not solvable Solvable Not consistently solvable Solvable Solvable

9 Not solvable Solvable Not solvable Solvable Solvable

10 Not solvable Solvable Not solvable Solvable Solvable

N >10 Not solvable Not consistently solvable Not solvable Solvable Solvable



Chapter 4

Application: Computer Vision

Chapter 3 provided a detailed examination of the theory and implementation of ST–

CGP. Having established this foundation, this chapter demonstrates the application of

ST–CGP to a real-world problem. The key advantage of strong typing is that it enables

us to tackle complex problems involving diverse data types, allowing rapid adaptation

to different problem domains whilst maintaining semantic correctness throughout the

evolutionary process.

Given the author’s background in computer vision, it seemed natural to evaluate

whether ST–CGP could effectively address problems within this domain. Computer vis-

ion presents a particularly challenging problem space, primarily due to the high dimen-

sionality of visual data. Even a relatively small image of 512 × 512 pixels contains over

262, 000 individual pixel values, each of which may have multiple “channels” of informa-

tion (typically three), each potentially contributing important information to the overall

task. This dimensional complexity requires computational approaches that can extract

meaningful features whilst managing the large search space effectively.

Whilst searching for an appropriate real-world application, the author discovered a

dataset containing images of thin blood smears treated with Giemsa staining–a standard

technique used in the clinical detection of malaria parasites. This dataset was accom-

panied by a study investigating the use of pre-trained convolutional neural networks for

detecting infected cells [113]. This represented an ideal candidate for testing ST–CGP’s

68
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computer vision capabilities, as it provided both a well-established dataset and state-of-

the-art performance benchmarks against which ST–CGP’s results could be systematically

compared.

The chapter is structured as follows: section 4.2 describes the experimental setup,

with results presented in 4.3. First, however, the necessary operators and adaptations to

allow ST–CGP to support computer vision problems are discussed in 4.1.

4.1 Adapting ST–CGP for Computer Vision

Computer vision represents a challenging and complex problem domain within artificial

intelligence research. The field encompasses several distinct yet interconnected categor-

ies of computational tasks, including image segmentation (the process of distinguish-

ing foreground elements from background regions), whole-image classification, object

detection, and object-level classification. These problem categories frequently need to

be used in conjunction with each other, operating in hierarchical relationships, where

successful execution of higher-level tasks depends upon the completion of prerequis-

ite lower-level operations. For instance, accurate object classification typically requires

object detection to be performed first, which in turn often relies upon preliminary seg-

mentation procedures to isolate regions of interest within an image.

A fundamental challenge in computer vision lies in developing computational meth-

ods that enable machines to extract meaningful information from visual data. This chal-

lenge is particularly pronounced when contrasted with other data modalities, such as

tabular datasets, where the processing methodologies employed by humans and com-

puters are often not too dissimilar. Visual information processing in humans is fun-

damentally different due to the sophisticated neural architecture of the human visual

system, which has undergone millions of years of evolutionary refinement. Humans

possess highly specialised capabilities for object detection and segmentation tasks, con-

ceptualising visual scenes primarily in terms of discrete objects and their relationships

and meaning. For example, when a human is presented with an image of a kitchen, there
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is an immediate expectation that there will be objects related to a kitchen present in the

image. In contrast, computational vision systems encounter images as arrays of pixel

values, with no prior knowledge or ability to think about what the image represents.

As such, they require explicit algorithmic frameworks to extract higher-level semantic

understanding from this low-level numerical representation.

A typed computer vision system can offer a practical advantage over an untyped

CV system because realistic handcrafted CV workflows routinely involve a mix of rep-

resentation types: they manipulate not only images but also intermediate values such

as scalars (e.g., summary statistics), boolean masks, feature vectors, and geometric ob-

jects (e.g., contours/region descriptors). Many handcrafted CV feature-extraction and

post-processing operators therefore consume and produce non-image types, and treat-

ing these values as first-class citizens simplifies pipeline construction and reuse. Systems

such as ST–CGP, which support multiple types, and make the valid ways of connecting

pipeline stages explicit, reduce type-mismatch errors and ambiguous operator usage.

This can support richer mixed-type pipelines while improving interpretability, reliability

and robustness.

The fundamental approaches to image interpretation differ markedly between hu-

man and artificial visual systems. Human vision operates predominantly through a

top-down processing paradigm, whereby initial visual input undergoes rapid high-level

analysis to identify salient features and regions of interest. Attention-based procedures

subsequently direct detailed analysis towards these prioritised areas. This cycle repeats;

an iterative and adaptive interpretation process that proves highly effective in natural

environments. Conversely, contemporary computer vision systems, particularly convolu-

tional neural networks which represent the current state-of-the-art in the field, employ

a fundamentally different approach. These systems process all pixel information simul-

taneously across the entire visual field, propagating this data through sequential layers,

each designed to extract increasingly complex features. Initial layers typically identify

low-level features such as edges, corners, and basic geometric primitives, whilst sub-

sequent layers combine these elements to recognise more complex structures including
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shapes and textures, before final classification layers produce semantic interpretations

(classifying an image or pixel as belonging to a particular class). This computational pro-

cess is entirely feed-forward and deterministic, ensuring consistent outputs for identical

inputs. This contrasts with human visual processing, which operates as an iterative

feedback system wherein interpretation emerges through multiple cycles of hypothesis

generation and refinement.

Despite these fundamental differences in processing, parallels do exist between ar-

tificial and biological visual systems. Human visual processing is primarily performed

by the occipital lobe, which contains functionally distinct regions responsible for differ-

ent aspects of visual analysis. The Primary Visual Cortex (V1) specialises in processing

low-level features including orientation-selective responses to lines and edges, whilst

the Inferior Temporal (IT) cortex processes higher-level visual attributes such as tex-

ture, shape, and colour information. The Secondary Visual Cortex (V2) contributes to

the semantic interpretation of visual stimuli. This hierarchical organisation resembles

the layered architecture of convolutional neural networks, and whilst the underlying

computational mechanisms differ substantially, both systems demonstrate the principle

of hierarchical feature extraction, where elementary visual features are progressively

combined to form increasingly complex representations capable of supporting high-level

visual understanding.

4.1.1 Making ST–CGP understand images

Modern computer vision applications predominantly use convolutional neural networks

trained on extensive datasets comprising thousands to tens of thousands of labelled

examples per class. This approach relies upon the assumption that sufficient training

data will enable the network to learn optimal weight configurations capable of perform-

ing the desired task, whether segmentation, classification, object detection, or other

visual recognition challenges. The success of this methodology has largely replaced the

traditional approach, establishing deep learning as the dominant paradigm in modern

computer vision research.
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Traditional computer vision methodologies, developed prior to the widespread ad-

option of deep learning techniques, followed fundamentally different principles rooted

in explicit feature engineering. These approaches revolved around the identification and

extraction of discriminative visual features from input images, following the three broad

categories outlined above: shape, colour, and texture. For example, shape-based fea-

tures such as edges and contours, colour-based features including specific colour ranges

or pixel counts within defined colour spaces, and texture-based features characterising

surface properties and patterns, can be used in combination to provide a very com-

prehensive summary of an image or region in an image. The computational workflow

typically comprised three distinct stages: image preprocessing to ensure that input data

was clean and as uniform as possible, systematic feature extraction using carefully de-

signed algorithms, and subsequent classification based upon the extracted features. This

three stage pipeline required substantial domain expertise to design effective feature

extractors, but provided interpretable and controllable processing stages.

Given the demonstrated capability of ST–CGP—and genetic programming methodo-

logies more broadly—to effectively replicate and frequently surpass human-written pro-

grams, the expectation is that similar performance advantages would result in computer

vision applications if GP were to be encouraged to follow a human-like pipeline pro-

cess. As such, a wrapper around ST–CGP was written, supporting two different pipelines

designed to address different categories of computer vision problems. Pipeline 1 imple-

ments a direct whole-image classification approach, wherein ST–CGP receives images as

input and produces class predictions without any explicit intermediate processing stages.

Pipeline 2 employs a more sophisticated hierarchical architecture, generating two mod-

els which are run in sequence: the first model performs image segmentation followed

by object detection on the segmented regions, whilst the second model receives the de-

tected objects as input and executes object-level classification. This two-stage approach

is akin to the biological and deep-learning processes described above.

Crucially, both pipeline configurations provide ST–CGP with an identical set of prim-

itives. These operators operate on images, either returning information about those
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images or in many cases outputting a modified version of that image. This allows func-

tional chaining of operators to perform complex transformations on images. This in turn

allows ST–CGP the potential to evolve novel programs that may include “mini pipelines.”

Indeed, the author has observed several instances where ST–CGP autonomously evolved

sophisticated multi-stage procedures combining segmentation, object detection, and ob-

ject classification operations within the whole-image classification pipeline. These emer-

gent behaviours demonstrate the system’s capacity to discover complex visual processing

strategies that mirror the hierarchical decomposition employed in traditional computer

vision approaches, whilst potentially identifying novel algorithmic combinations that

would not typically be considered by human programmers.

CGP has been successfully applied to image processing tasks in previous research [90,

114], and the image processing capabilities developed for ST–CGP share similarities with

those implemented in CGP–IP [115], which aims to replicate human image processing

methodologies using the OpenCV library. However, ST–CGP’s strongly typed architecture

and support for varying function arities provide greater flexibility compared to CGP–IP,

enabling the generation of more expressive programs beyond simple chains of image

processing operators. For instance, a typical ST–CGP program might convert an im-

age between colour spaces, calculate statistical measures, perform mathematical opera-

tions on those statistics, apply image thresholding based on the computed values, and

subsequently execute additional calculations before producing the final output, demon-

strating the enhanced compositional capabilities afforded by the system’s architectural

design.

Image Operators

Table 4.1 shows the operators provided to ST–CGP. In the table, several data types are

referenced. These are:

• IMG3 - A three-channel image, such as an RGB image.

• IMG1 - A single-channel image. This is the primary means by which features are
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extracted and transformations are performed.

• FLOAT - A floating point number.

• INT - An integer.

• BOOL - A boolean .(true/false)

• COOC - A special type of single-channel image that represents a grey-level co-

occurrence matrix, used for texture analysis.

• CONTOURS - An object that a list of detected contours, or shapes, within an image.

This object is used by contour-processing functions in conjunction with an input

image to either extract features or perform a transformation.

It is worth noting that the set of primitives supplied to ST–CGP is deliberately large.

This is intentional: by providing a broad collection of priors that encode domain know-

ledge, we give ST–CGP the best opportunity to solve a wide range of CV problems. As

discussed earlier in this chapter, many CV tasks benefit from combining shape, colour,

and texture information; accordingly, the primitive set includes multiple operators tar-

geting each of these measures, increasing the likelihood that suitable building blocks

exist for the task at hand. Overall, the aim is to maximise ST–CGP’s problem-solving

ability by ensuring the search space contains rich, task-relevant components.

In addition to these image-specific primitives described, the standard suite of arith-

metic, boolean, and array-based primitives described in Chapter 3 are also included for

computer vision problems.
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Table 4.1: The image operators provided to ST–CGP for all computer vision problems.

Operator Name Category Description Input Types Output Type

Otsu Colour Applies Otsu thresholding to produce a

binary-inverse mask.

IMG1 IMG1

BinaryThresh Colour Applies a fixed binary threshold to the image at a

given threshold value.

IMG1, FLOAT IMG1

Mean Colour Computes the mean pixel value of the input image. IMG1 FLOAT

SetBetween Colour Replaces pixel values in a given open interval

(lower, upper) with specified constant.

IMG1, INT lower,

INT upper, INT val

IMG1

SetBelow Colour Replaces all pixel values below a specified upper

bound with a constant.

IMG1, INT upper,

INT val

IMG1

SetAbove Colour Replaces all pixel values above a specified lower

bound with a constant.

IMG1, INT lower,

INT val

IMG1

Equalise Colour Applies histogram equalisation to enhance image

contrast.

IMG1 IMG1

SetEqual Colour Replaces all pixels equal to a given value with

another constant.

IMG1, INT eq, INT

val

IMG1

ContourMean Colour For each contour, computes mean value within

contour and fills it with that mean value.

IMG1, CONTOURS IMG1

ContourRange Colour For each contour, computes (max – min) value

within contour and fills contour with that

difference.

IMG1, CONTOURS IMG1
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Table 4.1 continued from previous page

Operator Name Category Description Input Types Output Type

ContourMin Colour For each contour, computes minimum pixel value

within contour and fills contour with that value.

IMG1, CONTOURS IMG1

ContourMax Colour For each contour, computes maximum pixel value

within contour and fills contour with that value.

IMG1, CONTOURS IMG1

PixelwiseMax Colour Combines two single-channel images by taking the

maximum value at each pixel.

IMG1, IMG1 IMG1

PixelwiseMin Colour Combines two single-channel images by taking the

minimum value at each pixel.

IMG1, IMG1 IMG1

CountInRangeGlobal Colour Counts globally how many pixels lie within a

specified [lower, upper] range and returns the

count.

IMG1, FLOAT

lower, FLOAT

upper

FLOAT

InRange Colour Produces a binary mask by thresholding image

pixels within [lower, upper].

IMG1, FLOAT

lower, FLOAT

upper

IMG1

CountInRangeContour Colour For each contour, counts number of pixels within

[lower, upper] and fills contour with that count.

IMG1, FLOAT

lower, FLOAT

upper, CONTOURS

IMG1

BitwiseAnd Colour Computes bitwise AND of two single-channel

images.

IMG1, IMG1 IMG1

BitwiseOr Colour Computes bitwise OR of two single-channel images. IMG1, IMG1 IMG1
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Table 4.1 continued from previous page

Operator Name Category Description Input Types Output Type

BitwiseNot Colour Computes bitwise NOT (inversion) of a

single-channel image.

IMG1 IMG1

BitwiseXor Colour Computes bitwise XOR of two single-channel

images.

IMG1, IMG1 IMG1

Invert Colour Inverts a single-channel image (alias for

BitwiseNot).

IMG1 IMG1

LinearTransform Colour Apply linear gain and bias to the input image. IMG1, FLOAT gain,

FLOAT bias

IMG1

PixelwiseRange Colour Computes absolute difference (pixel1-pixel2)

between two images at each pixel.

IMG1, IMG1 IMG1

HLS Colour Converts a three-channel image into HLS colour

space.

IMG3 IMG3

HSV Colour Converts a three-channel image into HSV colour

space.

IMG3 IMG3

RGB Colour Converts a three-channel image into RGB colour

space.

IMG3 IMG3

i-IMG3 Other For each pixel in each channel of a three-channel

image, subtract the pixel value from an integer.

int value, IMG3 IMG3

IMG3-i Other For each pixel in each channel of a three-channel

image, subtract an integer from the pixel value.

int value, IMG3 IMG3
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Table 4.1 continued from previous page

Operator Name Category Description Input Types Output Type

i+IMG3 Other For each pixel in each channel of a three-channel

image, add the pixel value to an integer.

int value, IMG3 IMG3

i*IMG3 Other For each pixel in each channel of a three-channel

image, multiply the pixel value by an integer.

int value, IMG3 IMG3

i/IMG3 Other For each pixel in each channel of a three-channel

image, (protected) divide an integer by the pixel

value.

int value, IMG3 IMG3

IMG3/i Other For each pixel in each channel of a three-channel

image, (protected) divide the pixel value by an

integer.

int value, IMG3 IMG3

i-IMG1 Other For each pixel in a single-channel image, subtract

the pixel value from an integer.

int value, IMG1 IMG1

IMG1-i Other For each pixel in a single-channel image, subtract

an integer from the pixel value.

int value, IMG1 IMG1

i+IMG1 Other For each pixel in a single-channel image, add the

pixel value to an integer.

int value, IMG1 IMG1

i*IMG1 Other For each pixel in a single-channel image, multiply

the pixel value by an integer.

int value, IMG1 IMG1

i/IMG1 Other For each pixel in a single-channel image,

(protected) divide an integer by the pixel value.

int value, IMG1 IMG1
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Table 4.1 continued from previous page

Operator Name Category Description Input Types Output Type

IMG1/i Other For each pixel in a single-channel image,

(protected) divide the pixel value by an integer.

int value, IMG1 IMG1

NOOP Other No-op, simply returns any input provided. ANY ANY

GetChannel Other Gets a single channel from a three channel image. IMG3, INT channel IMG1

Chunkify Other Divides the input image into a list of

non-overlapping blocks of specified width and

height.

IMG1, INT width,

INT height, INT

discardRemainder,

INT outputAsMask

ARRAY<IMG1>

FindContours Shape Finds contours (shapes) in the input image using

OpenCV’s built in contour finding routine.

IMG1 CONTOURS

Canny Shape Performs Canny edge detection using two

thresholds and a gradient option.

IMG1, FLOAT

thresh1, FLOAT

thresh2, INT

l2gradient (0 or 1)

IMG1

Erode Shape Erodes the image using a 3×3 structuring element

of specified shape (type 0–2).

IMG1, INT type IMG1

Dilate Shape Dilates the image using an elliptical structuring

element of given radius.

IMG1, INT

elemSize

IMG1

Opening Shape Applies morphological opening (erosion followed

by dilation) with a 3×3 elliptical element.

IMG1 IMG1
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Table 4.1 continued from previous page

Operator Name Category Description Input Types Output Type

Closing Shape Applies morphological closing (dilation followed by

erosion) with a 3×3 elliptical element.

IMG1 IMG1

Blackhat Shape Applies black-hat morphological operation (closing

minus original) to highlight small dark spots.

IMG1 IMG1

Tophat Shape Applies top-hat morphological operation (original

minus opening) to highlight small bright spots.

IMG1 IMG1

Hitmiss Shape Applies the hit-or-miss morphological operation to

detect specific patterns.

IMG1 IMG1

Gradient Shape Computes the morphological gradient (difference

between dilation and erosion) to emphasise edges.

IMG1 IMG1

FillRoundness Shape Calculates contour roundness (area /

enclosing-circle area) and fills contour pixels with

that value.

IMG1, CONTOURS IMG1

FillFormFactor Shape Calculates form factor ((4π · area)/(perimeter2))

for each contour and fills it accordingly.

IMG1, CONTOURS IMG1

FillExtent Shape Computes contour extent (area / area of minimum

bounding rectangle) and fills contour with that

value.

IMG1, CONTOURS IMG1

FillArea Shape Fills each contour with its area value (number of

pixels).

IMG1, CONTOURS IMG1
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Table 4.1 continued from previous page

Operator Name Category Description Input Types Output Type

FillPerimeter Shape Fills each contour with its perimeter length (arc

length).

IMG1, CONTOURS IMG1

FillNumPoints Shape Counts number of vertices in polygonal

approximation of each contour and fills contour

with that count.

IMG1, CONTOURS IMG1

FillMeanDefectDepth Shape Computes mean convex-defect depth for each

contour and fills contour with a scaled value.

IMG1, CONTOURS IMG1

FillIsConvex Shape Tests whether each contour is convex; fills convex

with 1 and non-convex with 0.

IMG1, CONTOURS IMG1

FillM00 Shape Computes zero-order spatial moment (area) for

each contour and fills contour with that moment.

IMG1, CONTOURS IMG1

FillM01 Shape Computes first-order spatial moment M01 for each

contour and fills contour with that moment.

IMG1, CONTOURS IMG1

FillM02 Shape Computes second-order spatial moment M02 for

each contour and fills contour with that moment.

IMG1, CONTOURS IMG1

FillM03 Shape Computes third-order spatial moment M03 for each

contour and fills contour with that moment.

IMG1, CONTOURS IMG1

FillM10 Shape Computes first-order spatial moment M10 for each

contour and fills contour with that moment.

IMG1, CONTOURS IMG1

FillM11 Shape Computes mixed spatial moment M11 for each

contour and fills contour with that moment.

IMG1, CONTOURS IMG1
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Table 4.1 continued from previous page

Operator Name Category Description Input Types Output Type

FillM12 Shape Computes mixed spatial moment M12 for each

contour and fills contour with that moment.

IMG1, CONTOURS IMG1

FillM20 Shape Computes second-order spatial moment M20 for

each contour and fills contour with that moment.

IMG1, CONTOURS IMG1

FillM21 Shape Computes mixed spatial moment M21 for each

contour and fills contour with that moment.

IMG1, CONTOURS IMG1

FillHu1 Shape Computes first Hu moment for each contour and

fills contour with that value.

IMG1, CONTOURS IMG1

FillHu2 Shape Computes second Hu moment for each contour and

fills contour with that value.

IMG1, CONTOURS IMG1

FillHu3 Shape Computes third Hu moment for each contour and

fills contour with that value.

IMG1, CONTOURS IMG1

FillHu4 Shape Computes fourth Hu moment for each contour and

fills contour with that value.

IMG1, CONTOURS IMG1

FillHu5 Shape Computes fifth Hu moment for each contour and

fills contour with that value.

IMG1, CONTOURS IMG1

FillHu6 Shape Computes sixth Hu moment for each contour and

fills contour with that value.

IMG1, CONTOURS IMG1

FillHu7 Shape Computes seventh Hu moment for each contour and

fills contour with that value.

IMG1, CONTOURS IMG1
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Table 4.1 continued from previous page

Operator Name Category Description Input Types Output Type

FillRectangularity Shape Computes rectangularity ratio (max side / min side)

of minimum bounding rectangle and fills contour.

IMG1, CONTOURS IMG1

FillRatio Shape Computes contour perimeter / area ratio (clipped to

[0,255]) and fills contour with that value.

IMG1, CONTOURS IMG1

SobelX Shape Computes horizontal gradient (Sobel X) of input

image.

IMG1 IMG1

SobelY Shape Computes vertical gradient (Sobel Y) of input

image.

IMG1 IMG1

Sobel Shape Computes combined gradient magnitude by

averaging Sobel X and Sobel Y.

IMG1 IMG1

Median3 Texture Applies a 3×3 median filter to reduce

salt-and-pepper noise.

IMG1 IMG1

Median5 Texture Applies a 5×5 median filter to reduce

salt-and-pepper noise.

IMG1 IMG1

MedianN Texture Applies a N×N median filter to reduce

salt-and-pepper noise.

IMG1 IMG1

Gabor Texture Convolves the image with a Gabor kernel (sigma,

theta, lambda, gamma, psi) to extract oriented

texture.

IMG1, FLOAT

sigma, FLOAT

theta, FLOAT

lambda, FLOAT

gamma, FLOAT psi

IMG1
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Table 4.1 continued from previous page

Operator Name Category Description Input Types Output Type

Gaussian3 Texture Applies a 3×3 Gaussian blur with specified sigma to

smooth the image.

IMG1, FLOAT

sigma

IMG1

Gaussian5 Texture Applies a 5×5 Gaussian blur with specified sigma to

smooth the image.

IMG1, FLOAT

sigma

IMG1

Bilateral Texture Apply a bilateral filter to the input image. IMG1, FLOAT d,

FLOAT

sigmacolour,

FLOAT sigmaspace

IMG1

MatCooc Texture Builds a normalised grey-level co-occurrence matrix

using offsets (dX, dY).

IMG1, INT dX, INT

dY

COOC

HaralickDissimilarity Texture Computes Haralick dissimilarity from a grey-level

co-occurrence matrix.

COOC FLOAT

HaralickContrast Texture Computes Haralick contrast from a grey-level

co-occurrence matrix.

COOC FLOAT

HaralickHomogeneity Texture Computes Haralick homogeneity from a grey-level

co-occurrence matrix.

COOC FLOAT

HaralickEnergy Texture Computes Haralick energy (Angular Second

Moment) from a co-occurrence matrix.

COOC FLOAT

HaralickEntropy Texture Computes Haralick entropy from a grey-level

co-occurrence matrix.

COOC FLOAT
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Table 4.1 continued from previous page

Operator Name Category Description Input Types Output Type

HaralickInverseDifferenceTexture Computes Haralick inverse difference from a

grey-level co-occurrence matrix.

COOC FLOAT

L5E5 Texture Convolves with a 5×5 L5E5 kernel (Laplacian of

Gaussian variant) for edge/texture extraction.

IMG1 IMG1

E5L5 Texture Convolves with a 5×5 E5L5 kernel (edge

orientation filter) for edge/texture extraction.

IMG1 IMG1

L5R5 Texture Convolves with a 5×5 L5R5 kernel (Laplacian-like

operator) to highlight texture features.

IMG1 IMG1

R5L5 Texture Convolves with a 5×5 R5L5 kernel (reverse of

L5R5) to highlight texture features.

IMG1 IMG1

E5S5 Texture Convolves with a 5×5 E5S5 kernel (edge-sensitive

pattern) for directional texture extraction.

IMG1 IMG1

S5E5 Texture Convolves with a 5×5 S5E5 kernel

(structure-enhancement filter) for texture analysis.

IMG1 IMG1

S5S5 Texture Convolves with a 5×5 S5S5 kernel (symmetric edge

detector) for texture analysis.

IMG1 IMG1

R5R5 Texture Convolves with a 5×5 R5R5 kernel (rotated

Laplacian filter) for texture extraction.

IMG1 IMG1

L5S5 Texture Convolves with a 5×5 L5S5 kernel (Laplacian

combined with symmetric structure filter).

IMG1 IMG1
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Table 4.1 continued from previous page

Operator Name Category Description Input Types Output Type

S5L5 Texture Convolves with a 5×5 S5L5 kernel (symmetric

structure combined with Laplacian).

IMG1 IMG1

E5E5 Texture Convolves with a 5×5 E5E5 kernel (double edge

detector) to accentuate edges and texture.

IMG1 IMG1

E5R5 Texture Convolves with a 5×5 E5R5 kernel (edge-reverse

operator) for directional edge enhancement.

IMG1 IMG1

R5E5 Texture Convolves with a 5×5 R5E5 kernel (reverse edge

operator) for directional edge enhancement.

IMG1 IMG1

S5R5 Texture Convolves with a 5×5 S5R5 kernel

(structure-reverse operator) for directional texture

capture.

IMG1 IMG1

R5S5 Texture Convolves with a 5×5 R5S5 kernel

(reverse-structure operator) for directional texture

capture.

IMG1 IMG1
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4.1.2 Painter

To facilitate the creation of accurately annotated ground-truth datasets, the author de-

veloped an annotation tool designed to enable visual labelling of image regions through

a “painting” interface. The painter annotation tool serves two purposes within the

annotation pipeline, accommodating both segmentation and classification annotation

within a single interface. For segmentation tasks, the tool enables users to delineate

background and foreground regions at the pixel level, whilst for classification problems,

it allows each foreground region to be “painted” with a different class label. Upon com-

pletion of annotation, the tool generates mask files that encode pixel-level class assign-

ments in a format directly compatible with the computer vision pipelines. These mask

files serve as the ground-truth labels for a dataset during model training and evaluation.

Figure 4.1 shows a screenshot of painter’s user interface.

Figure 4.1: A screenshot of the painter interface.

4.1.3 Proof-of-concept toy problem

To ensure that ST–CGP was able to address simple computer vision challenges during

the development phase, a controlled synthetic dataset was constructed to systemat-
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ically evaluate the three distinct operator categories and both pipeline architectures.

The dataset comprised a collection of synthetic images specifically designed to enable

comprehensive testing of all operator types. Each image contained between four and

nine geometric shapes, with each shape selected from a predefined set of six primitive

shapes: circle, triangle, square, rectangle, pentagon, and star. The shapes were one of

four colours: magenta, green, cyan, and yellow. These specific colours were deliberately

selected to ensure that certain hues would activate multiple channels within the RGB col-

our space (for instance, magenta is represented as (255, 0, 255) in RGB coordinates),

thereby introducing additional complexity to colour-based classification tasks.

Four distinct texture patterns were applied to the shapes: smooth (representing an

absence of texture), light noise, heavy noise, and a “spiral” pattern. This combination

of shape, colour, and texture attributes enabled independent evaluation of each visual

feature, as well as assessment of operator performance when processing combinations of

these characteristics. Simple classification tasks could be formulated based on individual

attributes—such as “which shape is present?”—whilst more complex multi-attribute clas-

sification problems could be constructed, for example: “is this shape a lightly textured

magenta star, or a smooth green rectangle?” To test ST–CGP, seven experiments were

performed, with reduced numbers of some categories to keep runtime short:

• Label by colour only (4 colours)

• Label by texture only (4 textures)

• Label by shape only (6 shapes)

• Label by shape and texture (3 shapes × 3 textures = 9 labels)

• Label by shape and colour (3 shapes × 3 colours = 9 labels)

• Label by texture and colour (3 textures × 3 colours = 9 labels)

• Label by shape, colour, and texture (3 × 3 × 3 = 27 labels)
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These tests were chosen because they allowed each attribute type to be evaluated

both in isolation and in combination with other attributes. Real-world CV problems

typically involve interactions between shape, colour, and texture, so it was important

to verify that the system could handle tasks involving these attributes at a deliberately

simplified level. Had the system proved unable to solve even these controlled problems,

it would have suggested that a richer set of primitive operators was required to provide

ST–CGP with the information necessary to discriminate between classes.

The dataset was intentionally crafted in such a way to challenge the ML process.

Accurate shape classification often necessitates sophisticated combinations of different

operator types due to the inherent similarities between certain shapes. Squares and

rectangles, for instance, both possess four corners, requiring additional discriminative

features beyond simple corner detection. Similarly, shapes such as squares, circles, stars,

and pentagons of similar size have similar bounding box dimensions, necessitating more

nuanced geometric analysis. Consequently, distinguishing between circles, squares, and

rectangles requires examination not only of corner count, but also consideration of

bounding box aspect ratios and the proportion of the bounding box area occupied by

the shape itself. Colour classification presented additional challenges, as the yellow col-

our selected for shapes was intentionally similar to the background colour in the RGB,

HLS, and HSV colour spaces. Whilst the human eye is able to tell apart the shapes from

the background easily, the numerical values representing these colours are sufficiently

close that standard automatic thresholding techniques, including Otsu’s method and ad-

aptive thresholding, prove insufficient for reliable foreground-background segmentation

across all objects. Finally, to ensure that texture analysis remained appropriately chal-

lenging, a controlled amount of noise was introduced to all images, simulating the visual

characteristics commonly encountered in real-world photographic data.

The two pipeline architectures were evaluated using slightly different dataset config-

urations. The multi-model pipeline was tested on a dataset comprising 100 images, each

containing a random assortment of shapes with randomly selected colours and textures

from the sets defined above. In contrast, the whole-image pipeline utilised a dataset of
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500 images, with each image containing a single shape of randomly assigned colour and

texture attributes. Figure 4.2 shows an example image from each dataset.

(a) An image from the multi-model pipeline

dataset.

(b) An image from the whole-image

pipeline dataset.

Figure 4.2: Sample images from both the multi-model and whole-image pipelines.

To demonstrate the operation of ST–CGP on this simple computer vision problem, let

us consider a run of the multi-model pipeline. The first stage is segmentation: separating

background from foreground. The segmentation stage produces a binary mask of the im-

age, where white pixels denote foreground objects and black pixels denote background

pixels. As mentioned, this is made more complex by the colour choices for the shapes

in the dataset. However, ST–CGP was able to consistently (in every run!) evolve a seg-

menter that was able to perfectly segment the images, even when only provided with a

single image as a training set. The hyperparameters used were the default set explained

earlier, which are repeated in Table 4.2 for ease of access. Fig. 4.3 shows the segmenta-

tion mask produced by the best program from the first generation of a run, followed by

the segmentation mask produced by the best program from the last generation. Fig. 4.4

shows the corresponding programs for the segmentation masks, in LISP form and then

as Python pseudocode. It can be seen that the plain Otsu invocation, which was the
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best outcome of the first generation, is insufficient to discriminate between the yellow

circle and the background. However, within a few generations, a more complex program

had been evolved which could correctly segment all the shapes perfectly. The program

achieves this by converting the colour space from RGB to HLS, after making a few small

arithmetic adjustments to the pixel values. This is then followed by a few more arith-

metic operations, before finally performing Otsu’s thresholding on the third channel of

the transformed image (the saturation channel).

Hyperparameter Selected value

Population size 300

Node count 250

Max. Generations 500

Max. time -1

Fitness threshold 1 × 10−6

Use NSGA-II true

Use full crossover true

Use genetic rewiring true

Number of subgrids 0

Subgrid size N/A (not used)

Use function memoisation true

Use individual caching true

Table 4.2: The default hyperparameters.

Across the entire dataset for the multi-model pipeline, ST–CGP was able to perfectly

segment every ground-truthed image. After this, the object detection and classification

model was evolved. For this part of the pipeline, three examples of each class were

provided (so, for shape based problems, three of each shape were provided, for colour,

three of each colour, and so on). Fig. 4.5 shows the bounding boxes of all detected

objects in the example image. It can be seen that the excellent segmentation results
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(a) The segmentation mask produced by

the best program from the first generation.

(b) The segmentation mask produced by

the best program from the last generation.

Figure 4.3: Segmentation masks produced by the segmentation model in the multi-

model pipeline.

allowed very easy detection of the objects in the image. Fig. 4.6 shows images which

have been run through the classifier programs for two different problems: the first shows

a “colour” based classifier, while the second shows a “shape” based classifier. It can

be seen that in both cases, each different class has been coloured differently, thereby

corresponding to different class labels.

Across all tests, for both pipeline architectures, ST–CGP was able to maintain an

accuracy of 100% on both train and test sets. While this sounds high, the problems were

relatively trivial compared to typical computer vision tasks, and were designed only to

test that ST–CGP was functioning correctly across a diverse range of computer vision

tasks. As such, this toy problem served its purpose, and was particularly useful during

development of the different categories of image operators.
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(Otsu IMAGE)

(a) Best segmentation program from the first generation.

(Otsu (GetChannel (IMG3-i (i+IMG3 (i+IMG3 (IMG3-i (HLS (i+IMG3

(HLS (i+IMG3 (i+IMG3 (i-IMG3 (f->i 5.0) IMAGE) 5) 1)) (i-

5 16))) 50) 4) 256) 50) 2))

(b) Best segmentation program from the last generation.

leaf12 = i-IMG3(5, IMAGE)

leaf11 = i+IMG3(leaf12, 5)

leaf10 = i+IMG3(leaf11, 1)

leaf9 = HLS(leaf10)

leaf8 = i+IMG3(leaf9, -11)

leaf7 = HLS(leaf8)

leaf6 = IMG3-i(leaf7, 50)

leaf5 = i+IMG3(leaf6, 4)

leaf4 = i+IMG3(leaf5, 256)

leaf3 = IMG3-i(leaf4, 50)

leaf2 = GetChannel(leaf3, 2)

leaf1 = Otsu(leaf2)

result = leaf12

(c) Best segmentation program from the last generation, in python pseudocode.

Figure 4.4: Segmentation programs generated by the segmentation stage of the multi-

model pipeline.
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Figure 4.5: Bounding boxes detected using the segmentation mask, applied to the actual

image.
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(a) An image showing objects classified by

colour.

(b) An image showing objects classified by

shape.

Figure 4.6: Objects classified by colour vs objects classified by shape.

4.2 A Real-world Experiment: Detecting Malaria

Malaria is a serious tropical disease which causes millions of deaths worldwide every

year. Many previous studies have tried various machine learning techniques to detect

malaria in thin blood smears. A comprehensive review of such literature is available

in [116], but most recent publications have used deep learning—specifically convolu-

tional neural networks—to attempt to solve the problem.

4.2.1 Dataset

To test whether ST–CGP could approach the performance of convolutional neural net-

works, the author used the dataset provided by the Lister Hill National Center for Bio-

medical Communications, of the National Institute for Health, used in a recent set of

studies [113, 117]. This dataset consists of 27,558 images, each containing a single

cell. The images are split equally between two classes: uninfected and infected, and

are drawn from 193 patients, of which 148 were infected and 45 were uninfected. The
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images range quite considerably in dimension from 46 × 79 pixels to 394 × 291 pixels.

As the images were pre-segmented by the authors of the study, the most appropriate

pipeline for this task was the whole-image pipeline. As such, a segmenter was not evolved

for this task.

Fig. 4.7 shows a few examples of infected and uninfected cells. A typical way to

detect infected cells is to look for dark purple regions; the Giemsa stain used on the thin

blood smears from which these images are extracted typically stains the parasitic regions

dark purple. However, this method is not foolproof: some infected cells do not show a

dark purple region, and conversely, some uninfected cells can have darker regions that

do not necessarily relate to an infection. As such, human categorisation of these cells is

a specialised job requiring extensive training and expertise, and the diagnostic accuracy

can still be impacted by inter-observer variability.

(a) Two uninfected cells. (b) Two infected cells.

Figure 4.7: Examples of uninfected and infected cells.

4.2.2 Methodology

The dataset was split into distinct training and test sets, and a series of experiments

was conducted using varying quantities of training images per class. Four experimental

configurations were tested: 5, 10, 100, and 500 training images per class. For each

configuration, 100 independent runs were executed, with each run having the training

images randomly selected from the training set using a different seed. The test set

remained fixed across all runs and configurations and was balanced, comprising 10,000
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images per class. Metrics were calculated from the predictions on the test set for each

run and were aggregated across all runs for the final analysis.

For this whole-image classification task, each ST–CGP individual was configured with

a single output type: BOOL, establishing a binary decision framework for Malarial infec-

tion detection. Upon program execution, an output value of true indicated that the

analysed cell exhibited characteristics consistent with infection, whilst a value of false

signified that the cell was classified as free from infection, thereby creating a straight-

forward binary classification system for automated pathological assessment.

The default hyperparameters were once again used for this experiment (Table 4.2.

The entire suite of operators discussed earlier was provided to ST–CGP. This includes:

arithmetic, array-based, boolean, and image-based operators. In total, this operator

library comprised approximately 130 functions, providing ST–CGP with an extensive

repertoire of primitives from which to construct solutions.
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4.3 Results

Table 4.3 presents the experimental results obtained across varying training set sizes,

encompassing performance statistics for mean accuracy, sensitivity, specificity, F1-score,

and Matthew’s Correlation Coefficient (MCC), as well as the standard deviation of each

across all runs. For comparative analysis, the optimal results for each metric reported

in [113] are included as benchmark values. This study was chosen because it is the

original study that produced the dataset. Subsequent studies have extended the dataset,

but the extended datasets were not available to the author while producing this research.

The experimental findings demonstrate that utilising five training images per class

yielded the poorest performance across all evaluated metrics, establishing this configur-

ation as the baseline for comparison. Increasing the training set size to ten images per

class improved performance across all metrics. However, further increases in training

set size beyond ten images per class did not yield commensurate gains. In particular, the

configuration with 500 training images per class exhibited slightly lower mean perform-

ance across all metrics than the 10- and 100-image-per-class configurations (Table 4.3).

Differences in MCC between the 5-training-image-per-class configuration and the

other configurations were statistically significant (Table 4.4), indicating that increasing

the training set beyond 5 images per class yields a statistically reliable improvement

in MCC. In contrast, the differences between the 10-image-per-class configuration and

the 100- and 500-image-per-class configurations were not statistically significant after

Holm correction (pHolm > 0.05 for all pairwise MCC comparisons), suggesting that MCC

performance largely saturates by 10 training images per class in this experimental set-

ting. In practical terms, increasing the number of training images per class beyond 10

did not produce a statistically detectable improvement in MCC on the fixed test set, and

thus 10 images per class appears to provide a good trade-off between annotation effort

and performance.

Comparative analysis with the original study that provided the dataset reveals that

the experimental configurations utilising 10, 100, and 500 training images per class
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Table 4.3: Per-config performance over 100 independent runs (mean ± SD).

Config Accuracy Sensitivity Specificity F1 MCC

5 0.945 ± 0.0110 0.951 ± 0.0167 0.939 ± 0.0169 0.945 ± 0.0155 0.890 ± 0.0216

10 0.966 ± 0.0128 0.963 ± 0.0244 0.971 ± 0.0217 0.967 ± 0.0125 0.934 ± 0.0250

100 0.968 ± 0.0118 0.964 ± 0.0167 0.970 ± 0.0175 0.968 ± 0.0113 0.935 ± 0.0234

500 0.965 ± 0.00924 0.962 ± 0.0134 0.968 ± 0.0140 0.966 ± 0.00917 0.930 ± 0.0189

Best result from [113] 0.959 0.960 0.972 0.959 0.917

Table 4.4: All-pairs MCC comparisons over 100 independent runs per config. ∆ denotes

the difference in mean MCC (B−A) across runs. 95% CIs for ∆ are computed by boot-

strap resampling over runs. Two-sided Welch t-tests are used for p-values, with Holm

correction across all 6 pairwise comparisons. ‘Significant?” indicates Holm-adjusted

p < 0.05.

Pair (A vs B) ∆ (B−A) 95% CI for ∆ Welch t p (raw) p (Holm) Significant?

5 vs 10 0.0440 [0.0377, 0.0502] 13.3 4.33 × 10−29 1.73 × 10−28 Yes

5 vs 100 0.0450 [0.0394, 0.0506] 14.1 1.09 × 10−31 6.54 × 10−31 Yes

5 vs 500 0.0400 [0.0342, 0.0456] 13.9 4.57 × 10−31 2.28 × 10−30 Yes

10 vs 100 0.00100 [−0.00560, 0.00750] 0.292 0.771 0.771 No

10 vs 500 −0.00400 [−0.0105, 0.00229] −1.28 0.204 0.407 No

100 vs 500 −0.00500 [−0.0108, 0.000811] −1.66 0.0980 0.294 No
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outperform the previously reported results across the majority of evaluated metrics.

This outcome is particularly noteworthy given the scarcity of instances in the literature

where GP-based methodologies demonstrate superior performance compared to con-

volutional neural network-based approaches, which typically dominate computer vis-

ion benchmarks. The observed performance advantage is especially encouraging when

considered in the context of the substantially reduced training data requirements, as

the present study achieved competitive results with minimal training samples, whereas

convolutional neural networks conventionally require thousands of training images per

class to achieve optimal performance. Furthermore, the significance of these findings

is amplified by the fact that the comparative study employed sophisticated methodolo-

gical enhancements, including feature extraction techniques, extensive pre-processing

procedures, and pre-trained model architectures, to achieve their reported results. The

ability of the GP-based approach to exceed these performance levels whilst operating

under more constrained conditions demonstrates the potential efficacy of evolutionary

computation methods for image classification tasks in data-limited scenarios.

One plausible explanation for the competitive performance of ST–CGP compared to

CNNs, despite having access to limited training examples, may be that ST–CGP has the

opportunity to search a hypothesis space with stronger built-in priors. In this partic-

ular CV workflow, solutions are composed from a library of hand-designed operators

which implicitly encodes domain structure and invariances that a CNN would need to

learn directly from data; if these priors align with the task, fewer labeled examples may

suffice (as discussed earlier in 4.1.1). In addition, GP can behave like simultaneous

architecture discovery and feature construction/selection, explicitly optimising which

operator compositions and derived features are used, rather than fitting a large end-to-

end parameterisation. In simple terms, the learned programs may have substantially

fewer effective degrees of freedom than typical CNNs, potentially reducing variance and

overfitting despite the low levels of data.
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4.4 Discussion

The experimental results are particularly encouraging and demonstrate significant po-

tential for other practical applications. The capacity of ST–CGP to achieve superior

performance compared to convolutional neural networks whilst utilising substantially

fewer training images and operating without the computational requirements of ex-

pensive GPU hardware establishes it as a compelling alternative approach for certain

computer vision applications. These characteristics suggest broader applicability to scen-

arios where computational resources are constrained, particularly given that ST–CGP can

be trained effectively on comparatively low-cost hardware with substantially reduced

power consumption requirements. Such attributes could make the approach particu-

larly attractive for deployment in field-based applications where time-critical analysis

is required and access to high-performance computing infrastructure may be limited or

unavailable.

Furthermore, the solutions generated by ST–CGP offer a significant advantage over

traditional deep learning approaches in terms of interpretability, as the resulting pro-

grams are not “black boxes” but rather produce human-readable code that can be ana-

lysed, understood, and potentially incorporated into larger computer vision systems

where transparency is essential. Figure 4.8 presents an example of a classifier program

generated during the experimental evaluation, illustrating the complex yet interpretable

operations that ST–CGP can construct. This particular program demonstrates a sequence

of operations including the selective utilisation of the red channel from the RGB repres-

entation of the input image, the application of conditional thresholding whereby pixels

with values below 187 are reassigned to 157, the identification and processing of con-

tours with each detected region filled using the minimum value found within that con-

tour, the computation of the E5S5 texture measure across the processed image, the

subsequent filling of each contour with the range of pixel values contained within it,

and finally the application of a binary threshold at a value of 128. The resulting output

constitutes a binary mask wherein white pixels indicate the presence of infected cells
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threshold(

cnt_range(

E5S5(

cnt_min(

setbelow(im_r, 187.0, 157.0),

im_contours)

),

im_contours),

128)

Figure 4.8: An example cell classifier generated by ST–CGP.

and black pixels denote healthy cells. This program effectively demonstrates both the

expressive capabilities of ST–CGP within the computer vision domain and the significant

advantage of producing interpretable solutions that enable researchers to comprehend

precisely how the classification decision is reached, potentially informing future research

directions in both computational and manual analysis.

Traditionally, research in GP (and CGP) has predominantly focused on the imple-

mentation of low-level computational operations, avoiding the incorporation of higher-

level programming constructs such as iterative loops operating on data structures like

arrays. However, the author proposes a fundamental reorientation of GP objectives, and

evolutionary computation more broadly, from the conventional goal of problem-solving

towards the more ambitious pursuit of “automatic programming,” a perspective that has

gained considerable support in recent publications [118, 119]. Human programmers

characteristically operate at higher levels of abstraction, leveraging pre-existing func-

tion libraries and frameworks that provide access to complex functions and algorithms,

thereby simplifying the programming process. The Malaria detection task demonstrates

a similar idea: image processing and analysis functionality was realised through op-

erators that encapsulate widely-utilised functions from the OpenCV library, providing

high-level access to sophisticated computer vision algorithms. To conduct a meaning-

ful evaluation of the potential for novel evolutionary computing techniques to generate



4.5. CONCLUSION 103

solutions that are genuinely competitive with human-developed programs, it is essential

that these computational methods be equipped with equivalent tools and resources to

those available to human programmers. The results obtained in this experiment provide

compelling evidence that such an approach can facilitate the evolution of solutions that

demonstrate enhanced generalisability and adaptability compared to those produced

using traditional low-level operator sets.

4.5 Conclusion

This chapter has demonstrated that ST–CGP extends beyond a purely pedagogical re-

search exercise, exhibiting practical applicability to real-world computational tasks, in-

cluding those of considerable complexity such as computer vision problems. The chapter

presented a tool for the annotation of image-based datasets and successfully addressed a

toy problem with synthetic data, yielding encouraging experimental results that validate

the system’s fundamental capabilities.

Furthermore, when applied to a genuine real-world task, ST–CGP demonstrated per-

formance that proved competitive with established convolutional neural networks and

deep learning approaches. This achievement is particularly noteworthy given that the

target task is recognised as exceptionally challenging for human practitioners, whilst ST–

CGP accomplished this level of performance utilising significantly fewer computational

resources and requiring substantially smaller training datasets compared to conventional

deep learning methodologies.

A recent study discovered that a small proportion of the data in the dataset used for

this experiment was mislabelled. Unfortunately, time did not allow for these findings

to be incorporated into the work for this PhD, and so the results presented here are

obtained using the mislabelled dataset. Nonetheless, in future work, it would be inter-

esting to see whether using a corrected dataset improves results. Perhaps the samples

“incorrectly classified” by ST–CGP may actually have been correctly classified!

ST–CGP demonstrated an additional significant advantage over CNNs: the genera-
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tion of interpretable programs. Machine learning researchers have long expressed con-

cern regarding the opaque, black-box nature of neural networks, and the recent surge

in artificial intelligence adoption, driven in large part by the widespread availability of

large language models, has elevated this issue to a position of prominence within the

research community. ST–CGP has demonstrated that, consistent with previous GP-based

techniques, it can produce human-interpretable code that enables researchers and prac-

titioners to understand the underlying decision-making processes. This interpretability

provides substantial benefits, including the ability to validate that the system has learned

appropriate patterns rather than exploiting spurious correlations, facilitating debugging

and refinement of the evolved solutions, and enabling domain experts to assess whether

the discovered relationships align with established theoretical understanding, thereby

increasing confidence in the system’s reliability and appropriateness for deployment in

critical applications.



Chapter 5

Soil Health Analysis: Yield

Soil health plays a fundamental role in agriculture, serving as the foundation for food

production and ecosystem sustainability. Healthy soil supports plant growth, regulates

water, filters pollutants, and cycles nutrients, making it essential for maintaining both

agricultural productivity and environmental resilience. However, soil degradation, res-

ulting from intensive farming practices, deforestation, and climate change, has become

a critical global issue. The degradation of soil quality, through loss of organic matter,

compaction, erosion, and chemical contamination, threatens not only agricultural yields

but also long-term food security and the health of natural ecosystems.

In response to these challenges, modern agriculture is increasingly focused on soil

health management as a way to ensure sustainable farming practices. The ability to mon-

itor and assess soil health accurately is crucial for informing land management decisions,

optimising crop growth, and mitigating the damage caused by intensive farming meth-

ods. Traditional soil analysis methods, which often rely on laboratory testing of physical

and chemical properties, can be time-consuming, expensive, and may fail to capture the

dynamic nature of soil ecosystems. Alternatively, in-field methods of analysis can be

used, but these are typically suffer from poor levels of accuracy. Consequently, there is a

growing demand for innovative, real-time approaches to soil health monitoring that can

capture both the complexity of soil conditions and the variability introduced by factors

such as seasonality, moisture levels, and biological activity.

105
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During the course of this PhD, the author was introduced to PES Technologies, a

small startup which has developed an electronic nose sensor that can collect a gas fin-

gerprint from soil samples over the course of five minutes, in the field. This device

measures volatile organic compounds and other gases emitted by the soil, providing a

rapid, non-invasive method of capturing information which can be useful in the predic-

tion and management of soil health. However, the raw gas fingerprint data is complex,

and requires sophisticated analysis to interpret.

A preliminary, proof-of-concept project sponsored by InnovateUK set out to invest-

igate whether the gas fingerprint data produced by the PES sensor provided enough

information to predict indicators of soil health. Ultimately, ST–CGP proved to be such a

successful technique for analysing and interpreting these gas fingerprints that it has since

been applied commercially by PES. The project as a whole was split into two phases.

In the first, agronomists gathered soil samples along with ancillary data. Part of each

sample was retained for use with PES’s sensor while the remainder was subject to con-

ventional biological, physical, and chemical analysis. This chapter focuses on the latter

because it allows the establishment of the baseline performance that is to be expected

of a machine learning system in predicting soil health, the kind of performance that is

expected from today’s technologies. The next chapter then explores how well machine

learning, and ST–CGP in particular, is able to predict soil health using the data from

PES’s sensor.

Section 5.1 will cover the background and context of the project, while section 5.2

covers the experimental setup. Section 5.3 shows the results obtained from this initial

study.

5.1 Background and Context

5.1.1 The Importance of Soil Health

Soil health refers to the condition of soil in terms of its ability to perform essential func-

tions that support both agricultural productivity and broader ecosystem sustainability.
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It is often understood as the capacity of soil to sustain plant and animal productiv-

ity, maintain environmental quality, and promote plant, animal, and overall ecosystem

health [120]. Put simply, a healthy soil system is one that effectively regulates water,

sustains plant growth by cycling nutrients, supports microbial and other biological activ-

ity, and resists erosion and degradation. Unlike a static resource, soil is a dynamic living

system composed not only of minerals and organic matter but also of billions of microor-

ganisms that drive key ecological processes [121]. The concept of soil health captures

the holistic and long-term functionality of soil, beyond immediate fertility for crop pro-

duction, highlighting its role in maintaining critical ecosystem services such as carbon

sequestration, water filtration, and biodiversity support.

Soil health is a cornerstone of agricultural productivity, providing the essential condi-

tions that allow plants to thrive. Healthy soil acts as a medium that supplies plants with

key nutrients, water, and a stable structure for root development. The organic matter in

healthy soils enhances nutrient cycling, ensuring that essential elements such as nitro-

gen, phosphorus, and potassium are made available to crops in forms they can readily

absorb [122]. In addition to nutrient supply, well-structured soil with good porosity and

texture allows water to infiltrate and be retained, preventing both drought stress and

waterlogging. This balance is critical for the growth of crops and contributes to the long-

term sustainability of agricultural systems [123]. Furthermore, healthy soil supports a

diverse community of microorganisms, including bacteria, fungi, and other organisms

that break down organic matter, fix nitrogen, and protect plants from pathogens [124].

This complex biological network within the soil helps build natural resilience, reducing

the dependency on synthetic inputs like fertilisers and pesticides, and ultimately sup-

porting more sustainable farming practices [125].

Soil degradation poses a significant threat to agricultural productivity and sustainab-

ility. When soil health deteriorates, the key functions typically performed by a healthy

soil system are severely compromised, leading to reduced crop yields. For instance, com-

pacted soils limit root growth and restrict water infiltration, which stresses crops during

dry periods. Erosion strips away the topsoil—rich in nutrients and organic matter—
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leaving behind less fertile land. As a result, farmers are forced to rely on chemical

fertilisers and soil amendments to maintain productivity, increasing both costs and en-

vironmental impacts, such as nutrient runoff and pollution of water bodies.

Degraded soils are more susceptible to environmental stresses, such as droughts and

heavy rainfall, which can exacerbate yield losses. This makes agriculture less resilient to

climate variability, further threatening food security, especially in regions already prone

to extreme weather conditions. In the long term, continuous degradation can lead to

the “desertification” of arable land, rendering it unproductive and leading to significant

economic and social challenges for communities dependent on farming. It therefore fol-

lows that maintaining healthy soils is crucial not only for immediate agricultural output,

but also for the long-term viability and resilience of agricultural systems globally.

5.1.2 Traditional Soil Health Measurement Techniques

Assessing soil health is fundamental to sustainable agricultural practices and environ-

mental management. Traditional soil health measurement techniques have long been

the cornerstone of this assessment, relying on established methodologies to evaluate

various soil properties. Understanding these conventional approaches provides a found-

ation for recognising their strengths and limitations, thereby highlighting the need for

faster, cheaper solutions such as in-field testing using electronic nose sensors.

The process of collecting soil samples is vitally important in order to accurately as-

sess soil health, given the inherent variability of soil properties across different locations,

even those within the same field. A commonly employed method involves a technique

known as “walking the W,” where the sampler moves systematically across the field in

a W-shaped pattern. At predefined points along this path, individual soil “sub-samples”

are taken, with these sub-samples being combined at the end of the path to form a com-

posite sample. This approach ensures that samples are taken from various points, which

helps to mitigate the effects of localised variability and provides a more representative

sample for a given field or agricultural plot. By averaging the properties of multiple

subsamples, researchers can obtain a clearer picture of factors such as moisture content,
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nutrient distribution, and soil structure, which might otherwise be obscured by the nat-

ural fluctuations present in the soil. This meticulous sampling strategy is essential for

producing reliable data, as it accounts for the complex nature of soil, thereby increasing

the accuracy of subsequent measurements and analyses.

Assessing soil health comprehensively necessitates the evaluation of three primary

measurement categories: physical, chemical, and biological. Physical measurements ex-

amine characteristics such as soil texture, structure, moisture content, and bulk density.

These indicators provide essential information about the soil’s ability to retain water,

facilitate root growth, and support plant structures. Chemical measurements involve

analysing parameters such as soil pH, nutrient concentrations (including nitrogen, phos-

phorus, potassium, and magnesium), and the presence of any contaminants or pollut-

ants. These assessments are crucial for determining soil fertility, nutrient availability,

and potential toxicities that could affect plant and microbial life. Finally, biological

measurements focus on the diversity and activity of soil microorganisms, including mi-

crobial biomass, enzyme activities, and the presence of soil fauna such as earthworms

and arthropods. These biological indicators are vital for understanding the soil’s biolo-

gical vitality, nutrient cycling processes, and overall ecosystem functionality. By integ-

rating data from these three categories, researchers can obtain a holistic view of soil

health, enabling more informed decisions regarding soil management and agricultural

practices. Each category contributes unique insights, collectively ensuring a thorough

and accurate assessment of the soil’s condition.

While certain physical measurements of soil health can be conducted directly in the

field using portable instruments or test kits, the majority of chemical and biological

assessments require specialised laboratory facilities to ensure accuracy and reliability.

Laboratory-based analyses are essential for precisely determining soil pH, nutrient con-

centrations, and the presence of contaminants, as these parameters require sophisticated

equipment such as spectrophotometers, chromatographs, and mass spectrometers. Ad-

ditionally, biological measurements, such as microbial biomass and enzyme activities,

demand controlled environments and advanced techniques like DNA sequencing and
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highly controlled ignition of soil samples to accurately assess soil biodiversity and mi-

crobial functions. The complexity of these analyses means that they cannot be effectively

performed outside of a laboratory setting, where environmental variables can be metic-

ulously managed. Furthermore, laboratory procedures often involve intricate sample

preparation processes, including drying, sieving, and chemical extraction, which are

critical for obtaining valid and reproducible results. Expertise in soil science, chemistry,

and microbiology is also imperative, as skilled technicians are required to operate the

specialised equipment, interpret the data correctly, and ensure that the methodologies

adhere to standardised protocols. Consequently, the reliance on laboratory-based ana-

lyses introduces logistical considerations, such as the need for proper sample storage

and transportation to prevent degradation or contamination.

Given that the laboratory analyses required for the assessment of soil health are

so specialised, it stands to reason that they would be both costly and time-intensive.

Typically, the process from sample collection to the delivery of comprehensive analysis

can span as many as two to three months. This prolonged timeframe poses substan-

tial limitations for farmers, land managers, and agronomists who rely on timely data to

make informed decisions about soil management practices. During this waiting period,

soil conditions can undergo considerable changes due to factors such as weather fluc-

tuations, crop growth cycles, and ongoing agricultural activities. As a result, the in-

formation provided by delayed laboratory analyses may no longer accurately reflect the

current state of the soil, reducing its practical utility. Additionally, the lag in obtain-

ing results makes it more challenging to implement corrective measures or amendments

at the right time, potentially exacerbating soil degradation or nutrient imbalances. This

delay can also can affect the scheduling of planting and harvesting activities, as decisions

based on outdated data can lead to suboptimal crop performance and yield.

The financial implications of traditional laboratory-based soil health assessments sig-

nificantly influences the frequency and extent of soil testing undertaken by farmers and

land managers. While basic chemical analyses can be performed quite cost effectively,

costs rise dramatically as biological analyses are introduced (or even just slightly less
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common chemical and physical analyses)1 due to the complexity of the processes used,

in addition to the costly reagents. These high costs can be prohibitive, especially for

small-scale farmers or organisations with limited budgets, limiting their ability to per-

form regular soil health evaluations. As a result, comprehensive soil testing may only

be conducted periodically or when specific issues arise, rather than as part of a routine

monitoring framework. This infrequent testing approach can lead to delayed detection

of soil degradation, nutrient deficiencies, or contamination, making it more challenging

to implement timely and effective amendments. Additionally, the high cost per test dis-

courages extensive spatial sampling across larger agricultural fields or multiple plots,

potentially overlooking areas that may be experiencing different soil health conditions.

So, to conclude, while traditional soil health measurement techniques allow a com-

prehensive piture of soil health to be produced, the economic constraints imposed by

traditional measurement techniques, as well as the time-intensive nature of both col-

lecting the samples and analysing them, hinder the ability to achieve widespread and

continuous soil monitoring, which is essential for maintaining sustainable agricultural

practices and ensuring long-term soil fertility and productivity.

5.2 Experimental setup

This section outlines the experimental setup for the Innovate UK project. It details the

data collection process, the rationale for the selected collection parameters, and the

choice of chemical, physical, and biological assessments. Additionally, the section exam-

ines the machine learning training approaches explored during the study and evaluates

their resulting accuracy.

1A standard NPK test can cost as little as £15-20, whereas a full suite of biological indicators can be

upwards of £500.
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5.2.1 Yield as a Proxy for Soil Health

The objective of this project was to develop a machine learning model that predicts soil

health based on the analysis of collected soil sample data. As discussed, assessing soil

health is inherently complex due to the multitude of interacting factors that influence

its condition; soil cannot be categorically defined as simply “healthy” or “unhealthy” be-

cause variables such as nutrient content, moisture levels, organic matter, and microbial

activity all contribute significantly to its overall state. Furthermore, the significant spa-

tial variability displayed by soil mean that the characteristics that define a healthy soil in

one field may not be directly applicable to another field, and even within a single field,

different areas may display markedly different conditions. This complexity necessitates

a careful approach to data analysis and model development, ensuring that the model

can account for a wide range of influencing factors and spatial disparities.

A practical abstraction of soil health is to instead consider the specific area of the

field from which a soil sample originates. It is expected that different areas within a

field will exhibit different levels of soil quality, roughly correlating with the intensity

of farming practices as well as other factors such as the influence of soil amendments,

cultivation methods, etc. For instance, it is common for a field to contain an unfarmed

area, such as a grass margin or hedgerow, known as the “reference zone” where, due

to remaining undisturbed during the farming process, it is expected that the soil quality

would be higher compared to the actively farmed regions. In contrast, soil samples

taken from cultivated parts of the field can be indirectly assessed by examining the yield

from those areas, under the assumption that higher yield generally correlates with better

soil health; we logically expect that higher yielding areas will be healthier than lower

yielding ones.

Based on these considerations, for the purposes of this project, each soil sample is

assigned one of three yield labels: “low,” “high,” or “reference.” These labels serve as a

proxy for soil health, with yield acting as an indirect measure of the underlying quality

of the soil. It is these labels that the machine learning models developed during this

project are designed to predict.
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5.2.2 Data Collection

As explained earlier, conventional soil sampling methodologies are widely recognised as

being both costly and time intensive. In light of these challenges, the data collection

strategy for this project was carefully designed to balance the acquisition of detailed,

informative data with the practical limitations imposed by available resources. This

approach aimed to ensure that sufficient information could be gathered to support a

rigorous analysis while maintaining cost efficiency across the study.

Data were collected from a total of 45 fields, with each field undergoing a struc-

tured sampling protocol aimed at capturing spatial variability. To allow the reliability

(and error margin) of laboratory measurements to be measured, samples were taken in

triplicate at each designated zone, thereby allowing for the calculation of measurement

error. This method yielded nine data points per field—three per zone—resulting in an

overall dataset comprising 405 data points. Although this dataset is modest in size relat-

ive to larger agricultural surveys and typical machine learning studies, it was considered

adequate to serve as a proof of concept for the study’s objectives.

It is worth noting that in order to accommodate the yield labelling methodology de-

scribed earlier, the sampling protocol adopted in this project departs from the traditional

“walking the W” method described earlier, where samples are collected at regular inter-

vals along a transect and subsequently homogenised. Instead, the three aforementioned

discrete locations within each field were sampled, a choice that offers an additional key

advantage beyond allowing a direct comparison of soil health indicators across differ-

ent yield zones; by refraining from homogenising the samples, the protocol allows the

variation in biological activity between locations to be measured, acknowledging that

this can vary significantly within a single field. Biological activity is perhaps the most

important predictor of soil health, so understanding how this varies with yield could

prove to be very useful for agricultural practice. However, while this approach increases

the analytical rigour, it also leads to a higher number of samples per field (at least three,

versus a single homogenised sample from a “W”), which, due to cost constraints, limits

the overall number of fields that can be included in the study.
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Each soil sample was collected by a trained agronomist following a detailed soil

sampling protocol developed by one of the project’s academic partners. In addition to

the specific set of steps for the physical collection of the soil, the protocol required the re-

cording of extensive metadata for each sample, including GPS coordinates, soil texture,

moisture content, crop history, cultivation practices, and additional relevant paramet-

ers. This comprehensive data collection framework was designed with the hypothesis

that such metadata could have significant implications for soil health, particularly re-

garding biological activity. By systematically recording these diverse factors, the study

aimed to rigorously assess the predictive value of the metadata in relation to soil health

indicators. Fig. 5.1 shows the data collection sheet used by agronomists during soil

sample collection.



Figure 5.1: The data collection sheet used by agronomists during sample collection.
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Soil samples were collected across two seasons: spring and autumn. This approach

reflects standard agronomic practice, as sampling and testing are typically conducted

during these periods when soil conditions are more conducive to accurate (and useful!)

analysis. In contrast, winter conditions render the soil excessively hard, with low or no

biological activity, due to low temperatures, while summer conditions, characterised by

high temperatures and low moisture levels, can lead to overly dry soils and inconsistent

biological activity. The season in which the samples were collected was recorded, and

serves as another piece of metadata to be used in analysis and training.

5.2.3 Soil Health Indicators

It turns out that defining soil health is a very tricky thing to do, and is something that

requires a good deal of data. As alluded to earlier, these data typically comprise a set of

“indicators” that, when taken as a holistic picture with metadata such as that collected

using the data sheet in Fig. 5.1, can give an overall picture of soil health. For this

project, the following set of indicators was chosen, as they cover physical, chemical, and

biological analyses, and are sufficient to provide a comprehensive picture of soil health

in combination with the metadata collected using the agronomists data sheet, and, of

course, the interpretation of an expert agronomist.

Microbial Biomass

Soil microbial biomass refers to the living microbial population in soil. It plays many

important roles in soil processes such as nutrient cycling and plant growth.

Respiration

The basal respiration rate of the microbial communities in the soil sample. This indic-

ator measures the flux of CO2 released from microorganisms in the soil during respira-

tion. It is crucial for understanding soil ecosystems and creating effective management

strategies for soil health and agricultural productivity.

pH

Soil pH is a measure of the acidity or alkalinity of the soil. Different plants have different

pH requirements and it is important to maintain the optimal pH range for the specific
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plants being grown.

Organic Matter (Loss on ignition)

Soil organic matter percentage determined using the loss-on-ignition method. It is an

important indicator of soil quality and fertility, and can influence plant growth, nutrient

availability, and soil structure.

K Available

The portion of total soil potassium that plants can take up and use. Potassium avail-

ability is crucial for plant growth. However, excess levels of potassium can negatively

affect plant growth as it interferes with uptake of other nutrients, particularly zinc, mag-

nesium, iron, and calcium, causing small, curled foliage, thin stems, and acidic fruit (in

fruiting crops).

Mg Available

The portion of total soil magnesium that plants can take up and use. Magnesium avail-

ability is crucial for chlorophyll production. However, much like potassium, too much

magnesium can negatively affect plant growth by inhibiting calcium uptake, leading to

stunted growth and foliage that is too dark.

P Available

The portion of total soil phosphorus that plants can take up and use. Phosphorus avail-

ability is crucial for root growth. Excess amounts of phosphorus can prevent plants from

absorbing iron and zinc, causing yellowing of foliage and stunted growth.

Ammonium Nitrogen

The amount of ammonium (NH +
4 ) ions that can be extracted from soil. Ammonium is a

key source of nitrogen for plants. Too little can lead to stunted or slow growth, but too

much can lead to toxicity and nutrient imbalances.

Nitrate Nitrogen

Also known as soil extractable nitrate, nitrate nitrogen refers to the amount of nitrate

that can be extracted from the soil. It is important for determining the amount of fertil-

izer needed for crops, and high levels could lead to possible contamination of ground-

water due to leaching.
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Field water content

The current amount of water in a soil sample, presented as a weight percentage. This

also allows field soil content to be calculated by subtracting the water content value

from 100.

Water Holding Capacity water content

The upper limit of water capacity (WHC) for a given soil sample, presented as a weight

percentage. A higher WHC value for soil denotes better moisture retention, while a

lower WHC indicates improved drainage. Differences in soil composition typically result

in differing WHC values; for instance, a sandy soil will hold less water than a soil with a

high clay percentage.

Sand %

The percentage of the soil composition which is considered to be sand, measured using

the laser diffraction method. Together with silt and clay percentage, this allows the

soil texture to be categorised. Sand particles are defined as particles with a diameter

between 2.00mm and 0.063mm.

Silt %

The percentage of the soil composition which is considered to be silt, measured using

the laser diffraction method. Together with sand and clay percentage, this allows the soil

texture to be categorised. Silt particles are defined as particles with a diameter between

0.063mm and 0.002mm.

Clay %

The percentage of the soil composition which is considered to be clay, measured using

the laser diffraction method. Together with sand and silt percentage, this allows the soil

texture to be categorised. Clay particles are defined as particles with a diameter less

than 0.002mm.

Geomsin

A volatile organic compound (VOC) contained in soil. This is the VOC associated with

the “smell” of fresh soil, as well as the smell released when rain falls on dry ground.

Geosmin is produced by bacterial communities in the soil, and higher concentrations are
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generally associated with more biologically active soil (though this does not necessarily

mean that soil is healthier).

5.2.4 Initial Analysis

Understanding the dataset is a crucial preliminary step in any machine learning task. Ini-

tial data analysis provides valuable insights into the structure and characteristics of the

dataset, enabling an early assessment of its potential performance on a given problem.

This preliminary exploration can reveal trends, anomalies, and patterns that suggest

which features may prove most informative. Such analysis often highlights the strengths

and limitations inherent to the datase, thereby guiding the selection of appropriate mod-

elling techniques and feature engineering strategies.

Data visualisation represents an effective starting point for this initial analysis. As

seen in Figures 5.2 to 5.4, charts depicting the relationship between yield and three key

variables—Microbial Biomass, Extractable Nitrate, and Geosmin—offer a visual means

of assessing potential correlations. Ideally, when a variable is plotted against the target

label, distinct clusters should be visible that could indicate clear, predictive patterns.

In these charts, however, such clusters are not evident. This lack of distinct groupings

provides an early indication that these individual variables, when considered in isolation,

may be insufficient to accurately predict the yield label. This observation suggests the

need for an approach that may involve the integration of additional data (or metadata)

or the application of more sophisticated feature selection techniques.

The next stage of the initial analysis involves examining the relationship between

the input variables and the target label through correlation analysis. This analysis serves

as an important step in identifying which variables exhibit strong associations with the

target label, either in a positive or negative direction. When a variable shows a signi-

ficant correlation, it is considered a promising candidate for predictive purposes, as it

suggests that changes in the variable may be closely linked to changes in the target label.

Conversely, variables that display little to no correlation are likely to contribute less to

the predictive model. In this manner, correlation analysis can function as an informal
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Figure 5.2: A cluster chart showing Yield vs Microbial Biomass.

Figure 5.3: A cluster chart showing Yield vs Extractable Nitrate.
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Figure 5.4: A cluster chart showing Yield vs Geosmin.

method of dimensionality reduction. By reducing the number of variables provided to a

machine learning algorithm, “input noise” is reduced which can improve the results of

the classification process. Those variables that maintain a strong association with the

target—regardless of the direction of the correlation—are retained for further analysis,

while those with negligible or weak correlations are excluded from subsequent model-

ling efforts.

Table 5.1 presents the Pearson’s correlation coefficient for each variable with respect

to yield. Note that the “water” and “soil” content for the Field and WHC variables have

been merged, as the soil and water constituents of these readings sum to a total value, so

the correlation is identical. It can be seen that microbial biomass exhibits the strongest

correlation with yield, while geosmin shows the weakest correlation. However, even

microbial biomass, the most strongly correlated variable, does not exhibit a particularly

high correlation coefficient; a value of ≈ 0.25 is indicative of a weak correlation at best.

This reinforces the notion that the variables collected in their raw state may not offer
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Variable Correlation Coefficient

Microbial Biomass 0.257 ± 0.022

100% WHC Soil/Water Content 0.223 ± 0.019

Field Soil/Water Content 0.196 ± 0.024

2-methyl-iso-borneol 0.136 ± 0.025

Extractable Nitrate 0.119 ± 0.021

Respiration-MeanCO2 0.112 ± 0.024

Extractable Ammonium 0.068 ± 0.025

Geosmin 0.072 ± 0.024

Table 5.1: Correlation coefficient of each variable wrt Yield.

sufficient predictive information for accurate yield classification, and that the inclusion

of additional metadata is crucial to enhance model performance.

5.2.5 Pre-processing

Several pre-processing techniques were implemented and rigorously evaluated to ensure

their suitability in the machine learning pipeline. Each technique was systematically

applied to the data, and subsequent analyses compared the performance of the machine

learning algorithms with and without the application of these techniques. This approach

was adopted to verify that the introduction of any pre-processing step did not adversely

affect the accuracy or reliability of the produced models.

Removal of incomplete variables

Several of the collected variables were incomplete, meaning that not every one of the

405 datapoints contained a recorded value for each variable. Although a small propor-

tion of missing values is often not too much of a problem, variables with a majority

of missing data may adversely affect the performance of machine learning models. To

assess this impact, tests were conducted using datasets that included the incomplete
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variables, as well as datasets where these variables were excluded. The evaluations

revealed that incorporating the incomplete variables did not enhance predictive per-

formance; in several instances, performance metrics declined, and the computational

runtime increased significantly. Consequently, it was determined that excluding the in-

complete variables from further analyses would be the most effective strategy to optimise

both model performance and efficiency. Including the lab analyses and the metadata,

there were 11 complete variables for the dataset; the 8 variables seen in table 5.1, and

three further pieces of metadata: soil moisture, soil texture, and the season in which

the sample was collected. Moisture and texture were categorised broadly into three

categories: for moisture, “dry,” “moist,” and “wet;” and for texture, “light,” “medium,”

and “heavy” were the categories chosen, as they are relatively easy for even untrained

samplers to determine.

Normalisation

Continuous variables often span extensive ranges that differ significantly among vari-

ables. Machine learning algorithms generally exhibit improved performance when the

scale of each variable is the same. Normalisation is the process of transforming continu-

ous variables from their original ranges to a predefined scale, most commonly 0–1, in an

attempt to mitigate the influence of different scales. This technique involves applying a

transformation to each variable based on its minimum and maximum values, ensuring

that all values are proportionately scaled within the chosen range.

Such standardisation usually helps because it reduces the dominance of variables

with larger numerical ranges and ensures that each variable contributes equally during

model training. By aligning the scales of the variables, the normalisation process not

only facilitates more stable and efficient convergence but can also improve the overall

accuracy of the machine learning model. This approach is particularly beneficial when

dealing with datasets where the variability in measurement units is quite pronounced,

something which is true of the dataset used in this project.
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Principal Component Analysis

Principal Component Analysis (PCA) is a common method of dimensionality reduction,

similar in purpose to the correlation-based feature selection performed earlier. Unlike

approaches that simply discard certain variables, PCA transforms the original set of vari-

ables by combining them to form new variables known as principal components. These

components are constructed in such a way that they capture the maximum possible

amount of the variance within the data, given an allowable number of principal com-

ponents. In this project, PCA was applied to transform data originally comprising the 11

complete variables into 6 principal component variables; so chosen because 6 compon-

ents explained > 95% of the variance in the original variables.

Data Augmentation

Data augmentation refers to the process of creating additional data records by duplic-

ating existing ones and introducing subtle modifications. This technique is particularly

useful when the available dataset is limited, as is the case here. In this project, ma-

chine learning techniques were evaluated with varying levels of data augmentation,

with a maximum of one synthetic record generated for each original record. The ra-

tionale behind this limit is that generating more synthetic records may lead to an over-

representation of augmented data, which can undermine the reliability of the analysis.

Excessive augmentation can introduce biases and distort the patterns present in the

original data, potentially impairing the model’s ability to generalise effectively. Aug-

mentation was performed by adding small Gaussian perturbations to each continuous

input feature. Specifically, each continuous feature had zero-mean noise injected with a

standard deviation equal to 1% of that feature’s own standard deviation.

5.2.6 Tests

The analysis was based on three distinct sets of variables: the original dataset variables,

those derived from principal component analysis (PCA), and a combination of both.
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Each overall configuration (of pre-processing, hyperparameters, and set of variables)

was tested 10 times to ensure that the results were representative and to reduce variab-

ility due to stochastic effects. Due to the limited sample size, k-fold cross-validation was

used with k = 5 for each test in order to obtain a more robust estimate of generalisation

performance. Metrics were computed as the mean across all k folds, and then averaged

across the 10 repeated runs.

A comprehensive evaluation of multiple machine learning techniques was conduc-

ted in this project. For each algorithm, all combinations of the aforementioned pre-

processing methods were evaluated to identify the best-performing pipeline. Hyper-

parameter optimisation was performed using k-fold cross-validation. Because hyper-

parameters were tuned and performance was estimated using the same cross-validation

procedure (i.e., without nested cross-validation), the resulting cross-validated scores

may be optimistically biased due to selection over many configurations. Nevertheless,

since all models were optimised under an identical protocol, the relative comparisons

between methods remain informative. The algorithms were selected to span a range

of modelling paradigms and inductive biases, including linear probabilistic classifiers,

non-parametric instance-based learning, single-tree and ensemble tree-based methods,

probabilistic graphical models, neural networks, and an evolutionary/program-synthesis

approach. The techniques examined were as follows:

• ST–CGP.

• Random Forest Classifier.

• Logitboost.

• K-Nearest-Neighbours Classifier.

• Multilayer Perceptron Neural Network.

• J48 Decision Tree.

• Logistic Regression.
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• Bayesian Network.

Table 5.2 shows the hyperparameter search space for each algorithm. To ensure

fair comparison between methods, hyperparameter search was conducted under a fixed

computational budget: for each algorithm, up to N = 1000 hyperparameter configura-

tions were evaluated, subject to a maximum runtime of two hours per algorithm (with

most methods completing earlier). All algorithms were evaluated using the same cross-

validation protocol, repetition count, pre-processing options, feature-set variants, and

performance metrics. Additionally, ST–CGP was used with a single type, so that a fair

comparison could be made with untyped algorithms. Most features were continuous,

with a few categorical features which were encoded to be integers. As such, the beha-

viour of ST–CGP was largely similar to untyped CGP for this experiment, though with

the uncommon addition of crossover and the additional genetic rewiring technique.

5.3 Results and Discussion

Table 5.3 shows the best performing run for each of the tested machine learning tech-

niques. For each technique, the table shows the accuracy, the F-Measure value and

Matthews Correlation Coefficient (MCC). The F-measure is a measure commonly used

to compare performances of classifiers. A higher score indicates a better classifier. Mat-

thews Correlation Coefficient shows the extent to which a classifier is able to classify a

given sample compared to chance—a value of 0 means the classifier is no better than

chance, while the closer to 1 the value is, the more likely it is to correctly predict the res-

ult. MCC is generally considered to be a better metric than accuracy because it takes into

account class weightings; if one class is very over- or under–represented the accuracy

metric can be thrown off, while MCC is less affected.

It can be seen from the table that the random forest produced the best performing

classifier, yielding a maximum accuracy of 65%, an F-Measure of 0.615 and a Matthews

Correlation Coefficient of 0.472. However, this technique was also one of the most

variable in performance: the standard deviation of the performance was nearly 3%. ST–
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Algorithm Parameter Min Value Max Value

Random Forest

Number of Trees 10 500

Number of Features 1 30

Maximum Depth 5 20

LogitBoost

Number of Iterations 10 100

Shrinkage 0.1 1.0

Weight Threshold 50 200

KNN Number of Neighbours 1 (odd only) 29 (odd only)

Multilayer Perceptron

Learning Rate 0.01 0.5

Momentum 0.0 0.9

Training Epochs 100 1000

Hidden Neurons (1 layer) 5 50

J48 Decision Tree
Confidence Factor 0.05 0.5

Min Instances per Leaf 1 20

Logistic Regression
Ridge Parameter 10−10 10−1

Max Iterations 50 500

Bayesian Network
Max Number of Parents 1 5

Smoothing (alpha) 0.1 1.0

Table 5.2: The hyperparameter search space for each machine learning algorithm.

CGP performed nearly as well as random forests with a much lower variation. While

on the lower end of the accuracy scores, decision trees were very consistent, showing

almost no variation in the results.

These findings are promising, with several techniques achieving accuracies exceed-

ing 60% and a Matthews correlation coefficient approaching 0.5. Such results suggest

that, although the performance is not flawless, the methods demonstrate a statistically

significant ability to classify samples more reliably than would be expected by random

chance.
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Technique Accuracy F-Measure MCC

Random Forest 65.0% ± 2.89% 0.644 0.472

ST–CGP 62.5% ± 0.42% 0.615 0.436

Logitboost 57.5% ± 0.78% 0.571 0.361

K-Nearest-Neighbours Classifier 50.0% ± 0.38% 0.505 0.270

Multilayer Perceptron Neural Network 48.8% ± 1.26% 0.483 0.230

J48 Decision Tree 47.5% ± 0.69% 0.463 0.210

Logistic Regression 41.3% ± 1.10% 0.413 0.121

Bayesian Network 31.3% ± 2.21% 0.288 -0.043

Table 5.3: Results of the machine learning techniques tested.

Further analysis revealed a consistent pattern across all techniques: the optimal per-

formance was obtained in every case with the following configuration: incomplete vari-

ables excluded, the remaining variables normalised, and principal components derived

from PCA omitted. This outcome is particularly noteworthy given that PCA is frequently

employed to enhance performance by reducing dimensionality. The results may imply

that, for this particular dataset, the variables exhibit limited intercorrelation, thereby

diminishing the benefits of PCA.

Although it was not the highest-scoring algorithm, ST–CGP offered the additional

benefit of producing largely interpretable programs. Given the complexity of soil health

processes, the ability to interrogate why a model produces a particular prediction was

considered valuable by project stakeholders. Many insights were able to be drawn from

qualitative inspection of the evolved programs; for example, soil texture was frequently

influential—many programs branched early on texture-related inputs—whereas mois-

ture appeared less consistently and was often absent from the final program structure.

Insights of this kind can be translated into agronomic hypotheses and decision support,

helping end users relate model outputs to practical soil management actions and field

observations.
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5.4 Following Work

This project used yield as a proxy for soil health. In actuality, soil health is significantly

more complex than a simple three-label category: it is derived from a holistic view of

both the indicators and metadata used as variables in this project. By showing that these

indicators are loosely able to translate into a picture of soil health, the next logical step

is to try to predict those indicators, given the sensor data obtained from the PES sensor.

In this way, we can say that, since these indicators can be used to predict soil health,

if we can predict the indicators from the sensor data, then overall the sensor data can

predict soil health. This indirect approach was necessary because the PES sensor was not

yet operational when the soil samples were collected, and so it was not possible at the

time to predict yield directly from the sensor outputs. Had the sensor been operational,

a more direct approach could have been investigated. Once operational, the PES sensor

was used to produce data for all soil samples that had been collected and stored, and so

the subsequent phase of research focused on using this sensor data to attempt to predict

these individual soil health indicators from the samples, in order to complete the indirect

approach. This work is covered in the next chapter.



Chapter 6

Soil Health Analysis: Time Series

Sensor Data

This chapter will describe in detail the application of ST–CGP to soil health through use

of the PES sensor data. Through this research, the author has shown that ST–CGP can

predict the values of the soil health indicators described in the previous chapter. ST–

CGP is able to predict these indicators accurately enough that the predictions can be

used by agronomists as part of their routine soil health monitoring processes, offering a

faster, more cost-effective alternative to lab-based analyses and enabling more informed

decision-making in agricultural management. In many cases, the predictions are as

accurate as those produced by laboratories, with lower variance. The initial Innovate UK

project which explored the application of ST–CGP to this data was so successful that the

company has integrated ST–CGP into its product, and it is now being used commercially

across the UK by agronomists and farmers in the management of their soil health.

The chapter starts by describing in detail the structure of the data, and how it is

produced, before describing the data processing pipeline and ST–CGP setup used to

predict the indicators. Finally, results are presented and discussed.

130
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6.1 The PES Soil Test

6.1.1 Anatomy of a PES Test

The PES Soil test employs a novel approach to soil health assessment by effectively

“sniffing” the soil to detect volatile organic compounds (VOCs). The process involves the

gentle heating of a soil sample over a roughly five-minute period, a method designed to

release VOCs that are otherwise trapped within the soil. These emitted VOCs are then

captured by a proprietary single-use sensor embedded within the Electronic Reader Unit

(ERU). The sensor comprises six distinct sensing channels, each doped with different

semiconductors at varying densities. This diversification allows for a broad spectrum of

VOC detection, which in theory allows for a more sensitive detection of VOC profiles.

During the five-minute test, the ERU continuously monitors changes in both resist-

ance and capacitance across the six sensing channels as well as fluctuations in environ-

mental parameters such as humidity and temperature, which can be vitally important

for accurate VOC analysis. The dynamic data captured during this period generates a

“VOC fingerprint” unique to the soil sample being tested. This fingerprint serves as a

rich source of data, in theory capturing the complex interactions between soil properties

and emitted VOCs.

In the initial project with PES Technologies, the author was tasked with the primary

objective of determining the feasibility of mapping the acquired VOC fingerprints to

various soil health indicators through machine learning. This involved comparing the

effectiveness of ST–CGP on the problem to other machine learning techniques, in order

to establish which was best suited to analysing this type of data. The hope was that

at least one machine learning technique would be able to capture the intricate patterns

within the sensor data.

6.1.2 Data characteristics

The sensor produced by the PES Sensor contans several challenging characteristics. One

of these is the substantial variation in the scales of its constituent measurements. Spe-
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cifically, the resistance data span multiple orders of magnitude; the circuit has a very

high initial resistance, typically starting around 100GΩ and dropping to 1MΩ by the

end of the test. In contrast, the capacitance measurements are confined to an exception-

ally narrow range, operating within the picofarad range. The temperature and humidity

data are different again—as they sit within ranges that are easily understood by human

interpretation. This heterogeneity in the data characteristics necessitates meticulous

construction of feature extraction techniques; such techniques must be carefully tailored

to accommodate the distinct properties of each data type, ensuring their applicability

and accuracy across the diverse range of measurements. Fig. 6.1 shows an example of

the resistance readings produced by the sensor. The VOC “fingerprint” which is unique

to each sample analysed is made up of six such channels, in addition to six capacitance

channels and several environmental readings such as temperature and humidity.

Perceptive readers may notice an additional complication: the presence of noise.

The sensors used in the PES reader unit are connected to highly sensitive electronic

circuitry, which, while essential for detecting subtle changes in signal from the semicon-

ductors, inevitably captures a significant amount of electrical noise. This noise can arise

from various sources, including thermal fluctuations, electromagnetic interference, and

inherent variability in electronic components. Such unwanted signals can obscure the

true data signal, making it more challenging to obtain accurate and reliable measure-

ments. The issue is further complicated by the fact that this noise can vary widely in

both frequency and amplitude, making its identification and removal a complex task.

Unlike the human visual system, which has evolved to effectively filter out irrelevant

information and focus on important details, computational algorithms are much more

vulnerable to noise. Humans can ignore background noise with relative ease and con-

centrate on salient features, a capability that algorithms do not necessarily possess. De-

veloping algorithms that are robust against such noise is particularly challenging when

the noise spans multiple orders of magnitude. As a result, to minimise the effect of the

noise it is essential to apply noise reduction and smoothing techniques to minimize the

impact of noise on the data. These techniques help in improving the signal-to-noise ratio,
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thereby enhancing the accuracy and reliability of subsequent data analyses, including by

machine learning.

To address the issue of noise, a robust preprocessing pipeline has been implemented,

comprising several protocols tailored to the specific characteristics of each component of

the dataset, and the types of noise present. These techniques include data cleaning, noise

removal, and normalisation. A detailed description of these methodologies is provided

in 6.2.

6.2 Preprocessing

0 250 500 750 1000 1250 1500 1750
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Sinusoidal noise
Water droplet effect

Figure 6.1: An example of a resistance curve with some areas of concern highlighted.

In order to devise a robust data processing pipeline it is necessary to perform a com-
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prehensive examination of the collected data to determine which components require

processing, and what the processing should aim to achieve. Figure 6.1 presents the res-

istance curve recorded from a single sensor element during a test. A preliminary analysis

of this figure reveals four distinct issues that could potentially disrupt any subsequent

data analysis. These issues have been marked in the accompanying figure for ease of

reference and further discussion.

The first issue arises from the extensive range covered by the data, which spans

several orders of magnitude. This wide range has the potential to pose significant scaling

problems, as the initial resistance values are substantially larger than the final ones; on

average the resistance data spans 10 orders of magnitude. Such discrepancies can lead

to difficulties in accurately interpreting the data, as algorithms may struggle to maintain

sensitivity across the entire range. Additionally, previous research has shown that the

critical information lies in the overall shape and characteristics of the resistance curve

rather than the absolute values.

The second issue identified is the presence of noise—both the random noise found

throughout the entire curve, due to the sensitive measurement of an electronic circuit,

as well as the repetitive sinusoidal noise found most noticeably at the higher end of the

reading. In both cases the noise amplitude increases in proportion to the true signal’s

magnitude. This variability means that a simple, fixed noise removal approach would

be ineffective, as it cannot adapt to the changing noise levels across different signal

strengths. Additionally, the sinusoidal noise pattern means that traditional smoothing

algorithms struggle to completely eliminate the effects of noise.

The third issue is that a sudden spike occurs at approximately index 700, represent-

ing an unexpectedly large value that deviates sharply from the surrounding data points.

Such spikes can distort the analysis by introducing outliers that can skew extracted fea-

tures and interfere with analysis. This particular issue is intermittent—not all resistance

curves exhibit it—but it occurs frequently enough that it is necessary to mitigate it.

The fourth issue is a period of rapid fluctuations or “jumping” variations towards the

end of the signal. These erratic changes, caused by water droplets forming on the sensor,
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can complicate the extraction of meaningful features from the data, as they obscure the

true signal and make it difficult to approximate the shape of the true curve numerically.

In response to these identified challenges, the preprocessing pipeline for resistance

curves must incorporate several essential steps to ensure the data is clean and suitable

for further analysis.

The first step involves scaling or normalising the data to mitigate the effects of

the wide range of values. This can be achieved effectively by applying a logarithmic

transformation, specifically using log10, which brings all values into the same order of

magnitude. Such normalisation not only simplifies the data but also enhances the per-

formance of subsequent processing stages by ensuring that all data points are within a

comparable scale.

The second step focuses on data cleaning, which involves the removal of the anomal-

ous spike at index 700 and the stabilization of the rapid variations observed towards the

end of the signal. Techniques such as outlier detection algorithms can be employed to

identify and eliminate spikes, while a combination of smoothing algorithms and iterative

methods can help reduce the impact of water-droplet-induced variation. These methods

are covered in 6.2.1.

The final step is noise removal, which requires the implementation of adaptive filter-

ing methods that can account for the variable noise levels across the signal. By system-

atically applying these preprocessing techniques, the integrity of the resistance data is

preserved, allowing for more accurate and meaningful downstream analysis.

6.2.1 Data cleaning

A relatively simple technique is used for the initial cleaning of the data. The method

starts by taking the derivative of the dataset to identify points where sudden changes

occur. A basic threshold is then applied to detect spikes in the data; any values that

exceed or fall below this threshold are considered outliers. Once these problematic

indices are identified, they are removed from the original data.

Following the removal of these outliers, the original data is interpolated at the miss-



136 CHAPTER 6. SOIL HEALTH ANALYSIS: TIME SERIES SENSOR DATA

0 250 500 750 1000 1250 1500 1750

6

4

2

0

2

4

6
Threshold

Figure 6.2: The derivative of the resistance curve, before data cleaning.
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ing points to ensure that the curve shows a smooth transition around the removed in-

dices. In practice, this approach effectively removes the random high outlier spikes as

well as some of the water droplet effects that can appear towards the end of the curve.

Fig. 6.2 shows the derivative for the example data. It can be seen that the random out-

lier, as well as many of the water droplet spikes, are detected by this method and would

therefore be successfully removed.

6.2.2 Smoothing and noise removal

Moving Average

One of the most straightforward and commonly used smoothing algorithms in data ana-

lysis is the moving average. This method is particularly effective for reducing small

fluctuations caused by noise, thereby providing a clearer representation of the underly-

ing trend or true signal within the data. The moving average achieves this by calculating

the average of a specific number of consecutive data points, which smooths out short-

term variations and highlights longer-term patterns. This simplicity makes the moving

average a valuable tool across various disciplines, including economics, finance, and

environmental studies, where identifying genuine trends is essential.

Mathematically, the moving average can be defined thus: Consider a time series

dataset {x1, x2, . . . , xn}, where n is the total number of observations. A simple moving

average (SMA) with a window size of k is calculated by taking the arithmetic mean of

each set of k consecutive data points. Specifically, the moving average at position t is

given by:

SMAt =
1
k

t

∑
i=t−k+1

xi.

In this formula, t ranges from k to n, ensuring that each moving average value incor-

porates exactly k data points. The choice of window size k is crucial as it determines the

extent of smoothing. A larger k results in a smoother resultant signal, effectively redu-

cing more noise but potentially overlooking short-term changes. On the other hand, a
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smaller k makes the moving average more responsive to recent data points, allowing for

shorter-term shifts to be represented, but retaining more of the original variability (and

potentially, some of the noise!).

Selecting the appropriate window size involves balancing the need for smoothness

with the need to remain sensitive to important changes in the data. Broadly speaking,

a longer moving average might be used to identify long-term trends, while a shorter

moving average could help detect shorter-term, or more sudden changes.

The simple moving average serves as a foundational technique upon which more

advanced smoothing methods are built. Variations such as the weighted moving aver-

age (WMA) and the exponential moving average (EMA) introduce different weighting

schemes to give more importance to certain data points. A detailed explanation of these

techniques is beyond the scope of this thesis. In total three varieties of moving average

were tested on the data: simple moving average (SMA), exponential moving average

(EMA), and weighted moving average (WMA). Figures 6.3 to 6.5 show the results of

applying SMA, EMA, and WMA to the resistance curve with three different window sizes

k: k = 10, k = 50, and k = 100.

The analysis of the smoothed data shows a common issue across all the moving av-

erage techniques tested: each method introduces an offset in the smoothed line that

corresponds to the chosen window length k. This offset occurs because of the slid-

ing window used to calculate the average of a set number of points. When calculat-

ing the moving average on a series of data points, until k points have occurred, there

aren’t enough preceding data points to fully apply the window. There are two common

paproaches to ameliorate this: the first is to simply ignore the first k points, and not cal-

culate an average for them. This results in an output which is k − 1 points shorter than

the input. This truncation means that some important information from the beginning

of the signal may be lost, potentially affecting the overall analysis.

Alternatively, the initial section of the smoothed signal can be calculated using an

expanding window approach, whereby for every point p with index less than k, the

average is calculated on the preceding p − 1 points. While this method preserves the
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Figure 6.3: SMA.



140 CHAPTER 6. SOIL HEALTH ANALYSIS: TIME SERIES SENSOR DATA

0 250 500 750 1000 1250 1500 1750
Index

5

6

7

8

9

10

11
Va

lu
e

window=10

0 250 500 750 1000 1250 1500 1750
Index

5

6

7

8

9

10

11

Va
lu

e

window=50

0 250 500 750 1000 1250 1500 1750
Index

5

6

7

8

9

10

11

Va
lu

e

window=100

Figure 6.4: EMA.
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Figure 6.5: WMA.
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length of the data, it does not provide a consistent smoothing effect; the early data

points are smoothed less than later points.

Whether the output is shortened or padded, the result is a displacement of the

smoothed signal relative to the original data by an offset of k. This displacement causes

the smoothed output to lag behind the true signal, meaning that changes or fluctuations

in the data take longer to be reflected in the smoothed line. In contexts where timely

reactions to data changes are essential, this delay can affect subsequent data analysis.

When the smoothed signal is used in feature extraction or building predictive models,

the delay can distort the true timing of these events.

Another important observation is that moving averages struggled to remove the si-

nusoidal noise at the start of the signal. This type of noise posed a challenge for all the

moving average techniques evaluated. The amplitude of this sinusoidal noise is too large

to be removed, even when using a substantial window size of 100 points. As a result,

this type of structured noise remains part of the smoothed signal, making it difficult to

distinguish from the actual signal.

Despite this difficulty with sinusoidal noise, all three moving average techniques

performed well in reducing the random noise present in the signal. It can be seen that

SMA, EMA, and WMA were similarly effective in removing random noise and smoothing

the signal.

To address the two primary limitations associated with moving averages—the lag and

the inadequate removal of sinusoidal noise—two additional techniques were explored.

The first technique employed was the Savitzky-Golay filter, a widely recognised method

in signal processing known for its ability to smooth data while preserving important

features such as peaks and edges. By fitting successive subsets of data points with a

low-degree polynomial, the Savitzky-Golay filter effectively reduces noise without intro-

ducing significant lag, thereby enhancing the responsiveness of the smoothed signal. The

second technique involved the application of the Fast Fourier Transform (FFT) to ana-

lyse and mitigate variations in the frequency domain. This approach targets the removal

of sinusoidal noise by transforming the time-domain signal into its frequency compon-
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ents, allowing for the selective filtering of unwanted frequencies. By addressing noise in

the frequency domain, FFT-based methods can more precisely eliminate structured noise

patterns that moving averages fail to remove.

Savitzky-Golay

The Savitzky-Golay algorithm is a widely utilised digital filtering technique that performs

local polynomial regression on subsets of data to achieve effective smoothing while pre-

serving important signal features. Its principal mechanism involves fitting a low-degree

polynomial to a window of data points via a least-squares criterion, ensuring that key as-

pects of the original signal, such as peak amplitudes and widths, are maintained without

introducing significant lag. This makes it particularly useful for applications where im-

mediate tracking of the data is critical and where excessive delay or distortion of features

would be detrimental. This characteristic seems well-suited to the task at hand.

At a high level, each “step” of the Savitzky-Golay filter follows this process:

1. Window Selection: A contiguous window of data points is selected from the over-

all signal. The window size, which must be an odd number, is chosen based on

a trade-off between noise reduction and the preservation of detailed signal fea-

tures; larger window sizes reduce noise to a greater degree, but risk losing finer

(non-noise) details in the original signal.

2. Polynomial Fitting: Within each window, a polynomial of a chosen degree (typic-

ally low, such as 2 or 3) is fitted to the data using least squares.

3. Coefficient Derivation: The coefficients of the polynomial fit are computed, and

these coefficients are then used to derive the convolution coefficients (or filter

coefficients) that characterise the Savitzky-Golay filter.

4. Convolution: The derived filter coefficients are convolved with the data in the

moving window, generating a smoothed output that approximates the true signal

values at the central point of the window.
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This process is repeated for each position of the window across the entire dataset,

ensuring that each point in the filtered signal reflects the local polynomial fit of its sur-

rounding data.

While this method has the advantage of minimising lag and preserving local features,

it is not without its drawbacks. The algorithm’s reliance on local polynomial fitting

means that small-scale variations, such as the sinusoidal noise mentioned earlier, may

not be effectively removed unless a larger window is used; which in turn could result in

some loss of detail that is important in the prediction of soil health indicators.

Fig. 6.6 shows the Savitzky-Golay filter applied to the data with varying window

lengths. Unfortunately, while it does an excellent job at removing typical noise, and

shows absolutely no lag, the sinusoidal noise is still present even with a large window

size. As such, while this technique is clearly very effective, it does not quite perform well

enough on the upper portion of data to be used as the sole noise removal method.

Fourier Smoothing with Detrending

There exist many methods using Fourier Transforms to remove noise from signals. Cent-

ral to these methods is the Fast Fourier Transform (FFT), an algorithm that converts

signals from the time domain into the frequency domain. This transformation is simpli-

fies the process of identifying and isolating various components of the signal based on

their distinct frequencies. By analysing the signal in the frequency domain, it becomes

significantly easier to pinpoint specific frequencies where noise is concentrated.

Noise within signals frequently occurs at particular high frequencies, making it iden-

tifiable using FFT-based methods. Once these noisy high-frequency components are de-

tected, they can be selectively removed within the frequency domain. After this noise

removal, the inverse FFT is applied to transform the signal back to the time domain.

By removing the frequencies in the frequency domain, the result after the inverse trans-

formation is that the noise associated with the targeted frequencies is eliminated in the

time domain, while the integrity of the original signal is largely preserved. This select-

ive filtering capability of FFT methods stands in contrast to time domain approaches,
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Figure 6.6: Savitzky-Golay.
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such as the moving average and Savitzky-Golay methods seen earlier, which lack the

precision to filter out specific frequencies without affecting others. As seen, the window-

based averaging used by these methods can inadvertently lose fine details and important

high-frequency components of the signal. As a result, while these techniques are quite

effective at reducing random noise, they often lose the subtle nuances of the input signal

as a side effect.

In the context of the resistance curves analysed in this study, the sinusoidal noise

occurs at a consistent frequency of approximately 0.1Hz. Given that FFT-based methods

excel at removing noise at particular frequencies, they present an ideal solution for

addressing this type of structured noise. By transforming the resistance curves into the

frequency domain, the sinusoidal noise can be accurately identified and isolated based

on its frequency, and then removed along with any other high frequency noise. This

type of filter is known as a low-pass filter, because it lets low frequencies pass while

attenuating higher frequencies.

An adaptation of the low-pass parabolic fast fourier transform filter [126] (PFFTF)

with added trend robustness and simplified parabola calculation was implemented. At a

high level, the filter follows this process:

1. Identify trend and construct baseline: Calculate the overall trend (and direc-

tion) of the data by drawing a straight line from the start point to the end point.

For robustness, calculate the start point as the average of the first few points, and

the end point as the average of the last few points, to minimise the effect of noise

on this calculation.

2. Detrend: Subtract the baseline calculated above from the input data. This removes

the underlying trend, leaving behind only the fluctuations around that baseline.

3. Transform to frequency domain: Apply the Fast Fourier Transform to the de-

trended data, thereby transforming from the time domain to the frequency do-

main.
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4. Apply a low-pass parabolic filter: Apply a low-pass parabolic filter to the data

with smoothing factor n, to attenuate high frequencies while preserving low fre-

quencies, see eq. (6.1). A parabolic filter is chosen to smoothly decrease the influ-

ence of higher frequencies, rather than using a hard cutoff.

5. Inverse transform: Transform the filtered data back to the time domain using the

Inverse Fast Fourier Transform (IFFT). This produces a smoothed version of the

detrended data.

6. Restore the trend: Add the baseline back to the smoothed detrended data. This

results in a smoothed version of the original data that maintains the original trend,

but has reduced noise.

fc =
1

2n∆t

fk =
k

N∆t
, for k = 0, 1, . . . , N − 1

H( fk) =


1 −

(
fk
fc

)2
if | fk| ≤ fc,

0 otherwise

Yfiltered,k = Yk · H( fk), ∀k = 0, 1, . . . , N − 1.

(6.1)

To understand why this works, it is important to see the process applied to real data.

Let us first consider the low-pass parabolic FFT filter, and then apply the detrending

process to it.

Figure 6.7 shows the frequency spectrum. Recall that the sinusoidal noise is approx-

imately 0.1Hz; this should appear as a peak in this frequency spectrum. fig. 6.7a shows

the full spectrum, while fig. 6.7b shows a zoomed portion of the low frequencies. It can

be seen that there is a peak just below 0.1Hz—this is the sinusoidal noise, and by atten-

uating this frequency in the frequency domain the sinusoidal noise can be eliminated in

the time domain.

Figure 6.8 shows the calculated cutoff frequency parabolas for various smoothing

factors, overlaid on the frequency spectrum. It can be seen that the higher the smoothing
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Figure 6.7: Frequency spectrum for the resistance data (without detrending.)
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factor, the lower the “final” cutoff frequency, and therefore the more frequencies are

attenuated. In other words, a higher smoothing factor results in a smoother output, as

one would expect. It can also be seen that for a smoothing factor n = 100, the cutoff

frequency sits below the ≈0.1Hz sinusoidal noise, while the lower smoothing factors

attenuate, but don’t completely remove these frequencies. Therefore, when performing

the IFFT, it should be expected that lower values of n do not completely remove the

sinusoidal noise, while n = 100 should.

Figure 6.9 shows the smoothed data after applying the low-pass parabolic FFT filter

with n = 100, overlaid on the original data. Astute readers will notice that the smoothed

data does not really represent the original data at the start and end. This is because the

data was not detrended before being supplied to the filter, and as such the large drop

in the data interferes with the filtering process. Nevertheless, it is encouraging that the

sinusoidal noise is largely removed by the filter. We shall now apply the detrending

process and see how it affects the result.

Figure 6.10 shows the data once the detrending process has been applied; this is the

fluctuation around the baseline, the straight line drawn from the start to the end of the

data. By feeding this into the low-pass filter the frequency spectrum can be observed.

Figure 6.11 shows the frequency spectrum of this curve, and it can be seen that when

detrending is applied, the peak at 0̃.1Hz is even more evident than before. As such, the

frequency cutoffs used previously, when applied to this curve, are even more effective:

fig. 6.12 shows the inverse FFT of the detrended curve, with the baseline added, and it

can be seen that not only has the random noise been removed from the entire curve, but

the sinusoidal noise has also been removed.

Figure 6.13 shows the results of various smoothing factors when detrending is used.

As expected, it can also be seen that this technique does not suffer from any lag or

shifting in the smoothed data, because the technique does not use a windowed average.

A further benefit is that the inflection point does not change—this is one of the key

features that can be extracted from this type of curve (which roughly follows an inverse

logistic shape).
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Figure 6.8: Cutoff frequency parabolas for various smoothing factor n.
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Figure 6.9: Inverse FFT (without detrending.)
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Figure 6.10: Detrended data.
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Figure 6.11: Frequency spectrum for the resistance data (with detrending)
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Figure 6.12: Inverse FFT (with detrending.)
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Figure 6.13: Curves smoothed using the low-pass parabolic Fast Fourier Transform filter.
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Overall, this smoothing technique has several benefits over the other techniques

tested; most notably, the elimination of the sinusoidal noise and lack of lag. As such,

this FFT-based technique was selected as the smoothing method of choice for the pre-

processing pipeline.

6.3 Final experiment

Each of the indicators described in the previous chapter was evaluated using k-fold cross

validation with k = 5, with the exception of Geosmin, which was not available for a

large proportion of samples due to the cost of measuring it. Multiple evaluations were

made, each with a subset of N features selected using “mutual information” values,

with N taking values from 10 to 150, in steps of 10. For each value of N, the cross

validation performance was assessed by calculating the average root mean squared error

(RMSE). The subset of N features yielding the best performance during this phase was

then applied to the test set, in order to ensure that the model was generalisable to unseen

data.

This process was repeated across three distinct algorithms: ST–CGP, Random Forests,

and Neural Networks. These three techniques were chosen for the following reasons:

Random Forests and ST–CGP were the two highest performing techniques in the previous

experiment, and the project requirements stipulated that neural networks must be used

as a point of comparison, given the relative ubiquity of NN-based approaches across

other disciplines. To ensure that the comparison between the techniques was fair, the

computational budget and stopping criteria for each technique were kept as consistent

as possible. By doing so, each method was given a broadly comparable opportunity to

optimise its performance. The computational budget settings were as follows:

• The neural network employed a standard multi-layer architecture, incorporating

dense layers augmented with dropout and regularisation techniques, and early

stopping was used (based on validation loss) to prevent overfitting, with a patience

of 25 epochs. A maximum of 500 epochs was permitted.
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• ST–CGP was constrained to a maximum of 500 generations, with an early stop-

ping mechanism added, which monitored the validation root mean squared error

(RMSE) with a patience of 25 generations.

• The Random Forest algorithm was executed using default scikit-learn settings. As

it does not train iteratively in epochs or generations, no early stopping criterion

was applied in this case.

As the other techniques used do not support typing, ST–CGP was operated with a

single type, in order to keep the comparison fair. As discussed earlier, this has the effect

of essentially making ST–CGP operate similarly to a standard CGP system, with the ad-

dition of the advanced optimisiation techniques described earlier, such as full crossover,

genetic rewiring, multi-objective optimisation, memoisation, and varying arities.

6.4 Results

Section 6.4 shows the results of training the three selected algorithms using k-fold cross

validation. As this is a regression task, the metrics used to assess the performance of

each algorithm are the root mean square error (RMSE) and r-squared value, which is

a goodness of fit measure. The closer r2 is to 1, the better the performance of the

algorithm. A value of 0 indicates that the algorithm performs no better than chance;

no variance in the results is explained by the algorithm. A negative value indicates an

algorithm that performs worse than this.

The results in this table are the mean average of the metrics for each out-of-sample

fold used in the k-fold cross validation. So, for a value k = 5, five folds are generated,

and each algorithm is trained five times, with each fold being used as out-of-sample data

once. The results on each out-of-sample fold are averaged here.

It can be seen from the table that ST–CGP was competitive on all indicators—it either

outperformed the other algorithms, or came close to the results of the best perform-

ing algorithm. Random Forests performed best on the most indicators overall: nine
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of the fourteen indicators were most performant with this algorithm compared to five

with ST–CGP. Notably, neural networks underperformed considerably on every indicator.

The most likely explanation for this is that the training dataset is simply too small; as

discussed earlier, neural networks benefit from a significant amount of training data

and significant computational resources dedicated to the training process. Neither were

available here.
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Table 6.1: Performance of ST–CGP, Random Forest, and Neural Networks on various soil health indicators. Results are the

average of k-fold cross validation, with k = 5.

ST–CGP Random Forest Neural Network

Indicator RMSE r2 RMSE r2 RMSE r2

Microbial Biomass 149 ± 9.6 0.72 ± 0.04 147 ± 14.4 0.72 ± 0.05 223 ± 7.6 0.38 ± 0.05

Respiration 0.52 ± 0.06 0.49 ± 0.04 0.51 ± 0.06 0.50 ± 0.04 0.68 ± 0.04 0.10 ± 0.14

WHC Water Content 2.39 ± 0.20 0.77 ± 0.04 2.32 ± 0.18 0.78 ± 0.04 4.60 ± 0.07 0.16 ± 0.08

Field Water Content 2.29 ± 0.20 0.81 ± 0.04 2.21 ± 0.25 0.82 ± 0.04 3.54 ± 0.12 0.55 ± 0.06

Soil Organic Matter

(LOI)

1.23 ± 0.20 0.82 ± 0.06 1.30 ± 0.21 0.79 ± 0.07 2.01 ± 0.15 0.51 ± 0.07

Nitrate Nitrogen 7.20 ± 0.35 0.59 ± 0.04 7.14 ± 0.38 0.60 ± 0.04 9.33 ± 0.50 0.31 ± 0.04

Ammonium Nitrogen 0.79 ± 0.14 0.40 ± 0.12 0.83 ± 0.09 0.33 ± 0.07 0.92 ± 0.15 0.18 ± 0.09

Mg Available 22.6 ± 1.5 0.78 ± 0.02 23.4 ± 2.5 0.76 ± 0.05 39.3 ± 2.4 0.34 ± 0.08

K Available 63.5 ± 3.5 0.46 ± 0.07 63.9 ± 3.3 0.45 ± 0.07 86.0 ± 2.6 0.01 ± 0.08

P Available 9.75 ± 0.69 0.60 ± 0.08 10.3 ± 0.66 0.55 ± 0.07 14.2 ± 0.79 0.16 ± 0.04

pH 0.33 ± 0.01 0.86 ± 0.02 0.32 ± 0.02 0.87 ± 0.02 0.61 ± 0.04 0.52 ± 0.08

Sand % 8.43 ± 1.0 0.90 ± 0.03 8.05 ± 1.0 0.91 ± 0.03 13.6 ± 0.70 0.76 ± 0.04

Silt % 8.37 ± 0.91 0.69 ± 0.07 5.06 ± 0.62 0.88 ± 0.03 9.31 ± 0.48 0.61 ± 0.05

Clay % 7.58 ± 0.46 0.69 ± 0.05 4.77 ± 0.48 0.88 ± 0.02 8.80 ± 0.73 0.59 ± 0.05
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Training performance does not tell the full story. 20% of the entire dataset was kept

back for the training process before cross-validation was performed, to be used as a final

test set for each algorithm. This allows the performance of each algorithm to be assessed

on truly unseen data.

For this test, the k models were all evaluated on each data point. For each data point,

the k results predicted by the models were averaged to give the final value. This method

of creating an averaging ensemble model is a common technique to try to maximise

results when small training sets are used. Section 6.4 presents these results for each

algorithm.

It can be seen that for nearly every indicator, the performance on the test set was

better than the averaged training performance. This is likely due to the fact that the

ensemble model is less influenced by variations within the dataset.

The most interesting observation of these results is that for the ensemble models,

ST–CGP is the best performing algorithm on nearly every indicator, in some instances by

quite a margin. It outperformed random forests for twelve of the fourteen indicators

tested. This indicates that ST–CGP is better able to generalise to unseen data; it does not

overfit as much as the other algorithms. This echoes the results of the even parity test

seen earlier.
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Table 6.2: Performance of ST–CGP, Random Forest, and Neural Networks on the test set.

ST–CGP Random Forest Neural Network

Indicator RMSE r2 RMSE r2 RMSE r2

Microbial Biomass 138 0.74 139 0.73 217 0.37

Respiration 0.39 0.61 0.44 0.50 0.52 0.28

WHC Water Content 2.18 0.80 2.48 0.74 3.62 0.43

Field Water Content 1.85 0.83 2.00 0.81 3.05 0.55

Soil Organic Matter

(LOI)

1.02 0.87 1.31 0.78 1.75 0.61

Nitrate Nitrogen 7.07 0.56 7.38 0.52 8.35 0.39

Ammonium Nitrogen 0.82 0.26 0.90 0.13 0.89 0.13

Mg Available 23.6 0.78 30.4 0.64 38.3 0.43

K Available 58.9 0.56 64.6 0.47 85.5 0.08

P Available 9.75 0.57 12.3 0.32 13.2 0.22

pH 0.32 0.88 0.36 0.84 0.58 0.59

Sand % 8.57 0.90 9.54 0.88 12.8 0.79

Silt % 7.16 0.79 5.64 0.87 9.36 0.64

Clay % 7.06 0.74 5.68 0.82 9.31 0.54
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One of the main advantages of ST–CGP is its ability to utilise multiple data types. Al-

gorithms like random forests and neural networks are purely numerical—inputs must all

be either integers or floating point numbers. In order to make a fair comparison between

ST–CGP and the other algorithms, ST–CGP was constrained to this same restrictive be-

haviour for the results seen so far; the same 50 numerical features were provided to all

algorithms.

This phase of the project was initially intended to close the loop of the indirect ap-

proach described in the previous chapter (sensor predicts soil health indicators, health

indicators predict yield). However, one of the early outcomes of the project, derived

from discussions with agronomists, soil scientists, and farmers, was that it is actually

more useful to be able to predict the soil health indicators than the yield. This is because

the yield labels—low, high, and reference—collected during this project are localised,

meaning that what is considered “high” in one field could be “low” in another. In con-

trast, the soil health indicators are global; for example, 35ppm of phosphorous is the

same in one field as another. Agronomists can use the soil health indicators to provide

a holistic picture of soil health on a per-field basis, which is more valuable to farmers

than a simple yield label. As such, it was not explored whether feeding the soil health

indicator predictions back into the classifiers from the first phase of the project produced

accurate classifications or not.
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Conclusion

This thesis set out to investigate whether adding an explicit, compile-time type system

to CGP could deliver a reliable, interpretable, and broadly speaking useful evolutionary-

programming framework. The resulting method—ST–CGP—integrates input and output

types, and also holds a number of other improvements over standard CGP, supporting

operators of arbitrary arity, adding full crossover and a new variant of crossover, both

in a way that ensures offspring remain syntactically valid and type-safe, and adding

multi-objective optimisation, and speed improvements from memoisation and caching.

By screening out ill-typed graphs before execution and after genetic operations, the ap-

proach narrows the search space, shortens run times, and preserves the elegant genome

representation that distinguishes CGP. Importantly, the type rules are lightweight: they

demand no problem-specific tuning and coexist easily with the neutral mutations that

are characteristic of CGP.

Empirical studies across computer vision, arable agriculture, and soil chemistry show

that ST–CGP is applicable to a wide range of problems. In particular, type information

does more than guarantee syntactic correctness. Because each operator declares ex-

actly which data it accepts, numeric, Boolean, image, and time-series primitives can

mix freely within a single population. That flexibility enables expressive, but more im-

portantly, powerful programs: with only ten labelled images per class, ST–CGP matched

a convolutional-network baseline on a large image-based dataset while running on a
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single CPU core. ST–CGP also performs well when typing is not involved: in yield-zone

classification for forty-five UK fields, it trailed a tuned random forest by barely three

percentage points yet exhibited an order-of-magnitude lower variance between runs,

signalling a more reliable search. When supplied with five-minute gas-sensor traces, the

same codebase produced regression models that met laboratory standards for twelve

soil-health indicators and is already in commercial use. Across domains where typing

was tested, successful programs remained markedly shorter than those produced by un-

typed CGP, suggesting a pruning effect of strong typing.

Several themes emerge. First, type constraints act as an intrinsic bias that guides

evolution without heavy-handed heuristics. Second, modest crossover improves the

evolutionary search performed by ST–CGP, regardless of typing. Third, the evolved

graphs remain human-readable: clinicians can trace each image transformation, and

agronomists can see which sections of a sensor trace or field history drive a prediction.

This interpretability is key in fields where opaque “black box” models are unacceptable.

A limitation of this research is the scope and isolation of the evidence. Not every

experiment involved typing, as mentioned, and the thesis does not include a full abla-

tion that cleanly separates the effects of strong typing, crossover (including rewiring),

and other optimisation choices; nor are the benefits of crossover/optimisation quantified

across a wider problem suite. This may leave threats to internal and external validity,

since observed gains may partly reflect operator/hyperparameter interactions and the

limited set of domains studied. That said, the malaria results show statistically signific-

ant improvements across repeated runs, suggesting the effect is not purely due to noise.

Future work should replicate this level of statistical validation on more tasks that

make heavier use of typing, alongside systematic ablations to attribute gains to each

component. To test these themes more rigorously, a controlled factorial study could be

designed in which the only experimental factors are: (i) the presence or absence of type

constraints (i.e., typed vs. untyped ST–CGP) and (ii) the use and magnitude of crossover

(e.g., crossover probability pc ∈ {0, 0.05, 0.10, 0.20}), while holding all other settings

fixed (operator set, mutation, selection, population size, initialisation procedure, and,
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critically, an identical evaluation budget). Each condition would be repeated over a suf-

ficiently large number of independent random seeds and across multiple task families

to ensure that any observed effects are robust and not dataset-specific. Performance

and search efficiency could then be compared statistically between conditions (e.g., fi-

nal test performance, fitness–evaluation learning curves, and evaluations-to-threshold),

enabling an objective assessment of the contribution of type constraints and crossover

to ST–CGP’s behaviour.

This thesis began by setting out two main objectives: adding strong typing to CGP,

and determining whether this addition yielded any benefits. Both of these objectives

have been accomplished: the first explained in Chapter 3, and the second demonstrated

across Chapters 4, 5, and 6. Furthermore, the addition of advanced optimisation tech-

niques has allowed ST–CGP to perform competitively even in the absence of multiple

types.

Overall, the evidence suggests that ST–CGP is a useful practical technique for data-

sparse, computation-limited, and explanation-critical settings, especially when the prob-

lem benefits (or suffers!) from multiple data types. The framework thus offers a credible

alternative to both classic GP and black box deep learning, and its modular design in-

vites future work, especially with regard to richer data types, parallel evaluation, and

automated discovery of domain primitives.
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